From f7315aab85a317cdd14900350a1641695f779564 Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Fri, 14 May 2021 17:50:22 -0400 Subject: [PATCH] time series 2 --- TimeSeries/1-Introduction/images/scaled.png | Bin 0 -> 6828 bytes TimeSeries/2-ARIMA/README.md | 324 +++++++++++++++++++- TimeSeries/2-ARIMA/images/accuracy.png | Bin 0 -> 57268 bytes TimeSeries/2-ARIMA/images/mape.png | Bin 0 -> 32689 bytes TimeSeries/2-ARIMA/images/original.png | Bin 0 -> 6812 bytes TimeSeries/2-ARIMA/images/scaled.png | Bin 0 -> 6828 bytes TimeSeries/2-ARIMA/images/train-test.png | Bin 0 -> 121942 bytes TimeSeries/2-ARIMA/solution/notebook.ipynb | 166 +++------- TimeSeries/2-ARIMA/working/notebook.ipynb | 6 +- 9 files changed, 353 insertions(+), 143 deletions(-) create mode 100644 TimeSeries/1-Introduction/images/scaled.png create mode 100644 TimeSeries/2-ARIMA/images/accuracy.png create mode 100644 TimeSeries/2-ARIMA/images/mape.png create mode 100644 TimeSeries/2-ARIMA/images/original.png create mode 100644 TimeSeries/2-ARIMA/images/scaled.png create mode 100644 TimeSeries/2-ARIMA/images/train-test.png diff --git a/TimeSeries/1-Introduction/images/scaled.png b/TimeSeries/1-Introduction/images/scaled.png new file mode 100644 index 0000000000000000000000000000000000000000..676d9e592eb62095861a06aa0a7fb3271bff3620 GIT binary patch literal 6828 zcmb7p2UJsAw{AiZq#F_G#SjD~1SE)bQG*gdQJRJtS`ZY7bg79b#)c4Ts2&U`y#x>x zFe1Vc0z#A`2n10O5D6WrZ|nKr|DSWmedFDmF_Jx#J=R)t&+^T0&fGbF?u-z>6h8y?xDHLR~VH40}kuMFiktq#$)eX9;zp_6ILTY3g<)4h&_SGy1{O$N(H zE;`_IYTcWd+GlKLTt z#feS`ZvOL|tdK$P`|`(gtk3D*Qgf)S2w(Q;(is;#Xpzpi$tM~%c1wIE{H0;Uibn9X z&B1e7fAT43F&bA#1mKE+1s2ri^ds&%lUadbli8uq@6Wzf&iz75I_LJO?wVs@=h5#2 zl@Q{P|I6$^EOWc6JUiOgC2fn83CAkxd{40E8I24vhAG>Sox}ge4X=B|?~~4c zq~o8R$3~ff?+n{c@XEFn*%s?8b)TZ@T!Vp5#R>l5@-q7SV9mXmvKR5!##^reCoi(h z)n}KZEe+0a+9T0||se6Y6k9B+Nlus&UEu<@Pl7(SK1G&_{`T3G-7yXY1A#{Db3 zMYb~6za-w5Gn68#mN!tma-;SWpX5eoSX&yV02|K(TU5He;n(&ZY$-UKsk6vLf$Kis zRc&99^mGur8Q+9Q9%HTU(NdRZ z`n@E}us^g$7K%lj8+$VSo8FRm<^KGd=F;_{&>H(Z=#YEseb?dV!3gIp$E<-WPk|Sq zb9f-OWx~Jxu{8Dmwr=1=h1a{B#u0xO4Z}=766^FL1k7nyEw2ckvFkEew3z73Y|Al> zxb)0V*7Eq)lF_&n3NKiEv3z3n<&GgJaDq8jLho8<^Tw=k#;R*;7w)-iauNSHbz3v& z+xeWB?dzb4u55=K5%Tv4t{BKCap;wy;TDbE1E2gxI~nX1|2S*ex2Q+ldE_?++R~5t%eia}_7BwhO7qGPK=<~meQuTZ_gMJy zmYHLix!9%ukOblVu^ip+9H9p2hi|^ghvr^hUN+d|ymk!gF)>*FU@a5+>6(_77H7&b zCOr3AFMvo_`Vh#bHMfwtkCsGrJOk0W}x}0fQy}L5X6?qVr8nluFJl5Fl z_Vko8`hh&Gh-}o)uW7m~1MVH$O?~z8Mu8Y}SYF}dE&6x9NS@2wBPvT=Jm4rLSzZI- z`|A806T7B`0^FNK`gQE6$4UyTF}jv@c??eu&m2U z77R#PRBXI1Upn<`dJ^$}DPI4fK$laPQI4brw;F;`beRqo|#&N`wMu7xZ-KGk{RC>XP98ZL5)uLL5eI@oZUWsjl5h33Aj;W26y`^_L2ioVcpz=v*m zz`(HuaYhx80gwfEJm?(qYVOe6d6Z(_Ay~%r%nV()pNY75SW{00wt{Y1WT>#?$d@0G zQ^^CeP=AOuF;GdU3~c}$`E+SdPjrx@D7iVt(4&`Gazk^YCq?TdONqjRnO61QOE|=# z(X5poBz`!<(qJRmRPsQUEwHfm8R9mXhXCOyQatE9YvJfkD^@-uo3Weiggbz_p+T2> zv?h$_I58Wszx><>@d~b*J;45>q{|nNpIVb@_^0u&ANEGgP@X*h(fCPJ1J!W^sI+vM zz`g$wT?Y{E$Rc~oiJbqB+b$Jgj9Cy$A13@FOO;ZlHW*S%OQDP;EmhMLtM0#HGFMWA zE!i)O-O++zBau%BraUmONk19Bj91128tUVh0M}$&`0u|*7JGB=R(}uUE#oeEO_xaX zX7FIz&@Jr@Xa5$Ou{~7FJr(v^C#Jv4_``xV$u)A#^eW zlosK8pvSmkNhnh!coxJ1&K#P3USHv|G46F5ZH?CI?eF)JEu&(~Y&?R_qrcxFPm(S$ zgp5@+Xv2P|h-xY1HYRg#iX3e4A?;uVm&9nT6^oI#jK|v@pelheif|{GcLJ@6auA%x zWyvK#tfU+?FM>4f+UzoMMbX>a1A@*cIIjPMVydu^NJCgOpMtk0=M)>vKE_azY<25X z^e`-~eo|U%<(Ue^qamTss8*dT{_XT89^ZG=Qrh*O94WfB0xL59xy+Ul@gL&!Hx7jq z%*0|G>wY->S2tGL0B)%(fdGloZtft_bcO|DN8|j^)iGK$swczbQipv}jxjn5?8qY{ zj7VI1L_7XYOB03aaGcICMmO+(;{Rl^kVSj}FHK&06TgzCWz34A^qCIArbd;vOk5ov z(-J<|FFh}n5dz$^WaT7G3F0CgB^XugsndX^n&}Cy9m7Q{&u#HiZqD;?blG0B(*may z-BzPp{PFmW1HNZ*dYp%hV~TDLL+#`+YgVbO>>j8C$=jq@E@erNpjknS7|Wnyb@R`1 zO+toXZX!gQk+BoHK^z*$Y9P@P8JBS;J<~@iH)x?pj>5EQBEvwWT^xj0?AGDEtcH-^ zZ2-ghR%n$Zq-wGo*g%W;s0+mJrV3@ zGFhgX+_h#I-L(o+9=IW+75^biMij#o7l8gg?a{AtL=J^gjjc|LZ4%yeWMvYGr--JG61%BjNQl5`6y)a$Lv`d=oQm&q3r8VZw6*A z>tV&+oW9j)u|^QuygC^kTJLh2r$KsWftc!B%%A1c0=JoSIs@9hI8Uy*dlMBDQ~UP*c< zG2+PsA8Qo~<>k9p-SPONhkaewT$G|jbsll9j!BcwR0(vnzk0)*o*#a0r^;I4_5=4p z)G5rZMTxhIae$_A`LeQ0Mx62H4kk1FPIVw}<2l}=M6yoNcPN#LeUq#idOlN+?Z##= z+y=H!NnQ!)ZVf5kKEc|{cK9mtwq&y%3lDwO=)UdfV?Ee$LiFzbjf5pZv+MgwRO+&^ zcg&wV7khF;A;qMfs&WWi2=oKob)Y_INs4nE_SuDh=pD}w9x37|=%Sb$8rWZq0_-0% zJrS`3))5GUtjTatm~o;V&WND)c8ezl!h~#>NKXQp>1P(9`%QXdP!78DA~x9J=eO^V zAMQUbnJp*?u|v1K6PPq zexTGE-+SaziZdjh*REE->|enhp;w&HAP!j^i7t);Y^;JiiM~n_+5Wm+Os+HNd_`G@ z1d?)3x0qpKO@A08Yb7NRC&~xjbZZ^F znQQPbtSket^3XW&5Spe#qUl1LcB~uC3*yAwkl+M3cr_7z|D8!oS#yCHBgJGxh&vux zatuZ1$MlMl$uD=6@od|KImtpp3v_~hrGP8?s;d1R;$e+2BS_*$FU9d<;B8X3h1{ zOG9wQo2?)^aT|Vo6spa3Wf4B2Z!N99RcQ z*-+@df+Xa=03fJZ0qi-R6r`?U!wP1=Hi?obdPZ8vk4HP$uv*RwcreM|q@~$Hk)AQ3 z@7?h(x6t#C4!A<0dc{+XJ6SPnoy_n=q&lxjiyS)&!)vPm06_7h>Q%mKE_E||Q`eh& zjM1NxF*d-tP{22vzauv>>L3^+1f4&P4$`$un3WgbD%sa$-QS*HoWXeQ8AIb2L{cDr^#uhYozg?P!tQmMhP_dvN_1jCPlA6FTqQK>1&nH=Mb zeWv`BkC-Q?TjEyqO?`MWz*16Dhh?0DX@@lW%&zq<6n@ZWN3}&R+Z1awfYW!&fU_(X zp0?M^&PqW4&8bu+@~GIkizz^vs^(I=_2!wV`i=-i9EJjZ6_`e8NNiITL-q=c1qv-N`agrExezAGw zp9IUcSR>M)qQv(Atkx{Nv|?KkV{C=$7VPfsKL1vt^mbv&3uAN-NK=Kz?a}kbIh818k1UL7Df!2fwnAXbgY4+;p zd&4*JsSiqSlg~j4f~$O?1dG&309>LLtD*m%E&XNALfY!9(5Lv0Toa?En{)Ma2?M2? zUp%V*uL0EG%#Rd&_FnYvrIiCQ@_o>qMiu$h|90jT;2?oSB7T;=V%4d58K&&KL}vfy zWp=&5=tUAUq*Sxtxwr@jHtfjK%^XHDS;8jlL1Bmn9)F!BN+AMIkFhl68cnG_!75jZ zDj0kPG)9=3Bt|FW0z;WdWhheOks~Lp=s*st&GeU-pT3XBH`>`I8KXB3!fMei@#M8b zoGa|W*%hiJ^enW;#>K@Y+ZceFLZ4OcK>_1l;bta6y(pC%E|j8$vC5`JQ;?7@Zn<(h z3qS?yPW`wINGPZc6anyPaoFdS!>zzfPSw_&3tB0ceyMaZ6FZlR4;QsW^(^`TcCtJ1 zHxvC9Q->yjW-j=k^B`e?EQdNZiA9T(Hja^zCL8>Lk@7F#sDzRA5DcZc}h}KlB=|=lM&XuDfJ`dwoYCowwc` zVH9oY%o1>~qh(yKEc7`OG8dbDk)2TJh0&fkA7^1H?uH@1VLXm7fA?20M6~fK)u7SV zx+BH=zmztzwI^>4IU4mM1fTsQ&TTs39R6-g)|0z^4|pB-X`_l0iU0~Xz|Z9MOVc{f znqtK8On8J1Ryo=g9k_l)y{_~6n06Ybm;ZIbCuPtk_gWxMkzkHCxKu*~(5#>c7+*4r zI^LiDcjvrZ1WyP-!j!h1S*^`8b4rD*`P5TuG8f=QOPvR%NPrVcZrjKBGMv01ANUk~WsuYp1Tlu-x;<+?`8N>sYTx}F z7t%w>B-k46WL2rsq3WACWU;I7BCO&*&8M6;#ux_%c^d2_hN#$mdKN3XEoN6_#+RM( z*Tm!C_o`wZ)JDEfCp0e=SOeYEGmsbL4CoAabZP~wn0K*(NP@?BpB698glszTZZv_k z#MO3`I5EY;afqQ$uPQ^q?*Xx7NKl5aL2z?dMeX3c*GFgeIo!D#_cB7J7id(~-bntE z?X329uZ=m-kI}XjUXuR3)OS21(?5QOTU+9^D)eE_hwPsTe*5Mk(k5OTT;pPS(Jb@$ z`MRZGo|^0K&V{}?!jYl_slhnOL-~y{JewC-0+f+Mj#A!FO_RUcnq|&G&ZPyV(;%2| zp&cudL~-Hc(egw}T<~OPxbne8PqpAoB`5Bs z2jpETyAg`{k!_EOsu*OV7N{H|;wj~%ZRWjL%#bJUsK^8&2oVK6wk~I0x^yq^tjbQG z#XL%`ClAi)b6g}ge>~a;J*sOJx8%FMuY0$F@{}4y{`M&W#lupnd%WtC7i4#YRkm+ilx{sP zID5#~DDlhsPkDizr&QrAD;3JBo$OY0qbyYV#j;;7@krI@ zQ{2XsO;7JD0hN`9Y)U@+smWGj5BRh>-qB97NQyS?nYjmltS)?@9&NK6;=z%PN%aU~ z-Z740Z!iLTgLNx8I65m zclX7f&@=R}k#?RCna8nRajG01PD=ASFd$g1o>iup?}|Y*G@Wtfe_$Vx(ml~na)LX( zt?hqU1f1yW7s~W{`l{zdeyw;N>C5_BF7XWUb@8t|2kQm3#KU+8xD7= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) +plt.xlabel('timestamp', fontsize=12) +plt.ylabel('load', fontsize=12) +plt.show() +``` + +![training and testing data](images/train-test.png) + +Therefore, using a relatively small window of time for training the data should be sufficient. + +> Note: Since the function we use to fit the ARIMA model uses in-sample validation during fitting, we will omit validation data. + +## Prepare the data for training + +Now, you need to prepare the data for training by performing two tasks: + +1. Filter the original dataset to include only the aforementioned time periods per set and only including the needed column 'load' plus the date: + +```python +train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] +test = energy.copy()[energy.index >= test_start_dt][['load']] + +print('Training data shape: ', train.shape) +print('Test data shape: ', test.shape) +``` +You can see the shape of the data: + +Training data shape: (1416, 1) +Test data shape: (48, 1) + +1. Scale the data to be in the range (0, 1). + +```python +scaler = MinMaxScaler() +train['load'] = scaler.fit_transform(train) +train.head(10) +``` + +Now, visualize the original vs. scaled data: + +```python +energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) +train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) +plt.show() +``` + +![original](images/original.png) + +> The original data + +![scaled](images/scaled.png) + +> The scaled data + +Now that you have calibrated the scaled data, you can scale the test data: + +```python +test['load'] = scaler.transform(test) +test.head() +``` +## Implement ARIMA + +It's time to implement ARIMA! You'll now use the `statsmodels` library that you installed earlier. + +Now you need to follow several steps + +1. Define the model by calling `SARIMAX()` and passing in the model parameters: p, d, and q parameters, and P, D, and Q parameters. +1. The model is prepared on the training data by calling the fit() function. +2. Predictions can be made by calling the `forecast()` function and specifying the number of steps (the `horizon`) to forecast + +> 🎓 What are all these parameters for? In an ARIMA model there are 3 parameters that are used to help model the major aspects of a time series: seasonality, trend, and noise. These parameters are: + +`p`: the parameter associated with the auto-regressive aspect of the model, which incorporates *past* values. +`d`: the parameter associated with the integrated part of the model, which affects the amount of *differencing* (🎓 remember differencing 👆?) to apply to a time series. +`q`: the parameter associated with the moving-average part of the model. + +> Note: If your data has a seasonal aspect - which this one does - , we use a seasonal ARIMA model (SARIMA). In that case you need to use another set of parameters: `P`, `D`, and `Q` which describe the same associations as `p`, `d`, and `q`, but correspond to the seasonal components of the model. + +Start by setting your preferred horizon value. Let's try 3 hours: + +```python +# Specify the number of steps to forecast ahead +HORIZON = 3 +print('Forecasting horizon:', HORIZON, 'hours') +``` + +Selecting the best values for an ARIMA model's parameters can be challenging as it's somewhat subjective and time intensive. You might consider using an `auto_arima()` function from the [`pyramid` library](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html), but for now try some manual selections to find a good model. + +```python +order = (4, 1, 0) +seasonal_order = (1, 1, 0, 24) + +model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) +results = model.fit() + +print(results.summary()) +``` + +TODO: Explain these results and show residuals -Add a challenge for students to work on collaboratively in class to enhance the project +You've built your first model! Now we need to find a way to evaluate it. -Optional: add a screenshot of the completed lesson's UI if appropriate +## Evaluate your model +To evaluate your model, you can perform the so-called `walk forward` validation. In practice, time series models are re-trained each time a new data becomes available. This allows the model to make the best forecast at each time step. + +Starting at the beginning of the time series using this technique, train the model on the train data set. Then make a prediction on the next time step. The prediction is evaluated against the known value. The training set is then expanded to include the known value and the process is repeated. + +> Note: You should keep the training set window fixed for more efficient training so that every time you add a new observation to the training set, you remove the observation from the beginning of the set. + +This process provides a more robust estimation of how the model will perform in practice. However, it comes at the computation cost of creating so many models. This is acceptable if the data is small or if the model is simple, but could be an issue at scale. + +Walk-forward validation is the gold standard of time series model evaluation and is recommended for your own projects. + +First, create a test data point for each HORIZON step. + +```python +test_shifted = test.copy() + +for t in range(1, HORIZON): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + +test_shifted = test_shifted.dropna(how='any') +test_shifted.head(5) +``` + +| | | load | load+1 | load+2 | +| ---------- | -------- | ---- | ------ | ------ | +| 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | +| 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | +| 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | +| 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | +| 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + +The data is shifted horizontally according to its horizon point. + +Now, make predictions on your test data using this sliding window approach in a loop the size of the test data length: + +```python +%%time +training_window = 720 # dedicate 30 days (720 hours) for training + +train_ts = train['load'] +test_ts = test_shifted + +history = [x for x in train_ts] +history = history[(-training_window):] + +predictions = list() + +order = (2, 1, 0) +seasonal_order = (1, 1, 0, 24) + +for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) +``` + +You can watch the training occurring: + +2014-12-30 00:00:00 +1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] +2014-12-30 01:00:00 +2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] +2014-12-30 02:00:00 +3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] +2014-12-30 03:00:00 + +Now you can compare the predictions to the actual load: + +```python +eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) +eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] +eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') +eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() +eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) +eval_df.head() +``` + +| | | timestamp | h | prediction | actual | +| --- | ---------- | --------- | --- | ---------- | -------- | +| 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | +| 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | +| 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | +| 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | +| 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + +Observe the hourly data's prediction, compared to the actual load. How accurate is this? + +Check the accuracy of your model by testing its mean absolute percentage error (MAPE) over all the predictions. + +> **🧮 Show me the math** +> +> ![MAPE](images/mape.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) is used to show prediction accuracy as a ratio defined by the above formula. The difference between Actualt and Predictedt is divided by the Actualt. "The absolute value in this calculation is summed for every forecasted point in time and divided by the number of fitted points n." [wikipedia](https://en.wikipedia.org/wiki/Mean_absolute_percentage_error) + +If this equation is expressed in code: + +```python +if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) +``` +You can calculate one step's MAPE: + +```python +print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') +``` +One step forecast MAPE: 0.5570581332313952 % + +And while you're at it, print the multi-step forecast MAPE: + +```python +print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') +``` + +Multi-step forecast MAPE: 1.1460048657704118 % + +A nice low number is best: consider that a forecast that has a MAPE of 10 is off by 10%. + +But as always, it's easier to see this kind of accuracy measurement visually, so let's plot it: + +```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + +else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + +plt.xlabel('timestamp', fontsize=12) +plt.ylabel('load', fontsize=12) +plt.show() +``` + +A very nice plot, showing a model with good accuracy. Well done! +## 🚀Challenge + +TBD ## [Post-lecture quiz](link-to-quiz-app) ## Review & Self Study +TBD + **Assignment**: [Assignment Name](assignment.md) diff --git a/TimeSeries/2-ARIMA/images/accuracy.png b/TimeSeries/2-ARIMA/images/accuracy.png new file mode 100644 index 0000000000000000000000000000000000000000..439c7da887775d9d034e3178babb85c809352f74 GIT binary patch literal 57268 zcmafaWmr{F*DYOA(nw25Bi*TVNq5(wyStI@29a*0yQKx`ZjkQg5O<^R_r3T2x;~GO zp1t=ud#$kJ|o&mXgESZyuo<=3pu&s^9Wqza{8?9q-1OAp1liiKGJa%arYALbav%5IrQE3RHD*H3rn zbIrG=r$NldA#X|j-b20r77!5NNf+IqX>D1r*IK8k_2djHtEiuy&=g;p-w$c>OQ%`70_4LejrGr5Tfc3V$D=DQKbj|6jiN>gF!0arK=%MQ&lk*c{_h7u46H1VKg!~({AWZqQqUs*8P7o>8>#aD zTrM3sCHtQbmEUu7{j+#oF%V$V`Ef`{kbULNm{ z1&Lqn=uG%(Ic3~NZ{F#dgL8`yEk^kM^mBIZr=*K!9RL2HRuf%v= zf|Zn4JIws#hVEI`4h#2BkZ-7B(160mJ{Dwr{p#l&rbTE4DH`XyRMSg8bp3v0w=EO| zxZGUGRUZP=Ujd7nU_H|HXNxCGbH6xpgM;b4N14~rTJZjRrK&Q_&W-~i@~}_O07*($ zWs7FOPdmKXiomK)xT@Q(RadYJ9v@yb*XCK2&Z`fF<`hQ0&g73a5j~ARgBD=U`C9RS zW(5h=w}%I)9ZjPx&epuDuS2UB)OlSi#!(~$Sxheh*OBlEP$ zk+kX?#7W1J&-2|mvxn2+DK1iXn|n=_-L1_Tn6erOotdY$hf?E+J1+-4d}h)`a>Y;) zB{9GOB1%gGbXvFPPeaS;xrqe`C#T35QTrqPJG_tQMl%{uZ?8NI=9$6EY4Ly~mV%2b zlO;dL@*l_xGJt1QcJp3C!TAdT$NYeb%48t=kyIW;2-(bM20d>|I$!XnSNq?^;;+!5 zTY5`hUw^ipzyevq^EXIJBWg@-M9Cy~&+qf$H@*p2r^DOoSe}U~v?x1X#H94{Z=ke%u)H2SP4Nzd;O2k48-<&@G&Cw;%H7$Dx#jQ8 zNJV&h7_#@~w_2JF2~-89zX2F=#v*p8|I}OlgpyRHJjYXxid<#)+us=oqoCaUYN=tt zKxfpJIJqtwgzM3JS;W51@~T;$u9)k1dG1*Ay|V+)YlgqtlD}Mwn%@dC1T~2^4_D8s z3d?2@rmFpq9E}Q*S}R;oh=ChQuQ~{?f0=6TlodH|*q+!7um1(PcitSYpE|?<*@4eR zdfUU_0I#TFZ4X$4%lVqmirliSiV7iy>J5norv5U=tL{b0q3%~-5P~J76Q;k6c%B~f zV%GtI&*=?BqQGqVj~MZ&_^Re+yPJiZYn3wn?tmMj6dtzYb`dw|>RI=0=E!p)v4mZ3 zk`Ju1jvvlk*O}sW|3IcdDuoikG9lZw^=Wwk{2X!d++dwVOL{-C${}?SqPdTOp8U*&z9M=~QiJP*!WJ0$WP(RXR{2z06|}NU~Fp%l5|z>mutpp&Q_* zF6PK_NR(7rPsQ*i7fF)O^J6b>lh2mjd1F3rKQ(%#e3!{e!tm%X~|3-nWg_B&Hpe8E(DpT7A`EY z{SuBlWRH8#0$~fW7DcFs?%sjl>?4_v1VUv-{#{WjMYFTMD46=Tf4(l9jn*x)Y}>!i zDL|O!O^3d<9`RUPnwCTM?q;f5+VH?*!r^`TN37V9ldqq$o1BQ9Yscewwq*AN0C;gA zkh%XoPh7fwV#y|uIw#1s1N8iuPjPqRx8aq{ykj$`x3S@jO@%#pHrhQG z&ZE$Lxq>ewMEX+*hu&N^vaV-A!I9L5W=2r6Tu)O(3oN$B*!9BQcZ5v%2$lhBeKYY} zU!Ln-$Q23Sz3~D|Y%J+dBPtocG}evcydzIxQz~uyU?*-1^Vt6DaY3fCP~Btf-(+>3 zMjlgaxEY1+VsGXWhz201*qGR49g9Kfn6gvLM{Y;*g&@?AvW`ul^vgxdWgv?16O)FB zqlAQP+B8fEB=bXHM-!>@3*xhFm>ml}(MTbPnXb5@#A2u@dqe#b@z~E5Bx!knb$B(= z22=agW?POiZU_FP+TWiHfHLmftTdH;d|mbc6ar&3vaT-wYP(#RK+^qh1RPyzdfjW! zaGj5oqZ!nHbHZGbHoiqpT%F(A&oNvupGo_`KN_)iF%TsiyfZ zpj=M#Gt4WxAd)SMSar<-pA+#K&oB!RBfZ&JFxx0d(I3XrU?&tH9OHST>nWSv=}>T0 zoAoj8$p>zRaquWxH*xPy|CIvPkwAftq}uvmXMG?>i)1BRZf2=sl% zTy+zLk~w@@^{V}uZc)H8 z<$^UOgszVUQf5I>Z}YB{zT1j(6BQ~y@q(?c;(Jiu8=Nlw+d-r}3*UbL@P|)3Oi)r% z>^nxYtTbspNOxwA=#k2CzP(#EWUgyvu-A@M@$-t_{g={qDf9HR{!_K#eo>10K@072 z03kUp)qE}u3phg4Zbbe1b$gjve-v+@-5e2SJ}LivQ~MWNJ>f>P~#*!b|}H2~0Mr#`Q__1Xx=#gamfwW*?}x6h*f;JD zEHYWNdQ8oI9lA=;;|t*wzw-0D@XaLB_wprUvl!+&@5P|xWQnZx{=Kr=yLEJ4RaK;z zrz=}u)u_c>-WHM7m*+sM{be-GWx}t8hlb4O$Wd_T?r!{Dj*=vcrJg3rhMmzvDX?pf zSuSz3HhZ0}*0ASRD~$0I?@d5Q^C^z)j{5g~0@si8!>g!(eSBl!spJxGqhnH(r@tb( z9ac2FXeb~4D^a=@Y`!~?3e+YnMx5LjkKPMd?=$9Y(GS3i>p&6 z5$>Qp6xScxO-x$wlzFwZ-2MHHy>9l=Wm$3TW#1>R6Rrg`gh}J)?-574YATWkd(V+X zbp8e}&o%EglwtI|VJ&CtR>pI0WM6B{1E|@m6sHM0yhoovu7i)vlHZaYD@W&F2nhW& zYLB)i74ODCqi_kOZovnld2HR}yQ zarqNEM@N&LK;5dB5C^%NW1FL<+~kSV@MkY?$FfSd=DM40$J6q_9Q+rq^E7{d54zIQ zK-{4uYl8_dLWNG?7O%AD#CS}uY*z(ProaP&?n5!|oHjYOWjWi7{Oy$)c!chqbP^q4 zChg3!KzDZ*M0406Nl9iew|qRA1eC3{`{=s(YQCpB<*wBf`>pM=0dl%H)nG-ytw{d5 z6}4G?Msa!2Lkshd=`G4ZC!C4fHly1YICwG!6r1LsL`ICd$TM4oEZK`w+Oz;$4UAey%O2g;@JkW0UTR#$h#S#gn&pm>zEfx3L*^xn@`IQrT)> zS%(dFS=^|oBuR10pUm9&R8couS!+EtEAqay{IPzg-s9eH9!`Ca6Q`25cbadBaj?73 z2bOlzc|7j^vK3kLAt*J1c{P(k3Slr7TmdUGW)lXIxYniOXc{ziH=g;>zCkvZ z!G~?-)T?!~&zTo_0GZX=Y z!8c14zH6y?c>Ie`s#8UPTYLU<>mS#L2A8JHy;K4L6zKY>;~P=eLsTy=ziW$Ng7^0w zvUz!uL-L)V`k)NoC3hY%xnT7k`L&)eHfBtmHPJ|(6K^j`T zNPEhkR|iR%FSO#Gv|+{`4~2Rs=?xgSot zs0SVFEjNdr^_Hmq1teM1g|doBgfh&%6iPn{vs2*Z1^H=>4wlpcdZv{Ji8f&M=<6vI z#Heo19D6SRNI%&FK#C}umB?{V0dWxN%?=+oJ_2l7%>m?XL}d$-&ox~dcHQ(`uPi4d z#(I`h{L}B*iphfS>|=EkNpvQt6T3j|P4{$lSjFyK$MBy45ZDgNl;lT*q;*4i)T&to z@fN8sX}mn!UH(%1$Vm3{O-QJeqDJ?}wr&l@V4K^M;wX8V0_70^2yIlCBlFy%70#ZR zIAxLR)cN`@RApx_r&2BM?WAl3qCqr0Slo)n2rNF(=CYE~Go?Ua828v8D1$!&TiQQ< ziu!t(F7DSo*}k9~1KJSu7YSTzi*=#9U$**#=+K5nAN>t$?x8z#TiS?$ZBIZq^BBr|d!Texv>&*TtwFTgKxrt#r3 zHurfmOoqH?LW|}d>u9qfqSslxP|pPAX*Di-zZF&zM}z-c2PDwYC)TW}wwMz-d*z64 zcWcxdBh?2EjwOrrVp8Fu6NH8f<1sZ}dJ53~3e>WVxg%hXwtae*B0)GGWgy{w4!`AAX~PFw_7g@a(AEn)w8Kh2?H#y<-dG&xf!9L zg54Y*B8qH6-X3=Ja7w!W9jDiCSv!>tvBuLKVSo~Pc+8gxWh@n3}MqY;eCAS8~Q7Q```nf;A+R?^<1^# z=gY>h@VKE*(m=LQ5?@OG3%bLnXQeh84lKHmx7Y(mw{?(XdAG_nz7QKYl8X)g@;p$M z7!Ko$fMvtuu4tCIzlz{jek=BC&mQ2z4qYGJSpJ00-1teI^t}ZaX)%$$WntTCj)!mU-qR zvm|+8q1q_49OL0B&S@gvkg9gthSUCP;-r+RqWOp=l?yO_k>F2+P*n3IW(JfHF@__|J!nPe{GghnwMQ2gqF^SXgucRt|&z`*rxFP;c z2n6);&U-R{SDfC>pI-=a0L!b5IZZ5T-fJpT9K&vH$$nroV2O742G$~~tD6ql9AVlx zA4p@9L>f>Rcv22%F3hyw9Zq7v{kFd}$LR77X@M^DpzGhR*2g+NIG6s8l#nWrC3;i3 znahqe@*Q^lkK-6@bj<<&2TC?oQJnz<-5tWF9UN=bszk-(!PC&=r5!G+{w&7yL>RFo zl01Pfd-??U&CT^mX|zWILRZ4kw5<-8!wS6TVQ5WCr^2Y@lt$ts6e0@}+hw=)UL}#g zC<$h^JZ@n^0pZ|)bfTCtnTJ>BDw36gx;9WsHdw%Wd;T!^a-36QG%*0ipzSd$2UGL8 z#47%^tYw_7tl!<3oXXAbv*9$jCMNu8F8YYUsL)I1R)lZScu+`eNMi7z z1I7D>64|Q5$@oSH_oeZWK7(Erh<2_w_3GF>6;x;T9i)j#&1Dh9<}JlaFVDZ06qY@i z`v1uOTCD^L3isMoVKk`vmb;!xKtz<=s45daGPkn+-DLvbgl=rb>@<}k8MYf>h$d}U z2OC@DBQIa=PY`WG+Q9{BHA;n;Yq#)QdU0~T9o9n`=bw8HR01TJ!j?t3?yGzKB@S*I z8C(WB*r~c#ferOZ*Kta=W?>uyB>K_2#S_-<`SFiqz?gRsz$O+P7b1(QA$Fqtd-qbq zFIoz6)+R~fw0{2dLFN5OeDDeUjPTX5<@ox^3LUn13^xayp%LW#XFcLS@ODeqnpAQ$ z1*oiME#`*bWw-*2ov5gxfBrO9=tr0xf>zT7rCjoWPn6$~s2;_2yy`y0(RK&#<8vmoF4#Gw$ZNAr?W&FE4-!V4Cd zj&N4E(!O%{RGBlMDN$U%-O7cU7BXzgTiY*$>pCEf z+-?ov@y&PCna8a>_iV}#=(KAF%oZvt8Z(g%9^M|^yYwE*{l&$oV@L>PrKBNnZ7};I zay1{~TJs(C#NaudinHwN+-noxc3#SbIhSJy4Bsx)&iR2)A|^io+nl9V1V1a6k^t8m><+ly*nJN zHiDl!54S0$d8ppR_t0A*i|y}|nQV1sr_(rE913*M2S8mAC8W5suaCnfBkQjbt2q`Fy1B5haOp_GLyAH^TB9n*v)F(+>4V)ju%HTp0ibAJV@>^+E93%dbhm& z1PuFk3)|?C!TVWvA$&SD{UF6BTt59bdk^MS3gF&;OxNkk{DxOhMXD zeBq0Dv+W5}JItK!8+`B0Zf1ln16WKqIy;QV^Oy;OVjv5B9CP~8xh8-L)1{>fC4@t{ zT|?X-6G|Rq1s0~D;;DAfvK#f1;QTbc z+2DI>3E_ztfq*xRS3)B1A(HaXZ?jA1}4j*yA9YE?ZssN&JR~n;5x=Xwyh=wBgQ9%#w z)1qwOKrdwqVMjNfSglIWLI#PSLiKqYNM6KDsL5LE(mMo#-&5)hl3zSVg{%wd|EmKb z_qx3UWT+*7tM%RJ-BYLs-ZAiJz^Z^`-9l*g(ybsG<_49oC`oL&9)wBC&fWrT1>Nr1 zy7U1Dt1GdDxJ^>gzcPR=d(**1uoj`?nMW!Q5Uwk`(-<{DW@b`$>a-fp#65%~)OOvl zvDrRu@J>C5Tp8$cAoWjDvIblCOSY{M1CfOLmA17ODwmCH$hWk)RH;XLfH@06tA^>O zf>UhpfEIZQh!)KTcxvQesNK}UeHlt`=sUUm#XX8|J#4@DyLh{3LJW*QeI3fgXf6cY zQ_iPj8KJDqUm=wX>gro+x7Eqj{&%^pf!^XT4p!+7wIpnOsBO9j;d$}OCtK8ZhZPe< zuik0s>^#|zU`$rsrXAgD@PPq|Lzn9-lVt9}Sz&}GGIYmfR{xaxyHpL%#&fS*n_F#t znMmV!^^UvmJB>4S6M>k=7BDYR9*`r*z3L`-{nl}Zw$K^=QC+@%B+#ja8c2_j>TmCF z!LRz_fy2e+PT`7z?dC@UiM)U><=x`N(y&1xkh_^i@}H=wMOD!Po0QYwDoLYYNA-6y zc=h)uKSTq)C_GGNEyV_Yb94jP*z0BVAnmUiql%yh*Uj)_)@r&+yR5O*8}w<|cjFm2 zDfS#CdhIPcvlwI9!5JKqzsoe|P9SqZ=@GJ1eB=&CfZ7`dN;e{Z@gZrpNiTHQ+5Yjd z5ajd6?a2txfubHg+u8?S(Hj|IGJy^$1d6ju%bvunh)t#EL+zWen9vBOo3ypulvq8eT47+=rt~T0l_paz&-UD+NCXc&S*0nE5U#8xf|#}5bQrTIMYw% zsXxE^(2+0St|R+r#kByp%H&Ah)4cl|c(;avQaDGzfe@jKaYesDenR(E{Fw=`UZPN` zD}?LmX11SRfZRA*m>^y?n5fFpp)T_EW&S9!Peyb^Ct*ZHo(ld#+m^=*o2Yo8&o%W~ zl#HgqkY-7Pa^=9^>MNe9Rluotl{fsJ1i`gFOY1hi5Y-DUoxuVNxC8{Mv<^+@ScLnR zi9ZPHnF<^p$N<9n_jIRWlb7}K$|WD?VJtij8O1aQ2T~e3$SGV=_92+_3y8Tdj+dwG zF92bKDkAK^tkflk4I2*qv~@_zq2bv6Pb;;WgH z5-DcJwzhUcvQvpe@i8NElzZ^_dQFZxc5-f<8UZR$b!M*j;Tni77gi6ybXm`LbiaU& z_s0MZ*X8JkNDQ^b4_%;EVt)zDfCmq^7jN(npC?kf5dqthr=W3a%m`9RN(R^{slN;z zk&I4O{w)j?I%*n)f;5W?2D;0J)0d*|K*}2;9%WOvgxXDn&7bl}*L@c;zs$OPUkHv3 z0NyARXaR}}|3McOB2w+yo|Vj9;ERj_2ap6YzQL# zwsA+(^-jMCf>cTL2;0U8lfkps890wW{bV4G@j#|LtfH*XY1=@IL1!8R6WZ|)Tehjv zXwWyn%P+?bPIbZiV}5o^9Im;95pY59Vt-2t{dc!$aNA=m3GYLGK(2N90K9dg_?!

