From ffeac2c164ae79889f3f2d0a450b8b7202db6c08 Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Wed, 17 Mar 2021 15:52:09 -0400 Subject: [PATCH] polynomial regression notebook --- 2-Regression/1-Tools/README.md | 8 +- 2-Regression/3-Linear/README.md | 24 +- 2-Regression/3-Linear/notebook.ipynb | 12 +- 2-Regression/3-Linear/solution/notebook.ipynb | 291 +++++++++++++++--- 4 files changed, 278 insertions(+), 57 deletions(-) diff --git a/2-Regression/1-Tools/README.md b/2-Regression/1-Tools/README.md index fabdaf15a..f996782a2 100644 --- a/2-Regression/1-Tools/README.md +++ b/2-Regression/1-Tools/README.md @@ -7,6 +7,10 @@ The lessons in this section cover types of Regression in the context of machine learning. Regression models can help determine the relationship between variables. This type of model can predict values such as length, temperature, or age, thus uncovering relationships between variables as it analyzes datapoints. +In this series of lessons, you'll discover the difference between Linear vs. Logistic Regression, and when you should use one or the other. + +But before you do anything, make sure you have the right tools in place! + In this lesson, you will learn: - How to configure your computer for local machine learning tasks - Getting used to working with Jupyter notebooks @@ -72,7 +76,9 @@ Scikit-Learn makes it straightforward to build models and evaluate them for use. In the `notebook.ipynb` file associated to this lesson, clear out all the cells by pressing the 'trash can' icon. -In this section, you will work with a small dataset about diabetes that is built into Scikit-Learn for learning purposes. Imagine that you wanted to test a treatment for diabetic patients. Machine Learning models might help you determine which patients would respond better to the treatment, based on combinations of variables. Even a very basic Regression Model, when visualized, might show groupings of variables that would help you organize your theoretical clinical trials. +In this section, you will work with a small dataset about diabetes that is built into Scikit-Learn for learning purposes. Imagine that you wanted to test a treatment for diabetic patients. Machine Learning models might help you determine which patients would respond better to the treatment, based on combinations of variables. Even a very basic Regression Model, when visualized, might show information about variables that would help you organize your theoretical clinical trials. + +> ✅ There are many types of Regression methods, and which one you pick depends on the answer you're looking for. If you want to predict the probable height for a person of a given age, you'd use Linear Regression, as you're seeking a **numeric value**. If you're interested in discovering whether a type of recipe should be considered vegan or not, you're looking for a **category assignment** so you would use Logistic Regression. You'll learn more about Logistic Regression later. Think a bit about some questions you can ask of data, and which of these methods would be more appropriate. Let's get started on this task. diff --git a/2-Regression/3-Linear/README.md b/2-Regression/3-Linear/README.md index c7204c9c9..4ffb13def 100644 --- a/2-Regression/3-Linear/README.md +++ b/2-Regression/3-Linear/README.md @@ -29,12 +29,12 @@ As you learned in Lesson 1, the goal of a linear regression exercise is to be ab > > A common method of regression is **Least-Squares Regression** which means that all the datapoints surounding the regression line are squared and then added up. Ideally, that final sum is as small as possible, because we want a low number of errors, or `least-squares`. > -> One more term to understand is the **Correlation Coefficient** between given X and Y variables. For a scatterplot, you can quickly visualize this coefficient: a plot with datapoints scattered in a neat line have high correlation, but a plot with datapoints scattered everywhere between X and Y have a low correlation. +> One more term to understand is the **Correlation Coefficient** between given X and Y variables. For a scatterplot, you can quickly visualize this coefficient. A plot with datapoints scattered in a neat line have high correlation, but a plot with datapoints scattered everywhere between X and Y have a low correlation. > > A good regression model will be one that has a low (nearly zero) Correlation Coefficient using the Least-Squares Regression method with a line of regression. ✅ Run the notebook accompanying this lesson. Does the data associating City to Price for pumpkin sales seem to have high or low correlation, according to your visual interpretation of the scatterplot? -## Create a Regression Model correlating Pumpkin Datapoints +## Create a Linear Regression Model correlating Pumpkin Datapoints Now that you have an understanding of the math behind this exercise, create a Regression model to see if you can predict which type of pumpkins will have the best pumpkin prices. Someone buying pumpkins for a holiday pumpkin patch might want this information to be able to pre-order the best-priced pumpkins for the patch (normally there is a mix of miniature and large pumpkins in a patch). @@ -68,7 +68,7 @@ This is a negative correlation, meaning the slope heads downhill, but it's still Let's build this regression model ## Building the model -Before building your model, create a fresh dataframe with only the data you intend to query. Drop any null data and see what the data looks like. +Before building your model, do one more tidy-up of your data. Drop any null data and check once more what the data looks like. ```python new_pumpkins.dropna(inplace=True) @@ -119,7 +119,8 @@ print('Mean squared error: ', print('Coefficient of determination: ', r2_score(y_test, pred)) ``` -Because there's a reasonably high correlation between the two variables, there accuracy of this model isn't bad! + +Because there's a reasonably high correlation between the two variables, there accuracy of this model isn't too bad! ``` Model Accuracy: 0.7327987875929955 @@ -138,11 +139,22 @@ plt.xticks(()) plt.yticks(()) plt.show() - ``` + +Congratulations, you just created a model that can help predict the price of a few varieties of pumpkins. Your holiday pumpkin patch will be beautiful. ## Polynomial Regression - +Another type of Linear Regression is Polynomial Regression. While sometimes there's a linear relationship between variables - the bigger the pumpkin in volume, the higher the price - sometimes these relationships can't be plotted as a plane or straight line. Take another look at the relationship between City to Price in the new_pumpkins data. + +✅ Here are [some more examples](https://online.stat.psu.edu/stat501/lesson/9/9.8) of data that could use Polynomial Regression + +```python +import matplotlib.pyplot as plt +plt.scatter('City','Price',data=new_pumpkins) +``` +Does the resultant scatterplot seem like it could be analyzed by a straight line? Perhaps not. In this case, you should try Polynomial Regression. + +✅ Polynomials are mathematical expressions that might consist of one or more variables and coefficients 🚀 Challenge: Test several different variables in this notebook to see how correlation corresponds to model accuracy. diff --git a/2-Regression/3-Linear/notebook.ipynb b/2-Regression/3-Linear/notebook.ipynb index efebc6db7..adcbbce3a 100644 --- a/2-Regression/3-Linear/notebook.ipynb +++ b/2-Regression/3-Linear/notebook.ipynb @@ -24,7 +24,7 @@ "cells": [ { "source": [ - "## Pumpkin Pricing Per Bushel, by City\n", + "## Pumpkin Pricing\n", "\n", "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data: \n", "\n", @@ -152,7 +152,8 @@ "output_type": "execute_result", "data": { "text/plain": [ - "([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], )" + "(array([ 7.5, 8. , 8.5, 9. , 9.5, 10. , 10.5, 11. , 11.5, 12. , 12.5]),\n", + " )" ] }, "metadata": {}, @@ -162,8 +163,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEvCAYAAAC66FFZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZxU1bH4v8UAMgKKKCAiBEUCLiiYUTD4EkURwQ3Nc4sLSVSMWzQaFCPGJahEDC6JS9yiRlyyGPQpkeD2XjSKDqJiojziHjRAYnhRf2hwqN8fdZq50/Qw3TP39r3TXd/Ppz/d9/SdPjV3qVunTlUdUVUcx3GcyqBD2gI4juM48eFK3XEcp4Jwpe44jlNBuFJ3HMepIFypO47jVBCu1B3HcSqIjuXsbIstttCBAweWs0vHcZx2z8KFC/+uqr2K2besSn3gwIHU19eXs0vHcZx2j4i8U+y+7n5xHMepIFypO47jVBCu1B3HcSoIV+qO4zgVhCt1x3GcCqKs0S+O41Q+cxYtY+a8Jby/ajVb9ahlyrghTBzRL22xqgZX6o7jxMacRcs4/4HFrF7TAMCyVas5/4HFAK7Yy4S7XxzHiY2Z85asU+g5Vq9pYOa8JSlJVH24UnccJzbeX7W6pHYnflypO44TG1v1qC2p3YkfV+qO48TGlHFD6NRBmrR16iBMGTckJYmqj6ImSkXkbeAjoAH4XFXrRKQncD8wEHgbOEJV/5mMmI7jtBukhW0nUUqx1PdW1eGqWhe2pwKPq+pg4PGw7ThOFTNz3hLWNDRdzH5Ng/pEaRlpi/vlEODO8PlOYGLbxXEcpz3jE6XpU6xSV+D3IrJQRCaHtj6q+gFAeO+dhICO47QffKI0fYpV6qNVdVdgPHCaiHyl2A5EZLKI1ItI/cqVK1slpOM47YMp44ZQ26mmSVttpxqfKC0jRSl1VX0/vK8AfgvsDiwXkb4A4X1FM397s6rWqWpdr15FLdzhOE47ZeKIflxx2DD69ahFgH49arnisGGeTVpGWox+EZGuQAdV/Sh83g+4FHgImATMCO8PJimo4zjtg4kj+rkST5FiQhr7AL8Vkdz+96jqoyLyAvBLETkBeBc4PDkxHcdxnGJoUamr6pvALgXa/wHsk4RQjuM4TuvwjFLHcZwKwpW64zhOBeH11B2njUybs5h7F7xHgyo1Ihw9sj/TJw5LW6zU8EUy0sWVuuO0gWlzFnP3c++u225QXbddjYrdF8lIH3e/OE4buHfBeyW1Vzq+SEb6uFJ3nDbQoFpSe6XjtV/Sx5W647SBGilcV7a59krHa7+kjyt1x2kDR4/sX1J7peOLZKSPT5Q6ThvITYZ69EsEXyQjVUTL6Purq6vT+vr6svXnOE55GT3jCZYV8J/361HLM1PHpCBRZSAiCyMLFG0Qd784jhMbhRT6htqd+HGl7jiOU0G4Unccx6kgXKk7juNUEK7UHcdxKghX6o7jOBVE0UpdRGpEZJGIPBy2LxaRZSLyUnhNSE5Mx3HaA55hmz6lWOpnAq/ltV2tqsPDa26McjmO0w4Zte1mJbU78VOUUheRrYEDgFuTFcdxnPbM2/8oHI/eXLsTP8Va6tcA5wJr89pPF5FXROR2ESn4KBaRySJSLyL1K1eubIusjuNkHK/SmD4tKnURORBYoaoL8766ERgEDAc+AH5c6O9V9WZVrVPVul69erVVXsdxMoxXaUyfYiz10cDBIvI2cB8wRkTuVtXlqtqgqmuBW4DdE5TTcZx2wJRxQ6jtVNOkrbZTjVdpLCMtKnVVPV9Vt1bVgcBRwBOqeqyI9I3sdijwakIyOo7TTpg4oh9XHDaMfj1qEayQ1xWHDfOl7MpIW0rvXikiwwEF3gZOjkUix3HaNRNH9HMlniIlKXVVfQp4Knw+LgF5HMdxnDbgGaWO4zgVhCt1x3GcCsKVuuM4TgXhSt1xHKeCcKXuOI5TQbhSdxzHqSDaEqfuOKkyZ9EyZs5bwvurVrNVj1qmjBvi8dEZYODUR9Zre3vGASlIUp24pe60S+YsWsb5Dyxm2arVKLZa/fkPLGbOomVpi1bVFFLoG2p34seVutMumTlvCavXNDRpW72mgZnzlqQkkeNkA1fqTrvES7w6TmFcqTvtEi/x6jiFcaXutEu8xKvjFMaVutMu8RKv2aS5KBePfikfoqpl66yurk7r6+vL1p/jOE4lICILVbWumH3dUnccx6kgilbqIlIjIotE5OGw3VNE5ovI0vBecOFpx3Ecp3yUklF6JvAasEnYngo8rqozRGRq2D4vZvkcJ/Mcc8uzPPPGh+u2Rw/qyeyT9khRonTxjNJ0KcpSF5GtgQOAWyPNhwB3hs93AhPjFc1xsk++Qgd45o0POeaWZ1OSKF08ozR9inW/XAOcC6yNtPVR1Q8AwnvvmGVznMyTr9BbanecpGlRqYvIgcAKVV3Ymg5EZLKI1ItI/cqVK1vzE47jOE6RFGOpjwYOFpG3gfuAMSJyN7BcRPoChPcVhf5YVW9W1TpVrevVq1dMYjuO4ziFaFGpq+r5qrq1qg4EjgKeUNVjgYeASWG3ScCDiUnpOBll9KCeJbU7TtK0JU59BjBWRJYCY8O241QVs0/aYz0FXs3RL55Rmj6eUeo4jpNxPKPUcRynSnGl7jiOU0H4GqVOqxh6wVw+bWh03XWpEV6/bEKKEqXHtDmLuXfBezSoUiPC0SP7M33isLTFqnqqdQ1bt9SdkslX6ACfNihDL5ibkkTpMW3OYu5+7l0awtxUgyp3P/cu0+YsTlmy6qaa17B1pe6UTL5Cb6m9krl3wXsltTvloZrXsHWl7jhtoKGZ6LHm2p3yUM1r2LpSd5w2UCNSUrtTHqp5DVtX6k7JdKkprLCaa69kjh7Zv6R2pzxU8xq2rtSdknn9sgnrKfBqjX6ZPnEYx44asM4yrxHh2FEDPPolZap5DVvPKHUcJ1aqNZQwSUrJKPU4dcdxYiMXSpiLPMmFEgKu2MtE5pW6J7lkk50vepR/fdYYMrbJRjW8csn+ZZUhK8umjbxsPss/+ve67T7dO7PggrFllyMLbCiUsNxKvVpHDJn2qXuSSzbJV+gA//qsgZ0verRsMmRl2bR8hQ6w/KN/M/Ky+WWVIytkJZTQk48yiie5ZJN8hd5SeyWTr9Bbaq90shJK6MlHjuM4MZCVUMKsjBjSoJg1SruIyPMi8rKI/ElELgntF4vIMhF5Kbzc0e04VU5WQgmzMmJIg2ImSj8DxqjqxyLSCXhaRH4XvrtaVa9KSrguNVLQ1VKNSS5ZYpONagq6WjbZqKbA3pVNn+6dC7pa+nTvnII02WDiiH6pT0hOGTeEs3/5Emsj6qOD4MlHAGp8HDY7hVdZnNqe5JJNsuBTz8qyaQsuGLueAq/m6JesUP/Oh00UOsBatfZKp6iQRhGpARYC2wHXq+oCERkPnC4ixwP1wDmq+s+4BXQF7jRHVta9dAWePTZUPbPSs32LmihV1QZVHQ5sDewuIjsBNwKDgOHAB8CPC/2tiEwWkXoRqV+5cmVMYjuO4zRPNVfPLCn6RVVXAU8B+6vq8qDs1wK3ALs38zc3q2qdqtb16tWrzQI7juO0RDVXz2zR/SIivYA1qrpKRGqBfYEfiUhfVf0g7HYo8GoSAnq2ntMcWchqBV/OLoscPbI/dz/3bsH2SqcYS70v8KSIvAK8AMxX1YeBK0VkcWjfG/hu3MJ5tp7THFnIagVfzi6rvLXy45LaK4kWLXVVfQUYUaD9uEQkiuDZek5zZCECB6p7Qi7LPPNG4SiX5torCc8odZw2UM0Tck42caXuOG2gmifknGyS6dK7nq23PlkpN5s2WclqreYJuSwzelDPgq6W0YN6piBNecm0pb7634X9o821VzpZKTebhWzOVy7Zfz0Fnkb0y4I3/1FSu1MetunVraT2SiLTlnpWJsOc9cnC6CCN8MV8lq74pKR2pzxU8wR2pi11x3Gc1lDNE9iu1B3HqTiqeQI700q9uUmvaizx6mSTwb27ltTulIfmJqqrYQI700r90mZ8X821VzpZmKB0mnLa3oPJt/0ktDvpUfeFnnTIOzEdxNornUxPlDa3nmAaK5NnBVfg2WLmvCXrLS6gVPc1mgVmzltSsJ56GudlzqJlzJy3hPdXrWarHrVMGTckURkyrdSreZ1Bp33g12g2ycp5mbNoGec/sHjdItjLVq3m/AesLlBSij3T7pdqXmfQaR/4NZpNsnJeZs5bsk6h51i9pqFZL0QcZFqpZ2Vl8iwx9IK5DJz6yLrX0Avmpi1SVTNl3BBq8py3NR2kqq/RLDBl3BA65Z2XTimclzRGDJlW6llZmTwrDL1g7noLcX/aoK7YU6T+nQ9pyHPeNqzVqlgLM/MUmsEuM2mMGDLtU4dsrEyeFfIVekvtTvJUc+Zilpk5bwlr8u6LNQ1a9onSgZvXsqyAVT5w8+SUeqYtdcfJOtWcuZhlsjJR+tyb/yypPQ5aVOoi0kVEnheRl0XkTyJySWjvKSLzRWRpeN8sMSkdJ6NUc+ZilsnKRGkaD/1i3C+fAWNU9WMR6QQ8LSK/Aw4DHlfVGSIyFZgKnBe3gF5qtpEuNVLQ1dKlpjoVSBauDS+9m02mjBvClF+/3MQF06mm/BOlNSIFFXiSD/0WLXU1cgv7dQovBQ4B7gztdwIT4xYuK6Vms8Lrl01YT4F3qRFev2xCShKlR1aujekTh3HsqAHrbtIaEY4dNcD96VmgUFZYmcmqpY6I1AALge2A61V1gYj0UdUPAFT1AxHpnZiUzjqqUYFnnekTh7kSzxgz5y1hTV5U0pq15Z8oTYOiJkpVtUFVhwNbA7uLyE7FdiAik0WkXkTqV65c2Vo5HcdxiiYrE6VpUFL0i6quAp4C9geWi0hfgPC+opm/uVlV61S1rlevXm0U13Ecp2WyMlGaBsVEv/QSkR7hcy2wL/A68BAwKew2CXgwKSEdx3FKoZqz0Yux1PsCT4rIK8ALwHxVfRiYAYwVkaXA2LAdK15q1mkOvzacDZGVbPQ0rlPRMiZJ1NXVaX19fdn6cxzHSZNpcxYXDHktNUJKRBaqal0x+3pGqeM4TkJsqIxEUmS+9ovjNEcWko8cZ0OkEafulrrTLslK8pHjbIg0yki4Unccx0mINBbAdqXuOI6TENMnDmNw765N2gb37ppoBrIrdcdxnISYNmcxS1d80qRt6YpPmDZncWJ9ulJ3HMdJiDSiX1ypO+0STz5y2gOZrdLoOFnEFbiTdTJZT91xHMdpHWlEv7il7jiOkxC5KJd7F7xHgyo1Ihw9sn+i0S9e+8VxHCfjlFL7xS11x3GcBJk2Z3FZLXVX6o7jOAmRX6WxQXXddlKK3SdKHcdxEiKTceoi0l9EnhSR10TkTyJyZmi/WESWichL4eUrIjuO40TIapz658A5qvqiiHQHForI/PDd1ap6VWLSOY7jtGMyGaeuqh+o6ovh80fAa0B514RyHMdph4zadrOS2uOgJJ+6iAwERgALQtPpIvKKiNwuIslJ6TiO0w55+x+rS2qPg6KVuoh0A34DnKWq/wJuBAYBw4EPgB8383eTRaReROpXrlwZg8iO4zjtg/dXFVbezbXHQVFKXUQ6YQp9tqo+AKCqy1W1QVXXArcAuxf6W1W9WVXrVLWuV69eccntOI6TebbqUVtSexwUE/0iwG3Aa6o6K9LeN7LbocCr8YvnOI7TfpkybkhJ7XFQjKU+GjgOGJMXvniliCwWkVeAvYHvJial4zhOO+T6J5eW1B4HLYY0qurTQKH4m7nxi+M4jlM55K961FJ7HHhGqeM4TgXhSt1xHKeCcKXuOI6TEIN7dy2pPQ5cqTuO4yTE/LP3Wk+BD+7dlfln75VYn15613EcJ0GSVOCFcEvdcRyngnBLvZ1R7lVUHMdpX7hSb0eksYqK4zjtC3e/tCPSWEXFcZz2hSv1dkQaq6g4jtO+cKXejmhutZQkV1FxHKd94Uq9HXH0yP4ltTuOU334RGk7IjcZ6tEvjuM0h2gZ/bF1dXVaX19ftv4cx3EqARFZqKp1xezrlrrTKraZ+ghRc0CAt2YckJY4juMEiln5qL+IPCkir4nIn0TkzNDeU0Tmi8jS8O4LT1cJ+QodQEO74zjpUoyl/jlwjqq+KCLdgYUiMh/4BvC4qs4QkanAVOC85ER1skJzDrtyB1bOWbSMmfOW8P6q1WzVo5Yp44YwcUS/MkuRHTzb2IEiLHVV/UBVXwyfPwJeA/oBhwB3ht3uBCYmJaTj5DNn0TLOf2Axy1atRoFlq1Zz/gOLmbNoWdqipUIu2ziXs5DLNp42Z3HKkjnlpqSQRhEZCIwAFgB9VPUDMMUP9I5bOMdpjpnzlrB6TUOTttVrGpg5b0lKEqWLZxs7OYpW6iLSDfgNcJaq/quEv5ssIvUiUr9y5crWyOhkjOZSncqZAvX+qtUltVc6nm3s5ChKqYtIJ0yhz1bVB0LzchHpG77vC6wo9LeqerOq1qlqXa9eveKQ2UmZt2YcsJ4CL3f0y1Y9aktqr3Q829jJ0eJEqYgIcBvwmqrOinz1EDAJmBHeH0xEQieTpB2+OGXcEM66/6WC7eVm7KynmqwOn/TKNoU4emT/JhU8o+1OdVGMpT4aOA4YIyIvhdcETJmPFZGlwNiw7ThlYeqvXy6pPSnyFTrA0hWfMHbWU2WVY/rEYRw7asA6y7xGhGNHDfDolyqkRUtdVZ+meXfpPvGK4zjF8WlDYV9xc+1Jka/QW2pPkukTh7kSd7ygl+M4TiXhZQKcVnHMLc/yzBsfrtsePagns0/aI0WJHD8nTanW5DS31J2SyVceAM+88SHH3PJs2WTo2IxDsLn2pBjcu2tJ7UmRhXOSJao5Oc2VulMy+cqjpfYk6LNp4dDF5tqTYv7Ze62nwNOIfsnCOckS1Zyc5u4Xp12SpeSjcitwp2WydH2UG7fUnXaJJx85G6Karw9X6k7JbLJRTUntSTBl3BBqOzXtr7ZTTSrJR1lg9KCeJbVXOnsPLZy93lx7JeHuF6dk/vVZQ0ntSZCLYqjG6IZCzD5pj8xEv4y8bD7LP/r3uu0+3Tuz4IKxZZXhydcL15lqrr2ScKXutFsmjuhXtUq8EFkIX8xX6ADLP/o3Iy+bX1bF7j51x3GcGMhX6C21J0U1+9Qzb6lnYSjnNGX0oJ4FQ+Wq1X+780WPNnE9bbJRDa9csn+KEjlTxg1hyq9eZs3axrIRnTpIVcy5ZNpS39BQzkmPv6z4uKT2SiZfoYPNLex80aMpSeSso1B96Cog00o9K0M5pyl+XhrJwqRxjjmLljF6xhNsM/URRs94IpXsyT7dO5fUnhQz5y1hTV5xtzUNWhXJR5lW6lkiCzeM4zRHVtLiF1wwdj0FnobLtJonSjPvU88CuRsml3acu2EAj75wMsGG0uLLfY1mYc5rqx61LCugwKthotQt9SKo5joSTvugmi3TQlRzclqLSl1EbheRFSLyaqTtYhFZlrcSUsXiN4yTdao5hK8QE0f044rDhtGvRy0C9OtRyxWHDauKkXUx7pc7gJ8Cd+W1X62qV8UuUQap5qGc0z6YMm5IExchVI9l2hzVmpzWoqWuqv8DVGf9zkA1D+Wc9kE1W6ZOU9oyUXq6iBwP1APnqOo/Y5JpHQIUWnGy3OGmXmfEaY4uNVJwXdQuNeUPiq5Wy9Rpiqi2vFCviAwEHlbVncJ2H+DvmM79IdBXVb/VzN9OBiYDDBgw4EvvvPNO0cINnPpIs9+9PeOAon/HiZ9C56Zaz8nQC+Y2UexdaoTXL6voaSanzIjIQlWtK2bfVlnqqro80tktwMMb2Pdm4GaAurq68i71XoFkRZlWqwIvhCtwJ0u0KqRRRPpGNg8FXm1uXyc+mhu5bGhE4zhOddGipS4i9wJ7AVuIyF+Bi4C9RGQ45n55Gzg5QRkdxymCOYuW+byP07JSV9WjCzTfloAs65GViVKAsbOeYumKT9Ztp7G4sOM0h2c9OzkynVHanAO+3I75fIUOsHTFJ4yd9VSZJXGcwnjWs5Mj00o9K+Qr9JbaHafceNazk8OVejuiuYgTj0RxvEyAkyPTVRr7dO9csEZ3uWszZwlX4E4hvEyAkyPTlnpWajMP7t21pHbHKTdeJsDJUVRGaVzU1dVpfX192fqLE49+cRwnLRLPKK1GXIE7jtMecKXuOE5FUq3JWK7UHcepOKo5GSvTE6WO4zitoZqTsVypO45TcVRzMpa7XxynQjjmlmd55o3GRcpGD+rJ7JP2SFGi9KjmJSjdUnecCiBfoQM888aHHHPLsylJlC4DNy+svJtrryRcqTtOBZCv0Ftqr3See7Pw6prNtVcSrtQdx6k4GppJqmyuvZJoUamLyO0iskJEXo209RSR+SKyNLxvlqyYjuM4xVMjhVddaK69kijGUr8D2D+vbSrwuKoOBh4P247jpMToQT1Laq90jh7Zv6T2SqJFpa6q/wPkO+YOAe4Mn+8EJsYsl+M4JTD7pD3WU+DVHP0yfeIwjh01YJ1lXiPCsaMGMH3isJQlS56iCnqJyEDgYVXdKWyvUtUeke//qaotumDac0Evx3GctCiloFfiE6UiMllE6kWkfuXKlUl35ziOU9W0VqkvF5G+AOF9RXM7qurNqlqnqnW9evVqZXeO4zhOMbRWqT8ETAqfJwEPxiOO4ziO0xaKCWm8F3gWGCIifxWRE4AZwFgRWQqMDduO4zhOyrRY+0VVj27mq31ilsVxHMdpI2Vdzk5EVgLvtPLPtwD+HqM4rcXlaEoW5MiCDOBy5ONyNKUtcnxBVYualCyrUm8LIlJfbEiPy1FdcmRBBpfD5ciKHF77xXEcp4Jwpe44jlNBtCelfnPaAgRcjqZkQY4syAAuRz4uR1PKIke78ak7juM4LdOeLHXHcRynBVypO47jVBBVodRFpPIXJtwAIlIV57m9IiL7ishZKfU9VES2TqPvOBCpvFUvRGQfETm+tX9f8Te7iOwDfE9EupTzAsjCxSYiY0RkF1VdmzXFnoXjAyAiNSn2nTsGI4HPUuh/AjZ5t1G5+24LIrKJiHQD0BQmBZO8l0RkPHAdUNNaYzRTN3rciMh+wE+Ap1T1UyBxRSIiPaDxYktZee0M1IvIsDQVu4jsLyKXi8htInKUiAxRVU1Rnt1F5HAAVW1IQ4bQd04hdQPKukSRiIwDrgImq+obWXnItkR4ED0IzBGRX4vIJBHZvEx9D899DNuxXr8isitWR+sbqvpzVV3dmt+pWKUuIocAlwLfUtU/iEg/4AgR6ZJgn6OBuSJyqoh0F5GaNJWXql4DTAGeSstiF5EDgWuBhcAyYBhwh4jsGuQp6+hJRDYC7gHuE5EHwlB3m9z3ZZRlmIjMCZsfAhuXse/xwK3AUGBVaE5txFIswUj7KfAj4Gjgf4A64BwRSfShKCJ9gP8Rkf8CpgXDZG3k+ziunY2A/1bVF0RkUxH5lojcH9aJHl1sHxWr1IGzgVpVfU5EtgDmhu1PE+xzM8w6/i5wIfAjEdkkevKTRkT2E5GLRWRPEZGg2M/DFPvO5VTsIrIp8D3gRFX9jar+ALgM+BVwnYhsV87hsxqfAWcBs4AlwEHAz4Plvm71rqQUfOR33w2bvwA+AV6L7NMxvHdOoP/hwHRgX+AbwJ/CA//zNF1RGyI8jDsBBwLfV9VHVXWlql6HWe2bYP9Pkg/mT4GngP8HvAf8XkSOE5EvQ9vcQCKyi9jqciuA7UXku8AfgDHAG5hr7mygOHeMqlbsC6gHHgWexBRL9LtNY+znP4A9w+ezgZOBPbGb5y/AaUBdGf7frsDtQAOwCJgPnAFsG2T4ANgu7NuhDPL0Ap4HBuS1dweuBA4o47WwReTzrtiDZXDYvgxYDVwDXJ2wHJ3zztcdwFpMWcwGngaeAX4N3Ah0jLHvocBFWHGoXNuZwD+AncN2TbnOSSvkvxo4KXzeKNJ+LvCrMvT/FeDFcF3vCPwSexhfio1ASz5XmGF9ObZGRXdgHHAxMA3oH9nvcWCHYn6zoix1ERmeewGoFc/pAvRT1Vsj+x0JXBCHJRSGhLcCa0LTGmBvVX0aU7BbAdtgPsDT29rfhlDVTzA/6SzgbqwO/sfAI0BnoDfw5/yhY9wEqwpVXQm8Anwx8p2o6kdAJ8pUvjm4Vy4ILjlU9UXsZrxYRA7CFk4/DTtmO4tIIkvOi8hY4F4R+YGITAzn6wzgJsxyPxv4FmYMXAVco6qfx9T3xsB+2AN+y1y7ql6LKaUnw9xLQ5YsdhEZEfz/AP+HKVZU9bOIK/UeoHPccovIl0XknkjT88DvsXu6AzAKuAQbnZ+AjRhK+f3hgAJXAIuxSevFqnqxqk5X1ffCfkeF3y5uPdC0n74xPkX3B14H7gMeAw6LfLeQ8CQHDgNeAraPoc9xmD/04Lz2OZiltTT3HTAC+GJC//tQ4KvhvTswEJtwuQgr99kH2AmzdBYAQxI8D2OA7wMHhu3pwP3AVnn7nQmcX6ZrY0vgB8DMiFxdgXvDjXJQma7PBZgS/yFwC42jph5BlrsSluELmGvwFmCvvO9Ox0YMO5bjnBQp7wTs4TslyF4L/Am4IW+/ycA8oEvM/XcE3gTujLR9N7S9nbtuglwljfyxh8IvME+CYJPll2PW/xfCPoOwUf/LwE5F/3baJy6mgz8uKOqdML/oiZj10SGyzwuYNfRHihzGFNHnn4PyvgnYMvLdWMwXNj5sd25rfxuQ48Dw8Pg1NoR7AfhSUGSzwnHYIbL/xgnKMgFzeR0FjIi03wH8BrOItwOODzdnogoEGyIPxiYhu2NzCz+OnJfvA3Mj+8fukgo37HZBYR4Q2gYAdwG7RfbrghkDd8fc/3DgUGAvYGtshHQ2ZhXulbfvyST4wC9R7q8A/0twa0batwzXzmxM2Z8Trv+ilV4Rfe9JMDiwCeRXgHsi3/8KuDH3fRv66Q7cBjxAo2Kfjin2rYD+4XotSV+lfvJiOgk3AK9GtocHJbczEV82ZjHuEkN/QzDf539gFt+PwkXWK3w/ICjXnJUuCf3fu4cL/8the2PsgfYh5jceEGS7Ms6LvhlZ9gg318i89pHh/QzMQnwCs6qGJSzPeGxI+1vMAuoI9A2K/dqgNKuCd9wAAB5iSURBVDqGG/bohGSQyOfbgjxdw/bvwrGYhU3c9gA2B/rG2P9B2JzOzzEXxd8wg2OToAxvAb6S5Hlo7THDRg7fCZ9rwnun8L4RZjFfirku2myk5cmwI/A+cG7Yzl0n94XtccCdtM6H3i3vuugWfiun2DfBXDpzMd996X2kfRJjPBGzgXnh81XAX8ON83Y4aGNj6meXcGPsGLY7YMOkGUGGPqH9RGxoVUtySn0C8MPwuSZyQ5yIhXt1Ccr2EiIThQnJcijwvZws4f1KTNFfF5FtEywKKUlZJmATxTthVvLDwDbhuy6YhXctNnKYFKcizZOjlqYTetdiD+HrMBfhUcApmHvwFmCTGPveBRtJjoq0HYG5m/bBLPazMGW/Z1z9xij/2cD14XOH8C7hfhse2S+RCX9s/ulN4Jyw3RF7KP8syPF47l4v4TcHY0bGiAKK/XbglrDdDzgfmwssXfa0T14bDvru2MTPNyMn/XZsuby5Ybsm3NTntvYAFej325ileSDQLdK+LabY78KGiJKUIg2KenvMEnuW4M8LfQrmR3+URt9crL7GZmQ6F3gksj0Cm9/4ImalTinTddETi3a6K2zXYlbXA5gP87Cg0C4BLgA2S0iO/YH/Cjfx/TSOWC7BXDHRaJyOcV8rWJbqVeFzp8g9ciTmhtwSm8A/hYQeaq2QeTdg3/B5IuayyxkDHSKfrwC+Gj7HYjBho+9xke3O2EPxQxpdMR2xCLIftrZfbF7rV5gXIarY+2PzKsNyfbX6f0n7RLbywByETYpehLk5fg6cEL67Cngsb/82n/i8E/CtcMMeRBhOh/ZtsOSIm0jOgtgfs+xGYNbErdjDbaO8/eZQhjDKSH8DwnkYH2nLWexTgO+WQYbcKOmgcB1cjs2hTA43zVFYJFCf8No8ITnGA28BhwRlcRU2r/DN8P21mNUXa/951+h+mO85d0w6RM7Hb3LXBsGlkfYrXNdLgAMIRghmDf8OM85yD6VjsInDrWPsuzP2gL8Je7BsicWJH4cZSK/T6IqpAQaV+Pu9gYGR7fOw+Pqdifjkg1If3eb/J+2T2YoTsEM4+buF7Y3Cif5Z5Ka5B7NgY5kUDBfczzC3RsfQdlBQ7AcQGTZjkSe9E/rfx2ETsGMibT/AQvH2zykJ4OtY1MCWScgR+tgTGzFsFrZ7YPG1s4hEAwVF+t+EmPAE5dkHs0C/HjlnjwEPR/bZLCi0oQnKUYO54Q7La5+EjRSGh+3Z2KRybK45oGd4z1m012Mjyx452cL7fcTkjoxJ7pFBce4dtqMBDrkAgLsxH/prxDspugU2F9URMz5uDPfYqZF9dsQSg0o2TLAR/Qs05h78OPR1DjZ6/I/Q//7Ac8TwsEr9hLbiIO1NY3jiRuG9S7hpbo/sdxuR4P029NcB8299iiVpXBduihFY0srPMcssURcH5id+E3ugjabpCOFCzCe7GEug+TMJTkTSODR9C8uy2ztcqN2xiJK7gyK/ItysiU7SRo7Ph9hcQi5BZRw2csr5Rcdjo5zYrLw8GYZgD7cbCEP56HWB1SGaHdmO7aEblMLTmPGR+3+/jkW5nEZwP2Lp9f8bx70Ro+yHAheFz73C9o+B6aFtV2y0NYkYjQPMIHsem3+5JJy7KZgVvVvevkMo3ULfNxzrPYOOGhXOz4Phfvk2Nt83BxsZxHLPtpuVj0Sku6p+JCIjgB+o6qGhvaNaivPGWBzwJar66xj6Ew0HR0Q2wyzzQzBf9T+wSafPQ/vnwCRVfbit/TYjy7aYhTkJi+CYiinv32so+hNk3A1LNnpfVd9OQpaITCdj8wj12A33CnZzzMaiOHIx/EtU9c0kZQnydMOy8N7DLL/nVfWnoc7JOGxupQ9WLOlPCfS/Baa0p2Ex+N1U9Vvhu1pVXR2u3e+q6vGhfd011sa+D8QMjysx18GXsJC7RSIyCauPMgFLnPkycKyqLm5rv21FRLbCMmmHYsbBKVgSz7uYEbUFdi3tGcdxyut7HObfnoRFBT2BuTKvwazozYDHVfXRNvQxBViuqndF2jbFztPfVfWCUJOqC/Cxqi5vbV9NSPspXeQTbzwWuzkCCyFcitWAyH2fG1bOAvaIqc/N87a3Ak7CfLJDQtuWmIJ9gISG9JiiPoxI8g5mgT0BHEwZJkEj/XajMaxseyyy6Eth+wfYBOA1WORCtzLIs25iLWx/B4t02TNcL98O7TlXWewjBpr6sX+JuQK3wHz5F+btezo2SRabHxsbHa3FjBkwd+Qsgisyst8ozHWZyCilFXJvgY14Tw7bX8PcLJcTscYxP3Osk9mYwr4fG93m/Pd7AbeGz7nQ1xuJuDpb0c8VhHj2vPZ9SLCsQeont8iDMw2rJjcDe6p/ERv6RxX7EZj7YWAM/Q3DLIXv0TQzddNwYz5CZPad5CZFJ2CTQkdgw7XopMrRQbEfRILJTZH+xmND+SMIcxXYhPFUbBi7BDgcSyy6hgSH95hLrF9QZp9hw9hxmD/7Qmz4vg82ujkr/E0iSVc0dYOdDEwNn/fA5nXuDMfsO5ivNraEK8xfOxJ7uP+dxqSq+7BJ0gdC/3UkNCncSrlzrqAJWLTYN4hE6ET2+2Y4hj0SkOFAzGI+C/NpX4m5zXITsv0w46Tk+bHIb0zARm89877vHu7dZCbq0z7BRR6kUZjP6SJsMm4YFvP5KmaBPRgu4p1j6m9XLDRyOmYp3Bv63Dgo8VMw321i8b1YcszLROKMC+xzJFZgaELCx/8gzL2ybjI2tO+GTUb+FdgvtHUg4YgKGudSjseG7zcFhfpYuDG/H74fj01Oxq4Uwu8PwpJ7foIlw5yMRWx0D99vhvn0Z2K+1DgV+n7YvEZucnEi8K/I/bBjOF83ByWfCaUelOmThElHzEK/Oyj2XKRO/6BsFxF/YlG0oNoEbFTzBPBkpL0m+l7Cb/fK2+6JFdW7Mu++OQ6bOE1kNJv6Sd7AAdqWptXkZmFD14vDQdoO80UNxqyVWGNtsQnRe0Mf52Pxxr/ERgqDMesrSWv0OBrDqHpELsAziAxHMdfMFxKUY2vMlbB72Ja87y8Gni7jdTEUm+zsH7a/iY3idsKs8/vDa1PMFZFYWYTQ/2jMT30H9nB5D7PSO+ftF2e1xXHAcuC0sJ2zDMdjBeUOzdu/e7nOTwtyH4AZYqOj5wUbWf0iKPbemGtvDvFGuURLMkQV+77YQ2VKW64VLOrtGuBree1bYnMZN4R+pmIRPMkFMqR9ops5QDthQ+sFwKnYsHp7bLg/Cgtt+hEJpDhHbpCtgdvC572wBR5uxqyHC0nYZxyU1fxw0T2GPVDuwWbrryzjueiDWX7d8xVV5DjdhUXAJJI5W6DPm7BheW4Yfzrmfshl+SYWyhm9Rpr57mQsOW1vIiOWuI5NRDHej/l9R+d9PxGbyD887r7bKHctZiSNCds1ed8fhrmKTsHmzeIuzvUoNnme28632K/C5oW2auXvb4ZFfs0EDinw3R6YC+40EgypVc2uUu+AhTT9ISj208IJfxyrAtgznISLiC8WPd8C7Y5FcszGhrkTQ3sdecOsGP/v/ljoVLew/QNshHA1jfWut8TCBXsmIUNEli2widG+4RxsFTk3uaipAdiDdmYZFGm+5XsNFv+7ddg+E7Neo2nxsSszLJP5kPC5Y6Q9Glt9Sjhm/xFz39tgscy7BUVxGTYZNypvvyOwCJKuWVDoQaaNMIt1v2a+l6BcbyHetQ52pfHhP5embpZouOk3MGOt5Psqcj/0wCJnZmGRctFJ9CMpsaxAq//ntE923sEZjFk5nYJCOROLZhgXDspbwMyw77bEkFqNPUG/kHdycu87YUkHiae4Y37rl7DQrjkE10+B/Y7BLPiuCcqyNfYQzSmvK7AHbO+wnfM5fhtLmU66lsvQcLP0y2u/GnPF5IpkfS9cIxslpcywkLsPaXT/RG/cDnn7DYix3wOwEWp04YTtw/G/vIBiTzz6qEi5BwHbhs+zCIEHNK1VtDlwQfgc23VNY5ZqtGLovKhiD21HY26RVs87RP6XzcK1ejWNhuBxwEfEPD/QrCxpn/TIQRmFWSK5imUdg2K/CHM9bI65AgbG2OcmmBvn9dwNGDk5uczR87B1TpvcwDH/73uHi28kZrFshSU1/YlGq70f5pJ5kQSTeSKK+wwaE6v6YJFHz2IP095YpugiylB/G3vg3YQ95PvmffczbASXe9AkNSlaG/l8BeYKW68vkinfOxabqM5NRkejoIYExf5DIiODpK7VEuXuiY3iLg+fD8Hq8Hwpb7+vY1Z0nBb6BGwycp+w3Tvy3TrFjhmLy0u9jingISig2H8Y7qE3SbgqaRM50j7x4SDkapPvgllZt2Ixqx2xiJNcFMp2MfZ5EDA/fL4cS6L5QtiO3jQXYe6OJGuiT6YxXjdq7d2C+U4lyPtAwgq9P5Za/p9h+9vhojwQe6j+MByLB7AIhliijYqUbQKNMfDRmP3NgmLvHLaTcLmMCUrniLC9FTbxdVhSfUb63g+bfM2537YJxyDqE/4iZgVfSBnzFoqUfxxmOF2EWecnYdFSx2ITpN/ERqixKT1sQY1VwNlheyAW7hzNaXgUixb6S6nXMTZqurzQsc5T7N/HsnzbXO67JPkyctLfBPaPtHXF0vxzir0W86Hfiblm2nQThT4XE6n9HS68ekKJ1tD2Daz4Uknpwa2Q54fALyPbOatzMBZrnQvhi600azNy1GIWxlU0ul5OIVKoK1ysm5KQRRyRZQjrr216QFDsZxFGbOEcPUGCER6