{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Kürbispreise\n", "\n", "Lade die benötigten Bibliotheken und den Datensatz. Konvertiere die Daten in ein DataFrame, das einen Teil der Daten enthält:\n", "\n", "- Nur Kürbisse auswählen, die pro Scheffel bepreist sind\n", "- Das Datum in einen Monat umwandeln\n", "- Den Preis als Durchschnitt aus Höchst- und Tiefstpreisen berechnen\n", "- Den Preis so umrechnen, dass er die Bepreisung pro Scheffelmenge widerspiegelt\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from datetime import datetime\n", "\n", "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", "\n", "pumpkins.head()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", "pumpkins = pumpkins.loc[:, columns_to_select]\n", "\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", "\n", "month = pd.DatetimeIndex(pumpkins['Date']).month\n", "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", "\n", "new_pumpkins = pd.DataFrame(\n", " {'Month': month, \n", " 'DayOfYear' : day_of_year, \n", " 'Variety': pumpkins['Variety'], \n", " 'City': pumpkins['City Name'], \n", " 'Package': pumpkins['Package'], \n", " 'Low Price': pumpkins['Low Price'],\n", " 'High Price': pumpkins['High Price'], \n", " 'Price': price})\n", "\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", "\n", "new_pumpkins.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ein einfaches Streudiagramm erinnert uns daran, dass wir nur Monatsdaten von August bis Dezember haben. Wir benötigen wahrscheinlich mehr Daten, um Schlussfolgerungen auf lineare Weise ziehen zu können.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "plt.scatter('Month','Price',data=new_pumpkins)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "plt.scatter('DayOfYear','Price',data=new_pumpkins)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3-final" }, "orig_nbformat": 2, "coopTranslator": { "original_hash": "b032d371c75279373507f003439a577e", "translation_date": "2025-09-04T01:02:01+00:00", "source_file": "2-Regression/3-Linear/notebook.ipynb", "language_code": "de" } }, "nbformat": 4, "nbformat_minor": 2 }