cL;HqMVcbhD+NM z`|;GTt^t=*MF{f4%~K6lYJ+zNG7fz7a3HrKB6+3y6i%~=6k$>5yQ^z6P}`Zy^ju3k zJ}*j579mwBpH#0LoA*YDIeNqyB=kJDIy^c!zdlx#m$b7$S zn`=MJqeUdGXk+etp+ef}6bh?H&LDVgfyeR$cb|K)8}YoPIR`=FbuF5_DdVMPa{+pB4afb2Qyn$F64cp2LUCK5YTvtf`Ucs{hhGqIxJ?ll^o#cCHCY0|My6 z@@(o48#>f{1mY(&gR9Md3VAMq&chUiC(!Mg(3tc$*A>^l0Ump9Gd$`(j6N;61weAf zovi0l{cw2ef!JDkI^%lQv}mPtEQjOP zM7-a82Dz$g{k{V5bq}Lb3=0P#&QKmVPPg&UxQVW?`v=NyjH7imvDF3CmImr%?ylKw zbsgzB1>Z>83Y`$N{YmZ1BB_Sk3C|;e$W0(;iKVN;g79sy3*bt6U;I{r^CjbZ9fDhk z?DvXK1YeWe$+M#d-09bQs`hr>vz-tE@aE;|ubq5!Ek&ov<2GQd#YVfel zv(VtU^%Vsm`ei&ZkM0}RV4a1(a5tYuq+8JhpGh&TNqL4@b(-r<$}Ig}UoeghpY#fz z`HP}DF%s5H?s&>cQ0vyEe|H?wk0+^?2`0*s)xc>IN#fG0vz?!~U7X&Hu?kBc^bfz3 zn8i+h?ztr_bFq^2*B`(_d07%tN&${=0#f=)&>jo*zsh|Cc7T!@C$n(CkSGs$B3%1z zeVNy6iNLyYywi#T`IBVP-I1Fg23=)w`;Hum_P5+t_I`t#rtM@a6vIEH7;UUhtO`5? z{py@$1Bf~|YOUxNj|$DMfRTz{*0979zS4pbE%e)ODe>O1S5%YS`;Q@L-i=53Ku)GY z@eX=wvDmA0i-{Gmx0~Y>BqZzVKKWjq{lLWiQ3J=t2?dL#2C$k`2u9(tOA$H?rWrhg zSWL&|>CM|ML@pr$lm1GOU&Dn(YQ$dgA{G|3Lo&k6DoQ6Tq>c~b(>_e0;G={uDD<0v>dQ?zT@!hYYJET3H7Q(r) z;mEz1Dt3Kec`+|tYyQq}@!+G+L4xu2^9JME9O78L$1mfCD55{M#)q|05Ii#=q_D7S zrJH=um-lEQv5yp-xJXGt^q_|F4=Dv<#Yaf6T1_;2gMNWNhnxRp6W4<4K)U3)uFrwX zfS%~wLDQf{zy4dpg&m)RX3GVVb0gbZAU^!ua!Tiw(?vII#Ye*tt>NH1C1*SEp=^4l z4R&*6pqZY<m~6_AxMNg^Y3{!Ii7J0FVI-cUOg8 z{zxrXU>IMG0*@o=B~W%;@`E1j-(?K56LNDp*U}zGl@R(!H_Lcz6sP3Gb~GL=^@0NP z1v={vPzdE@J&|Nf{@5uTbMFNOWzSXK*iE{7@h67ZL#H@){wWkW1ltvOLC*%@Z`s7$ z%?G~-#C(Y+ZoP70@VV|BSn=_{$o}VX5J1{;H$TY#-)}fxslqP3yO_>yxVwm9^I1QU zaML{Q9y|M$Aig$acTCxq)>U z!L&qWj95mvjSl+glfrX$HF#qax%}Dbt8qJitH)5=6O1B=X5!v+47HKJ277dnV;t?(R)@0`Nh~#%DK*C!(8CmTi!y^by9~124D8heRd7@}x|1B=M4v(7&Rbr(*$APe;MR1fZ~c@DS)yc_{)1*NUzb zzo}ann0cPZBFx^o=ZhB>q|0Mtsu&FzQQ7eLD(BCvY~P2pL?d-tc{!2$>|6`t62q;fVt}z z%@J$TK|X`UE0`xnHa6fruhouvw;~UkNvn4oWbPsjat5a_zbPO5AQgck*=Z($NXUQZU3U|9Ld5-kv9>Vopz5=U_riww7CY z)`F58dT_*aT8cof>VnvEW_|kkuNU5g2e+rWIXvO`lkCBeSGj%bvC1pfyj7?7JaWNo ze{djwX%l!=N#+O%)VpL@b8V^Xl4X9EAJX=gaBR&F_(7b)X!GTiv;<4|E8NegcrCuQ z{Yl{G=qaJzv~V}XRqTd9{x)%nqP=ziPZ|y=-0W%$aesAWyI23qN?#FUBol3A`~C`s zVtv&ePBlCxXC9^Z_hm3A$8aIR=Z!*TM>MCwib!{sW8_z4GS6@GjdZbQk#<$zJ%Yoc zg)1;0-h1q>k5pGg7A%W!8w02Q1QIW&Pem1SoYYNrE zI`+*Qs4sxCOE z^Bxwa-SmIO8-8+k4%2tWtYN9ZSj-6Eq;!Ge`Qz_;jNF?d1};AQ%iw{b+K+YVNagx^ z%(a~!OBNv;Kp3spFM?7OmN&vVX7U}>8>|aYo>Zl^=1BNe^M>zy5X-s0xxcl&X)?Z) z8cCELH-BCLFSePTr)PaLYeyxc8|LP%;LOjXyi{(B)} zM@}^}{xkUf^?!eRcgv}i0or`j3&Ee&j{SQ?=3iv!4J^ZVBxMia&;m7!|`O403*+^wW056-+ae>#qD2%%_x9i`F_D4baE|h2%r>*92 zdQ`S_P@y)Q;ib_MRp=cnrMz^`fm7N}%f)eiQZnZ=xCbfyWP&1NUb$9J8%$1j_(at7 zt?<_LE0@B8nvOGo;~_+fk>_W*hPRUHQpyhUAy(7rRvpd7X2fS0$M#0#PP* z+_GQZzp}S7nk97I71M8nVKd0~F9R-D#a!W7uk@tI`t2KuTi8bkak+SssY`%Gj7$go zhiy33+yo9PL#%c*neX{-y_R6N8AM&OrM5Vd9}^e6_kjwdLXC?$PCU`4qRc87pxS^| zGgCb-B@}n7h=c8&!`VsV$e);KG0JAKHEYwFaboxjRHuXayU8(8kI$`|&Y0-ylD|J~ z;K;7zYCxY|&KoJ)lkjvS3wBM4kb z0$*+EyQ~86vd?-KIEwv=a`fiNDtZj@{QLJJIY)E)i0l;rCZ1cL`ceg|Q9+ZDoQ#xQ zo~WMoSIQ@-uTv@su5r!+V;EQqoXlh=SNBymbhhv`Xkw?7d3t$M=Z8>1j6}IZlgA%f zzTm-&-zpu-nHU!LO1 z0d@Ir)*QM3Nu#&Bk!62!Qsl-V1AFQJel{-=9ElrWvN!GytgQQ`BWHZyeL?o%CcIoq zPH`O_^mB3e5(ny|N1=cY4l0liQBP4Sp4B%3!EeGcE(vZz7H-r|H=dY;7s4k9*d>sT z2@@e|Fcr;)oLoKVj$c*Q5ZvXP1lBy{=roZqY`OWdPn zv;#ZpnVD9G?2FvHzLKN_3$`IZW#x7mqedC+{+?!5D0qL_GGM9O@CP1G`FD6iK6aEDO;xrM2X6wo1cPpe&C?9# z=myJqw@=|_6f8)D2ou?3_-VBwkAlgYepg$y-q%Q?>UzrcbiEc12iJ~I&bvlU-ltqF88@wH5)`%NCtC+OJ?bnPN_E3b>$~E%@8WsirYO#0@m|pVtS@d$9tQA#1ISkr2mc zQRl@Pd5)sE_C;eR3dH&ah!uW0jraExqxK~hogvgV$i(dFWzTxl$B;EFivcG;tk>Fr9n zKNI?%ncS{FAvZ-i*zZ@}EHZkO4OV3`~d>EBA-6 zZRy0tIAK_?=U|RXHb1sG#?7Ck2EN%B=D3XfNpmK-bC4t84wXbT)S4T7RFU(X| znZJ;KFA6@ARqB1m{aghdI+OI#V$@MJq^^yHjEL(_Iun4Uh&2Q*ELn~TZL`51n2NB6 zDK*rxoDY2hLm&e1Sn>6ni>*BSswA2AC{97F#C*J13K~&7c-09tDP4p0s3})3`?tz( zkjM0>97n3xqSlxkv)Ok|i`u@Mk;Wf# z^rj)1Wy}o<43-AnL3uG2&Y#(OPp^>(6NOzoP*@5KmGNA=UT`8fi<{taDFio18(Un~ z(ZuLQG4zNVKkd0Jc#9u0?EXB5oP;TI=wqU3Y@Ba;{^O@Zr0>96d2zR^SC3*T8@9gu zgySryVUn5=NoXi+<-}B7QUgoP z$&a`;!Mo$@L&1P^Lk@_Or&hwn#n*sD%5phb%69g+tQFWRIQJv;;b3^2d;-EV z*!87CeU0EBU{k7K|AS#Jd1V>1L5!&qM~W4diIzC}x&>yloi~&a&SLZXsVCN8bMC#A zf7b>>Y30iWn_}h*B$kp_iry3xDcQk%ii-AU3BaP)q%TqYw(!14Uot&;zWjld4tTF2 zHN2Rx`piJ{+%da9n8Dgy*Z3c!LnlGNKh@X{t?IV2u?uYgHJTVLwboYH_$wksjmw|B zIRT+M<)JrlK_k8E&Z!SB2_^2vv_}&4SVu`-v4UJ^65<-#|60ZNjGg7+SF^tsWD<=q zS&4U4i$xm zUc1(8&x|DE$s$=)3?ajq9eXx{!f73WgG;^lI;X5pA-oCp%L*o%i+DoP%h>Qo3%5>Q zmL{oRihMLRYxSUCK7#D=t4;}bVLKXt4xqnK{sr}RjE_ILOlFM`B?{UMo{uhXR3 zNUxaEHo;C|!WF5`8!P6(3D|ergQCa%IBuQ2qUrQJkKw7*OQfuzL`wN)?x4qu#U76p zOma!X`pyj_r&kObetravrt7X#suV{$TKml4e<8$;%Y=I)@7L>>Vq~&>8vM5O6ih6W zwVu~C^K(C<{{Gi$^8$-7_Q%Y{qnD^S`V&KkBBb8*f|9GI>hZqb$@N6MVu*KrcL^PC z)8|XV_qNaMF?_f2#IaWG+McJqlOtVkXXaD-oEjfD4m!}OL|fT_pA@K?#B5|Wa4n8) zC1A%U@@%?`Ul0s|uKb?E2~ijj5$4n)+VjWxoBK;sPt4%0`ADKyZeQ?nHtMVcrc2QJ zdWuI*@I6&^bw?obu1ok;F4!vjnU2R6FJ$o%xLQc z=G^_3(tbN%vd?E1NMvcSWt0SDSe827%4W+>^IYMy7e3|~)tH;ovmiaXF@^x%_E!-> zCRN{PJ1mZj5Ov7dQ)OdJT`rn^aO%~3rXX2QrcZ(|)CQA%&EddDi?1PcI&2;|S0T`z zn+7jx3RM;6{|HfZ9gT!4h?U#0wjh&&$Dmp4ys7r>z0J$Q`9~f`uG%e}YC{-r{?@{t zh8@(MLBL%cOR9D?=L?NlcF!k^D%sv~x{Ho(|3g|@KxOV~yv(m4*e}#z{k`VtkV2L|nnFpiRr-AHMC6bJpXA6sBlID(up1xzgak=Q7?3#f!b_H=+7| z)e$q-G>D>iq3z_~XhH7B{Oc>-;U^4dKndVa?U0ABgKabgV5B|IAoPrieIjoJVQsKy zohf~<*omB*Vgz0sAT<=L)3kfmN0E=QCX6|+cX8S+lLoXe!t(lGn#}b zl8)nObX@B(%1OD#$$pHnRVz?pT+69@%`HKQl}V1H}B{DsiuTq7HTP+u{x9Mx_u{v_k)r* z%M*U~8Pq;Mhsyo3xIg8y*6G*E1hbiga`%%(9}+){D1fhScbEjXi>+J)ghS44!MP`c z)1{*eWky@m}i$HM2kd z5hUvYFNPVOp4h>hER?`^^zfPNE@Y#a&Ja&)n~GZ)zADgO`sVJGq{wr0(hp1G zcnX&9@OA-9LtTZ}SpW5J@-&hxqFjbUtq}aKi-&3V`d_Wqw6}YOXh>N|((S*)4b1M` zY>m|f5sznxO|%bL=`eghbkg&XipGc^=EZOJd#+uuY1D(+lAgd%QS(r~(21@7 zq?zo+^P8yuNLID7;H}0Fgth1!*deRyC?_UCzhhQm`B8#u(%v2iKxj*#7O_AH8i7K96qKrB^r=n?({tV64s4H~vVS zgLYKey&HAk`t1BRbn)}r@*FL+G0ZL{QwFxW6ukAJ>=c3fX1L((Tsi5(URV}54=~<5 zgMTr;>DKsUi-!s-&gIB^sZqMeMFH7oieOxdVi=5lAXqWwGEH6zub;3w!->!YMOhhWhyBAE{1lr%N$0fqM`Q^wH$5Y7x1}-{DAws?c57pfFMEx#zNg%oVS>&M8r&2*XHxf7&Hd8#IM8c<(JuwM#I#@UETuL?0 zBJWZ|y~4y+B-72ZV8FAx)eQe6xE|@_HdxgHAv#*-`WNKPB-u3HT&P~6ZNMz5_m}3Z zQCA4$%E$58Rr4a1W^e4dqV!c(HyI~uPt*?0*NN>FA|@{fJ<26|DrWHql~Bt4cn7nj zIr5(P?}sjN1E}1TW314RG!I0$4d_U_cxkyujLLtsq}rTnk`sY7NmX__5-!SZ`O_9^ z@pytG3&XyrSYTtu_(~~ow(tR;;s2S(FtglI>nL6y#febuE_N z%+n%x#>oF$SCPYX+-$}7Z^v#O?f{eD{Rn;aeO%sbT)NbDi~l)(^P&7*yMj_me`yy2 z6wlyU+4uz{AMd5FYxmWXJ?s(vD-aa!Ra?&=n0H`wUFjC`6y0=wX?ghjg)foO{1~Mk zQ>}k=;tZOt0U9HGOPUiyqF`nGDt5D!c7#vyOMenkIAnm$P+lD(Q1_EcZ+S>lP=H+j z{bAJpnSe9cK0NdA$Up{?3ytybWl=AfktM2=d2NTCwV@;0_I8Bg!o}=F!Ll~8b*F`Z z5k)*B<>p%jWv*>?95m;Ro$`&B1&aq&2AUbpBvJiF&r@JMgNU}kI(q$=)BbhdFZ}@x z*$9HTtBc-JcYE)hIQ#{gZOZ)xOzePaPw)?e|C8?v8Rm30O(a$7FJ``q*P92^6sU~K z&I+TWHtI!FI_W z>W4eFB{vrpt`3Mdu9}0D;zc$Qc*5FvxaWD_E=%J+u1ZHlkra*0R@z7Ao z4A`zLILEs%=-ku(|9XZOGE*vQz3vZ;>E;@3=OCAE0U>f}NiSb3ERSHf!Q!lS zH;8>86GV!-W@o~m>|@-Q_vTbVMns#pYQGU2S1@5fOUERa$amXo|9-p1B+B2Q0AxJ> zPYX~`fz5K|$>XX?4aqxYs)nJg6~{Rh+i-n&ej_?Y5NAhBIC8IDEZ^=Ceer#ClLcVj z#>Ble?>sCm=2@>17h-O>^z2Mx9H5$>uUiTe-!QCfdT&l1te)+ANS*>O!odJ+R-k`| z3>5UJe|V!yawF2=?*V^j)f&-}LY8wd8z)wN%VZ78bHAj44yiW|b+WQ*ql=5?>D6@0VK$7YEhh1uZv;mOW` zLPWDv*>`=Sr!DLIxb|T>DuUO4&DFkFGN<43%Q&T3XoTXErEZy6~C&#|{U zn5tRqH?of=SJw~?TOVeYT{UMPaLv3do?$VpN{l!uH-p3o>?w3ck>|)>L5LNq-GV0Q zq(u2>c~>C$H6X`=UokC_sbk;NW2)ZAJXj>i`Eid4d0wO6>HJC5geuV^rhSZlc=Eu} zN6f)o-0%dI#FBe>a^U+EbU5^h76|@*1HM*4XJk!ECUAy9C|^K2zLWZLv2J6@ZTMJ@ z6u=|I?*}g9)74`cjj6xsP{&Wv4HBBeHLo?IPiMxi;TQLJRmdN5dn7J8ZLkL92wtwW z>u6s=OE|@(G#IUx@(9B7G0>^MDTq6EDl%n5T7)zd@;S!!MXZAKa#AD{x_&ZP-&)!v zewx0_htr;(E#Tqg173hpAQ-{IAlHQ$^;Y~d#@J4~Rl)<)tXvUKXn# z7}JsgbU?ocW)tUSlFt)PjpM3sQi733O!+R7X&I+HdgN~e_a-3V*PGNH|DD3|BZGag z+J{DBu?khP;8GOzh6Fd9L3mYR{RqDp16Vca%e}s6*nnrlrKuEaA7RFtw2$Ii*Ha05 zR_Vn_Ax1XA?V+4j-}q{oV<{7cNPXj|AOhXQ8K6k6@OAW~fYYAz%ZvJway9f6UG`J( zwUxw1M7UQ(-4#KIhG*Ld?}qsjYG3(Ocl(?9R-V(~d9keE86&DU1bas*_gN_`btrcM zuBwab70u;QqY0~GtW?{X02p1Swf^t@AT!gT?mGLe%Tr! z41A_oi}7cfba0ZrH zBZ3HvdFh4%$w$ovNN-yE7>U5ZT$#AXFccnKImemP0IjpL>zpLj?aH^K8;^I!rGcKh zvp*VO9tZ#9bsrJ({%-nJe$w7tYq8Cp%4X~QewkWuM~@C4jDZfZB7S3(x6ArgKH1XD z@VAb_3-wUC{24O;d?fv*Z?5MiD6T81I^XRrCzv-j6g+_~KG;_XZFHeBRSS!5C;$iy zmVZ{!bav6*u9~-)qHOSvQb@C7KlWyg!<$qBY7@nh1?l3_Ge7hF`!5UflOs(DrdPeX zZlj)^RAq5GB6(v*Oj-vJ;S3GGOh7ls_9<6dgdwX%lZN~Uytqt+-O0@BJvc-*{)1W` zJ<2K*fzgJQV@pY0*M744#UCYG@v6Rgv^M@h>!-cPDh}*Rlg(#LKfbvQ<Ft|(X(9cVOq_+F*u;%S$LMea?AHH7(^*DE z^~Gy=NNHt28blbnq+2=$7`j_Rx01e1jdt0~~)v>P%+O20+yED<_|wcs`#kyE|U_c5)a>xleLOBk#kf zfsj7#J4?sVW+o(@KJBo^W`5oPQw7O0YQCzv&J8bZ4rzXvxt|^OYJdfjn+sMpBhZIbKv?7(lo69kHm-3CUZP2 zH5k&|!3J%r8*s!Upa6?=Gy+cvVB|`|tflxVd#~A0-9da8Jkc-gRVrU_9FTmV?c{(D zkBsLnMuGLM8kyTbG3`5Oiyab|S_-cN_9}8Z&qp0s_l|J3`TA1bcZw+xGE82AKA8zb z8?kPG{arS^6v!|;angyng*W&RJn4T8zvMVbf_1{s_>vXv4@Y_1-i@je`2=`$&U5zt zU_&#)YA?h+{TbY?Fu#J{El5uU6^~D_pMnwKn;P{6Z>9Rny-)tTBxfS|6{910=tt1c z;1tKbj_0C#i$K1h+G3^aJCI)=%dumW z%QkGrfpwHr&IuR3AG%WkDX$StYuMYB`ppZ(V`d5-^?li6ap|K`pJ~DznGv*;P0J{N zTXk|X?ayN9_EmoU@6T>8z8(vtsE9eLP4{w<$*28j)iWN2`5s+p3 z&n_kP)-W2&&2URU`W&kMe<&AFCAAbT+y;#?W#Tx6k_OarXV_mUgrqtcD=+!P zsk)5!4wW8hGIYBjWBwnXbQu(|JzQLTC-R|17+)Gau%}k}d*zE#N^Fqt%%#iB20ot_MKy$1YqJ3?08Z4|k)( z0ZY)?#VS9>MAs!{E}#n1$i?VZoi$jSN9Hm7>5Yksn;tSqwWl_kb6v(p*%jDWEn&sy zYMYrfc~9hJ&_q-L^_+&L7mvtZ&9skGs?;o5vQZEsbTwo$;CLSAHM`dg<3FV0C{8Jr zfG_dpMH?szK*qz_q1G=!4}+(s5Lv5E>e1F%&TP5sYDfNtvdCHIyK8gluI})S&7IBs@c9fL?8L@X^%?yDWX&q-@*%j3#sk~u63C!6d{B! z{CPe+c`-Axa}oS1elPvtqpx&4vP{w!rvR-StC5M;#A=bUT?BQC!y>53FS0VB?tOYj z*JD3s1j4{1;gG-kqkuK`?}H5?)n{}l>&E^C!+CR2d+MiPQA^|Nf=$Hg1p4l-yN0^3 zMV}X#&Z+5{3Do%`+n?EINx~Lv6Sb0|J?D_#q!EipU79R9Xd3Gh&9_HS-Hf%6->6u! z9Fu2*@|au8AC1X=*v^C}m5ps}wMsgjW7pvr-y{<@Evtm%94xI;A)pp%H0{VOx7DC` zdDNNS387vRbm@TU4?+&V0tQP#?PAW~L~M;3 zH!RHTmg8U_D7XCP-R*Bnyj{r{;k30L{LY{J^MCF9;vS=KwX3~TTt19D>gJx%{70XR z`C63Uyl=cOnA^8Mz5h1+sK?S3J0&DLU#IoPj&m(t#um&?kA#l}ZrdwHnv#v#e_?72 z84ux8Vu5}CRP+#2g_l6s@%_A6i+dXPo7oI%E{7MvAB9+b&{#7YW#41KY<6pXOvmlg zq}S$b4XnuJt2^R$q+r+{L`kg_ByD>@%~tCS#MAMnIacC7BgF zEs1aLAQR~>TNq5Fd-ioONcZGDddO175>3~SO6Xqr?Bd-huGpy4&A)4Np{mp7?VPT% zxDA#4?YaNNknaYf;}GVWZDD~0L-`~PB21fzh>Jc>XuNK%hP1RT&KXXhj=f5k!HgV~ z?H&F9uA_s31HQ!bwYy!DQY;k)pN~EPUP2fpEw!QolSqKa8xz;jfkGF+A+NYeH~-X8 zNCf#pdqdbG?h+rN&ho{vsq0hwnPcQ%WRvUl#f)mxJ~aHUOeYRtSi41^Wn_FA=GX2I zZNAt)r#uHB%nTKamf0UXG}rYDjuhc+$wr`-c2&vkKTZ#Sv)3EuP}DI#($!AVm))$; zzikS-a+!HS7hO@06932gv&82MSF_k1Wj3@WRfS{n_OmiQtqjpH?)of6QIlLW^znQ@ zca8RNyM4QmoSWxT(HZ$8H$$fZ!@nQY_rn%w-c@(WzJw|{AAk<~3q=YO@nI6eMi9=X z7az`j)q87YyaD&sI~&qaxm^-Z=`Bg2!EFG69_@3;jUYt7&z!7&Ih?swkpySKxX_?H zlJrfH^0ySEP()(ozuf*)K#SeFtO^{U+*;A&xL2tfJh!y_L8BTH>0)8~y14o^jtr)? zuy`fOOSLqOopv5&h0VqRmWE}xzUi2sS^4FX<~JGX!g8D4rkJYlq)dS?(a3&6vsqd+ zGI&QP;#ss2JWI(t8!8TKlfQVqR>1$jD_B(5Gx(1X) z@vSCIO2xpA(23oE@RUy;aDs|wFl-JrW%!SepU2!0<aNs%OZ*ESQscDP@_?Jjw|%w%JjyvsD0J%w?! zpah=8JflaKt9eJot5G=7evaeEwRhE#5%Q2|afsD2Y}3i~@n2xx@92Q_5ejVf^U`uNYw z$2An6XuO5Df;mBAZ-=IKU&%%3Che(*3A7QpRbgaJ!D5=GOa9v z2Cqn80@~l40Mljz{EFTtO*a8Ml&R5gpX5Gk{WNvE0uS|@i*~em&si# zf^zpTnoBhkcHBNX0ufXDP}E{na`x6tLxNe0mW?>+$0ixyQe5)2bluOC0I0zV9p9b#e4j!80LjlISonOJEa*tZOG?g#+~^-+(5 z;ek_Rxg&p^6OZ&HxklN)wG(cHWR8g&_0y%6^=u6%ThyU}-;^hKMY9t3~&_+Q#s3#?46ZCQ2{ceN@b zZ{OeB%C=H1`DSU(=lCSu8TbT_V_)d9+{9%*66BNP$A#W19-@Ecq9bLwvB)ML75J=- zr;8NLoz-cr3Pz>~K&L;iKTopq%W`ErUNllPi(5K6#-f48JFA`>q@X{@oRm%Y*!({9 zZsJSRX|x0;VP1d#7!ayngpu9E_AcJ0V5sqx4A?pqB8qBUmmRq45^SpVe()=i#*H)NFZ8z)_$h4;XA<|ttG)1UPN3fiDx;&g*M~*lm`#B;K zmkmZKP6ZMjUiTQTQF4WHk&kvFe>hstC5FnHi@qi?8%n*rUI)DEa}xsvd%(hy0BiKf zOnkB1OLm4inY-=990}H;gKjo&9Uk@L=*3sn)!o&p-y@A{s~^S`Y;|P9)3ie%VT4^2 zebL4$<@lV5r63yQ+8Tf6eEMoui!@Im21WZ=l3RQJH|J_bhG_5i24&p1fAeC_whTR9 zCo>u*yz-;$zBrzKPTng`QlGQit1)n&T*CjLAijzzcv%gu@8uTpc38RKF4E|>+=MDI z@yh4%(o7Ataj4^`LDu3~-lMAL{z6I)o0G}X7&`Ia;{)3|3>oPO+c{0U2qb zTcVO^U=spFJslrbMgHmO`#D)d`EFsHB2aJ6vWTHAOGJ+qjb_uD{8qyHZU`i=Ttea~R&QYECZvX#tJO~8I6)>OpfnM(Io9h(NeDUW;RWlQQm z(!a^TsEV8n)|$q8iy#zA*5_~l+E7CKM*0t0Ka55 zOiL43_AsqD)W?Rmn2Ws4YdBQ z)-t%BBCf=&!W4fqTr^3Rzv_B`*BK7k>p)E67h+<=e|sC5^PFIqd1X&RS>z$;-+U{~ zfzjZ66PCp!xziYjbV84|7&t`t?d@tXl?Lgi2vbz_fIF zw=R2!#yNLR4PQI&>X3V?$nc5}n7rg`cF>W9OXRynsZYU}y0#p!=^)Ajb8e(XjtfN@ z%jMA4JXwAX1)>i#SYVA<)+h)LmYBjUB?@&D8VVbj2_tnt_q9;X5xLa4&-z|Kgk26G zxluvbfro28$D-M$g2Gl$-+ATmdd~28+`2O%l!4(@vgMkIO&lwp$esLPQ`ximAM39zC=gQ&hUVFaoo?wKnLMunh=e()HkBuHz=4KL?mfxUbx4#dHQLGOl7+Fk zc~f_8|Ia3;`-@v}fRSBY=PTQ7qnS{r=p&CGI0=x@gUcA1IAk91US}()$D2&u z$(tE=&Q3JQpGuI60sWVf*MZ9PoNVuWh^ZwJwX?_@chvCz_Q!rsMNBe7TU)He_dh5g zEXe^oteHhG_KwrFRwJr-bC20Gn(1-~peEOI(``hv@AVqPcG{t~1y?IfeKc4WI}J^; zJk@l-esZk4ohJIslvZ)I#bQb8F(zTjX&Nm3{`iM(1Hb=WyzZtS>h(pV{zNV=jSrqiaDuLz6h@sqFT4mi6HrNA+VB z00+)cvoVb8)`sToT~)I{L4nqR?R|qY<^_(=}gz?<-QRI=OE;&xAnd3av*Olvs{)kS>G9|&m_`QQ# z+17*a{no$%9+Uj(C3tGXB2+%cu7gS%EPBmV_fpSaptiW11M~iZ*z7 zJ2fxZWcshsAet=3|3(Y^p02 z;spyS)c%*)faorc13#a9RmQ?dPptI7_}+|Kqk@@Z!9`=_&nHFjPPO$*OSnHWqcJ4z zS85hoe0I;Pm>doM%eTRX&II9*U{d06Rgk);QH;^2-C|NiLfmySCiq`DQ(l{e$!X>! zs8-5MS|1!I{U%CvFCkSj@cq{&Nl_FDfv>UMzyk|7{%qS^qulk&9A2!W=?Ca=Aj5DP6JQc;v9zen%=-Ap?FK>FPPe3^+vOd{!?DffS=Lh0v(jYOa(KDCI(dFmWDz zwT#1M!$>1g4FDYW3Tn=x7Z6k8hN-P93#R!u28sdGi;7Q=VqKKU5kUw9o2F>J$QD zUmP;dmgm0V(QE3JH(6zTQ~L~7Hx3>cJ@{1WSc zx;ce4=eU#WF4|I(cC4!nkuy$sDeP8^&K6; z%0ek=-ku9peKc@&u%jl?oGv>qkfWc7y>N6zTP5K@^3eGB@~g~MW02I$|7QV~1RLG( zvIy9%Jv$Oasm@!cnGGA#(Ox|h#m|**02eiSm4Dm9T80e7M->Zti*qg?U+&~6vNK|p zZklkoRsH+f&k41E{Q~lhnt4zGg`=2Vu!?sx$T)0BE1 za0(KjW|s#6zgTfxM}2%e=A2MjTbZ0 zT`m^YDJ1n*6N1~&;-qz)>25`cgrr_4*c6%Lep?#DE!MJl>ya?9p~{+T66k)<83Cz` zQAqd@-L#DOxZd9LP({@gtdGRu-|G_MsnAxpr{AECX*KiZ3$Nw@LgH%2!&@oPyyg&n z)1{Sm<0b2*z+*~_r@OM@8W{-so40t`i#o#Jof4YmWo>H`Z(zzJpMTP_)1up4S{fH6 zH1%7X#W$;H+t;Zqrz-(gW2Ms=@^ok09{7~?a{cwE9P2uX@x#a)PO$I2u*! zPZUsNk>J(u-@K9MHo?*#ay`lytHNL5gW9O<*{8?&WdoC&R6?l&^U?)eSJ{u1-C_BY z2CC}(xE=}zKQbn6uW8j0qAL{yR(-6733Edc9}>DzO%ZNTUY!E2zB_Bv-Qp&h33Cb` zVwa@Xx+q=fH7`>Aa)3e1ETNeTC9CnLie|CW(MGQ((c!-B2vg7LQYZwXW}gI}BNp_O zV2q>QO{C*{la(YKvyd&Lp8 zosDn^yCWe*Sa2fnN<$u-x1NoYABZ2a1x%Fuw?>OO+Q6yt{qm5+b-YihM{GAqxbu;{ zetWQC5n+8FH=ra>VKpwu+h}mq5pup+D0~Twlq6DKA5dhpu~V|-&y~oQ`!P7O-z+8f zRmS0hLU0_z=grUPo-BshAzw$0ld1P`8IX+kV~6*f<&%hGl(DLeM52DxC}j?LcU8B6 zZ^o2r=UHm~Vg77rP+C=b^G^ViOAL z|L&+jgcDR#*<9+6;Fm2UAU24_*rt`|e;w>#mhsh%us5#z`DZD#(Bn_Vzo?1|)uB+aKYU`!L5c6kao_vB%;N=_gXJMU-t2sNs!)ji9=^_}x@7(Us5Du1D)FE(cFl zM!Iy^QPC?r`x3MeazpJpSyZ|{ElFR(3H-P@K1!adN@#^%VYk9{9YduJomEb=4GvxM z)_hU?zDqV|rW92gVM5=RSN&J}Zlg80{k*ZEz0rSLiz-{WfGdjMbITT&D#RtrltW^x zp^43=+ePU&Z6YLZqX>QXBFmmeE<68rL_s_gFj)`*^}qvvRYi0}P`vCqE-m?US=|f? z)Ay6!&0un6N|XDfS};3$1%l-dO`7AL20yQa-KrswiDr350a+JTd-}w!0DkU9B-g4q zi7gfX$>r8l`M;qaeyC1KlJQrg{&u^nfb*P<2W?uc8exZqA`DgJmOhjTebZNzb{?9# z%}g~mvDAMiRd^)UJtq@WV!K1B~n@_wgG%7YqJPQ)#x6O1r$;e_QGl z#3z0K+-q}bzevGM9=(AM4H<4o4qnAM;&AYd3l>KVjIl~8hvhbf0X=&+({;X6; z0k#@1xB;Q+H=7-8>wZoLnb@U=$?8|loly^zpQ*XH*4TBLe>p5@5HZzXF@P?Stw2>r z$8k`zKX}n?D$swp8!6RO43Mg|f6BoxspI=+nZls(O|g*rvyzOu$Bxfr#C*cUpK#fN56CoN3!UZ zzqiTN&cWuBMCN&qak1O z*f<}NnxEmYhlLigkcPkmk>$&_sxWn-xK;J}LeNk}!CmQWAX2v5zU=;GDyS1-=#O#o z4*|cu-q5*La%o|_L_AFWto7xeJ8=pNT3%WLbxu`FqdFQTsXzK>a}FIxxRej*ZQ7dd zWNvzgy?ILC&bSVLuK8P&=`63p1G=N>p+-btk#i}?AJ(P3G;*~OtApwQ4i53ZQ*}zT#08yV(8=XvQ0u3b$lA&(U(w-OtfAPcAB(8) zf(Zz+d0!lJtM9|nwNH{6DXQ)ZIFeEoiy;9pj04c-KF0Q^?gO;VTKFHWcAz=U5`w&# z;4ShvCIQ`P$GEj7uJ4O}aG_Vv5O8anIeNa24DN{f_gSN%n;MRLdF9=(+qtQ+-Ec{P zc^H{h@J;x+&1LwSgYIKse_U<8$f>+pTv6HJ3|li3|L99m*Vmwvog`7f!xY?hq{asZ zvw}>XCxnMOU@u!sB7b^(^W%jdc{ewTc6k|_+r);)NvmunkXr>uftY{4@cj_}uFi!| zh5u4`(>r+2_mY zbR{-dU6}@%>&@jCTBE7y@6zWLcq7ni@`_*r|@}e}2Hc zy4O((h33XkbZq4KlV&&aIYuEh1{FNM|5RSdL0Seaymjj;ax!E}Ol^$hpEZ zw-6Wal8|oQyF3kSO z{s=Ur-=BmQxdg0o>zwp_qU7((?|A=(XGGn$vuwsGVV@0QwJ|Y5ct42+v;!0G@Wum! zYsu*6sP~0zs_{M$uSILbA2==4sdv>QxyC5|a9pS(EOi!gDm-DFfDw#}Syif6@I*(8 zS;QlQzqyJITM~g>v#7IH66|O#(kd&8gW|TBZ;2Msp_%p8c@x$2=L=sMoqMxVNb1y@ zO|-U2bwg>0JUBl6LR4dw-_;z>`t!KwbjIzUh|Z&~K;EPBkb2Y4VbDGyc#(z$yp^(D z+$Xp0LqAXWsCwwWT^HCAxqB^myFF#u)5r_|fs4?jg|9tM;qvXq9p`=g>^qO%d6atP zn`x=EN|Ap!(HP)d6?c*Aj2pq%mpk>ifpq1w;$};EovF`%9FBsw`+jXVn$u45*jW3? zbg|xY?J?fbYz|WKGEap)*7!_%Bl*Rt89yj8y*}|(4P#xEd)Nm=DKj#ZFw_oj?*I1a zO1FP45}uT6(Zi3V#cr0N4C|Kr6|}T$>zcIZ9PN98AfBj63u~-4YBw|f%yFq-Jh5@z zF(N*%ogP%KH=+VhKu-q=#ITKiW54x10{a=doN)L}RqrG<}-M1B-S5~i+neG9rwXj#V%koo5y7n&u=!`#l zz6`TahNq^(>x4KRi~^1c?o}x;FLH-9%n?KdJY2r9eYtPLZm@ zRwKM-gGET7&?9q;Ig4Nc1*psQ)-2>d8uF1u@DjveE(q|XBqq{rAS+TI86SM7a0c)$3aBgg`NDc4n~bbqPpoRG0!uL~Ocw0UUkY2QOH zhXIYWWNzxpjB(tP%h+|Z!NiCVUzlwk6%&iDI=ndKy~tWRr!0pK-EJVAEwiCh;18hI z*S`zqTWDjbb8Qj;64~w|j?u}EKIVhCJGTsnUp2+NJv8^us!;>m`~Oi30D+^_ZZyrq zmsdgU&M-~vNWf73G6amLtnJBCjuoh~tN972tU_2?Sa&Oko@dF)+@~WAJ6-am#zs-j zI+Q76nq-=f6g2AmmYyc+-)Ma||55?W8Z|wyT`_5XBNMXKkpyicH{DG$(9noW*Mek3 zA>sOM;B`pK3Hk9OD`-_Q#~c4smLUq<`)2C8&|I&U?dU-R!7Pp>9=KFqR^6^?rdzpM z&Enhk<;&qAVM#$Oq)hNf)^L*bTf~zbj|!-9SRyKgJamEMl2VoFbwGv+qISRE;JX&Z z1Vxo1xr6b`F^Ql6gsze}mV0UF-~A;U%dSS>A3%s+65Qhp`HZ}0tZ1_| zn9;1&aCD)?)_^i%na+N>ESi8YsyOIET=1C%hZBA@T;L9(hA%zhwr!ADXpt~nK?#Eo z#hqzqz6p=QBXTwJA}0Xo!;+au5Ud+lliui-~5 z2ZHhaIymYGsW&0evMskEkBB_32+cFc*tv&5`~9CX!>ZBTl3?19wvWpYM!pK$D(7rL z<3IGLYQI0nzU;oSQIMH{AtL#iJp8k%;d;rBEv$pte}CDt4E|EF)VmVnuM(pjFIn_4*Nv{Os!nZJ2Gt1SVkN>4 zoRX=a?!KMS2r;xWMa$2$gUvwVzyc11G9}kr#z~8gR#I?-Hcp=ZYe9il58nto*@_kl zVRh2L_Z8_JMSo5C8PAHPe_=PvuH)`YOqbq=Y@2Ouuh;*((>Q^NHWw~1j~JH80giBm z(rVA^Y7`#{GD1P%ccB1vs=-=B90W~VASbb638?x09uBC0A49t7M0{jsQRB?jEFM>g zCJP%)cLZw69N}-BXV@lUO3jh(FvKHines*7LgMf%*KDDS=IcycZB!-5wnSjOZ{D&7 zI2aPV<0)_XX=M1vpgX{5X5@7fL3cTI0gwBne>e-`_1xJR=l&n;?6nlQW%KZWv&Z5* z?n<8_o7%hkQB(&`B>b_!cB!%?p0M}(>A)b9c+91{$xKt*H@|rL4cJhd<@2=$E)0l2 z!^_|s))7cTreBjefRen$K>OB22OakYDx{&GI}^y}HJ~Z!=SUMn?E_`s2JvwRNa7?V z7$it_@%b|}IDU!ie&R0c7!{60oI9v5nY1hzwb*l|h!Ir>>6<5tf#`dj@QR}I@4s35 zbfBSk-sj9tHUmDik8kIV$Gr%{pj&&>E=8R5$Z*T`;mQhPs*t%Enur2DS4K{+dM=Pqu6T-H3vmP@O3{!$A*y zA^q=DEU(oK+0_#=vm3Ta3Vl4W2qw zS4TQTSzip`YA_?rJ8QI&XkWek^Mw*x#4{Oz0;6*CIgN?3O*-ab8RynL>AF%3N5 z8AjbWL?T^Q_SnXQl+FAGi@gUmR@LdiuE^F zKJ|QR9nZCX?66ZYMD)#@4+^yN9kel^{Q~L#rXzw54INMRMa=cm^iv*KP8H~O52}_+}x~VcO zPYre5eyQisuflm8K}A;1${Hf^bC}?5W)g@ecME4UTHEL}*Ilb?^n%W;OBwvo95_WY zT~<;yGhO4TN`}@X-mhde@Qf_WQ9(Gln(DrKkP|DGu;%^HOHNC#*X|IdUqiC)a|Wyn z2RRQ(d*dJ4@zVMAcVkqgI*zPK^P(2Ore2Lqv8?9L(4-A?eXyr1UAKYZfSAzMjT?pi z$5w&^J-KD!VdJ1T2?Fc;9Tz55sW>55p);-~DxFi}e;=QJ_0O&L%XzP44W0f7ynXjk z3t{{DE&OcfUOF?sNSJ;(!4O1|e?Q?%u|OmZMq_r{JKq}7m?4Pm3~_dzM|-)2B&{0w zCQzk!y5*{`={TXt8bZ;%fE>ca3-_VE}X*X^`3Q26#=JvJM8cNnpfT&U1nqkZ(%Pn_`f?jL(m^ zn~s@^JdyksyjMi8#D;zyNa-c}@2vMkEPGEB7ws0G!DQSgfd(@fz+uCQ!1+UCd^q7+ z@8U{ipMHb8^*SuKM=PUA}$Svl0;mRwlU{H#79RylA{o4Y%84r8Zv&<~yhQ)f7 zxirU9sMhKJ2dfyAbT8+yk8!c}51rgs6zJe}yrfoAGjxwjl*mQvZ7myaTb~$ir12Dg zUY3Xhst9)!@4Y0j4`R=jBG9@QMEFo%RJKndX(vt{pY}4?&wcj zbKh5xUG|Fod_%;4GQ49@$M5$lvb|52^lD4UZc+`}EocpVK1PJUx!;J{Xv=9IVjvdY zkc`BBgCqX8FhrQzlt+lyXsj8JS@!q<=93k9L*&4P2xdM)9`i{ zHTnpzAO3+Q$V&jYd-IoP_CNMA{!3w!$bVA2j1gbyxH^PeAc#cn25EPSjn>Ej5nyll zpB%wUUU^N0M_SN6sGTsKUI@t5&L`NZ%V-SZmge`1#3*f zqMV~%Kp_ghe-)fuKUPitEo(P*3e-+J7OfWQzHYyozv<{Wv>c`YxJ!3!in4#j4jaDg z6n~$Q6R6|-eOuweGMPkEsUaMZ6BCUNa(W1Panc%i%jdVcHkdkMmmst8Z4Sv)-)1v1 zaf`~vCkX#_|02V<6djXj#HP;k{-+JAl~ZcK3o$@OHEy0YTsiI|sYby=M5oab8>+uL zu90~q!L7pAsN`mmA4|AJ+L#SANa9gfnYi9JmsTz73TgjPF$+FVi|0|O<8M1m00rFx zqq}7hnz>(E2vzq^@8%U-wjK=|(Whv~wWfG}!ze5y8_jZ9pDB{@bpV7^CliTv;xk_ZtR~rz;%i(rTiWaHo z%gRp_b)ypXf(0o}e3Sr%kex*q=$n5J^jpyYxtq=VFVn3>>wgKZZ~yI~0Lv$LV{KiL zMuqz)rW;@55yW;c__h^oDqt`jj^JZpkBy!BU^rK-nwKh!mbRh$<#dzlIf4W{GH}s^ z+TEegbb<6?j{1W8(mQ^kp?12>HmZnPKrZ?WLGEhqmeS$ZQqTe|XIakkquj6;O^r&; zf{{CKf#WGL2spUb8CHISIf!PD|*LzuOd$j%^YEp zR}u%?VS)ZFP^HZJTX=tED}%Dyhl!*+>c`PCDZU!DGZ;LZ=4i#`=$QOyUDWdiM9F1%p^${*c})>Cr8eeodnCwu?4tzIDA{*#s9{f4Yh-M1dhK# z$OTqC3A6sQEACO6$iyEpREvIxs0|bW%Qxan(C~^qO?kKBjva#+f#d3LfOvBrU*%H| zgD5}+^i!0}FGK$0-AMm}Y|PB29*BjrPyaQEk=eM}rr(sWAB9p#j?4Lid|%?Eo&#kn zq(v$la~sq6RK!MgVyEf5!D~ZYG}DRpL#Nx$sszq;SwrXJ@2*%+GU02d%g6U;Gj8kq z(?ZrIB`Ng`vh$*&hooC~kg)Qc#>qf`ohZdhX*Flk^q>3B{cZ>7yTjFzU6v!$d*Mvg zcW&yPZ_(f)2+pz;+VjXTTf5zRqXbnKMgF#G`TUj_xAB{R*tZQpI9EoS?bus-%MB)Y z6%7^FcZw<3$nrD7f(JqIH!C%0vY74k!(MM`!EfN zdhplumhkT57kiOuhLp@RJ*@^?&3?~fH$X<{(?%~z(!Qo36h!y-gXOb1j?PCJzscbn zrvMmvfRA0zze(oY~s=0nOCL`oq6VWt;% z;@QS7Ad6!a;+X+|=}MmK^YAz01El(L3MQ+v<&h$PUIec4Rur#WX8YQ$&!i}vE3r4k zUOYYgmZu>Gb>~i9%wM%pG&A^)!cZOJw&nr%R$4gd>2A*kXtSqOrlVJ zjSTWZPoBqt)Jptpy<<%e|DOfW75ywk!UH%Vy=VbB z-G4C|lu03+uM7crN2_xb02!3uD~1>n3^&@1EV>52B$H~ugA*c6Da%#qq=ijq@B@qz z8hukx4!QdzD=d;p3U#C8&IQWl67|82DX0oNO%?=$d!S^D@*`Z>$;QH{+2x^WOvQnw5sNS^~bG8HnVkFyO9xL5DA0>|F%X26XsWwr5i#?m_|E(ay z$GYreG&X&7qv@ZRiOZ^nDcVX8R(cnF$zPE6a{ zV$XJ8Odd?YKD6s_jWEUF|W|PzXA+0XBn`=}Ei6p1`+!9uF$Hy=4m%lq`?K9{d zObDwQakihvuLNKlCjP-3v_pXB#TTYitt7-97*Dk_1lt0NY+k2%ArTvn86A+ zRwzKCZ+3_M!+8t$XBhr&p*Z8AZ(j5u*fXdL;iT)b9Q%~)f*;_it5EzY+25UszHt*A zz)2{rTu2jY;nH?shRkGhjE6?f`dGoaknvwq+AWr8C(f?P7cul8Vos7MBrEV$ZqdxZ zbnZC@Chn}1R#w^8S8y5pg8=p6k*6hv4gGZcYLyzHX__a0pP};V*e4x-4g1E%s9@#8 zPI1i*(K|i*<08)AylrlzEaH;{m3bLlp^!VwqHutiQpC<&WL%mkRF=4)s?a9Rbjbqj z0TqeO8ccO%iOpI}muw29ZXk(33mxUOj2+?n{iF@6Mi_$pZ|d@tcu zX~GU+e`xwnr{A`3VLPGZaxa5S3eZ77$#-kzO`t6{NGVVzM@pAz-sUWdeAG`qKT`fO z+9|eMv)RTiTR~7!CRohfq3Tc&kb=Z#24bNSLb3rNCi;BtDjQ7_%CCYBGu`Wf5`$ZW(e7>bk{PPyZYhwPJn2}am`vC-5qd^HnO!HJz zAGM;2Bpg$bK|i@%W2HHr&xLJR5#wrERO!^?TA9Yw)c=CpNFZ4*6K23Y;ydq^>jlNF zeC?YZ+K~VcjkHtA>uc4MMvJv{)pv`SoixFTkwsAxPA3dK0LQ5eO^Rm0W~AsR`+av! z;dbq7h|u-`&HCYJU->^o&?3b`cs!R~EIGA>>#QGDg!#9Y4LGv0fNzCuv@e-!V}V zgR#5d6BJ(Wg(Zp21OJOSOzHv;=Yrj0`ZN{j8IQ@t7|i@GRA^R8DIWF8Hz@B&_5~b` zvheo)_6sCnWU()udXM;d{lmd1a8v<+y}3g_`F=5Yt9~^0>1}z_j4I9{?bP<1iOKg@ zguolYUWW}*=99$yKI7nvIr3I;g(srpev^5G_qlS9>Wh~-aLGsT_tYcmHF8I9&P581DzKB z%N=2Z>aYDYBSbpF6d_k9iHsc~_42MgQ{-;`U=%&q(lrs#!|L%$%<)sqGj7LayWCCl z^pPlO?jp2;4$rKnn0G8ap|L z;^pHsgC}TXKMVUVVT?dW(G+NMPOOh786quHHqAs>;?$pIOaKx zPfBw4h<6y97z-(mO4rRT3*n3t<%wNOxZuXCZW=(TyU(^MW4Y17H4aM7mB2{W4HBb- zYaE|2)Y~$Ox@(Zc1iGpFc~t|*A~NMSgTyE!M5(G3CbJ4z)>b#=Y}z=<7T?zNO^%|d<3QffqEZB{7^J8QC~o9b)L zHJDxqNpzBTw>GQ}N}5P(LP(T^>s6@`BS6C?E>y54x9d19iiqeWN%&aqG01#~n@vD) zNMbk%;jUXT&o&^}oB4j9MA7rjPmk-=FFlho8Wuor!7Y?4wrt z>Sla_)c#biNnAvLBef>6TazVa|6RH%1!1k;PRzJ}`<~C>-+$my0Kj*?@~$4;PFi~& zzq*IpjxHn5Gpr0t>`g1Ij@(+({+M}lUje}Pz3yHp1-$n8wiY$dJ@sF{K8Z{n5nyW) z&m398-gMrgj`^j}3egd9SSk{MT%sQ-4+z3~0t9|J_74S64Ji*b+v8A;^k zYS*9s_qqLp+2iGHmB2K1f&Kp&B+(}(=B-I&YPVz5HTw(*`?_S(`47<+i#!)==K;-f zxwt*S`R%bzk{7ns0GIHK3sSgy(ldrZ(qmAYERzvB?;JY`*O)*S(0lNB-cP2*)cbMm z6hh;8byNQwHR!-yx3nN#|39AuJ**ZOZlW?xxJLg?DS2X%L?PkrP3CvOqFA~qha`pq zOW?pYi4Q@G#(WyON&VjeP(TaNOP4w z_jxj}u`(>MGAgkZUwBqgK}O`Oa6~jqiF@yHgA&coS8VDA0zs_BEP%a&3gYY1P_%d;&)^2l4D$mi4od zF;eCdk{ILIF^TmEYT4pSda3na-2D}D(C9vhd2VWDzh_YN*$ng*;a-~k*UxW_F|BGm z|Lg{)RgK3R8Z`-Zb$=IN*Re%vofb8EzFi8Ui`={OBGZAJA8lZ1`Hlnh<@cTf0NitW zt$B?{z(dqlj#?J$w9;qoxHxKA8#SZX!^i6@srtuo3ao&?cFd0?k}9fvf9bKRIj(*^ zst07^Z_~BZ?bqtS{jZP32bVr467bMX19NmgYsQ9x#7tQKn>~?QW;}Lf&ruTYC(`KH zAu+K`41nb^oL^%0=n&nsb3PQ}k|ga!Liqdxd}1sV?D+(TLgN+<(mAv_CIJyEN@e_t z8(fp<-rFhrO&6$;Vu1D-{nz!?7ZR?afSb-`bZuc1hmd$peF#XRQtF54-&vNu4Zv3^ zrT)@+?Mnc>F+7XUeS2zCQ!}5sHa4_L1BrW(#6gi6Cj`(NR$1iOo%T7*b*)gcArQ^<=Ld}dQMVuz^BLt=m41P>fY2@{Bked^y2meFT3+N04wS; z^aS^AyA#RyX18H=Q%SgHdpyVLu)x|&%HFRa_%E`ejX>eYn9^wa6w{-+N$TsuL+M_)+)VU`plEK z|A{Sp`l426&U4xMwA2~_NxUIJV%cl z)@Z$P&F6d~h+T7m0})BABkswrSe;puV})xRBr((@5xA~3iC+xh{hil70N@n~-|;zX zM7f(*HO_60wX$S$vAn`Hg+&|zeNzqcjD^wN8kW_OcF0LdbyVhJkTP%TY{=F|CEoOg z7vk8e?oTHnL`0(^M}BuY$IL~E#BuVbD9w=yd);&48YllR896$O(oH3ra5n&Z`tcQf zrfEe|<~b|=KsIjbQ~_Xff7Z%Ux>TmFUD=)Dcypcphr3SzfKdbGf<2<}NHk7>4=!U1 zqPfi7&SZwQr4lPcjc(V@^{4C2U4zNI?~t2g30X`aBnra?mvQxeUB?=Ta0v6RL(;q+ z;gIyGeGv`<&_NO-`y|FBN?d1_rTbE8L*O3ao>8iAe#Kq-9)9@ZPBXvUn>Ye|&ZnGQ zS=6{7G3(sRoJydd0?IoxUEvf85CJ)H7Y;}nL?i-9q_0d3E_?HIvf<%z&M+0{`~!XJ zsIMk2&oh?(2DJNBa#nVp)5!R@*E%3BNyRwiF+n18pUeZz)wyw&YVIEc`0AwO^C;EM z1Hi3EG?Mt}mAzJ5E_Ysl4!%@Okiy(sKwJRaR-6ux>$W?gaY5w1vv$QMCA$bP&Dme4 ztpBoNGJ$qd-OCn-_;U!bpEfOuE(%%+KCOf6X|as2uF>awB8bu$w@zPDq>bs5*sDp5 zrkmFGZxoVv{aRpr1i(*ZS+)!S&EFpf@ZS=?<8#(X(G&n4xw4DVAf_f!^&FBirxqAo z=B){0irk1PTx@DsR!5~1q_oFTosDFYV@J*pscCMH=cp=WY8xeyig_&`PeKhs8@5j+ zlRG}JSf9i^vvc4${D5^H?l`_;+Jv+zxc%=Q&#M2Ay?2eZEz8QozO~lg=bU@)z18*V zYWn4B+}(5oZ8rkMvx!YZ1hy39IDrUD#3+vAL<&lX9a}M2iiIUxI8LM}v0{@rf2=qN zDL5f}@y zz4zR6?zQKdbBytQ;~PPo;*|#iNvt^A53l#Q*d6f99p@zedw=MI`0u~xBlyB+Z-+4p z+NhCd1JoQa_t>ttR990y*^D?pnQ(Ev&m_5Z68H1c*n`%29?E%IVlu6qL{)I5fh1Z^1Arpmi9x>rEhn+vuS62_&#U*7 zjx0mbTi;u(6ZhB_pwX^>6n#_YD1rjZ(pG~E^DMp_S2kc?a_Tx2xEo5EYAPJo9`C#DI5a3#H1+ZwU`t|4)u3@*aX)M?Oz7dpn zeabz-_p{d4F{vAxop6{9byEvT6rH^d%Cf|cZE-(yHfXJWwru`AObM!2AMWrEKmJlt zI~!1(?F3w?wW97YT>?W0*USeS+6HbEN&IdAUk~8bVHiFOm!tR*0H61wHGp#ho?VUk z-+cK3x3*(gAQs&;ZBO4maV0R62+2M{vV85X7hiV~`diycjRpfwMbc8O)YfpIwysX% zgR6aJq|`(z=EfmajRqSA;YJ+Ttrq#)@o=rQkxfqWyWNL}qJ_qLfWWvMU z0T;Ui&V1Q`io@;Zx>S+lHj>zmNb2+->tHJlWPm_7jzAJMK{I_&Hi` zVL%L8C~0L+c=^Exbbdg0@N3`A z6vE zu!sLQhSLyW2JI|uE_-hU^fP~+jS@VS-_5aC`p!