YG+4d7EF2M1Ym4VzCRHrYJwkLvRPmUnoJG1Xmsqa/18zxSmSupxVy70IkiAHza18TFHvncB5/iNVCuS0uhR5RqD2xaJa7sAnY+cCZ4buowXYTkTK+RfaxHzZC/XIRcnQjoSqgG5Qx5ZO/f7hZnsLisntEvssp9t+Gi7uWeHzo+2HlM+eyftZoTrF3woaEy+K64ArIsTmNBZi2x6zNXWjqo+2IRb4MLPN5mUYoLxy2Tw6K/VDKkym6KWYJ3UBe2GhQCJdhFtAVmIsqEV8lNmrMPWCPxZKrrsMeehMxi3N6GY7FGeE6WAocl/d93yQeKK2UVbCJ/LXhdSk2yt4SS5Caik3+54rAxZrTQGO2c4cgy3ex+vHX5e03jla4DcPf/RP4eaStYCw7Kbq/Ult4WkR2xKzg/8SG/CcAY0RkE1i3iPIZWMbgXaq6WlX/3sY+D8BuyAux4delIrJD7ntVPQ/zz67AFMZ4TaBGhohMwEqK3iQil2BDwI7YhMrwyK6HYzf1/8UtQ0SWISLycG6xaBHphbl6PgH2CQsk/wxLhNo3KTmiqOr/YZPFq4DvisiAyHeP0Dg5uBirCPnnuGUI18Uc4GAR2RyLtNkbe6D8Fot0WAqcFRYfj7PvwSKyh4jsDaiq/gR7yK7Gol9y+30DG+LXxtl/a1Hjb9h1uxozjv5GYx37PbDosaki0ltV16rqmmZ/sATCot6zRGQ2ZqF/ARsdXAb0E5FRYb/jsMi6j0v8/XFYfswlwFoROR9A8xbqFpEOoV3b/E+1lhSf6rU0XTvzZCyB4zCalrKtJYbEIsxtcDihNgx2cV2EZQNun7fvaSRn/eWq6R2CKfDZob079nC7BRtFXEiMWbLNyDKCxtVY7sR86k/S6N8/FXvw5nzJSbtcvoiF6w3GrK3cwiOzaFqP+lTyapvELMdI7GF6ARbFcA/myz4CC8vLTV4fjLlG4o5yeTGck8ew0MTcXNOZWMbotjRWnEy8AmYr/48jsYfyUEy5j8SU7cvYCCe2RUEwC3oJlp16NGa4vR/6rMHcdfdjI/E/UPqk6GbhvswtdPJVLHhjat5+Y9iAW6Zsxz6Fk70zYQm2sB1d7msyptgnEu9M+PZAQ1AQx0Tah2BP3vUUe0L/e09sWHpo2N4dcwX9LMi2KRb7/T0suuSLCcpyQHhoHE5j1FEDcEZkn66Yj/1Kkk+2OhhLqnkEC2N9ASvDOiTcjLPCDXpEuGFHJCTHfuH3c4lMX8Ss4b9ilvr1mL82N9SPLZyTxpraX420XYS5KHcK22dgI7ul5bhmS5D7bNaPajkxKPa9wnYXzC0S9zqsfybPCMNcPX/DDJWasL3uOJbw+wdiWdPbRdo6Y3XQ748qdsxF94XUz0cKF8BILHri4khbNPPuBGwC5UDiy8Lrj4U3nYcNY3+BRVN0wUIFp2E+40QzvYIsB2ATLbtgEziX0LhQ9eyk+w8yfDUohuhEcbdwXO7J27cLCU/2YGnjr0eVAuZPX4w9CLfFXC7PBoWb1DzHhHAe9gzbm9MYVfM1bNL6v4ISGRTa47pGcw/83DxGNDHmYqwYWDfM7XN6VhR6kO86LHb/OezhuwONk/vfwjJcCyYdxdD3pcCn0es18vla4IbweTNKTCwKOuhlbC4pPzmxS1Ds9xAxUrPwSuMC6IRZqHfT1GLP3Ty9MFdM3LVcrsaerB2xIdpD2ATtcMwqnky5Mr7MsllL06d8N2y4negC0aGvs2mMBog+ULtiFvsv41JWRcrzNRoXrY6O3G7EXFWCuWWuTVChb4uNXHLrUW4VbuiJkX0GY9bnEmJ0uUR+/wAiy9zlHYsngV3D50xMjEZk+yoWcrw1jaPO+whZxjRmuCayCHt4kLyVu3cIoyfMTXdDK39zy3DMcyusdcaij7aO/H4t5nK5nYwUTFMt00SpiOwS3juqTYy8jLk8thWR6QCq+m8ROQuzhu5R1Q9i6lvCx/MAxdLfP8DC1P4X813vAfxG4ypS3wJqhffHAd8UkR6h+XDsovksqX4jx2Ib7OEJtsBHTq5PsAnIzpgFkigiUicidZhvf2yQ4bPcpC1WK2MVlkn6AlbgLImJ642xBJTfAioiX8cMgBtVdU5uP1Vdqqq3YnHH78Yth9ok8LnA8yKyWd6x+BdWrAtVXRt3321BVf8bu56+qaonYyOZI4A7RORWbI5gqFqwQ5snEEWkR+S4oKpnY0ba8yLSS8PCMZjb5f9EpEPk2i+Wz7Dj/amIdMFccA9hZUNuFJGeoZ8/YIXV/tHGfys+yvAU3xJLkZ2DKdCob2o37Al/FlZGdQnBGolZBsEmmqZjyup1GlN4h5BCLGnoezzmRz4VK+VblkkvzLp4jMYFLjrQWMjsVCxZI9FRC2aVvoJNqI3CEs4OiciRy+idS4JZq1i1z6uwCb2e4Rp9mbzFDTDf7ZAyXhdv0Bj6dzwWn57I2retkG83LFJrp8j52hGb+5gUZB+DzZ99m0juRwx974q5eq4ilB2OfPcT4K3weQI28mqVmyrojHMwd+1fsbm+EzH38R1E1uHN2qscF0APbPLrXiyb7G2sfklOoXwJiyj4jIQzFIMCX0HeijSpngDz2/07ScVVoM+uNJYwjvqxj8T8/YmujkOeTx/zT34fC0E7NLLf4Vh0SWLKLCiJH2Eug8Hh2FyIGQC5WuVHBHkTTULLk2s85oo5BSt9nIkoFxojTe4M9/IBob0vNlf2EU0Tj2J1FWFG4rPhnL0bztVRke9nYq7Nl2ljBBvmEt0jnP+oK+w2bEnA1M9HoVdZ1igVkTHYk3UsNjF5IfaU/wVmiXUG/qYJDGkLyPJNLIb1SlX9f0n3VwwisnG5ZQlrI56A1SB/AVvp6T+xEgGvJtz32UCDql4rIp3VXG9bYJNqO2DuoT9iD7xjVPWVBGTooaqrwucdsXmWXImKFdhkZEcsk3MPzLXwWtxytCDjgZiiHKEJrKvaCnm+jE0UH6SqfxSRE7GHzldU9ZPw/fXYZO+yhGTYCFOqf8SOzZexaLF3gEtV9bUg1/MJXTeHY67cI1X1jbh/Pw4S8amLyOZhIeQcz2DD/b6YX3skFs3wZWwY95dyKPTAs9joIDOk8XAJN91MLBb7Y6y+yMFJKvRmfPprRKSDWmLZddjk6EPYJNXEhG7MfTH/67Uishs2nP8pdhyOxwqYXY8ZG18GTiy3QgdQW8i8RxYUeqAXVvtnWwC1+YW3gKPCcXwDc1fsE03IiYuwUPdnmFE4CdMlf8f0Sidgmoj8Arg97utGRPqGOb+LscXLM6nQgfgt9ZAteTE2NFuqqheE9rNpXPDiO6r6XyLSFYu+WBWrEC3LWHbL2GkkjNy+D5ynqgtDFl4HVf1cRE7HVlJ6KcH+h2Phd/8OcpyJDeeHYmnlvTBX0CosRK5NmcztHRE5GKvM+Qts9LQvtljLjtjo7hnsQd2AuVvHqer7CcnSAVPm3wt97odFcj0iItsAH6vqygT6zUW6LFHVv8T9+3HSMc4fE5H9sZvkMmw4dLaIdFXVT1R1VhierQgKvUYt2qLsuEJPnQVYqOKRIoKqLsRSr4/ELLCHkuxcVV8SkV0xq/NfmGLYGxvBbYqFuXYEzlHVktLJK42Qfj8dewB/JiJzMaV6AjbJvI2qqohsjcWCr45LoYvI9tgD9o+q+jk0Rv6IyGIsMes7alFDqOpbcfRbCLVIl0eS+v04ic1SF5Ge2FDoa6r6WxHZHVsG7QFskuHEYMV/DZisqg2xdOy0S9L06UdkyC2cfaaq3hFcBrtgSv7BNFwuWSIo9NlYRuifg+Luj1nph2CTps+o6l0J9X8xlph3O/CsWp0V0aC0RORCbM7j4rQMxCwSm09dVT/Ewr5+EOLSL8PKlM4AhonIzzHLaAcsU8+pYtLw6ReQ4QXMlXC1iJyqqg2q+qKqzqh2hR7YFLPK14hIZyx2f1AwyOYRlqcTkRPi7FREhorInli26JtYxdTRYXSvIpLzMPydBPM62iuxul+CX6sBC4v7vqrOABCRfYCHwwz5VzSmymxO+yYMaZ8Or7RkeCFMnL4gIp+q6u1pyZI1VPXXIqKYO2xjbMm5u4O1/ImIzMOS1xbE1WeYTJ+ILYO3FkuGm4ZlfXcQkafD3MskLGJpklvpTYk9+kWbz5bsLCLdiWQwOk4WCD79L2ETflVPNHJFVX+DKdUOWHQLmHLtEOYbHlIrtxtHvzti0UbXYrHwR4Xt6VhxriOwLPSTsWCM05L0o7dXEotTF5Hx2PD6BuzknFrOobXjOKUhIjtoqE0fXB0Nke8Oxxa4OF9VH476tmPqeyOs/tIeWHjpIqxMRD+sFtEfMVfd3liU0nhVfTmu/iuJRJOPspY84ThOYULI3s1YUtg3Qlu+Yv8aZkV/S1V/H1O/0YnPbbGKnWNCP/+LlRruhxUIew4rOzBfVZfG0X8lknhGqceEO072CS6XQVhI8qeq+u1ce55iPxh4VVXfjKnfbVT1reDOWSsiucU06rFEtHosu3cH4FZV/WMc/VYyZSkT4DhONhGRLwGfqOrrYXsgFv/9uaqeFNqaKPaY+q3Bav68ixVPmxbCXO/BsonfxNYtvg2r/zMZuE/LVEm1PeNK3XGqlODueBarSPgbLKz0TiyJ6ARsjYPTwr6xKvZIzZ9BwBPYwjjDsInXnwYFPxFT7D9W1efj6rvSSW3hacdx0iW4UK7HlPlzWE2mC7CJyjeBvURkVtg3ToU+Frgzkjw0CouQ66CqPw39LcOWNXwsyOcUiVvqjlNl5PzXke0fY2Vmf4KV9zgSKwFwDPD/sOX9YqmnEkqJXIrVkemDVUzNhUw+j1nlMyL7d8yVCHCKw5W641QRIvJVwnKSGlldTER+ghXtuijiX98SW6zkrzH1nSslckio/9QfK8n9a1X9lYgMxvzpP1fVC+Posxpx94vjVBfnYhUp54rI8SKyF4CqnkGoSS4iOwcL+W9xKfTQR66UyAwR2URV38OWjOsZfPZLsTUXjhQr313qEnQObqk7TlUR6jIdDryPrSI0Clv2bYaqLheRK7BFt09S1X8nJMN4rHb+vNDX11X105yrRUQ6eSmR1hNr7RfHcbJHXq7ISmzVsYWqeoOIHIP5t7uHsh7HA7VJKXQAVf2diJyCFQTbMij0Lqr6adjFfehtwN0vjlPBhHLXl4tI/zBB+j7wM+DbIjIZi3Y5CpusXA70VdV/JC2Xqj6GLT7+pIj0jih04iw/UI24+8VxKpRQpuMybPJzTqS9I3A1FuVyjKrOT0lEROQQLNmpDtPnrpDaiCt1x6lAQuTKvcC5obxwZ8zduhnwATAeW3x9x7B/kzDHMsvaTat8hak4cfeL41Qmn2GRJZ+KSBespstDWGGsm4C5wBsici40LhOXBq7Q48UtdcepQEI44NnY0nw7YpmZTwOLscqH92MLRb+kCS0S7aSDK3XHqVBEpBtWT6U/tubqZ6H9duB3qvqrNOVzksGVuuNUEWGxi6nAkar6l7TlceLH49QdpwoQkb5YtMtJuEKvaNxSd5wqIKxsNAZY4gq9snGl7jiOU0F4SKPjOE4F4UrdcRyngnCl7jiOU0G4Unccx6kgXKk7juNUEK7UHcdxKghX6o7jOBXE/weJZsGU4jnUAwAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEFCAYAAAD69rxNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdY0lEQVR4nO3df5TV9X3n8eebEXSiGCQOFBCchiXkbKVCcyMom7OomWDU6GhrUiqWNllxd+s5cW1JoZI0OcGjLYlmt03T1caWHqzG07Cjje7SWSqbjSskgxBHoxxigpiRA5MYKpoxkuG9f3y/M7ncuXfm+5253/v9cV+Pc+bc+33f73DffGDe872f7+eHuTsiIpI/k9JOQERExkcFXEQkp1TARURySgVcRCSnVMBFRHLqtEa+2bnnnuvt7e2NfEsRkdzbs2fPj929rTLe0ALe3t5OT09PI99SRCT3zOzlanF1oYiI5JQKuIhITqmAi4jklAq4iEhOqYCLiORUQ0ehSPK69vaxeft+Xj02wOxpraxbuZDOJXPSTktEEqACXiBde/vYsK2XgRODAPQdG2DDtl4AFXGRAlIXSoFs3r5/uHgPGTgxyObt+1PKSESSpAJeIK8eG4gVF5F8UwEvkNnTWmPFRSTfVMALZN3KhUyeZKfEJk8y1q1cmFJGIpIkFfCisTGORaQwIhVwMztoZr1mts/MesLYdDPrNrMD4eM5yaYqY9m8fT8nBk/d4/TEoOsmpkhBxbkCv9TdF7t7KTxeD+xw9wXAjvBYUqSbmCLNZSJdKNcCW8LnW4DOiacjE6GbmCLNJWoBd+CfzWyPma0NYzPd/TBA+DgjiQQlunUrF9I6ueWUWOvkFt3EFCmoqDMxl7v7q2Y2A+g2sxejvkFY8NcCzJs3bxwpSlRDsy01lV6kOZi7j31W+TeYfRZ4A7gZWOHuh81sFrDT3Ue91CuVSq4deURE4jGzPWX3H4eN2YViZmea2dSh58CHgOeAx4A14WlrgEfrl66IiIwlShfKTOB/mNnQ+f/g7v/LzL4DPGJmnwAOATckl6aIiFQas4C7+w+AC6vEfwJcnkRSIiIyNs3EFBHJKa0HXjA33v80T7302vDx8vnTefDmi1PMSESSoivwAqks3gBPvfQaN97/dEoZiUiSVMALpLJ4jxUXkXxTARcRySkVcBGRnFIBL5Dl86fHiotIvqmAF8gNpXlUbMjDJAviIlI8KuAFsnn7fk5WLG1z0tGGDiIFpXHgBaINHeLruGcnB46+OXy8YMaZdN++Ir2ERGLQFXiBaEOHeCqLN8CBo2/Scc/OdBISiUkFvEDWrVxYtQ9cGzpUV1m8x4qLZI0KeIH0vPxa1T7wnpc1kUekiFTAC+Sh3a/EiotIvqmAF8hgjd2VasWb3YIZZ8aKi2SNCniBtJjFije77ttXjCjWGoUieRJ5GKGZtQA9QJ+7Xx3ujXkz0B+e8ifu/kT9U5SoVi2dy9Zdh6rGpToV63i69vZp0+wMiTMO/JPAC8DZZbF73f0L9U1JxmtT5yIg6PMedKfFjFVL5w7HRSaia28fG7b1MnBiEIC+YwNs2NYLoCKekkgF3MzOA64C7gRuTzQjmZBNnYtUsCURm7fvHy7eQwZODLJ5+34V8JRE7QP/EvAp4GRF/FYze9bMHjCzc6p9o5mtNbMeM+vp7++vdoqI5IBm+mbPmAXczK4Gjrr7noqXvgLMBxYDh4EvVvt+d7/P3UvuXmpra5toviKSEs30zZ4oV+DLgWvM7CDwMHCZmW119yPuPujuJ4H7gYsSzFNEUrZu5UJaJ7ecEmud3KKZvikas4C7+wZ3P8/d24HfBv7F3Veb2ayy064DnksoRxHJgM4lc7jr+kXMmdaKAXOmtXLX9YvU/52iiaxG+Odmthhw4CBwS10yEpHM6lwyRwU7Q2IVcHffCewMn9+UQD4iIhKRZmKKiOSUCriISE6pgIuI5JQKuIhITqmAi4jklAq4iEhOaVf6gtFyn/G0r398ROzg3VelkEk+bOzq1WqXGaIr8AIZWu6z79gAzi+X++za25d2aplUrXiPFm92G7t62brr0PAOT4PubN11iI1dvSln1rxUwAtktOU+RSZKe65mjwp4gWi5T0mS9lzNHhXwAtFyn5Ik7bmaPSrgBaLlPiVJtfZW1Z6r6VEBLxAt9xlPrdEmGoVS3abORaxeNm/4irvFjNXL5mkUSorMG9h/VSqVvKenp2HvJyJSBGa2x91LlXFdgYuI5FTkiTxm1gL0AH3ufrWZTQe+BrQTbOjwUXf/aRJJSnSayBPPr65/nPLPoAb8UF0oNS29s5sjx98ePp45dQq77+hIMaPmFucK/JPAC2XH64Ed7r4A2BEeS4o0kSeeyuINwfZSv6qJPFVVFm+AI8ffZumd3SllJJEKuJmdB1wF/E1Z+FpgS/h8C9BZ39QkLk3kiafW3R+Naq6usniPFZfkRb0C/xLwKeBkWWymux8GCB9nVPtGM1trZj1m1tPf3z+hZGV0msgj0lzGLOBmdjVw1N33jOcN3P0+dy+5e6mtrW08f4REpIk8Is0lyhX4cuAaMzsIPAxcZmZbgSNmNgsgfDyaWJYSiSbyxFNr/qDmFVY3c+qUWHFJ3pgF3N03uPt57t4O/DbwL+6+GngMWBOetgZ4NLEsJRJN5Innh3dfNaJYaxRKbbvv6BhRrDUKJV2xJvKY2Qrgj8JhhO8CHgHmAYeAG9z9tdG+XxN5RETiqzWRJ9aGDu6+E9gZPv8JcHk9khMRkfg0E1NEJKcyv6WaZhbG8947nuCtwV92i53RYrx455UpZpRt2iJM8izTV+CaWRhPZfEGeGvQee8dT6SUUbZpizDJu0wXcM0sjKeyeI8Vb3baIkzyLtMFXDMLJUnaIkzyLtMFXDMLJUnaIkzyLtMFXDML4zmjpXrhqRVvdtoiTPIu0wVcMwvjefHOK0cUa41CqU1bhEneZX4YYeeSOSrYMahYx1M6fzpPvtjPq8cG+JV3nkHp/OlppyQSWeYLuEhShoapDo10GhqmCuiiQXIh010oIknSMFXJO12BF0x7le3ADmp1vao0TDU+zYzOFl2BF0i14j1avNlpS7V4NDM6e1TARSQSdTlljwq4iESiLqfsibIn5hlm9m0z+66ZPW9mnwvjnzWzPjPbF35p/JpIgWlmdPZEuQL/OXCZu18ILAauMLNl4Wv3uvvi8EtL3okU2LqVC2mZdOpEsZZJppnRKYqyJ6a7+xvh4eTwS/d5Mmj5/OqTUGrFReLoefk1Bk+e+qM/eNLpeXnUnRQlQZH6wM2sxcz2Eew83+3uu8OXbjWzZ83sATM7J7EsJZKnXqr+g1QrLhKHlt/NnkgF3N0H3X0xcB5wkZldAHwFmE/QrXIY+GK17zWztWbWY2Y9/f39dUpbRBpNy+9mT6xRKO5+jGBT4yvc/UhY2E8C9wMX1fie+9y95O6ltra2CScsIunQ8rvZE2UUSpuZTQuftwIfBF40s1llp10HPJdMihKV+sAlSVp+N3uiXIHPAp40s2eB7xD0gX8D+HMz6w3jlwL/JcE8JQL1gUuStu46FCsuyRtzLRR3fxZYUiV+UyIZiYhIJJqJKSKSUyrgIiI5pQIuIpJTKuAiIjmlAi4iklMq4CIiOaUCXiBnn94SKy4Sx8ypU2LFJXkq4AVyTY29CWvFm92XPrY4VrzZ7b6jY0Sxnjl1Crvv6EgpI9GmxgUy2mpxmzoXNTib7Ku1Fdjm7fu1UW8NKtbZoivwAtFqcfFoizDJOxXwAqm1JpzWiqtOW4RJ3qkLpUDeMaWFN98erBqXkdatXMhtX9tXNS7Vbezq5aHdrzDoTosZq5bOVfdcinQFXiDVivdo8Wb3ma7eWPFmt7Grl627Dg13yQ26s3XXITaqvVKjAi5N6/WfV//FVive7LSlWvaogItIJLpJnj0q4CISibZUy54oW6qdYWbfNrPvmtnzZva5MD7dzLrN7ED4qF3pU6ZRKPFo5mo82lIte6Jcgf8cuMzdLyTYgf4KM1sGrAd2uPsCYEd4LCmq9UFWH3CrUx94PJs6F7F62bzhK+4WM1Yvm6dRKCmKsqWaA2+Eh5PDLweuBVaE8S0Eu9X/cd0zFJHM2NS5SAU7QyL1gZtZi5ntA44SbGq8G5jp7ocBwscZNb53rZn1mFlPf39/vfIWEWl6kQq4uw+6+2LgPOAiM7sg6hu4+33uXnL3Ultb23jzFBGRCrFGobj7MYKukiuAI2Y2CyB8PFr37EREpKYoo1DazGxa+LwV+CDwIvAYsCY8bQ3waFJJSjQH774qVrzZqb0k76KshTIL2GJmLQQF/xF3/4aZPQ08YmafAA4BNySYp0RQa0rzxq5e3XiqQcVa8izKKJRngSVV4j8BLk8iKRkfrQcu0lw0E7NANNVZpLloOdkCaTGrWqw11bm29vWPj4ipW0XyQlfgBfLutnfEije7asV7tLhI1qiAF8gP+n8WKy4i+aYCXiDqAxdpLirgIiI5pQIuIpJTKuAFogX349FMTMk7DSMskFVL57J116GqcalOxVryTAW8QIZmWz60+xUG3WkxY9XSuZqFKVJQ5g0coVAqlbynp6dh7yciUgRmtsfdS5Vx9YGLiOSUulAKZmNXr7pQRJqECniBbOzqPeUm5qD78LGKuEjxqAulQEZbTlZEiifKjjxzzexJM3vBzJ43s0+G8c+aWZ+Z7Qu/rkw+XRmNptKLNJcoXSi/AP7Q3Z8xs6nAHjPrDl+7192/kFx6Esckg5NVavUkzeMRKaQoO/IcBg6Hz4+b2QvAnKQTk/hOP20SAydOVo2LSPHE+sk2s3aC7dV2h6FbzexZM3vAzM6p8T1rzazHzHr6+/snlKyM7q0qxXu0uIjkW+QCbmZnAV8HbnP314GvAPOBxQRX6F+s9n3ufp+7l9y91NbWVoeUpZbZ01pjxUUk3yIVcDObTFC8H3T3bQDufsTdB939JHA/cFFyaUoU61YujBUXkXyLMgrFgK8CL7j7PWXxWWWnXQc8V//0JI4vP3kgVlxE8i3KKJTlwE1Ar5ntC2N/Aqwys8WAAweBWxLJUCI7cPTNWHERybcoo1C+BVQbiPZE/dMREZGoNL5MRCSnVMALZMGMM2PFRSTfVMALpPv2FSOK9YIZZ9J9+4p0EhKRRGk1woJRsRZpHroCFxHJKRVwEZGcUhdKwWhHHpHmoQJeINqRR6S5qAulQLQjj0hzUQEvEO3II9JcVMALpMWqb71TKy4i+aYCXiCrls6NFReRfNNNzAIZulGpUSgizcG8gf2jpVLJe3p6GvZ+IiJFYGZ73L1UGdcVuDS1jnt2nrJeutaOGZ3aK76uvX1s3r6fV48NMHtaK+tWLqRzSX32hY+yI89cM3vSzF4ws+fN7JNhfLqZdZvZgfCx6qbGIllVWYwg2Pyi456d6SSUcWqv+Lr29rFhWy99xwZwoO/YABu29dK1t68uf36UK/BfAH/o7s+Y2VRgj5l1A78H7HD3u81sPbAe+OO6ZCXjduP9T/PUS68NHy+fP50Hb744xYyySzsYxaP2im/z9v0MnBg8JTZwYpDN2/fX5Sp8zCtwdz/s7s+Ez48DLwBzgGuBLeFpW4DOCWcjE1JZvAGeeuk1brz/6ZQyEmlurx4biBWPK9YwQjNrB5YAu4GZ7n4YgiIPzKhLRjJulcV7rLiIJGv2tNZY8bgiF3AzOwv4OnCbu78e4/vWmlmPmfX09/ePJ0eRRGgHo3jUXvGtW7mQ1sktp8RaJ7ewbuXCuvz5kQq4mU0mKN4Puvu2MHzEzGaFr88Cjlb7Xne/z91L7l5qa2urR84idaEdjOJRe8XXuWQOd12/iDnTWjFgzrRW7rp+Ud1GoYx5E9PMDPgq8IK731P20mPAGuDu8PHRumQk47Z8/vSq3SXL509PIZt8eH3gxKjHcqo/uHTBKUPi/uDSBWmnlHmdS+bUrWBXinIFvhy4CbjMzPaFX1cSFO4OMzsAdITHkqLvH30jVrzZLb2zmyPH3z4lduT42yy9szuljLIt6SFxEt+YV+Du/i2g1mpIl9c3HZmIymI0VrzZqb3iSXpInMSnxaxEJJKkh8RJfJmfSp/kNFQRiW72tFb6qhTreg2Jk/gyfQWuPjdJ0sypU2LFm13SQ+IkvkwX8NH63EQmavcdHSOK9cypU9h9R0dKGWVb0kPiJL5Md6Goz02SpmIdT5JD4iS+TF+BJz0NVUQkzzJ9BX7pe9vYuutQ1bhIPWj1xng2dvVqx6cMyfQV+JMvVl87pVZcJA6t3hjPxq5etu46xGC4i9