{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "# التنبؤ بالسلاسل الزمنية باستخدام منظم دعم المتجهات\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "في هذا الدفتر، نوضح كيفية:\n", "\n", "- تجهيز بيانات السلاسل الزمنية ثنائية الأبعاد لتدريب نموذج SVM للتنبؤ\n", "- تنفيذ SVR باستخدام نواة RBF\n", "- تقييم النموذج باستخدام الرسوم البيانية و MAPE\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## استيراد الوحدات\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## تجهيز البيانات\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### تحميل البيانات\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", " | load | \n", "
---|---|
2012-01-01 00:00:00 | \n", "2698.0 | \n", "
2012-01-01 01:00:00 | \n", "2558.0 | \n", "
2012-01-01 02:00:00 | \n", "2444.0 | \n", "
2012-01-01 03:00:00 | \n", "2402.0 | \n", "
2012-01-01 04:00:00 | \n", "2403.0 | \n", "