}o71siOmf#tHBH&TWN&H-uz(@m? z8)c8I_FHX9Kke4}`|W?@r}3RX^fUPFHDzraV(M4{RD^&`+nxuKGvHB5U{G|^ljh5` zlejF)uP@8;bpYN6;M)MaZ&{YFJGOZJo2@;(KH&LhZim0mwo@?FYe}ou3f=DgZ@Z)B z0|Akqk&4~C@Y)s5PbQ3GJtuCjIHPH+s_(51;rYpgVF2!5?Xv@@CQ{L&yNne_$`VeA z`B+Q|4EK0U35=8vF8jrDBkpxC=;NQOC5Qt~x%KwR26xXkxc6`uiaUF1fwqTu<H3)N87V>1Wo)s|7rsIzPcU4tVy?NvOLz4MR0>WUD5= zF~T)|uS|nLZoEov4`HO$f-8W2;Mev9woal9Tri4+fDDu{L6ZL5HlW;t7P1eZU4Qr3 zD{!=5_n(?UFM|S1{X0MrPMI08kM+Hob3-b5Doz`flQ{SNZng8x6s{R7=`-tdXPYsc zaj9@!O*xlAw|gDnv2y+0c z)8~#JW6({#h{+4DUxoj-sGMy@yh=^3Rq1aS2HZK>;J!c-M`aOvnS2XLWQ(Ty*0U-2 z&+-Qj%Uk!fF^?q3-#}9P-u6Uv-mFc;DYuSz>ih)v9$p8>!XuDcAMYf3x~Xg}B(XOq z@fd2EZ(f%Fe7)W;-M=o%22>HqMowZ4S!zvFr%f{?@zkzPWR@Q4KV}PSV$+_>bE5NlxPb^1Ximzw`s& z8eXeO$uo2>UAQI>I^})zJ;9{5R%oM)VF#2sVBNw^{{O^UF2!ApIaVoY^%59|;Nw1jY@~O^0E4$1n^(It;^0 z0QLZO$-mG0c6oiklebPnxq`D3E+^3&^G}_-3%!{}Y&WCoSf+GSU&rgk*RNvTJjFop z<8KXkTH{%#4&j}%4enn$HC6vv+UCz98#UpSo2d8Z-*fAvlWw|FBBEg}glohcQ=y3z zNvzRL&$bhuzI}q19$aS;vYL|~ki>J{Nz{_qV{T`gZYnRMGk^%xtY)}QLkL#9{NOq` z=rJd;{0*GqnLd`bwkX=rSW;G~?m;2cXAlB4B(WA;;d2txgIrsa zERv|xO|L_+ z<@yhzV9jo7@XlVxwfm+`lUL7xBZJ9@xlNna=w*TAdMMq9G=fD&mURT^tX;U`|a9}WXQr_)ZlsgKCjP)k2Y ze}g`kAR?_~W55Lw&bAYtyL*ZkUc1UDQnlPpPgAbej#QG^{aS0%i?xGou@yjTxg}2V zb_{v4zjOa8&`td{sRcc1o1LU_0(`W)kWDAPo1}X&N}g^m{Q?mFD=(rSizKGwF_g^o zeXW){1=^Zqgfz71GmxwFdV}y}Gve;)rf$S6`FAMC;)@%zZGV_?QmNfp&B-zxx3PvK zHUc^|l+<)cRXRU|(z(ZD5XfUGfxS72Rbe*c%$defby6&YR|W+=pCTYUR#^lUPIBTEh*)P|#EXpOfBp0Q7W&b^UKfy!B2=H`Q`G0hj_`g(y$*e07dW z03u$KPDg5H>DKXYAC#o(D=I;fwvdS)ygn>Oz)t}WC{Z58PH?tWqfaFO(W?2mU4>-c zh!)rbesAeS64M;a7Ls_C2wuMUy35n|w!KD^XKQz6^9)F$MK_ftFcvZ=@#g5JUkBh{ zS(fGh2Cyv4@^b+G1b{!?@fmN*wmZ1`g}1g-*uK8v`KJSwv@KlY-t*-737%WkFE`Uz z;qZH-VhHHrVO|2NSfg#V)J9#uQd!OQOOV7%Vzx_Hs z`qzF6|JhG{!p&iQPj?B7HTvT>B^jmKi8(%#AR@Q6Q*|>2fXlt3n?Co%DPDN}GNVXo zj*Xj7Ta@G`g=-dYsF`;CL#dQ?bDNh)8)}s;P+IHk-oJ)1}ILEapu$_ z`Dwtj)(?pHn^jlNHyL1=m*doB>72w)`k~g332ym*rL$p(l2p!(>w_~!x6_FCK6eLz zQ~vg?M#(e-9!CT&^juydC|Pl&tRGw=ko5H*^y|+EnP?7&nL1GP0rB1XDbTfi*Va9{ zne<%OM{WP{-~Sc7_s{=5><)7X=BFS4E1u}zznSXw6+M#p~B&OwmQ3i=-xULa)U%wHEQs%+oHjrxBRA=wV z;>JDdj)BI%KHqKZCiAz(I&>O@+F@_jN$kkwO%FEhpbu)JMnqm)Bk8{JMQ^(cATJwK zqbRk;dn1HvG%+#XBAX$9em~D`$E{){hoGM(TvG|$nd+v>9@LkU7@woo|%VpS&0LnsKP-O=>N5irxOB+n`sg z9r&)NZiVNbTGNX(=2i^U*2k9hU8B0GwJ3#f%?*{nXyc4|`#%8uVE{i0;C}+}!vHP- ze5~U$-jwZPO+LM~o$$dgcmjX*+dm8d7zg(wF?7?kom7#;SbX^lo;btred}#};>8C6 zRjeMOhZ)=E4eB0c)Fwp|Z=Y=N+1D7Po^UCsFwg4vm9DLpx{U(5}^hWNMoM@!p}0 z-NGQTjV&$zh%pE^${{7il*&FGIf)5Ps)Zz4If*p{%+LQz-tk27dM*E@HJ)3KHycUb z&vhl}7)kC!66=n0ojs8T?$VddI*EP{62`8LQez!2cP<%&JPpFJHk%aYp^(G|B9gwY z%~3;~)4HHqQ;|f*NfhT|&;HYk0BiREL$4o(QY2@6rP)uTz_IF@hh@Q-e7;{dr<)P) ze)=4L>$|@aA9_bx;wcY6umNib&!`}%^>Fs|cx?wSOL)Ue6bx{QRA z4(P%)O;$*Ks4+sn-BRBvA`)r9wKjHp+QEig3;67)kst06(?<|KA4i699f5 zz#r@Qj5lSANMe3DJVedVP1Cj+N6brk!=!Z6VHofoU-@nTz`ch~`=@rJ?GLuPDWKE6 ze81qMQ4;@A2mGwG=WaD929d6EY@oHZ+^h*;+ z_%q+~0sOJA{yhK`n15~8hZ)O)kdp{Fhc>;A>AYLxrA>8+X7*q!4f0;p%r~Etm^z6; z-L!#ZwT$bQx~cWuN+;1ank3zeaY)@fkH};34yowJTz??HmMn759H!2=S?4&`b3)sO zMJ1Om$=mb7HDC7bC*wR7N6JD;-v}ge*VrrT5qX=os0w#9zMqz(=Kp34!m>_cwF`i_ zUZt1@gGl9bleQ<2fg_EA%b@nEGJoy9p6brmqclI<3$I^gfuULnB&}t_H4T9^k0ie5 z*;qa=)pMv<0U!b%(n++GN{c#)htF+J;<7CFmSuT){r|M!aKHzy0LP4>M{XfP$i7IRIJ`JL9CNWg-?%T~piaJOwVJn-=P(rC~8IeGWkQ zv*jcX<@)!}x0*z_>8Q1sXID}1qF=kCcGyb_v~1gofu^-o-Bc6Au;`zFfg~pP&Bwm~ zoAF=$$*&gu%J~5G-%i_q9<|j1cYqS1U7O{&jiXMt+lQc^PB#T~qlr>Cl}KW>$2wjW z-EQ}jC>;9~k-`TuG^#hy8a-W|?uYdqC)Xj9Mu zJy3Em_7dsH`g!&Tj_iO_KrIz}vIQLMZkR~|0I#pivVLJ@NUmS+v*M?!Z9ERZ&>)*P* z|L0M=3`k;mL7hQf7oj=Xl$UT@L0?k3DFD3pt#|N8zxw zU*`9{)6qbdC2snoVn|w1-IhX{n~RkXR9?$_7ctrWayMsE{XLWfAN{Fa{~%dknPW{| z)~}DV?Syx(-1FahJ(f)C(&OQHnLt61*Z%HqwEh_y0_n!j<<_6Q zbDGQDYmsi_K%6SZ|D&{)60}D51qjEj;@lkO8N;CecC~Uw#~_JZPF(!_(2sQ7G;t9o zP_oa)A`I)s^*4osl=W{4cZhq36|QlL$H_Phl2}1)I3%&pAO{*Wd5i9-IRHyL-^_nE zxd%lh?#lUApv~@)33#aNjz-T~pgf(wI+hynJBHqEpKX4gnw{1{a{cG3qA<;XYZ*9V zQSkyiAW=&VsHm5Bx_KrE0K9(XK!^L6dxwCAGqH^%{>2~r1$^h<{24sF-Uq{Cfd_FM%P1YuFMPH<*+7g8;q?z@Gx}8vvdM@D~6)0pNQ( zKIcu>F0S1VeM>1-P@}rUC|Y^P`At(ISt;EVa2wHo_#IysUa!^ZGb2V4o?e?Tk`6eB zG=8Ugoy6#%wWHnL)XIjjd+$L+5?{OAWxVa}G=>Cut9g~SDbP(NlGs*Yt*OiUjo@T6 z;)$~@o;cg!waY!;@#I zn@&lo<%t80fQR+n5;QkGB6f{_dU5Z?rbsINdXTJQO%kfW68&dL;~ zG3uJ?zO}SzTQVrX3fH7`FYk=KVL71+y_-X_@*q_dPGOwOz94ihxFYQt*|ah#eh%$9 z=B%8aI*Ivx!v$R382NZ?P#~T+`SY#uwBVf;yr}kTI`{E?zHx}ZCb(tfBvzOcZ6uLr ziS@MmE0XAh8dF5D9!LOy|MDOFIso9OfAyuDZaOxEYgXH^1~92eqM5hq@3-{{x&($0 zu2~k2ZaTKzz#b>@+W~xdS(ca9zyHZF4F4B^pTp<5ljtF14HeX)0YIB-;gLcqxMI;W z;)bOmDfRi+p#J?l<8-Cao@_=uvlfDnNMgNCV!I}eR)fu!y9aaw^p%GZNqp^MmpLF^ zbkp_5_BXdQtRs@h8+Pg6zTdl^I>-O}nb+|4w>VU>F8}OkBy}XE+*G3iXzg3pk;G&2 zA>2I6AcW7)oyK9MMAejHYYw*_u?E_aWX*_NU{g6aVq^6mVVQ)3a8#J<2zcWz@5dsE z>2;yige!;Cs}Fa0?Q(~AKYgC%jZEWE2yQWyv|8Y3F%0rr;K)*OW0dCD=Bes7Q$X$u z?V{AJepb1S^k=i~nY7;_TU!eyTMv|u1LNGt{72X9y~NGa33u>8lJcBlgga`bdzhTW ze&L#RUW*qc;hb$ZryP;8hLih`oI`z%x+=4YTq!`gSdbuxuio||le zZt4-ib@-ZanQZs3_E~_Zg(P|>@njnDKY#B(ll>mGGtmkNMC4u?Grht!2YW#Rz|Qd0e>LEtB zi*3kn)(@#~{A)jnZ}`EVaGy1cgRO=n8UdhM;HX)!NlXyPTDpgK5>K}yzUXat@xJFGV{aPE`mPrG>-zzTU9zxrQz=|S<|G<)(;g@B zM*#fTFbv-^48s=>!|<&D{_gtx=XGle5LD2YSR+euECby%?|0pxr~=V=(~uN~S8pjx zJ#)uJ49+%DeW{l=>igB5hT3;?xs0_N)YBVZyV!^KjH8!H)^AYR{NY;5EetuKl{wan zg8OUYexPsruqzFEXH^5$62t+lbt>DxTeVJNGbo@K76c`&8j(+E$?sn`xsSZ>*{okR zzpXN)j&`nxwviJjzngR1$c@zt33x%UPIPr4`T!*&$mFs3dCr>S(70~^U4-Er4$jC&dir`1@N4`t_9jq4rjVHcHht zQ_c<+HJHUZ_RqJ+%hx3vT&W?|O~<*)fM}x|GALl>-ub49lCalb2ArtCT@lP-=*9i0 zS#3O8xTX?xYVBQF&?3y;cDSV|lGRU36^V|UeQ#$7JdqPB?{9|6?_Xb*d_0TF4^$A~ z*+3G5Bb(pf)Y?+m1+6Li>tEE0KGgTt+b0tqULVxgj%}B_L$I^&UmbFF(}oD#y@bv7 zz}FKekVMbcIh_=`={QzW$J*DwsOKBhO*@5a*qp?-e_8Y89=hqD1@Qd<{!;+&0PraQ z|22Rg==h8`WozZCRr9z!0-zy@KKd`BU)OxqJUwttk7`w@>h?dlz{1LgXZF`jNz%vmKGdK7&L``G3ooz77BRzx zn)f~v`T%*v&V4T<*QSC90tDK2L>`OwyZL$gHT%PV>T59|=h$oNUXc>4uVtC*1au&Y z3IfUU`2G6rQ8&#F#F@`Yl)@cMKe?ayHCr=ET6q+|^1|!k|1Z3LRVLdP!6w%%RziuG zwSy}_JqNPw5Y_WTd~2zdmhY|a$v{~*&o?U~Uq=$>Ce;o=B_PmJB#d+N%^_0NF0P+K z_u`zJ3Tk8RCF0DnB=XaK8X{{W&gD8WO8|(V0E;9_hp$KNGXLFd=YFW%Hw?WvFLy%z zZpyW^e!EtX1Ze3HlvGDIcYBT*N=l?)XzRZ#w@|V|h;ze_;U4qPtF_d*+$4-A23^vE zu8eR~Z{SGF(+6yJ6JXn*X*)mJ;FB*uY)_`MJ-Bix;@Nf#>ZX2ft+Vu%!bwDeB-YEY zUG1Hdd%9Ip)kfudENy)eK)IHzy6LecFrNR~=F3edaTtb=il=^Z{Wl=m93KJj-v{6g1c0Lr>0&;-y6G$qZN}J@`6#piN2fs!lz|zx zxVrYc-A`!RpT2jIT_;Txh6zB_Xrq9AZ|ka|tv+MZN&M8k3w-@w`EmT%u{sofm=4hY|0=e&@a%u>7 zQ-Ed~LOrsyv2@drlV~81VU7aLWzd&cr!qcAIqAy%2D)F?Wt~T}TY(Y*ZL|j{18~0i z`>1wJOXXaCj(R^LP+mAh+&Y$&YudR?0ts%8?S5&%$s6C+KI!}Q(&Tl;UHcx8feR|Q zTM4AK@_^6Z03^|)h|khH2I({1=ty!=AMM|Mx!fO#Xjt`$HW`)D((Cil1hZml_%Jo0c&4CAv`TE8joLKu=>G{W~|qTM=mx-P&0IApw} z7th&Tv^f^*IGIPS>CPoj|MBzWa}t#j0Ja^8NuaCD_1DI;YGl=v1%a3k0RW$V^-|;{ zYPnAC(G;#(;0O0Tb<4;je;@(0M1KlW@<2pP;0o5q> z)}BzTE!fUBAdTIA`Wrw}%OsK>qASgAMb70s+i1U^XMrRdPRdw0gDv`~MhRp<>5yL- z=%zN6wpO^Da@yp5L!dpwP($hZoej&G(gaWdn1Uz{Th9geUd@oBYP`8 z$K)hRBt1G(?eQd)*?$J*Br5iu74VZ|v4Nv*x~Xy86`$z-2{Y|9bD#w6%RmS9s@B2g07m zmcWq0HS>YXNi+fD8)tCoWvd^ zu@(LFR2KmF&6gi$5pd0@U?^!C0vUhnmT*n!lv3+Tp+6tntej&F5n+R3KzV<+f-9Q3 zDT9cFyl8XxgHg$bjNMdW>YRpsSB+_W7bbuK|YJIso|4Vh+ zxZJjVhKRdI>)UCxaEoqTqiOdFv-QkTUPu3YtI7RjA%ZL6x9((xM7pW(!#Thj>xfyG zwKKTAzvgrE^JVh;B_a-343s#hw6)SV9FoWj*ZiNq@e020M}HpAKYbe?dH=KOd;A&j zsv)c@Jz(>+dI9 zk8sUDwap`m+96j%ztX(9qEAJUkj+WdBa5~Xqd7%ZuFbK+HKieG=PlLh&3I$$)^@_h z?vQPMC)0r4oOYkk_9ul9xpmWw#^3S}=jlHK-xEZ6l$clUP@G z)N=~~#z`q1XU5nC@;oAIEZ;9b5Z~CGM0w9yl%Zi53XuxmQVQP3U$~#$HyUk}2|#EF zB$JbPoDtJ5fzj(f2D+(I$_UUS$;^IN%VlZNBsF7@Rd*~LH}LDfHz#f!^YbR|Kkf14 znPbWEhj}XN%U&n-Gngv^AM=!{I*H=DIcKBYM-K{+sEra7W`Y9w@0QP_*-ts&82h5A zm1`luqwXXg#qI!i59I2;T;ce1jPQS}pKywL9N@H{|9?xk3D5)cR((;mEDJc4TD$)3 zbEAKcynVXC?ywZ4nriLg&N)A?UhJyx@n`Z==PqsLwZuuRF}{G*xja#XYw9_P*ZaAC z-qcWgi*71^H=1rL>Lkwl8$l8uJBdhXO66j1<#7S}rW^`jE5bFyPj$Ds#gA-D-wB6)05p1q;bd$MB80zg0@CW$UiN)7Z~F+NB$` zz$y8=r6vaPyU9JFC%wUq#|H|1zfwQKW-0+?Sr&#$n+2{3odnN-kfMu+xn6SPd=_tg0|IEfsRc);mKcf_jq8nKRnb3Xj5`(0ttYf$Cb{>H^%taHh!RAxP~z#H{+m2 zWV{6Q*>=L^?vO>udP-pUL#yVrF~SiV9m+x=W8}H)*Pnkx%u$J2FHF>0aW)v?j?Gw# z2U#_;^t{#eHN#0PX_8$1DfeD)*l~xp%w?Gg)WDA?3!YO*qPTagGATeEal2fds1LpK z3H<5{_p<{?%?Tx<-I{O{>qzz1Nz_pLw0YxU0eAmLriMPIRwvP_Qwh}f<(3gzL;C>^ z5y=H_`qf4Oz667YcCrXeaKH?QA@r-z9otSyDJ9SJlSZM1Jj#9{kWWPa{l|9aB#z~I z!~SlIvbLC@K*6w~g=_ll3l)(v0ubX+LExGDMg~sXT~x%M*~?=No)41b&)3H*&wNYW z*Y_*xZkzinim}-5)@ze!{Q!67)aH2m#5pi*I+0JWNb73L=C9F{x15vs!t0l~eG*H) z0cEfc0Iq$%^OGoCq*@LfTf#?^M);f;p-h9Rww#~glir7lX@U$u z8%dEg7vHSIrcF1k_tR(vfTPjA5xIqrVo25w`^}U%iOJ!!okp6D;G@~mI1sNd%pB{^ zWzCV2)RXLcwXUNQ#f(wYYB#k|Hxsq?^i~8LY1vO02$qvrLEJo&_?~BO8I66e8X}Ql|Ui4C-;}Ua&y$_rq;L9P?34DojpKL->~h3WRB}2Arxc#Om+& zWwtIlk;JBxID16U(M{*Y(OLlxNqq8FL=rIvIf<9M zInPPl^pwExNMiguZ47OtR>#ZFUu)VylYX!2SgpJz18oB|nq;+$>n9u{KgaYlwYHi1 za}xbQvxvhNuyf+H+L26T9mo+uKaWD#&))F0Om&rd-Zfrtw8c@6f~W24pBu?cx`Cf#PLcHen%z{T-d?8-Ak|GpJyY5N7HC#Hf7|^wN+~u| zT~>TI-q}Wh$O0VQSEHNO)lJ=5#RdZzB+;|ZJl)id6V?3voQi&H!1XP+wl3u<+1qRB z9zc5!(sHSL${B^doK-gsNTOFa-E(ykjrQ0{gi|-&jCw(94dw@81W9v>Ld5zYH-DSg zEpJfYuh(e++7j)4?lrn;Z)BIv_p9Z1I=bnIi|a$?6mLep1jb>FX4kGGE2XXF7W(AVOmM43H+|sgrkze= z&FS`gQ;y`?>ZaA8U*rDPSOTn(Ca)#6{spq({%@n(CEe6LS}VB_uAv>Ua$jbg6pih5 zFwjeRZ?~NKe2&_l(C!oWyS_cSCe+niCW59rYG=Ob?A7fHlU<-X8_g*ydE#q7ED_-G z001BWNkl*bcHgA=tplfTn z;Y6KneNH0lB-%NNl5Pqh&`oOsk3iH5xpTI0Ht4(r##ReSY>78%xzr5fqOd1fbyH6* zJ*?$C9@9;4u6eqn)>>2-K&J_7QC61w1;32+QAM$JG7}Xi3L@XQ6%*9kxsgulUO3TfIBp&alliz+>(l{eW=*w1ds(Y+C^*Z7+Egx~VrFF87=f;rEGJz@rr;VUR?vR%o?OsKye2eQ&$I zN&vzX`*4p(38!d|EPda&zb&Q3(64glSnEVX64U)&@3#ub`LZ~P;b+Yehz@HvSwkN|Fu zV?G{>Bx-h{ne#2y9l_5`EgF-jkn!lt_sT3^5|N^ zHMK-<=CB!5`ibG#C{biakVJCN-DeO^N)t(JIYqj$8}#UvfsbY1|TlPJgYRBNjQfTUbo*F?{e;)_xj4jB90*3CSw zW7a8ke=me#=f{)I27{!?^~I^1mTL>}%4#F-oJJ?nE5=R35Pn!hnf;LdWH2vIQ3{YwBwkUx> z3?OPLCVfaEx3-)Ee2jBh23%R^zElNn&rzPiJ#z$-U}m85+X~mc!4(Y=2RLUt9jb@! zD^2AVa#pJ+?%QWxy}%#%t3QeF{Gp!#09>s?ZLRab?|V3TIeY#!8A-Ep64g1P!)fb8M5F^e6W4txhH2BCF0xjL|}mBx(U5hLWZQSFH69=+0%UkTReL1k(0!%~g3w=B%(K zF!G#G`@7YOiMR7n%CU|`dzOVkMB<#%@p{ER;(YCX>HFQ@YfKWJI@)LK*3Mw7>_(s$ zcT!^gdxCOhN03V9U~^7e-+2#cY#uHsrip1-b#jjpZUV~h*0Z)U=aL9q`+3UxqI7UE zz2AtOL@89%;{d1QF>3NaEe*pyx6`?GIosO4#i-JD*u0jL_>X@56#%Y`1pr*GNaAZv zb<>z~aJD*$Qn*G7O70IcwyO;a01vMAVcl=0dQM^+N$mg4(s}lm!0>ev9}Cyqc-zl2 zHVs8QEhjNACfq$soWvDLtf?3R zb^xM^BwBS6mGPQJj6(lRo6kvnK&sz)W8-8~5BLE&+Q!y*1#~2(XZxg>ysX#MRCXYketu0+%-__XNiHk8|>k5~&cVnd`^W zg!A7zoqKgWZC^0h40X+eI^7y51K!cLXiiZrd=kAy2=ccp+H#-fsUzQ~p3Afgq#CeGZw-s$#mIeRMZ@n7k z5a^~##5x#hjc=zJF&33J-qiW?tooj|A-6V?s%$rVK&eP#3rT6Ho7Of+<(e$S`qy*0 z?1N3_8-yT^i6rLNWM0^u#F%feEQ>QFNt9xrUH_S?lc*z!2b^wmB=I~It|{(q_t<15 zCZ($IoN-$*{IMfOWIt!kMCDH zDRv(qrOlC!tP)(I=%%B>LLv6a+8JyGC4oFAkqQ8bK-IF?!a-UI4Ax243`x#T$ol}C zA+M@%H~MMyMcv=_o}h{%nE{VntcuO$EgWY;Bt$z)shY#$+z8*T-L1@lU)LCO1{A8m zmT*&Xw)yL5ujNHqTg87;y1|*R<1jemE5+6H>H`4ZpI+9o|pG$*!b_p2x4e;61kkjv>%`Ery+?qos+25a%7A&J(sJ$A4BT^%IM+(`!MwV_QF75 zbF$Jy%AzFuvGkloM>oB#&`ovaQ2Vg2(E$NF;H2#(j1ga>oBGHxt8Tp8uk$pNdh_*f zi}KWjYg!0cG(O{VU1*Om(wID14PEM`Y159Zq|FhCxa+4QvKHc8rJJ_)SFs22NaFhW zDUxV0z0|-Rhh)u5PE)0j#8Kw0=5wz#E#NerWmHsexW$K%&Hc1cV{(`QLT#H$Kc_);ed-`<{0{d;hkVV0`bFVUF<- zpDSjbNQIp?BFuY5@HwWBnRsAa*Y|e$_Jzy78{#+F7l!c;*+W@sY~IRyOG4;pJGSY* z=WM@%jtykdJf-M7AT=q06p+TH$m}UbIL`kU6cLvlyFUL&0e=BV&?PaWw_oK~OapqQ3b8cgU&^QSq&5Iop@Lbvu7lNyj7JTAAiax~ zm-Jn9-D?!CPP!8UG04@BJ*`>82DS4O<){{jT%sw=%f$GmH0I$+Yey5Wxlk>4Y3x53 zolSn{zGN3YGW0%<$>^1u4}+T6C@h?Y*!YLxM0HY+6}T8R|M~SbkR>L2Lg1={Jf?#y zGq3P?7kEr^$U#k-mUoJza47@y{D|z-1)uya#RPksoGA151AX&a!^US0Mw+LX8nSBf zaf9Ev-mc3LDo8nDCtWHci-|`pc%??l1|o8ClZwVRpo-`!%e2v6_xyq4)Hzet|cb{7g3|UoQQ$%)zaCkJtE37GEfqM3JB( zn67^+ZJ0gyyX*rOS713Iy1JfkkO|Rb*kb!|>oY~ABTn#w_sU)v9Ml4@UFwHrb; zOereqEGv!m%{Q?r&LxqgJ5IZ@6i!puomZ0aA)d5O&g5(FyEQig(}e_jVai9JbUmv#Z1N;Md|eww8^E?e&=_@SM`{0_&8L0Z#CA#= zEN0-rxZ7*V2!t%Z6UFCcd(X%Ib#v47d4x$P2Nf&6>c*1fLad>%!rVBGu6Ub`&I?YK zyz{fO{8JrKh&vRYdNS@6WH0J~+{o)->iHVV-qU@}2$LKNG3Pj^l>S^ldn0Aark;SU z0P7axs(Joe>f*X>KCbLr>b6ClW|&vR+YC~<71w;$H9+V|eq&Eu1cG%eykHJYy!t5Z zeWuFwgN*3lwj7pB#?!sk>kuK!Q9VaT%Rf2x@119?CAp=M@SW#y(5>CC7dHsttSP&e zm1oUSf2aZ*r!J4!V?L7E3kXY8$w_wTqHP9j@Hlc6A^k`!P`>!uY!F!l8>roYvI_oy z0f^yr?xe3iW|SpWhxacba@|NNs$M_k%eA@GBwF`mNmVtT@ZQTwk2MWv!H)9;yVk;5 z9bWYr@NEV_5(b>vfZM(45M3pB?^Hcnro1w6SH@lgl zM3q6?vr)hA=LH_1^@WrkGB!;b+slu_>ls7Ru(>B>4#mV~`I9Oi!S#=^%6MOBP=x5X z<0PHf5-FFT?TZm?g%Skt%8qwP>>A_fZ-4M0cz1P!Fvp&{n|oFS3aN8>H5j9_?leo- zaO$LH@LmTy&;1{^f925ZH~uinVkNwU;vK{prT-c&5Bpzl7a!}Sq9 zAx#`B)_Aeh>Amfo@~N(aY)Ii|6?SCD{A-B-5}bi?%7JM%kSWl|JCb|5XzQDARTJ^1 zo(lzd%=K><8merOU|Y>!$05V7q;MSlktl?TdCEh;1m$#^(VK+W?}~Ef`@%Omx*Yhjk7~>%)Jy2 zYAQD}OG|%62Z|XI@_6`Q@R`~{by|pcP-apC8fNh|C3uLcj zy}c4wx}5P8+x0t;$Qz(bYy>#mhK zEWdt2M6AijVNJwgEq9f*M^w^MW9XzWgTbMTT0>T;nb7T^(C4nuQ%6yV05VxcoD6=- z1d57HJs->8LEv}d7C;sAk-8R zw5>Xd$_;yZAQf0W+p4wILK$Xy!5BdK{GJJ-*GD1|)AFSBWZ5IP(7pKhXdVNTaAAi3 z&3UfzQ?w$nIA&*6FAItZqcWE=+$|K26LsMe59@nTf80>->IIZ@TB3SiDNz0QiZu<` zcuPL*m?kXh+Et^3BVjF38TdIx=AfDxYSXNWudFtwlF|KX65gh70u^{MoX$ z=Jlw%Ph3Zz)<}57xDd*^WM$|Houfa4K4SLEjwBW%ha>xh7d>46A}8ti-222EeqF>6 z2Wh=524;4=53n}4Q?2}2#>5>{gF2lJF)-XH$E5uFBXW^X--P{8I}orpxXjy?A(X&D zq4hpMepT2^Y$MHRSbiVkp&4c{^nLUjGjT*{4bC_4@9d|+2(|UH80&`qWp)2!!Hogc zCqLDr*)gC4fBDkfA&{#88!fgRF562yk>$|RH22ZX6{la4=LR zy(9b2-z!4U`rT(uC|c~0j*lfVwt+_Vr_6#8vF_DQsR@ld5>or!?@7W!V&X1OY202R zblT_4EJkLYq`uH?lwCna%rVslasY6A>h1FyOx_n_=boZtg?!i(zRU-l-II%@B{5)T z!x4GS0j=L|%U;~-=q8PE0oPqfYc5{hA!@EcC0&ZTBtzk2AJui`8fNV_nSA}^X0Ynp zNx-}*NWU_891s$%FYtfxLjJs!-8iP_1=x=MB}DO8oK8V~=dKKcPZD&|RKEh=MX9K^ zeTJ0wsJv_72X?-+r8c{Zz|D>mDx4JM` z6PRbI#=z5j1RiwEW6kM$Z!6j@Uo~d-ITA*rExw`GAg0zFCb9a|7q8vgfSj1bO-cQO>+{ zPH6f5ihvolo?-B_?-8QW*;bV6j;qWJVn<$}d<#-gxO{q{;c#L>-oVGnUb?m#A68c* z9DnN+5y*xZQibiO84+M8*Ljz{kJWI2R%h?@QKUlO49Q`aA@;91HfXyV9&6>LUzGm6 zZsaAdya;~-F*~tqKV6p`mQQwR%1+M}3sN7&l8Hq`I#L^xGrAur9KQ-rjgomLlqeIX zO<&>6^WbXPSZw(_Bh5piib|fmQw2G@bT%Yuk<4R(vEjI$sfTI`k)FD`s_VaU9r_p* zHFN(-HD*6fe*vZm=u<74@BkYp@hf)663S_h(0m^45izuNUz^Z$04M$RbdBXQGE(Qa zDw!HaFAKl?u%?Fh5?z0e)-0@fqU!hM(aI~A?`7!dp7!+;&qt!=l1R@sbKi>N7J*P9 z5_zLw8M(!w%r)pSQ%vE|GRNTJq#kw;J8~6neNB5*lSt4c=cp2CKtZL#28)UKc%1*2 zPKbo97{>5ZEG)K~*XHl^K9pxI2DzkRCEesg&yJ=B9cOGqi!adaOS5`ST5k7_*^2MP ztUipwdF{nML^5b2*f2fL$)uoDGo}5@N|ye9R%8YaOF;(CgQjhWqbFnnZ?xIGTQBMT zq$8tdO?JScp@aHFKN-YbBo?ibn@@i=Cz%6?zxPe&=b~wjCd2h&${L?j2`lX}2SMhH zNAJYImE#=G22~OR&(AczE@zn7c*60*m@-`U@orwgpqaU& z1|a3FV))7_EqPg>a)1KP=cfwWJH4hNShJ-M^Bg=T3>v=(U>1qx51D!`@hn%|r)zaR zH@he!&)a7Pcq@L+zbIADUIv4z$6Lp1I*g~%X4ied4*g)xxZNz{3fLahR^c;ra?%8X zPo&`rDXoDSNE}Lb)ynwCLp#$?@z3N2tndlQj2@hf^q{E>R}*63R-u)t9m@H zJw36bt;Ik9&{)uw`0zs>bj}kB{N5IrqWVU>PPIK{;U<(o$;oa#f+rLZ48-WR7z6WW z#S|5?+_A;s6LEHgo8O2z-SX>R_=OMn9=PY%gK+g8>1jX(zd-f^raO}pb9F4~7`Ow2 zug%IdtoYx5&xBsBfGRhY_Cn6l(2k*n(@Wdy9~itvvjCh&(pRH4rTUoFMFgNs+-Ecq zR$bsTZa-+!;&Sf$3e0~DGdk*Lb)l7)e-3}E{Y07qgcw{A4K5wrq13?BsvF`i**i)` z88AHKGB7auf)@V4HvvFFj4dV#w!ZY_EV#=L{9+$X&+6>bM`Jx0Y~JviV+w2GJI|Ky zfiip==2}Q;w=7Xyls@!g-JxxDTml{a-&SMyx(%D+pm$cBmvhS33U$0VFzEOW`ZQ%G zFi57~JWTL5_~~`wBokj+=>_`X?}1Mv1tR3d=jUe5@1X<%FX_=HO0>i*2TwT%@YW}| zmF~=5T08xHiBh=tCwZX1sKzVWk@BjV(CTxQf3h5PWopm)Eq>Q^0)6w@6?a8p$uKtF zFWBa%OxFtODsQIIq_7$i>RJ^`o({o;Www>MdkA;{zfe!oyA-%WI zVes!YKAOT>r(xFic_=@3v>u8_cZ%b?`-TzrRY0IfF!Y;#WNf*#vRpoh zBEV@cY3abIPT=hngEhYZ`)W#Te@0hGo%~LV>utZB3-id~=yX2QI@ZTb=PlA~b@obq zuF1eyaVoyF~3Z z9m(q7O6Pv*9QNpSmkGunw>J7lZ>-N~+tdUmBKDL1sRw$9!-n$B+S}Z02U)d(ne(SO z99iPdl03?6$i*~V-vuo~RWBpIyxEvXq;#pEL6-JRAg(d?g@m$h={QSvytF4L5BbuQ?F zmNBLULFZVKl!T+`^K)sXy$&45e4nZmWVjxF$y#Ny|2!fsxpj~*XfvbwMsTOY%+z`H z3u9ann5?yKa+m9JuHIFvQYQ0cpXu0ILzlbZMS<9Ox@riTe!Po!Qv4}MUmkn}3OLRe zv5O_)oQ_yWkyWcg#TdPnp%uX1kmdPZtWtjr4L}|Y_X=GgH9pD5Ni!@;&7Yow?I=g= zE(XgV{G`XGd1r>b5#vx{R+7eQ#iUE`sI6x>zo~%E-4t^sa~CMV81G@<^ct3USq))u?ZeCr7g^?OyEp}^7n>v}HCv_bMSDD6{p z8kMR-f|J+u-0j>@LFZCim=M7{qiwrSP0!hQ1`bFj@T7LP2Z-iuWePQla{aihctv$z z|M2$#%_ED?@_G-6_{3RB2CEfDLSBz7TXh+J$*U&h`=B-a$_7USxa<>dma%u2u>~T| zJG%1u&1XSIYf*=&Rjy~0D*oBE0V$@5SDqLpO~iGo@Y>Y%1J%~N+YZoWmh#IRveRp%NSEpPH5D08d@XTvLqQ=c-OleprAL*>=idPfiQ?*U2I7y2 zJbFgA)WCC{294wzbAAgfah7P}vVvoItw!`EpQWe>zCPS|kyv5B=OhRmVnA*7Ulu@5jsdiO0oPZQF4W9z zoJ@rwzfBHgH)Sv&Ew5xiJp61yuJmwq&Y?}netITDmH9(Rr$BZdQw**s?$oN$G&fAZ zj6JWgyjk%$zR=V4!gRhtmNxYTx}km7hk9Dt_7b#rI2bgNl|y&Wi`LhZOYxc>Mq`mz zlK<;oKE?*gcvk7d(2oznv{P8iA8*5T=BYJ*=^FlZMlVNixREIG6c|iJBrT{J)!Q-5 z{Yl7Sy4k&r(e#=C|3{C)m&Msx&${VA_AU9lV2kbzsTz@Y+bABxb z9jkeDqrvC;`3gNX8ZI>DwTS3!Of=!n%n5*hqtR>;d!2a5SP&1YtFet`aF<^3JFa<+ z7Ns}EDqtz!JW9IXCP~pEs=6FU7jOG=KQ)pFmZxEH-aOfK@x~gjub!6ZsPN zMRbGjV8`cC-xxcfCx(wfdmrXCvvt&dmv@8M>|olL;ljvv!}jPBG;a{Xexrx?4qd`r zHH#H;C3IUWN20~v;9E~-Q1jAb>?PmJ`mDrekp)QF5z*$iC0ESvXCO$48Yx3P4R=Y= z1Mj!U;ZWa;NI<6dnr3j&SW31O#rnfpftE1Yj9IR~emU&;f-@x3lz^a>r)Cj;+?8E) zju!pgC)Z@;S`VbHd&qB4+vNE+4$~YARntbukPgZ<2f3;=F^xHE2p4t~Jbg{$b zzxfj2eYa_ET{;(QHuG7`=X8Isl>OJDg1@2rtN$iZp-is*?J*DG&$Hz9o zq_HJ7NmcU+ip+tJStu)6D}!H+rg}|rV5?{7b^jr--pi-G9MxYE!L$Sh53j|HBR%6v zHf&#!=Sa214Z`zrV4<8VzPC{s3c}rN<9c1<>1p_hosA39thxDDjHRCC3zY_%zZ#Mg zo0ESGd~`C?{?3YwkwhwWR~1qppJ49Smt~`a{|2rxR?4e27s_h;eQ+Cnw|>ABYmWZw z4xABP_~bQ|g5I5(9W1c|0hN(LvDlW$UboHLJO0T>-E#TV@>#>OQ>P~qts52(vAJ2f zDqRj$lgQjAIja!+%SY$;k`*C&+4e2U9s7mqe=9faAL01YvXC{_b+Tr>+VDMW! z2C>EP`p5(FrvRf_yp60Q)r7WMd@D{@l~4G(T(UMAvDtLm%i~VzkOSyc=5|$2d|jhI zm!@B^?7if*l_$Qs`XUruQqx}xh)8*va?%V&LVjy#eLu(uyDpI($mW_w81_|Hrfa-dP> z{X@Z2jLXKA*1=tbA1G`b{i>Pk+C=?A)@|L0=>%F?q6L+%DKL&W zy+!QhTR-$tCJs#+BaMO>ye}GQp`6q_hQ{wKx5vYfY=SGEw`~qfd51e;PXiBnm&Ky} zj3t>pw^e@UJUWUlP?OlvT`~(_JZ{p_jSu;f=+~H9orx!9gz9l%bi>qFBKG$ojZ8b= zlcALbwys#HC$BYL>VY^LH7#W(R<|p{2eUxo2mPAAG@6oonsmg2yTv&(bx^YX2$Ls@ z(SieFkjWRgSeXdNEk35i6X=uqsUf6OX*#oN>)w?Eo0+G&X7T$aUIn@Cz?Am5bY(y_ zukwnOauJp34}#8Di6+o_>p86G=xlPVu^izHNi$a<(q_c#itQJrsBk|$g;J2tAeENNA?WOYZ_C7#=yxxxxu93<|sjx7!mt%V@}iM_b9CPkL#yn z)9oYFx6kV;tO4~w&=SN_6l7?M&V`|#`iCx)Nm<0J{QEzh5* zu%+kau<2&j>)6%>Q2(T_sQxSDrF@}OR+3EY2SIuG1h|Z&S2iN$Z{Zck- zr!f8KO@0OK=u7VJV$oE*QO1`+O;#S@Kuv=x)QTGPyz5Z~B(>Zo*yx;kf0YRgsnJ7G zt&@wB20DzMF0@*-dOEB?BUP(h?=YDz$|N{1$c6@Oo!O9FO4e@}hcXnN#!+(PSUn6B zqQCzG(|GZU$%!`;&z7$U;5n~E%Y1BgxZy2xG3@`!_1~q&g`l42Q*)sJj^`SAzJJew zxg{=P=*H!vfeGL+eT;^-ArvgB=4!X77>cFE5c#x54!2wUA2j zRuRXoAr@AO9p|}s{0p8((u%qt0<(i!_p-+M{=3jo|NHYc=*TwF%(a0yp`do64LiD1 z8Z8X;6YEAdDXhAA>k+MEDQzQX$RuSFgP33H)u=LFdd?@Gre0#+$?W;ab_=H zK^m54?)_{pi!5Q1@-5NW&W5omkfy10s(&e&lT0q%)0K0^dU< zIlP1BhVb^gg)Dwgb<~i!FOW7=?2}y3|4DsMPwDpL^i{e@xkO5zNvs(AaKLi#m=C>s zW9sjvkI(*ULdR5^bv?l@;jZlOeZ&0=_kN_}tY^j!J({^R5XIyN+8|iVnoZesGd!oG ztg#SP=*N;M1OAHnv$AqkFCKk<7 z@uJpdN?kyFzNv`ltS|C8>6q@?dhfd6x&?$WamwPvypSeQ;PBsUtR{ zs#_*u^TP@*E_csui37~bTMS@_o=i{Ks}P`&cC^^Co;{6t%NlTvNAp+pAtkQ1M9N>R zSvpn}14Mfco;0ct%~T@k36Z@W52Eb+c{^@<3t=0`^-|Or`8W*UD?Bo&lC@iaLF**^Et%tV&D#KJk!aR#9rrk>|T~qKf5nr0{#$&X3p!o{^4U(C?`L$55=} zX3~RaMTwJq|vTc^u+JWg*PKq`*=CDaEo;nsmpBEMP9+HNi-l{Y=Pe5cZnL%7BT4Xe_ zaAT+4GBebXX`XJ%rAJW-b6`QX^)SvkRye?r$!-+d$6WeC2hZs%1Ti0KuoG5)=5ya3 zddlP4v_DtDle$RtC`K1m{^z5a8B-*Nt;Pc1l%c>LLD8SI7SnO}$CZY9LN+-|hK&;#;;yIN>BLjT3R(<)%B}$uKa@5JE3U^V_Q(|2$>%lO&UqYBrDKIOCwx!3VD2vS8enpe0AdyFV2L&d(4KtE#fth4q)U7Y? zp(x&u;ufsPhI|(v7n+2d-oAaRrB}fTcbxIVJtODKPwFSL7zb|KzYKMDHta{uk%`k# zLbOYiU#=Wob(rd(QuA~)#Q4*2kwV;EH}gQ;`8UQ8oz=DIGnSV*sTtZVMG6m+TB+b) znWnz0;E5@}5&JFdt@kU4A(OR*_v+HAZ2bv_Jm91}X`#%VOQ<-v@~p5bxDqtF{UKQ; zcd{x6Zh17nLp|yI$$i9gk?{IBPZ!qXmTyt9D0gulaiY;*PbY9JB)R;q(wK;)`l{Wc zikd^~ic5QV;EBizhRvIV1CUz{1+WP)9djml{Wv z#vNLk)~O7Z;IMr)cZziPC7=&)PU&M`_iV|GtMhaVPq9+a-H{k}(x-+%xtG`8k@}!A z>-x|A1*)(_vD)O$hL_LkQ_piZ#_Y4<@F6=?!Oog8y!5=F>7;kG_@rmYz5*kKm=cazo0y<<_i~~MP%NQaD_vOYo-KVf zx|zHjk0`zTLk;NNi=2E9i~3vq>T!^9(bOfZ6jv$EjTB_I;u*K<@a_W;#i)i55qoeZ`al#AG*|`&S)@-NEnKFJFagXH zm`Uuvabn+b5G+9=asG8}$XiuA1s%w-3@P^>C3i!zhgE@%115OC+)neCge{iIqFGM0 zjJb)Lc(l#o*3uo$LO{H2QO%`;&^Pney&uC@YjG1m(hKipVRE89D-=ky2w0D+rl#l< z2gn!C=GT=}n8?0AE|yrq->5F3O9)>q8Jms%u0!jMi0z*XsDo~}5Af8CSmfo2zsuJu zUB6J$z=}mYa>8s8xS7^>OAnErE)4M3RUn}3l~j^sTpN#3(z0v(t$P-GqU9S{{q*(# zH#P4IR8KP;l`xOP{BVjB^KUyi4#@o9K$zpXoMI!H6%h;sa)^bN8W_;9!C`IxR^CN` zE1J)tcUmRVP5iLo^LUK3>xx~~(APe?w78TL{}Jz*3%)s(i`Z7>tU$81S;mAfn-Jmo zt~ZHZo4pn2g`6+RP5tGRbRVp^L%a8#xiwoAo02`PO;|bmyn7`6;`?G*mljK_v??4M zFUyWb*`j(y@tIZL!xUs?l}?tPc!JZ>k>}%w#F{LnE5p-gM_wX7zj^1UzfIQ~hOdkt z$$c$+Y4Q1I3DG>Qee1Sat$IQEXaGVUFV}7K$J2wgxLAk`@UVO`u?e+rxV>4k{h**& zyL5)C*O{xPeL`SeW*CD|RhIoBUrV~{Q0rh9TiLiL}z~QBi%&~wpOJF&n7mSssg0C2<{Q5@#LmE>=GYr1?uI;$6N48b4%79z=Rr{q=`}*Iy|k)(@J59WRv5KYN8B(f#ZOv9}3T>ahhVgCXq+c9jD?7 zUgY#ApugcsO$D?mOW25z8EaOG$>yvKx6Pd<&9mgsXb?jtnO&VT7^2-sLqZh1O47&F zQWE){+?c5(Vs?C7Wz*pa7iXH{OzN~}Q`*sq=A)NZnbapCsDRpJs{Ray65)4oX+Cd* z>pXGiyc5jsv)&Zumk5^-b<|I$Ve=P^RITP6T>-C5dy8N8HS<++fiz4$qjN7k)}gSJ z_s_JK7ISX=dN1FIe@Se}^8gz{+|L%^?>75RBZ*~db>b9ND{$UrO3S*yE>iy8N5hnw3#<~ z@>1vWY(-S=T<(QzLW39WAWy=;&77RaKfH~!gCfFtAndrn^pHxC+_RjeWzVVhhc{#P z0U_is9{=XaD0RvlcWGyVX2_$;KX{#a>CBOr0&1B-$LUnUsB;-)MlWDnInkr?s7^*c zdSa4XFpRZ~pq}m3ga|!hsny&|cqh;n7px`66XAaypr7}wR^MOX>l&9C6%K5qBa=-x zq-fsrdFm8=k7S4#-tGx!ug2fsy%{X3o_ip#5}F-)v~wD54e%rg!L-NRXmoB_;pVCcgY;yHwR-i?Nt^ zzPUe(eyx8VZau3(1z=S|9hPB6i$U|xkO2vXb8Xs)Z1m`1=;eY2#Iq^-?mI%UUQ}3KtN`|TBfcqHJO7e^Mi?>)Py{q zoCzh9OcgyEZQ=jwY^P&K|Fw?P%vAuh-vT{-pXdJ+gJ~5YU2&!BzRL8ih}w!+zD9OtZd14xoF%QUU4ZH}vzG(i#8 z`Ukz!8+Nh=TwGO!-}eVkQu*wbr5!aTC$_`X{-V66rpGUDxfkDhhm~KVh8*3?x3w+W z&2een!XrnHEQom8F1J-w6ETl-UH`zIG-)8?aUcoJgPvfz9{z_=%}lj17JS?U6~zyR zMSrVt!#WKPrkiX7b=V_QcPfMnc(tQ{u*Un#Mj}is2%E=Kg-8%g{;eg!T~*w~h%$@=}Uf1U}<*tr|cQA2iqD;=SUU>^PpK ztO(%yYl`Y+P7X0MJ^MZ>5!#D7)r=HMR^Tz(s2gx$4}NA`_IZ!%5P;hMAV=>NXcLz|ABx6tcto{-`R@Jg&K|^aUHY z=5YouZ*Ro?$h9Q7!bTB68<_&f&R#ojycn0=hi(SS9<-Iz!+PK)Y%LEH*m6w}u}tql z@5Otm+h#xTwFWnR%x@*ZE|3pqe$YL66#E=}tJa}YU%ax9al@xxkG6jNsy<0{< zQr8jkq1B|&E#`nBW>Z|6=VBVwJ9p0bNosvwe);s|Qoh!|mO0dB8-JHTkT1V!s*Sy& zc@6%Rq6D|$GDa*x`sLC2FjELK68o zN!A?3zM&4iz+8ZX;NplE*XzJldXw!{nr>1*ne4|A;z%gupDb*NaD2wekzxD2 z02lRSGtpEvP5SD^OUJG;CArHzR{V5N2z4{XQs19&TMQ%H`t(NeRIGmV5@!i!{IQky zIXemsDOr_@lVU(OpDkOtP3y|! z8iR&;`_t62yj6t~afpmGWSl&YZWRFZgc)v&iH#?1c^lA(u`HOP^1a!l@~iPxY&dsU(Hwi{TpfHJ0~_CY7+*)}P=!+BBCL=!j~*>!x=j{d9B9_zJu4*_)MX{1vgY+l$TH zhwr0KeXZWlpI#^KHcExjwF$~&?AEGIR`J*fL`ZPPw5()SZ5b2V?{3zAw`}tTD9M8t z(|R6gTi@V$R2>lhvjK!Jp^B(~w17v%mIE};ts?>;0AR?YEA>2Xf?*~1CqRyJxrT#w z|Kk)4hffclZuczCUYi?RiGNQ*0e~;HdML!o8O|Q8F;~h-8Aqza%z@wg@4hXFBe(b3 zQY3x{rrj0_f}zJ)*{rR7M=AFPWlzs(^nQ|U`<^N7&+-q#Aw%LIFnsg9sbWWuX6Yk2 zyry2pywHi=4fZ)Aw3ly0i{$tU42xotC64UXQLf*pcTRdju^$*^H=}{3pUn6RBnzWk zewmraxw5(mjoVUurG5I`#Sb@Vr1#aAWsU6uk@MB}R&|@05E zP~*CgnoSlx{^LkUf?W*KRh8({vi(nR40xIw3)Q~E_B({6L6?TLYYeOCoyJLgo~nJkvC@m9y4gtiN&Pvcpm;ky#|7;Zz8Da(!rW-bqQ;;p znlIX zibKq(gjZmbdh<4^rSE_Tc}LP_#L9A`;;L4XDyxTo8%kksAR(IA-=})lrzSa$p!tcZ zPD23<>Dlj}h)1=Xv3oAvCV$g$YbS=$DEKABE|=JujgzEh{{LP8bW=V~Uq+M|M5v%6 zJ9|^*7yL6~e-T3ZGp$BlUQ%*vq&aIznuzf^^k@*yh_`;@aCr|*y3-w;70idW$2=FC&9sYP0L#G_lkhD=Ogx zZ!(61X8Pg`*^su-N9`2#KQ>Sb%X0Cto>jFbTCpnmA+2WoGRoG}W6YENdgj|f?kHgP z)gp@vnau6}f#H;~J2EYG(@+MWe<1BD3zTl-RAY9^`d=wejOa<7OmL<`f^U9L2aT5= zr^+u`sPekYPT|n8V4v!2UO+~Y(V1r; zKBK(dX_d0MgaT29k50~;L4j4x_zQu;1#n%J$_2Hzsyu(UA<1KSI}1tQd2Y_}Po*?$ zId$yUX zIv2K8cnPx};HOD)504ff-8PRFxrvWR2HK3uo1=wfcH)y{xE`z*M5wd&un$L&jY3sIZ-(t+UcjM%j=dp3G)wl{(@Ov8A`WA_LNB(Xs+1 zdP2K&%9LlFxSx`Tod7XE-iuRZYi)T}i?*WOLTAeFrX4524+>a*s3Gpk6SBZWv0r!5 z$CwOa0f{?hew7WprRX<*%9Z14Nt50W58}NXU=Ui40aj7(jM#a-(w?rQY=)y3bDii5 z7_vh%S0HqfN`gKd8(wtTHijvbTP6q>Wf;eY8!4#f&{ce?q(xISR2A_2pi?Yq}RhN4W5e zJ|pZrZRoj*o(Vbz1?y*)8Liw>5d%8_`i8(Wxe?IKc`fkCax2_XN5#of_|#%3q_H zPMn|Fc&Uy!fq!lIfvHyw*_mDj$Pb<; z!!slM=Q|m_2R-UL?APO?XM9L$e{P2;DRg~Rwp7tW;bv}By1Zcd(I4TYnWry=dGIX- zWIt(q&qB&Yu2hfN1b_2qA%b2BIY8WpPzsHBMUU}SzECl}moFzsG)t`K)59e?8=p2I zg{xQX94Ryd#dkz1U&|9|u|HObm1IEg0_HAQ_|P~J2Z?;y^Hd=N_)BMAdMr~K|9jDm zT1y(Md4H0j;hPyTTM_c|!@&;T0L0pSuo`;*f-m&Bb7jFs#_Gb`*RLc#j#HvM>!B*h zw5{xUdM#aS*wSu1)2HLQ!yq7zl1yKGkvgQ2Fl56x^iItwR#>YdJQr1Je!;X9D?XoS z`ei$UH~-H`I1~0x zabHb~tZD+@*9$D1Yo;pl5Or-xj_rJ zI=ri#h4^)EL!Hj~DuTd^7koDRnOx7m0}XZ5p)zYXY0jBN9!zaP7t)oJ`j>r|i7hjC zs8h<|y2U)7JO%jJj;Bjd z(w^UHJ%UmIz@F=qg`bT7kr(Z!u7(Q?@XUCs4fyu15r<#~lh{E0rYP%z< zhn97wFX2^&L4ME4m*SOyN|CSm4-d(FAg`nDst5ZDTCF^}XHgB<*g@^)5W^E?X6GJv z%F_DB-Ou(yD2P&Bh${2JKCtdzA(qz#Ekv&XH8*eceET8xfPE=%f?q4sE6rcuXrk>t zhKaTs8fx;_+|TS5_HQR#h;W%Dev9h5Ivmie|HZK(xu|&9c^SL$S`J^~$T85YToB;Rl zD(-iniCzmz>*vyIyx&E}*+9L6X-(Bt3PYI|fiNR`)bW25&t)G3Z_<pNq}OnLf>Ydl#dV3P%`YQdlU*J{#I9Y){UOn#knbv!l6vme4t+3rrtn#Vg&F$ z6>c{1ll>(4;p>|VE>IF)BBl#N0;D4e1 z$KMe$-v@OcnVOznl8uQEHpV+87_Pj+AVIFrxN4-9Z|wf9iBu%+F8k1n{1gtM5=d95 z7GPR78GiXv9|%woZsV8k-sQ@2{lN)dknX(9`@d&zxc26IEwAC-`1x7@){PFR3#bB# z;~n-O+@TKgqy0o)d2+h}3VLIlY?y3wr3jM6U2mJ8FYmOiV{zwuJbYQV?