egO1t3HWJjV2/KmTWvTBdw9YFLkrR6YzwP7X4lVlySl+kCrj5wkewYrLF/bq24JC/TBVzjTkWyo8Wqr6hRKy7Jy3QB17hTkexYtXRurLgkL9OjUEDjTkWyYmi0iUahZEfmC7iIZMemzkUq2BmiAi4ikbWvf3xE7ODdV6WQSX503LOTA0ffHD6u5y5Gme4DF5HsqFa8R4vLyOINcODom3Tcs7Muf/6YBdzMHjCzo2b2XFnss2bWV7FDj4iIlKks3mPF44pyBf53wBVV4ve6++Lw64m6ZCMiIpGNWcDd/ZuApqaJiGTMRPrAbzWzZ8MulnNqnWRma82sx8x6+vu1hkmSzmipPqGiVlxEkrVgxpmx4nGNt4B/BZgPLAYOA1+sdaK73+fuJXcvtbVpFcEkvTVYfUpzrXizm1NjSYZa8WZXa7SJRqHU1n37ihHFOvVRKO5+xN0H3f0kcD9wUV2yEWmgWksyaKmG2k6z0Y9lpBlTTx/1eCLGVcDNbFbZ4XXAc7XOFcmq2762L1a82f2bDY/zi4oPc7/wIC7VJb1k8ZgTeczsIWAFcK6Z/Qj4U2CFmS0GHDgI3FKXbEQksyqL91hxSX7J4jELuLuvqhL+al3eXURExk0zMUVEckoFXEQkIcvnT48Vj0sFvEC04L5Itjx488UjinU9N87WaoQFsmrpXLbuOlQ1LiMtmHFm1TUp6jXJQgSoW7GuRlfgBbKpcxGrl80bvuJuMWP1snlav7mGpCdZFE3SswolPvMGbkhaKpW8p6enYe8nIvWV5NrWUpuZ7XH3UmVcXSgiEpmKdbaogEtT69rbx+bt+3n12ACzp7WybuVC7cEquaECLk2ra28fG7b1MnBiEIC+YwNs2NYLoCIuuaCbmNK0Nm/fP1y8hwycGGTz9v0pZSQSjwq4NK1Xjw3EiotkjbpQpGnNntZKX5ViPVvrgdekewbZogIuTesXg4Ox4s1O9wyyR10o0rSOHH87VrzZ6Z5B9qiAi0gkumeQPWMW8HDT4qNm9lxZbLqZdZvZgfCx5qbGIlIMte4N6J5BeqJcgf8dcEVFbD2ww90XADvCY5Fc0doe8axbuZDWyS2nxFont2gP0RSNWcDd/ZtA5f4/1wJbwudbgM465yWSOC1mFU/nkjncdf0i5kxrxYA501q56/pFuoGZokiLWZlZO/ANd78gPD7m7tPKXv+pu1ftRjGztcBagHnz5r3v5ZdfrkPaIiLNo9ZiVonfxHT3+9y95O6ltra2pN9ORKRpjLeAHzGzWQDh49H6pSQiIlGMt4A/BqwJn68BHq1POiIiElWUYYQPAU8DC83sR2b2CeBuoMPMDgAd4bGIiDTQmFPp3X1VjZcur3MuIiISQ0O3VDOzfmC8w1DOBX5cx3TqRXnFo7ziUV7xZDUvmFhu57v7iFEgDS3gE2FmPdWG0aRNecWjvOJRXvFkNS9IJjethSIiklMq4CIiOZWnAn5f2gnUoLziUV7xKK94spoXJJBbbvrARUTkVHm6AhcRkTIq4CIiOaUCLiKSUyrgE2RmWv0/BrWXSP3kooCb2UVmttzMlqadSzkz+yCwwcwytaeU2mv8zOx8M3tPRczSyqcshyvN7CNp51FJ7RVPvdsr8wXczFYSrH54FfCQmd1qZmelnBZm9mHgz4Bud8/Mrq5qr/Ezs98CuoC/N7N7zGw1gLt7mkXJzDqAzcCbaeVQjdornkTay90z+QUYcDrBnpwfDWOLgW7gj4DWFHNbCLwF3BgezwDagQvUXvloryo5nkmwv2sJeAfwCeAvgdtSzmsFcBAohcdnAe8CJqm91F6ZvQL3wM+BF4BfN7Oz3H0fcBtwJfDxFNM7TtD4S83sEuAfgI3ADjP7T2kkpPaaMAMmAy3u/jPgEWA78G4z+2iKeb0DmAr81MzOAR4GHgT+wsyuTTEvtVc8ibRXZgt4mWcJfoPON7PT3P15YB1wu5ldmEZC7v4q8F+BN4CdwKPu/h8Iui02mdmyNPIKqb3Gwd3fIPhhX2dm8939OPB/gBeB1O4luPsTwH8Oc3maYPOUm4EfAlekdVNY7RU7r2TaK82PFTE+fmwGHiDoEjgrjH0ZWJxyXucBV4TPh2a1/iXw/hRysSy2V0VemWmvajkCs4DPAP8NmB/GpgJPESznmWbbXQusKzueSvCRPLW81F7pt1emrsDNbJmZ3RQ+ThmKu/s6gnV0bwE+b2a3A53AsZTz+hHwv8Pnbma/A3wAONKgvBaYWcnMWij7NJWB9qqVV6rtNQoDcPfDBFdsPwbuNbPlwNUEH32Pp5HX0M0td38U+ELZax3AGQSfahrKw8qTtfYK/09lrr1I8P9XZtZCMbNrgE3AXoIO/w3ufsDMbOg/jJldCvw68B7gy+7+vbTyCl+z8D/NFILf+H8KfMyDbouk8+oEPgd8H/gRsB/Y4u5vlp2TRnvVzMvMJrn7yTTaqyLHpQQ/zD9z9++EscnufiJ83gZcD3yE4Ifv0+7+TEp5tbj7YMV5/5Ggm+B33P25BuR1tru/PsrrabXXqHmVndfo9voNgr74t93922FskrufDJ/Xr70a/XGixkeMdxF06F8QHj8A3EAwWmHE6AngtKzlBVwMtDcwr/8J/Nvw+OPAdwhuDJ6dcntFyquR7VXxvh8GDhCsDNcFfLXstSkV555VGUspr9Mqzl0D/FqD8roe+C5BP+2kitcqjxvZXjXzqnJuI9vraoKLvb8nuFF5S9lrVnHuhNsr8b9QxL/0O4FvAr8FnA38APgngtEKm8JzfgO4qlpDpJzX+4APptBe/xe4rCz2jwQ3CleFxxen1F5j5XVJo9urLJcWghtJN4XHZwPfAv6x4ryVwBkZzKujwXm1h3l0h/mVqv1fSqG9oubV6PZaQjCI4MLw+Abg3iTbKxN94O7+rwQd+xuAfwb+1t0/AvwNMNfM3g/MB54Jz29Iv0/EvN4NJN41USWvB4HfD/vm7yQYZ/094EPhaeeTTnuNldc8oKFdJmX5DRJcHQ0dv+7u/w6YaWb/vezUpcCvZDCvixuZF3ASuMPdOwj+DT8DvM/MToNTZhBektG8PtDgvFqBv3L374bHe4HlZja3YqJO/f4dG/XbKeJvsHMIRlBcXRbbBnQorxE5vRO4Efhbyn7LA48Dp9Ggq+485AW8p+z5auA5YF5Z7FyCTwoN+Zids7zeWfb80wSfQN8fHi9SXiPyagsfWwj6wf+JsPsQWFD3927kXzRiY3w4/OH/EHANwVVku/Kqmdeksue/C/w/wqGDymu4T/JnwMNlsc8Dr1QUy4eBpcprOK+HymJTyp5/mqAL8W6gF5ihvEb8O04aegSeIOgSuyks5ufU8/0zMwpliJlNI/iB/02Cj9+f8l9+JElNVvMaYmYfJ5gy/zF37007nyFp5hVO2vg6waelS4DT3X1V+NrnCX4R/xXBle5q4Ep3/6HyGs7rNHdfHb52ugczfTGznQQjm1Y24t80p3m1EIwweQj4V4I5Gb/rdR4JlrkCPsTMphLkN+YwoUbKcF7nA5Pd/ftp51Iu7bzMbDbwOsHwvL8GTpQVy+sI+iLfB3zJGzDELId5vTVUlMLX3wN8Dfi9Rl7A5DivLoJfKte5+/66v39WC7hIvZnZuwiG6b3t7qvM7NeAN9z9ZeU1al4D7r7azBYTdAd8z91/rLzGzGsB8PvA1npfeQ+/pwq4NBMzO5fghvQlBDeaVngwQzRVOcjrYoK8/r0Ha9ukKgd5LQ9DH3D3xGYaZ2IYoUijhFdozxKMlrkuC0UScpHXNOD6LBRJyEVeZwO/mWTxBhVwaTIWLDF6JfChjN3sVV4xKK/w/dSFIs3GzM5w97fSzqOS8opHeamAi4jklrpQRERySgVcRCSnVMBFRHJKBVxEJKdUwEVEckoFXEQkp/4/ttjoQgnE43kAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -172,8 +173,7 @@ ], "source": [ "import matplotlib.pyplot as plt\n", - "plt.scatter('City','Price',data=new_pumpkins)\n", - "plt.xticks(rotation=45)" + "plt.scatter('Month','Price',data=new_pumpkins)" ] }, { diff --git a/2-Regression/3-Linear/solution/notebook.ipynb b/2-Regression/3-Linear/solution/notebook.ipynb index f0c5a5901..c7edaac7d 100644 --- a/2-Regression/3-Linear/solution/notebook.ipynb +++ b/2-Regression/3-Linear/solution/notebook.ipynb @@ -24,7 +24,7 @@ "cells": [ { "source": [ - "## Pumpkin Pricing Per Bushel, by City\n", + "## Pumpkin Pricing\n", "\n", "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data: \n", "\n", @@ -38,7 +38,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -71,7 +71,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, - "execution_count": 18 + "execution_count": 104 } ], "source": [ @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -103,7 +103,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MonthVarietyCityPackageLow PriceHigh PricePrice
7013105313.636364
71131010716.363636
72231010716.363636
7323109615.454545
7423105313.636364
\n
" }, "metadata": {}, - "execution_count": 19 + "execution_count": 105 } ], "source": [ @@ -126,40 +126,38 @@ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", "\n", "new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder().fit_transform)\n", - "new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder().fit_transform)\n", - "\n", "\n", "new_pumpkins.head()\n" ] }, { "source": [ - "A basic scatterplot reminds us that we only have month data from August through December. We probably need more data to be able to draw conclusions in a linear fashion." + "A scatterplot reminds us that we only have month data from August through December. We probably need more data to be able to draw conclusions in a linear fashion." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 106, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, - "execution_count": 20 + "execution_count": 106 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAULUlEQVR4nO3dcYyU9Z3H8c+H7SobtbdyLNy6QOkRQq9X2qWZIA3JhdZ6GDR1NedVUj1yZ4p3qYmNDT2ozam5NpqjVnPJxQtWU+7q2TMpRWNpOUI1TU1LuygCHnLUhlpxA1s9qva2Fpfv/TEPdBlmmefZnWfneXbfr2Qy83znGeb7+AsfHp95nufniBAAoHymtboBAMDYEOAAUFIEOACUFAEOACVFgANASb1rIr9s5syZMX/+/In8SgAovd27d/8qIrpq6xMa4PPnz1d/f/9EfiUAlJ7tX9SrcwgFAEqKAAeAkiLAAaCkCHAAKCkCHABKakLPQsHksfW5I9q4/aBePT6kSzo7tG7lIvUt6Wl1W8CUQoAjs63PHdGGLfs0dGJYknTk+JA2bNknSYQ4MIE4hILMNm4/eDq8Txk6MayN2w+2qCNgaiLAkdmrx4cy1QHkgwBHZpd0dmSqA8gHAY7M1q1cpPZpPqPWPs1at3JRizoCpiYCHGPjBssAcpcqwG0ftr3P9h7b/Ulthu0dtg8lzxfn2yqKYuP2gzoxfOZcqieGgx8xgQmWZQ/8oxHRGxGVZHm9pJ0RsVDSzmQZUwA/YgLFMJ5DKFdL2py83iypb/ztoAz4ERMohrQBHpL+y/Zu22uT2uyIGJCk5HlWHg2ieNatXKSO9rYzah3tbfyICUywtFdiLo+IV23PkrTD9otpvyAJ/LWSNG/evDG0iKI5dbUll9IDreWIaLzWyA/Yd0p6S9KnJa2IiAHb3ZKejohz7oJVKpVgRh4AyMb27hG/P57W8BCK7QtsX3TqtaQ/l7Rf0hOS1iSrrZH0ePPaBQA0kuYQymxJ37Z9av3/iIjv2f6ppMds3yTpZUnX5dcmAKBWwwCPiJ9L+lCd+muSLsujKQBAY1yJCQAlxf3AMSafevBHeual108vL18wQ498+iMt7AiYetgDR2a14S1Jz7z0uj714I9a1BEwNRHgyKw2vBvVAeSDAAeAkiLAAaCkCHBktnzBjEx1APkgwJHZdZV5qpmQR9NcrQOYOAQ4Mtu4/aBO1txC52SICR2ACUaAIzMmdACKgQBHZm21x08a1AHkgwBHZu/UHj9pUAeQDwIcAEqKAAeAkiLAAaCkCHBk1uZRfsQcpQ4gH6kD3Hab7edsP5ks32n7iO09yWNVfm2iSFZfOjdTHUA+suyB3yrpQE3tvojoTR7bmtgXCqzynhl1r8SsvIdL6YGJlCrAbc+RdKWkr+XbDsqAKzGBYki7B36/pM9LOllTv8X2XtsP27643gdtr7Xdb7t/cHBwPL2iILgSEyiGhgFu+ypJxyJid81bD0haIKlX0oCke+t9PiI2RUQlIipdXV3j7RcFcElnR6Y6gHyk2QNfLukTtg9L+qakj9n+RkQcjYjhiDgp6UFJS3PsEwWybuUidbS3nVHraG/TupWLWtQRMDU1DPCI2BARcyJivqTrJX0/Im6w3T1itWsk7c+pRxRM35Ie3X3tYvV0dsiSejo7dPe1i9W3pKfVrQFTynhmpf8n272SQtJhSTc3pSOUQt+SHgIbaLFMAR4RT0t6Onl9Yw79AABS4kpMACgpAhwASooAB4CSIsABoKQIcAAoKQIcAEpqPOeBYwqbv/47Z9UO33NlCzoBpi72wJFZvfA+Vx1APghwACgpAhwASooAB4CSIsABoKQIcGQ22tkmnIUCTCxOI8SYENZA67EHDgAllXoP3HabpH5JRyLiKtszJP2npPmqTujwlxHxv3k0ieLhQh6g9bLsgd8q6cCI5fWSdkbEQkk7k2VMAVzIAxRDqgC3PUfSlZK+NqJ8taTNyevNkvqa2xoA4FzS7oHfL+nzkk6OqM2OiAFJSp5n1fug7bW2+233Dw4OjqtZAMDvNQxw21dJOhYRu8fyBRGxKSIqEVHp6uoayx8BAKgjzY+YyyV9wvYqSdMlvdv2NyQdtd0dEQO2uyUdy7NRAMCZGu6BR8SGiJgTEfMlXS/p+xFxg6QnJK1JVlsj6fHcukShcCEPUAzjuZDnHkmP2b5J0suSrmtOSygDwhpovUwBHhFPS3o6ef2apMua3xIAIA2uxASAkuJeKBgTrsQEWo89cGTGlZhAMRDgAFBSBDgAlBQBDgAlRYADQEkR4MiMKzGBYiDAMSb3f7JXPZ0dsqSezg7d/8neVrcETDmcB47Mtj53RBu27NPQiWFJ0pHjQ9qwZZ8kqW9JTytbA6YU9sCR2cbtB0+H9ylDJ4a1cfvBFnUETE0EODJ79fhQpjqAfBDgyCwy1gHkgwAHgJIiwAGgpNLMiTnd9k9sP2/7Bdt3JfU7bR+xvSd5rMq/XQDAKWlOI3xb0sci4i3b7ZJ+aPu7yXv3RcRX8msPADCahgEeESHprWSxPXnwexUAtFiqY+C222zvUXXm+R0RsSt56xbbe20/bPvi3LoEAJwlVYBHxHBE9EqaI2mp7Q9IekDSAkm9kgYk3Vvvs7bX2u633T84ONiktgEAmc5CiYjjqk5qfEVEHE2C/aSkByUtHeUzmyKiEhGVrq6ucTcMAKhKcxZKl+3O5HWHpI9LetF294jVrpG0P58WAQD1pDkLpVvSZtttqgb+YxHxpO1/t92r6g+ahyXdnF+bAIBaac5C2StpSZ36jbl0BABIhSsxAaCkCHAAKCkCHABKigAHgJIiwAGgpAhwACgpAhwASooAR2bLF8zIVAeQDwIcmT3z0uuZ6gDyQYADQEkR4ABQUmluZtVS77t9m347/PsJgKa3WS9+mek3W+n8d03T2++crFsHMHEK/TeuNrwl6bfDoffdvq1FHUFS3fA+Vx1APgod4LXh3agOAFNJoQMcADA6AhwASirNlGrTbf/E9vO2X7B9V1KfYXuH7UPJc9NnpZ/e5kx1AJhK0uyBvy3pYxHxIVVnoL/C9jJJ6yXtjIiFknYmy0314pdXnRXWnIUCAFVpplQLSW8li+3JIyRdLWlFUt+s6mz1f9/sBglrAKgv1TFw222290g6JmlHROySNDsiBiQpeZ41ymfX2u633T84ONisvgFgyksV4BExHBG9kuZIWmr7A2m/ICI2RUQlIipdXV1j7RMAUCPTWSgRcVzVQyVXSDpqu1uSkudjTe8OADCqNGehdNnuTF53SPq4pBclPSFpTbLaGkmP59UkiuXwPVdmqgPIR5o98G5JT9neK+mnqh4Df1LSPZIut31I0uXJMqaAL27dl6kOIB9pzkLZK2lJnfprki7LoykU26O7fjlq/Ut9iye4G2Dq4kpMZDYc9e9FM1odQD4IcGTW5vpXwo5WB5APAhyZsQcOFAMBDgAlRYADQEkR4ABQUgQ4AJQUAY7MOAsFKAYCHJmtvnRupjqAfDS8EhOodepqy0d3/VLDEWqztfrSuVyFCUwwxwSeu1upVKK/v3/Cvg8AJgPbuyOiUlvnEAoAlBSHUDAmX9y6j0MoQIsR4Mjsi1v36Rs/fvn08nDE6WVCHJg4HEJBZue6nSyAiZNmRp65tp+yfcD2C7ZvTep32j5ie0/yYPr4KYKbWQHFkOYQyjuSPhcRz9q+SNJu2zuS9+6LiK/k1x6KaJqlk3WyehrX8QATKs2MPAOSBpLXb9o+IKkn78ZQXOe/a5qGTpysWwcwcTL9jbM9X9Xp1XYlpVts77X9sO2LR/nMWtv9tvsHBwfH1SyK4bd1wvtcdQD5SB3gti+U9C1Jn42INyQ9IGmBpF5V99Dvrfe5iNgUEZWIqHR1dTWhZbTaJZ0dmeoA8pEqwG23qxrej0TEFkmKiKMRMRwRJyU9KGlpfm2iSNatXJSpDiAfac5CsaSHJB2IiK+OqHePWO0aSfub3x6K6F+eOpSpDiAfac5CWS7pRkn7bO9Jal+QtNp2r6SQdFjSzbl0iMI5dOw3meoA8pHmLJQfSqp3gti25rcDAEiL874AoKQIcGS2cNYFmeoA8kGAI7Mdt604K6wXzrpAO25b0ZqGgCmKuxFiTAhroPXYAweAkiLAAaCkOIQCADnKc/YqAhwAcpL37FUcQgGAnOQ9exUBDgA5yXv2KgIcAHLS5vrTVI1Wz4oAB4CcrL50bqZ6VvyICQA5OfVDZV5nobAHDgA5euTHL58+5j0coUdGnJUyXgQ4AOTkveu/o9qfKyOpN0OaGXnm2n7K9gHbL9i+NanPsL3D9qHkue6kxgAwVY12rklzzkFJtwf+jqTPRcSfSFom6TO23y9pvaSdEbFQ0s5kGQAwQRoGeEQMRMSzyes3JR2Q1CPpakmbk9U2S+rLq0kAwNkyHQO3PV/SEkm7JM2OiAGpGvKSZjW7OQDA6FIHuO0LJX1L0mcj4o0Mn1tru992/+Dg4Fh6BADUkSrAbberGt6PRMSWpHzUdnfyfrekY/U+GxGbIqISEZWurq5m9AwAULqzUCzpIUkHIuKrI956QtKa5PUaSY83vz0AKK/lC2ZkqmeV5krM5ZJulLTP9p6k9gVJ90h6zPZNkl6WdF1TOgKASeKZl17PVM+qYYBHxA8ljXbnlcua0gUAIDPuhQJMEnnO/IJiIsCBSSDvmV9QTNwLBZgE8p75BcVEgAOTQN4zv6CYCHBgEsh75hcUEwEOTAJ5z/yCsXn3+W2Z6lkR4MAk8KW+xbph2bzTe9xttm5YNo8fMFts9h9Mz1TPirNQgEniS32LCeyCOXTsN5nqWbEHDgAlxR44xuSDd3xPb7w9fHr53ee3ae9dV7SwI2DqYQ8cmdWGtyS98fawPnjH91rUETA1EeDIrDa8G9UB5IMAB4CSIsABoKQIcGQ2va3+1X2j1QHkgwBHZn94Uf2LEEarA8hHminVHrZ9zPb+EbU7bR+xvSd5rMq3TRTJq8eHMtUB5CPNHvjXJdU7wfe+iOhNHtua2xaK7JLOjkx1APloGOAR8QNJzZnADZPCupWL1NF+5s14OtrbtG7lohZ1BExN4zkGfovtvckhlotHW8n2Wtv9tvsHBwfH8XUoir4lPbr72sXq6eyQJfV0dujuaxerb0lPq1sDppSxXkr/gKR/lBTJ872S/qbeihGxSdImSapUKtxdfpLoW9JDYAMtNqY98Ig4GhHDEXFS0oOSlja3LQBAI2MKcNvdIxavkbR/tHUBAPloeAjF9qOSVkiaafsVSXdIWmG7V9VDKIcl3ZxjjwCAOhoGeESsrlN+KIdeAAAZcCUmAJQUAQ4AJUWAA0BJEeAAUFIEOADkZOGsCzLVsyLAASAnO25bcVZYL5x1gXbctqIpfz4BDgA5+sxHF55x36DPfHRh0/7ssd4LBQDQwNbnjmjDln0aOlGd8PvI8SFt2LJPkppyLyH2wAEgJxu3Hzwd3qcMnRjWxu0Hm/LnE+AAkJO8Z68iwAEgJ3nPXkWAA0BORpulqlmzVxHgAJCTu7f9d6Z6VgQ4AOTk6Ju/y1TPigAHgJJqGODJpMXHbO8fUZthe4ftQ8nzqJMaAwDykWYP/OuSrqiprZe0MyIWStqZLAMARph90XmZ6lk1DPCI+IGk12vKV0vanLzeLKmvKd0AwCSy6/bLzwrr2Redp123X96UP3+sl9LPjogBSYqIAduzRlvR9lpJayVp3rx5Y/w6ACinZoV1Pbn/iBkRmyKiEhGVrq6uvL8OAKaMsQb4UdvdkpQ8H2teSwCANMYa4E9IWpO8XiPp8ea0AwBIK81phI9K+pGkRbZfsX2TpHskXW77kKTLk2UAwARq+CNmRKwe5a3LmtwLACADR8TEfZk9KOkXY/z4TEm/amI7rcS2FM9k2Q6JbSmq8WzLeyLirLNAJjTAx8N2f0RUWt1HM7AtxTNZtkNiW4oqj23hXigAUFIEOACUVJkCfFOrG2gitqV4Jst2SGxLUTV9W0pzDBwAcKYy7YEDAEYgwAGgpAoX4LavsH3Q9s9sn3WfcVf9c/L+XtsfbkWfaaTYlhW2f217T/L4h1b02Ui9ST1q3i/FmKTYjlKMhyTZnmv7KdsHbL9g+9Y665RlXNJsS+HHxvZ02z+x/XyyHXfVWae5YxIRhXlIapP0kqQ/lnSepOclvb9mnVWSvivJkpZJ2tXqvsexLSskPdnqXlNsy59J+rCk/aO8X5YxabQdpRiPpNduSR9OXl8k6X9K/HclzbYUfmyS/84XJq/bJe2StCzPMSnaHvhSST+LiJ9HxO8kfVPVySNGulrSv0XVjyV1nrozYsGk2ZZSiPqTeoxUijFJsR2lEREDEfFs8vpNSQck9dSsVpZxSbMthZf8d34rWWxPHrVniTR1TIoW4D2Sfjli+RWdPZBp1imCtH1+JPlfru/a/tOJaa3pyjImaZRuPGzPl7RE1T2+kUo3LufYFqkEY2O7zfYeVW+xvSMich2Tsc7IkxfXqdX+C5ZmnSJI0+ezqt7j4C3bqyRtlbQw986aryxj0kjpxsP2hZK+JemzEfFG7dt1PlLYcWmwLaUYm4gYltRru1PSt21/ICJG/ubS1DEp2h74K5LmjlieI+nVMaxTBA37jIg3Tv0vV0Rsk9Rue+bEtdg0ZRmTcyrbeNhuVzXwHomILXVWKc24NNqWso1NRByX9LTOnhC+qWNStAD/qaSFtt9r+zxJ16s6ecRIT0j6q+TX3GWSfh3J/JwF03BbbP+RbSevl6o6Hq9NeKfjV5YxOacyjUfS50OSDkTEV0dZrRTjkmZbyjA2truSPW/Z7pD0cUkv1qzW1DEp1CGUiHjH9i2Stqt6FsfDEfGC7b9N3v9XSdtU/SX3Z5L+T9Jft6rfc0m5LX8h6e9svyNpSNL1kfxUXSSuTuqxQtJM269IukPVH2hKNSYptqMU45FYLulGSfuSY66S9AVJ86RyjYvSbUsZxqZb0mbbbar+A/NYRDyZZ35xKT0AlFTRDqEAAFIiwAGgpAhwACgpAhwASooAB4CSIsABoKQIcAAoqf8HQKptRCdCEaMAAAAASUVORK5CYII=\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZ+0lEQVR4nO3df2yc9X0H8Pc7V6dxIZ3JcNLEiWuaRa42Ipz2lARZmjyoZwQIDBobEWHZVBE2CQmUzm3SRC2VgojmEtCmiikpqNlCaZGaGQR0nhWIqiLi9kICDgpeoE0CThS7UJdATQmXz/64x65zfh7f89j33PPj3i/Juns+95zvo6+cT577Pt8fNDOIiEjyzIk6ARERmRkVcBGRhFIBFxFJKBVwEZGEUgEXEUmoT1Xywy6//HJramqq5EeKiCTeoUOHfmNm9cXxihbwpqYm5HK5Sn6kiEjikTzpFlcXiohIQqmAi4gklAq4iEhCqYCLiCSUCriISEJVdBSKhK/n8BC6ewdxenQMS+pq0dXRjM5VDVGnJSIhUAFPkZ7DQ9iybwBj5/MAgKHRMWzZNwAAKuIiKaQulBTp7h2cKN7jxs7n0d07GFFGIhImFfAUOT06FiguIsmmAp4iS+pqA8VFJNlUwFOkq6MZNXN4UaxmDtHV0RxRRiISJhXwtGGJYxFJDV8FnOQJkgMkj5DMObEFJPtIHnceLws3VSmlu3cQ5/MX73F6Pm+6iSmSUkGuwP/KzFrMLOscbwaw38xWANjvHEuEdBNTpLrMpgvlZgB7nOd7AHTOPh2ZDd3EFKkufgu4AfhfkodIbnRii8zsDAA4jwvDSFD86+poRm1N5qJYbU1GNzFFUsrvTMxWMztNciGAPpJv+P0Ap+BvBIDGxsYZpCh+jc+21FR6kepAMyt91uQ3kPcD+ADAXQDazOwMycUADpjZtJd62WzWtCOPiEgwJA9Nuv84oWQXCslLSM4ffw7grwEcBfAMgA3OaRsAPF2+dEVEpBQ/XSiLAPw3yfHzf2hm/0PylwCeIvlVAKcA3BZemiIiUqxkATezXwG4yiX+LoBrw0hKRERK00xMEZGE0nrgKXPH7pfx0lvvTRy3Ll+AJ+66OsKMRCQsugJPkeLiDQAvvfUe7tj9ckQZiUiYVMBTpLh4l4qLSLKpgIuIJJQKuIhIQqmAp0jr8gWB4iKSbCrgKXJbthFFG/JgDgtxEUkfFfAU6e4dxIWipW0uGLShg0hKaRx4imhDh+Dadx7A8eEPJ45XLLwEfZvaoktIJABdgaeINnQIprh4A8Dx4Q/RvvNANAmJBKQCniJdHc2ufeDa0MFdcfEuFReJGxXwFMmdfM+1Dzx3UhN5RNJIBTxFnux/O1BcRJJNBTxF8h67K3nFq92KhZcEiovEjQp4imTIQPFq17epbUqx1igUSRLfwwhJZgDkAAyZ2Y3O3ph3ARhxTvmmmT1f/hTFr3VrlmHvwVOucXGnYh1Mz+EhbZodI0HGgd8L4BiAz06KPWxm3y1vSjJT2ztXAij0eefNkCGxbs2yibjIbPQcHsKWfQMYO58HAAyNjmHLvgEAUBGPiK8CTnIpgBsAPABgU6gZyaxs71ypgi2h6O4dnCje48bO59HdO6gCHhG/feCPAPg6gAtF8XtIvkbycZKXub2R5EaSOZK5kZERt1NEJAE00zd+ShZwkjcCGDazQ0UvPQpgOYAWAGcAPOT2fjPbZWZZM8vW19fPNl8RiYhm+saPnyvwVgA3kTwB4EcAriG518zOmlnezC4A2A1gdYh5ikjEujqaUVuTuShWW5PRTN8IlSzgZrbFzJaaWROA2wG8YGbrSS6edNotAI6GlKOIxEDnqgY8eOtKNNTVggAa6mrx4K0r1f8dodmsRvivJFsAGIATAO4uS0YiEludqxpUsGMkUAE3swMADjjP7wwhHxER8UkzMUVEEkoFXEQkoVTARUQSSgVcRCShVMBFRBJKBVxEJKG0K33KaLnPYJo2PzcldmLHDRFkkgzbega02mWM6Ao8RcaX+xwaHYPhj8t99hweijq1WHIr3tPFq922ngHsPXhqYoenvBn2HjyFbT0DEWdWvVTAU2S65T5FZkt7rsaPCniKaLlPCZP2XI0fFfAU0XKfEibtuRo/KuApouU+JUxee6tqz9XoqICniJb7DMZrtIlGobjb3rkS69c2TlxxZ0isX9uoUSgRolWw/yqbzVoul6vY54mIpAHJQ2aWLY7rClxEJKF8T+QhmQGQAzBkZjeSXADgxwCaUNjQ4W/N7LdhJCn+aSJPMFdsfg6Tv4MSwK/VheJpzQN9OHvu44njRfPnon9re4QZVbcgV+D3Ajg26XgzgP1mtgLAfudYIqSJPMEUF2+gsL3UFZrI46q4eAPA2XMfY80DfRFlJL4KOMmlAG4A8P1J4ZsB7HGe7wHQWd7UJChN5AnG6+6PRjW7Ky7epeISPr9X4I8A+DqAC5Nii8zsDAA4jwvd3khyI8kcydzIyMiskpXpaSKPSHUpWcBJ3ghg2MwOzeQDzGyXmWXNLFtfXz+TXyE+aSKPSHXxcwXeCuAmkicA/AjANST3AjhLcjEAOI/DoWUpvmgiTzBe8wc1r9DdovlzA8UlfCULuJltMbOlZtYE4HYAL5jZegDPANjgnLYBwNOhZSm+aCJPML/eccOUYq1RKN76t7ZPKdYahRKtQBN5SLYB+BdnGOGfAngKQCOAUwBuM7P3pnu/JvKIiATnNZEn0IYOZnYAwAHn+bsAri1HciIiEpxmYoqIJFTst1TTzMJgvrj1eXyU/2O32LwM8cYD10eYUbxpizBJslhfgWtmYTDFxRsAPsobvrj1+YgyijdtESZJF+sCrpmFwRQX71LxaqctwiTpYl3ANbNQwqQtwiTpYl3ANbNQwqQtwiTpYl3ANbMwmHkZ98LjFa922iJMki7WBVwzC4N544HrpxRrjULxpi3CJOliP4ywc1WDCnYAKtbBZD+/AC++MYLTo2P43J/MQ/bzC6JOScS32BdwkbCMD1MdH+k0PkwVgC4aJBFi3YUiEiYNU5Wk0xV4yjS5bAd2QqvrudIw1eA0MzpedAWeIm7Fe7p4tdOWasFoZnT8qICLiC/qcoofFXAR8UVdTvHjZ0/MeSR/QfJVkq+T/I4Tv5/kEMkjzo/Gr4mkmGZGx4+fK/A/ALjGzK4C0ALgOpJrndceNrMW50dL3omkWFdHMzJzLp4olplDzYyOkJ89Mc3MPnAOa5wf3eeJodbl7pNQvOIiQeROvof8hYv/6ecvGHInp91JUULkqw+cZIbkERR2nu8zs37npXtIvkbycZKXhZal+PLSW+7/kLziIkFo+d348VXAzSxvZi0AlgJYTfJKAI8CWI5Ct8oZAA+5vZfkRpI5krmRkZEypS0ilabld+Mn0CgUMxtFYVPj68zsrFPYLwDYDWC1x3t2mVnWzLL19fWzTlhEoqHld+PHzyiUepJ1zvNaAF8B8AbJxZNOuwXA0XBSFJE40BV4/PiZSr8YwB6SGRQK/lNm9izJ/yLZgsINzRMA7g4vTRERKVaygJvZawBWucTvDCUjERHxRTMxRUQSSgVcRCShVMBT5LOfzgSKiwSxaP7cQHEJnwp4irz/h3yguEgQZ899HCgu4VMBFxFJKBVwEZGEUgFPEfWBS5jUBx4/KuApcpPH3oRe8Wr3yN+1BIpXu/6t7VOK9aL5c9G/tT2ijESbGqfIdKvFbe9cWeFs4s9rK7Du3kFt1OtBxTpedAWeIlqrIhhtESZJpwKeIl5rwmmtOHfaIkySTl0oKfKZuRl8+PHUMd+fmaubmG66Oppx34+PuMbF3baeATzZ/zbyZsiQWLdmmbrnIqQr8BRxK97Txavdt3oGAsWr3baeAew9eGqiSy5vhr0HT2Gb2isyKuBStTRzNRhtqRY/KuAi4otuksePCriI+KIt1eLHz5Zq80j+guSrJF8n+R0nvoBkH8njzqN2pY+YRqEEo5mrwaxbsyxQXMLn5wr8DwCuMbOrUNiB/jqSawFsBrDfzFYA2O8cS4S8vsjqC6479YEHs71zJdavbZy44s6QWL+2UaNQIuRnSzUD8IFzWOP8GICbAbQ58T0o7Fb/jbJnKCKxsb1zpQp2jPjqAyeZIXkEwDCAPjPrB7DIzM4AgPO40OO9G0nmSOZGRkbKlbeISNXzVcDNLG9mLQCWAlhN8kq/H2Bmu8wsa2bZ+vr6meYpIiJFAo1CMbNRFLpKrgNwluRiAHAeh8uenYiIePIzCqWeZJ3zvBbAVwC8AeAZABuc0zYAeDqsJMWfEztuCBSvdmovSTo/a6EsBrCHZAaFgv+UmT1L8mUAT5H8KoBTAG4LMU/xwWtK87aeAd148qBiLUnmZxTKawBWucTfBXBtGEnJzGg9cJHqopmYKaKpziLVRcvJpkiGdC3WmursrWnzc1Ni6laRpNAVeIp8of4zgeLVzq14TxcXiRsV8BT51cjvA8VFJNlUwFNEfeAi1UUFXEQkoVTARUQSSgU8RbTgfjCaiSlJp2GEKbJuzTLsPXjKNS7uVKwlyVTAU2R8tuWT/W8jb4YMiXVrlmkWpkhK0So4QiGbzVoul6vY54mIpAHJQ2aWLY6rD1xEJKHUhZIy23oG1IUiUiVUwFNkW8/ARTcx82YTxyriIumjLpQUmW45WRFJHz878iwj+SLJYyRfJ3mvE7+f5BDJI87P9eGnK9PRVHqR6uKnC+UTAF8zs1dIzgdwiGSf89rDZvbd8NKTIOYQuOBSq+doHo9IKvnZkecMgDPO83MkjwFoCDsxCe7Tn5qDsfMXXOMikj6B/mWTbEJhe7V+J3QPyddIPk7yMo/3bCSZI5kbGRmZVbIyvY9civd0cRFJNt8FnOSlAH4C4D4zex/AowCWA2hB4Qr9Ibf3mdkuM8uaWba+vr4MKYuXJXW1geIikmy+CjjJGhSK9xNmtg8AzOysmeXN7AKA3QBWh5em+NHV0RwoLiLJ5mcUCgE8BuCYme2cFF886bRbABwtf3oSxPdePB4oLiLJ5mcUSiuAOwEMkDzixL4JYB3JFgAG4ASAu0PJUHw7PvxhoLiIJJufUSg/B+A2EO358qcjIiJ+aXyZiEhCqYCnyIqFlwSKi0iyqYCnSN+mtinFesXCS9C3qS2ahEQkVFqNMGVUrEWqh67ARUQSSgVcRCSh1IWSMtqRR6R6qICniHbkEaku6kJJEe3II1JdVMBTRDvyiFQXFfAUydB96x2vuIgkmwp4iqxbsyxQXESSTTcxU2T8RqVGoYhUB1oF+0ez2azlcrmKfZ5IKe07D1y03K6WHpie2iu4nsND6O4dxOnRMSypq0VXRzM6VwXbVpjkITPLFsfVhSJVq7gYAYW109t3HogmoZhTewXXc3gIW/YNYGh0DAZgaHQMW/YNoOfwUFl+v58deZaRfJHkMZKvk7zXiS8g2UfyuPPouqmxSFxpA4xg1F7BdfcOYux8/qLY2Pk8unsHy/L7/fSBfwLga2b2Csn5AA6R7APwDwD2m9kOkpsBbAbwjbJkJTN2x+6X8dJb700cty5fgCfuujrCjESq1+nRsUDxoEpegZvZGTN7xXl+DsAxAA0AbgawxzltD4DOsmQkM1ZcvAHgpbfewx27X44oI5HqtqSuNlA8qEB94CSbAKwC0A9gkZmdAQpFHsDCsmQkM1ZcvEvFq502wAhG7RVcV0czamsyF8VqazLo6mguy+/3XcBJXgrgJwDuM7P3A7xvI8kcydzIyMhMchQJhTbACEbtFVznqgY8eOtKNNTVggAa6mrx4K0rA49C8eJrGCHJGgDPAug1s51ObBBAm5mdIbkYwAEzm/a/FQ0jDFfT5uc8Xzux44YKZiIi5eQ1jLDkTUySBPAYgGPjxdvxDIANAHY4j0+XKVeZodblC1y7S1qXL4ggm2RY80Afzp77eOJ40fy56N/aHmFG8VaOMc1SPn66UFoB3AngGpJHnJ/rUSjc7SSPA2h3jiVCbw5/EChe7YqLNwCcPfcx1jzQF1FG8Rb2mGYJruQVuJn9HIDXakjXljcdmY3iYlQqXu3UXsFMN6ZZV+HRiP1aKPrKJhIPYY9pluBiPZVeX9lE4iPsMc0SXKwLeNjTUKW6LZo/N1C82oU9plmCi3UB11c2CVP/1vYpxVqjULyFPaZZgot1H/iSuloMuRRrfWWTclGxDqZzVYMKdozE+gq8q6MZNXMuHgBTM4f6yuZhXsZ9sJBXXESSLdZX4ACmDmBULfL05abLXCfyfLlJK/160eqNwWzrGdCOTzES6yvw7t5BnM9fPNX/fN50E9ODFrMKRqs3BrOtZwB7D55C3ll+I2+GvQdPYVvPQMSZVa9YF3DdxJQw6T+8YJ7sfztQXMIX6wKucaci8ZH3WPjOKy7hi3UB17hTkfjI0P0GlFdcwhfrAq5xpyLxsW7NskBxCV/sR6Fo3KlIPIyPNtEolPiIfQEXkfjY3rlSBTtGVMBFxDe3XZ+029P02ncewPHhDyeOy7kNXaz7wEUkPry27JtuK79qV1y8AeD48Ido33mgLL+/ZAEn+TjJYZJHJ8XuJzlUtEOPiIhMUly8S8WD8nMF/gMA17nEHzazFufn+bJkIyIivpUs4Gb2MwCamiYiEjOz6QO/h+RrTheL52pJJDeSzJHMjYyMzOLjpBStRigSLysWXhIoHtRMC/ijAJYDaAFwBsBDXiea2S4zy5pZtr6+foYfJ358lHef0uwVr3YNHksyeMWrnddoE41C8da3qW3KBdS8DKMdhWJmZ80sb2YXAOwGsLos2YhUkNtmIdPFq92fbXEfbeIVl8KKl8UXUB/lrWwrXs6ogJNcPOnwFgBHvc4VkXT4xOOLnFdcwl/xsuREHpJPAmgDcDnJdwB8G0AbyRYABuAEgLvLko2IiPhWsoCb2TqX8GMh5CIiIgFoJmaKeI010RgUkWi0Ll8QKB6UCniKeHVFqotSJBpP3HX1lGJdzn1XtZhVimRI191RtOC+SHTC3CRbV+ApogX3gwl7koVI2FTAU2R750qsX9s4ccWdIbF+baPWb/bQt6ltSrEu51KfaaP/8OKHVsENSbPZrOVyuYp9noiUV5hrW4s3kofMLFscVx+4VLWew0Po7h3E6dExLKmrRVdHs7bwm4aKdbyogEvV6jk8hC37BjB2Pg+gMIV+y74BAFARl0RQH7hUre7ewYniPW7sfB7dvYMRZSQSjAq4VK3THotWecVF4kYFXKrWEo9lY73iInGjAi5Vq6ujOVBcCvcNWne8gCs2P4fWHS+g5/BQ1ClVNRVwqVrfe/F4oHi1G7/pOzQ6BsMfb/qqiEdHBVyqVtg7hqeNbvrGjwq4iPiim77xU7KAO5sWD5M8Oim2gGQfyePOo+emxiKSDrrpGz9+rsB/AOC6othmAPvNbAWA/c6xSKJobY9gujqaUVuTuShWW5PRTd8IlSzgZvYzAMUbuN0MYI/zfA+AzjLnJRI6LWYVTOeqBjx460o01NWCABrqavHgrSs1azVCvhazItkE4Fkzu9I5HjWzukmv/9bMXLtRSG4EsBEAGhsbv3zy5MkypC0iUj28FrMK/Samme0ys6yZZevr68P+OBGRqjHTAn6W5GIAcB6Hy5eSiIj4MdMC/gyADc7zDQCeLk86IiLil59hhE8CeBlAM8l3SH4VwA4A7SSPA2h3jkVEpIJKrgduZus8Xrq2zLmIiEgAFd1SjeQIgJkOQ7kcwG/KmE65KK9glFcwyiuYuOYFzC63z5vZlFEgFS3gs0Ey5zaMJmrKKxjlFYzyCiaueQHh5Ka1UEREEkoFXEQkoZJUwHdFnYAH5RWM8gpGeQUT17yAEHJLTB+4iIhcLElX4CIiMokKuIhIQsWugJO8juQgyTdJTllnnAX/5rz+GskvxSSvNpK/I3nE+flWBXKastlG0etRtVWpvCreVs7nLiP5IsljJF8nea/LORVvM595RfH3NY/kL0i+6uT1HZdzomgvP3lF8jfmfHaG5GGSz7q8Vt72MrPY/ADIAHgLwBcAzAXwKoA/LzrnegA/BUAAawH0xySvNhSW3K1ke/0lgC8BOOrxesXbymdeFW8r53MXA/iS83w+gP+Lyd+Xn7yi+PsigEud5zUA+gGsjUF7+ckrkr8x57M3Afih2+eXu73idgW+GsCbZvYrM/sYwI9Q2DxispsB/KcVHARQN74yYsR5VZy5b7YxWRRt5SevSJjZGTN7xXl+DsAxAMW7EVS8zXzmVXFOG3zgHNY4P8WjHqJoLz95RYLkUgA3APi+xyllba+4FfAGAG9POn4HU/+Q/ZwTRV4AcLXzte6nJP8i5Jz8iKKt/Iq0rVjYpGQVCldvk0XaZtPkBUTQZk53wBEUlozuM7NYtJePvIBo/sYeAfB1ABc8Xi9re8WtgNMlVvw/q59zys3PZ76CwnoFVwH4dwA9IefkRxRt5UekbUXyUgA/AXCfmb1f/LLLWyrSZiXyiqTNzCxvZi0AlgJYTfLKolMiaS8feVW8vUjeCGDYzA5Nd5pLbMbtFbcC/g6AZZOOlwI4PYNzKp6Xmb0//rXOzJ4HUEPy8pDzKiWKtiopyrYiWYNCkXzCzPa5nBJJm5XKK+q/LzMbBXAAUzc4j/RvzCuviNqrFcBNJE+g0M16Dcm9ReeUtb3iVsB/CWAFyStIzgVwOwqbR0z2DIC/d+7mrgXwOzM7E3VeJD9Hks7z1Si07bsh51VKFG1VUlRt5XzmYwCOmdlOj9Mq3mZ+8oqizUjWk6xzntcC+AqAN4pOi6K9SuYVRXuZ2RYzW2pmTSjUiBfMbH3RaWVtr5LrgVeSmX1C8h4AvSiM/HjczF4n+U/O6/8B4HkU7uS+CeD3AP4xJnn9DYB/JvkJgDEAt5tz2zksLGy20QbgcpLvAPg2Cjd0Imsrn3lVvK0crQDuBDDg9J8CwDcBNE7KLYo285NXFG22GMAekhkUCuBTZvZs1P8efeYV1d/YFGG2l6bSi4gkVNy6UERExCcVcBGRhFIBFxFJKBVwEZGEUgEXEUkoFXARkYRSARcRSaj/B+NSsNvokDcNAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" @@ -168,29 +166,45 @@ ], "source": [ "import matplotlib.pyplot as plt\n", - "plt.scatter('Variety','Price',data=new_pumpkins)\n" + "plt.scatter('Month','Price',data=new_pumpkins)" ] }, + { + "source": [ + "Try a different way to discover information: comparing Package to Price " + ], + "cell_type": "markdown", + "metadata": {} + }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 107, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "-0.8634790400214403\n" + "0.32363971816089226\n0.6061712937226021\n" ] } ], "source": [ - "print(new_pumpkins['Variety'].corr(new_pumpkins['Price']))" + "print(new_pumpkins['City'].corr(new_pumpkins['Price']))\n", + "\n", + "print(new_pumpkins['Package'].corr(new_pumpkins['Price']))\n" ] }, + { + "source": [ + "Drop unused columns" + ], + "cell_type": "markdown", + "metadata": {} + }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -209,47 +223,60 @@ "\n" ] }, + { + "source": [ + "Create a new dataframe" + ], + "cell_type": "markdown", + "metadata": {} + }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 109, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - " Variety Price\n", - "70 3 13.636364\n", - "71 3 16.363636\n", - "72 3 16.363636\n", - "73 3 15.454545\n", - "74 3 13.636364\n", + " Package Price\n", + "70 0 13.636364\n", + "71 0 16.363636\n", + "72 0 16.363636\n", + "73 0 15.454545\n", + "74 0 13.636364\n", "... ... ...\n", - "1738 1 30.000000\n", - "1739 1 28.750000\n", - "1740 1 25.750000\n", - "1741 1 24.000000\n", - "1742 1 24.000000\n", + "1738 2 30.000000\n", + "1739 2 28.750000\n", + "1740 2 25.750000\n", + "1741 2 24.000000\n", + "1742 2 24.000000\n", "\n", "[415 rows x 2 columns]" ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
VarietyPrice
70313.636364
71316.363636
72316.363636
73315.454545
74313.636364
.........
