# Jenga Programu ya Mapendekezo ya Vyakula
Katika somo hili, utajenga mfano wa uainishaji ukitumia baadhi ya mbinu ulizojifunza katika masomo yaliyopita na kwa kutumia seti ya data ya vyakula vitamu iliyotumika katika mfululizo huu. Aidha, utajenga programu ndogo ya wavuti kutumia mfano uliowekwa, kwa kutumia Onnx's web runtime.
Moja ya matumizi muhimu ya kujifunza kwa mashine ni kujenga mifumo ya mapendekezo, na unaweza kuchukua hatua ya kwanza katika mwelekeo huo leo!
[](https://youtu.be/17wdM9AHMfg "Applied ML")
> 🎥 Bofya picha hapo juu kwa video: Jen Looper anajenga programu ya wavuti kutumia data ya vyakula vilivyowekwa
## [Jaribio la kabla ya somo](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/)
Katika somo hili utajifunza:
- Jinsi ya kujenga mfano na kuihifadhi kama mfano wa Onnx
- Jinsi ya kutumia Netron kukagua mfano
- Jinsi ya kutumia mfano wako katika programu ya wavuti kwa utabiri
## Jenga mfano wako
Kujenga mifumo ya ML inayotumika ni sehemu muhimu ya kutumia teknolojia hizi kwa mifumo ya biashara yako. Unaweza kutumia mifano ndani ya programu zako za wavuti (na hivyo kuzitumia katika muktadha wa nje ya mtandao ikiwa inahitajika) kwa kutumia Onnx.
Katika [somo la awali](../../3-Web-App/1-Web-App/README.md), ulijenga mfano wa Regression kuhusu kuona UFO, "pickled" na kuutumia katika programu ya Flask. Wakati usanifu huu ni muhimu sana kujua, ni programu kamili ya Python, na mahitaji yako yanaweza kujumuisha matumizi ya programu ya JavaScript.
Katika somo hili, unaweza kujenga mfumo wa msingi wa JavaScript kwa utabiri. Kwanza, hata hivyo, unahitaji kufundisha mfano na kuubadilisha kwa matumizi na Onnx.
## Zoezi - fundisha mfano wa uainishaji
Kwanza, fundisha mfano wa uainishaji ukitumia seti ya data ya vyakula iliyosafishwa tuliyotumia.
1. Anza kwa kuingiza maktaba muhimu:
```python
!pip install skl2onnx
import pandas as pd
```
Unahitaji '[skl2onnx](https://onnx.ai/sklearn-onnx/)' kusaidia kubadilisha mfano wako wa Scikit-learn kuwa muundo wa Onnx.
1. Kisha, fanya kazi na data yako kwa njia ile ile uliyofanya katika masomo yaliyopita, kwa kusoma faili ya CSV ukitumia `read_csv()`:
```python
data = pd.read_csv('../data/cleaned_cuisines.csv')
data.head()
```
1. Ondoa safu mbili za kwanza zisizo za lazima na uhifadhi data iliyobaki kama 'X':
```python
X = data.iloc[:,2:]
X.head()
```
1. Hifadhi lebo kama 'y':
```python
y = data[['cuisine']]
y.head()
```
### Anza mchakato wa mafunzo
Tutatumia maktaba ya 'SVC' ambayo ina usahihi mzuri.
1. Ingiza maktaba zinazofaa kutoka Scikit-learn:
```python
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report
```
1. Tenganisha seti za mafunzo na majaribio:
```python
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
```
1. Jenga mfano wa Uainishaji wa SVC kama ulivyofanya katika somo lililopita:
```python
model = SVC(kernel='linear', C=10, probability=True,random_state=0)
model.fit(X_train,y_train.values.ravel())
```
1. Sasa, jaribu mfano wako, ukipiga `predict()`:
```python
y_pred = model.predict(X_test)
```
1. Chapisha ripoti ya uainishaji ili kuangalia ubora wa mfano:
```python
print(classification_report(y_test,y_pred))
```
Kama tulivyoona hapo awali, usahihi ni mzuri:
```output
precision recall f1-score support
chinese 0.72 0.69 0.70 257
indian 0.91 0.87 0.89 243
japanese 0.79 0.77 0.78 239
korean 0.83 0.79 0.81 236
thai 0.72 0.84 0.78 224
accuracy 0.79 1199
macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199
```
### Badilisha mfano wako kuwa Onnx
Hakikisha unafanya ubadilishaji na idadi sahihi ya Tensor. Seti hii ya data ina viungo 380 vilivyotajwa, kwa hivyo unahitaji kubainisha idadi hiyo katika `FloatTensorType`:
1. Badilisha ukitumia idadi ya tensor ya 380.
```python
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([None, 380]))]
options = {id(model): {'nocl': True, 'zipmap': False}}
```
1. Unda onx na uhifadhi kama faili **model.onnx**:
```python
onx = convert_sklearn(model, initial_types=initial_type, options=options)
with open("./model.onnx", "wb") as f:
f.write(onx.SerializeToString())
```
> Kumbuka, unaweza kupitisha [chaguzi](https://onnx.ai/sklearn-onnx/parameterized.html) katika hati yako ya ubadilishaji. Katika kesi hii, tulipitisha 'nocl' kuwa Kweli na 'zipmap' kuwa Uongo. Kwa kuwa huu ni mfano wa uainishaji, una chaguo la kuondoa ZipMap ambayo hutoa orodha ya kamusi (si lazima). `nocl` refers to class information being included in the model. Reduce your model's size by setting `nocl` to 'True'.
Running the entire notebook will now build an Onnx model and save it to this folder.
## View your model
Onnx models are not very visible in Visual Studio code, but there's a very good free software that many researchers use to visualize the model to ensure that it is properly built. Download [Netron](https://github.com/lutzroeder/Netron) and open your model.onnx file. You can see your simple model visualized, with its 380 inputs and classifier listed:

Netron is a helpful tool to view your models.
Now you are ready to use this neat model in a web app. Let's build an app that will come in handy when you look in your refrigerator and try to figure out which combination of your leftover ingredients you can use to cook a given cuisine, as determined by your model.
## Build a recommender web application
You can use your model directly in a web app. This architecture also allows you to run it locally and even offline if needed. Start by creating an `index.html` file in the same folder where you stored your `model.onnx` faili.
1. Katika faili hii _index.html_, ongeza alama zifuatazo:
```html