$AO@m!$IW zLtxU1cv-gjNwpP~mJXX`tQgO|)jp&zqj$)N?FCsp%)N9&osG@1+>5#5zgmz&O$YL& zoaAnnVsp7JPg$B+ktmjo3G%lopQJae~gi<3A(f`UAjV!~trhCj{j_6?o=7w|YL)a%H}T z$c!cft{Wq8r^QtrU%&3+mg||?RLr72$k%F-?wP1)=+=qDMns03PiWkVE@t%Vf3AbB zw`z4VwB7H(kbxY6mTvz;(^ufDIT(N{fVahXNukPC^*n zA&eefQv?wSrMtURq(RtkpU30({cHc9o!2?%zV7FJU9k{guh{2q{5!vK>#Vol0WAj` zTDjeg^uukccIhhI94{X-@dLVqN~h{2^B5lU`vPSwmi(>N9RnWT$sk^w*WfK*nyn03 zTr0+3$PD6=JyvUQrsg!APw=iN!#YS-wDJDsgbvpWJpjCA>rAKq@rORFrL?97iyb@1 zPJTPcae`>cB8Z8)e#{xPhIvc=3ts#joClLk8w~{v`Y?X}@DISoRaQukQ^v<;Z62%r zC2m5-8*8Su-B+x;J@NqaEzUi#zbg-1r7jyx5!h|pmKJcl{~{)1W-Yyzag!E};Rp9# z1z&Cu2FBoq*A)QNvj7vkh#zDA?BS^qZ%l2`B(9d8IbMSa^y4EJ9KOpHOP?1^9TJP5 z+zcE1#unYRc{25G+ojLJ0#=j1xVmLpk@EDz2Mwtbnhg76 z*~H7oVan@gy0*jSA|Knt{cmI=K+eJY6$!WK(l<>V7V~5=f!{ZWOis?+wH{|mESfV- z;m*n&!>W~MI8yzxMIdKVU5bYmqr7=(q>Gzz?@jsp8)ZW;^T!^i%C-mkkBiOo%?8td zm=2M8GHCGNTZzrjI(k3JO&IZ3=AG^o{9Krd^2-0Lx8ve^##0tZ%jTOc`oGW1yxOmT z^NsjM{<1NjceX4d7rG|8kl{oH@QeGmbBMJ&wz6~oUH`Y%6WzPC?Y(?C)liA~Qc;s%!FWy^PKF6mm&PsybB= z{o+3aN*@s1ziC)+tc)+c{|m-lbpzljHdnO&#Z3?9GUv;1TQIaF*d)K`s71qVjNRCbNSg`sPtNPk{r-W%DfYi0#*n5{~OecZb{ zp;+fRTS}z#6w)^67?3@@vKjv}oyX|t!01wW0Q16?nh)_cC?_gwWAIf<= z>=*j^-FCJbFa`#Eg+6X;`h=x8UO8&o+z9@8VKIBBSs9V_XodY*!;I$H*Jubspl*4{ zSQL~Wv?x;)Fm|5n^HEFs%FU8rU8mX}Y0)Vf=&q&Jqaw@P>a5Y_qiSX*q0|kJ;l`CrE+x!6%`Owo(mgnzw?w zIp6C98h+~S6CvOZ`^i^Phh3BKY*cv`>UtUPEB?wSf;WUK8fVR{fd861)Xsvhaer9P z^xaRC^S5u#Sv8?YZGa!Tzm}Vqw{608o^cEn+3Qw6xNhH?yqzwUIxz(i&V0SjHw$eE z{OI^=L+{Y+Q#6SBzmY+Sl8hky8AXe?Ppa`o7qWyX)L&7@s~8pmKFNxL%>vhgz=*hv z;Wtk-Z4(fzY!Z~ICPpJmGS&n*V?m!pb61MfiNZ2g%#?=C1bmu-8I%B$&$vO>HG%tq zA6$y=q}A{r+bWB$ubDrv@%_UXJA8F1)xMnTz?n!6CEvH~4N=`ZZxHf!mnsu?SL-Y!hbWKU%yH!pKjF%Y7>!BDB`XmZ5qc=IG0<9fBljx7&WSa0EPgS$ z$fY)Y9-rSP%UpDdZ*=Xz+&Rcwxm)(N_YZdrUy6_NY!#U1nYb7uj9Cp>8W{}nGh{r> zi9u>5UZDvQphY8U16TLLn#)?m2B1RE_L|9W9EJTNrfmy)*ex!bj$(;#m^66s;)#^~ zug$#kDKVJTAlE93HoVBV)lR3izeCYmcoU@OPmnM(htYSt#@NUpj`jtqPWRRRCXO3)2L@v`PvKZB>_2ByXnd9AT{ zu&Vg*Y>l^m@I{or3}c@G7{QLTe(hVbcc@wRWxzn!Qrc07JOz^)t-k1&#ABs!j;Zi= z|K$6lp_`8<+@$qA@GC6HwR<>NwvFNp=l4P;5Gr}0Ey?BQI04dieFstl)!n|$PV8P? zKECj=3spxQ$?10Di6?erf+|$jqB#&lZQHrN`2j;#zC$HLZO8b3aQPrl0QbCMHC{s@ zzhqiSR!Z^yMWUSFRkGiw1OBD>9t8+OPk#XJ=PzCx+VRDEQ}%9n-f_v@9_LMJg?ncK z9`j{dnA%ax)VA@S2*o6pq?sA(4+E78UFNw!-Yx{PUp#zH*^+nee=pZAg)YGoj=0T2 zM>Tp^R@I?15|Ayw$Cf|9Z>NU*m03`|hp(YU6VN2Tafw}i)iJ2;mW3m| zu|j!8IXudBibu-hE3dctA8r$S@k1r?WDDc7cKtgm&7|&zX$MJFDTfCurma2P2uqD` zOzz)n&0tR$J@8Sv)#{8}PTuChO>x9Ape5~{xw&X+V4I_G4xXg{cxynD1n5zynJFYKu@2fxb;Ha9OPi}ZtM zm&j{$Oi}3jV*9i9(LGcX6)oZ1e>v{eg2BXB`_ba9_7*lEbjviJr7H2r2ado;Bz`Zj z7zUjaJE>bsMSa>!SkC=hyH3&{|&7eWhvl6u9V* zD+<894({rzbk2GLxS|is_YA$%2jrXBg%VrGZM_EkQvh^~NDS5h0Ac}S89x+R!<$Pb zH`~@k>Qw0k!{0G3dXEROeeRx$FY$npNI}{+``(LMEc&hC3?l6L9i@J~3s`63d)3Wp zk9MRQbI39AwnGy&;w6beNp7HAi=Tzq%g5~%=Lgho3#z$;w)-@s80HfB$4T^J1uC-8 z!t@re_)XmNA+IbY|K=F%Wf7zV-OL7fRHcoMF!o|R+X?}AwK8v5_mic0xM)62(hHHp zbbu0r(DuP@X3-cAcKRk)*%{&pFTB0|KtonI|`&={Og8IR{;^qYr59QAaXqsdnB?J10ou_0rH@tTU0}2DWss zJ*IQ8vFqGvmsngRlQ{)*ACfZ73*SNg6bsubp8{D!-^>yF<}duYeL*BT*IeYDed5`K z&Fp#F^H?!{vU`#)`!7@6khHTS7?isa`JfE$)C(u67sG$$PkPt78xKw+yilUMyU?hY zHq@P4FDf=69BXU6|L|`K`BIpFp3l2_kL7GZD)afq0XLTr(tsM>5@@MI_L66$cP>~o z-~CxKbPOIX2^wa5V!5tw_FLt_8_aISO62dlW_si2n%~)<0iGw5=A^dT$I@Cy{Klyn@=w0j zH5o@NSWJb!#>RsSPqM09bah^#e?qx}vFjkRN=xQvtVeAKS{0PWTeloAV86#WASOp$ zF8rM^d%Qi>1pIoKceueV{UGld(=qo-a{B&Q1EFcOYbT$T94N`Y#@?N)A$wg1l1P`s zdTGTB5~IHQ#gCO`#wYP%6LmM!m}iDt)r7Vsewd$-<)+$H5b^?a$|cMy)+)M?ScQPR zUE?)?>qIgHuwrx3xIXFqj@K8hrm(Rv(4L!=Z*`l|(8Xmy>cF=K3Y}?C!bNaoA+OOm z93iyI)bwEBoNGJALt2U3l`3uoF8GaCAIDqMUzK8xv4X{UXe_In4}z8y}}G zb#7KC+Y~ncT7HqrV4@D^<_|lbZ$`Vwo2NDe{l;Siji&YCy>E*1|1q-suj4`y@xzgI z#xi+^%w`bh38AIQwPrU>Z)C56=N^4SEUj~v1dQ7-(=^8wxdr0Cz{403D*VFdy zHyCgd+IlRcmz==A64|~hM&Li5^}yr(KDqUoHe>AF}k!ebX z+PSN0g$=V0$ax?^%+@zE=;~^k{P-I&UCNX{_8?P z@X@oL$2$`*AMwa{R$-l%D-a>ZJwK`OSCp2`U>`;vc$p?kZw~C+d^#L0#d>t4xt_+v z&a%5{C{kaXolDKCp2HdmgIP|hTnLb5S(f96uVmlDE%?;6u9bA*Yix9@StO_ z)5|UDgq2FV*7Nc`O1GeSl1};W>!B)G9O&=4e`#cQn7vtIci6%oe*?P%YVyKo;B?7NTjuB4iB$2=YMuCK zZb10sWS`$8gdg=yGWLXwnhLC1CJ$c>B`s_FDZfqIwRTBcQ8XR~1TXzQCqMsMcd2%~ zsZ;;s(=NB7Q1bUrDwj|6qz<_ejQ-=+?Sh$JhxlASm_>J9Lq&QWzNBH01O_(3dXWMy zu;$J_@SHOSdlw*r;t>0*ElEYy|L^5xSa}mz8OS%|VCQ=_&3pN`Oemtw8h1LZji}f* zldy%1Vue&C^}YwF*xvqhA2O#bJS>l9;5LhZ!ijBYU6iLExAt*5V@n9};t~el{BRf1 z{x25bUZF7N%Qgb%qb?W2%aZw3&1oS47C|xIhGxe7VFP)maQ%?Ba3^@9kbs7z{0A?2 zB*g&gNue=mRpvG`A>aAV_4AI7d$DoQ+=5LGAl+w}Q>9&{#kzPlr9w*S`ACF!IbS0f ze?)eApn<&_w)IwPA;T+P*n6VfM>mf3Hz`53@xw^3!CGGLr%zX_}RzPW@uNkKs~ zw0alPpWy{pzuF2~u78$^ch&jlO8an_WTSx3bNFpyAALTrJ^-NO*z*4EzY9+|C*shS zO66l{Zhv2|R?xsXafB4*9HaN}W{?qphN#4NQD>~Zr{KQ4>sm}pNS!qv-zF_WTI0~J z$GIXlpF8vsNqCjmZT|<)oqaP`;5wjy_rcf_o-h+3 z4tIXIpflY~MHDu}yQo!?0=4}J>umN&f-uq!kAG_=`f{J^+xmL2=EXNY=MLUcgHpEX zf_mL+HaW|i?Q3mKL4ZoXfATJ*I^IK82QB&`G>!N>gEpXGztU-y;{;dRc>mar&D7Fy z@5s=zgnIoT34WK*EME6~d6_7^n=P59ufE7Fj2ftbYz2uI#7M!EVlEyIbd z=WGM;vMmW4z2d)q<8+d%)LZL*{ogSOpcJFn^Jm?R^KLqdNX+;zErFt+;D79(qaBpq zu(ZQxT!Df3$$3ohh6R>hS9ufD<5&A|iGnH0P@{g)P`lNav?*Cbw!nMk*%Z}Z+(Q#@ zk7+O8i+ugw@Lj?NWI|w#nz^e7&EFmho%X@ih>IK{w&9*kV?-#V>jTmwv_9Dz;|hWXuIv zHw)*SVXGJTEBd#1!kK+*zgw++>SSJkyfaJQ#T!#GnsxECOkBFF0E7K-v7kE~>O}L5 zAbpff0-v|L`4~@U)Wr%-`q#@Lp^VXJK6jVUnm7$G_AE8Z;|N`rjN4SHI+tg zi-D5ptk|Yl$8V?BXrx1?v0v4I`FUd5s$Z2e4oq~UHcP7QK%+DV>ScJ!ubM6%^fA(14QSC_y%yzK)n%qkdhtIsB{}VCCD3?^ zcdiUoXGTNI@jXZXI{E3pFO&&MZSI;WcKyQW(q!x{mkFc+lU}ach9?S95whuO*QG+Jpj&~!Ql}vt*F$1`F>!Ij0iJri)fL%foDI5 zjdMg9uXmP(60fDWS+cY$q9ny)_-cs>#|Q5EQdX?4z?vs&!`v0T-k|wkY;IY5 zL`*=L6KmBE20ytN>WfRar4vB9;MggbFMypeJ&Mu~KYqSlwrlcBo|ppZc6uiiGZxf+ zgUb{sI2UYaRrM0pr?UgR>0%g{+9wM?V>pZCTBi!X}HSeLa2BS5m-fBp_C06Mh~JF?w`Zu=k3YkuIcN@lvx zCp+3Sc@S(*J1t8GlfOOPEZ=A2#olKXb>KdqILB{t%nw~I_jWf-#vbn4(wG6@5ZEY{3Ifo zF!;@sPCZfta>gFmM8tEHl|}?3PYlWd8OO;xv`n#f)!I5jP>;R$;Z(i~@ndF39S2gM z;$Z#OaIQ>H(v)z~lDkT_KUcVFJoj=xurVIdrGqEs4KE^sHD2x=r4Iq#_Q!Z!e%=;! zjv0>5e+^w57e`(BJ>FDmzuK-y>0y?`q;^54%!lp9<%1)n2wg<^?25O`3BE-bNWq7M z3>5bZSbVD#79DKgIlgT!_w~ED`_ywn<#~t;sfk~2=LoYebYA^%5mcyGbQo;cuxRIJ zIOUzX606=EzCx%dUDq^3WA^X$CkjIfO2E|@rR(ae$^0wEuYSH+sE0MM>r9p1H85-v z#A~;Q%I@vvVt8tdqjw*?xa^|L&WS4Kv;6U@Uo#0p;Qsp~$i*?roo*vXEe~YcGR)sO zS%xP(_iU=RZ*klFWX3f4s@F@WOL%Fi3=~#~ z0c$;%N`oZ4(EDT#N>Y%MSZu7?M>CA@Qrud(SFFdo!rX8t6h>p)v3yDrem$$bAEev z9a@_9*`ru!-PFbGfTrF^z)E6SV*C0%TfQRKD?#V@wEspf!!X&Y5addZHeNhaXgSO-@0-_NccVa(0{GO`Nzzuc_?Ob|?>Q8Pc>=C>pO z#AvGk;}tj<;A1RMGd9?#iycYY35i=H)#fF)L{Ryc2K&F}dpSk?Bh_mj&n=+5Pw}uh zX1B3DFxVFD2p+ZeCW$K0#{_Q6@Qhz@u~C8paiZ{&t{*^ri3Glh)Bld}XC5Cu_s`tl z<&IGY_L_T`_V{;!4;zU~ zM~ExZZRo?|!9Ns(^FprO!**KIsSEG8I>dG0Y%2dgrFAZSR+@p^6upFauy+LQ6`$Q?U{K(I?e1=^9Sq@l%J` z6>j2g&`*fJIKg$mHI09;hw|0Q$74W%T#^_&k5vY~olEnoaD92?H=)RlFPTPfNB7P* z%GEDaJ*`=Ksw_`Ej6m?Crrc?o7At=IuGrtw!9A3-k~h^19Xbv0#sgl2%ASjM%`y>7 z!KLjsmM2{jke<_f}jUAz32cvLzVNn6QMf)@mJEnI^s`ncmofk!eT^zq; zG-<+3lt%-WCBycv!48ua^0>B#qsn~IPb(?ZW;i4>>*|`Pu+;4#XbNn6+#+%tOFl!% z`oKub3{>}72Qrk#>7@;vo_u7+vjgADf*?GRto+``fyN~l8X0=Tq;15Mg zrb|CDACZXy;WK}xI(VtnqE|F@QFr-hCl*9+FPtt>PU5zvVZJyqh7b6Yf2?$M^g#cZ zAz5Sgfi8t~ZxbQjO_SF4VQo*-*MaaypHBQVkIYYe)#81BD7?I(VV5NxxX&sHS;eQg z8)*?K$0+3Lqf(Mu>m6ifRnMO#b;Rpi>^?{gIJjkM3rfl}_TeEgGk$c_lvDb|u;x zgYQ~Lcv!P*Pajv4gAs=0R-MdX1YH+c0hC19j2Bm#o%eYiW7GwXl_=cr@i>Ti7n8=w z;+{hdz5-`9(fNXWStcsxb*drPerz2y`?|wnC2*&%;CFeURp45%7 z;P05Wo6YLZI8lx5RaZ{pC%fG3!2h@8`R7=PWS$5CnsBRz$s3lWys+-)eQ{H}=3A`0pW)#F3(oR!cKe=968A2o zPN4jZM5Ss8gAuvnw#6si5|gJwN_$bRy5w|RW%JK1A&F)DPmLJGZIzASYVW4ivMN%o zI%WIq$O`^OM`Jf{ty1NY(kT4F8xphmH9O-8Kk?U@+ql?0!`k#x zG(~GQ?%WkZ@jM}wbRCCR7HF27uWd0Sz*F8#Lq z$z_>ZX&SqK-->s^pX%lt9w_FO!1Q>gsytlUu;mKgR8b16Z>+|A3I7E)KeT;fgEpmW#m+-)V-= zyMjc318PAJLb}>3>3LP)G|S8YT22HHXHL=PHr{_pM1(vQ3jQfoh~&VJ+|IknkH5bk z*&H4R0f^n8X^N3%{)4@BHE(~CATSsH$>(%l_h9SR9xR&+b7_rKx(CZXzSnK&?>M0U zauyx+*t-ZGyrdT2oX;LE$H~$W7c|q!zU%f@P1E^o_?@>*Ez~}5?_aWlSP~%sTp@eT zw3?-e>_b5C)EH^BLobdmv3k?>nq(YXS>+X(^y?EEcOAZaw|2B1m=4P|-Mr1VY>{_p4-PdiIa+yo_ScJfcQ5A*M z{y6b`Tvz6?-C&b3_vIsws7Q@&^(y#BVLa0(4NiS-&e5}Iy)}AdM%-kOj&()4S&Mzt zb{5;kClekI0rK6HU77Y{k!78?3GtIFX3lf+?vJ(569v*c=EV_k9{bZD6HJX#>M|AFlwf~7D%s;qxnIAM_NRCJ+^_;RY#2M9^k zVC?^8VGpaS%JwbIwqE{y@+f3a@MNko$Dn>dQ&3ac4i6YIJ+6OHH_QrHP&8e^I@7wCFG}pU zxY%Aqn+`5;c@z(?$T;~LpI(Mm>8)vi#Mo7UWIvBheY=JmGIi(^(&TAV_Ko3*K%rK5@)4}f9yaXPZ%%w!RU?us_6GfL?muxL z40FzDS6L{yY~9HfzhW0I(|E-eQ+{t~CoYv$@oP#^#k`lcYV?YdCM_9(Ump(^8%U{I z$m{v3jbCq#X>|0A_}C>lzz#surd!!9#}cw{g$4XiPBk1i;)A;$BTe-lp}5>QB`1NJ z^Y8N37T3FqJ#hP};KTW9xKC=xJPB``K<$_}Zl$Mxr<3hI*3NM0(;{_SAyFm*^ z^E4`Llm3eti3<|25s3?Lq;&ll9B*Yy1*&0f;p5Q?YA8-i(qBwHhCegQJKC>BLb@Pw zQSJ2ZL|LCj4Z`h~F1V zHHZa}7vLKpQ380HKUD8V9qn-6GCdWR#X`HZ?I`HTF@d?C1umlk^TRsi`L*ZM^28s9 zw(^aypE=sywr{%Rnnt;9j6ANue0CM}cQFTkDRYtTb?ZZ@06xu3R37=9S7q5_Es}F5T~@4iN#he55LYQ0~%W}&fgv9FB-+WL8Kg# zk&flry5}$nLXt(8q^-IcK2nQ!kA_X@5`4Y?Vv@CM49#a{GsbxcC=r28T6A`1M?7S zV;Sre1=TPKuEf9h{*xShM#|@xJxiL(BktJK=(21@V&v6}f2=QJb`GQ;{w`vXN9j#* z;7!zKo_|}3FW0k8r(b6w>4jn*$;E@HcUmCvs2SWgo`6cFhCQp_&m+dn!dOB7C?7B4 zS`Lm!4_i&<61&y2Y$m5Hte4jlF6H6Rq;_)to|;Hm*~4PKnNGm*RBG9((Sb>l|G6nBRW|hVx4ms{n>N$_bJj} z%g0u(75*By=qbog>Ljm02MXY8DA$R4Z*0bFt3lICysuhz>GAsOk3U*>H@(__u{LZX zMfE(iING&H#x19`h^p?-7yG6x-T?B_r0#o1yM5jmcmBxj60y#ymli9RW7d2#Dr2XZ4~h2FjfCmoFVQcei#N^f#i_l}7YO5G`@ zzV#{({%Q8CNZq1^{EEfm)o`pnSK3nbrEppjhi?k+IiLf3B{LTRIrKG)@T>kv<%Mr* z+cL*-GW9(|q-4hh$OCO0fqx;S`LyAp4;l|?B%g*jDvwJf0IMrcS?e+p`Cic91+>Ql*dZgkZJfEC2g1mB!S&mSlJzI z%ueV8(^Cs$)d(IbK>LUW18IYMqbOD@Lr}PLB+~=DT$c$2H>-2XC#M{1^ zC6D)sdtDWwmXEWF)&IOg3pao!n_S|9>`()mN}e!kba$RB&!X$RqGsQsTL>9emXs}z6Tp^5K0?GF6IMEOA&rU^PUMNcYb8{l%*X&Kckp^!dG8A<>dh*qVt7Z3 zJTL?DMCLBf;W(!1?w(+&qm1=lQH1-3PpyODc7)q^a>Df8P+(loW z_qc=6mZNgR0#*64VS?#+=3O89%4GZ*+CRY9lhqx2*q@C@YsC1AGH zMn|$!?rBI2;SAdXWqqFs9!qqw>6>$N>7Oi({nD?cuCvhKjOvxf6HL;}UN*S}B0q*<2Q=2<_%nqLJ4?lj8L(O{0gM*2gSUQ`a6< zPnt6q3F;L$iiGuURE2Rp66J$e2^kE#mOBBmjb8Am;@|S&gZ;6VL~Z~*3qn=l;mG7J zdXUH|N2_f)Y+}Mc%L7B&1;&-NG1UfZKgN+7z+1A?)7Q3swS&Z$fxS6@F6+zoeLcfp zHhuHLL7)u(c8CnB@Eu}1O`nN#EMQU2I}q5{G>UpX2Nb@+@43CbJIW%_@2~48>-V!D zv4E+k+AEf%Kw+{TsTZxdCDVCaksq=W2|@Adw;a`Rw1p_So6``FK+)JxibcQ1pE-C@ zcvoX$9DB*ooLI9BzTZuye?bZYfemWFCnaJD;~DroqByIJJN1F7W-6zO;`)gNA>AC# zmpHGEXvtbG;dgocaarA~kqVPck_!*8*e2$Fr1$-cN`dOQ>?#K%7#;A75LK18< zh5JRPMi&w(8?UDrS+bR!m`3^$-29d1joFQP@y+{aI?K-Y2Gj#afOivz85*>L5Acs} z6O#PGDq#cM_Nlu`JiJZvmwM!19_yHWc8las^O!Rvv)@Hg=&^=03c!6Qd~Ss5IfEmf zIS;eKQZTSEP2g?(UdYo!E^`~xs_EpRXWF?uuonw`97ne9EqH{hS@rFoj6wn%(`Ju_ zKjqk`aSFL!+7HHd^;t+PrhmZ#7bH-U?5ZlqE?S? z)psh4#}!mjAJ;H`@BQhy=K%HPFjXoY5 z+kbodqB0s->*>0Tpoz1`1*i4W4fBv^cr&72uW-P`j=5;x4E(ZQPPAxF5>4{*N~f^d z>olXm70B09F7#^cO1b%YvXd7O#AGfA662$ml1bE^Vu%Oz{GC5wyH!8kK5oSCeE1(4 z0C*I1a?|$0HR0#r`fmh?OcX*WOjc?-@Jma|flfJ73-vR2c`K{Cj7Vd!GMn7|-^J+M z2hh!m27XSt`FDMPLm%PeC;vwO4SBy*eN4?L3&mX_f7^!UW6X-3i_!i0o(_|K%ePbI z*#fI9yh%c7sKTW$T*JZ2L1c3fAHXB&6#vNau46u(LD!r!5g2&Yy1j%GK%qctf#DY$ zl6fLxEcHFJ1vJC6(ky-QTgVv7)sZf}{U`Ka3>N5da9W-0(c~_!Xh#Zk(5=Tkoh zlWUB^hx`28Zt9bzPc^vA#NhsD48OAE)A%IF80SR$gpiTyVra~29)YrKkv%xI-*4y| zAWd%HmQ}^4Ddmu~UQsuxKXBO36Vv0Y?@!Oin=GWe51W_mi~>zjsdLg=*yFi3kJS9v zdw+2Gmh@5RorvPa&Ejdt3}tL~Z$p3eJN73pk}DtRr{OO?M6V)2u*PLP%dpHA`gRST z@R@>D-TCx`mX0^}d!GCf3eEmKqN}}?XIdP;%gS8jEZ=V?kqbk+I>swmJzL#L%J!-0E71|_zs%QQc$H=kZuQ)73Cbsh(&RQ`Kja6N? z&*ogU%af@Tg)>qEo-EHDb7IG*wd(qSZ_y>$NBVx_&yuBE^tgVHeTa6QX^=BKc&cRm zFB5L}9?F$$!+g{K6%e1tx-#5a4nZiE+N0$#yFB71JppmzgB*w-EMQh-pNBb)bz>`? zrviM-C1S9=z!$}`2=Y9+RFxz)S@bKg#|=-Yx4dks8Qn{`8`cQ*)UulTl-)W7ty2*1 z6#{Fm^*$w$|w4-m7w zvAZauLZgS%pn8E444!DG;WQ4imGFijyRoc}0pWvCeW7p<6@Cy@-u(IEa2#T-Xo5#q zCi*1L#(T`qU5NDnF9gHSYDq4r5<%=*^Q;nqd1WP)QqNIP{IAkHmvw&g+rUFKEGVUM zwhO!=$-i84c4ziEZ}^FV(9-^ z0Ib`P3UGU_`tIv3^~Hx{VQso%#E*(9{gkg~q%210+V_)RSS zyyvPm(y~5gzv)-yEHERzUHX(=Ww+ zwd`jt`{r#?!#%H@{BdcSz;>_rMo-a8m;_;cmewm=bcvr~;e~?y`Or~dOZe#dpl>21 zkh=K+%#H4~26>srKVf$RNNbEf!Bq1Hd{ON#y&?5xy%JrIx)AfboZ@!K7hag3#gIq# zS_^jGpVe}12UYm(LN%g0%_oaD!5aH6fuWj*BlN|1RHmbZM{*Z0(brb(7bQm6_J$rn zNPaEoVp<=Pc*Ya{?rAdr^@shGC#)Yy45KSufqYUWjEvn_>+Jcdtf*%eX=*Vn?{ zbA@n0-JIo1g^_(9rT{81cp{`i({OB=V^(I%B`3PbFV#Kif?tLxssGb$Y`u!snq`f! zuG$fq?5h28%X`0Z_;8CfbWAH;znLzZ6+{j|Txqe=W*U~cB?qP-& zHR;*Ha}iyg^+dtB`KaJiAmZ5}f!Wde|KE5_z5GL5rbaUBS&#($xf+~TiozLsJgiDs z$5PL%R*W#c3Bzck3}l$LvYxm1?hp&xOd_d>-5iDds%qrMivwixu5|3 z7AO}p$Yqs<1xA^v9-A0Oy8Geru!A9i+=Ji9cW_&?$>eG~{Os@V4V=9B!)jm?KFe++ zlDweK@@(Q8P8(k|m}gu|ioua0BLEFn9UV+!M3Yf(hnEw*4=`_Y{NhUf&PNPdbim%b z4}|}i^yz1QHlgC>I$!@6)1IhatlE-XFUp6xHEkp>*l1OObDf05BDa6dl-8%0fe$u) zbQhJ9Ft8)$#O|-^I(q316U0Q%0PR^@vC6;~t-H6^=J;a{X={xc;h>9eQb*?P-Wz%H zHhZ+gLuQSmu%=OoE6`0)^4|GjjUC7v;xLU zD)4V|ui#B^m7;O5do}rp%tex}g!_n_rjUy8)7P4j^H$$R?ct1u2Pe} za1*DDtjmH-;Y|jIF~BT$v$|mzeqvvH_L1$HCtvcHeQ(3^?DQ5>jMS;1MeWP;Y}snB z2f#>Zy`0FLU+pNTSyi&-EKo*Sc|O5J()(c>_ETKn370m8kSy{W;4Vlz8{_@ciDvEt5~$+}Mdlu{AD)qxoJ+WKyOhtNUGB zcwF`zaLq*IsmB-z{8lUs%ba{Zf$69$S$dO=>ya6#6k(q~bSHp#ty>PO0Hie)^}{VD zXIz4B;J1AuCG6@9(zn{ksLgUBS*RWn*mHy>ZhvIYO5?moI-JZ zOEZOolc1Yr#MKyPEh{3ned5)Iu*%xIya1?dCm})@StkB>L;U7%_1)3-<-BxKk$ z#;XSRSbpz;`G60gSR9r68v*i|?h&2iOM)$wWO;W_Gafk<;(Te7x<#N;9Eh-qjVbrR zM-Op8#t+P29b}e{B>^5$=o=ThXv8EOj;IJoVBGqZ8yTw(eBpda6f1E0RC{1ec22K> z@X`zzq|-oV9bZhqwl8RSt0I-43{37$4=3tKyd7Fc6WlxE!{VY`MYtFJgf!Wg*EwRDoAVQXglS1v2=WMD9F@x(!^tWX7-JYN|ui1Rg#dI=h ziPW^bb!ObS2>y>Zwb7KRd;LFUAGSTQcXSvC4+919wH4K)R9S^x)e&H#&I^{LN*8lp z%c--8*Xf$G!yk*OsFEO(-m5`i?J7)t-sk(k@zeGXi4g5B0>J&$r#r=eo7mIWf8uKv z3wsZq$h*5Pp2Ko*OdGxp#a#LF<*&m#s$=3ahVSPb`-`t6s$R?IKzT=y{zOQm7tLuqKi{mf1!WgFz~7Lz0MBh8wcZ7D91o5M zSrexInF{at@79gr-a24dG9GksCvg#cS`hi-QG9e;Q8F@0$+sCWc*dqaLPh$Hv$}S< zdwRVGwmXpE5kwYWo{O*$t?e^oJHX3H&Vi5?!+3CAx9myjd9U`2U(UNQqbYby+<-c; zwC86`%|P(4AS3gqUUZHeBO&qML$ZIS?CY7;=oN7S2=I|kv}jtE?9%M18E)!Bb@~Im zW-wPiu50uPDQjwmZnpK%AygzL74qZb%Z$`vMd5( z0^RaH7<`BeA^LVJXkFARR1X>nFawFH{w$@zcvy}-M86CvFfE~`N%mHgG4<*hMA(P=(t%9CtJva3Uld zzmG|`rmKq+?wTJh8GQClg$r_g#Jp1UUfHJ%9G8&PuMmNr)r>Y4GM|6yG=r|;?#YKB z7T|xr?x9IImCnlmnh&u^?3);Hx|LJ9AG{j4qdS$yRzA83`gisO%ZsCGSkCW^lzS%IyDSVUsZ``J=F~ZDUdT?|rZOFCFgjR^AkUOM=v9rI?1^ z#?w7A61a6m49I+IrqHj%3eU(z8wdEo)@t)h-?aE1kX9t^#Y{0h{n8#kY0B+m4BwN? z;%x-<@lD%f3#Mz}@#Dg803O1w82-Vq#P-Q54*{|dG}7C%*XZOsk=E7vzhX$&K~U(m zw$z`^CyS!Pr>;xEtf9AhcZxT62J^gN#5Rs6#owRTl*f!Z7LYFbeZlqe+Lyk{Bbgx5 zLNKvHwg50<wNZWKG=S$?PdOEF0mwG-zI78@UtWo^c4C3czf%&sJ<_3c<2(4 z0YPbX=#mDJk{n<_x24TcNEJ{*YG@crLK-C{pX29yJ=gR81@8}B zT+AHKIeYK5_u6ai`@WYs)@ah(TZt^$7dv&jYu)p!_TgoZBf*QoIZys)0x6ry&D~aK zRdVZ;H3U!h0M^2DaI7f8OCw7^fUvl`L&p`@R+Olf&9&{hJ!{Dj`yzR zcezj+D~@T$1R7wK5rJp(sMkwEF$B>qR!*Pz)u*eAb6mN9kwvV%auTR<$^lnTf3lN) z-xpb=*`-j#&48r?$^5C;T5UfWfCUaI%?qhZg#n0mwQEszai))I(sAgmw(g;2JW+W|KHimkP(^%a62`YK2^;_uS*0jr zr%#1~e~*!d^Icl%`J72ga#sz@SPlcIZ_{GjeOAWL)%|E2`C48am|w|e8mEtLJu@2u z><-eq8+^)gH`?EP$_l6kQ4Kx#BH$yx`q~}V6JGoD6P?{SUX6k(dC(Weq|4K|2-os6 z{H;kpDkr1?bt62T&D)d5AOgi5z9>G0RLdO|VEWsUr3^m8SE)c2|H6sbV_ki^%b4wD zPF_nen}T0cCg6FwS>0I=CM`&8M{E8IU@#b)HM@tENpSW>_mpVvi&e&*>IUcC~Fo87m*#9U*r8_(&Px~( zln1otru4SCxUc`x*!JG>>s-FeAOqi!dl_k>j}AKHpJ}&=2G0_dCY~(d+_~fbVU8 ze311uzevp3IXlHTQlDqtjSTE{Wx)WkF#Y3=$o3dj-@*u2JFzJ!Ry zE~)b_W!B&rsOAeoAN2*x^vC7W`rQ2^Y5y>ZA4oU6l-1fg6*IV)#MCl(9Arfab>m#UJPI7mS>!D56^Q~!QW@U%ROL^Pw0{W6>|xY-j8&No{IYC@?y7t!Fv9crb`R39G;QG`KAZNFYDz z-ZhECp)i28)x?b5RFQYC+;97!e>~0i1f8Lnl1zO@n0p>9y}qiR5$^wAKi;28Ie#O> z<)75T?@&P=@sUyom%uv?U8WQn`pNeDlu)@Z<)7wajjyLW<$Yfsg;hJ$g({>K6W_UH z(zKum*na9ASv21}TwR3H?Msj9;oZW=;U(?`>;NFEKW?>d)=M~FIB|T_B#7q93u49ks&1vJq#&K9NoUYW9s>+0pi>)zNb4&13`V)(XQCo-h_!K zn^gN4=C<^EDv9Fyum37}=_#Atmd1WUG}u^yut`v_@(nNn{O#pJDg{&of^QwcRe>%` zb|u9hC{xPDU|aV*J*x=TSX?O zI``sx!ufRivXIXsD=Xy0YX{YoeSAi}2?|(g38OjxLe3LSpeH)EAOZ7(9ZMH)%zQLidr*6EqFJ3(bl(0d|BBffu+E*k zJZ<6qF6uc6Q|~A9e8q*TxkK{FV&~3R3BD)#Nfcj7LGt=qI@5UdJ&!Bmog6A*1RZnFjVi@z=Ert<)bg$wK(|2WcgM-s(WVq@s4#Rnb^#S zU=_B?6-E_#-hv@K^=2~eh@%Nu`m#8)J&CQCewgiZ@Z^aR+J@IpVA`%;!mG#U4=;Wy zFY^9fdGDXRX9ap^x#Z`kbX=OGQb>P5Q6=B$u&5w;YjjHW5oWJzC2Oc*H3bPh4olWM zBDrt-uiH6$M-}ujL(NvICJ>KHz{7iP*uR*Dc|v)BEOROLgy*Vdw3@kBHM)$e#U)bV zyDjqQv>Ws#q;5j$o<5AMK5!hD8Ga8SSiEK8xT$p|vv#u^8_rCTb8DC? zM3$#X5CTVgWGUdC%N7rr(v2*2x<4b@yg#`Hp(z-0EgrZCh}TK=&3(NV9XQz`#rb>k75-0p+A769uyGp0)WH9F|WiXcK{I^?JQec?F{OF5W z`MPk`rjKiUig)! zFNvYT$jS{Phcyww6LL!#Jdqe^x_~kvqlJ~|j=SccM?2yX&F^8L zET;;VXxA+L!u-sFmst{qCC<5UJ4UI$p;OA<0_sTDuV9vsvpdhQ;`pg4p>FaL?Kh-P(&tEz$_y9YP`i{xm>Lr?0R_w)n6Mpf^BQ-7i_c(Xn`Z5fv(_FNaAx zUR~;W?o_>w)e8L);KaeF6w|y?+GCMpL2|4|RRfg>Jb-Jm4WRK&meq0p68y`T^FVr;bpz%?T zq|jSHbOUEEvIj+iB8R#J-f99kQvw8e|Gn*zpTtCUI9$tR{3%aK<>;;GjP5nT8s#Qw z7bP}fJkImp-hB7({D>WNQW3vL9qpoT(CE@!ZIh*2V6#^`59Hw%Z6oq{p zI!rKOej#b3IVA&to^+U0`^`=kM(XQm@9Tjo6L?cpWSTkVj9`y;R0AP(edU!J(FfVi zN525#3YeLe!PbNwL1SY{?DFnMGsmNb~;80i^NX@*rQkx6!T>+r1q|lHdV9&_;g!5qQwKKQSOiZMX!HJCSNy^SZ%Fq&R5GtzY!7wdr z6B}bPclEptUUXA_nF)YrzC8p)PIx0KmC1R3u31TPaW9p`ONe;G89q6Dp+Rzb1FYv5 zi{)3lelr(nKpWwMC}Qy0=l(f%B`XFIM-8G*h} zA$5(Dublv>4@b`lUEj4zWvK)``V%3Yk~l$R!dIf4pLd(vmBy7^oK2IdlX~KKrQ;C9 zv@zdt^9UK119@b~=LfH6Lv-{S748o=)7zP6UL0dH#@MZ^u`YNQBeG@>VT>p3d+VJr zm1s!Lk?{5`!83I(=4Sp1b;Rj2$E1_v?wP0tmT(U~)Z6W1OsD4uNWDD6C=n$-XFcFo zafK7^#q*S-sTa^LzJFg`;q%G$*~0Q!5w^ur`d_$cSKi6zDz1(aN5F{H_`ES_SB*Fg zmCuu$R8bKA=kg-+C0h8b1Kh=Nn$j}}?)=jlW78)eePE>S=V1T_nCZD~B?De?cL(=8 zt4A@$`$je256PF_$&75FuEx1b0XI+jPU^a4|51lapQx6vg_0;gxtOV9LeLx2f#R4` zB1GICAH@T(hM;TylTi6_X9eW8@e^&c1r91>xxi(833EgCjBTY1-|E>ZW`GJ<56A2A zhHnOB;v@daj4Xw1GE)4ZIbaNc{BF-3vrEY@rDv>xQ?vrr6I0Xy+~`9OUm)l>3DPh< zW*m@*tc~t6n%Um2XL&JN2^JEAI{2%%|CT7JwHeZbz&Xz#~q zrZ5h>*EIS3jNq!{nXzGfavu6Fq^=w$w3kne;`WP1%{*rkGf$96UU+}k!^#5wuzP$> z-@U({@AW?OL&OKKhtgw(y**0!h}+*KU4%qw@?36g@C&K zLe>ZZhjJRNI0M#4W5mjm+rxCy7y%8R@EILiL3ywba=m@G&jKJup4|fYMfrJ--|dMs z9$#3pQrNwHfP);q3UyQQ)50HT%NlJ5u~j(x&B{N)yBV%kx7kmV58)Z4n zexE3Umqd?u93K(o6w~m(RcNdDo^etslSnvS5|r9LaNRWKMqimm zXK&(e0sP8-=T|Ww3|W-x&lS*``lkaXJ0p*sP(CAYiT3^QuC}QVy;v_uh`0=Rk3kW1 zU$OqiP3TF9KVVE%RRu@y1U*=kwkRlP;2j@qu9I;j^BL1WYlr0>+U)69ZWmj-Bw4eL z>Tv;uM_Ng0lJyk??-XLgArt(ODOcGnp*Tx_U&_=bzRrCE{lh!sd`9uR>-uu(t)c4y z#wNvh4iV#0;T|gyVTVmK2?G7f=+1oYY~rou(6Z?m2?0Wf!yMDAvtq8^P0OSiLIj}} zk3i%9#R5R+h$~;4>j=#VX+9Dv; zqXI9AOXQHalZwm#93Rm`yl5znR5a02Kh%5UfkkQ1Qk_>x$$H@A9p4$2lFrYiv$H`cDsb|9IdGP)0cIxBa zy2YE5v4Ip(g7B_C-(=p)o=*+7gbpLmRw3%}hdh2^Ub5f*!HCT6Bsxhw7kWr5yg}ErcNEEZX88$8Tyglihx(A!Ic> zum`CgkXyF}7?5Q5ACy?i4tm$xYtM|(_;*)io;riqEjOM4jBg2(R8DRgk4D%jkV}Ku zK6@cvMXuAPwufA}YNLN+u=hb)mCiBpc|WC>L&8=R!7h16CA*P(bVJ#8GdT6(I&o5o{fxQC`3y>ta<0JifUd3ng zqf3F;X3+Xv(y=0`R$VRd2->25CM?blIf_9Sn^@sfWpr}h ziG~p7DZjdNw;L~<=>1zh@h^#gKVE=QCD;8cQHS z#*w7*5Ql26!sxC%-<<7Bx{vx%nEYbMAL`^nFpsmVrG$|!Fr*SDm+15uCww=-mwv=v zejH}POBA$Ri_%=9A~OK)S?OM79YP8QVD)*dp{s{f+0`+ZdB3L z(Dtee9IaU(y>>)N_EEH?<%TzHQ7Zs4=41C1CQRN9Qh+4ZK=rCtKd9!jM!1Zuw5-4V zU^Co%ZAOGhb%X!6>jWqhIJtWbI+CJ{7UHoF9bVw1kwn}nFZF>J7^IxE%MCn6ET-F1 zja2`bElQ3w(;W$Min|7-wHQ#ctsjJ~M#?1?p&%o>9rzKUx#jR5FYMqC+midd zoWtr0GP%8meS#8{S{@su+NGozcvg_};+W$FnCN}9c{pMa@2Xa=VmUwP-pK9I$eqaU z%0s!VlyXl0gYO{8|H1BJlbxS3!fFte-gpX<;|U)?OIuu`UeJEr&)@4kJ?chvP=sh8!9eV9k>uaqG=$m_H*BJ0xQunSJHR54&S}q_Xrgwdhe^AC-uy&l4#7+N;+`hj3<&Wza8?{Yl+kK_R{ zgJ<78#@`D9P#w2%+-2JzdERoWaz=V;4T+m?owCRFO-uN2M8Kcu_ZPS+vcDL3=2Gg@giqN$Sn}#mv0=9j?J%$?>kc%!RU6qonPXPFF zd^6V6SmSSA-nueNge}mW&w8(IEQNy~P~ROn#@r2T7JNh^oS;}j>P-GQhoajkk&*Qs zL?pJxuF%9@6#y@Owknr((%|G;W}%n7J3I8=H9|YVxSV3Ia>sbPIC5W*qT&k9r>BUC z!Qk)Ie=a|kr`j=Fkh!CYLA@%apnIS>RV1ydr@0Jd-Aq}aYm{(jN=@@Zx19s}?Ff)7 zlb^^QGxp<7jSoEirT$b)n9lMXtqv@rdw+&x`dO#6AKxeMc{TA#1St>FXKAM8$}w%! zk?+hBckswyobVzju1PC@*R+jwEVJ>ONg>Hz+dzkuaggOk-33H5OS09;?&Yjyi2H*` z=@i0jr6IWh_`tu}C)wHV>@1}G6T&(o9WaiW3v#^J$>^7mB@(e4H;*0V!`Y35&S9 z5Cb9t+OI9YD)!zN)LFgaU{^qkCqKv3lEttSFeBuA*;57JVm?i<`(Ub5n&ngO&&~5j zCV;yiKJt(zWi9u|OebZek4Q`Oeoi4o7@H=w0E)xs08N&aw4qA=(eixIRf7O?`iq}R zvBkbs+|+1L=N3xe|?e$!D;^^x%yF_LY*ev01; zaS+wUTi&`eLUwG(puB;zuEZY{`!6T^S#g&2$D+ z0^(&ZF=DFE9N#$K-vO%tQfVTiVZ0*nbj*Aeqih5F`oZZW%z1mcvpTW|PE&>RJOL;b zDbtBEl?^I_fA{%@E`biqYJvzXuNO^=(H)^b|LiRcZqEJN6#CtE zXsurR{k;^N&QTTk#)Kqh9fdLIlRmLqmCC-K&;vwA$c`e%0zgbErv_6mlr-BNJP;!^L6yR+@uN`;W38F9xtP%_ z+Qx^rVZ5ANqcueZKw;j`U%xEHzi?^)n}NR7gUcyi3{;_5>voD9<>Tg;EliASaTzn> z>Z$<4c+?B%4L9<8oXvR#$~lXl-BUvstUrY+$D}-G$e=1|8-i$$F6c z>K2KC2`qic{bcL}PIZj*sgT(+wQ_%7D#w%c=f3=-9W!--&z~rIE!79tG9%RsTF6G1 z5{%J~)mz0#(TwNdg1P763yOcjegi4ku;YA|oa&J23o79Pq!+EOLOi!5@$`?Zb31Jf-E`c&K!=2B5LFkYz3OQ_iL zR$H9hdCk2w8;WfI;d^ia*>_3eJHn?lY?BGm`tn-eO45x#ig-b3-kDGOoJjUUCU6J@ z75OOs+LuDIoy{TuGN!)hv9ba_(K1eaS3-2UPuatPRZd`D{L zm9h&nMeG};kBS-h7(icXTahcZzgFOk{TchQ(Zb!4xDd2l4Q91U?9m{w8W-?TTX_B$ zk;mhBKZ2{^D0-PkHGNiIRv;vw}JM8@C?o_ZHCkpGrJX>RDt80WH)diy}}`U%JeH*j{B zp{uPU>Y@Kt$^=OgRN~y-Pl(Xg;zH;{2r>{Z2Zm{F)fMLWaHFD;N>GVIBMLM=-_! z^)Eirkhn}XIeccVmSR0lChA~2#8dG*;ql5~Ewaw+kNZ(fkv&^GP_p~Wo;vCOvuRc* zCQ#*I#&!`kSxM~&4Q&Om{oow#*XQtYz9-MIIU!kZTrVY!FUbn&@7)z7b|gNf$Ft4tmCwh4w)@onqNiv`DUzpQ zFU@ql2{sAudoE7UF7&e>ja4+7Gt2OP->CniK!E5!dfnQUC9PD}1E5@8N!N;g``<4o z9MVPV&S=dfbB-8ds4ZCYX@m2Y0I8yU{z@y?Kq#C<9p^&pwyEZG%~ipOZ^z8P&|1EQ zWac44ib1?Xe1Gcu&)M9|PRgGpoo8Q*8}zyig=u_W3C}i5p}7FTn`sErTUYDWCEb*K zg!JP;rHb}Nv^$mauq;R;^ddyoyB{`yhcH~Ac}GI$8s`J}Z) z5EQsd3Xq?)K7P9oy!6uF-){Smt_P;COe9L*dSRAKc^UED0V5-G&qDoTj(NxX5!V%a z$fs3(uUaI*JnV!c5**t$*|+Y!DV@B*_jNv)Vn|xi>A#Wd#%3X2VRrlH*|2XH({ZFwL+;~ zS$KV&=Hg#^_QjyLvS{zy{b(v0?P%bWso}?y;&V#kfBUMv5K(ZoDB^Mc%h~S`&Jvh| z9!AabtG)(YI=Yf;5&c5P&~A^byfCU(mD&~|Y@bV4=FDY%niGz8jlWmj4~|aC7iv1Y z3jkO!FI$Gdl>>JRg)>!wiQ$?ck<-^Q6s&~?LRl)RyjWa-^|=Fgj{52IX0yh!O65;) zW{^9DLxy?Px1Sll78a}x*g@XU{U)VDTpc$J6Vv0yr>dV0mg}491B42Z4XUfCOvn|w zBbW}f>(XO^et^%Hc9Sm^^yhS{qB-Z3hQFhCyO@Rt=CpiI_X8gpSl@*#NRw>3a)5rM zu80A#gG}q}dK9L7JsuyL6?%Z074BdFB(!=`u?j$aVaG*EurZ`pGCE4>DH)Wvybr%a zYV+x52K7whZrwr6siOqN3ce$nig8`*!ScMqeiy9Cz zz3aX6X_b4X;WyXF6Jx6^($bpDviV(f5kNDY5>e9Mbx-$+BfxUhk=wS7C|U5kX-Ca* z>eMx>dRXg$vYms_elL4Z#rinOKupf5x+{OY?Cuyt`A+yBHolu|fdEp~)rK!0 z0>xz39~ew^YDUWk<3njg5=qXza}`taxqWL@+la!8I1w#zZ^Y&p>?`Mw98B$$w>ALu zNF@}p#*B2(v%-$(F38qF|DH|2$Riq95lWM0P>z)-f%8**fbG|(o72B8#-}ozUtf>v z^tM%(^GBD32qY4orJ#5{s))MnJ_$r25=PpXkp4|+xKcqvr=Iib@RG{bhC!F<`D@Ex zCwDSo!zr5BMkfa!-IqC)u!zp2Uc%H!6m;wf&trk~V8EO{6=l*Uw-WR*#w03gCW=j%PQ8^$z6s#R4_S2(s>DBLkf2Cy;*BAbD4*@7b_V;y1rM z=^4Il5GoW19Q0?t1|(jYUE$>XJ3 z*5*G=WSBC}Wq=}p!bz4EQ^kuDF}!^g9T@D0YI= z?6I$doE3izwgc6JRp-a+;5!w+>ES@H5!e8Oaqgg`tB1p~Rz=emZa(NYUp#^Iumkvd zz9Hb*N8kCxXTL2;bJq?b&2LAtV@-0{&v$NzIdV=#d{GVGgn)w!I!8n9-g8Ij>ayA0 z+?U2i`9(OtZqU!Zy6B(N-WPlM1ps6S+bP*Oe%xO=E8UCwX2*+L2`|cg&z*BCwIHz) z<@cGK$3N-hlBa&6-YzF_y{CR#Xk*jvc`~p#=Jw{{S>0L%?MsH;rUuMu_h_hE^Hl4K z2j?m>K|0-S=rs0rT`uR&7R8!^6PoM*Mbj28;%Rs1znTn?>O1oJ24y@oY3Q=ueoDjj zWLuJ57kjDsbg{B1B7bFQiiEyrx8RlcPT`jqgZo(kLd(6qdJfED;bq-a0e!~eHO!ao z6*eY$CN0tFK71W<>UZEbEIQn(vfU+17kgck?M0d8mFqKnt$5trg_S%r9d5PR zT&R)UTof104ZBJw@&`gi6wO;++)t5;YAwZ-&ZfVL{U{Y`yZQS@TUx8a>L$j^-X8HT zqjE3Bs5o{=gEko9ZIM)GBxUmlW?3kz)T6%omz+~I$@)=a z>DHH5tgHy~O_ zWxIa<0Hd>Ep4-Et)0I&Iou=R9=Ak?IH`otG4N=8G>!;v1W@L9rATa~YO6rUUZHvGz z^lx+t=-f-tK)i$7C6%i!K^LfdQUH{uK{;kDxn>l*W^9DvAC7>6nFOz*L04uNkpmIf zQ9RC7D(J@HvMr3D+f591G@V&2`G%5n$#XcwVLP7LPd=X<`b=mP*3k3N11MHvL-v8P z)13+A{*{%DB~sCpFZ&aGoFkE3?d%Uehtiv*)vKr;Iq|Amc2g^me4>;7A8rFV7HL~k zqVL5XCjLa}9r0+*ejRaCLpCg(R>}GdFW|sYJ6%8Gjq5;l$npo;`-YtAJaOZ3uIPsB zz1{N6UBAl!rz1=w=bc$xyu;n3eAFcIe{Ch=0g1^5nE&<6_h|);+t6#c1GF3k3f1kn z0?a#XCF|17G!MJ{st;cG z$^*-My#c}A!kgMsdN1|&fQRCgbf%B@rd1x@6qQD6LgCg{;z$&;F;qcl7m9= zy3Iki#+R1|xU5-&m)lwkMD88ef9b;o6jMjL4k{fpEb$LxK()bJKQ;Vm?w9TC~(fTVD3N^#ZUUjjq-v3h1+XQCExis!E1Q-yb2k;tbg|$!=tZ zo21`BnCaMZx`rRRMi1Um*%^OLk9W_ne4Pnvc`+9MGdK8jMK~#YZnoDb zL!#Y11hLc>=2XtGIEeApa`;7W*Uiy)v&(YsiDA4v;e0OM@pR<#lakQk4G{u1FRMvymkgz%Af#i;P4t|1Kk9HoI$dLAQJ zifBmZZFSc{n@rxnwXGVBok?X)JZq+Xs;x>G?5Rv#Z_lMY$_fIARFOS^^Pv{sB&)f3 z6ix>UE_cjW{m_i^r$qu~!*C8CfZWQKy57j?Uc;`XHWwa-Q-0F2VQQi-gNnRIJ~R3I z>75cm&B6Nlc!B_i;o0`!4g!gbf~9P6j4VY4yU`5cVt8B0&@FxU?@pDOl{R@-PLn+6nx zmoJ4#0jNJUHCEk?@vPb-^W8$2d?w#26EFY)>6I$#3BQ1&^zv=o$R3f>OkdU2d-<86 zBZlqoHpA9zvhUCSuaWve>nKX_lC%sN5q*ZM-blVT6VfOEBA82p`^+!a#vLk|2ml^r z5L%;ii*IB}mn(3B4NerUhMtYJ87|6-v`>RAk=$*h_-T+c2h3p2~M;HV4u(eInGU?e3r)Op>oo9pUE@?j%N zb*KL{#1v_2Jfpwe*yVroRq{4M#gMwR(R%XNU0q=>jUPk4SAjprR`Q&_Wc;0lU2eMB z+xov#$!ToL_^Xe+(6`B&6`l=5&KOlN(5qWDinlpxhq#0c%}g}z&S>*#(#~+|HK>;& zKp=)YP(^t?#=?%DIfwb6krGdz=~YUKrS6T`&XiW7>QW57-chh`f8-vIr&Dp+y5*KIZ+{wpZ89BASHwMD?bwsDAUIXnRvIC_Q zhI(okL$hYOX6iR%7#JQ{TRXiSvh}T=^u+*I%)@V=g$`Z?v+QYF7&m3c9giS}6dugP zK;HXeW>Kl)X=zSw|md}+3Jftf%K3mD;u@ zyf?LSs%h{tA+$;9jTTTBJ&FTfj=b5?)gjmq49Kq_I$-epeo*n8`a6So+M=5fqF3`y z{q0(9j&$IB@(Puf5G}!e_+Ue3wbPKq(|LnrZ(z)216Lid3>faE^##=qs^tfo*?<MJQp7FJILRa0-tbk+F zTHU^8X#0vGd+Mev+~64BJqzlK%Xq1xsy&9T$FV1VbAM$M43K>XfA;&gQfg+6$}i1K z$Dx9v=H{!3vv(sS|LygV&gx!;=*+1sQ-ZM;+66p%tQfQXU0Ix*V zyY`3(po`YHXgqa4hyZlyfdWViIKD0!OQ`H#rPOk5taFLelmmxzGwuVbXWNBUE=Iy% z%H~aTB|XZ-Dw)?g{1(U>$6V1)p=}1KQpV+d=|$#~Pm>K4CNk;2MVMa}w+VTWcOPq< zuJ0Bj3!