{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": 3 }, "orig_nbformat": 2, "coopTranslator": { "original_hash": "523ec472196307b3c4235337353c9ceb", "translation_date": "2025-09-06T15:33:18+00:00", "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", "language_code": "en" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "source": [ "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond,\" International Journal of Forecasting, vol.32, no.3, pp. 896-913, July-September, 2016.\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pip install statsmodels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Disclaimer**: \nThis document has been translated using the AI translation service [Co-op Translator](https://github.com/Azure/co-op-translator). While we aim for accuracy, please note that automated translations may include errors or inaccuracies. The original document in its native language should be regarded as the authoritative source. For critical information, professional human translation is advised. We are not responsible for any misunderstandings or misinterpretations resulting from the use of this translation.\n" ] } ] }