{ "cells": [ { "source": [ "# Erstellen Sie mehr Klassifikationsmodelle\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", "cuisines_df.head()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 indian\n", "1 indian\n", "2 indian\n", "3 indian\n", "4 indian\n", "Name: cuisine, dtype: object" ] }, "metadata": {}, "execution_count": 2 } ], "source": [ "cuisines_label_df = cuisines_df['cuisine']\n", "cuisines_label_df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " almond angelica anise anise_seed apple apple_brandy apricot \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", "\n", " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 380 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" }, "metadata": {}, "execution_count": 3 } ], "source": [ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "cuisines_feature_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Probieren Sie verschiedene Klassifikatoren aus\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "\n", "C = 10\n", "# Create different classifiers.\n", "classifiers = {\n", " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", " 'KNN classifier': KNeighborsClassifier(C),\n", " 'SVC': SVC(),\n", " 'RFST': RandomForestClassifier(n_estimators=100),\n", " 'ADA': AdaBoostClassifier(n_estimators=100)\n", " \n", "}\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy (train) for Linear SVC: 76.4% \n", " precision recall f1-score support\n", "\n", " chinese 0.64 0.66 0.65 242\n", " indian 0.91 0.86 0.89 236\n", " japanese 0.72 0.73 0.73 245\n", " korean 0.83 0.75 0.79 234\n", " thai 0.75 0.82 0.78 242\n", "\n", " accuracy 0.76 1199\n", " macro avg 0.77 0.76 0.77 1199\n", "weighted avg 0.77 0.76 0.77 1199\n", "\n", "Accuracy (train) for KNN classifier: 70.7% \n", " precision recall f1-score support\n", "\n", " chinese 0.65 0.63 0.64 242\n", " indian 0.84 0.81 0.82 236\n", " japanese 0.60 0.81 0.69 245\n", " korean 0.89 0.53 0.67 234\n", " thai 0.69 0.75 0.72 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.73 0.71 0.71 1199\n", "weighted avg 0.73 0.71 0.71 1199\n", "\n", "Accuracy (train) for SVC: 80.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.71 0.69 0.70 242\n", " indian 0.92 0.92 0.92 236\n", " japanese 0.77 0.78 0.77 245\n", " korean 0.87 0.77 0.82 234\n", " thai 0.75 0.86 0.80 242\n", "\n", " accuracy 0.80 1199\n", " macro avg 0.80 0.80 0.80 1199\n", "weighted avg 0.80 0.80 0.80 1199\n", "\n", "Accuracy (train) for RFST: 82.8% \n", " precision recall f1-score support\n", "\n", " chinese 0.80 0.75 0.77 242\n", " indian 0.90 0.91 0.90 236\n", " japanese 0.82 0.78 0.80 245\n", " korean 0.85 0.82 0.83 234\n", " thai 0.78 0.89 0.83 242\n", "\n", " accuracy 0.83 1199\n", " macro avg 0.83 0.83 0.83 1199\n", "weighted avg 0.83 0.83 0.83 1199\n", "\n", "Accuracy (train) for ADA: 71.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.60 0.57 0.58 242\n", " indian 0.87 0.84 0.86 236\n", " japanese 0.71 0.60 0.65 245\n", " korean 0.68 0.78 0.72 234\n", " thai 0.70 0.78 0.74 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.71 0.71 0.71 1199\n", "weighted avg 0.71 0.71 0.71 1199\n", "\n" ] } ], "source": [ "n_classifiers = len(classifiers)\n", "\n", "for index, (name, classifier) in enumerate(classifiers.items()):\n", " classifier.fit(X_train, np.ravel(y_train))\n", "\n", " y_pred = classifier.predict(X_test)\n", " accuracy = accuracy_score(y_test, y_pred)\n", " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", " print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" ] } ], "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" }, "kernelspec": { "name": "python3", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } }, "coopTranslator": { "original_hash": "7ea2b714669c823a596d986ba2d5739f", "translation_date": "2025-09-04T02:32:46+00:00", "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", "language_code": "de" } }, "nbformat": 4, "nbformat_minor": 4 }