@nLrlBsIo>73M#U#b-SI?j~`O4EuW~Nuz za;nq)T*nH%kYEh%6bF1K_)!x)Byk9Z5x|;>I-HrbYqhT>!r@^MvC0Q!uPERlzL;V) z>u8?V*jd<_-i{tcpS{Hz#|? zpXycnZc1C5S=A@Z^mYwR)Nft>Cybw&)|=k!K`2ZIXP?ctDwhPz{f%{&3W8G(8G`2} zsh0dHeYH^2u5<7oRc%$LQEu>zh$akl_50yno39E-(-4a9{~q6p+lBrbCLUWI4j5i~ zdZrDhnT;NjP{}5{XG@G<+##4SD~n%~-xqyZ=mDKH4~o&O(;WHLrE_PkWM&1(o69+F zMqN$SuY2nCE{Ng)6olSrTCd_t~< zlt|bs{;Ke~#+MFiEyWjM+84uZ-X{FGwqx3r;$3DCPjR$^xSpKW5twUvb>mirfr}p5zqU`y z`QdcU1J${8)&o~SJkAeuv+1F86GObh4PHz&0FwvXjFjNaJs=c zoL19pDN@*a#a8EmbuYkrPjoRr>F*bORT#1xdrDfR4>pV!H3TD6uI}(ACy_0PrJ4rBk&pjQ5N5rq@zfY)H0!dkk*qxpZ9_?aP_JG{Kme ztaws>nX~)Lpv^JJd0Gt_X!)2cD~%i3lQIQmWVW{DOv}o#d&OVDCiv75m_nhUXEL8o zTv7i`E>--7_30nemE`4oKe3rO$Ew+LeXpPS%(SEY1-`wF&dSr4u4sj|nI`uDMl&lb zZO^8SB>ZlazAVa(s0yVpmwr0579m+|zwva@m9)2VNqGHEWt5O+)$WH+3U8y^&TvZU zT%1fYY}f=M#>m7{NzT-?P(=nlUcQ*JbYmU_QbdkEbwfkrp77UZU}5+OwVsU_j~%K0 z2{ZSL(t$F5A8Tpt(CKCQ<^PxLz{gwVmAWJqvLAKP>mN<@wH$lg{UKQqO8+EQ(CW-~ zXBt9#NiHZT`Xgdia>{4LE99u17I+u(HICWDyybLCskbpBlGXb!3_kq+le$DYljzu( z$()v5Aqn34Zg%)-^? zoT-fOtP&mLi`kMyeW2`H=7DB(@rRss)?*uEA$5ZD4kc0+pt#vaLQWYDN;Uc34|1Rd zZGO=0A+^{vBh<}V&o>Re2ii(Z!ia4c^j&M^RpbT8<9jzKU6G&HL-cB(l)`9#AnQD zFP#Eit%gU{kQ+%o=5Tg|bKl$6hM44@zRflHjMhc9e9-xXI&*)|#E{(eAHOeCJ{9MK zbUEgJ_jR;pYXe_P>k9AYrhD}{Lg`tZRbuoC%OR*SR}*O!I`(Qu2%;wRs*EYDD)|dU zTP|_I#k{$E{|SWr6S=eUthA(gW2Oo8V_}50K6t*Jy)NJ{>bHKjY-@|J%WKoclaFy- z!)mJzywLK=KGA~R^sHC6$614is^cKwzCr9I512{cn(jI{YtRt$!>75}5y(OlIIvfc zzNB!s@{OCs6KZOKICjF1yLZh7ryt|GJjm4ow`oHe732E;cd1Dey)p3o&w|fr^kW>Q z8k|g_yU&sop*mG!)#+WR9%nF{W39-PnhOVXp}txYdc0=MAwjQ>behb9JZ&q3kf$`Q zdvsO(b2F|sXqn8D@0mSi`=%}-89=KKD4`PqC6VN3L7lLyk> zfz$tlT64$jMLkvzsaNv@rklPL7WHo?K%@rN{@u+fPVt8Zm<`I)_acUjOC5QkU_%n) zQ=v@RP=xOH)rIQp$@ujKXuw9MnBGFl*!MKd3WkNDA0dde92m)IhHQ`ejWsLNa}q`~gPTmku~PXy6lM;d^L4@C#CAjpY1yNqHJX?ce9z zKr8-#`x=~X?03hUj*7ZFjQ8bqZ1?`X&RoH%HcNq?mWk^Rb&J=55BrMtr^y8QeY)V? z+2(;&|Nc7osdKjT=6)*r|6Tjvb@m_5d`w51dSfo`8fd9;~>)K-H|=b2M%JxES~Rt z_x+u}f9%R>@;jq@REEjlvJvmjT@{}>Chk@9E?tsszti3R7!}*KZd3E&U9NIZ&Y$}y zrapah@f03cvUSfkMB;JW$^|Dny-NjIA2C0mvP8UVd%PO=?p#B0p=&?wvVWy-`CZGi zN1g_D?GkbD z(?^;vE_bOo@J0wj^%a73O8B1MDEG8>w}snlU%|}?f@L1Pb&hG2PJjs_0CaZT|_@d&$> z^Nq?h9bQ|m{jR~8w%;&qqn`;!ygR^i`!O_@xvycZj?i*bgE4q|Ouw#uvZ(XdyUfq~iML@GXN`IdnM6A4%Xs%@L zynoJL+i>}kqS5s6Djk)F&n&ip!bF0Q_wZNLLXBPh_e+)^l&QBlW0Rj!tP1x*7vKL+ zaaS7-Rochr#gNtFJczBZ#`J;^voZ1kv!vdJ>V=&Tl(6r(ZBXs~Ct=X$PvzU+tR%X2=RbMABQmvjIBzu)iwKi7SZ z8@(&*a|(7G?JSRmDnJQFZ9&IXo$f`SS|_NTYu>%D5v8mYtB*=K(^a4ut_J7H~Et=?WUhHo{&p|lY?hnqcd!|aAFKh;$Rz;XD0 z5gIog(DXvc9-5_@8v@%P7vnxgW0~-?J>Bf}A#yDR=7K<}~uo5;sl6J>q6q{)XY_bkt6Th+rr>L#6*?Y9XJVxzdqzq&%tS62- z%iXwb#V@L?{7p=ZW%AMcn?z>62zuUCLH*A1qN1%Ij-5|iB+AqIDzn-)z)jq4i#dD^Z($1ZBf@@P~cnkE(Ir0A3g50Jio%BE`)fVQJ zee`{wicBdd4jXU*%q^2KxyQ~1t99xRo&51#W~%*>ck-@aZrg*JF0oYMJy5XB99tH0 z@}nh(+$A>XH5ovWB%hnz@GsWpkX!eNzx&)wlwW_0Igw8t`t%qRf>jrVr}Y;^k6eVD zpk(9W;Y{oZJG#dt((<%*i)eFgN@@?nQ*a+le4G3WsxZJ|Ov})(~n?_5XoL|2Go%p{=?AB=}O)ZusZL6HnanHMLIbsDY(6t;KC%Aqa*6Qx`$z ze#-Q(0$b|xo%5u^ud$gSrwn=JO|$jlP=gYbP>*RIAJk|?*C)Ic9@Ie0UH=-32Q5QwA&m z%WTl)Vmf|k449IF5+lHMyJ)g!)@TPWi8fzI7(|5{2rD#Xf?<8bbo|kTX&@U0C10@s zl0D*k^&N6{&M9j;HE^;+oT;6GR&Vf%n%WERgpFY{*oO_0bd+ml+o9F)OUPcD6T&NR zQAF^Tv}{(lgQOqEnkrG`cJVO{0FcoGl$Q?m2Few1INNzY>svY!K=oYeXWK)*?0r!q zQvOD?(1;n^&^d|8%;(eE#0_F~6k~Aj9wCn~f39igKZtT2sDRz)Ds99HlAl&Q3M`SH zEsJ3$s1$OxV_w@W0`;Dowi&t?vl!?f^FU9af22g zBls#0_!(5{C3-o$p_L*s>IkdBID8Mvt;6rIK5!HiM{0N6`+h>*bSp$cxCZBL!gPr@ zl^uZZ@>8Q<%~HJnn-1rcQJ)!6H#wLEzFIac>QerUyTM4#o5%OOMH8=&Bnvh|8a;J#5L@s?!ost!nB$6aO(CRdblZW$$g+MBsPvQt)9qws zV)t5M=1PGP2~h?yZx&9%D!xkMb$$E{G|Ty(of9=eOIcW>L5A|V>9kc-p7`)h@wQ&W zlTV@9Yvc_0U$h1Ijo4^=a{q7#s83OoMayaF_K5SMwb)!LA;CqwMC2 z9o`y&dpAyz^yFy6#BaVFBIg=V_edDV`vTLb3G@rx_5S+Lw;_TTPt`x%XQ}%$ zAmP@L2x%@~uQuV&em8ZW@}>W26jy61k-URuEW=TMZxnxpLM@7DYWTpDXUVO2YTz|Z zXoa=I$6f&SP>6KlH#iWZpD5>YE`qeAaRq@IbM`MG(efQY!q@TcvX=Xu(+`0wfK#An zMmk04fp6OFxzGYimIHl=ga(xM;L=^I zSv0h#{>re4*#(f)$huy|E?|tL!AoIFqWlm{g-%2jk3SX*zb?cb!X3w2;7SZa>%Og7 zgE7#t&=oFI8p>F(;FHQR_RUPjaH2U@XsFypDe3JkUPWELRudYU5B!SAQN~2YojGX< zpVle<1|~xLhf@M@v2EfiA_AVxSk^LTic0xid>ZBW&*Ib0a+<+R7GLGaSKa%R8jD`Q zFvVG&gV*>-i8rhRkt0U}iiX^eJ)Mbb7tixm$%uVhuKvEaU3LTgf8fUQn4vaeq&DGy^KVMFsfqXvzolAa%EHs81+rHZQ2-+(C}H z&gpb2Pc!>x))kDUX6Um#h^{Wu-l&ldM8fv-RY~079>?{_@?gn$CQ6{o+{}nY4WdMV z=%w09eDIxzU+5~$-P3ZaA|Kd&PuE|*}% zE{zMlphPkqI^J<&##@Bt6gX~U#o518p5XRMy4F2Q^x@6rA+~n(^1QC>`F)S+{l4iu zaS7`BW~alQCm??~6IIpj=YWf~>EBNCe#!M=3~I43O6u#1$5=$}yVEhs^|HISp9j6s z9oX|c*?U}D+Go9za8g40Y8!f(YR+g!fD9P uUMD1jfE)*DMu(g*`I0gSY$5!2@d7zyO;eJ!8R{Vl*{ELrl$x#dtUmzpftj8F literal 0 HcmV?d00001 diff --git a/TimeSeries/2-ARIMA/solution/notebook.ipynb b/TimeSeries/2-ARIMA/solution/notebook.ipynb index 046f4c9a2..a201d67f3 100644 --- a/TimeSeries/2-ARIMA/solution/notebook.ipynb +++ b/TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -27,13 +27,13 @@ "name": "stdout", "text": [ "Requirement already satisfied: statsmodels in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.12.2)\n", - "Requirement already satisfied: scipy>=1.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (1.4.1)\n", "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (1.19.2)\n", - "Requirement already satisfied: patsy>=0.5 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (0.5.1)\n", "Requirement already satisfied: pandas>=0.21 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (1.1.2)\n", - "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from patsy>=0.5->statsmodels) (1.12.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.21->statsmodels) (2.8.0)\n", + "Requirement already satisfied: scipy>=1.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (1.4.1)\n", + "Requirement already satisfied: patsy>=0.5 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from statsmodels) (0.5.1)\n", "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.21->statsmodels) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.21->statsmodels) (2.8.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from patsy>=0.5->statsmodels) (1.12.0)\n", "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.1 is available.\n", "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +59,6 @@ "import math\n", "\n", "from pandas.plotting import autocorrelation_plot\n", - "# from pyramid.arima import auto_arima\n", "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape\n", @@ -71,16 +70,9 @@ "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load the data from csv into a Pandas dataframe" - ] - }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -102,7 +94,7 @@ "text/html": "

" }, "metadata": {}, - "execution_count": 6 + "execution_count": 3 } ], "source": [ @@ -119,14 +111,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" }, "metadata": { @@ -142,21 +134,15 @@ ] }, { - "cell_type": "markdown", - "metadata": {}, "source": [ - "## Create training and testing data sets\n", - "\n", - "We separate our dataset into train and test sets. We train the model on the train set. After the model has finished training, we evaluate the model on the test set. We must ensure that the test set cover a later period in time from the training set, to ensure that the model does not gain from information from future time periods.\n", - "\n", - "We will allocate the period 1st September 2014 to 31st October to training set (2 months) and the period 1st November 2014 to 31st December 2014 to the test set (2 months). Since this is daily consumption of energy, there is a strong seasonal pattern, but the consumption is most similar to the consumption in the recent days. Therefore, using a relatively small window of time for training the data should be sufficient.\n", - "\n", - "> NOTE: Since function we use to fit ARIMA model uses in-sample validation during feeting, we will omit the validation data from this notebook." - ] + "## Create training and testing data sets\n" + ], + "cell_type": "markdown", + "metadata": {} }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -166,14 +152,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==\n" }, "metadata": { @@ -190,33 +176,9 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data preparation\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our data preparation for the training set will involve the following steps:\n", - "\n", - "1. Filter the original dataset to include only that time period reserved for the training set\n", - "2. Scale the time series such that the values fall within the interval (0, 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create training set containing only the model features" - ] - }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -235,16 +197,9 @@ "print('Test data shape: ', test.shape)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale data to be in range (0, 1). This transformation should be calibrated on the training set only. This is to prevent information from the validation or test sets leaking into the training data." - ] - }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -266,7 +221,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
load
2014-11-01 00:00:000.10
2014-11-01 01:00:000.07
2014-11-01 02:00:000.05
2014-11-01 03:00:000.04
2014-11-01 04:00:000.06
2014-11-01 05:00:000.10
2014-11-01 06:00:000.19
2014-11-01 07:00:000.31
2014-11-01 08:00:000.40
2014-11-01 09:00:000.48
\n
" }, "metadata": {}, - "execution_count": 11 + "execution_count": 8 } ], "source": [ @@ -284,14 +239,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=\n" }, "metadata": { @@ -302,7 +257,7 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC\n" }, "metadata": { @@ -325,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -342,7 +297,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
load
2014-12-30 00:00:000.33
2014-12-30 01:00:000.29
2014-12-30 02:00:000.27
2014-12-30 03:00:000.27
2014-12-30 04:00:000.30
\n
" }, "metadata": {}, - "execution_count": 13 + "execution_count": 10 } ], "source": [ @@ -357,26 +312,9 @@ "## Implement ARIMA method" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An ARIMA, which stands for **A**uto**R**egressive **I**ntegrated **M**oving **A**verage, model can be created using the statsmodels library. In the next section, we perform the following steps:\n", - "1. Define the model by calling SARIMAX() and passing in the model parameters: p, d, and q parameters, and P, D, and Q parameters.\n", - "2. The model is prepared on the training data by calling the fit() function.\n", - "3. Predictions can be made by calling the forecast() function and specifying the number of steps (horizon) which to forecast\n", - "\n", - "In an ARIMA model there are 3 parameters that are used to help model the major aspects of a times series: seasonality, trend, and noise. These parameters are:\n", - "- **p** is the parameter associated with the auto-regressive aspect of the model, which incorporates past values. \n", - "- **d** is the parameter associated with the integrated part of the model, which effects the amount of differencing to apply to a time series. \n", - "- **q** is the parameter associated with the moving average part of the model.\n", - "\n", - "If our model has a seasonal component, we use a seasonal ARIMA model (SARIMA). In that case we have another set of parameters: P, D, and Q which describe the same associations as p,d, and q, but correspond with the seasonal components of the model." - ] - }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -393,25 +331,16 @@ "print('Forecasting horizon:', HORIZON, 'hours')" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Selecting the best parameters for an Arima model can be challenging - somewhat subjective and time intesive, so we'll leave it as an exercise to the user. We used an **auto_arima()** function and some additional manual selection to find a decent model.\n", - "\n", - ">NOTE: For more info on selecting an Arima model, please refer to the an arima notebook in /ReferenceNotebook directory." - ] - }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 29, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - " SARIMAX Results \n==========================================================================================\nDep. Variable: load No. Observations: 1416\nModel: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\nDate: Fri, 14 May 2021 AIC -6942.477\nTime: 13:30:38 BIC -6911.050\nSample: 11-01-2014 HQIC -6930.725\n - 12-29-2014 \nCovariance Type: opg \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\nar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\nar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\nar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\nar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\nsigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n===================================================================================\nLjung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\nProb(Q): 0.83 Prob(JB): 0.00\nHeteroskedasticity (H): 0.84 Skew: 0.14\nProb(H) (two-sided): 0.07 Kurtosis: 8.02\n===================================================================================\n\nWarnings:\n[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + " SARIMAX Results \n==========================================================================================\nDep. Variable: load No. Observations: 1416\nModel: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\nDate: Fri, 14 May 2021 AIC -6942.477\nTime: 17:05:41 BIC -6911.050\nSample: 11-01-2014 HQIC -6930.725\n - 12-29-2014 \nCovariance Type: opg \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\nar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\nar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\nar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\nar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\nsigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n===================================================================================\nLjung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\nProb(Q): 0.83 Prob(JB): 0.00\nHeteroskedasticity (H): 0.84 Skew: 0.14\nProb(H) (two-sided): 0.07 Kurtosis: 8.02\n===================================================================================\n\nWarnings:\n[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" ] } ], @@ -422,7 +351,7 @@ "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", "results = model.fit()\n", "\n", - "print(results.summary())" + "print(results.summary())\n" ] }, { @@ -439,19 +368,6 @@ "## Evaluate the model" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will perform the so-called **walk forward validation**. In practice, time series models are re-trained each time a new data becomes available. This allows the model to make the best forecast at each time step. \n", - "\n", - "Starting at the beginning of the time series, we train the model on the train data set. Then we make a prediction on the next time step. The prediction is then evaluated against the known value. The training set is then expanded to include the known value and the process is repeated. (Note that we keep the training set window fixed, for more efficient training, so every time we add a new observation to the training set, we remove the observation from the beginning of the set.)\n", - "\n", - "This process provides a more robust estimation of how the model will perform in practice. However, it comes at the computation cost of creating so many models. This is acceptable if the data is small or if the model is simple, but could be an issue at scale. \n", - "\n", - "Walk-forward validation is the gold standard of time series model evaluation and is recommended for your own projects." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -461,7 +377,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -478,7 +394,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
loadload+1load+2
2014-12-30 00:00:000.330.290.27
2014-12-30 01:00:000.290.270.27
2014-12-30 02:00:000.270.270.30
2014-12-30 03:00:000.270.300.41
2014-12-30 04:00:000.300.410.57
\n
" }, "metadata": {}, - "execution_count": 16 + "execution_count": 13 } ], "source": [ @@ -500,7 +416,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "metadata": { "scrolled": true }, @@ -601,8 +517,8 @@ "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", "2014-12-31 21:00:00\n", "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", - "CPU times: user 13min 7s, sys: 2min 37s, total: 15min 44s\n", - "Wall time: 2min 48s\n" + "CPU times: user 13min 24s, sys: 2min 53s, total: 16min 17s\n", + "Wall time: 2min 53s\n" ] } ], @@ -644,7 +560,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -661,7 +577,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
timestamphpredictionactual
02014-12-30 00:00:00t+13,008.743,023.00
12014-12-30 01:00:00t+12,955.532,935.00
22014-12-30 02:00:00t+12,900.172,899.00
32014-12-30 03:00:00t+12,917.692,886.00
42014-12-30 04:00:00t+12,946.992,963.00
\n
" }, "metadata": {}, - "execution_count": 18 + "execution_count": 15 } ], "source": [ @@ -684,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -703,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -720,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -744,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -758,7 +674,7 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==\n" }, "metadata": { diff --git a/TimeSeries/2-ARIMA/working/notebook.ipynb b/TimeSeries/2-ARIMA/working/notebook.ipynb index 333b304f7..728401374 100644 --- a/TimeSeries/2-ARIMA/working/notebook.ipynb +++ b/TimeSeries/2-ARIMA/working/notebook.ipynb @@ -31,10 +31,8 @@ "\n", "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." ], - "cell_type": "code", - "metadata": {}, - "execution_count": null, - "outputs": [] + "cell_type": "markdown", + "metadata": {} }, { "cell_type": "code",

SCq{K8>-4g5rl z+Y6k(r5(}eoSyg%+HB}YKY=5%81@>Td0p>Zp0H_UKnYr)i_bhEry3LgsF5lJ*_#Fq zO;SwIrkTn0x!~=n zPU7l^oR}Bm0$VWE`zEZ6-h$7yFsi?=EA``zyEL#axn)7{|B5|*0kF)ZM~`p_KQX!I<`}&c4bp(+19h^8LmTgUe!_SDw&MGVm~XDO zVbWJ|@pz_8?H~OWSv2mBR-Za_X`J1Fm{@K;i_q(8J(W5$NUt^$zf?&trA2&4;vumJ zS=^hK+nvRDP|j#!vlPv`w%xa{%iGAZ$k;lXgyOikI-m{yxw~*qW;C!Uj{>&>S#2_i z4(86_Y=t(W{I@~%Eeg(~F9@c}k~NnPa5^gvG;4?p%OGp}wzDaZ9broQxk(Md=*D-sP7yHQB~&96*EeEbV_VaTIJSTsT8)ApjW;7~xe z!6*(~78tGw$SNEfW4MkQm+l_#D-&ycfzX<2ta_aM1SEB1M+avxP%9fxZ3hW@61QWQmxv`Uh-r27sjnwpm8a zd{7?v-!?}oog%_zg@GCzUXZ(VO|pzz_TF6;hk`1V4PBZhO*y{jV7KGz%~|3Bhs$w5 z=QH;6qZ!TZsnh7kvy3%~E?i9VIk8B;t(Z`MXoCx53HcPuf`a(BkQZbx8=;gd%4%;q z+e6?qf?*|7=ouSGSY3{t3L?h13hTB^zGZqcQc$vIXRF@xDKGL%1DxWRU-kE%_JQBu zAvZeyMdBwede)O}&3m>)F>d>5)+V(mnMOL(QGh~~7{4-vs;BrZge;8%SC`zb7%J)A zeq_x^<1bDUtYs6|5g;cTB0+kWkkhsK(*?)Xv=A$}=EhFP4)V_HqRLhe5jBClURDMZ zkkN>}6o7G706mvZ6OqUz4;BmU3uA|}z&cBZ)?e;jqQ z^Yl%P30y#@%I4ep{6xl~8tr;KiPP}6&(r}iv|xDW4HHmdOc2Z7)))jT@4cDT0K-S% z$w97au(s;7hR;$^_tt@ad)mDx?wNio?&p@AynRqtr5M`X9|iQMF?+X^_wn85w|)?J z;m~#^TJ~wp5A6U~!o=uT9SjUCjh{}4-e70~TIl$bI59|%jy8U#$8~jLrbl$gO6*km zv?{NBSs{d;f zQHYiDh2ypIk19ubuIglLKg)I#c`j+L1lrFQW?- zAY7t}I#5j=?#I?==Y2+!jU&lDWCUsHf?X3Oz^RibrT$SwFi?{p?$%zCzx~EQ>IS-a zv-u|ov|MYf@Ph)$dZ^qGHFmS*)UJ+b@arUpE`Agyf098??rgIZtWuUDDsK1O z7!XXB6fXP0EwPS^OHI=9axV`e`J%(%38Cjb@BgBi{U29xnnhnzoPo7D&*= z-gw0@S5iU40X=#T|Hb3o6h|{W0V@eZ!q}NC@S1VSKBC45GY`W3Z zAiEMjaO>+EEY)4>aPU3z*y+84Mw5VDKdcHJmU6cN$nf}1rlL&4H8Y58U)>X7M8uj4 zw*`|HO}An|gb~Q`wyi2bQu<=JyDn$;_Tz5mDliWTHSG{lDUJV~uCK{0pK? zO^35pVmDdGhMQKhfQ;d+6dZguZ*(>(&C+U#&nYJrsOOxd<5XTMH7TAou4HXFMU{q# zHXD4VA1}!b?A^TJM02zX(RZAvEYT9AW9D6b-@alc!wz6RpKY0=$(G1f)F|G-*ep@` z=Ypg@M(Z z=Frq$ZbJ<)Ft4AO1yGqXr;;9%tRIORM1xIz)$IYSnx3_qhn#fasgIherLgH_w#RU# zX5r#&Pw=G8dpxJYh=b?u*{gkM(GWa}erd-F+V~QRB=+&juNQ-f2W=J>6bMVz!llf! zvr_t;_TQ&(@whR3o-7y41k9rIqgB2~TTA3IYfQtE{ zgMF&i5|{5b6C6^p*k5CUUTH}h=|6ykpyb+WDwec_NG&AQ;+2XRD})eOaJtXZpcwkS zgV^WUQNx>6HVx*=V@LjX*xQqeQGl0c@*%^F;O4&hY9RF$Cj9zZvE(7saUIRqod4I< zRvfnY$jOR>uZ2Y)0?5pu9>-2KRoMn0?C;!KrOMXOo(*{mIz-iQtqo0i}{7%D(v($+2 z$gu$~JIbMV86a=o_gLTaSU7ZLHqJA5qQy;P9MiPM+eCjsRz!Hugn9h|+b>JFZ~fyDgV zxb&Ma0u(=bDqU`GmTt^20DVqz<-K1V;{>lN4$=}9C z6OkjO8Gqa&o{WUOoeUkWu}C_i{9>K=t!q_qk5Y!#=R!T=woWOJzYf)UPhoF`Gvrea z*5-M_@Vko-zSj0m@P*3M7^uD0jSF-(-QQp^#7P)(dIzEcKX%mDn5_rnu4lO-Fldau zoUDk>5DQMvO%*i`J>B+d*-8$V)T&2b^Z)r37{M4%kG&i8-C(eNP*E54a<`FhmP|B% zE|-1mcGa@=1y!fJP}W7KLcrTtudu*4f{3V4ai|Xy6ZHsMNPI(rASy2#e}~DRrbKS3 zamoKImh5D$^Qj=p0*sgo?1nnie}2V})$04}lr9}6^+3$&q4kCkErW?1ku$w&yr0hp zPJEOOetSQ2-_iBJ^hP^^Z*H3xMYo&j&*&Go57NgZb>2(;^;|JFMqe1 zDx6WjghydjTiD1S9aMMs3;)N>2!mPr)vO2JhLszH$1PpMlLvA~n z>pK=kP*E>wBqb#&=onX_${Bs^sO5EYo+y+P)JZNQH=SvN!cL0XRkg?OwL7gdFIg-; zA-9qPP-9E#frZ=oXSYZDk{T0y9_1VTOsDu(k>zf#^G~-Vi|&`(A?2t#K%ocXr^;8y+Gs7{;nvEW(uYtE0aUwjoXCG1PbfMYh|E(agM`3hI2(X@F3Ng2ZD(c<9IO z1)n-TEL-m1ud-Io?XZ3=kg?$tjNsfOT4kV=Y_#%MDGLLeL*jZr)9J49XRl#Bkvw&1 zK(@LJZ|Ut`_VNGZdrk!_Jp|(};$Qgtd1}ioEc`kZZ3)hGZ!u3=v56H@f&R$u;&Y6Q z(?lTb0%vbuiBhz6A9+OE8o9@NI`4avmGH*%mP7u{@tpiBYW{eQs=}O~LJ1=!Rsc}Y zi4(^u$LT9@-0OM$kU8;La&ZB=$}`ClekQBw#<5{Ln*(Pa2vn;%!cv&wen*JFWpPt2 ziXLJC$1#rl5&PbctS9Byl%JUQjA#vFDoU|GjQbkvHUDHYu=AjS=AaL{zZ{&;8c%E6 z_mF+d@0R39Fiu?^@WX52;5LkGkh^VcBy${_j}li@@#~d8!R%#Edn-ZCQfs4ewK@)C zBELREnt%>cp&z{vk6M3A8H3i5MV0qMQ)76dtz|r8x*Efb9}j`}VljMz#!q=pF@F;i z7mvMa1D8%=fGs^ZA1q}XJoT3L)M_OFK-YnYt~>0imlAD#h0Ys2Uk30?2wG!AkCzs4 z%;+}iJBr=hSg+#wcF!CprHT(9{CY$Z^u6(z$h=^i7otW;GajCW<$DH@Yq1LAW<} z{O#4D#yDspXF-|)yiPg#Vo!p57JuludVR^?=DolgrD8nBJ%D;8LN??Al2nX0E?3Vi z6J1HFgZh`Xc)j?T2Es{_Y$tEOhwik?9aRu`<^nXx z#}ik)Io%Q2^A}@|%cJg8s+ZFR1NwJ2(0A+5lauRg;?zMqBN?2yjWX%Rwls81DYN`5 zDpO7qnx3ts&%?|=R4Ai%S>3BH0YM$Pw_b`X5(T-W;kJTa)A%$45OYr!ro1LwKtl5? zQ_<`|etJ`l1g#FKVNuGf^SvCI*b~{NMG~o7U3jbUEeVrv%GBg`Tg$s_x1M%e;p3%B z9ft&@yF*B5v_h=Jv~)^oy#qg)Y~+3K&2x0BNMYrD25b6)AvGwE7L**W zqq)U6%7A_puT#&-rM-rw^=|m{^5^s=Gsdk?0_I*IJhaZ$b8>++7ffwu>{{yNrd9C$ zuGVw)$z}7QjrW=G?aG@5=Q1J$pg-;Uw4?`N#LA8~NoH{I{e+X5^Zia#D4d<2%!nm$;Rpu0hW0+hlsigF2X5pU zNuDhpQ(xeJ-Z_l;&c{-~6OAUwe1D9BoqC95Oj$KNE=j+wt-IkoRv1Qnluy#Js_}RV ze|k9pdgJ!t#ZA{^Vf}La_?G+L*z;vZn1By&jn~$GSLrD&RezU@1HG5&jzCY~nfu&G z+|K60({K6PY`J}rD9_GLcbC6|wi^6tr*GKS!FJ}0x5srn_QzPEqK5hC_@Y{bwf!QO zljjC*ZbeyoL!8UpK3&NANilxn{W#Eq9yt6Yo1+v+eOZ}nXueNnS*VMhoywR*%n&{| ztW8fYAfeMbM>8WFwEO!tM&{A65W320x|EaESIOIDzeH!D#aW?=T7ubpGaM!eQ{CUy zg&Ksj>@SmrBpL3YEs84aV#K37s zl7ZJ#nZKcoN+2IYCpWO>C;>=5;xR7XID%{;!bdx}=W{4#tWU0T!Ybld);i`#-F%NV zdL+@8CG~nJ$szB%mdu*s^I!qo7SM|NG=P@R zv#0m`K1s4u)^YavsUW^&hQMNqYC&Lf#qr{{piR4B8OyqYDhLpT;3seAPeVWw3{|$DfYA z3F2CJYP|!%Jo{2(h~}~9QX>Q74tr2;_RtE@%L zcj*mdbr~9Dk;+q*eWw%`y_UK#(m_G~Jd9@bslzAocAn3ANroE&^q!D9UcB#H1x&trx!IKI|Bg>bLTiit<)?JH z9@e3cml)R_;~v{_WNh99(V-3NxVHJz({o@-XafK;taM1w-((?1pF!rSWaj>NyY zkEdK|y;$lf*Mg^{q(bqx1G?xrJ|nl-^#CAI(-4n&Lme&L-US@4$g*&D^z}oGOv&DS zM@I%c70JR{Y`hd1e{(cEchVp=co<1a*CXe4>`^>or+jLX!g`s-*XLFO)jXZ?068@x zf-JY?4WPCG#7)T^cjfXk$x~Ss1vLCJKw`Vhy06;UMk7(YKp9+C8DeI07v#L54FSZ`U}MJI zn&kF0w(onR2X!2#2DL}vpa6Zm`TmL)QntxWc<8c0Y(g)p9;)xIS!7?d+o~IN^ugPK zy7_NscUzRdu#HJ_YtiM@>a8<$H0sruZikCI`NF;&!vj)F`Ci*Gl_ra0;R+autH7Z0 z=x3PQDgQl>L;jN|srcjt@Sin zYHUmfV=B=?=XQnK8xAeeKw|OWY{S8Z9oL3origd3PV%`G%jUw!@ROpLtQ?+>X^NE! z{PEouS-U(Tu}sfv&1Z60n|~3nxble$nTbzvC`G!ggp!zqjOD{t<`lu6{nx~7pBoL{ zRtgTBKcnHBe&m3Nbd;Eg1}w+P^13*D}4G^t#o#Ke!$?qX4=N z&%(%$u+RBDTWk;MUm>Hh2w4fC#mXLVq~W|xW#>`>pm+o>JD*S(+Z4V|sSCVle;p$n zHM58j*HoaS9CH5>$FEgn{6gBrdD9+Y{20kEdW+^m@bRPF_MICB--R!#AdMF&y8C4| z^b2vC;<4Gp`}wQKqH;u(0SJ~4KMyY*CiEy>ZLTf$iEO#IkoP9Yd5o+r=9$xiWF&+H z&d><^k~eDSlb9pzw#g59Go=vI&aS5Hw&PsJDfIzOlkSr7>u|1?76SRi@WR`>4jHj|O~67lB2JLv8|xnqYVaaU#kD zsJBI_mpYy@72$hd@{SNKVs9wq(*I@t;RfroLGqjX;xCnv;T*uBk|&3n6Q7loTU0va(h zW=Mw%S~+)lE%vj5Ks_&DUl*aIbR^Ez|3lL^hUfJ?UB|XYNJB`!E zwynmt&G-EN@AZ7Y&wZ}5_w3m-v(~I}f3EDMqyRYYv~LXzzCr*O*!yNMpnLj!RaIij z^8??`d0OaCs>|8F)lMi}-wMZiSu}E!kHV9!c@N0QXwoCPAws3JsrC!Z#KT58Qs=2F z&;Sdj@l!|PBGTJ+F3y>b*+0NTMxI}gs9T@vfWgD#61F||Z~)x|ZSJ)(Jr}8j<7OY3 zAJIvi=pW9=RZGsseFC-jONljB`w@|14z4W%RrlwQN;y{z-)`d-{`b1-?5?NWcGc2l zdXdiNWxr`6>FP$!QPVnM&c~}N2oE#Ylad%V=$i!x?