1738130.000000
1739128.750000
1740125.750000
1741124.000000
1742124.000000
\n

415 rows × 2 columns

\n
" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PackagePrice
70013.636364
71016.363636
72016.363636
73015.454545
74013.636364
.........
1738230.000000
1739228.750000
1740225.750000
1741224.000000
1742224.000000
\n

415 rows × 2 columns

\n
" }, "metadata": {}, - "execution_count": 23 + "execution_count": 109 } ], "source": [ - "# create new dataframe \n", - "new_columns = ['Variety', 'Price']\n", + "new_columns = ['Package', 'Price']\n", "ml_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not in new_columns], axis='columns')\n", "\n", "ml_pumpkins\n" ] }, + { + "source": [ + "Set X and y arrays to correspond to Package and Price" + ], + "cell_type": "markdown", + "metadata": {} + }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -259,20 +286,20 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 111, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Model Accuracy: 0.7327987875929955\nCoefficients: [[-8.54296764]]\nMean squared error: 23.443815358076087\nCoefficient of determination: 0.7802537224707632\n" + "Model Accuracy: 0.3470558343642912\nCoefficients: [[4.88720357]]\nMean squared error: 62.582140520848164\nCoefficient of determination: 0.4133978531557345\n" ] } ], "source": [ "from sklearn.linear_model import LinearRegression\n", - "from sklearn.metrics import r2_score, mean_absolute_error\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", "from sklearn.model_selection import train_test_split\n", "\n", "\n", @@ -297,17 +324,19 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 112, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAADrCAYAAABXYUzjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANg0lEQVR4nO3dMYgcZR/H8f/s7gUyFm8uxhcSdGdsYiFYhLUQu9yphaCgIsKCdpOwnWg3EBCZQmxsvNOxiBZTiAqCVnKHjaSQO4JNJFEkuyGv8r5JPJGs8S578xZ6685mN3fP3PPss7Pz/cAW92effR4sfj75zzwzTpqmAgCYvIrtBQBAWRHAAGAJAQwAlhDAAGAJAQwAlhDAAGBJTeXLR44cSX3fN7QUAJhN6+vr19I0vW+4rhTAvu/L2tqavlUBQAk4jtMeVacFAQCWEMAAYAkBDACWEMAAYAkBDACWGA/gJEnE932pVCri+74kSWJ6SgAoBKXb0FQlSSJBEEi32xURkXa7LUEQiIhIs9k0OTUATD2jO+AwDPvhu6Pb7UoYhianBYBCMBrAnU5HqQ4AZWI0gOv1ulIdAMrEaABHUSSu62ZqrutKFEUmpwWAQjAawM1mU+I4Fs/zxHEc8TxP4jjmAhwAiIij8lLORqOR8jAeAFDjOM56mqaN4ToHMQDAEgIYACwhgAHAEgIYACwhgAHAEgIYACwhgAHAEgIYACwhgAHAEgIYACwhgAHAEgIYACwhgAHAEgIYACwhgAHAEgIYACwxHsBJkojv+1KpVMT3fUmSxPSUAFAINZM/niSJBEHQfzV9u92WIAhERHgtEYDSM7oDDsOwH747ut2uhGFocloAKASjAdzpdJTqAFAmRgP48OHDSnUAKBPuggAAS4wG8I0bN5TqAFAmRgO4Xq8r1QGgTIwGcBRF4rpupua6rkRRZHJaACgEowHcbDYljmPxPE8cxxHP8ySOY+4BBgARcdI03fOXG41Gura2ZnA5ADB7HMdZT9O0MVznLggAsIQABgBLCGAAsIQABgBLCGAAsIQABgBLCGAAsIQABgBLCGAAsIQABgBLCGAAsMR4AC8uLorjOP3P4uKi6SkBoBCMBvDi4qKsrq5maqurq4QwAIjhAB4O393qAFAm9IABwBICGAAsMRrACwsLSnUAKBOjAbyysnJH2C4sLMjKyorJaQGgEGqmJyBsAWA0esAAYAkBDACWGA/gVqsltVpNHMeRWq0mrVbL9JQAUAhGe8CtVkuWl5f7f/d6vf7fS0tLJqcGgKnnpGm65y83Go10bW1tz9+v1WrS6/XuqFerVbl9+/aefwcAisxxnPU0TRvDdaMtiFHhe7c6AJSJ0QCuVqtKdQAoE6MBHASBUh0AysToRbidC21xHEuv15NqtSpBEHABDgDE8EU4AICli3AAgPGMB3CSJOL7vlQqFfF9X5IkMT0lABSC0R5wkiQSBIF0u10REWm32/0LcM1m0+TUADD1jO6AwzDsh++ObrcrYRianBYACsFoAHc6HaU6AJSJ0QCu1+tKdQAoE6MBHEWRuK6bqbmuK1EUmZwWAArBaAA3m02J41g8zxPHccTzPInjmAtwACAcxAAA4ziIAQBThgAGAEuMB3C1WhXHcfofHkUJAH8x/jzg7e3tTG17e5sQBgAxHMDD4btbHQDKhB4wAFhCAAOAJUYDuFIZ/fPj6gBQJsbfijwctpVKhbciA4AYfh6wCK+gB4Bx6AUAgCUEMABYYjyA5+fnMyfh5ufnTU8JAIVgNIDn5+dlY2MjU9vY2CCEAUAMB/Bw+O5WB4AymUAP+KiIpAMfAIDIBG5DE/nP0N9/hbDj/P0XmQygpIzugA8dOrTrdxznn88HH5hcDQBMF6MBfPPmTRH5156/HwTZQAaAWWa0BbG1tSUiWyKyk6Zq/YbhEKZdAWCWTPgghtP/5AnTwd3xxx/rXhsATJbVk3Bp+s/np5/Uxr70Eu0KAMVmNIDn5ub2XH/wwWwgqxoMYwIZQBEYDeDNzc07wnZubk42Nzd3HTsYxvsN5JUV9fEAYJrxFsTm5qakadr/7CV8RxkM4+++Uxv7xBPsjgFMnwkcxNDvkUeyu2LVUOXuCgDTYCYeR6mzXbG+rn99ADDKTATwsMEwPndObWyjQbsCwGQYD+AkScT3falUKuL7viRJYnrKjMce4+4KANPJaAAnSSJBEEi73ZY0TaXdbksQBBMP4UE62xU//KB/fQDKw2gAh2Eo3W43U+t2uxKGoclplQyG8Zdfqo09fpzdMYD8jN4F0el0lOq2Pf00d1cAmByjO+B0TAKNq08bne2Kn3/Wvz4AxTaTd0GYMhjGH32kNvbYMdoVALII4Jxefpm7KwDsDwGsic52Be8sBcphap6GNmsGw/jtt9XGzs+zOwbKYGqfhjZLXn+ddgWAOxlvQZw9e1Y8zxPHccTzPDl79qzpKaeeznbFrVv61wdgMkp3Em4aDYbxa6+pjT14kN0xUFSOyj25jUYjXVtb2/P3fd+Xdrt9R93zPLl8+fKef6fM9hOqhw6J/PqrvrUAyMdxnPU0TRvDdaM74KKdhJtG+2lXbGxkd8dbW2bWCCAfowF8zz33KNWxu8EwfuUVtbEHDtCuAKaJ0QC+efOmUh1qPvxQ38W8Eye0Lw/ALow+jKfoz4IomsH/rGkqUlH43+v589ld8fY2u2TANKM74Gq1qlSHPo6T3R2fPKk2vlKhXQGYZjSAgyBQqsOc1VV97YpnntG/PqCMjLYglpaWREQkjmPp9XpSrVYlCIJ+HfYMhvD2tojKP0q++CK7K6ajBORj9D5gFNNDD4lcupR/PIEMZFm5DxjFdPGivnZFq6V/fcCsIICxq8Ew/vNPtbHLy1zMA8YhgKHkwIFsINcUryLwZDfgH8YDOEkS8X1fKpWK+L7Pg3hmzNaWvnbFm2/qXx8wzXgaGrQaDOPff1cbe+YMu2OUC09Dw8TsN1S5uwJFxdPQYJ3OB9HHsf71AZNmNIDr9bpSHeUyGMbXr6uNPXWKdgWKz2gAR1Ekrutmaq7rShRFJqdFAR0+zHvzUD5GA7jZbEocx5l3wsVxLM1m0+S0mAE62xWffaZ/fYAOHEVG4Vy5IrKfLhYX8zBp4y7CGX0YD2DCAw9kQ1S15TD8fQIZtnAQA4Wns13x9df61weMw0EMzJzBMP7+e7WxJ09yMQ+Tw0EMlAqHQWADBzEA0duuOH9e//pQLhzEQKkNhvG336qNPXGCdgX2h4MYwN8efZTDIJgsDmIAY+hsV/z4o/71ofg4iAHk8NVXIk89lX88F/PKhYMYgEZPPslhEOwfryQCNNDZrvjlF/3rw3QigAEDBsNY9WFAR49yMa8saEEAhj33HO0KjMYOGJgwne2K337Tvz5MDgEMWDYYxu+9pzb20CHaFUVGAANT5NQpfbvjalX/+qAXAQxMsf20K7a3s4F865aZNSI/AhgokMEwfuMNtbEHD9KumDYEMFBQZ87oa1fcf7/+9c0C0y+U4DY0YEYMh7DKLvfq1ez3t7ZEaiVPh50XSnS7XRGR/gslRETb82zYAQMzanB33GqpjZ2bo10RhmE/fHd0u10Jw1DbHAQwUALvvquvXfH44/rXN41Gvc3nbvU8Sv6PDKCcBkM4TUUqCluxc+eyu+Kduy2gjh0wUHKOk90dP/us2vhKhXZFXgQwgIzPP9fXrnjxRf3rm5TqmJMs4+p5EMAA7mowjHs9tbGffFLc3fHOHQ97redBAAPYs0olG8iqF+SK9N68S5cuKdXzIIAB5PbNN/raFa++qn99+7G6uqpUz4MABqDNYBhvbamNfeed4uyOdSGAUWimj4oiv1otG8iqx52L1K7IiwBGYe0cFW2325Kmaf+oKCE8na5c0deueOst/esbtrCwoFTPg9fSo7B83x95KsnzPLl8+fLkF4Tc/vhDxHXzjzf1mqbFxcVMz3dhYUFWVlaUf4fX0mPmdDodpTqm18GD0/nevDxhq4IWBAqrXq8r1VEcOt+b9/77+tenCwGMwoqiSNyhf7e6ritRFFlaEUwZDOMbN9TGnj49vRfzCGAUVrPZlDiOxfM8cRxHPM+TOI61PasV02l+Xt/u2HYgcxEOwEzZT6h++qnI88/rW8uOcRfh2AEDmCmDu+OrV9XGvvDCZHfHBDCAmXXsmM52xb/l4Ycf1ro+AhhAaezv7or/yoULV7WGMAEMoLQGw/jixb2M+E0uXLigbX7jAcxZfQBFcPz4/toVeRg9CTeJ1zoDgBnDV+H071eN7oAn8VpnAJiMbe2/aDSAOasPAOMZDWDO6gPAeEYDmLP6ADCe0QDmrD4AjMezIABghCNHjsj169fvqN97771y7do1pd/iWRAAMGUIYAAYYdTu9271PAhgALCEAAYASwhgALCEAAYASwhgALCEAAaAEZwx7yQaV8+DAAaAEU6fPq1Uz8Po84ABoKiWlpZERCSOY+n1elKtViUIgn5dB44iA4BhHEUGgClDAAOAJQQwAFhCAAOAJQQwAIzRarWkVquJ4zhSq9Wk1Wpp/X1uQwOAEVqtliwvL/f/7vV6/b913YrGbWgAMEKtVpNer3dHvVqtyu3bt5V+i9vQAEDBqPC9Wz0PAhgARqhWq0r1PAhgABghCAKleh5chAOAEXgWBADMAC7CAcCUIYABwBICGAAsIYABwBICGAAsUboLwnGc/4lI29xyAGAmeWma3jdcVApgAIA+tCAAwBICGAAsIYABwBICGAAsIYABwBICGAAsIYABwBICGAAsIYABwJL/A9LCp6YpkCnOAAAAAElFTkSuQmCC\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAevUlEQVR4nO3df3RkZZ3n8fcnP1CCKN0S2h6aJIooCygtZDgqnD1Ih11AV3QGZ3GC20ddg4mcgzp7FM2KeDTrjzOK4+ymd6PAtJqZUVdn5SCodPghOjNgNyK/WhQ1aYGWboQW2uBAJ9/9o2461elUp2513apU3c/rnDqpeureut++hE8//dxbz6OIwMzM8qOl3gWYmVltOfjNzHLGwW9mljMOfjOznHHwm5nlTFu9CyjHkUceGT09PfUuw8ysoWzZsuWxiOhc2N4Qwd/T08PmzZvrXYaZWUORNLVYu4d6zMxyxsFvZpYzDn4zs5xx8JuZ5YyD38wsZxz8Zpa58fFxenp6aGlpoaenh/Hx8XqXlGsNcTunmTWu8fFxBgYGmJ6eBmBqaoqBgQEA+vv761labrnHb2aZGh4e3hv6c6anpxkeHq5TRebgN7NMbdu2LVW7Zc/Bb2aZ6urqStVu2XPwm1mmRkZG6Ojo2Keto6ODkZGROlVkDn4zy1R/fz9jY2N0d3cjie7ubsbGxnxht46U5Zq7kiaBp4AZYE9E9EpaCXwN6AEmgb+IiCcO9Dm9vb3hSdrMzNKRtCUiehe216LH/7qIWFt08MuAiYg4DphIXpuZWY3UY6jnfGBj8nwj8KY61GBmlltZB38A35e0RdJA0rYqIrYDJD+PyrgGMzMrkvU3d0+PiEckHQXcKOln5e6Y/EUxAL7ty8ysmjLt8UfEI8nPHcA/AacBj0paDZD83FFi37GI6I2I3s7O/VYOMzOzCmUW/JIOk3T43HPgPwD3AtcC65PN1gPfzqoGMzPbX5ZDPauAf5I0d5y/j4jvSvox8HVJ7wS2AW/JsAYzM1sgs+CPiF8BJy/S/jtgXVbHNTOzA/M3d83McsbBb2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mmRsfH6enp4eWlhZ6enoYHx+vd0m5lvW0zGaWc+Pj4wwMDDA9PQ3A1NQUAwOF5Tm87m59uMdvVgH3YMs3PDy8N/TnTE9PMzw8XKeKzD1+s5Tcg01n27Ztqdote+7xm6XkHmw6pVbQ88p69ePgN0vJPdh0RkZG6Ojo2Keto6ODkZGROlVkDn6zlNyDTae/v5+xsTG6u7uRRHd3N2NjYx4Wq6PMg19Sq6SfSLoueX2FpIcl3ZU8zsu6BrNqcg82vf7+fiYnJ5mdnWVyctKhX2e16PFfCmxd0HZlRKxNHtfXoAazqnEP1hpdpnf1SFoDvB4YAd6f5bHMaqm/v99Bbw0r6x7/54EPALML2i+RdLekqyWtWGxHSQOSNkvavHPnzozLNDPLj8yCX9IbgB0RsWXBWxuAY4G1wHbgs4vtHxFjEdEbEb2dnZ1ZlWlmljtZDvWcDrwxuXj7XOD5kr4aERfNbSDpi8B1GdZgZmYLZNbjj4gPRcSaiOgBLgRuioiLJK0u2uzNwL1Z1WBmZvurx5QNn5G0FghgEri4DjWYmeVWTYI/Im4Bbkmev60WxzQzs8X5m7tmZjnj4DczyxkHv5lZzjj4zcxyxsFvZpYzDn4zs5xx8JtVoK+vD0l7H319ffUuyaxsDn6zlPr6+piYmNinbWJiwuFvDcPBb5bSwtBfqt1suXHwm5nljIPfzCxnHPxmKa1bty5Vu9ly4+A3S2nTpk37hfy6devYtGlTnSoyS6ce0zKbNTyHvDUy9/jNzHIm8+CX1CrpJ5KuS16vlHSjpF8kPxddbN1sORsaGqKtrQ1JtLW1MTQ0VO+SzMpWix7/pcDWoteXARMRcRwwkbw2axhDQ0Ns2LCBmZkZAGZmZtiwYYPD3xpGpsEvaQ3weuBLRc3nAxuT5xuBN2VZg1m1jY2NpWo3W26y7vF/HvgAMFvUtioitgMkP49abEdJA5I2S9q8c+fOjMs0K99cT7/cdrO0pH0f1ZZZ8Et6A7AjIrZUsn9EjEVEb0T0dnZ2Vrk6s8q1tramajcrR5ZBv1CWPf7TgTdKmgT+EThL0leBRyWtBkh+7siwBrOqGxgYSNVutpg//rG2YV8ss+CPiA9FxJqI6AEuBG6KiIuAa4H1yWbrgW9nVYNZFkZHRxkcHNzbw29tbWVwcJDR0dE6V2bL3Z13zgf9oYeWt89HPlL9OhQR1f/UhQeRzgT+W0S8QdILga8DXcA24C0R8fiB9u/t7Y3NmzdnXqeZWbVdfjl8/OPp96tGNEvaEhG9C9tr8s3diLgFuCV5/jvAk5qYWdPq6ICnn063z2WXwSc/mU09C3nKBjOzKqhknP6OO+BP/7T6tSzFUzaYVWB8fJyenh5aWlro6elhfHy83iVZjT3zTGUXZ6enC8M4EfUJfXCP3yy18fFxBgYGmJ6eBmBqamrvHT39/f31LM0ydvfdcPLJ6ferwaXUVNzjN0tpeHh4b+jPmZ6eZnh4uE4VWZY+8Yn5Xn2a0J/r1S+30AcHv1lq27ZtS9VujWflyvmwL/d2yve9b3mHfTEP9Zil1NXVxdTU1KLt1rgquTj7ox/Ba19b/Vqy5h6/WUojIyN0dHTs09bR0cHIyEidKrJKPPtsZRdnd++e79U3YuiDg98stf7+fsbGxuju7kYS3d3djI2N+cJuA7j//vmgP+SQ8vcrHsI57LDs6quVmnxz92D5m7tmVqnPfAY++MH0+zVANC6p1Dd33eM3s6Zz9NHzPftyQ39wsHEuzh4sX9w1s6ZQycXZm2+GM8+seinLnoPfrAKtra3Mzs6vL9TS0uKFWGpszx5ob0+/35NPwuGHV7+eRuKhHrOUFoY+wOzsrBdiqYEHHpgfwkkT+sVDOHkPfXDwm6W2MPSXareD84UvzIf98ceXv19exusr4eA3s2XnZS+bD/tLLy1vn7e/3WFfrszG+CU9F/gB8JzkOP83Ij4q6QrgXcDcCuofjojrs6rDzBpDJRdnb7wR+vqqX0uzy/Li7r8BZ0XEbkntwA8l3ZC8d2VE/HWGxzbLTEtLy6LDOi0t/gd0GjMz0FZBAj3xBBxxRPXryZMs19yNiNidvGxPHv4HmDW8mZmZ/ULed/WU55e/nB/CSRP6xUM4Dv2Dl2kXRVKrpLuAHcCNEXF78tYlku6WdLWkFVnWYJaFmZkZImLvw6Ff2qc/PR/2L31p+ft5vD47mQZ/RMxExFpgDXCapJOADcCxwFpgO/DZxfaVNCBps6TNO3fuXGwTM1umDjtsPuwvu6y8ff7yLx32tVKTQcmI2EVhsfVzIuLR5C+EWeCLwGkl9hmLiN6I6O3s7KxFmWZlW7FiBZL2Plas8D9ci2e6XLBOTUnf+c580Hv1ytrJLPgldUo6Inl+KNAH/EzS6qLN3gzcm1UNZllYsWIFu3bt2qdt165duQv/2dnKpjX+3e/mw/6887Krz0rL8q6e1cBGSa0U/oL5ekRcJ+krktZSuNA7CVycYQ1mVbcw9JdqbyYPPgjHHZd+Pw/dLC+ZBX9E3A28apH2t2V1TDOrviuvhPe/P/1+Dvvly5O0mdl+jjoK0t5Tceqp4GUzGoO/cWKW0hElbiQv1d4oisfryw39r3xlfrzeod843OM3S+kPf/hDqvblKgIq+bLx9u3wohdVvx6rHff4zVJ69tlnU7UvJ7/+9XyvPk3oz87O9+wd+o2vrP/0kl4maULSvcnrV0r679mWZmbVMDo6H/YveUn5+xV/maqSCdRs+Sr37/wvAh8CnoW9d+xcmFVRZnZwurvnw/497ylvnxNO8Ddn86Lc4O+IiDsWtO2pdjFmjaC9xNJPpdprpfji7LZt5e1z1VXzQX/ffdnWZ8tHuRd3H5N0LMnsmpIuoDDPjlnuPPPMMxxyyCH7jOm3t7fzzDPP1LSOSi/O/uY3sGZN9euxxlFu8L8HGAOOl/Qw8GvgosyqMlvmah3ycx56CI45Jv1+c9MrmEGZQz0R8auI6AM6geMj4oyImMy0MjMD4Etfmh/CSRP6vjhrpZR7V8//kHRERPwhIp6StELSJ7Iuziyvjj9+Puzf9a7y9nnxi31x1spT7gjhucnUygBExBOA59Uzq6Lii7MPPFDePqOj80H/q19lW581j3KDv1XSc+ZeJNMsP+cA25s1tfHxcXp6emhpaaGnp4fxCiaTnxuCSTut8eTkfNgPDqY+rFnZF3e/CkxIuobCnT3vADZmVpXZMjY+Ps7AwADTyWojU1NTDAwMANDf33/Afbdvhz/5k/TH9MVZqyZFmYOBks4F1gECvh8R38uysGK9vb2x2TNA2TLR09PD1NTUfu3d3d1MTk7u1/7lL8P69emP43F6O1iStkRE78L2sidpi4gbgBuqWpVZA9pW4ttRxe2nngp33pnuc1etgt/+9mAqMyvPAcf4Jf0w+fmUpCeLHk9JenKJfZ8r6Q5JP5V0n6SPJe0rJd0o6RfJz3ytV2cNr6ura9H2iNm94/Xlhv6VV86P1zv0rVg1riOVcsAef0Sckfw8vILP/jfgrIjYLakd+KGkG4A/AyYi4lOSLgMuAz5Yweeb1cUjjzxS9Cr9eMyDD8Kxx1avHms+B3MdqRxL3tUjqWVuVs40omB38rI9eQRwPvMXhjcCb0r72Wb1ctNN8Oyzz1D4VS4/9Gdm5nv2Dn1byvDw8N7QnzM9Pc3w8HBVPn/JMf6ImE2Ga7oiosypnwqShda3AC8F/ldE3C5pVURsTz57u6SjSuw7AAxA6X9am9VCpXfT+OKsVaqc60gHo9z7+FcD9yVz8l8791hqp4iYiYi1wBrgNEknlVtYRIxFRG9E9HZ2dpa7m1lVVHJ/PTzlb85aVZTq7FarE1zuXT0fO5iDRMQuSbcA5wCPSlqd9PZXAzsO5rPNqqXy++QLOx566KHA9IE3NSvDyMjIPmP8AB0dHYyMjFTl85e6q+e5kt4LvAU4HvhRRNw691hi305JRyTPDwX6gJ8B1wJzdzWvB759kH8Gs4pV0rO/8kpobz+EQuAXdmxvb99vTNasUv39/YyNjdHd3Y0kuru7GRsbq8qFXVh6qGcj0AvcA5wLfDbFZ68GbpZ0N/Bj4MaIuA74FHC2pF8AZyevzWrin/+5srD/4x/nh3A6O8f3W3Slvb29qrfbmfX39zM5Ocns7CyTk5NVC31Y4pu7ku6JiFckz9uAOyLilKodvUz+5q4djI4OePrp9PuV+l8j7Td3zeql0m/u7l1iKCL2yJOFWIPI8k6crO+4MMvaUkM9Jxd/Wxd4Zbnf3DWrtcruxEk/h33Wd1yYAQwNDdHW1oYk2traGBoaqtpnHzD4I6I1Ip6fPA6PiLai58+vWhVmFaok7C+//OAWLBkZGaGjo2OftmrecWE2NDTEhg0bmJmZAWBmZoYNGzZULfzLnp2znjzGb3N+8hM4pYKrTLt3w2GHVa+O8fFxhoeH2bZtG11dXYyMjFT14pvlW1tb297QL9ba2sqePXvK/pxSY/wOflv21qyBhx9Ov18D/GqbLepA11PTZPZBT8tsVkueJsHyrLW1tWSPvxrKnbLBLHO1ujhrttzNzcRZbntaDn6rq0rC/r3vddhbcxsdHWVwcHBvD7+1tZXBwUFGR0er8vke47ea2roVTjgh/X67dsELXlD9esyamcf4rW4qWYYQ3Js3y4qD3zLhi7Nmy5eD36rGYW/WGHxx1w5KJRdn3/nOxr84m+VC2GZZc4/fUpmchBe/OP1+jz0GL3xh1cupi6wXwjbLmnv8tqSzzprv1acJ/eJefbOEPmS/ELZZ1jILfknHSLpZ0lZJ90m6NGm/QtLDku5KHudlVYNVrngI5+aby9+v0YdwyuFpma3RZTnUswf4q4i4U9LhwBZJNybvXRkRf53hsa0Cvjhbnq6urkUXYvG0zNYoMuvxR8T2iLgzef4UsBU4OqvjWWUquTh7wQX56NmX4mmZrdHVZIxfUg/wKuD2pOkSSXdLulrSihL7DEjaLGnzzp07a1FmLjz8cGVh/9BD80H/jW9kV18jyHohbLOsZT5lg6TnAbcCIxHxLUmrgMeAAD4OrI6IdxzoMzxlw8E591z47nfT75fH3rxZMyk1ZUOmPX5J7cA3gfGI+BZARDwaETMRMQt8ETgtyxryqrhXnyb08zyEk4bv47dGltnFXRVWErgK2BoRnytqXx0R25OXbwbuzaqGvPHF2drwffzW6DIb6pF0BnAbcA8wmzR/GHgrsJbCUM8kcHHRXwSL8lBPaZWE/RlnwG23Vb+WvOjp6Vn0rp7u7m4mJydrX5BZCTWfnTMifggsFkvXZ3XMPNixA1atSr/fgw/CscdWv5488n381uj8zd0GcOGF8+P1aUK/eLzeoV89pe7X93381igc/MtU8cXZr32t/P18cTZ7vo/fGp2DfxnxmrONwffxW6Pz0ot1VsnF2eOOg5//vPq1mFlzqct9/La/J56orGd/333zvXqHvpkdDAd/DVx88XzQr1xZ/n7FQziVLFBuZrYYL8SSEX+ZysyWKwd/FTnszawReKjnIFUyXn/kkb4Tx8zqx8Gf0u7dlYX9li3zQe9Zps2snhz8ZRgeng/6ww8vf7/iXv0pp2RXn5lZGh7jL8Hj9WbWrBz8RRz2ZpYHTTvUU+5CGZWM17e0+OKsmTWupgz+uYUypqamiIi9C2WMj4/z9NOVhf2tt84H/cxMdrWbmWUtyxW4jgG+DLyIwkIsYxHxN5JWAl8DeigsxPIXEfFENY89PDy8d3WkgsuYnv4kF12U7nPcmzezZpRlj38P8FcR8e+AVwPvkXQCcBkwERHHARPJ66oqLIhxBIVFvgL4ZNn7egjHzJaDLNd1ziz4I2J7RNyZPH8K2AocDZwPbEw22wi8qdrHXrlyJVD+PyIc9ma2nBxouLoaajLGL6kHeBVwO7Bqbo3d5OdRtahhIYe9mS1X+w9Xw/T0NMPDw1X5/MyDX9LzgG8C742IJ1PsNyBps6TNO1N+1fXxxx8HDlvQeg5Si8PezJa9rNd1zjT4JbVTCP3xiPhW0vyopNXJ+6uBHYvtGxFjEdEbEb2dnZ2pjltY+3Sawlrvc4/veU1UM2sIWa/rnFnwSxJwFbA1Ij5X9Na1wPrk+Xrg29U+ttdENbNGNjIyQkvLvvHc0tJStQzLssd/OvA24CxJdyWP84BPAWdL+gVwdvK6qrwmqpk1smuuuYbZ2dl92mZnZ7nmmmuq8vlec9fMbJnRAb5dmiazc7fmbpb3wJqZNbKmnKRt7h7Yuduh5u6BBTzcY2a515Q9/qzvgTUzy9K6detStafVlMGf9T2wZmZZ2rRp034hv27dOjZt2lSVz2/KoZ6uri6mpqYWbTczawTVCvnFNGWP3/fxm5mV1pTB7/v4zcxK8338ZmZNKnf38ZuZ2eKaNvhPPPFEJO19nHjiifUuycxsWWjK4D/xxBO5//7792m7//77Hf5mZjRp8C8M/aXazczypCmD38zMSnPwm5nlTFMGf6kpTQ801amZWV40ZfCX+m5CI3xnwcwsa1kuvXi1pB2S7i1qu0LSwwtW5DIzsxrKssf/d8A5i7RfGRFrk8f1GR7fzMwWkVnwR8QPgMez+nwzM6tMPcb4L5F0dzIUtKLURpIGJG2WtHnnzp21rM/MrKnVOvg3AMcCa4HtwGdLbRgRYxHRGxG9nZ2dqQ7S2tqaqt2gr69vnyku+vr66l2SmWWkpsEfEY9GxExEzAJfBE7L4jgzMzOp2vOur6+PiYmJfdomJiYc/mZNqqbBL2l10cs3A/eW2tZqZ2HoL9VuZo0ts6UXJf0DcCZwpKSHgI8CZ0paCwQwCVyc1fHNzGxxmQV/RLx1kearsjqemZmVpym/uWvprFu3LlW7mTU2B7+xadOm/UJ+3bp1bNq0qU4VmVmWMhvqscbikDfLj6bs8Xt2TjOz0poy+N/97nenajczy5OmHOoZHR0FYGxsjJmZGVpbWxkYGNjbbmaWZ2qEOep7e3tj8+bN9S7DzKyhSNoSEb0L25tyqMfMzEpz8JuZ5YyD38wsZxz8ZmY507TBPzQ0RFtbG5Joa2tjaGio3iWZmS0LTXk759DQEBs2bNj7emZmZu9r39JpZnnXlLdztrW1LbroSmtrK3v27KlmaWZmy1aubuf0ClxmZqVlFvzJYuo7JN1b1LZS0o2SfpH8LLnY+sHwmrtmZqVl2eP/O+CcBW2XARMRcRwwkbyuuoGBgVTtZmZ5klnwR8QPgMcXNJ8PbEyebwTelMWxR0dHGRwc3NvDb21tZXBw0Bd2zczI+OKupB7guog4KXm9KyKOKHr/iYhYdLhH0gAwANDV1XXq1NRUZnWamTWjhru4GxFjEdEbEb2dnZ31LsfMrGnUOvgflbQaIPm5o8bHNzPLvVoH/7XA+uT5euDbNT6+mVnuZXk75z8A/wK8XNJDkt4JfAo4W9IvgLOT12ZmVkOZTdkQEW8t8da6rI5pZmZLa4gpGyTtBCq9redI4LEqllMtrisd15WO60pnudYFB1dbd0Tsd3dMQwT/wZC0ebHbmerNdaXjutJxXeks17ogm9qW7e2cZmaWDQe/mVnO5CH4x+pdQAmuKx3XlY7rSme51gUZ1Nb0Y/xmZravPPT4zcysiIPfzCxnmib4JZ0j6QFJD0rab55/FXwhef9uSacsk7rOlPR7SXclj8trUNN+i+QseL9e52qpump+rpLjHiPpZklbJd0n6dJFtqn5OSuzrnr8fj1X0h2SfprU9bFFtqnH+Sqnrrr8jiXHbpX0E0nXLfJedc9XRDT8A2gFfgm8BDgE+ClwwoJtzgNuAAS8Grh9mdR1JoWpq2t5vv49cApwb4n3a36uyqyr5ucqOe5q4JTk+eHAz5fJ71c5ddXj90vA85Ln7cDtwKuXwfkqp666/I4lx34/8PeLHb/a56tZevynAQ9GxK8i4hngHyks+lLsfODLUfCvwBFzM4XWua6ai8UXySlWj3NVTl11ERHbI+LO5PlTwFbg6AWb1fyclVlXzSXnYHfysj15LLyLpB7nq5y66kLSGuD1wJdKbFLV89UswX808Jui1w+x//8A5WxTj7oAXpP88/MGSSdmXFM56nGuylXXc6XC4kKvotBbLFbXc3aAuqAO5ywZtriLwtTrN0bEsjhfZdQF9fkd+zzwAWC2xPtVPV/NEvxapG3h3+TlbFNt5RzzTgrzaZwM/C3w/zKuqRz1OFflqOu5kvQ84JvAeyPiyYVvL7JLTc7ZEnXV5ZxFxExErAXWAKdJOmnBJnU5X2XUVfPzJekNwI6I2HKgzRZpq/h8NUvwPwQcU/R6DfBIBdvUvK6IeHLun58RcT3QLunIjOtaSj3O1ZLqea4ktVMI1/GI+NYim9TlnC1VV71/vyJiF3ALcM6Ct+r6O1aqrjqdr9OBN0qapDAcfJakry7Ypqrnq1mC/8fAcZJeLOkQ4EIKi74Uuxb4L8nV8VcDv4+I7fWuS9KLJCl5fhqF/ya/y7iupdTjXC2pXucqOeZVwNaI+FyJzWp+zsqpqx7nTFKnpCOS54cCfcDPFmxWj/O1ZF31OF8R8aGIWBMRPRQy4qaIuGjBZlU9X5nNx19LEbFH0iXA9yjcSXN1RNwn6d3J+/8buJ7ClfEHgWng7cukrguAQUl7gKeBCyO5jJ8VFRbJORM4UtJDwEcpXOiq27kqs66an6vE6cDbgHuS8WGADwNdRbXV45yVU1c9ztlqYKOkVgrB+fWIuK7e/z+WWVe9fsf2k+X58pQNZmY50yxDPWZmViYHv5lZzjj4zcxyxsFvZpYzDn4zs5xx8FvuSJpRYebFeyV9Q1JHBZ+xe+mtzJYnB7/l0dMRsTYiTgKeAd5d74LMasnBb3l3G/BSSf9J0u0qzIe+SdIqKMyDI+kaSfeoMA/6nxfvLOlISf8i6fWSeiTdJunO5PHaZJsWSaMqzAF/naTrJV2QvHeqpFslbZH0PdVgFlQzB7/llqQ24FzgHuCHFOZmfxWF+VI+kGz2EQpfj39FRLwSuKlo/1XAd4DLI+I7FGZ8PDsiTgH+M/CFZNM/A3qAVwD/FXhNsn87hYnALoiIU4GrgZHM/sBmiaaYssEspUOLpji4jcJ8Ny8Hvpb0uA8Bfp2830dh/hQAIuKJ5Gk7MAG8JyJuLWr7n5LWAjPAy5L2M4BvRMQs8FtJNyftLwdOAm5MpodpBeo+J5I1Pwe/5dHTydS8e0n6W+BzEXGtpDOBK+beYvHpb/cAW4D/CMwF//uAR4GTKfxr+o9Fn7EYAfdFxGsq+2OYVcZDPWYFLwAeTp6vL2r/PnDJ3AtJK5KnAbwDOF7zaym/ANie9OzfRqEHD4VhpD9PxvpXUZiIDuABoFPS3qEfLY+FeKzJOfjNCq4AviHpNuCxovZPACuSWz9/Crxu7o2ImKEwDPQ6SUPAKLBe0r9SGOb5Q7LpNynMp34v8H8orJL1+2Q5zguATyeffRfw2uz+iGYFnp3TrAYkPS8idkt6IXAHcHpE/LbedVk+eYzfrDauSxYBOQT4uEPf6sk9fjOznPEYv5lZzjj4zcxyxsFvZpYzDn4zs5xx8JuZ5cz/B9+Z9v/pMtP6AAAAAElFTkSuQmCC\n" }, - "metadata": {} + "metadata": { + "needs_background": "light" + } } ], "source": [ @@ -315,13 +344,187 @@ "plt.scatter(X_test, y_test, color='black')\n", "plt.plot(X_test, pred, color='blue', linewidth=3)\n", "\n", - "plt.xticks(())\n", - "plt.yticks(())\n", + "plt.xlabel('Package')\n", + "plt.ylabel('Price')\n", "\n", "plt.show()\n", "\n" ] }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[34.78078482]])" + ] + }, + "metadata": {}, + "execution_count": 113 + } + ], + "source": [ + "lin_reg.predict( np.array([ [3] ]) )" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Month Variety City Package Price\n", + "70 1 3 1 0 13.636364\n", + "71 1 3 1 0 16.363636\n", + "72 2 3 1 0 16.363636\n", + "73 2 3 1 0 15.454545\n", + "74 2 3 1 0 13.636364\n", + "... ... ... ... ... ...\n", + "1738 1 1 9 2 30.000000\n", + "1739 1 1 9 2 28.750000\n", + "1740 1 1 9 2 25.750000\n", + "1741 1 1 9 2 24.000000\n", + "1742 1 1 9 2 24.000000\n", + "\n", + "[415 rows x 5 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MonthVarietyCityPackagePrice
70131013.636364
71131016.363636
72231016.363636
73231015.454545
74231013.636364
..................
1738119230.000000
1739119228.750000
1740119225.750000
1741119224.000000
1742119224.000000
\n

415 rows × 5 columns

\n
" + }, + "metadata": {}, + "execution_count": 114 + } + ], + "source": [ + "new_columns = ['Variety', 'Package', 'City', 'Month', 'Price']\n", + "poly_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not in new_columns], axis='columns')\n", + "\n", + "poly_pumpkins" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Month Variety City Package Price
Month1.0000000.171330-0.188728-0.144847-0.148783
Variety0.1713301.000000-0.248441-0.614855-0.863479
City-0.188728-0.2484411.0000000.3016040.323640
Package-0.144847-0.6148550.3016041.0000000.606171
Price-0.148783-0.8634790.3236400.6061711.000000
" + }, + "metadata": {}, + "execution_count": 115 + } + ], + "source": [ + "corr = poly_pumpkins.corr()\n", + "corr.style.background_gradient(cmap='coolwarm')" + ] + }, + { + "source": [ + "Select the Package/Price columns" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [], + "source": [ + "X=poly_pumpkins.iloc[:,3:4].values\n", + "y=poly_pumpkins.iloc[:,4:5].values\n" + ] + }, + { + "source": [ + "Create Polynomial Regression model" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0.87448832180185\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXyU5bn/8c+VBMSICgpaFkmO1lrjhorLr1p3u6gVbK1Lo6JQo6A97lZJ3WqDR+u+gMblFEuse0VptSrgUU/rElq3iIq1BA0cwQpuUYHk+v1xTyB7ZpKZeWb5vl+veWXmzsw8l4/DlWfu7TJ3R0REsk9B1AGIiEjvKIGLiGQpJXARkSylBC4ikqWUwEVEslRROg82ZMgQLy0tTechRUSy3vz58z9y96Ht29OawEtLS6mtrU3nIUVEsp6Z1XfWri4UEZEspQQuIpKllMBFRLKUEriISJZSAhcRyVJK4CISt5qaGkpLSykoKKC0tJSampqoQ8praZ1GKCLZq6amhoqKChobGwGor6+noqICgPLy8ihDy1u6AheRuFRWVq5N3i0aGxuprKyMKCJRAheRuCxevDihdkk9JXARicuoUaMSapfUUwIXkbhUVVXRr1+/Nm39+vWjqqoqoohECVxE4mZm3T6W9IorgZvZIjN73cxeMbPaWNsmZvaUmS2M/Ryc2lBFJEqVlZWsWrWqTduqVas0iBmhRK7A93f30e4+Jvb4AmCOu28NzIk9FpEcpUHMzNOXLpSxwIzY/RnAuL6HIyKZSoOYmSfeBO7Ak2Y238wqYm2bu/tSgNjPzVIRoIhkhqqqKoqLi9u0FRcXaxAzQvEm8L3cfRfgh8BpZrZPvAcwswozqzWz2uXLl/cqSBGJXnl5OdXV1ZSUlGBmlJSUUF1drVWYETJ3T+wFZpcCnwMnA/u5+1IzGwY84+7bdPfaMWPGuCryiIgkxszmtxp/XKvHK3Az28DMNmy5D3wPeAN4FBgfe9p4YFbywhURkZ7Es5nV5sAfY/M9i4B73P0JM3sZuN/MJgKLgZ+mLkwREWmvxwTu7u8BO3XS/m/gwFQEJSIiPdNKTBGRLKUELnlt8uTJFBUVYWYUFRUxefLkqEPKaCrokFlU0EHy1uTJk5k+ffrax01NTWsfT5s2LaqwMpYKOmSehKcR9oWmEUomKSoqoqmpqUN7YWEha9asiSCizFZaWkp9fX2H9pKSEhYtWpT+gPJIr6cRiuSqzpJ3d+35TnuhZB4lcMlbhYWFCbXnO+2FknmUwCVvtfTfxtue79YVdNgKuAzYQAUdIqZBTMlbLQOV1dXVNDU1UVhYSEVFhQYwu+G+L3AvsCmwCWbnRBxRftMgpojEZdNNz+fjj6uAhcA/gHLgu5SUvK9BzBTrahBTV+Ai0q2mJvjlL+Hjj68C/gIcBTQB3wHupL5+dKTx5TMlcBHp0mefwc9+BrNng9ktuJ9BSN4QNiR9mrBBqURBg5iS17QSs2v19bDXXvD443DLLeB+OuuSN4RKinfgfjbz50cUZJ5TApe81bISs2Xed8tKTCVx+NvfYPfdYfHikMC7PiXnAsuYMAFWr05jgAIogUseq66uTqg9X9xzD+y/P2y4IbzwAhx8cHfP/gSYxGuvwZVXpilAWUsJXPKWVmK21dwMF18M5eWw557w4ovw7W+v+31ZWVmnrysre5ejj4bLL4c330xTsAIogUse00rMdRob4ZhjQhKeMAGefBI23bTtc+rq6jok8bKyMurq6rjxxnDFPmFCmLUi6RF3AjezQjP7h5nNjj2+1MwazOyV2O2Q1IUpknxaiRksWQL77gsPPgi//S3ccQf079/5c6dMmdKmqPGUKVMA2GwzuOGGcNV+001pDD7fuXtcN+Bs4B5gduzxpcC58b7e3dl1111dJJNMmjTJCwsLHfDCwkKfNGlS1CGl1fz57iNGuG+wgfusWd0/d+bMmV5cXOzA2ltxcbHPnDnT3d2bm90PPdS9uNj9n/9MQ/B5BKj1TnJqXCsxzWwkMAOoAs5298NaqtO7+9Xx/rHQSkyRzPHww3D88aGr5LHHYKcOhRPbimc72fffh+22g912g6efhlBKV/qqr9vJXg+cDzS3az/dzF4zs7vMbHAXB64ws1ozq12+fHliUYtI0rnDFVfAT34CO+4IL73Uc/KG+LaT3WKL0A0zdy7ceWeyIpau9JjAzewwYJm7t5+qP52wLdloYClwTWevd/dqdx/j7mOGDh3a13hFpA++/hpOPBGmTIFjj4V58+Ab34jvtfFuJ3vyybDffnDOOdDQ0Ld4pXvxXIHvBRxuZosI25AdYGYz3f1Dd29y92bgdmD3FMYpIn20fDkceCDcfTf8+tdQUwMDBsT/+qqqKoqLi9u0FRcXd9hOtqAAbr89LOyZNClc8Utq9JjA3f1Cdx/p7qXAMcBcdz/OzIa1etoRwBspilFE+qiuLqysnD8f7rsPLroo8f7p8vJyqqur28xCqa6u7rQe5je/GaYkPvZYOJ6kRkLbyZrZfoSZJ4eZ2e8J3ScOLAJOcfel3b1eg5gi6ff443D00TBwIMyaFQYY06GpCb7zHXjvvbDARz2ovZeUmpju/oy7Hxa7f7y77+DuO7r74T0lbxFJL/cwN/uww2CrrcJgZbqSN0BhYRjI/OQTOOOM9B03n2glpkgOaul/PvNMOPxweP55GDky/XFsvz1UVsIf/hC6UyS5lMBFcsyKFfDDH8Jtt8EFF8BDD8EGG0QXz4UXhkQ+aVK4GpfkUQIXySELF4aNqJ59Fn73uzDfuyDif+X9+8Ndd8HSpXDeedHGkmuUwEVyxNy5sMce8PHH4f748VFHtM5uu8HZZ4fphXPnRh1N7lACF8kB1dXw/e/DsGFhQ6m99446oo4uuyxMLzz5ZPjii6ijyQ1K4CJZrKkpXNmecgocdBD89a+w5ZZRR9W54uKw0+F774V56NJ3SuCS18yswy1bfPopjB0L110Xpuk99hhsvHHUUXVv333h1FPh+utDtR/pGyVwyVtdJetsSOKLFoWCw088AdOnh4RYVBR1VPG58sowpXHixLA3i/SeErhIlvnrX8Oy+A8+CAn81FOjjigxG20Et94aVme220ZFEqQELpJFZs4MBYc33jh0QRx0UNQR9c4hh8Bxx4Vpjq++GnU02UsJXCQLNDeHFY3HHx/2F3nhBdhmm6ij6pvrr4dNNgldKWvWRB1NdlICF8lwX3wBRx0FU6fCz38Of/lLx4LD2WjTTeHmm8MOiddeG3U02UkJXPJWVztxJrJDZ6o1NMA++4TyZ9deG+Z7d1VwOBsdeSSMGweXXALvvBN1NNlHCVzyWmeFYjPF/PlhsPKdd8IUwbPOyr0ak2YwbVooLPHzn4euIomfErhIBnroIfjud6FfvzDr5NBDo44odYYNC98unnsuzE6R+MWdwM2s0Mz+YWazY483MbOnzGxh7GenRY1FMlmmLeRxD1PrjjwSRo8Oe3jvsEOkIaXFiSfCwQfDL38JnRS+ly4kcgV+BrCg1eMLgDnuvjUwJ/ZYJGtk2kKer76CE06AX/0KysvDpk+bbRZJKGlnFvr33cO89gzqycpocSVwMxsJHArc0ap5LDAjdn8GMC65oYnkj2XLQsHhmTPhN7+B3/8+sYLDuaC0NMwLf+KJ8N8vPYv3Cvx64Hyg9RDD5i1l1GI/O71WMLMKM6s1s9rly5f3KViRXPT662Gw8h//gAceCPO9c22wMl6nnRbmuZ95Jvzf/0UdTebrMYGb2WHAMnef35sDuHu1u49x9zFDVdVUpI0//SkkrNWrQxGGI4+MOqJoFRSEOpqNjfCLX0QdTeaL5wp8L+BwM1sE3AscYGYzgQ/NbBhA7OeylEUpkmPcwy6Chx8O3/pWGKwc06HmeH769rfDvPAHHwzz36VrPSZwd7/Q3Ue6eylwDDDX3Y8DHgVaan6MB2alLEqRFIhqIc/q1WH/7rPPDotYnn0WRoxI6SGzzrnnhlk4kyeHCkPSub7MA/8v4GAzWwgcHHssklXSvZDn449D5Zzbb4cpU0Kfd5QFhzNVv36hjuZHH8E550QdTeZKaAdhd38GeCZ2/9/AgckPSSQ3vfMOHHZYmOd8991hYyrp2s47h3nhU6fCMceEP3zSllZiiqTBnDmh4PDKlWF+t5J3fC66KPSJV1TAZ59FHU3mUQKXvJaOlZi33RauHkeMCIOVe+2V9EPkrAEDwqyU998PXU7SlhK45K1Ur8RcsybMZz711JDA//rXsFhFEvOd74QphTffDM8/H3U0mUUJXCQFPvkkTBG84YaQxB99NJQSk96pqgp//CZOhC+/jDqazKEELpJk//pXuGp86qnQfXLddVBYGHVU2W3gwLBXyjvvwGWXRR1N5lACF0mi558Py+KXLg2Vcyoqoo4odxx8MEyYAFdfHfZKFyVwkaS5++6wIdUmm4SalQccEHVEueeaa8IOjRMnhgVR+U4JXPJWslZiNjeHGRLjx8Pee4fk/a1vJSNCaW/QoFDB59VX4coro44mekrgktf6uhLziy/CBlRXXBG6S554AgbncGmTmpoaSktLKSgooLS0lJqamrTHMG5cKPJ8+eXw5ptpP3xGUQIX6aUPPghlz2bNCgOVt94aloDnqpqaGioqKqivr8fdqa+vp6KiIpIkftNNYWBz4kRoakr74TOGErhIL7z8chisfPfdUHD4zDNzfw/vyspKGhsb27Q1NjZSWVmZ9lg22yxM0XzhhZDM85USuOS13qzEfOAB2GcfWG+9sDjnkEPSEGgGWLx4cULtqVZeHs59ZSW8914kIUROCVzyVqIrMd1Dv+tRR8Guu8KLL8L226cywswyatSohNpTzSx0WxUWhvGHfKyjqQQuEoevvoLjjoOLLw4bUc2Zkz8Fh1tUVVVRXFzcpq24uJiqqqqIIoIttoCrrgr/P+68M7IwIqMELtKDDz+E/feHe+4JW5vOmBG6T/JNeXk51dXVlJSUYGaUlJRQXV1NeXl5pHFVVMC++4Z9wxsaIg0l7aynaVNmNgB4FliPsH/4g+5+iZldCpwMtFQqnuLuf+7uvcaMGeO1tbV9DlokGbrr7275d/Haa/CjH4XCAr//Pfz4x+mKThLx7ruwww7wve/BI4/k3oCymc139w5F9+K5Av8aOMDddwJGAz8wsz1jv7vO3UfHbt0mb5Fs89hjYevXNWvgueeUvDPZN78ZxicefRTuuy/qaNInnpqY7u6fxx72i93ycLhA8sk118DYsbDNNmHK4C67RB2R9OTMM2G33cLWsx99FHU06RFXH7iZFZrZK4TK80+5+4uxX51uZq+Z2V1mlsPrzyR/9ANu59xz4Sc/CQWHhw+POiaJR1FRqKP5ySdwxhlRR5MecSVwd29y99HASGB3M9semA5sRehWWQpc09lrzazCzGrNrHb58uWdPUUkQ2wCPAn8nF/9KnwVbzfpQjLc9tuHfWnuuQdmz446mtTrcRCzwwvMLgG+cPerW7WVArPdvdtZsRrElEzSdhBzG2A24RplIu7pXx4uybFqVZinv2IF1NXBxhtHHVHf9XoQ08yGmtmg2P31gYOAt8xsWKunHQG8kaxgRdJrD+AFYENgf+CeaMORPunfP8wJX7oUzj8/6mhSK54ulGHAPDN7DXiZ0Ac+G7jKzF6Pte8PnJXCOEVSZBjwR+DfwO6ERC7Zbvfd4ayzQhWfefOijiZ1Eu5C6Qt1oUgmMVsP+B9ge2BPoG7t79L570JSo7ERdtop7Nf++uvZPZ7Rl3ngIjkn5OdphMR9Aq2Tt+SG4mK4446w0dVFF0UdTWoogUtemj4dYCJwOaELRXLRvvvCqafC9deHzcdyjRK45J3nnmuZJzwbuCTiaCTVrrwyzOWfMAG+/jrqaJJLCVzyyvvvhxJoW24JcBxaVJz7NtoIbrstlF+bOjXqaJJLCVzyxpdfhv1MvvwybHgEn0QdkqTJIYeE7YCnTg0blOUKJXDJC+4waRLU1sLMmbDttlFHJOl23XWh4PSECWGDslygBC554aabwj7el14Khx8edTQShSFD4OabYf78kMzTpaamhtLSUgoKCigtLU1uEWh3T9tt1113dZF0mzvXvbDQfexY96amde2TJk1yQid4m9ukSZOiC1ZSqrnZfdw49wED3N9+O/XHmzlzphcXF7f5fBUXF/vMmTMTeh+g1jvJqVrIIzmtvh7GjAlXXy++GAa0WhQVFdHU1NThNYWFhazJle/Y0sGSJVBWBjvuCM88AwUp7IcoLS2lvr6+Q3tJSQmLFi2K+320kEfyTmMjHHFE2Nxo1qy2yRvoNHl31y65YfhwuPbaMJ30tttSe6zFixcn1J4oJXDJSe5w8snwyitha9FvfavjcxKtSi+546ST4KCDwmZXScqlnRo1alRC7YlSApecdN11IXFffjkcemjnz9lggw0SapfcYRY2umpuhlNOadlaIfmqqqoobrcJS3FxMVVVVUl5fyVwyTlPPw3nnRcq6kyZ0vXzPv/884TaJbf8x3/AFVfAE0+EqaWpUF5eTnV1NSUlJZgZJSUlVFdXU15enpT31yCm5JR//SsMWg4fDn/7Gwwc2PVz46lKL7mtqQn22Qfeeius1Nx886gj6pwGMSXnffEFjBsXvhY/8kj3yVsEoLAw7Fj4+edw+ulRR5M4JXDJCe5hhd0bb8C998JWW0UdkWSLbbeFSy6BBx+Ehx+OOprExFNSbYCZvWRmr5pZnZldFmvfxMyeMrOFsZ+qSi+RueoquP/+0Kf5/e9HHY1km/POg9Gj4bTTQi3NZBoxYgRmtvY2YsSIpL13PFfgXwMHuPtOhAr0PzCzPYELgDnuvjUwJ/ZYJO2eeAIuvBCOPjr8QxRJVL9+cNddsHw5nH128t53xIgRLFmypE3bkiVLkpbEe0zgsZWcLcPy/WI3B8YCM2LtM4BxSYlIJAHvvgvHHgs77BAK2WoKt/TWzjuHeeG/+x08+WRy3rN98u6pPVFx9YGbWaGZvQIsIxQ1fhHY3N2XAsR+btbFayvMrNbMapcvX56UoEUAPvssDFoWFIRBS03flr66+GLYZhuoqAgDm5kurgTu7k3uPhoYCexuZtvHewB3r3b3Me4+ZujQob2NU6QNdzjxRFiwAO67L8zpFemrAQPCN7nFi0O3XKZLaBaKu68EngF+AHxoZsMAYj+XJT06kS5MnRpmDPz2t2FJtEiy7LVXmFJ4883w/PN9e6/hw4cn1J6oeGahDDWzQbH76wMHAW8BjwLjY08bD8xKSkQiPfjTn0KV8fJyOOus3r9PV4t1tIhHpk6F0lKYOBG++qr379PQ0NAhWQ8fPpyGhoa+BRgTzxX4MGCemb0GvEzoA58N/BdwsJktBA6OPRZJqbffhp/9LEz5qq7u26Dl5MmTE2qX/DFwYPh8vfMOXHZZ396roaGhzR7eyUreoKX0kkU+/RT22AM++iiURisp6dv7aT9w6cmECXD33fDSS7DLLtHFoaX0ktWam+GEE2DhQnjggb4nb9B+4NKza66BoUNDIl+9OupoOlICl6xw+eWhKMO118J++yXnPQsLCxNql/wzeDBMnw6vvhpW+/ZG61WYLbdkUQKXjDdrVihGPH48/OIXyXvfioqKhNolP40bBz/9Kfz612HHwkSkumiI+sAloy1YEPq9t9kmlMAaMCC577/ddtvxZqt/lWVlZdTV1SX3IJL1Pvww1NFs+RzG+yUtWVsWqw9css7KlTB2LKy/fpjznezkPXny5DbJG+DNN9/ULBTpYPPN4YYbwh7zN98cdTTr6ApcMlJzMxx+OPzlLzB3Lnz3u8k/hmahSCLcQ3m+//kfeP112HLLnl+jK3DJS5dcEhbs3HBDapI3aBaKJMYsVLEvLAx7pWTCei8lcMk4Dz0Ev/lNWAU3aVLqjqNZKJKoLbYIs1HmzAnbz/Yk1at9lcAlo7zxRphtsueecMstqd0eVrNQpDcqKkIdzXPOgXh2hW29CrPllixK4JIxVqwIU7Y23DBcha+3XmqPN23aNCZNmrT2iruwsJBJkyYxbdq01B5YslpBQaij+fXX4RtilF0pGsSUjNDUFAaI5s6FZ56B73wn6ohEunf11aEC1L33hmpQqaRBTMlolZVhxskttyh5S3Y480wYMyYsLvvoo2hiUAKXyN1/P1x5JZxyCpx8cnqPPXnyZIqKijAzioqKNAdc4lZUFAYyV64MyTwKSuASqVdfhZNOCpvo33hjeo89efJkpk+fvnbaYFNTE9OnT1cSl7jtsANMmQI1NWHaa7qpD1wi8+9/h6+gq1bB/PnwjW+k9/hayCPJsGpV2Gp25Uqoq4ONN07+MXrdB25mW5jZPDNbYGZ1ZnZGrP1SM2sws1dit0OSH7bkqjVr4JhjwjSshx9Of/IGLeSR5OjfP3SlLF0aqtqnUzxdKGuAc9x9W2BP4DQzK4v97jp3Hx27/TllUUrOueACePppuPXWsFlVFAoKOv/4d9Uu0pXddw/l/aqrYd689B23x0+quy9197/H7n8GLABGpDowyV333BM2yj/99ND/HZX1118/oXaR7vz617DVVmEgvrExPcdM6FLDzEqBnYEXY02nm9lrZnaXmQ3u4jUVZlZrZrXLly/vU7CS/f7+97BEfp99QnGGKDV28a+sq3aR7hQXhwU+//xnKLqdDnEncDMbCDwEnOnunwLTga2A0cBS4JrOXufu1e4+xt3HDB06NAkhS7ZavhyOOAKGDAll0fr1izaeUaNGJdQu0pP99gvTYa+/Hl58scen91lcCdzM+hGSd427Pwzg7h+6e5O7NwO3A7unLkzJdqtXw1FHwbJl8MgjsNlmUUcEVVVVCbWLxOOqq2D48PBN8+uvU3useGahGHAnsMDdr23VPqzV044A3kh+eJIrzjsvLJGvroZdd406mmDq1KkJtYvEY6ONwuB8XR2k+qPU4zxwM9sbeA54HWiONU8BjiV0nziwCDjF3Zd2916aB56fZsyAE08Mq9Wuuy7qaNZJ1mb7Ip057ji4776wxmHHHfv2Xl3NA9dCHkmpl18OBRn22ivsdVJUFHVE6yiBSyp99FGoo1lSEkqx9eWzr82sJO0+/BB+/OOwSOe++zIreYuk2pAhcNNNUFubum+eSuCSEqtWwZFHhuXyf/xj+DBnmrKysoTaRRJ11FGhMPfFF8PChcl/fyVwSYmzzoLnn4c774Sdd446ms7V1dV1SNZlZWXU1dVFFJHkGjOYNg223RY+/jj5768vtZJ0d94ZPrTnngvHHht1NN1TspZUGz48DGSmojygrsAlqV54ASZPhoMPhiuuiDoakcyQqtquSuCSNEuXhkHLkSNDmSkNWoqklhK4JMXXX8NPfgKffBJWWm6ySdQRiWSGVFZ90jWSJMV//meY63r//aFKiYisq/rUoqXqE8C0adP6/P5ayCN9dtttcOqpcOGFqV86LJJNklX1SQt5JCX+939DVe4f/hAuvzzqaEQyS6qrPimBS681NIR+75KSUNS1sDDqiEQyS2EX/yi6ak+UErj0yldfhRknX3wRBi0Hd1rOQyS/VVRUJNSeKA1iSsLc4bTT4KWXQkHi7baLOiKRzNQyUFldXU1TUxOFhYVUVFQkZQATsmAQs7CwkObm5rWPCwoKVDU8YrfcEupZXnRRqAMoIqmVlYOY7ZM3QHNzc9L6jyRxzz4b9vU+7DC49NKooxHJb/FU5NnCzOaZ2QIzqzOzM2Ltm5jZU2a2MPYz6b2g7ZN3T+2SWu+/H3YY3GormDkTCjL6z79I7ovnn+Aa4Bx33xbYEzjNzMqAC4A57r41MCf2WHLUl1+GgsRffRUGLTfeOOqIRLJDTU0NpaWlFBQUUFpaSk1NTdLeu8dBzFiZtKWx+5+Z2QJgBDAW2C/2tBnAM8AvkxaZZAz3sFBn/nx49FH49rejjkgkO9TU1FBRUUFjYyMA9fX1a2eglJeX9/n9E/oSbGalwM7Ai8DmLTUwYz8zoM64pMKNN8Ldd8Nll8GPfhR1NCLZo7Kycm3ybtHY2EhlZWVS3j/uBG5mA4GHgDPd/dMEXldhZrVmVrt8+fLexCgRmjcPzjkHxo2DX/0q6mhEssvixYsTak9UXAnczPoRkneNuz8ca/7QzIbFfj8MWNbZa9292t3HuPuYoUOHJhRcqlcxSfcWLYKf/hS22SZcgWvQUiQxo0aNSqg9UfHMQjHgTmCBu1/b6lePAuNj98cDs5ISUSupXsUkXWtsDIOWa9aEQcsNN4w6IpHsU1VVlVB7onpcyGNmewPPAa8DLfP3phD6we8HRgGLgZ+6e7dV33qzkGfy5MkpW8UknXOH8vJQlGH2bDjkkKgjEslO1k0pnkQWUXa1kCfjV2JK+l1zTahnOXVq2CJWRHon1Qk843s1+/fvj5mtvfXv3z/qkHLaU0/B+eeHBTsXaGa/SEbL6ATev39/Vq9e3aZt9erVSuIp8t57cPTRUFYG//3fqSvEKiLJkdEJvH3y7qldeu+LL8JUQQiDlgMHRhuPiPRM28kK7nDSSVBXB48/HvY6EZG+c/dO+8GTNfaoBC5ceSU88ABcdRV873tRRyOSW1I5USSju1D69euXULsk7oknYMoUOOaYMPNERLJHRifwrbfeOqF2SczChXDssbDjjnDHHRq0FEmFESNGtJlJN2LEiKS9d0Yn8DfffDOhdonfZ5+FQcvCwjBoucEGUUckkntGjBjBkiVL2rQtWbIkaUlcfeB5qLkZxo+Ht96CJ5+E0tKoIxLJTe2Td0/ticroK3BJ3ODBg9t8XRvcSbn4qVPhj3+Eq6+GAw+MIEgRSQol8BwyePBgVq5c2aZt5cqVbZL47Nlw8cVw3HGhtqWIZC8l8BzSPnm3b3/77bBJ1c47Q3W1Bi1FUm348OEJtSdKCTxPfPIJjB0L660Xuk/WXz/qiERyX0NDQ4dkPXz4cBoaGpLy/hrEzAvG8cfDu+/CnDmQpL3kRSQOyUrWncmSBH4+MA5YufZ24YUweDAMGtT1Ld/2vBo0aFCn3SjrrTeVxx4LtS333TeCwEQkJbIkgX8euw0BvgkM4uqrQ7WY7qy/fsek3lPSb33LtgWfK1as6DCQWVz8MxobLyoYl1QAAAeeSURBVODEE+H006OLTUSSr8cEbmZ3AYcBy9x9+1jbpcDJQEuV4inu/udUBQnTYrd1Vq1yGhth5crubytWrLu/bBm88866x01N3R+1uLh3iX/QINh442j+AKxYsWLt/TffhD32gN12g+nTNWgpkmviuQL/HXAzcHe79uvc/eqkRxQns7B6cIMNoDeLmtzDFqo9/QFo/Udg6VJYsGBde3Nz98cYODCxpN/6j8VGG0FRH74frVwZVloWF8PDD8OAAb1/LxHJTD2mCHd/1sxKUx9KepmFBDtwIIwcmfjr3eHzz+P7A9DyR6ChIWzZunJlmBXS0x+ADTdMLOm3vvo//nj4179g3rze/feJSObrSx/46WZ2AlALnOPuKzp7kplVABUAo3Jo+oNZSLAbbghbbJH465ubE/sDsHIlvP8+vP76uj8APe1SOX067L137/77RCTzxVXUOHYFPrtVH/jmwEeAA5cDw9x9Qk/vk2hR42QVBM1Fzc1hQ6r2SX7cuPHAIGAp8ACgcyWS7boqatyrK3B3/7DVG98OzO5DbNILBQWhq2TjjaGkJLR19QfPzJTERXJQr1ZimtmwVg+PAN5ITjgiIhKveKYR/gHYDxhiZh8AlwD7mdloQhfKIuCUFMYoIiKdiGcWyrGdNN+ZglhERCQB2sxKRCRLKYHnkK4GKjWAKZKbsmQvFImXkrVI/tAVuIhIlsroBF5WVpZQu4hIPsnoBF5XV9chWZeVlVFXVxdRRCIimSOjEzjAlClTKCkpwcwoKSlhypQpUYckIpIRMnoQs6amhoqKChobGwGor6+noqICgPLy8ihDExGJXEZfgVdWVq5N3i0aGxuprKyMKCIRkcyR0Ql88eLFCbWLiOSTjE7gXe0fnkv7iouI9FZGJ/CqqqqE2kVE8klGJ/Dzzz8/oXYRkXyS0Ql8yZIlCbWLiOSTjE7gIiLStR4TuJndZWbLzOyNVm2bmNlTZrYw9nNwasMUEZH24rkC/x3wg3ZtFwBz3H1rYE7scdINHz48oXYRkXzSYwJ392eBj9s1jwVmxO7PAMYlOS4AGhoaOiTr4cOH09DQkIrDiYhkld4upd/c3ZcCuPtSM9usqyeaWQVQAb2bv61kLSLSuZQPYrp7tbuPcfcxQ4cOTfXhRETyRm8T+IdmNgwg9nNZ8kISEZF49DaBPwqMj90fD8xKTjgiIhKveKYR/gH4G7CNmX1gZhOB/wIONrOFwMGxxyIikkY9DmK6+7Fd/OrAJMciIiIJsHRWMTez5UB9L18+BPgoieEki+JKjOJKjOJKTKbGBX2LrcTdO8wCSWsC7wszq3X3MVHH0Z7iSoziSoziSkymxgWpiU17oYiIZCklcBGRLJVNCbw66gC6oLgSo7gSo7gSk6lxQQpiy5o+cBERaSubrsBFRKQVJXARkSyVcQnczH5gZm+b2btm1mGfcQtujP3+NTPbJUPi2s/MPjGzV2K3i9MQU4diG+1+H9W56imutJ+r2HG3MLN5ZrbAzOrM7IxOnpP2cxZnXFF8vgaY2Utm9mosrss6eU4U5yueuCL5jMWOXWhm/zCz2Z38Lrnny90z5gYUAv8EtgT6A68CZe2ecwjwOGDAnsCLGRLXfsDsNJ+vfYBdgDe6+H3az1WccaX9XMWOOwzYJXZ/Q+CdDPl8xRNXFJ8vAwbG7vcDXgT2zIDzFU9ckXzGYsc+G7ins+Mn+3xl2hX47sC77v6eu68C7iUUj2htLHC3By8Ag1p2Row4rrTzzotttBbFuYonrki4+1J3/3vs/mfAAmBEu6el/ZzFGVfaxc7B57GH/WK39rMeojhf8cQVCTMbCRwK3NHFU5J6vjItgY8A3m/1+AM6fpDjeU4UcQH8v9jXusfNbLsUxxSPKM5VvCI9V2ZWCuxMuHprLdJz1k1cEME5i3UHvELYMvopd8+I8xVHXBDNZ+x64HyguYvfJ/V8ZVoCt07a2v9ljec5yRbPMf9O2K9gJ+Am4JEUxxSPKM5VPCI9V2Y2EHgIONPdP23/605ekpZz1kNckZwzd29y99HASGB3M9u+3VMiOV9xxJX282VmhwHL3H1+d0/rpK3X5yvTEvgHwBatHo8ElvTiOWmPy90/bfla5+5/BvqZ2ZAUx9WTKM5Vj6I8V2bWj5Aka9z94U6eEsk56ymuqD9f7r4SeIaOBc4j/Yx1FVdE52sv4HAzW0ToZj3AzGa2e05Sz1emJfCXga3N7D/MrD9wDKF4RGuPAifERnP3BD7xWH3OKOMys2+YmcXu7044t/9OcVw9ieJc9SiqcxU75p3AAne/tounpf2cxRNXFOfMzIaa2aDY/fWBg4C32j0tivPVY1xRnC93v9DdR7p7KSFHzHX349o9Lannq7dFjVPC3deY2enAXwgzP+5y9zozOzX2+1uBPxNGct8FGoGTMiSuI4FJZrYG+BI4xmPDzqliodjGfsAQM/sAuIQwoBPZuYozrrSfq5i9gOOB12P9pwBTgFGtYovinMUTVxTnbBgww8wKCQnwfnefHfW/xzjjiuoz1kEqz5eW0ouIZKlM60IREZE4KYGLiGQpJXARkSylBC4ikqWUwEVEspQSuIhIllICFxHJUv8fn9D2qlkAnlgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "import numpy as np\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(4), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(np.array(X_train), y_train)\n", + "print(pipeline.score(X_test, y_test))\n", + "\n", + "y_pred=pipeline.predict(X_test)\n", + "\n", + "df = pd.DataFrame({'x': X_test[:,0], 'y': y_pred[:,0]})\n", + "df.sort_values(by='x',inplace = True)\n", + "centers = pd.DataFrame(df).to_numpy()\n", + "\n", + "plt.plot(centers[:, 0], centers[:, 1],color=\"blue\")\n", + "\n", + "plt.scatter(X,y, color=\"black\")\n", + "\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model Accuracy: 0.7371640545319267\n" + ] + } + ], + "source": [ + "accuracy_score = model.score(X,y)\n", + "print('Model Accuracy: ', accuracy_score)\n", + "\n" + ] + }, { "cell_type": "code", "execution_count": null,