+5Sl6lB@6WjQ|)`?46@)n8n- z&@USebEQ?4NR0TERp!e;XE;KwAr3uae>y(TGz-EWdOtHKUg(WbKl3m0DakpzR8;B*|uE(Z{zIE<$TDh!}S&~|3_DBpBCGz;JW#z{Rw zrzU%*Yq}#`ndl5uZNjJbg87bgw?yH4G<`biy$lZTPrp(M7|B*tCx0`s>s)N5BD1nG z`TE?88{a+pXUBzXnUqK|0)UI_ixTwoz1T9?3PqxG679R6B64|x_G7d$Wo6ej7>wa{ z8sR`#x-2zgS!CPwAylHU0a6WF{Ug*5^wT!;@GjKw9sXJHT6y0p!y;1*vA>1lwj&C$ ze*~NnR1#DQ1RkM(ghPRCVM-`W^`f#E;`0Xi&3lE}0%x5F0ep&2DRP1ygOH?(z~T5T*Y!>!D?*f@)bWZoyDz)Upd#vDR@NND%^n0aO~_SIwiP3)-j>+y;%sR4qnh!`q5_(&#T^X<{@=Hrbf28IzW>t=kf_}`to13Hf`2$oHQU^{aGkgMu zlntjT)PCh8nW=wGGJ3Vu!KH0b5M1(?>5;lr+XQ2D z5z0Lg9Qt@QetKaGcxkIyK5OejUIBl`2*8Yt9o7H*)nfJUf(#I zc(XS+xu9A23h2Ge$<4K24-3gs-UK1P|L!_FH8%5nci)35?$YzroheevJ4wM1YQ4*TRbz1TE(H0|k#)QGUU|Y%!L`o*RrXQ*^cv11l1N*#Als{j@rt z=t*MD@?bX$9R@bw?-nPW@y<@e=yGn$4pc@nd;=&h{@JGTf;0T%v;Ku4xpciHEhR^PB42}SztG1*j=AW%DfN*eAMg6ELvllG`*!yEbUnS8 zZWbv!OJgx{>NImGBolW9Z3zIqPh@U4g8(76;f}*BR$7rC?{&VgT$-KE=}?;LsHhQ_ zTiG~2x4EQ6YrlxibmVY7f-#@ikD(!lzLq_E4~fA4s*5kEg%@P=vv=cw+vgQp3Q3JD zER}*4%@euaX!&$@wwyFsVG4AC;RojN3`QhYQI}q&UQCRz0*8f=w4rYkXJ5wWB=FtGQk ztDdr0G=I{Qr(Cv;fBP!{ZfO}Ea4i&iYWaMxCIfafndA}J)#y2C$}-e?N|!J(l}QP{ z^lkF^)%UsAT}K0IsggB6X+%Om>$m;W#%8|-L!uY1uB|NpA?s20UU$XC8K-3?NY@0n)_`=Jo z5mUTAs;k;HrdI_|v@Ku^Ro73>Zwl13DFoakV>oeg2gNd~Hi*bV zA9>___<}F{&%vtm`Ce|T?ib6`0#P>@$88BH8XAFBqp*vt?Cxme%zLNldsLZwOFsug z%KxM$RFfCh2ah$dhDVsplC3J&{TQ@yez5cyZ*u{F_8U~)_OVU`=@jOA^ybIE8pu1X zJ(QWHx-byr0>RUuDw(C)>)(57{D^}+SPaRj~H z`7FsbXx=^E9mr4Mkg!Hg)sqR%+H@B5+;{Hr@}I8KEO)*>^6m}f(?QU~G+CU_veNav zR&i|I8NObz_xF|WmZTW8aEAd6q8ltUG8PYY_n4U7(8n;L@Q$)3bys_V@BOV#hKKSj z0pnAtmKpQ3Xt>iMZRCw^wLhVf-NIEhi@699ICyYat3se;=sKctKpkMIBA)`_(SeQY zEKGn6K$0&o2i2(M3{AA+Sk&qKbnBR8*b6SEpwc(ksUN0Lxn?$-8b!~29PtM&)bV(= zpkZ3BL!R6>A0lYr>gkmF6ozr>=$$;LCY0SK@PhPWdLtyRmA&%%Sj z`lV-Wm%g8Pf8j0M@~Q2kmEuKbS+xEtVv!&xQOTe|H*jzG@~t~f-;CxDlJTV`QRTQ( zNX&NO3A$Sfxyg?juK9epyDxvQ-seB%@g@1r;=teiiv;^|b=*m5!NUuE(zF65G;~ZW z!mz*CvBmW_g_n#BT2R=!&PxWn0$m8vsH%g*a3;D78NcIfX|_)?+MbUfTNhYkbI?XX zGbk(TfbEtnIpf5fl-2_HhXLPXo+eE^UCI@Q)7Z}6@JgXR(eSJnh*Oa0);BY4Z%Sr&!`F!tU_y}=MIcZ#&uF+@Ixqa@Gc z5^}O6<&r}R&UCHiOi$~3KHM=9h43}0s?}1Qy!QDcVgk=&lI<_a*|)b-rujB;ORl&A zsaxQ8913srb+GOmAMa;9e3_*ept1=RXu8X8=9!P6b?D|`m#Robk+ITZK@7IJr$1B^ zaYpwKB0TTJ$%#vq(jbQ#X_l791OIsQRO?(8-wIb48wk$t(1-5}=}h>wq@$eT^gqeV zuPWd{KQsF==(7Y-F>Hf0xQ^zy8e?Qq!EU)M%LD@V`OuU1AubC@y1+l7rBdEUp?p<_r6uq6#zmDf(+e2J*4@p6j&lwA5kLLKC&GDan?8<_J zd-8Wgyt~U2BPHn{Ad;l8A3OhMMhoc?9$#Zb5=*!=Q_$x&7bvOn90~Xc**S6`ULtnB zwqRtZSFlD(=r|{gknyoPI3#v_On<3-!ry# zzvMks^3D6o`D7&awn?8|SQG`4@MMIw76tgc$sH!YH zJSju;VARfXcj{#tsThLP?86x%`qGM)Hs9%~IP8IacBl5VO^k*TjEn9U)br2>cbch= zC=djIXy$Bx#DT`;bi!ap_S~H}4qYZM(v2?S+ev%rJ83MCOO1upC=q`h*>K_z{|&mK ztleI}XT-1atjmt@?uUq!=Du_~EmYM?wdWh}>o<9*oOpO72ibN+Z8D=4%DUWd(;Q03 zq#B**324Ca%0Aa&RLRtHj2JQGznz&D!lsQKB!gc`{nqgB!ck^-rQPi=F$-Ypj8gxr zT{yWm{0p!19n++Q(K#Bl7v0n?5NZsB#gly^%0Ch<&YC@WF%Kj0W>{FNR5_c6F|CE$ z3$63myoLYGK_}Kz&@t-w>9+!m_T6J*vktpMdEAYeB{QTy5Qc`k121FrL)opYUYbNX zZHf8>FZBPgIp@MtI*o5((;P16zVp}d1dSs5PUNLVQ}g}Xh&ocdg@dOY2B>ffqwq|@ zPSYGq6%}eFyvHYL&iAKY!MMbWAm ze|X$TRM-cu6lkhHXKes1*N?aHy*g$Y_p>vJ+@v(>xjZ8~9pH=h9Y*4bA2jjoIc=SV zMkWtvhH^4j3t4XFkZhreggqYuF9p64(9JshN)_z;=2~NA$?MS=CprtI-G=daku;12 z|L*OGN@}EMfV)Rak>F`fP+v07p?#;3%h;`h7C#ldNOx#;)k!Vj1>!PAq9^MaY{+F( zY<{U)?gsQ7TK|H9rIc9se1zZigi^r~OuTh8>YqAE?!If`R@o{pdGV`F#sGT2jk5>W zTN`u&DN?RF$gSK>OLd}N?-K^z)dNDZagvNOiPkO;03qOm*Ajp~AH`kH>Cv4Y8_ypb8o;w7~l?Ep}Qqn|~>H z#3TMKyHn#8bi91Eg04^;EwlHDANeBMp8n4x1!rI`lWQw@H0cA12#F95S@5`fo09TH zj`8*u0bQ+8n=U*TqOL&|3usNGe2I$T*gTs3`pZ>W350i@UbF*s-_Fo}eigk+Vw6c) z(iP{Ri@-dzFsp>cAR-+pK{Bja__Yh&-Q0Ft?nUXz`-hPuLkEe1U+2~`?B|bcU)q&bCWska zN3Cap7J^D;Qc!RvOm}HRcZ;?G#gT~jtQBk4+NGdVa&=76 zkV1u;zGXlZMDa(5B@0|b__U}5`(u&CNYj?Fi)7l)mOBeXS@Hq6kYnHLD?cBV{ zpLqo?84kNaIPHN@^d)!sc5GvziD6 z{^o1!9d#V6vpd|Ng^C7MATqL8SYI8Z)b>HzXaRH;?l>yite9v-%pweY(*8joJUF(~ zPs1SuZ8<;}6OBCy7U{bjXLoC~EzY6z#hFNSf!!Mb-R<_pedq8pcH2x@>P2KwrZGBP| zQHzS1kaixEC4>g*7@JKnFE9Y!iYz^i`pEk}VgGlLWCX%6o4ordTFd8aQmB#&s`Un) zzKO}u9VTXj(RwB~!BC)>ui#-DU3TtxO{v2rWj(cbZK28WJan6jgGzP~DZcLI_Pa1N zaH&8kD5&DzMnB2OI>x2EeW)pG4#U68CW=fV^m5M4?c<%Wj4Dgx>lzoQPrAP^$c`&G z3vk60=N2S;w?{>`k+j82LA3@SBQ+ca@DwHI>ASJWElIt=8LqT_Pi*^Vm&PG6KOo?| zBl_~xptaxTbW)ON3|P+&zvpvZ^e{lDa7?YyH38?Q9|trP2zWa4s(x}=;PZIn+>`&J zK1+$p6%z41o|3h%n`rcWHk5(MKn#(HkMHRV!4nIU4Vke_nRJV@cAle|c1%VkXzNs^&6G;Ngj1$gYQ*s*d@-EWEm*M47bH=_o|#q2nj zE2NW9%Q{YD#@EUBC*<^7`$nN&%L~%^O8h&zFB7J%*ouZZ|v zSy5GGz$SeUxwcNqfW-yxub&HsXLAX@*44xFRB`w(JyjfC*2gcU;LM^RTSBWqsxf81 zazf;#f~iMGE4=9er^B_5?ea0{0{Ygz?ru8wTAp%t7&(K~AF?BO!)c~C)NAeodqAMo{gf%vzl?7)}CTcv(Vmx7QZCdHC&WybzVxZvrR>Q?BxTc^AE{rs3PhQ-vPo z?mZ9nvt3Aqj-?75$)CS)sS8jo-gAjx2e zc;0n=>0!)iBAXTtn;AIqOwLzYj*88d!rX@;5fzTK~U zKpIK1&n-~A<+U-M&HmkrjCP)Z zqPB~!{_Fi{PXB6^K(7J9o>L@c#JqG{Z(m)MMzv(Man`=Q1`GpBMZ+}u42PwU+h>`v zzjv97lt0DzZ&5x)5wO_XNlNc-P*SlN+A@u850rAoi5H(A!`(~GRqPutrW$78Ro~CW z-=5M27TmCg+OHyu?|}z2x}y>m;?i?JF&LI*J1H;TW!D=7lb#3VTDeN`bcWa~*BuRM=oN0iWawOr19=2A zlH(3#TK$bZ8lUSklNUZ$WXJWIRhAp-BKyftd~Rh^Y~S06dO?46Kd;ARiaIwt83rYe zBIV@`Q>&B|f7=m>xBCU|(hGG^Z*RlOraL+R zwg3H!`?{Q%*oPF$H|;rZvem>EolmIRqm!+M2-1Ze*JhS1T#l|J`F0y{V^h&MK`eG> zolC*K@A%f#m#yDv)8egn07)FOM@sN#5?GLU@;}2D9eK$g)Dw=+#`mO><0ctSAYJPC)qC z=N8~nr*v!Tr^s$kWF$`KO!d50GpNie*X$Qk8_$rWb0=&X&m+2-YHE!D{$Ljt_U3g5 zG}M}%wAb8_mVsT;!o^r!v|Je?{o!oTWM1s)^3%u3U*7p@OTV;}SWYt3ny2eFQp>oR z6DVZp8(wXGP9Gigwm1}exv+UQ<+akvr9LbC2B8SJYnIjT)~gI+OiLI!I2;Q+v6%S! zxH=HX$e2W~CFYv4w-T@ycHNw&;&a7O%|ABBsk;MDH85|L7r`2e;cI81L11Mo_?M3( zYQH@oj&7>K2eqg5mt&@Y7GrYPG2%y`Se{_rYhzKzvmqFxJOK$IVoopw3_Kel^{D1M z#Dpneodyq<$E!&w1lhxG@1cJ7DOQ5Ca$8h}qh30^t&ws}m?nkP0Zy&k7k?$zT0QO} zx+ToZ)eC`oz**7@!oN{`{F1To8n2x06rFpBbvI%><`@Y_9Szy<7T{LPV>=@WLlp*1 zoqYet1pu^A50;Es*Clls-F7#6RbUH5Q4Ih(T|8ule4+g{6$d5dFI=Ep{fqK2%4}(B z>Gz~@{BQZ`Tvbf|rNg#A8kx{c?FhHGGwj+l0xde%z0kvcI>6$t`6?tysLfLxA;KkY zELPQ~=G>`GZX&`4IK@~XGw6CgRtC3S3Ncw{n;@1VA2wnc85rBA587#}I=Du}hT5K( z7G5A8n;)C2ql_ZkRR$~1a`JdT(7x@$sC+48a?%AC8b;HEH~SG3a#A)&&ImS!}eGRtWyj5p`yjh4#tWDg(T?{wS) z=4<0y4Fc}<2mq}qGR#Hx3c5|-_UdU|+@a_`Hp6o*BP2t;+^i|)k$LG;EOF7k)t67;&X@&nD;t}N(&TI_54l_b3j9NwjHmWJLV2|k(^%m3 zV$S3NqUW?K`5Dn1VzalwArY)cMR6U!QSstMK}Sva45tV@H=G&mJ}d>?wl3`Uf1fq% zcswk+SE&ev&Z%ac-rwa#4LE;#*UDmymGE+>43c3#Hanb*A=)t{*pSoQSlcPE@bIPtUH zavi+?R0eOJZs!U_`#dRDBXSTF<4ZYA6Eyw9<<-&k{FyZ&f6T&w2Cu-)GAoTT{#4S6 zh>H>VCxn`m-@Zp+*!B&{o(Gf=8_%^0eRo${8m2?ISj~PAv(6;ym_N>B5^ust%AtSk zXZn+O{T2;)d_Ae#2IU^L;*;b242ji3=hN8XapUxB+}DGu%9JwaE&Tcgg)HM5KTw8E zNRUjatB6?ZP}OLiEcG!d`uA7v`|`5Z;dXE1l>mzQf^LK;DoJH!vHhU~9XwL#*8Qhw zWgxMi_d7lmQnJkuFc2W=AM4*ux){GANy4wSP(+=Fr-XE5V&|>x5tzuscLDavEgirY z7`ilnX@$)jF3=R^d+vwdzvdtf4w8{;cmAMj1GsA+_&}NRr(FbTkJEH-5VGvoNJE^Q z_MP5O}U`io1h_SJ-{11qoLtdTq*#Lq2?HOpZ=RD~G?r}iH zSuJGh z`!62_J&DM$X~7^s)r_r?$60r&m^v?+;`*r@n^f7!%18&0ZBm(lj+Jwd(MOZ3c$eb- zVQ7#KKEaQ|{-a`ECa(QaHf&ArocSL`A-%kQ?OP|1_0 zcb;k_MM(dprl^}k;rH=|U&cv|e{t*+{J$mhH_Oc}Xq?Sdy4KIF4Ps2hD_j}oy`VsF#tm@^o=n! z_)2_XA^i1W#V_^Ho;#nc77U3%xL<;Q5Cm||y~n*M1kt6Vv3vDU5RpryZ0Md(fAc{V z<+Mg^0<5P7U0UK2}9=SqLZ=e-dW%E((T9PV(+ zV#j(d1i}Mq4$PXCKzOZVpD~By^5wW5E|0B03YYV|^ZcSID0CR0+Z%2sPs?gKr?}b! z&z*M9dH2tIg%S4`uC}$s#nNscexKynCiy~qxZ(c}>Z_x#w#G=G65NzBd=Lp}IJbzf zm;@V@8L+-M;{g+T|F-2dUFJb7bC{TDT<4P~sQR0L2W?7-IPvUp?rfX&wLWS5B^ci$ z3Wjbai$69z*TY@2nO5<<&aSRe=k5!;UAt~! znYbnP9XMPVW{A4jCk18;!Gq_!p+(cu`r%=#jf4E9MI2%8=VoNhFB?}q)~R#_&}m68 z$QKw->A$Iopz|%5O(GpSd^<@yd2~aOIFdO^N+zeH);dDSguC9-ZuJykt zg@!iV`m496!#^DvKkhH?$+DbQ#=h*CtmbQ|C@4d>4Op7%wT$iS$(V~v0=`Yi{xZi@ ze6rKwNwD_zQTs1R1ySK|(P=O=|GQwc*@%yrBOY6qSr1$T{-ATVHRj-2zjr?qlgK~r zx?-+CVqylquEhB7RPg+=TGGqQ4>4hTd+m2Z=1gw#AY;~f3@9sVKmLyVKttQ_+W!4_ zpyUwHAjPCN863rB3r$w3xF2Rl(Rwi9;oxZ4!N<4C&P)Oy9UZdK^6hfiT0;FVGMXJ@ z_(_G0r}Uj}RDI$ADQ^~SXD89cSzT1@;OJjnKtz9)O!3Uy+|heJk&M<&_h5 zNm&>1|AOr%Rv>cc>uE!x%9gKqO~>$deJAo=X#sOFhC&|dFvZl=$EI)!^oI)6>N#*c z@HwT$VFu~?1loVrE&$lvp~G7Hj?ZmzvEkqAk&qm^Z?jU?ZobH-7d;)_`y$s>=aIfk z#{pKXQ#AN?5OR6vE7ek4XnjVn_Wlj` z!MKFz@J_5*#Gw_+O=ODH=bPWo`V+`eR9r#)L9O?;CNKyKOv$K*^eGF>jSvXwZWEt2 z(LIh>#J}o-hd0mr{8%pycQ*3we$3Ri?Ee+0M;?hU?eqKkX+5G8y1@tzV7Gd%=}evX z3?Iyd@#9QpvbTzRT5k2nkht>aSty75BR)UO5@LX$wZL4$^)h))Op=i7Y%)Qvg8&rz=~<%z|9~`@@J5PuK1I=n+4V!u(RMv+VNgRn|njOA7af^YUYyKE2Zgvi|BezW8ff z8{lYU!pL6jDnOOVC%}?5ntC|tN%)UW1jpCZ52VvMw5IiRdh)*Hy$6rZ!b!l}U+3$j z0oq_A=M=}~))=X1Vu%GOlmeETIu7sYniBZ^Y+Bs(0KdZe&z_>p=e5T#yAB*Z?;8j) zs5n5NM`a2)7oA7|s4W19i+B%O{Ay0Lzp{ohx{s{ZwkvHYo@F9spik;PochI3WUGP^ zsj(kHO@ZsoE8@h-Qf+}K=FKSE@%*do=LtF4_Ab3m{3zW z4G&}s)A7179yDIV|XF|5ljs%2s5k6lvR}ls0aY5)!P9 zQzsA`2V_n4*(VGXczdo4v8dIi-nHqaL>G)K#PFp^WZQb+E~WgDc7hP7D^z~5P&Z+6k!LA8JH>ODU1vEp{-3m>ZK`gN}Sr2i3n zY+kC977W|J>oVIek*>hI(T-nsus>4j;@(1#miG2H*O}sfP6G{a8ZzPYus@8*!B_iW zmd2w{QRmo}Wn>f{PGH$HRxOBo|9JdU${<1Jd8V!B)7XBsBwf9-JB+Q8<8CQ}^CtKy z6^+7{w)HNF(K?Jqz;K$Y+b(X}W?zt=?Rw()-j?%r4`!RSw~hMIT|p9Px!zw=ScuC) z8trjc3`xQLJp83gGbNaj5x>HfN`lt``|&C!Gx^p{kMUdBp?+juR+fSXfi@A~R^2C} zlbN_z;&IGQWw1(ca^!g-c|N5|9BOt4P75Y|fsCg`^*_gxR!(m-px?dy#0@nhs_Wv8 zX{cQ$GGi#R$SIO7|09kWsgd7BB>1k3i4vV9j0~N9@xye+4p?i@4=uM$rAY zo(WvDI({fqNhoDw(XRWU-GXbckg5Hdi><;sTG(nKqGqhun#C{*c5j*MyThW`2Xn~E z@s@ssZs?R0&|&SA9EeI{hKnK z&!{T({X05hEl|qP0H6ue{e-f-8lp@sEL74nX%dCgs7$f6VAI1aUkrhpTvGbL^h%FM zuS>@^Hc?G2X0Wkb+Eo>sp{LoM){g5V+s^_1dw8yxR8ge;5XbM`ghHXD*L_lV9#Ph| zV{;fJszFmDMSEr^&wt$Mc+f7~D0Ddg(drM_P1F zg*kTaPpwS$B@8EWe<$`nid!>?OIlEbE~{!)?1&b{8n}LVL5l&F3Inpb+F+=q3^Iyz z^Jh6BOTDkJ$JlhKdQWPd7N9gt7YoJhjmqV4vw+vxD_|)7d;~x7r)hh_>*cK|EA6lU9vC$5+pAAx zZE$uOfLIIA`a`DM^Kxb>q~u zC{faCafDc;cq(dfaWsPStLkcH8ed+OwCw5fmDXy;6T}`WD7CL!d_dPZJ2+n3L~%n=0b zq0SSw`R!1BM%I}lfd9u7QbeA?_>rVgU$bv7i0AK_NaF7jYr|^`pY9)`?m0g}q>ID5 zj2*!3Sdx@*`=5&AuiSi55Z4Pj$0mNF%Mg+093AD-_gi6JL`}#`U!ezvUTzTTb$%o3 zQK97}&pkEp6%-F{WyZubD3CGD1QVBJHtd5nEuaIoE3TBq#WnCrS<2|-r^o&I;k95| z5;>i|lBSYaQ1^?Dln7AP8Pq;}IXX}>vk@@Oj{f!SV>N)16(QG~wXV0B#hSC_R(7wY z?T6&Ifav(=#oGPa2}7MKmW=H*xAY7rFB(+zPynlGcpiG%{`0T6&>iiNHB0qZ$1so* zLd;4tlu)RScugGI9NMFQ4ZC!VL#JA0+>bH9p;7K2zy|E}|2!YoY$C(OMaj+;#~FH# zn55L5C42y2gxS&SlqgAVxq=EVT)45&E>WP0#04` zL|3ci-FbvQL0Xy%~poPNHh2Vzu<&ISsw0%73HDUFJxdqIBew*_!{>+g$zU( z)-M5ebyIjEtEctfS<#U=+$b8gp=tV1@}{mF54$tuwR0CGY5T;a)KX1a4-bh7OUsQH z1{CxfF)qlV&JKF#ilt=|D%t2mz)&o_90hNDZ+z^v?t(m{Rs>4#XZ?;8vk7Sefi*wV zgu)LLEU24}{_w_qwMC53SV@)}jBi^ayU_&!NJ_IZ=9Y=$YTr|&rRKAY*Ml_~@o+_q zi-(S9sb5e+L~n{<K~9RBl(c}jok5)~jd~#wqHP7m z2Fn7(o5m4zC6MD|4j2CrfZ3QRI|nV%d+`^VyX}vR4uO0Ylzto6F%nU57!mJhhj!!k zWjiA7;z$CsTMa@cv;$h_2~{Hk1ivYbfz7w~vpD~^E+JmL8n0jMD|V)ig6F>4x%y_g z{jE78HK)QGY{JEd-*X|&$3&jT57g5Dl{U)3x@1>g6NAn$yKW95WMbd<8Bd8fG6BN54Y6?DbO*!T zcDqFeQHir1T&{#XV_WsOjDHa)i4a2QJL?=(}aN7K@-`v-Uk#+VpuSC zpa7$ZBx5W;ebA}#pqPLWLyiYGM?i-j`8WP-HzEYVp&-*+jd!(lo=_Hv6 zV~mTeCU)sl!iW^f?8^iDjm;Jisgh%W)Oe4)v=EN#C~hOj$d0sQtI-gaxUg8L6Af5F z^aj#iDGuL6`>~w-5}gHG!3*evhsSTigH?(D9ryeOG+=mD`R~Dy2!qq(X(TkUO6mU< zc9t1iE;##_czAz!!Vr5v^z|#f=N_B;>3$_r>OsPg@OjpD+Y(4g^foUOeepy@FdO*u zyS7pUykGL|H9{e>8W%@C%Bf?BKPZxAIyxH@?Od*5;6;rAboWAZWn~g83EwUp%hkx+ za?)tY;N0z`q>uBzGkd?+tA8m%Z)xjFNC1UR2Y$O;_1FJ)A7_bu zxL8Iq#eN)XrD@b%K>_ZByZE6Y0YwK=n%EGrVBh->{eK=5oT$}Y1XNt|*jx(Eyyui0 zJH~h@T3Dh?*_m-Dx5_Xk?vd!K6#IM<(wL2#>#q@Vx#oXKaUXXM^OFFfrR6Lrx?*TO z>NnbmfG-z^{C+FV`!i^4T?kY&W}+H1r35fftq!fv^{x$lI$m1>1YF16>4+${;^H>O zuNsn%kg{~s0&}V2GO@qn36LI83$H=<{XRb`Mm^@wK{!tjYBVD$4-exACHAbM|$&^c__ByaL-1YrW!uz`?_z*2YFzl2Ek#*wk|8mTxqL;`TAq%rImX=>tyPY)tRV$w3O2L5mo z)D(vO$icJ=$mfVo|du7m11SpaXN<^)` zm&&s=eG-w8D=E>P%4y-Odr+_Y2~kis>v#jH+K|D?X_(uqCIti(g0ucl{ zUV)Ng(&EpRQhH!Y&<>)HkHP=69cs{ zOq);vuYqDZA^jSuL-LmewB3}bOfvFxR>~d`z#5Zb(XYoOIeJ8x3HTvmV$N5|ZJ=^b zFhW8EIs9D}t0;he97wB7V9sdMH-PUu!+v4-beF`T@UPrr%~WB&Yo7gg*qcXIsl^rW zBdPhO=FHNPH}56ljcGHh%uK zm4Y~5nPv*_rl8}@5f``@8je(lrUkTmlyozT||*A)Jx79ajr{+~V0+ms6P$u>n~+Y5vY zrh}YCs63Hyo{0Y?+~82*QQ3tLC!2(TrUx*S#kP%hW|n4+&XlbR=9^1|Em!>vY zO=u~IR4Kqh)d2>)bxJd0i!00c>QcC_$4q4o-Q%Zl>K4FYWJ2vxo1@S_Imc+xQo}tS zCgw5aLJ-!+)qO`3)h%}={;{Fo_BP&#h!4BpPCN~<=_vFGlU{9+dFbogRde>xR&xdZ z2txjIM@pGSaV)WnYu+C-{%hf*nkSuF2}Id(79=T|q7gjqf?A!%TLvFbE^yU|!KhFc zncD4U^S?{TeE(n+(L@9^IN1NfTyQbiP;!Ct&xiq)jsd)VGMvPb>AQOeY(b1Ci#Hve zcx@$+?WCZ5Qm`wq0h^3V1BM0kUtv8%UYC?wc=SB)L_Q`D<+*ZS1$^ zsnLLqY3jGV$F?IzhNAGPsKjUD<>zAnOt+*>-J+k_>J~cb76W5#N_^p1(zB)`V?YAi zC+fghBd9J(=z4Xw7q)EhH*X&tctYE3TR2=1DRf3zzNMT*Rc~aHlKSX5xQ<+&*0MQR zdD*4xC*B$+PKCu9$hP3ND9|tf_67Z3MA?-FjJdVQ{39~ogg7`j`0XYEZZN`uSG#dK z{&}T>vb6hL4FRv1P7O}NE8j}8XE`4wvwAYWh`o|Ndq4b z!0jP%D?!=zF{pmKG0evY%nVCh@yG64M^??{QS1j%Enu5E%MUv@H#cSnN6Iw(7>sLu zhG`VRyeL+5QfFk~#ZX8H1_p2;yG`{!3YP6p4(1Yy?Z*Ssg~LjYg_BcdS<~~FzP8R& zB-D>lwd}!A46Dp07A-(yRST5;|JkrpL9rv^KVT%nEPg-N{_ei+{~AkzZ}Tl})?Hz~ za6L}UzoLhcM0LJN?{c1h8q^zVecRWYvQB>41t9oy*kaFJ3M(1tTD>Cx3#WBo3(ihj z!@?+EOvT+}OvZzYwqRN-I%_M<$CSb?3-Y2XsD&@*VmL{=S)!axq^eF4`ahq=};8mP;^YYI;Yu-G0! zeI>`PCXHfnRdpb7Y@}5*Qm|@FCooO9biWWVLUInwHtJ>YhSt4-fxllBF!t(^vBJ89 zK)aNqN)l{e6W-XVSRGlB0ve6!^|yX7f)de!Ym;|(5;C;OUoP!2RKiB&Jj6DnEVDSY z8p=!pOIH3)PW;6cOVQE*ssCR)~=64;ll zVUe7*B9Vj@V_TxIFod;mk}tmv29w%nZVKS5$*Y5q1Mtf*Fa_3t)d~ea2r&#m^UY2` zCrpimJCEGj1&V;W$u4!>eLouB#vOD{`sncz2u*9b=&ar-PLedmFWjTPiK)I8BtzO7 z7zS-^Weq4KXmLr=Pg3lHF2`B9Kroyf(E{_>avB_dobZ@INdc*d5?D6Kx3h{V+GFJg zmH%)tAuL_96DkMN`*kK$BqXVMW0W@F8NXtsb44)LnvsZz+fwCQPGUr04U?7Ce+4ISV~CX(kH@1|eE(fI_#Z(_Ay{Q47~ZLp z=zrNmobf^554`n{AV&H7k@%d#`+E?m5}=5}8Z^8DTYwb5b)nD>*i}MdXW?0$RT?RF z^S^@XzGy^;M#2$|HXTk@e^j6_p~hkeW>EhNzIi4*MfKN;9M#m9S9|~c{{p0E)Z8*#oAl3g-H)WMNTK3>Si;TN&KG}yz+NLG8ItxRa3_b;pVA^VXOu<&Yz zHT4J%p4&K&OOKL~kq9mC5K7wh z4JLm|k?`>Jr~u!RG+Tx|FdRfl1=e_Y`-pm&JUnajq1K>oOq#7C#Tg~m6)sxR4_CO3UtRh;?cWKxEiT5VQC}9CvZ<>d2eW^7KPY5-hAUM@S4+-#(a08|jf&#Xh?7p@^a&QXt8K z{m&3FJae<8DS#3VVHi31f7_psgV@~68ZXFC0Efhma+>_5Cc@6#+eI`b!1cdnn+M{2 zmXHRCwI1Wrc=1T-{07=!Td!2F>G5%RgLom(|GjHuiHlQN1Y`S>7@?AqW=v5OEI1U3 zn;VGt$%^%7vfLv+PCh~@e53WOnx7rl?|8MEwFY>FagcHsFZu|eZ`s%Q#y69cH85nYq9!cqx&Y@F4 zM7mQ1q@}x4q`Om)E+rj06a?u8k?w|j=KI}ypZi=N{&dbcd*!>{wf5ddQ42=r!MOhg z9wBYO;{1E_xhd)De=eOD8q7eylE@?MZKr$7{P&FWzoeL;aCLnXR@};TZQtJFQ6Ip1>X(H8hDIu*`d++un@tv@SYX?i@?~*+Cfs=W zQ94Uk!*In*>NQXh#lw$z1cRGrwG;5ktpyLUKyHfB9x|`MRKn1ZT_eu&DtiW+HkIsA zt?CTB#0-j679c)k5Yljd3mr*C7NlfU`)WBw$!y*3_z+xuRvIz{Gp0HJNBY-xB3An~ z))kV^k_l;dNg&0bYnLaJroSL6FuhN-w>-Z^{j#74Y~{qjFs*7x6&i;ApC$|4@@(8QULEKQew@cH__BBBZbXZFj>L)l@o&3??(D^b z4VzF{A;(wikhulPa@3_?W44+9sW4+2_cnQzFaLY~i`e>lB+L@qDH1XnZ{g|bz%P4$ z{>gEQ6aWdgHb?~oW@mYi)0o+Ab2SV)HF1E|e zv?~95EL4BlP*K>?5-=Gb5^DT25b*#J-sXabU7KMH%je~-$^j9(ziP{&o!v?v$(T^U=1**w4JTWO%TY6DO3q#Qx|^RC)d%!P_ETxxczJv=_X|PTzl5UYkZEdw=L&Q+WVTZzGt#4;9#sIC{lC6@hw%9Q8h85OK{u#V_`)WCK zQihn7Li&GnniF*Ri8oTZGMH0!e>|ak3&&YAS}^KM-*>-N=fR+{*C7~q)(tusW$O5D zkvL(6=-gRmzZkB9tP6QrQUziK)qy+61N$#5gg=E&Mk&f64-2TpVA=$$+*oh>=l?o_|*j zO*0=!xu;Z(>RVo4iVfvB4vEqv2NP?7kE?-a96=+P)=h8i%JAmLuvQ4ajWC`FdLPzb(Vm}O($o-C~3lA z3Bt4;X9_MaBk#a2d=;0a$sz(NQjoPRzw5TQ`s`kKV(u=$u1A>I>W^oWOlX{N4nkSP zWyfqrZ7>jF0UYGyX@AMn&2ZNH@aZU*44H{u>%e9G zr&dD)^^P_dsw*<%Xt;!O<_mj@C1KZ{RD>o(S+);Z0$bsZa0Cb%`M0$l9)rs6mEw z9@On|araJdgZ?{BmWga7X)k8ys-{b@!vT%M!SimPK$EO&Tc|`s>W*>jc4`d9AYos5Ps1}30L)(}42Jb^YrXguO{!On_fKT@U|IS2js>_xY!iaTOr;6{K) zEAOiDV!C_qF`vb#XdKTD#Ns`gf2KH>mb2iK11@Kfp)_#lm8SO219Q=%bke$Zz;7-4 zzo?y2eI1}w(;9?gZ0&@FHQ_&o1SzXcnE_TfCFPo01I9G;`AzP;f3JQmotserUrq(E zf&c<9ylVwhwqv!<8fJe_q7PBmhiwD$gM@Tpvn2aE{U3aAssc2NuhZQf-okSiPbR%W zQ89h-7^a4ozcFJDx56}NS&Fs_q3AW8RL>|isIM+RvSFMK?U9AT(;d{814n|GgEWv^ zR`Jukp+3gN`G0=$2p;Aob%;RBsI+y}Uw^)0ogC`bghdaclRKkNY=Wi)yK4_6*DUBV z)I~(pjp$=})hV9yJ7dj!xe(2aRIOLx5_gx(2xZPY=NL9PmFG)*+7cMgGi0!+zar0R zf5UC#ouDeMe8bIzvOb<;ks&XMRUeJ9-Y9vzJ6l463w_~ zPYTSXQDk6;j}bBs;dl^r|HCOz1h@Ws0gS2FLd4z@`ahoCoZYPhOPbMlS5|s8e;tC_ z-PRV&{ft0cd+*^*4MGX-kDp)nU&iyuP;eqQH)SjBgppKIi*^=Hj_IMa!W2J%Iy##y zM^bMPYMA>~vP?!|WVB4ie|IHoWAk`FUY=(Otu^0}k5LK4?uD?c%e7t7l7O>SW_a_o z<3e%E6x|-_iFjXOJVDD#Wj(kCCzfmTk&A@ zZr21BjAa_h2diWN5JU z^Ayfgx&&ze{TIU1*Ke#e^UAZg7&dnHmlV#^lW0BVEB-Y2o=w@O z@!c}ymidtKm@i2c_3kp~1=jOe?H@>dyFaBUlA!gzZ7n0C)o+2xv=zJYQA+&J!UoCR z0yFbq3stN?rm@~wLYV2e>@73x@bpi!#_v&5EuHoP15jotEGmO)k<`5U-Zek7psAbr zSN1hqU_$&4CVzG&w?66AhgaYeA<(R$TktBMofeu4cHM4;OP6+30xyM-8&)zl?hGSb zi0#j=pKU%{C{)g3C|UceqrKB=^JjU0_jrGbA$?|4Cf704OQD&*MP!I4svz%A$URCdm_*4=os8sc@2?xDdB zRYHp?n8!=T8ZU02ze};%R_!8=jy#(AvSsM;f#GhWEP#JB>G|zam!9K-hkaYQY&e~r zQ*SvU;D7$5bq#-c+R$V>44mBJz&A7hTMD&q2GT$jiG=OoNPJAan%i*F6w8yx3xCH0 ze<$p*|7Xrig_UR`z==TWeVeUaiL7@UJ<-V*5C(s^5)63fi`-FaYu@8)uBpc@ut`%R zpqFPupcLUWT@G?mR+$?;ykG)t`I@GXZelMLaRTHkYua`KAxWPnZeyo4C49uv9=A+3 z@@ksYX68%V+uIxN@D-(f4lA%%b)+E`z;4u6VDF0CkIP0aQAo=l>Bu84Bq`5@Q?9L! zmeW8f8A=4d@&4izL~h1aWb*3U#8!+hb0L4h^gxwF|1vIdpls@N`H0%BP(LNlg%Mue zwA9TNL>bHT8lL`QHGE$pkJEX@x z$eEle+O_57O&8L8jQJp*)t5-sO%L#NNmN0bysNUA`A61Un&R%Jr-8HcSD*H1tD|C* zou5xnOEIj+fyuzgz@>Ece;*&-S&$;-h%**z5#roXsg_PBJ)fM#6ciON4CSe%GyIA& zJmRO$3_aaeRRUnf63FoQ#SUhW=eJ>RT;FYht%W-T zH05EZ(Kx_E9FD$MbTWc6yp>|+fxCxk{_kfvPF$gu-C~BEK-RcZKKCrP0ca*^)@8|kv0t{W zPiOe}EblH|p)_<4xI>DYXU$O*m}WYV)HA4(Km`wpzQ8K^d$4qH@s!PurRI%5t0Qu9 zo9;&Lq(_@Py~Rj%GpA>?2w==);Q8|Wa{YC<6!wPk(`vi>G64ZNNeob9v;jcYdcJKA z;8spSi_#QpdCHggOPVzM`c+Tc-Y|=ekf;4wgI)Cn&nMOPco2RHIH|V)_*G_y>r2N& z=r6P(!eTLQxZVp@HGH&?$;nku8F0p7@T|!gI{!|*4~7ht$R+?W+yLbdVy(8LDG@XF z5Y7K5!(>2)_6oUw`h*zUwhGs@Fb9I7acUuW7=9oY=oD~v(#d=O@SYC#bR~nsrwUFm zS-nvQ9nT?t3ic;+R>$S~wHVG*0I3X8XamZ0JPM~-Z4Bc5S`L7a%~3;No-{cV1{oA2 z-1~I}=KC>*PjL5w5_BzMgrT7A)Zsp(ENGwKaf3o_)X@t_nl2AEkQf@!3piL`0oIe9 zp&07=B~ytsq)i*xh004o%QsZKdl;TeW6Z0$ZK&U5r~^Aq1-{>Srv6F_ja)XGE*vjI zF?LwlsVb_?^#NGGO>f)dGfr!ZL$6g>;!=kn9>b^724W1%A^emm+x*zbO<~edtxgdU z+pKhjXl_#$GZac3;sl?Ekb=Y&WH|;W;J&q&$5^0cs~%POhoc0ys5(M-x9(%^)pj9E z7K;?Q{aI2O@Q?vu0k&}xEjfMDeA19W=V`*YXN9kTAfLq7_<_-(>PoxU>u|d0D()Jh z$fROG85`Fc$f%e}y5Em2Txb7z4n>7e`ayZg;!dXQ#V>f*c ze({2iP!l1?w(g7BQ&8?OH9-RAT>I|nkm9?&6F{%P-U z1@F@!gfmK&^UH{VE-nZ`cRA{?({aEKK!SwUC`fzy{`Yx^fHpV%6B!jXTTqi}R}J!8 ziUK@j0f<59;(XG>oQxv46%8vH&U*5Nurfdsww&yJ2F#yiLyFq8_h{7sF^o5lt3zn& z+k$vW@%Yj>{|je85Qq7_vAgvIR+yNx{%6=gO zMV&NsO)oJT$MGdS)Jgj_soD-B>&7%qXjYzDPBlG4g1d)IfMgkdijo(x{C_DS8!%=G zX7$M#%7Gt=OrbvrITMHyfPw_J{Qbv~{`kB2&3K`D*p2TcYYHDu&zrhz6!#YzF z@7iAzMk_7@KKR3CL2zC#c_DxsQb&lT`L+T`XWn<64_LFr45(7(y}+)yjsu+Wi2IZfdZ;$ySAJ9w3a!X8(qos*v7*5CbcMosscB3qx4JGGm(aD_c=U zuWun_BO#IyzYy{vx69!mUW%FH;4h$PMQKgo*JXZwFIO)Jtg#5=F(L;L3C%`{UwKMo zhtV%o)YDSYR;9Po{k;684&1tvEtHQSwx5kDR2 zHPGcvKyBN2q>ngQ036s!MFI2t0{P1re#+Y(pkg9P3eE=%XQUs^5%akoof3pR!r41L z8s~x_dT`F-OBb*cGZ#ws}7NqjRe3?$Ik1fN_j5JnfP_-;GrLcEgh&oYbNQ zygzM5_p&`kiManqPtOl*OuKiX$wXa%+I#exqH#wqi4fXLSdu&y;Y!@C{zfeyu8yA~ z9AQ-VfidOt|Huy!27fHgtBS_WJxWI?4*qaiy+3)^Aw0-yrW;s(t2#Mx+mz7t@j^ymy} ztRHtC{BsX?S{_wh{7 z54ylNtp8kAH~7HGiOhs$5$LRx_?hhi1U#j3cOGXQZzn#1=HeqZV?bk5&*1UURv|^| zFW|r&LcCjq{p|x5^rNUPLohY_AFUg&DV~~|KPDgmfvZd0j1l_aVq^#<0dRE0qjmDj z3H?9csTZd(hO-Ae5WzMWkx1cxO36S!6PE(Gr5N@(NX2)kx;{lI7Vyp*j>)|nbCgVS zqn-{~asNNF0J&bai-1j7=TNb1SYr;O4LXCf5Uz*=pflEIcY-v1=JgLD;m%5dw;x$J zE<`gTNvboSaTw!#1e^0P$BK z22gcrF&#e~7RQqn%d-&6Qv*-0{l0(V1hJ4;7mbHl_?yPsy@ZPam67wj#S@>8e*({T zj&_m>j+Ez1$3DI~F9UU?(2?G1{VgYUFsrZYdlMB@1uUDEJctIG*ZP|o#JczAP>YxW zBYvye(PB8A{?e-?Qt>ezsJ)a{pE(@7Fcokv;@LJwvQQ<~yr|y^K!McF2%?x^eoyr~ z#98HBHC&ZnHGo5G?7yQAIgE|%Td@*{4z3d7=}`^X{!WNg6>+_>;uq%98fHNv790#$ zfcvU5Ix)P|WOB97A8l&{O0Y63ZE5vL6e|GjS)USl0zKN5z-;r zcVTRkz5l1Gd$>%Fn9ux%JG}uzj_jvGWD9NUOCPR++`g3T{pYG8)d9m7!k;^H<3SLy z+}$ zP0~iSBKsB8rU$^;;$zj{DL+LlRIM)kv7N>1e(Q^l=y!DMcOXGVKuO46NY}QPkJR0@ z)lGsvk6-pleuZ@tnNI2W5+n~8`z8sdZek2WELhkG>U`T)dSJ!2LLfB<_AR`f<~*Sf z+OZlwve&D7VoxT4nfs)D9YK-+ zsBT7)MDsu)K+XF)W6dPcw%N69J#S}8f>6(72|&+1^Bre|%9ZRkf9x&BN=7k#H@$T- z;0I!?t!$a4WU%{Iatfn@s|h-K#(!=V|bYR;J10pAf=WxSpBh@K?F{!Z{}!(7o4b2wCmYFvDF zM-!^$OU6-H@xkOv0=Hb`!9+rm>TR})aX}Gk`0Xz}l(`^YztOki#Jy%+MNyI2?f~Yh zi%V$m?2^TZAfZQ6W(#3A*mmUvvr537*V^f(lXUZ!^V? zmuA(gjGu|70to^LxnVUWVIH1fC1|TqU_mM8V5c`C>Y7iVf4>203jqELNmw`0uJL~w z>TY&4om!4WiNI5t3wc|HaI176ahN&0x8_ozcpi=(9N!X_0>HKt*#n<1rV^MeRwRKZ zZi!vQ%$s z;vbWc5oSiJO>ll1M;nO0$yWIQSZ09*aVrGDGuGGd)A0*_KZ%ipohAYS*LEqZ9m15m zN6Q{X@r<$u2xkS6gA8rQ^(>6B8><{jRFujmRVF|s_QB&YwBQjh6-oNn^oQ&@2kSk| zh)5E406wBGl7S!|>)xLJbIFLr?{ zD7iG=Vzl+$fB2Ir4)_K`pR0OLa|xy1x!_4nQNH3}O_=X%zq23gIBwg`c@WROcRv19 z4t^jeDxuX2!g-x%SsYktlk!7W4v758YX?YU&HjC993ulu&ks|S@OBD$^n%E1HnJi+ zY1)#x1Lj|7!ZV-qn|>de);o}&U$(Y>8M`1bmTCZ!y`nS#Kf5@6 zd~z~2exJdI*=v>;5~cXF;}~^>TWWvvl6a%;M0j>ZQ*PYdtPjJ~917&EypU17A`P%y zaa{#nO0OlyoiPL|4b<|bm4f+z40$B@2xS}lr~n^O=An%^B|z`cVA^$l{dr^yg?>U5 zwG4MMd_He80g8#sm6a`ISQ!vzq~(t{T;@vqSS7J*iA>TYp4Vts%X^;n>r->s5g_Zj z41Nl#7Zk<8(qsYGS_nS}ZtM-!N{oLmK1xVh3t_Q{o#=tV)Oo{8UlR+prtl~~i|GFf z_P<~ow7dtsF$C6={G62?1C`xe@-_a}banOt0^ur^1#9AHn9wf7PbV@dVqk`p*y~0C zM9g5L>)4Jiism>sGJD^KH0VI3&aY#lCwkN(At{IRA0fjJF;M+=wD2wAE1<&&n7G*3 znAn5}60Z;%UO!vYR%oQEWYwWag!k*`DZKKDB+pZlBm}!3uI_TGz4UOoz9$ChMB^bB zGNj89#CcXcT;?Zpc1a(Q&K?$uS#Ik`2v}PN5O6LK_uqc7&sVhz*Tnj_=Lban(-+GZ zTe#S0s40BGvf*Y1@)NnzPX9_&+wTsazciXQwJXjMcCZGs{r>n0%nAbZyh^pwnP)M* z<=^^7R~WcWrzd}92nI8@gD+x{*D4cQ#M0Tpqmso0M<;0N{1w=6G{kph?4cb?u;@0b z!jtV1{{bR!1}`EO$Hvze_>rZ)d!pk!p#URbsog?qE%EUr|E*wT$#2n^v0pjIe2#hg=lEt?6CIdke)Q1W<}# z*jOyG40g?pn*#_7!I3Z>!sx+s&%GrTELd*}@4o{jMd5>q^U38y&-&iY_BuO1B17^t zB&+QFUJ8qo8U#oBLk>_?RketI5A?(uzjLx^%Wg!{#(y~PwDV%5b&c(q-F_G z=@dc4=TmsxQ5?9UiVmLM!c4#A=D1f>^5e)dY$qv?k?vE^4|>H+Ik!o#Gv3%{fER=o z0d54pK3kYmc#gygV*2|Zk@Ptlr}cEnDup*%Hk<(r!cRTj*JuaUquJhJ_LNJ4M1eB8 z3JJOu<`;a8D0D3U0dX?;XWJv4-!zc?ThU}dR#pIy%FwlV8%5Etj4%CbIX6_NZtHsp zKzRVNJvpCBgbZ1>WI3l#Adl9Uup94t@`95p5I!xxgNu5;g)!Wk^4Ys+(FWjtGXPE( zIL(aPK`9%u(I$>f(8TP0lJTmmh&0w@F^}QX@TzqHzCQfDwaNGN^zETYMKI7y3+vIp zY^Ds4vbn?L>#qu#o-KMPhB4Hlp&Wl%NtdqpM5h>zhYV`Hcy~VzI#BW=i;eFsEh7qS zq3~mUKCL6WvDM(K&IDa2074ZZQHSVUPI|%xS&Vt$>AyMz-D}*wD(k{ z)g%S<@W{Hc?R(23H=7KOUX(O0682O2{~AKceDdLn3SAjGP21}wCcsOg4~&sb$KL)- zWwS;KP^tc9#Nd+%!1SfZ`53WHM`nDR4I2P@)oUwobJusy?zI z?yoRn0FZMUvlRzS>v+T_A~8Qy&i4`{Nw^+xS-iQD0{e1UZ!5+fg~7FM<(0wpyj@dK zk(~lxA)ROALX15mAPTL}KYd!6T^HGaWM-x`-V!nY3T#<|p++Fs5IGI>g3WIsTvRr0 z)5#36Js(l6>}A?TSfJiVsRsBZ0$?g$$SU30pSyngcv|&aY7U@#{6vTSGBl=VwVuv7 z^7M>c>&*^eH{d6rOz&(tI#ItZ#~8dM5b0+_LCE*0#u#5^wjUb_WGBy3$k6LD7$y&GvC(Y5vnOp7;ZQEWyV&x_m-9+%R9c5QItn%=-T;)m6#B zt!{5A?Bk*RGbco^G!NwwyBng7?~AU7S&jbPJhmdU@JPC}pfAF#+%?d@Qhl8K2O9P8 zFc8-i&AhHU3Vf}xkquGwKtH99f?kREf1f(C^|pGLh)`1Xl4NB^-u@Z(wmtMm41&^G zuSJxuHVi(H;pOV4OY*q^_Bw3a!T)KJMhK#OhNsVUiy|t`hnacg)mN+VifbCnkM@q} zALD;%04@&6uU;gK>#cr^uru#F>(Rif_mMevVD1vf`|r=t4H5Q?Chy#YnS zAB<8dF4og;t-0b~>HqT-0fPh7-Vzk>zJdRW)o$Ih2J;*;+4BLr3x z-)6j7WoBeXN_l=g$l`$qR%`NJ)PjCaA|bmEMk@w+P5991f}x5Sfx5bNXB8U^383q2 zc1f{2c7{8JLBf7UDb}KC&YGV}RZXO}PBww|$`EEbNH0C2NfJy9>bqMe?@oa^ zD}G`c1dSKn+|}5&kM50F0$nA%B)VvHnc|GsA~IgqP5!!(k=*Xu@_Vs7pXcrvfelLU zEk>D7Zczf3^nGqM8ZiSCfV^pphxgW@Bgh2hCB&k#zR&XgVD2ZV1xMq)vzdvgpAIpT zQYKw!Z~q3j=OJZRM5LmG_sSieuD88L?^1SOkOkxU(#2QVR^Fv0?#X$43yWB-?J;tJaA$T!hC&3b=atG4;;Ji>?hJ|GA1Jqq z6dDV-Vncj_hGZ^OTueEfj)H0!QgXSNfzVH~0ApUcYJ#X;(8J zsMFpk zrGdbhlS}jW=vmO=bE=|v!ism&5NkN%O4a+NI$88jSh3%yK#{^$>!3QzFBc5LrDw%X-vZD+YMz6|%N(Nd6(COYk=CvO} zWOcaZV@c@W3H1(9%OipfeaAXZIuD-|-9OSWYIX+c(3x7vb+@d6h=dAfJq24VNH#_W9O!+C@zH);{C_&MZo3t>O=RPGw>AB`yf1mPn&f6i@Tm; zDDa*~VEdg=poj5452O6{&3PX(IioK58mRUNt$JC9E(pHpZ#lrg zNvy5|)KV;=7QDsSzlL#g)l6VVcmB8l>Wkm0+O~%5QUlenyb@70ds(SGEfw%Ups6xM zSyR(JNk=6KXR(5qCMsivA;#!NfwMl2MN0q{@4BCvj)Yg}D-jiMV|_9|=<3Kg`rDm~ z|G?Sr+X(gULB;nSQIMkPQ7(%$8LY7XEaV%)LR>!ZeT-S7b5$au2eX$|i%GF>moPVQA|rcYF0&v4<WX{bzr+GIr`VfV?Dkm6*_2+jfj)sW@T&(PEJA|(iobv6rUxMFiaT>-N7 z_&Lx?8$1UP@TrUnaGDlUu{M<%s81)*1xuc4dpr!dWeu1+7@Wq9SetkFcE?20ANTp^ z53$27ak1fxecw{r$Nh*yY2=mv&CF@}c~(;-L(w(DevJF9mALP7gtk+q!R;IRz{L)&X zkvteDAM72>PRtSEPgUaumest2#MMVMq6J39}YR4A^`TeVVV8)N0IjwenDb6#&g! zD}4vMp=CR#=Teyx_TM%%BUQLAnzIPOV5ja;@-8fQcVmq;(%Dd#9B$U$V(bsWA87pf zyD^sqHfuUr=vJE`7_%r^(km@MN zIbFm5*DO%KPpQj=&1yhmq}?3@Rcf&a8GwPT=P94+K@l%KPEHc6t`9wXfb#VIQosqa zwRUt7eDOWwLwE(BU+lOM2st8y&#VU}fDib38-)CyK?0vE1jd6353#aZ2Yu*Pxh+!r zNZ(uo3b53#tc{omprOJ9yv@##EI(Kp#S&6Xl%<-u`*%HSC3M1Huw|H+tBqpBB%qEW zIcl-Z^8`1!YR3FIqY$WCAH5(kfnE+)3XBWzI_7*gbW6txFF%c!r3db+yi)=oe5&h2 z*vd8jk$>Mm5#_3)(RG%sY|~h+zoMWAzjyO!o=fPIg4bDBHMc`$G}cEwwufG%3oKpd zV(L0$sQK;BQaR4pav~M|0gs)U89HEkXCRtoH=L7@D!llyDxeJpJMH=WrkA6|>&<|* ziBN>4kUI5%-k?9Pkn<`M12G<`m;5_Yz+DS4o8tNJrPJ|A&HYqY?h6e3)GMw({SCO1 zgHgoGZS(q#Kxi7IM7-qJDjk&s-uXGV(6hpr@I{Lz*WPNQJrhB2lCR57PThOz=}|1L z_RgS(ogBQyWvjIH=5*QJno2(nP-J=}?PqFbj@usx?4%vj`$=6R2 zuosF@$idZ}B zFk2Q&Z!5$Y-q^Q9e;TSi>$*WbJiHMPE(&Sexw`CidJ=5wwQv9WwBvC9Tid}^k{pS% z%QiS7zS?|8{qJs2o9nl%|56?gB2wYuTcxqb#r^zAY!Rx3BvTyu`!m2)f`w(bwvJ1< zdVdU5boTl)Fj>1j#O(byA=gZF$07*3 z7fo5^+WQ~I$B%S5z!}v?|4d(#X1m6(1OcWeiFhM`zeJ{g{eUo1*X;1GjQK7Ke0b0KB^6mI3C^r(?7tltA&L`xWv-W zqS)_G8@@~a5_b&+0E12UEk8+T{?46=Ffi-==|^VCE8$4_l~r*$7!2@VN#?Ye<^x4S z2DM}?klk>ljG=#9*BoG#bJ3*BG+{s$YzoIq4!uGB4ySWTmAG@dfA|+rRJ=KTW?=9Q z%A4VPaFtE8%irheAH1^nK-8hvgY;UJu&}ToHYLgwPe=FT$^z{ZPxafPZvqstvzQLO{uuTw!Im#~*YOgbi*U$s6~Y`lMr=LZ1=XW8{a z!hx3(Pm?>_{o|4Bi;LSM2aeeI+@%_}>aY;ZwFuA0NXdC;RLLz5UgiLIR*vU7Z{edE z%fBYGoGveorwJ**NqofTqJe|E9*5_T?-s-q#ejWd&#+dtXdsNbZxFYLZWDu95w6_f zf!^x$j5`69?fmyGoad~Z#7#u-f%$lNobzUd;J(I!cPgbzLx^QCIO5iI$8 z;!ghV${Q-r?-u7Xh4E*unvp7h~xFR=W0PjXAPCH1{8VavH9h}nfQ@# z1Di)tkukW{PP^ID#g_1}D-U&a2kRn*TfO2_XqbxLqU{ItRc6Uu{3I|SCV+D)jaxHw zvYUK-Fb$6Yl357jIJeFyV&*uhfrTWv>&d6}Y#b*X{tqJRAM0~1bI$ z->=-`^7r4Vpl<-*l;}~%1RIXz&Ctuk9Z{Fw4jka5e>)ZJDZA^TZ=u8?jjpVG!qFik z$NQx0nY6>CA+v_44jPCea$sfV^f?&p z4P5#0jV&zTTGECG95w03FU9?-G?*SmZ~Ld52&wti1O8SP3Srqm&XK zk7Q+a9PcTmhCe-%drQ2U>(hxsusUb+ZL8SiI=JQH#|S>C_x8d#&z$M3{@ujV2&2OH zA^DjkXl%$xe|1|ZoB8x_?}>`q2m*iS(?@^cD}xYU32>SX#9ATDk$j^xseCc-SvahI z+|XB6J*cw)1={;oWI-pvMIR@D3NLg_pDLC;(QcW`hGeq$Ysk4D%p9f+A z0PieY)_B=)<0*j>824uKXw-Cx_sF}4&Uc%S5Tr4_5)-NT6_F8oqlhPet{wQ03h}5$ z)4d`JRh0dK=P1twHyF^%PU<*y}ObY z8((?Y5>r+wTJ%^@S#g5nT@SxmrCbpbV5x2)|9<=WdNN}5?<*(M*d{K&CE=a!&u?TN z25D?hUyMB^aB)jRdd+Ux$X-b<5XN{<0GH@Qw7D|ha4Eowv21D5O#E*~-h4@5H5c{# z_z)81k`|rRcm7HNJ!CnAloXiN1ZTj0|3+N2d;at0EGUC-?Ky4G!uzroH*nXcJX0ih zo;p0rJR-u(hArSR%Si0Q(>2?2Z6k^QmFG7Uf=*l(LgH zJ3RGntYQ!R9#c%I3rlW%5h0^R{qbPY`GK?}G4=ffjMn>+H(i#+w%mU?6qcHBX}mY5 zXT8_ZA=IiTdueXYR=c|PE#I+LR<^`lp8TDSehJ+Rbm2<1`_l|4DC;#1cSOH^wRTWc z{(vC|8wZhwY6Dj!9(|gKqx`nfb+4k=0($@L_llteCB+E_L2UfT5jkq!Kl{eo{cNrK zyhYzi0QOzeDCfJL`szlAYoB94jiEyQg3xw%eGrv0@+=_e&7s#5>aqqV z?$^)1sal$JbOADK*&^@pyo#V42sJJ8=xaJSXq^?TWp~FBW+P;^G2ayr7I*Qfks=dl z=wX>GN=KoHgnSJoE~}Bwg+DcXe=Z9MrtY7dw&rQY2l}2%$MeQu%TSf261@ACHIa9h zpi^x;7_>~})M?9$-0l0z5KfbKw2=o46}!5+DE;?Qv?`UB0_sBLHss*g}4PGLBCG5KTKqG;CS~l6bPR-LT~0 zlcMe+CDd?JcVS?wiG>gtj7&!sqQWU~e<`l!`xv&e8n86q%l^?dL4$BR>$1h}y~o-y zy&@A9Uk_>Zj>7NbK)bI3 zaf2jQ0akK+-{(PNl~@Yny0hsrt@f%ZD>HLHmBWB(htdaEUVgPNt$C`+BGJG*aAn8A zxOOo@0&V5a_@{szK>l~E9QY+t{gs3ZD10AiFq99cOG#_ElpVRAX}MQt1)%@-HJ{J* zYE9q%K`p%!2`)@gOIDIkc$ht&h(Q*KJmiPz5Mh4U*)Hxxurq`ho0uKjrRRpT33tT% zqXlF(?72cGTgn^bUDBd}$DQS!N+|Thb}Wwpup6TG@{bM&g&NANo`XUx54~v!&o=$) z`_;Xf`6ofRFJdd^n#i&vDY~U58g)WjO@(zk?;6N;oN==hD&zC8EC$7>j z$L8hp6R4;y^$}M0q+JRRS6u{vt{f|M7~-jdoB|fuFp$?R#Mui!U04qMvIB;d1{-yK z=6Jt%jhqg7Qm?JXJj9k!cN^^d98vu^_Kqb=hCg%RPp&NqWqjga0x!xx2BvuN??N*L zBL@n)Xth{{o_w8z#uOw9%{5_`^{PY3ul6X0Xu|7X;u@mf3;8^DbRW#!wOAz#N%+_B zz%3`9TABpyY7UU*gPOFDIkHK28(a3#V_Pm6pIH%%TobO?pr(0GDdhQ#@1%U<$_XE! z2?@By^g92!uQY2lbWCztF`{Cuq|-H1kv1x#Kzdb+fKmvGAKC1wVW4g9xfcA)PyAbNkZ41+zI_;}LLzIMNI zxj$2pA!;V13k+40PF=@%MpC0&lKSFxzI_ncPcr?a_Sp-UszM1}!>{^bFIdcL%1OTd ztI|RH7ov#_{wyb0v@eQAf~7QmHqh3m%KeINXq4gV&i~u?=M289T%W@SM!YWJom^rJ zmnarzJyY(E=QN% z(aAucEI~f;5TK~Thlcgon zBl?sSI;Ua*>jC%SyA+LwiAsAjQI55dk-lAvhLDSQ&k`i&Lz^5PBGZ$Jp7>5#SWgz< zsV^OI7FzDyZJ%$+$xYVLXFH>8Zg#Ks6m(?Cz!<))rxIfHiFBmD6+9-$*M3bsGRld` ziD{c-NfAb2=tb}L53OZUE6cqjA^0;Jl2_`=>0G--+fgCCrAFQ+U&*t=R!FHv#MAvi zz+WzXG@x`Ocp&3g9ThnG8H@j};Ok0(G^)C!(Gw~mxPnu^C47KZveWPE3>arHTWGe; zpunTtCT}ALCsh((y_L^#T?n%4u8?ZZkgLy4tqb_~RX~a@aPddTWBE$yquK99WU z&S|!*w^}BDMeRffH=ET_Gj^(57>dE0wwW(sWqFs_W=h!A z#`q?_YYJn{cBlsl9(a%I>efVj5;}bV+aj|u`20cq^6Sdl<-uNB2O;n!q-mj(qnT*p zA?a@&SDCxbea*dG>gKGvDSOU_dK`kUR$To>riZ$b_(rg-SsV#`AqlSKIQY-H2a}v{ zXtOLX_71pKr1<awZOb{sVo1Y+dxo~VusGdM7t*KNpt2)9g*G9kqTLRW|X@%GtzYiX^XnpIFO zRI+*+HiiZF;vrqWiov8&GwXSo)pn3X#mh&$I4Rrs-ss%8CvsXRpjL4t_2=xYF>W05 zw;|nU^@$euly5I~{qHcpK@^mH-^atfz)M`eTb@kp2h8gMQ1|%IWtt_+C_Z84^InhwkDBgwwj(L$ z&qJElJ0-e3YTg^4BdClp+Gg(xj2J=*Myh^Yg`Tr@iuSqyUHOoHPK*!AqZrSUe2_|} zD9T(;dtGVA*5JF@!s0QXq0wasn%`mGT_Fd8Myq1pIli1wc3n(sJCb_bc%&pW996}% zz&+|=b|z(=nRa&K@>if3$I<{&L{1?V>M!K+_JQb6DW^3Xpggb!<%*}VH#=}T5gMC0 zBIQ5n8KO7%T;#~ZY{P)$GfEk^pazZwh#8TB`(iBzE?G0Zhy~~-RzldwQeTK|w*C1R z6Tul!NWc9}$?q&uR^d_(!(#iybz}?O58U+|W*k6UA)|bL0o=t2se84R)2O-5p#)Yi zFU^w)kX)v0)K-5CvEk(&xTIw8wU4c;PyEW#=^w;KWELyBJKhw1Aw*9)3a*zrZ%}yl_jmhHae8=~y<>R7p zWSV&Ed{%3FlEp;&VUYjtNB645?(e=7qA)#J9!bbF&ND3KHBn77dR1ofE+3sibKt|Zvj#k*Nn9q^QKh$r1TfX#~(@zgW-`Za@%`{H&UC7a}WCk)Nr=Jxk@1q zUC4a{??k>dfMc`E)+aj zwQb_Fyzlzeyt605+O2f)2IS1;;uh(MyY zfN10V`ITVHavN)YK)fV$d8@lS+h0{BU`u*;OxE&MZG>t~v-#L3Zd6}nnn^t3Ku+)R zn-gAxOU>ebE8m(ADTDLUk4HA+kXm5{un$ir7I9STjhx0H7G`9>AdmWYu(I>PM|aVP z-r?GfgusRYzlW*_1UK%?<6ZX3PCsXo{2viN4LTH4C_pVVA+elPnxEg7MvYnLu4Pg4rtJ@I&lGvPpD$PuJ+sSs zbM1R7)GqZ)eYkZ5v3pAUser$u>|b&Wsz;98HhW&sD5}O+UdPy;6w$E0i$Ne| zdh4IZAPgC9meJRT@UCU7E{+P0BLm9vvJtC!4F)M3fuI?Q-HET;G~R%lms|*zuhj1Bc{l!%gT}UHuidVMU zD14!J>(6uNxtrIBIDMc4x1lj|xR4q<=`2TEV%xkVWq&Cud%9w#b*4{k*8AG2XVbl+ z&E&uXX^FLMK+fItUlbmDN6XOIdFhxiq7uHO1%(>86S2_WN|)7%SupY_o9jsT9%Emw z)$S(OJM0$IgH_^u6|R;AgL)+i)aJzme9>A6RaB{K;pl3mNd6x}$zc%zuAo$eGvxz^3M;s55y} z84Vd*vFG&4ZJ72ZTa{<+W@XnLR9(z&%JA!fqKcJ_UqlLxK{k``=}a*lsLT*tm$6>_ zSdZ`~#D-=HoPE^Z{!_UQ1DwU!#DqIP{Z!Q0AR$qpHvP-w|t@8Y< z2tDP6XB{@56bb@@YK~;w>C5l#y+%Nr%#Y0UzmTzK>r`Z8$e3|1 zWC9DDoBk!e;zAy-M_PJ6ij99`1(e7Sk>l_UBtnqt0xzl*^E@*p-d11@LqFZTadNl8MHU3(}$YYe>xu4g-a{HI`=rutz|& zVg49Qh|25e$g}A7l~FRzE%Zzsu~(uY+Gp&ZKQq@pli@PN+>jB-tOKNN_z!G|y?Iko znCom9lcXr{%yvq`#gVtqMqMdN2e!sfDKh>4l^Ki-Ax2+yM&*XeaT1di=BRQxiHwx< zUqmSqVqFHF1{(1OUgkEbDGySyTv=~M+F_$b<;stPw6n_zu9aw6xxv+ELtI&NFSD%IApU>-||x+byI}EsENW z!yL5|-uH~3Od)eqdR^l&^PqVY$~1d?lXS!h{A>d~_+xDCTlVHl!p|lxiWDl-4nxlS znW`d-Lha>_n?tQ#QKNSk{t~ag5^E5ZY|km`Y4j<3{Ab}*J<8Y1IS=h~JIZs(2~|yS zt-=uZ1v=ne1P!(ydyyE#?Ws<}@e@=}cmbQ#R%06Ceft&v_2oh~mR?ug(+i)`dDc%8 zEHUGiwB092R6_WtS2>8>Zk6ffOL2}v-w7p{@x#Jny9`g<3lesCHc$|s63Q9Y&n~gf zR7Bq|L?kp(}rviC199y^JO7YBvGSAqhsZ<%(jj2F%{RPy~qQCD; z%CeJ`@hX=@{fXBHN3XJ8D@~joZPSNzI5B(J8QBhV23I`3X_G@k3_S?rYnt5`0(n+n zN`8JXk;;uNfBH>RMp10nIKDwsuL!4WU-s-vvDyItn2#o9Tr-bEktb#7+Dmh5ORdx z9so6Y$&-d;8{rMVLeq_22QaAy*>E8g7Zc(;Vx`b7>hI1YKMAvf@Vm^uD6rj0CuQH= z-&ZsPRQg(6%72RLUf{V`cO36p*kI9od1!QK@VtOp?43-s+edWYOcOpnC}g|&X})Hs zhE=MHSZgR8M&8w1Rx9ExTY&IpAsfc~>V2HkP0@Y9TfrSwajA-8k%#Ew%R>-i=tU>_ z4a2|ObHuQT6Nj4xCL0oUH2pa z7a1Z^wX`?zx8|SBVjGCC(W_$%Z~SXy2oRnuR%8lV7Q8PdUy{09u?sn>^^)%Z=hC%1 z@puH^Uf;o^Pgy)$Y|1DM(f^>YvJK%$yI#llq z(2w4Zwhebwpo2Go`sxvyV!y3n5{8UYctRh&Tl zG*iAQNLH~*?d{9NYlG;}-31peV+IgaS_J(4Bm9?U-z;kPyPJ}hx8f3SZA@MHyH%)< zF4OYIlEp30_%2}~H~}KSdH7kt1=Jr%bc9#J?u(|Nar#)B^vzADr8MVS2#b9M80b-zR-e2^9ps z2q*N!l0K)B$V4ql13o%?*3@LX#@uL;mC*LIGKh8CXuIZ(Y)U6w>7U>PQMjn^59axg zqM3FF;ePJ8EcBMKw>1#kAO@%LFESi6pF0i%QhHTb^bQvN#q*D21nQ%zT?Z!z2aM-` z2FtJhsNKs07yY3;R|BdsFz79osRB3D9%h`O`M^B~;Rp@vA}|wNlQ9CkckIQX2ep_d ziq-wS<@SWY&ji=!nAPjmiYVWgm=XFZYOjdjei%e0CeQWM)i+=&pw;5N(&{C$E~qBu zYGoxsgQnvJ)1s}{vvfk7@UT#i`W#_L~R^#bo>C77ZH$88?8!SrtP3vhmmohKH6^} z9g7th`5Vm_{EjBO$JGr-(jLQyl~;HJO+OL}dEJ9);Ogs>tZNg39A8Ih>R5T6paj56 z58`5PzLq!z4Zqq|$(AZ)UsB)}@G<4n$4y;DV;iyB$FP})b_BAfef1Rl3SKUJZ;v{! zSGosQ+Y8$>`-{Q5uNU3d%f8&jphxW@_;#F;Y!ild6W-vJ2eMrXC3&{sv11eRq#b#Z zl_XOr1g!h~?NbEv<4NpaxQ4{hopAD#&^zG{`4hdaYVzl%)fhZD23Yoo2&nAw(s_Xa zf@=0SkWl-K;ifuCSf5eD`ck{H1c->>=)8K=fNkyAQ!K;8Vr8&XPJ>b*zjqV_*1nYr zi$-J7!5ggx;v53`_rLur0A*6G=AjYzC!rRFPuL=aD>y2`YPesU>gqmLImJql^L(Kn zGj8|8!`M+uorK5qDQ>7;TIen1>M+zdJggQhL1p+Ld3ua+vF)n`d<>O^@u7*f&^}mW z`tAt|@n0#+xcw?N_Ur9aJG&w+NVUco?Qa)UmjS4hM*UY>S2_JRS}+Z7vsgsvA(C;C zdw-@#g`7zxM=KTaqNE<5gs%$C!`p{hvDey$?chHa+R9N|(RFYG4>xHrD}=~Hz|OCj z5q?S|8_|`{e@_5<9El0|-vIDY=j&65_iy0mKf`@T@L`8J@Y}6F3aJ1xxM8AOsf`T( EFV0^b z?z`{a`|bbtpKqS$%<0powW_JN=DNK5LmbovosIx(l7%Y+Oku3Ej5;I8QrY3~NEIUCU)`3Rt@^7bptAuVV!bdG< zhk{o_?uY){BN>9ukIv`_T&ZkC`5lo6dDvCmYkr33bM+oV_5{WO40H&30T5><2018{ zK*G!d-sDq{pWS~F+hbPj|M*}e8!?#Vh!7w}_-^x!z+a3k$@3TTOe07Lt_T%-9D_t} zohUnbI1}kQMU&D+h8dI61$v<1Kg8rCGB7lR%x;UQBt*J#LSfOgr08yXPX=4IO{`#y zC<3?bbCH&>uR6T3nR0mCMjkz>9`z}OcDcRO&I$$m5FhYI?=2=dEovpw4X4fmAlwN+Lu2Jy3xE?CaI ze6z(daGF^1;tlqfo3jbHnVX_pu&q6b6TRhj=)ed#gqlF8D*zKk0>gujx*U=E8rcD% z(qpiSnZI+0;7>SeKO7{4Tm+`cc(JKHlE0w4Ab5t7XirE3d^SDIK?P?5@IYU3mx|Fu~^&b9iOEme3w8Lz}Icpa3ppK^v)(d z|3rU`6&-|cOcg{&B@g-$dsz+_bT={gjrgcn)mA(0%mBrvQ>HubsOi1>+sv--gHSZ4ujp!dT(>bZ{4+@0~ z{iZN>xhbLwa{fZGt6$I4Qip71bC3TV*Bi^<$=&gCp}fWOLJ*C7h^2?{aBh*2;$Ra; zDfWW8HX)Im8n7zZYnV5Teh3{z@-v9HSIG3f;^W-2eXMh9PzM*-e+ z!4X{2Ajn3g<4t`_{YJe~{X#wc;>%_#Lv)9ztDe4%kn4+UQ#dDF7H$W3h6_k07%Mo^ z2NTo>Q+4unnn)3^k(h*o-+f@9AYKYj=zg{?WQtjl>=802@ALBI%kM9@L8Qztpcv%b%T zZ}{HOzxn${?{n-c11&Gf4%KKDv1jZr;+(>rQn(akRWFK^S;HCwyV`$peQ4!Md>c*vK&vN&p)66hZewcWL!;W#r^bxN4X<7=Rj<8^-E*2f;){&)q;vPbb-QsCJ7gfR zw$*#c@vnH}9kXBji;y|{>+xT6EWOZN)lcKt5DiH3$I_26AG0ujcXu&O=1pvtzM7fp z=b3iNvieGHYvIt#|C+nW94}26hCOtZ;y&6lJ_j>%yz?z7 zmSS=I4v)<=-aqbbbDA_#DDDVXv~4zSjkGpVdkn|d&`RS?56|Ozb8}b zD@l7ge{RxE1{6%FESoPYFNwS}E^dFhn3S6GdFM9YH)A&o`?83sisg%`_+0oT`P%r% z-|ydRUi02T;K=vx*W$)j6#~W9GtdA?`;UNH2{mIGW2@Ckx+=Pl?od}Inj$4 z>ln>&!)FH6_nf`L1uO;PGpueJ`@;ek0+RX=5q2@5R#rdTZ=;<{*kL5UIR=be{3}k@ z|3sB>s2U~KZg#4Luw&)?- zysc=jD67bkxRmJ5jDIG2-2*2?RDaLvk+hzrmT=0+%XFczE2FEdYak>hN`Ido&!GIg z)*NaH8r>mDi8__NPhn4K;+F3TTxZ2((g9fw<6ZZf9;BGIT%B0=Lfp^XlgStGh&CgaOu!zPio)R)&=PsXUNZ4%<0I$cAGiMIbxl= z@VlB=nvL3iuC-5pm~i-)1C!Ni(Wcz}Zn-QUKH+U{Xzuza^-tQM_~FK3Q_G68zg>u? ztVz#T&YbiW^^YGtg&w{9{Xd5_TR@mlM?-Cam( zU+r`|??md_MpUeO#Yza2;OllF(`L#`SEoJ-!8zP0qPfdBdBxpZbu`kBMFNue3${&8LHFu%e=^-Mv@ zY0!9YVrF@;;_FduNR6u@X0y}5kE7|qgXl}8*~QX~wnL};McnU{xct=iGwyTl>G#tQ zvsD>*85ea_4!mxH?!2y}N39+U8*YQtN5Wc1m50mCq&{VLepC0E=utH1SB~C>BFf&^ zTdJ42C(AXyu-2fy$hfF1s8|tv_`I&sFYEyuc^R2ng)#FI&k4=wp8e*2@BK3OY1R6+ z(CAO2xmE%3ec{Cmr?tUvS~*%9j5q!)_o@%`n-?kKqL2GzG1SyvjDFlFZiB)#?()l{ z-YY^RLYJG;w_zu7s995D)c5=64fjezU$-{~Ti08YeYo#u&P9*CS7dIxgTvV@RBDh| zWY+SS^7;gj5CriMtVt2NLniOfKTAwH1iV6ejQH+-`069V>U(Yk&Tuq3-BuC=X_=y5 z-`}esFr*>cTE3k0k7Vi}aT6lJ{M%5m6A|IwgRts_cwHdO$+^tMc~bIRv6d)cP;Al{ zo@bme`!<0M$5xX^zP1GQk>L>`y#RmeF&60=VAV#NYb#p3eT%>fq%jas5GfE)ffOQe zi6K({J1vLEf`I&wd?W;fFe?O>QukK@jl}0+M#-E+%vycDDA;LLQPO6zLIWeJhgrXEZqXj6Xf>iN-+t)SoX8A0=N#ySGrq!@*rR8eT zc~tPqdDQvn<}j-HcK7F_D+4_pN^k%H0g{vi1_t84ALvK}WxFM|*K?Ep-}(P4M1;~U zVZ-nr<^Q)bOJD%m4iQ~Z&ROJ8K;u|_Tv_=$#9}NF(G!i(~TmR=6f%XE4 zFv0`b5fgv>*P##~mk9pX*=3_3nPw{m*Z&->Ln3ef*2x|Cek3xoQ6Y zU69$c1od}^O-mbb;)j|#=3h2Bs2*RJHLpLwx5b;jXL=3bQt}P8Y)~ILN{8ZL{`{-` zpF?j4w%>ffH-jezOO!DlPbhITbm5CHF1fGxe$fk*6uX#GUji~Sz{BbV${(vNM@!Q! zw_VG;4V;$HC~f0eX9NFpzqd;P0)nGk%KK@91!l^x4snmVOcuO#9^`0i*0ZhXSzK&z zPV&~ZtC?PeaYCrJzwx)8#Mtl8RUBq|A1ZP#^ijK~>$xwvCJEiX{7;DxFDHTHLV-_> z`6Q~mNCMj)?~e{AvmRV>-aeef`R~*C97|sP;qVu96^Ewc3#EB zENje-6&i@4;I)2FH|~2$hcq+^kaa@zW;5xF;E=w>JMOQKH>3WIvuzI-hnC`ZI{3>5 z{&+Wm=roSpmLtld9GTBY_iwhdRF*~W_N(IVcI3t9vk=bb3?c##E6@wpu%4z;NpSsF z#ea81{LzQs4}Kl2*m^Oex1`m2`sKp~@jHQzlByA*qRJz`tER)#K@OFHWCOR~c`+YQ zsWAc(C5^W;+~1KDd)5s)Shrlv4F1eSah8=I4tkN8>H@{Ts}r~?|<=ibLQlw zk>8E^)z>!o3zKzC1J~)`o6GHLJ3J(eT0*bwaY=OQ&Duq$!Dd#WS!RHTb(m0B#wP|q zd6B#iYQB1JCde;Fyv*F0(RY69e)-$7X^_3Cc;et`-gWnv3tF-Fcn{;;7DEbnTG}S4 z?f@xo)#tGS10`1hR+ZiTk{46+Xd^Z9sh|{cftrYF5Flkpt`^RmC%D{E^N z-hx4#_8gsNiggrQ{O|XS6qg?F+8&kk1D7vr>z*6_#QH;cJ@sAe3pDGj^m_TKbz4*a zW6ysZan^PB%S84uR^!Z=hFM@ar+;oa%Q$jbxfyZKk)HFtT1tX0rguM*i$hiY8IL=$ zIqFyL58V&T{O^BKa+(I~*_71W-i0bHQ!|&GZ4E0aGq=2|YxzJzL4teW{u&8Gt*l`y zwfkTdpogRT;z#-E_rL;kxT=WrE&j1cVl36XSK7p!YN^-Sg(qA;>a)dNTL`&>_ByoP zUou5?ljzy5CF@!j#m3|(#8x0NT3{AjVz7aiYJ*ohvAPcg59(+Eb$QUIFZz!aq8p1K zW}o@3fLmEz2P5SCd{U(eSOfWL(Inn!cC|%RHs2o!jP2?4JH#g@t-fb$frp>5$*clf zwxqIm&bDfJF;6jxL~|mOUUo6_dffri|+zXfTFv#pmkKZLZc_v=>tH2xg0 zWAGkm8=3@8@A3HFy7USEoBF=YxWyl`s-wEL`-3l#gL7IWD5u9rG6qxK%~sk%PTfQZg+CkAx!a1h%chT zhw!>b=zi3Fx9^{7cYi%ZcJgr5wvyp8q3BmA+7zOb$!+=08ou&yS+~@*d{O!#1y3mK zX)q>bnZRJ6gh&bnfSAd8`5>cbSM!BZ%*P|jYj@e=0R39@$TKdD%lyr>vGkeU5d1id z;S*;k=}?xSQLGAca&@S7DGRqI`5R1^{N+Ex?JD8vbs(^x~Z1lj!q>;Gg~;1;7q`!l97 zu`*821YptjZMjeNu!YjD7R$=+Y~0)*`L7V_TmW3NTep#I?H9dTtcp7NApP@sARrdM z4}|e6wX4}I+<(ZTYJ~cLe0QX2os8h?q;?6HAriBUt5w`{f$Ozrhwg0)Bo~Vh9q6?C zhfPPVQ}w=RksnOrsDlr+aQqKyW@B%2uI5TErX71EuBJDphA{#=WLNS1uRk&3bLlC4 z`Xv!YYm9;gs|^XZS_Twa=CdSR!Op8FpMOu#cJBc!??;$l30UZ`?zJi8xA{^$ zC69OB|M5Oab_SJHe|7n~mtXFqhKU1%L^;?YW9=w_r3oq^gH32$LD8zd`PfWAdvJk< z^bPz)^-4O=dfB9T5L8k*za7Z z_hrxR{76CsXNMN$HTM+nzvxkchJMUC5K`ofkmvzmHSfGZ@jFXfk;x4^O~52awl^Ll zgTk1cT)YPKK)#30SxQJHs_vg~`5f^@&)=I)h}zD9j4 ziK$`dA~8gWNuAl=r~dZOrr~=xxT0r6+z~y4iAwA#dgRO-4cnPYl~@FGG4B3442}$e z=f4EvN#i3?&K z?N<)URq<~wL;I7Wzi$6>xA>d?wX`S;klsT}fG#b{)LnZNaae9Z1&+27WQEVd?0J6JOX;AjPg0y6ZaK6lf482y(K&ZY8HiaP{PUBF zj>TZzoN3fE?uyfa*Opt9<~Z9~{(iE@QjaK%40BW)EYjKu$HEqbf`G}<2#a``G-f-KyW_%>c#Ke&;DLIx<$Itu3KG>jf z2SXmqWlI!5uV5~tFW6SaFy_kUc5C-bTChkD8rBiZ)ZaSk6kzc_6*f ztbsSoX|{@0v6I*t zPM7~Va#q2!=6|RGD5ng0!0O!23Y2@Yj*|$kC%(4w9OLl3U#A^evHn@Il?>Qa`YtAw z#umS>Zf5FQc`^C6$m15V(T|z1*8wA7#Dv6(be;YgsPtDwq)u}jkzSml$UHvW9un14 zt`e)`aoD(5ikY;A+}X4H{EKT69oHx zdiWm!qbucA$+9f095BL|Mgx0TqmctUe);RkfZwdG8$OK67Eb%oM00)_y=C*CEQ7c>7R|vPh7d8j}VG12<*w{ zi8BVUXfIayuzsoh$~NBVI-qvg!HXUnE(MICNtd z!f&MUMW^h5P4h5DA1w80+yCp39Z#xBfWTJi^HlJ6W7`UzinAJp_#iNmQenBT-y__9 zT!?W|hT9Gm-B9~IxrbTU3jTdq>vc4>1vxhq^s?BE+m`t!Eze=}0`Zkfld&!4+BDZ7 z2omLV)zAmnt$V7y&qS61`)%;Roybw)F*pH3UU`+w0%;8lXA(%L+jK29N1}r>*EsLM0bnHyQFUI#01rYi z=1^0Pm~A>%M{QoCL=pt3$|QA|_7OdF!|1#juAgoBx^*0kelhRVX3F)&9KO~r@1SZ& z@Cf=%$5CMr4ngWquZw28=zpZ*nqCf`s@txET9y1k+DgxQgm2$lZTsRXo&{^pPT>0; zf9g)`NWQt(-drSPl&gotiOy*CFD?Tndjvukx6}u-6EFBl-^-!TZD2lT|I%pMv-7`` zNg+*bp$EWulBjnn*{Y2b#TbSsa@?Mm@I_O%-*;PhMUm`FN!_wgmC4q?viDI2SAU3L zS4lfD4tlE0=-e3lyz#H^NbBwanjCWaed(7Sq=fHv*4@GOivoHde#>w8j0kRj0M0i@ zm_tJ)p(!hZQmhWFBlRXTRTy&kB`=xBk`;cU#kShPi*N8kgHZk7DyQ||A)lE%E}yOp z0fJZTW61Gr<$WhrGUnY# zu79!I*s5-)T~{l|f#9WQ)~CPeg3fB+jqS;4kK~n%2i)63Yf+cQ^MfN@PnDNq^U5Iz+FSf)aOljbQH<%MSBhiB$@k)XPj#mzgln)u$8lHF6@|pYJCJbI2!88G@{i#S*;tE9861h-l4V zzDn}6zSWe1PI+uU_9y)dMZ2_!*&sBcfCX)z<$I~fCPT=QZ4ikHiIk-&@XcgwE%toI zWi}+-h1w%e+t{I6kW352l>|xGd>K*cUcs#Q|<(*rRqe}ylLs2}dpx{OKM53<#rhxL<8 zZfO@_3|$gp=ysA)_}dPCcFJ^TzS2rAUq)<-C){?&OG=+6QLcIrHe9G5bbiov$Kxv)Qd&JKti4*PfO{fS^@;hl94Pk0A1|VU*by9O`Y>9P zTC!DB=FA>pk9&rwQ}qbD5pgxPHkN}o=ME7mXP6g`$#h~E0pcoF5KqSsx%F*o zH0Ev@8n*fu$|Y4GEL+jGQT;UoGvwKirO|OsZwdQ_nJ+UXo#TwTp3!W!RMB{DCUkrC z$BjEgEyuNH)*d`*zB%Nl9S*h1VX$*TXpc2JRrmMC)y(5xtv`x60tQ?7SK~s50_k2X^y|zua z%fk1|g*ZS6TtZ4|{&_q#&DKNNN8rQm>O-19BSAtNkm?=p{M2R$P1FzdjQV3UeD>Si zCl6Y|91ewP3ruF^%T@C&=OyzgrfiT_@8|xhl6g<(g9Sm!4ZyF<2iY~0CFOq!Eb5cz zjWVT>R3q_}qu*6V&$^TfC8dvWO^^_dNS>I5JmgB^Eb$q$NQ+zTc0w26t$zBpp5KjMm?FEFb3))2 zB1s1e#}B_B1ZrbiR7~fU;pHdOA;q$9_A^XMP)&W+NbU|)N17PURST#X>KW#}R959> z{C$?CBQeDt(N~wWLNT_ULux(0G8q422o@7zEYpxHC*F$Oo(CHSJCtR*YYv&V*L}C! zCIqaI8_R6MC%l8{$qK<#;7v-wiVWc#x36O18O$>@+$9?!<`pKP7E-z!;w8ZTn6-|@ zEtkfBRYOsB?;vCI>GuoIe3Pw{$FpEXFIZw|;hK(B&ha2~eNsNdubZInZ` zCCuk0INV}6>udow!ydi6zh_}*GNuhmszonhU_S7ipDcDe9XL6Vb>2y7YHl1BlYeKh z<;>Xa)2&aAb{5S&Qm8H2?Q@TRiWyfo;4g2BaAan@tloh4LP%sqiM{TRcX}4 zpL>C-(xQB-Nk`>YHgl_H+l*r0J<@}{cKz%xBc>!K-CfUQJs}bT2%o5l3VtUi;Ey^} z?G2_L_m+MGZ9T%1vf$l>k}aT+zX6dGG+*pyXS(3exToH!7M9rc3YhxsX*#D*hg~?= zx`L$52D@Br)3Jx^?CzWIVb4R$RK~c-#CVeFKOO9q4`XkJNnr6O#@C}eU=n3+kXi63 zOKU~(5$}>QuDlbfM)Q?H~sOFWX91!icjdhWVx66~m}_ZB%ii{?Cy zNMED!Two+hMWR;czDsc@`N#}P8gcbJVG?lYH_WnZFe@APg8*opJ&w2m+Y@={2_V@v z3F~g-B~TV>8M@aJq|Dzy9%n2hEU)7{89UDbY+YxXX~x?CL~>ec zwbh`BfoiW!kg#AaLC&G9^$R2Pig5C?+RN8;UwL&d?M&_ildCl&F$)H&10^hemejsc zTmAMihH!|#l#ZTTs}~RkLT$84H9qJiM%50CgYpYmmQfK+yh`7rR}dhtB5Nd;7$S8h zo~0Nr@Ii3uMYHNg;q7G^?IAjxl)*$KEuXG7)x>Aw7>Rltw!8hG1TZa|_p5 zoFrZ+RmX=n0*gwGZ9eQ+*PBX@XC|kn!tUlCR>W3N-xY>`rJ=R}dvs3V%L*_zVPD|F zu_D_E3oLHAoR1K6uzugs!Qp>1$eJbRbQMbI|7q|CUJ0)xn{L~WP%JEq;nY7chXdxE z&c2{|ULibXQ{Qr-6-~`43;#^EX!@<%c#e=1Vdef}=qbE}kmZDCEyzoWCKViA~V1UR98zxyoMjxPt<71p3( z(_${olv#@Nm5RJhE{_9s5Zk}h7H;1>8=8~<6_`xkftWB=1+!R?A3Dt+68@e=sMJx&S*=gqN7# zvPPLJ+o*32!e-q-4;_N&d1T#S?TVdo<6Z4gRh=R`e%L?~nKE%E*2zTE%N14WGd>80>)6dZp$t^4I@D-S(6L0^G;R_m8^ zkuSM`dDNEAOvbm#oNPkdNcNRK)IW^c&5@(^8VGUvO@bP&q+#eN0cJ+J@%SOTw_Qfw zZ3lWmA=VA+-cn6|8HSNv8$%Vtb)#jrkxQ^OpVJBFU+HrU+c z^T-*vurr=Z9XNQ(q6D#L^xifwa$&bnRPQZbtfj=B(uhk7wVOP${P%<<`ZRT0uDz!( zc>zgk!~CSg_%XW4c53Da>z1oO>I+F-r4q*sWKMl4qC)ugF4CurcBHm1-m1JXobStIzb-BOWdw_$hQfW9wMd!b z-I%G&`P@4%$4U(mF?EHQFNdX;Jm%8eeZ%ML0}FxaP)g`Uv32Q5P{G{r6GTfBBKA^K z-@bukHb(0bBgdXy7bTtOBJ+yaS6(DvOqQFE%BQ{d0r)#My()PCMzwIObH`coHu8 zAtcO0C-M~gAEvd84#1zPdEEB3!)W=;YP|R)RQ7-W=GzxT48L4*H`2?yf21eCM$tTf zU^Ku-%##}6Zi>SMmjLVZ=MJE^js#$na{Z})Zfj4GE^dS>R=(q!qDqH>F&bBcu+!g? zJ|8r}A&z_zN~+M_p2R_2*+B^TduNRD{cT$El-;?}P-5>ELEXW^)zxz?ebp1A*pwbp zozXeBv&%hS%ir!%4l8Jp*eg1DBGTdHx2bnF2PAOM-eCgcIk%ce3V`gq!~j^nLy2OF z<5HDF&X1j^U7lWC8+D3cX)rtB#IyzW0o7voIRQS>Ct0@EA6--|BVKYwW z8Ak6dUasP?XBI@aI!C0;P2Vr;q|><5!?YK@r=DJoyfaHkYY7HS$((;sAHY{KF`*_Hta~%#8K0@MFvo=+sIv9>rkUGkXNKP5nO&8r z)tJJ|A=mk{jvvQ@%r7$Yk?}>q5zBUi`+nq)mepUNY=qEI&oDOU{e>D`L;cssf|kW# zOZcG`dMdYN>;}L2D-Kv%iRG0dqb!Yk6uQ(3?2&up>i&+em@?#f=0~yKVv81hU+)UL zeFLQyid_+|M;ApNQm>WSgaunKq8jjW{HV%9t{4F7u>R3RH;)}W(@89jOre(9e-Fe zYp5|gH6q$XS34d8DN>27c330RR#;y_*OBAyB~uF}uY6Jc3@#~4*vOXq)^~xnk3JB) z6Isa(M>D`UrGQNR%a_#fT3W!52VG^^`(%a62%2blxwi2P4pIH-?hGlQoEtYl-8<69D%S)auX%kdVeZ~`e@>P%(c_&Unk}@ zwk3SCM)ETE#Zwsvt znrq~pj@$e*8*0tBGrjG5GP*2qFqV{!JsOt9k{H%f55jywndNi=~iO^o2tbW30mNGA|av6B_ zy&l-2qOY)4bR2y5^p@Z^XT-0$SdT@r0GC`Id#cT@H$x>H@Ua}=*Vu7A2_l@r)F-sg z8RHxY8CQtYPJzUFW{T(MySmTB9#N=Ft<^eaSulw0kF0-}RD(SE>$<8&=F!wk85dx?-<%7U*32SO;r3TYA_t^D@N^EN$`N zB}E*P%vA8FTngDJ>tL!#eJP$^nrLe>%{qy%w*U{48GObPRb(0%BUoc3u+Z9^Jdg_4 zeYDusMN5G+9oJYKd;TpycD=&!qhYS*&<&RWI8_Bk;-obgq4tNL9B!pKSky@k4T?k| zz|RTKbq27_EceV0`jj(E%%x{sKcAJ#c$oPsVUV`O*?{m6a9D9n6~Lq5s7uk+y*ZJ7 zZ61>eoRgAZ&vO|{8IC$L#?M`wgy@~<^HrVf{xLOE$L1Jc6p%G!u0b2Q_T-LneL!f+ z&ti*Cg+1+Hf_TD$XHp8`1h1I}#EBZC-TL@Zrbpd)*~eRJ{LU?Jj6 zMdU=rG?_A0k~t zC9!8Sl+u1D?Twv|%bK&tjE-e~b(73O562h>8l)&i&XNAn3i9lILZ z4@0DcM(?Y&I8UR&+ePRhr6kdIqoP;J26#zSa+P5bYwom=%!awNDcvl!y*}lPv9G_m z=8{hayqT*N!CZwpff0$lw{Y5r2G~hhFaa|20pK`S+Wj!3+!jr44;pB!VODTe>*}Bn zqf#5Eb0*)gFtqGJX_q1YNerR_>HNeoqQPp1Qd*3rd8)^)upf~xb8?=ph?6;Ov0PL@ zu{KoO=|U|gU`!BP=#)h*PqGbQ z(n@><2#_qmkKV(dcGvZ%_tyQ+26KG}LU~=u&`VrECHcZ?OeEw;cVMu!iVRswD=Nw1 zs~vETx_ELG6A?WFctoLk_QWF*&~zfeBWk(quVm2dNZF7W$#6OBBz2zwuLy0js&Y(H ztd{r*R_4`!4zr382ADU5kZL*2SL}MMk|m`7635Usp-V8x%~M@u1&ujSrm=_VnH{&7 z543NbRqrkC#rV7NPy_vicH`E!BvB|M^aKQA$$-nvyb2m)m3Uuc3-L77nd^d9YReIi zB7vtafAeXZIjg|ZrG^};r%eLNbK}J3fxwiupZae^Niv~3Iv={i1LSEssPL(UswYSx zFB)qPu;pU5?IO6~cZ6yZo&^UJC_0HPA2Sh#;hGB{xF$S}O^D}M7c#JISINx&O z28Vi;*{%!|pMmLFq^4W%~cy+LS=EgnDl z0slQ9I-&z>nQhtj8%qmxJi5-c-&$%)U;8AC&TuK{xHc7~%hF*Bj7o6Tg4Db1Dfl6h zuaT;ZWWZW5h-qtPoxnho1BorPYT&we;iO!k$Az%OGTO8)qMT+c76h-XmND^FCfA84 zCB)%iPQsv6$Viga*{Z`}CHrbHWm$vB*uy}%#i0Lr!N#=U8mtX%I-shVEgxl|wqTOu zb0pjzpGk01_#7vpOqS%|(^)mdw&j-mrMEMcy<#T2G=FTpBlD*#tr8_nWsr=trsLXV zju}J%?J%<>ROV_6%&9f8BoZ+`gm8+RZk?KV8)Knq-)s_+$TgRp1^ZO&-P~_Dr(cx*Np)+f+8Jy_?cYU} znOFKx2TwOFgv+9cjY`dA^4gE^qz>l`rv_;9UDIAW)nUuk@^iEo7E;i}%2T!obtfY=vF7mt--|=FdTE_}H$Q=(;k8A%cgz#RY{q&9&NQLC!I@uzGJ{iJbnZaJGb75+k3JL+WBVW|TK{ zV^KIfbv>O?)gW`0EeGAL#&@$79WXMbDm7glZh4rCazWZ#=yULP*JpgWDEAi>y}-dq zj{F4(8zXk}Egt8e?yyEsLM&QyIOwg6E{Pe~3B;!})R8_jkZl5}gn*MtJYA;w%7P*D zzU@8EQoy!&IewjUf%=kU8)N~Y&>jLcaF7&Z5b@1JbEWK(kD?r&k0RhwDhulh!~a6= z9dQGDj88fHHa$BKNUcWdX{*(SUL6NnNz})Gr_bZ~iHS5B|0*xGkOHwf1$Lr)I)ee4 z@$`dlY3Ii4kykC_`>Y~Ike9a<42kKQBE@lDVGf1=b$K1WLMo-YMeB@_WDc+Y`}GQ8 z!7Cztcjzt5)$dUzA&flkKJ?>FJ6Djg#%iDbvS}1s&is<22rLb9At?@Cf{&c4MTX2S zK;S{-$VXg$Q5X^gBBmoT1mHof#affAn;0$*k0Xhp2n{WRX~N@TnjBHbKleTQkmZk~ zBHTe)Cqu?Ld*3u$tAtE0CSo1zLHFvsz!GPbbD2UiZ1H;e%I zmT(SXUK;L}r~2CvN0-X4Nus21>CGvMD(O8&CjrGuO_;zMQgBDAi41&4F)L0_AW1ic zvQ`&s9#BXY2)-56`W!Q_zu0Jv5%?gRO{~drJ5#VdDFGgXP14_(CZx(s?<*;)!>j3%c#fEiV zb@V8(h2Kw$gWP~anXov)uO^olb-+~3Xg*v$FIeighpo=bqX)YWVa^9zU(0fZ?S5gZ zL*^L5Ia$LQJ~Z{c`jH&v9*B!J8U0!Fwy@74d|*CAq7bt)m^KFX5=9QyLj)#>LLIlk z2)3C1oRh)yD^URm{q;d9p2n8EyiWFFD5PrL)Mi}aF4-ao&pa4HjN0f zp7sqi@OWXp<#^EX6eGEmg2|q`)FzT)t2rq#8RMU2&YziIar$>1l{^pbf6lDXv|p)I zN^4T=pj^ZZ!k8Ji-*tOjaN8JAIREC)2La? z2XCoZXbC_SUIgKVf0l{SMc>I?j#2S+?0se(q%a zyWnoqE$pCvr7sobnh49^WF9kwr2kLq5|>s@_npOZi9S^p)^DOWG= z;sQq_bfG^cVv`Bb#=EZ69e7h_wg)xBz!5^aF3goVHe+khUa0DoR}J`LRU)?4Iy|Sj zGS9>6J1RjuhL}WGtqD6K`j#ZYq+^j7Ty!PoWmRY`&OnD~L88-*@-iHYxfK@2Skv2$ zeKw@2O2YUXG|V5!9iBX}9w;GzGKndk_^_-nh)k>uCReU&@SngY2oK#G2NOjzDh<{H z4qIlw#nzT)wm?vLBW6bc;qb(rf7q;voSX#KqjK{rK}Z+MbX>wsH#|}{_}q@j^HQ4j zHeP(H7864oE!DE;=$ANSs^tpND7Gn0#gYFViYbHq$2!8ZtPmzmVp*ATVkei=JL(S% z61Wc=@jlt;t|Tspt^I3zjOpIEtb4d*R!C+izAq<^=pN-DDq(ZazBS=)6*Pa91vqKO z*e*n=#iCMdhk1(jNy+iu4DdD2%SumfMSwb~0Cm1QT-7k{2@_;G6yW1cY&R1;po|s0 z*z^;a(Ty{C0Dm3Qg&Da{Yt-=R{18LbkYY}fl}#z^ioOX&En-(-B=)oYOBG!Q1X8PQ zV7#XGIqrxpET^wH?vLE3nE69Sk2r2OZsD~xG|M;uWlMGP(rBf(-aB8^PHNGMO0 zpp{=X`ZsrZHm+{ZAr{)BEhC9>7LKISNZslwLmB$Y)=mFQDf$a8iPk?D(>HSK{4~Ud zrg(AY1X8XXR53jH4D{eJjAK0pN9Gwef;ap@kwoS+)*A1PeQk(6UO%G61~S(__Z#sH z#&^n{SkDPQ&j8c*@V_42J_8PsZ`EWsP1J$lp6Y8*7>~se8NcW0X1Tx_Stydx<$KEE zppfmJzFLxX)NZMlwq=BfZ)~GcY-}_dqje9pT)puTL4wETtkM{tdSj{e3anSA>E&6~ z+!ZKxTD_Y^KS~2AOlH$gPLvu%HYw6LNxJb*YfrPIPXBphFx$wE9T2liF&1mQm4xC?DHX> zL00%R-#7Z=%JK}0>aui88L0yXS36!86 zeWU%nJHOpBoz1^HfbQWJ5G|fqozvpgMo~ww!;f-a@>YC25RzT;?AZYxg;Y?ajy02L z^hH=FN<=n;$q%$!>yU=(7WAgLtl%%3iIuxRcukE)qA$E&E{?`PV_89RXoadoq+qy) zh~l(J{kx`t=1)NZT;q^{O?D`_)+%To012PIAr}UM zt~Fl#u-TRAKulDxmX-17{Yv7W#SJKS%ph|PS#=cdIrbpW%MLW)@SMT))k*nv>!{dW z-m#U7k4zCWOi}^xel`ei#!GjucS0uK6UvI@>GF>0JdC3FG;Ag+b#B=R$${67>^5Tf zOY5gh&lA#L)Te@%H|{_kGs-{)6WimuuFrXJ31t``pJF$8q)JFc6`sG-$F4 zJtjD4)HlhoW9>_hF4%@2ktSQ6=vJlV@Ou!&4c;UTfF5p6DSSH0VSA?6dqsm+I>c{4 z||Jd(#&^vdZ2WRQ>vm{ ziJlEE-QY4$lP{nHeT`_t;E{#QPw$7*P~)Ypy#Z~lDr~U{c9ugcj-ctuUYnBsVn1Kf z^N9wJ%rll<&zC=ZH&Kl35DRIi0>+mEre5md`#ZDsA8-ecRf4 zo#xRU_xmEZaS&1={QfwS_hs;R%3rP9HEg$>aU#iwAxEf$@#a7Ds~3=bl0kre&Rcm0 zb=@j|MRSSpr)HXG$y7byg)ue;(;!f$k(e_VF}DX06;nnjdu z4{Z#difh^1+a+Bd;tp8=3HrbLEiPsjcjc~2Sn8+Tzi|*;bJAX)&)5IB{RWeSSd%yd zQD_n?q??Mm12maZ9!8M7_0|-A$B_?M?>Q3 z9F@>W9PZPh9NY8A545d${E}B`7mRaDx^fp~`8@~D#T(=C%)vLe_PfbwN6~%Ilx!>T zWD_rg!s5B`ssV|aj_JZNPyr{OsVD}$`_A2o_b4nP#FJ~yimp&Z51JOJv6tkYV%=tL ztM!kUrTn>}xcUOpLlWY<(!9KCZ7N?^xKKG>Z9~?u59b= zwRWaUSI%o+nBMk9ZuLxB(oSFRj0!CC*=iFycaLzGM-K-aaU{m6z)tySDbA4 zJzl$jRymavvM&Ko)QGun)!ps6nyQ)T4Ky{xw-!;5iM;9g8FI^$7|Y-xr6sG_T2}Zh z@EtUwVohUn$}-LBYSL1R zmLDfgz*XuZ41x{JCU0KZ?NM7*5|Hw40;<*PR2P;fXpDG1$Z5p#{_DDmOCkM4Rl@R> znBV@|cRfK}+E8iKJC#;JYPexkOSuF`PIZri zXwQ}KcB>s7bF+1!%5{R=P-Ja> z(b?bg=L|ugKP_r}yy;WPu9V4?59MmI?_WABlG+YQ#12_RGOPf6k`Td8wdwioiYE46 zXpvZWO0ry(xrLrtpeMAKel(S=urL%C7hDe&4K_VbwW`5+5hNd*mK)-kaVa(xz4+J| z6?&6f$Z`@^+>Fm$JPle}3*Gv<gMD%7@U0Mma{pGdL4VU0@4#J631=CN%ePX-;DLoM5k=H0NkNKI!^eku!6Vs zdL{<~Fcyoow_jZG+42Qnoy~Ju!MwW$aKBa?26P7qZ_QX8J{N8EFc}TRpFGkSTB`wF z;7>?&w9AtFtxA5CM0^fK=CbEk{Nbws8Ywf{JQRR=IH4rF!hFOJC#|9=*>9-KGEuKY zb40IY-z;(GBTx!$L^c!^{$#q`iPRYw z)Ma5#JL+(*y{ck}1QaDoEQ7XP%LA+JR{dtvdn5AAdYOrx_x?GI&Cww()$8mNN7p^p zuIQ~SciTFI1n*>fB~1S$oA~J7FRY-E^k5UvJUzX^oj=`U-0LBx^C=X&XLLk4{z}ku zC+*1$Jz0GY@MLG@b^FhObGiRscU>+`{UNv=_$Bo@e#ei&?8Mzmt*9O3EzDNF*S^-_m^HW9WjT#L))ZcBq|agSnrv%6{uNW8#h&S7+3k2xke})H@ub&|jA@BN zSO2!f=MtLYug6*+PZQg{$25CAW;0!^napehQpGDEccGO`bVgs}Aee+&`X>&xGtQ!s zc=e_%yfiJ9x3}t+-Y9tNlsB1lf!6X6(VbT8qJ}>OtoVA=8bAZyRknSKg}?0&cZV{? z{k=5fT0JhP%kL5A%k`6Tw@|GW7L_8VE%y2sFUVKC<8IXTHpQ7t#M;CLjQZQmd9osD z6aJb#4_0-l9qq~ZA&=q|>$X2Qm8UBYBhR+Kem&bTyGoVjy#CEbi`nL(Chrtzn)NSa zxM^r3coG+U&Pt$9sZ^^i@QMr++-0>@P)r+YYGDn%SkRugcTjTG;6R-h-K8=SHYB<3c8{lw8I*i_imZh?wgQ5>@us4#IKHjK4q5RB;hW7j- zZv}j9hj7~&Se1R$0BkALI_7wXESyTDP-&bCqCME{zyba2Ol62mK=1X=;J2^wZQWYn zwJ`xiC`XO4OLmFfs3%3W;JmSgy)7gpA}n^rW%9j$^T{&l8iicmII*fPPO4r)-SsAy zN_?gCds=yScJV3^`JR)c(h#sJg0>J1R5aGY*xnHHsk3S2_ z8L2o)IXs5YFK`1?xJWh>$1ftj;2>NpFu&x1MGNZ!3W-xAUrDquGBCSM1^t~f$Av02 z%Y2WN`Df7^u>UT44T>Om+n-^J{?$Y50TwKG(p=#?)65^A^R2(cJ&AI(~``veDm|`V`2Ze6#P&zw5!Y+slC3h^q~1SnyjOTta%m1rnVz5u@|p+ z;hL}Pq4#A3P1!dQ0e72bU`P>VJt&8me>UUI^F2lWI;5m>HF{Iq{Gah zQ~O%Lz0x+RoQ4+Fy96xJ0s1tj4`8z;gqS*V3s@E+XWE+Pp&L;_%H$~95pe0RwALoP zfaHEiJy4xfk~|W(>b&laD9F!qCS9bJt_flb96dYuiD>x;#%39z5%$HM)1*+eAOII> z!b7Ld@Aa>|0AUkcHsh>N?!5Y#`;||9I6XIW1ZJdD_CSO00Hwf}t4PW7+wW_sx%U7c z1_4FQ%wN_tg49M)X-6{cM}*-Tpfklh>VBr?4LH_@sZgj%T5Z4JCieHK%E~i*qgR%W zePaZ)ayz{INS51!1UQz?93ZjceU07~!v1okM&dxjg>Do9QoLv=h)0f&w}@LF&^%Li zh*A}|>remf+=DmS{pf&uX@XYn`ynqAXyA7S1ks(y8%||kFa07VEAr*4VN}Mhp-T_$ zgqf3GFQSY-F?I{gM@d?Fp}8D7a6)C=UfB|y1UEGCCam^kBTC{Ds3c4?LAh|Iqg&C; z>nG}V+}t35XXx6le7Z9+9$J&d7dUE!QJDHq%#C^59IW7YNQHT=3-vQ)boa>ZKjH^b zEDWc=$asmEo_!gLdC=lR8*#-D|8+`!=8%FHn>c6c)ZI~mCY<=bZ33^}?V**O#rBPH zWwPHf3jSwXwe0n<_CpJtp}g^TNqE82*O&r$Y25F>qP{M9xpeGL#of|&0hnS>Swdzy z8kyKv7E&r|jrh*Gxyl}AyDXhu{)%~Ux~N@a^MVE6@@XHgoR|>~H9Ek|z0nxX9LBE) z7Tg(!cU#{480hurG~C_55dIa_1mFG~=l5080{-zIllGuRFS=URD$TQVnV-Ij<++uK z@2{wC8DlB=vV>66_P$+|lTkW_QMa#^#X4EA486S7SN974DPDqJO&mCGf+H$?(UB%&t3X)!}2@F`5_mP+;Cz(zXj&+Jn6#jsVruRXf#JFMB&V}t2G z{XJ9NyM@N&pyTXCQe;!-!La`vD)W1A&D!aMz;&gY!K;;to@$q;fPu|!XcKI_afrSV z(Hz8g^5fTdi>hxRZgqTk*57wGpni89iDO|?jwmeh%62#qZpB}S8SwuFBB#Qvkj@YD zZP8q%`u8@D7{HmjAlSJ4d!|PIxHByA0Z0N1ffLb-mwfybhtp5K+Jpi*2M0Nnu;k_O zk~0t(h{EIJI;Ns!qJB1?xh+Hk*@+XWVa!)Jcv4=;Qb}4V!>2r-H$SYaQO>M9^V5Ix z-b;$rfV3c`4}HNGfJZN>pd?$LPvUN-N>{_s-R2Eqd6Z6S4OcPpa}X z1Jp^;*Dyl$=MGd?jkj?&Phs9zo(F#sY4{5?BF%@Ru6vw%dEEH}`GRqzy>B7wbnHhP z7*qmB8!rg#1O6s!HvT+Vm}S<8&)T1pIXH%Yeme10HG5`8N;QSIEpRX4;}==%s}`LpUKQ5g3| zpFXg=IFCZ8mA7YmxSROOsL&=#AXKn4`+yTs7sC3i%GRkus*)ixc7x{8XIN@KQD~_Q zIxu4;#m?xIk^hq_DU~rFbQfP0CkY%y4Gsx|=}w1Y7-;>7ek%{OWdb;Lpr$4nx3J(Z z|6uvOD+~;btE-Zic!3xgchk^ddJ9feN1=1lwTp|%>9$*npN$tL@pSk1jW&Gkrg-XX zcG;(USkzhXB0QwX1=wVyH2833Bbq4S7%D1EH-<Js|}x7U4H>2q4EvtTt7|KJ`QDE2y+CA z-(mHmd-?zg9dumeM+m#GqyTpHh_3J2;HSLoY|F;N0j7hkUrXjVg={;AGcIXEIr5Qh zi&QN;xH(sOY5ew@B`E&=jDzM2aE9e2RshpJ@T~QAWjqCr8%yi_^ja)S$Q!@%mtc9U z<;(%$b_K|YydGTzoOXWTR9&r&Omzia<{a^E&{`YWYp;UGbU6ygxP+}PBee!zGV=zV z`&9Ytf?8Pp)#X_q&_AG@(nWI314V{jpeI9X(R%M&n_@rCu@POf1Dc*fx)XoYxS5@RT#x$lqWSh*bGz}4Wn}y6Kt6g4k76-I5N)(z z4UHGfu1=FR^cFyFk2g4&l zokF5AmI7z*4tf{i|L!6U#c_|>rR7Hi7j|)U!%eU4Ie5C~xIrFBDa9LdttT~5aJss8 zeY%G^ae21w!c(_^m2-X2fQw7FxSXaI&ht*5(f6}ceV+r>PtZ=;Z|vSDK#D-CP${QB zepp$O$91kzRzTl%TU{IzHxwG-)pIam=F+mC`=CCpJLm*ROz|@XpFjV;*m8#CL&t^I zbX@qq6+*sN4>ihSFdUfQz{GjPu>-zGeW8w`z#T>)i%Va084G~&5LVtM}(H%IdA+IxKnsCDpLiRd$ z{NlGfRE1m^FZ3JMsq+{K+0kO=n`1zmbVvp8@p$2ppLbuXz)BOUKPJFZMd-K{oA^mh zMHpo6k8N80wM}L#ET+Kycp5Pu*U5LYB}PIhbWGd(yBL84pjS{|t7v6!xu;#N9Ap?i zSiKSMH^%;!>Z6urY9tL~CB%eP*J^HY#fpYQfl$(KW;$*aJe@ z%>dZ$(I^oFl`9Bn&6kuLz%OZpPM8J5js4bh7@@NSB#>2Pl7Q#1y7ofJ%=Qzn-I}FbHC{#3~iG zs~AGv$Of^c1BuszJx$PF5hb-I!fjOZg_u#Pc?B4RBNA-!52OIYRnzk&xifLJ(2`ug z9ut>e-RWW^)AY6X)w}B3?2;!@C#a8C^d}szgWtH8he5(gm_wXNYU7DRA?@UoU+fcv zFZM^aBDKiMfwvi~G3JztA*())HcY1wJL|j-L>-ppmU7^l^X~4ZK#Obzpq(2#|W49K??xYf!9F&85-LPJc?_)6oMxEmD@#^&gUvo0ryU= zrN~<%A`VcDExf@~Z~=(LXgOG;fcJ%G%Fml@H=$II4Q6Vb99k~6Tq3n_IqSylO8d)6 z4xq!>Shc*DQ)A{dp)YSkFyOpM){j`Bc=s0G1WGKu=KEG*gTM-yF!9zo=`}m)*6Rg* z$qXk_t4MyQX?{MJIWg~q8@d8P4HD6Y9;1~@l%6sZanr>V7b(V#UL{*BSD=$O)ut!u z14x=yD^{jUAB+<_SF3B0a0p?FU)RQSz^#ht2FX@i|0x(73N)Kl{Ukfc$os@Kc8~DI z!F=jVtwhazX0^8Rl~l7zYlVA}K1aKrdY8Ww)EwUyn~&-3?<}Bi4j_V8w!P(QBo;LV zcFZaK$~BUOh_GoaM?u_%kOFt8#Hdyfguju2t)EUWeo=ibCl)4T$d6Wx=e$u|acQ0PrkQZ(*;4IY&i2T9B@E!GYr ze@|G@oq`_kX`9RQ6P-@tLfj`MoX}9W##?yYn!6&LFi)lO(g|~e?Q0utHRdKI(#T3f zpG1x)QN5!j8do#r7U5fmG%h;N%Zw0}?>5$?@NvN*P*~qjciUcF?_B^dX!?Yh$PWUBj`G8_g{Wk9 zf(pujHi{r^-Xf(C$3*qn;g$m>k1@6V&>`*|QrP-9V>_S=ZjCMob1qe~iazE-+(rRe zz0s+?`49BgGkGd>;GVTa0gk%doVOkiP~{QD`2nXi)9nciP~DUWJe~Asnost`A^A~@ zf$7n*%~UO)B}D{N%E1!xJa9L1#=A*R?G<<(V^lF`JWX1bpnbFumFkcjf~2hY=f@zLiO!3=`Vd9ub8NZn29ntPtzjK*>k-_-K9tECUzADUA>?PBzI z{A_dpWE6TcyyxtRbsUNrUvNrUHVM6D4C(Y=s+&jynalT)SfGN*dvSK;?TzAT^u+g4 z54sM=uHC46CwRASLB0F2Z6En3Q!VGA@LRY;CpS}EWDw#^nET0S~~f; z;76sl8X^qhM6lMVICTKO8XvctGiJ_a-2i3^oRr?}C)^qrxI1bc#&$z#_o0-tYHodg0+>{fcjJ zIM2ph9Wis^X1PYMrYZS~QYtvFHSu(e?j6kQ>niHp-YT<=nQsuqOaWQe+xF8rAGe+_qq#SCP-o_rxS>vyf@WyLJb9(dp zEYLA^A{E1qi3qV0hly3seeC^sdB%IE;f)d-KdMP#DwwemV=4NzaPI6RNC!>()1fR?v!K# z?ro*AhbLyVXfV2AVM8j1jK4vFkBFh&AA}B)z*Y~I`gKSlSue5L>Yg3B;@b7433&_2 zCXGdCcGa8QtCpFza*K5C87%y4%(>ez87q7$FS)72ji4=bhLPiROF^dcB8izymvcB5 zv=)-J1L{emab0MCWkUom12v!ZmNrOlEPgT?z0fB<{v{h)6J}O>XKMqQ<2)!;mgVDG z{BUu1a{(bzx=moF5wi;dO>$p{!7QmmcX>e(u9iEoesA*!5=K>wBe`b0nyL*#k3pch zp5Bbeejt_G(Bg3JS0HQEF(wL$*o5a6Rxn{5utG3QB$37xm^e`8a<}Df&d?OH-ylfM zS(pltRDO@Cr;vOT9e|^sO9izD4ARC(9d8_fm zIsB-)xMCQwS0YA2ID9l8e09v@Wuj2d?^0=WS0&ZD!D|cQTv%EB#9FGTqSEe~_>06o zGfbbRHTNQ(mTY5c=zGtYM^H3R37O|=VA3M+(JKI^e9xd!z%<}wZ+Wr)%R)Z}sc*Z% zZfvkFF$V6p+$18Nx>j5HiOWGhpSmykeOSr^_E5Y3Gz-a8G|fpIjJ zRL(ZY5_qcu+KBh99uQ!(dJ){geUkcxJ$L4#17d14ogg^wr>8^Ut1jEI`Ph?)`nJpa81d-DnMuq_#y3Ms3pJIcm&ie+H z-|v3b;F9%hV86Dy1h#|Zsp4Sn91r5)oi>!L>4c0Eah_}aL$xrn5iWFTKvSHrnt?#- zme^Fwb@4?|DHgBLT@_y=^eca>9UzXepHaHdJm}rHZJ7H7M-o&Ib(GOn714YzO@^hJ zC8@7z6=HzR4NUq9ZPLNSFibExjs-AA#dB`MFHgn7AJi*}eTXBgZQ37JI;1}WY(~qM zDO|(1L#+GnwY@2osv$*KA1gLy#j{woG#dD}j$QlwF$2 zBg$wG91sfBt!N!j-f>)L4P7}$4S1_D@NhXCqorS6#r4&b-95!0Xz#6MvA+>B|;SKe@6?XRAJq8R0Pz7b;KkEVj#vP8p;1&0Kt6q@=bSXXaL zXwHXKQ{bp8)({rX^t9Xf3{=+S4{d-|kZ|a<9=$Cq4HF7<>F7F1ax2l4jClZgU~}$1 zd@{CWh`QIfTx51psG(W$`B&PN0j5K(GrTFX?q|;|Lv$?LL`#bU@I8G2KnT%8O~=N7 zpi=^1#2<%-wW8>@72u>3Q{ z@>|N=*_4hpzB)rbl9jSXgqI*HfD#7m56REHFza^SQc7RWoTF-@NWC&xN;o^%Sk3&# zL)D{dvK;c_hQiXvu?B_!@4NJ=byE}74TB`~X0=`!#_->u`S04cXMmQqeV3(4cHo5O zBSDj*LE{mJiPGv3oBH=d9wxiJ%gD3t^ith(&{;AHPp>on!LiFc2hOz!m~E++sp=aH ztZKHb=WgA!8%dTZ$*&-MksHaWTVBhF69nn&+BE*{!XQ^fXKV$V1=31KUt78iG%!&oJm%r$GYXs#|s!sX?%vOZvGR`n)5n< z{c=}8<727VS`Ew1LraPpxY=z+4y#kBQo{x(N=&A{0ijnfBiwq>u@GFT(EmmR!IAUb zq~*5gw82t`O{#Xlgj?g_hRb)*l4gaDa@?J9g4r1Z_chXTXT)9RTLRnbs}4x?meR(m z&p}gFwbnCx!ZPU+B(naCu_BkxIrTX3;Lf=CSsUZYRjeTpZi3^6pY>6#0m%l{(Dy^5 z%+A69>c4*Ui?eDoE@+<>1rXC@Ezm=>?3Xxm^wvuv1uORs_g&bu<-AtQZyn_M0QydP zEMFB?z8$#jFUX9FJt!$L?*UJWS?;n~A^LtC9dYM(MCYuZ9gb?L#X9l`RwuhC?}cDu zzitpM;>a31(B{8L^t;oM@O-_w#%YGOufiDCn=U*e1|U(q$?VBTfYPE|r)6Swwn5Gc zJ|WZ|p0|BEJ<(!2{}n`Wj&bZII5cBp4P~uU|s?CXX8rPzv0#t-(Lm++adC6Cbw=BoP|n zn{-zJfWS-5X6_Lq`aY>atVp(AA>l5P$IEvlPh|xtaK<@4;17K7weRVm*Xjp)Sf@}N zKDs0&WY)q*2Ory_JtwvtxK3(MoP5f$D6EYKF*^%B{P~yfKvAl|7)xHEjzw zi()<;4pjC&n0Uj-kfI(lVsoi0ifrq1YoAJO!_*7<9&R4KI1k6b@?-(`9eZ&)Ik@k% zS|^rON;;qdJi7Z6ehpVuA1``g0x!^MN5{C3PSK){Np7&3?s}{}F3kr?G{SDy z)@i!41+dZV0$nIYwQ7z1NGDHGqt_0}p!4Km+={+4NG5{1xDGu20Dc6Dx6>E1i`*@( z>h-K%Kr?nH-49YQz60d+`kY4|y95TA?cxqbV9gvi{b&;o7g?J|D15#HMe5s_%@L_E z}n z$3*)`=B(Bu0AQmx;}d-x4iIBC8_&fOYHp6FcMx8OGjnIAcPH~IaTn~C4##(&yU5NL z5VnT*4onA3*(85hdL!D8Bz1w$0cRN7z}hI=)?}!oL$1&HTzB}`&Wy@Ab~Q<_iR1A& z_2O|mW-Zs@J2s`)?;HwXqSd0fDSL*XZg^X)r1N#r*rXnRO#rAN=*&$6H}JYax2Wzc z-Srzmjg9flQgHH@zCexzuW;g*H|?2f?;F<*!gRzroQu56WA#7`l?iTzLnMKKGzMl| zh@p8ROiq$T;HEl(RiPF?qhXXKsQxj`=oq!3K(d4J?s`Fg{UjB5^c{kKqm4Pj&eaAw zAnoNzcjq+BZYy6n^gX1P!Hk~xTVjf$Fk=|13AF8$x4Tu4SaTXo%jfH;228$Rym^fu#B zN~0|NH$_OJEV0h}j2S%jk-3*2cn#_?O3Z?tDeH?~pNuIRbM=CF_2#;Lp043b%J@MQ`5u+lgHj3-Kyn*f>k{h{qm*OCC_<2iY z^ltH%^RK$ks0s$KRUj*r5qk#VMsL-t5JPtXK{YGp1MIC=tZ!a5nVE6X))qWZKoFKO zA$RNR39>de`d#7o2{`n%h3wg2dla5gy2+aWH%`_{9xq_id7K%_3gih%5J{b`mj4S0uojD%Oo{CFifuxw*iM&7pOS}5(D%ASBur+l zr4H+2Qim>$Rj9c1eGFDpc~4(W3?bm)EB&)Vd{P8h zJ4CcZ5v1Q^^WGP1XEO~W3=Lr<5USzDX181FB>6mDXt08rRH?sVq0cL>IV%%d9%e57 zc;t&8A&IEhCiOh`a}#lC^1)_Mq(`UbYR-IsTaLx@s(uV^-npo*yUm|U#}M7cy7o55 zx`Cr`eXB1HhKcWuFpGdsA*u?~wxI$)-?()bnW?w*c5Jw4;EtN7o#guGgl`4evw?v< zev?PwjRn*GS#y}^G}o!>m<)!QMswn4WfXrAU2~@ZRZsmV=RFa*`FKO!n3__J9~=^w z20vH$x82o81G?mZbvHa29mu3PO)Ja z7q28hcl;)?!^ICGLQD_lHXw=5{PzCBo8WQpbs+5Co*`gsvQ)D4bLJa^J}?(QG)U76 z;sI-luT6m;B!;_f?F+r7!cKW-N+XaUE4;DupAoX^bHg7_DEbLn{~&3sS|QbQWw5@Z zH-HHMv$Ybq6aWWmnmGgmE55*CwEAI>RvHNe6|9d&ai>^FKu*3+NN)V3dfu4gP%Q-h$Uw&*|u0oWU92Dq(s|oNi5X(6}v!GB0}e+H)XN zysya@Kt>=Ypwot}Z?OQVU#}!_kA+bUsxJN=p+L$wJIhbGP{ktjh4Y{WnCOtdpH^B`9 z0Z;gd8@Pb=8JT6Uoas2fP?CUzKB}#)?Lz=c3eP}q%>8Zu>S~R)=O8IZl=%juftlEa z1w9pTk7M5g33zj%#5e$APAK$2^^$>@As`GeEv7s+Cm-sU>=_yu*pqwc~jSLv{KT{CKCxIllo2>AG1>wN~fV9zT3kt&e#1p?R?6nVk zcJE{bQQom&z5e;W3ff{gyPl(`&rKMx_mh1E=^9R;lp%OHY%13-N$>UH4!o{5`Eju!^y>laNAhAdvLC+Z&#U0fr4XCL zLbo4*4C)z<&MG=uNAE8>g9(zE2(LX0V7PHuySoD*86_BwcY{!}8x)5uLCcoQ>A{Ab z+#7ltXR`{+h^a63T6LyrM4-aOca71&8Iv$O63OsJ~@&Xm!H8D~e^E=Ac5xL58QdE@pJ z&4^%h1rEq>xqDmC{JTp(N`T2YyD(75V}!os*Z~E0I^2;7r_{XgN?=HHblUqGAa=9S>{P$_l{~M-c4gs$d-9Y>1|1r{U zO<>c>wXuq<|NHaLXg^f*ctYlX4MOrG7px193*GzwyYBz|{8L~%B2LdsBmdXn%x{&@ zeq&CMGxk3|uK~kM|1u{2pECsZn+#U0zR5|O_CG#%0>gaisAv42GY1~yzY9Nz{_AS~|E{L>3bV8J4u5IqpuT<(Tu?mJTZ-BQuAo43&kHLJsRj zDnllRoZ4L^EvK9h@m_Vm@B2K@{XFlx&u82J+OGYt>;L=ye&65s``B2qe7g=M&5sP1*!L z)Q_-mi#Qd6kBI&~%nuawdqikpNJJpvjAE2uSU4dh70?_Ln)e-=3Ux5iqQWOT(c$J*~uC{R>vE zcb!nFFC{yrtMLy{zj<@E+Qre*t8+%n{*9f^@4ndwauu$h(3yE>jksorI{!%s9#o=k zflc0hQ}FGkW%EY6!9%L;hneuHqbtkP3$f0HcV}a}3|8XlO^MCMld)alyWzPsthT)K zEQrl!CKd3p*+Og#i_K*H(@Df>rRm9-aAX(rSpNkcKocsJE!Qd5py>+ZHUdANuiG*39 z^_j&lJx177WWH+#=E0Kc99ZnIp6{JL%Tx2-8_ThYQOxje6RM<|OXy;c zmFvjodR~R^^0)T|iOcVu6_Pvibk(udm#!)#>G!THY5RA{<)~wi2LuFErhh`>TtFp0 zuM*e%hRz`_lDU~y`=%}o%Ldop5rFp$cW;w4;fJWd&hE)6>%+;~$H?3E#7d&JH~xBz!$p^s$8M{YH*Ao4g%=sFn*UwJ&@# zRaVrszQlWO@|kWDpKF?YG)vXt^B=;RXS?YpiBA5y1VQU{={Y0r7P(f(D_SsASW6&g z_v#t+X49Ve-1n@fi#tAL$e^zH7bWHlhcp)|+vd!*C~V!tWU0)re#$__ z%;8)ry*q0LygQ)c#y1a+@hY3?gx=Ce=lgz3`oZ%FfA2?~9|`YvHvTLhJ@TUJ_m-IX zHYsd#l1Xow!)#>XvFSswMDdu?h0BaAk^*QF+zqiM4U^V%ueY-Wa#iUu7lkz&ZvNSF z6&l)OA@%E$(KDVZCvrpGAfTAPwP&&5;Xkuk#BqY_4du_kmL^6=5=S#&rrX+e+t#? z8XeXwha?=GgK=Gz%bP*QyW!0@$YMBnXeJ{ww%r%s)=QI)^ZoMn4oGCL4mkxT4yiiV zgXl8ksne6UV)w;;xpTD6!!W})N_7CKNZ1_;4YkAeyk^yRNx|oZsuc9^r~0aAzf-v% z)RChRdnLd{U*p5(#D;BgzHY#ta+il^R%S-O4b`N=6cTP?ALApRcgy$}%x_5rSy@^2 z6-PY{`Or1rt{~1DjsD;j+0a4Ngi%hK`@T&3{oTEjk{Jf^%YiOTH!y3V+jKig;dsbI zqQMtSZWnpbGfJXm2QL2o(_vDJI|TkHdpr#O@ZrPEQw8|`_VXq}1ORf+q_v5Jj}k>7 z?i;nrpE=pEJQN_gLNf?g37_op`}*#Fn!HiYDSLy<;>oKmv=0liA65l~_o#DA^MgM& zEIcs!(3UE-(59J`dH+<|;lM$y91V~DY3<7TufJ8)eiTx1ptHwcXQ?fFowkLqB~;q1 z>sQI;?tyP8YY1#5qCJ0`QXr}-eN4^?Y?jECfCs3_Kd!0K-E@?B{MC6cVu)&P<&!XP z0n9Q|?)%Q%$_l1rnT7+x#ipC&m)KI5v1I`!5litmpBzEdH{4O|&SA;j=8rK6;!gt! zVAdtL3ZzrE5M!{kP(y*QF&=*vTN}DxvtbSrzcStT(o>@m`oM5JK6((KUA`Sd|{)DaZr)LyFR2QB3M% zNyfIF!PmgybaX{}`uO*x&e9uXa+_bJE2z!>1s-Y*B<%3hpoIudBxlW-R9ag4V0mHW z7`|WiT*u>d##4wt+^@qJaAPyoUv(;0-r?ml#q^?Zd_8>N=krOE@ z-~i+gADoAKQUqF#Z6JU`l`9V9n4ts7t+vAD;S@Uom8FU97W6|NDA6aiO6GIqoh-G_STBJNx+8}0BQkNH@UM1 zQ~_ynpadQP`=pY6tm~y~W%R`c!NxWeMK)96Kx2wbg4BXpj>j%CS%XEBd@}=`>EJbX zvejjMQuI)2TB=~wV@UWeEnw)N9E3OdetG~(^?=~<{GX9O!)yPK;f(Z=4w{kkL(_2E zzct>!qofWn#*{ZE1T(aM$`9k3lbz_|^qetD*_WlWzuS$?{uUbhj4v4MjySVhOR5&b z5yAKpZ?OA*_>`5hymH@b*aROEQ5lLc-1nnwk4ugEI8>NCmZJ5m@ zLMXx1C$i^YV~~Addx8GQUF3y(&4UsAa)1#@MkUS#i-q`LsS4dU49daZdLNhSI6R4S>%JgD?xkS;z{+ z0lW~N*2eUC74J@P@CfRAqalcH-NR)Ezj1|TeUD2CzMQm2bo0|CM)_V z|0hb1AJl$|!(I40N{5xfn6hzsGL6>f-JkyFu(Bxsj6jYRdaZbWr#furQcZ*3dEf@r zxxy?3Xn^v=n~P<2mUukAu46=XCtQ{k0#3I3UO*g1*4WnHE1y;ty%kZ$u%krT#MyI- zO8hh^$DOQRSKrgLfAzDBA`GlKr@2C0W9~`rCOO81(+u6>cfFwd;q{T@8eoWvkKDdN*b-wka8{euE6C z&7k1mF6jyy%`a0|@Eb*^5s(EkEPC+M*%5nIA!0W6!uq^2|pYP190+L# zY7+Sd9kbudf3qT9{8#B8<7g*b=<5Npv-0$UF^OhoTi+dlLAPe81^!=yGQ_0{%D+X;I|J`!}^=gt4Y7{cJ_Q=m>)IW z120z=g$hi_=Fw;q8oW=+&3q%`n~GkM##O&n-UhV%5g@wTu3Qm{>~li}t#D88V>B8z z=&T)N192vKQW%r6hHFwlp#mJSMpu%Rrrf#aQ;#n zk_Kzm`tw%orSaGn0C`q*x>%g}>W8T_csvx{Uzg%tl6sU#*1yxObQtwG?>>I!w!Iyz z2-?1!s1Gc`7OM#hQuA1n#{`gg>qn7~n+B+b<1?YNdAt&BzeYKo#_@@hNR5>9bPF6F z|HH9g^Lw+}+M43r-Z`n!X+^?;P@~WzuS<$uiQ9YN+o~Gd>T@PI6=b#y^YF8~~JSjz%R0Jtgc(IX7dk=pTXYeI&=8e+F{zLuK zAK$*WQn0s@=>%CqWf31Ir{<-g9?Evt$;*Lv0Ek1JQHJMK=291z)>yr)m&_0(K|OR= z6}VQ&Z2-Fm{v6o|DG+%=oqqP;xy=mm*L7O#V%;rj)@@>9aB^BEh^Rj{w!^pm(4KjI z{up!O1gn~Sj;eEUTx{HFn3OrOVcF`0J7^XVP(G=47{xQkmfesR{-zn*XzDefgs}pz zFg833D`r5Jw}K3X25H*+fD(mbJs_q6^qfW9`Z@%Mbuhy03RT7Yp|6J!V_3)%`IU!7 zVfH5melqCUpOljfs{n0jcvX#{6+qp(gk^M#)s#58LW$~}kifw+8vv2$s<4a{(u2Bt`(A%)??ttZFm z47_6AS+gH%nl!92Ud-h~ib7np_DBjawg8cCc*Wt?lN5%<+?_>#&Hx-fA$|pzSAY`) z=z(K3Lapb^o!ZY3$|7=t)*p{W(OsT58wEUs`xP1i94>I%GmFS5SFXVfsZPyMmj0XI z5B$}^`;4*QtQ!PJ_zIv2_fo$XD}BUuX#?EBU#CJMy9p}Zmz1VX#sjsy^gUQ`@oW}D zkyf}^i8vFmCP3K(5eC1^Q1JOQ_f^Rj=35-m<*w}<4{Mmstt^U*6ba$SLnMeY$czV` zV|`cPk8}|3N_T7O>gulS&!dSZL=ptiXxQ7FrUWZaAIpPcY1!Hp*LoK3g8t!0J~uh~ z>WA_^)Z^o?YLpcTq3ionh{q^-#1tfzxCIL2O9ux-`_Zk-#-D&VnE!MY9;_whN=^PP zffzx6K-0(T+A<(glXAABwY@xOg)r|l0d&deR)E^<{=2E9Hp%O=9SeYdV){1;g#4>M zT59qgOn1z&ud$p+KlXU&-}>)gDoMV@>b8^BxEU`y2oQg= z3C<;BUtn!56QjFgBx(g$PfpqVkG!H>?b_Cv1OyoK#F)b#k6$3UIz_;L>MMGVrodC1 zyxs8W*q3MVc!hhe?Q?&*y+^hjwW)P;3XyS{b(}c=seRzECC`8FL@=IbwDn`W(p$bo zi8$@YdkR(R&`TqizA9i+j>I!zTnFqe!;xic@a8KmwsnQPu_jLJBD=u#d0QI**#;17k*)RRPUlVpMxmgS$={phA)*;HiHV zxUexlyW1ego3JSMz%t_l`+Mff&Ym{bMY$weu^j`djsS5y7}Fqyf$xnS0|H<%3P4w^T&Q#(!@*&EKzQi3 zTV*breZ7<(Eg}vMhNysNA=4~=_{LlF-`M`Hj+*ITf~_0lmwH^IKaUP2ULNe2mD=)ij+Zg_l~ zV>hf*9QGNU`qOIBK}q1v$+$Lv8g#Cc*Bc(`h{ha7T)D;EFbu_`3w)}B_g85p8o*=j zmy(vpq;Ua_DPOES6|ROQ%Dq{-aIfh>h9JCW#QB(sChP_%D*NHESem*Q9BxZ0sS$cm zi8-H2?vHEl@u@v3HnFas&HLn7b1x$OC| zKe`(XrqLu%cmX6q>!bdQHF#ylal}NIF33)2FBULNZ9CkNml^34zmxBqOes&yIm48S zgGS5#$~Cq_8dKUBiSvm`R>wJwlrfub-Y<*hY+OciS8%MezrHR5zPYFkbBmyZCWxJ6@rnU=EG-=Xw^ejF|U_bz@~N`M+@m2ud&NP*(IrlG-%)qe#4W; zn33e%6Rx74ohhbou|Dt}b^X5nvdd@J>j>#>Pp2btgU}NXR@R)cQWB(R#O5zk1=k%F zyxw8V#P{VLgi`l{#VwqY|AbctVk|o^hgMKY@OXlTbW9nW;Qc z;x{qz!yTP)8QG6T>TOLIZ-noCy9AcxF~~)kvLqv=GvV*o=|>etJ5~GdMfTixDtwZ4 zqGa2Oh4?sXT?$r!d0MPY>Tr2bvC6EwiI&JjIeppHjYHSt*ApV5D@0wT3hT?W$T3C; zZ!&oW@zI$pi=^h=5s3VVyqSpvM^lVJ{(rfk$Z&L1GTQ zH++lnB4KAdb@Fu8I#K*9W5jGbjlF*g7VE_sW(|;HDfEfC1p~0O&0(sW!>_zd*1P&9 z(&^AD_qoBg;r(bUOtCs^g_O*1nf=i8218=*08R&^x#g=o@j)QT{P1_*U9S}qCSPUX zDW${4luU)~6ancqu$&d=g)T%I5H;T*pO+)-p^uIpeuuepREedckY&}+ubpnv^|X!WX8R{AB3j}N4Q-rsHtYR}1*7iQXYc*71IG;(Q6lqLN6w&&OY zXj^x zFe1Vc0z#A`2n10O5D6WrZ|nKr|DSWmedFDmF_Jx#J=R)t&+^T0&fGbF?u-z>6h8y?xDHLR~VH40}kuMFiktq#$)eX9;zp_6ILTY3g<)4h&_SGy1{O$N(H zE;`_IYTcWd+GlKLTt z#feS`ZvOL|tdK$P`|`(gtk3D*Qgf)S2w(Q;(is;#Xpzpi$tM~%c1wIE{H0;Uibn9X z&B1e7fAT43F&bA#1mKE+1s2ri^ds&%lUadbli8uq@6Wzf&iz75I_LJO?wVs@=h5#2 zl@Q{P|I6$^EOWc6JUiOgC2fn83CAkxd{40E8I24vhAG>Sox}ge4X=B|?~~4c zq~o8R$3~ff?+n{c@XEFn*%s?8b)TZ@T!Vp5#R>l5@-q7SV9mXmvKR5!##^reCoi(h z)n}KZEe+0a+9T0||se6Y6k9B+Nlus&UEu<@Pl7(SK1G&_{`T3G-7yXY1A#{Db3 zMYb~6za-w5Gn68#mN!tma-;SWpX5eoSX&yV02|K(TU5He;n(&ZY$-UKsk6vLf$Kis zRc&99^mGur8Q+9Q9%HTU(NdRZ z`n@E}us^g$7K%lj8+$VSo8FRm<^KGd=F;_{&>H(Z=#YEseb?dV!3gIp$E<-WPk|Sq zb9f-OWx~Jxu{8Dmwr=1=h1a{B#u0xO4Z}=766^FL1k7nyEw2ckvFkEew3z73Y|Al> zxb)0V*7Eq)lF_&n3NKiEv3z3n<&GgJaDq8jLho8<^Tw=k#;R*;7w)-iauNSHbz3v& z+xeWB?dzb4u55=K5%Tv4t{BKCap;wy;TDbE1E2gxI~nX1|2S*ex2Q+ldE_?++R~5t%eia}_7BwhO7qGPK=<~meQuTZ_gMJy zmYHLix!9%ukOblVu^ip+9H9p2hi|^ghvr^hUN+d|ymk!gF)>*FU@a5+>6(_77H7&b zCOr3AFMvo_`Vh#bHMfwtkCsGrJOk0W}x}0fQy}L5X6?qVr8nluFJl5Fl z_Vko8`hh&Gh-}o)uW7m~1MVH$O?~z8Mu8Y}SYF}dE&6x9NS@2wBPvT=Jm4rLSzZI- z`|A806T7B`0^FNK`gQE6$4UyTF}jv@c??eu&m2U z77R#PRBXI1Upn<`dJ^$}DPI4fK$laPQI4brw;F;`beRqo|#&N`wMu7xZ-KGk{RC>XP98ZL5)uLL5eI@oZUWsjl5h33Aj;W26y`^_L2ioVcpz=v*m zz`(HuaYhx80gwfEJm?(qYVOe6d6Z(_Ay~%r%nV()pNY75SW{00wt{Y1WT>#?$d@0G zQ^^CeP=AOuF;GdU3~c}$`E+SdPjrx@D7iVt(4&`Gazk^YCq?TdONqjRnO61QOE|=# z(X5poBz`!<(qJRmRPsQUEwHfm8R9mXhXCOyQatE9YvJfkD^@-uo3Weiggbz_p+T2> zv?h$_I58Wszx><>@d~b*J;45>q{|nNpIVb@_^0u&ANEGgP@X*h(fCPJ1J!W^sI+vM zz`g$wT?Y{E$Rc~oiJbqB+b$Jgj9Cy$A13@FOO;ZlHW*S%OQDP;EmhMLtM0#HGFMWA zE!i)O-O++zBau%BraUmONk19Bj91128tUVh0M}$&`0u|*7JGB=R(}uUE#oeEO_xaX zX7FIz&@Jr@Xa5$Ou{~7FJr(v^C#Jv4_``xV$u)A#^eW zlosK8pvSmkNhnh!coxJ1&K#P3USHv|G46F5ZH?CI?eF)JEu&(~Y&?R_qrcxFPm(S$ zgp5@+Xv2P|h-xY1HYRg#iX3e4A?;uVm&9nT6^oI#jK|v@pelheif|{GcLJ@6auA%x zWyvK#tfU+?FM>4f+UzoMMbX>a1A@*cIIjPMVydu^NJCgOpMtk0=M)>vKE_azY<25X z^e`-~eo|U%<(Ue^qamTss8*dT{_XT89^ZG=Qrh*O94WfB0xL59xy+Ul@gL&!Hx7jq z%*0|G>wY->S2tGL0B)%(fdGloZtft_bcO|DN8|j^)iGK$swczbQipv}jxjn5?8qY{ zj7VI1L_7XYOB03aaGcICMmO+(;{Rl^kVSj}FHK&06TgzCWz34A^qCIArbd;vOk5ov z(-J<|FFh}n5dz$^WaT7G3F0CgB^XugsndX^n&}Cy9m7Q{&u#HiZqD;?blG0B(*may z-BzPp{PFmW1HNZ*dYp%hV~TDLL+#`+YgVbO>>j8C$=jq@E@erNpjknS7|Wnyb@R`1 zO+toXZX!gQk+BoHK^z*$Y9P@P8JBS;J<~@iH)x?pj>5EQBEvwWT^xj0?AGDEtcH-^ zZ2-ghR%n$Zq-wGo*g%W;s0+mJrV3@ zGFhgX+_h#I-L(o+9=IW+75^biMij#o7l8gg?a{AtL=J^gjjc|LZ4%yeWMvYGr--JG61%BjNQl5`6y)a$Lv`d=oQm&q3r8VZw6*A z>tV&+oW9j)u|^QuygC^kTJLh2r$KsWftc!B%%A1c0=JoSIs@9hI8Uy*dlMBDQ~UP*c< zG2+PsA8Qo~<>k9p-SPONhkaewT$G|jbsll9j!BcwR0(vnzk0)*o*#a0r^;I4_5=4p z)G5rZMTxhIae$_A`LeQ0Mx62H4kk1FPIVw}<2l}=M6yoNcPN#LeUq#idOlN+?Z##= z+y=H!NnQ!)ZVf5kKEc|{cK9mtwq&y%3lDwO=)UdfV?Ee$LiFzbjf5pZv+MgwRO+&^ zcg&wV7khF;A;qMfs&WWi2=oKob)Y_INs4nE_SuDh=pD}w9x37|=%Sb$8rWZq0_-0% zJrS`3))5GUtjTatm~o;V&WND)c8ezl!h~#>NKXQp>1P(9`%QXdP!78DA~x9J=eO^V zAMQUbnJp*?u|v1K6PPq zexTGE-+SaziZdjh*REE->|enhp;w&HAP!j^i7t);Y^;JiiM~n_+5Wm+Os+HNd_`G@ z1d?)3x0qpKO@A08Yb7NRC&~xjbZZ^F znQQPbtSket^3XW&5Spe#qUl1LcB~uC3*yAwkl+M3cr_7z|D8!oS#yCHBgJGxh&vux zatuZ1$MlMl$uD=6@od|KImtpp3v_~hrGP8?s;d1R;$e+2BS_*$FU9d<;B8X3h1{ zOG9wQo2?)^aT|Vo6spa3Wf4B2Z!N99RcQ z*-+@df+Xa=03fJZ0qi-R6r`?U!wP1=Hi?obdPZ8vk4HP$uv*RwcreM|q@~$Hk)AQ3 z@7?h(x6t#C4!A<0dc{+XJ6SPnoy_n=q&lxjiyS)&!)vPm06_7h>Q%mKE_E||Q`eh& zjM1NxF*d-tP{22vzauv>>L3^+1f4&P4$`$un3WgbD%sa$-QS*HoWXeQ8AIb2L{cDr^#uhYozg?P!tQmMhP_dvN_1jCPlA6FTqQK>1&nH=Mb zeWv`BkC-Q?TjEyqO?`MWz*16Dhh?0DX@@lW%&zq<6n@ZWN3}&R+Z1awfYW!&fU_(X zp0?M^&PqW4&8bu+@~GIkizz^vs^(I=_2!wV`i=-i9EJjZ6_`e8NNiITL-q=c1qv-N`agrExezAGw zp9IUcSR>M)qQv(Atkx{Nv|?KkV{C=$7VPfsKL1vt^mbv&3uAN-NK=Kz?a}kbIh818k1UL7Df!2fwnAXbgY4+;p zd&4*JsSiqSlg~j4f~$O?1dG&309>LLtD*m%E&XNALfY!9(5Lv0Toa?En{)Ma2?M2? zUp%V*uL0EG%#Rd&_FnYvrIiCQ@_o>qMiu$h|90jT;2?oSB7T;=V%4d58K&&KL}vfy zWp=&5=tUAUq*Sxtxwr@jHtfjK%^XHDS;8jlL1Bmn9)F!BN+AMIkFhl68cnG_!75jZ zDj0kPG)9=3Bt|FW0z;WdWhheOks~Lp=s*st&GeU-pT3XBH`>`I8KXB3!fMei@#M8b zoGa|W*%hiJ^enW;#>K@Y+ZceFLZ4OcK>_1l;bta6y(pC%E|j8$vC5`JQ;?7@Zn<(h z3qS?yPW`wINGPZc6anyPaoFdS!>zzfPSw_&3tB0ceyMaZ6FZlR4;QsW^(^`TcCtJ1 zHxvC9Q->yjW-j=k^B`e?EQdNZiA9T(Hja^zCL8>Lk@7F#sDzRA5DcZc}h}KlB=|=lM&XuDfJ`dwoYCowwc` zVH9oY%o1>~qh(yKEc7`OG8dbDk)2TJh0&fkA7^1H?uH@1VLXm7fA?20M6~fK)u7SV zx+BH=zmztzwI^>4IU4mM1fTsQ&TTs39R6-g)|0z^4|pB-X`_l0iU0~Xz|Z9MOVc{f znqtK8On8J1Ryo=g9k_l)y{_~6n06Ybm;ZIbCuPtk_gWxMkzkHCxKu*~(5#>c7+*4r zI^LiDcjvrZ1WyP-!j!h1S*^`8b4rD*`P5TuG8f=QOPvR%NPrVcZrjKBGMv01ANUk~WsuYp1Tlu-x;<+?`8N>sYTx}F z7t%w>B-k46WL2rsq3WACWU;I7BCO&*&8M6;#ux_%c^d2_hN#$mdKN3XEoN6_#+RM( z*Tm!C_o`wZ)JDEfCp0e=SOeYEGmsbL4CoAabZP~wn0K*(NP@?BpB698glszTZZv_k z#MO3`I5EY;afqQ$uPQ^q?*Xx7NKl5aL2z?dMeX3c*GFgeIo!D#_cB7J7id(~-bntE z?X329uZ=m-kI}XjUXuR3)OS21(?5QOTU+9^D)eE_hwPsTe*5Mk(k5OTT;pPS(Jb@$ z`MRZGo|^0K&V{}?!jYl_slhnOL-~y{JewC-0+f+Mj#A!FO_RUcnq|&G&ZPyV(;%2| zp&cudL~-Hc(egw}T<~OPxbne8PqpAoB`5Bs z2jpETyAg`{k!_EOsu*OV7N{H|;wj~%ZRWjL%#bJUsK^8&2oVK6wk~I0x^yq^tjbQG z#XL%`ClAi)b6g}ge>~a;J*sOJx8%FMuY0$F@{}4y{`M&W#lupnd%WtC7i4#YRkm+ilx{sP zID5#~DDlhsPkDizr&QrAD;3JBo$OY0qbyYV#j;;7@krI@ zQ{2XsO;7JD0hN`9Y)U@+smWGj5BRh>-qB97NQyS?nYjmltS)?@9&NK6;=z%PN%aU~ z-Z740Z!iLTgLNx8I65m zclX7f&@=R}k#?RCna8nRajG01PD=ASFd$g1o>iup?}|Y*G@Wtfe_$Vx(ml~na)LX( zt?hqU1f1yW7s~W{`l{zdeyw;N>C5_BF7XWUb@8t|2kQm3#KU+8xD7;??^8R zMXGd^-cRs(pZEQ~b=LWFSg^<>cV_0E+56hpzGmNuS1K=VlF^d^0DzlN1vzy9fB*pi z;8T(kot*5%`S||#Ij^mQ1z*KhFbx2} z0)WcNzIIL8Z170pdHZJP4E?5p>0){Z1PlPNyrTjs>^93vvbegrdbS`w9}hVWKIB+! zZQqC@aDRSxP|U#-kp73tb9a1KUG_#>V6*bm$s2A+Q}#{JSyb}H=In(*e%{K3$@tgA zH~JOs;Zt>Qi?*5O2H8_**9;ur6zCizn1s(A-^{8AVj=ba&o4lxcu3-Z&Cpvw5ZS+< zk&6BQX$;BlG|Ly;&PjRwZl|%`hyQmdYtkyLLoc-8!0m$%CQf#toyIWq;_T@EzCsUc_%?IL!+5=gCn`(X|GOI3Td~W| zEDr+S zO&CRxf&Tj?Sz1A5S>yYi1f5<#$qkze_3OrARe(?SVgK$z%MZ5^^lTsrv*(?7eP=qI z0_xfsUgw?JFpr%Enxi=%Y46h<-5_ zQc3SWlMZBnSL4l{B+nrRy|x``85nf;8lnH4YfI(I(bXCp>$txu<~6v}U`OJ;!`@i* zd&kxTgRz^?cllX~fwz8`&<|$5`pw*_?=llx7wP@$8FNdDq(^ae^(PDIvnkh;Uc>MP zkE6KR#b!T(o$J>>iD zF?VL5=f0NZx~`G>dG*Pv*s~c(Rt3{K@e99Rz9zk$xh9_smuLU!D)8ol?%XLgZ^Qm@ z*lbwZt0V1L^{V#;d_^7&UCKoNT6W<58^FJf$;$KirW4|n%Q!yxU*8F(dUhKatFEf4 z$itZ>6@78F7ptDDZZ&Ya6JIc~qo(L3&na9KrlYEJbz!r7APJxW96twK_r?q`m7XJ+ zk1uWF1GpZ!`vCsVu#y@xl!1GdhDakuDCVY;@ZX%L@0?HtxQh8gUmN+F^S?w9(>on(V}UVn+o6O#k~%tct(!9B?&KVT#nZlXpDX zsi~<4ely*pc&PANQJ;AJIbc@p0zH13Fn-EZ@FA~4igdoIRY3{w-L2;Eo=8T3Ipfv! zt&;i|KZ=G@5gJW~Iz-YIU?k$*qJdgtHljF0dD-UiyzC{b~6^mV5<18UHwe#LvJ-^oA+Yg|?`jdX!4wDGUpo|w0 z3q*Xbc!yhHc{8rBfmtr%fh z5b?cBF1~!69q@#*`6ghcEY$`7xT)Z05fMM}yr^#k!Le|`!OYaz?9KVNM*i)K{1u;y z7&|P0*MM%cNBNNqP&}$C;;Kq0J2{}|bud7C3re$lDMtW6Vf`P)`fE`9NMlf)8wUF)GRlX08~e8!u*qKA z>8c4c*W3Pv%Y!1miz{TxKB)e1!}0&l`)&o}g?gz~OM&dxy5|Q;@f4Nwjw%5Py1i4Xp>lp+=aACa~MJw1BV{U64cq^r(_B&8DmoL@4!io)W|Vzgvb)ozR@I89h1nLkj; zxE#L2{TG4xTb3L~KGA^$lV9ON?7HjGhuaJK6Ze~4CE9vZE=7<0{#w^HR7+*1IE*Ye zUdLrEiC)yBpYz>rvog6j{JxHT;XVx;v;%!dBJL0o;n9Pq*E6*yJOfJre36cQq3_mF z&?Ij{Ezzxg^?&xm2x;$}8)10S#d93n)aaJsVy1y)m@pMacy$^eUS9j%&-=x&dLn?R zSf}3Z-WKwBActV*+&d@!KX!no=y9EKlRMon_=v3rBhek<1w3)>I6@QX*ww9VE+1(H zq`WN*wH;qG`^TDEzz+rl4TcMgzNBVWUkOxo-!2)h?hrt7@bDALijut2e{2YUB>WE> ze*H^~SO|lt@>%mfXWpq!F$1XG1fC7!Kf~e5)2ctuwvx90cPpOP&-OA_gR->_|jJ zU0Wr?jj`u-RxD&7 zX+KT)YLu8)K+wa9mb@kxqoo_yGnIlfF6DK7WCCC);lyQu_PnN%_t}3(qT}l}rQ@)3 zj19$i21hMr!zqP5o=(u@Xv^Mtl7@+mw^t7FmwRzQh?)`o3#d4&6SPL;?r#dcYVPd* zw$dTYbETBN|BZ_9J54k?J8>=M8|4>a_~q6#@xOyiPx^K9FJ;?D8<#+)>0Xi@$I+tR z(2v}5^8&s^$>rX-NBEsmg5Pv3KK^>;)g=^0^XE4H-A8$!E>zou&w_~FY28)rHb$Gg zoNX}ou2Myix(wP<&x8cA37*7xEM19eq{3&CLhR@*Fk|WGe=X8vvO_qvX-^H%oGbQ1 zdxThq>rWDWKWL0J_9+zypwU6&+NI}TcezJ4sHH^^jX1}c)kDcSTH zUHb!pzd*^Uz4_2}HGYT2;)Ri}u|<6lE5vKTjS}EX&}lK@rQ1lw!;js$VHpRt{-_Ne z65!Ih4gqV4*Ir9^bz+J>LZe@kNQ6P@C32&I5{z_p7-&$tC{9b1Q~7Z}hu-MR9U|GwE8ffn zxck7Dz8%Skl$m)+%N5na#@jyU?Pt4L9!!{D`gbd7E3u8jVy&C$GxrzW_xB3%x za~5e{tIgaWtlDq8n?kC4Qv&&`zWL2fpw}r#oG|X6g_?p);oS8dz2&*j?W8v5^F7Ip zl9&Gcj~7_$(CU@eF_?FmOvnN`G>aPNNB&m}@LIg2_^~>sWCPQ%y3=iw>XZ4kgUPIW zde!;l0MQog3t6qOX#21Ye+>hqf`dk<+bd%t#6Ju6)T>{m?~i|*;dy@1Vt}E9=rG+~ z+|{$iXCQOG9}A?05PMDqC(Iy-2;Z#qliC+8lpOp}?Q4!*)-q!!m$WB&q3c{2ZgN~K zN0n&O}HktcA4M%Ovt6M zllO)$p+^|P5ZU#(uw*%VZQU>H+WD;&-y1teb3(kZDi0XMoy>nG?P$aXu&>&;2ITB^ zRo?ygx7bvK#d#<}pY8jn75*qK z{7TVvx`cJ^1svO6*-1zp9=sSgi4WxQf1BE7MNUDIqYk)NllymQwfDx~x76ZD5IGal z3YiqoTavU$Tdeje!<=cqFcLqDLW9vV@I+U0V1SY$EpgA(E*ScODf1|cs3Y-{bWzPf@2&{7bd9Aj^4B9s*v8e&UsSVJ{MFGD>%PSV34%lnd~4!*w3WEgrg2Aa zjh$1+$k+LC5=#`gTW>K@mq{wjHZ?&vLSM(vE4fCcr@NXM@H8taz*kgxC{}4fjI{{5 zPmx(YCCPl6GRWYc?@9+wZ9L%T^&VLjXsUPr!II>$*qNdSd#~qHp^bW+ABeObCJl$ zfpJ@^X9EH?hdUU+DG>KS;(YEJ%EqI3ubcS`OSb3!agYVBpP4rfp4wgrA<6}Lw}V@1 zf)blwqN)TTwXRRP^(&>*Nb zRo9tcx~%&0`^{ukEQ|eH%~}3Xr3J{Xl#cJny<;TbY$yGThqNQlM8jJY)eH8Ba#A)L zlJM(U@LMYD?3JPLN7qELlB3b@EiZ)esm88Z6q;;9E?vzO7+g#$>&L;aaNn5+9=%@g zlb6rU4~?<_5@;%?%d^A$z6%W29!+Wknk$YNU6{(o(po#C(9=g(MuZ5bOUJAkN*l*; zii~=rJO(^~dAuuTI@U}=RS4rjx*7x;`&C};FtYjK5n)Ss4)!m@uvYU#vg7DQM3PSP z@3JRl3_2f}f=c|08x$(!zxZl?)k1L_zGt{!vo;*5OP_Gh%^>+*UWgPzcAjYxoGVYo z5$I<;_Pk0+dy2m=NQ4~mLOGo=;dYrS$B{<{5vd_3Pq3yl+&-X<5ruV%>HknEh>)Lk z96K?Hwg5h3v35IzUT3j^Jc`CMN@Cj26E__K+L%ukVZQ^eHt5G`uNUQcq7|VcD_M{R zl6F-Xk?Y7J99nCL7UeY6m2%Kng!hmFpMB(*@AlG7OP%WHxt-dvA$8f$vlf$Nu|`XN z$2og);$AEPQ5Mdbur(h@$-(I@@adt1XHShi|u9W)}|))!_`-vH~3r_VC{ulzXb|! z#5ibjBrGzUcF1mbO7~Q@_bW84v{uch!li2;vj3ql z<$LM;@46Z1erFL>ugA3>Z`!=j!j!S|6;5ED`cxwa)B`-27ZaN$k+eDVY5oGYjPGBi zSjc~-c%@?Vy|zSjnM7S`^?^Xu{j!&U&F8=Y7aEU*KgYQJKs}=CSvm~jzD+}c;LY6F zmNh=q&;3F8Id{>8eH*9UT9a5KCL9(n?Q~(}6e`NpV`&OtHPML}K}5;fiEy0R^h&}M z&ctX3l|+*Q+E^`slwoYhU)2%z&iC+VkN3f>W;+_KwZnjW3Ja(Yp3iETrc9bBQnqh`-V;k&^dl#E&(G2%M0 zXc1xg-3L14iI-2E-x{KG*`wF7r*_f!sfT=zJQ3W^-d?=|iLtnwGH@t3C4(>yBSs03 zthIHA5!6TTTqZFdB1B(eo2PMSJhb#|OF2P_4WdwgGH;39-_rOd&>DoF>z$sw)9oDD zbz^#^bmy`aBH1_DTAD_xS|jLL!|9VWCpG(Lm(Fvm8CqmRMuZsfZ)33=RL5DUpAT5= zTI#lbvw6>F;29<*@K`~G*+evHc>TBLWAq&n>H?vf2P2|pc_#jHaBxX#HmxnXq!6hl zffS9YEg9X0R62O{+WTA7A6T8I`s{_ByF8X9_^O(IR@uV8q0wF42pwL<#3W;EcRnA@ zd`k7XQpQcVqmjMNoYJFY?jm&@pfb1@p3(5DIT{UajYpq`FA^hgNPg3GjHGG1LOIP> zsY^$#xeH`|WP6W(kA8whEd-|%1lq`OBD-AQW3*|QO>Pb(7=Q!9G>+~$$l9@{A)a?R zLi&4l_^URzeG{_jbuuE+;v|T6kZEq!rL1wHl~cw_VjJJg9xY&ggG4pHgK!B>&#@Y6 z5uHsci8b@6!6VyojpSPYt!==N(l3J}ATeffOW8?hK8HHnTaysvvH<{0#&jk$oRYmiWeI@}UONKM^T5wiDa5ekhpH9CvTtc^qq4wxi< z8xUB^E-x1B_y#Sfc^xz)Brx<`_j9d@!?=TOX2;KErS!VT*px|oYF~#M&b`@ZsljNx zS&CyU(rY<8>6@*a2h3yE4hFQKKKpj+0(dwj^rAss!FZXj;x5&}a_Fgf9TD+cIKAA8 zG!Bydi{Jdd30#!(!2BS1vY6<=$ETfjZ-6mZq%g^|=D{2|6&yvWRFm8AMKIKv){?WX z_D{lO!MIHBc>Y{|rw{Cs&?lh-8=+LFBjYm7nGojj8oO;L-?d?UfA6`pXleMlS z2+KqZIX!ll!)HGrNYPNG&&6KFZ&SsD5s%%L2yGsp+&7`0n4I|aLlA*NDa}ZJZ=Btc z5+`VWY@Aa`hl_V~w0Tf#0o`}pNNfyhD1E}Q>?In{e6XM=K_C1M?PMdyj@U2)bsl?atS&`;Jh_Wu%QT)~J{BjN>}xKu4=H zlJ_cnv9om2uP9>&y$lU5l63nSN*OrDfmOc81&g#OebNW1=HcIjInkopLx8qZ(o&)n-UW#D7WaBL*ZkMRY z`2(}1D&LYSNa&*BrS*C96l4-@A^wouY7#6Sq~-3H%><;=sBrbDb|h`!wTfi4 zv4FvUpz>jR_?LK1C39m^?74$o&4D1Gr9-V6P5h0T;<4MNKxssbC2qQm1e}Ag(fFs8 zZu_r?i z&n&3FRCK5}MW!;ijEq%1OXZ@#C;a@DQn52yqw{^!EY3)z1CHnx^r!*HJ^e_?{)_E4S;S%qi4^(=Y`(lLmDI) z;u9uQMIV?whQCWF~j3=(BW2a0}MRm&ImgYJ3vR0VnU=(7QBv`uRL$V zD3rOUSu^m2&i&hPl&WT!+r)PWm9vvk=UfQ`gS_mT4)R4ax;EFqx zW?n!smFUVk&LS|}W-3K3j<6$FK4%PDn|X^Yu~UaN|FUqWfD9@CMaiwUKbN-5FS;9Q zt4)|Zc+pn$W`rYE7wv~joXW51C=@}CmF`cbJ7reFm(umB6J282nY^?X-@o$<5Dc`2kY1yRiX~F9GEx00z`!<59 zil{^06qvznS9s2P}x@lZLFAZrpOcV^JuBh%qImCk4# z`bTbdziJ7E7;5lHr*yLbY8MCr^Oe5aCtX}P;A_vN)HZG<8>_DIvO0`Zs9E`a7cNXY zZ2?mzij6Q(hm5pWvrzq2Itg_8mlgGay_?Mk-?J;UIT?F9e}h2)pO2MDGfqz-K+ECJ z@fQQ4O(OA{#Ij(RW6atziu(w`p)8e46a-V&%moY31z`u^erl=EP=5f;783#Bi5>P^ zsfI6*qw3NjW(=qAye(t+;#p)2^_CPwI7bRLJ*hoP6&;IPd^|{HSr<)V%N;; zP@Kq3`#}^XhIT0K)SX&ZQP>RT;6f&>V>e}%vY%3Fqou~ho`$<_eKK{2Q}!+kcPV%4 zwF#4pIn`J;vKgk%i0ED_{#y$Wf}}F~vRj=DR`C2JhfE3rLFAO*;LfuDrmqNZ$iW;p|ur|N2+ryBqxNcg+Xd+{0X+{rrMQV{xv9 zQoRAM-}|2y*@K-ex8aHx%h&<4)I_%{>B6LGpf2?{I7~*)G1P2C4f3iS44phg&qO?$Ouqy?|S7#YeP$vjq@yiee$P&=tp?=}xgA z$FD_dD$(nDQSJIySU59W4t&E->>9tAu>J!`Or`~ zI8M-B@nstQY>o`ioK}j)sLks=SVlw3*?E(?Eb|RKEQnYUn}37++Tvbg8BLd_>=k@cBdRY@c-IA& zGs`Enr_^vdEN6p;emz#`UH>``s!eqHK~Qq<(Mnr7sRAx%-QCS~yOF>Z$l9$;mw%-x zL%6$~Z61m_Nj)NZ-LF0%zVMhQ6diQU%Em;e6oJVkOLgqiqRt}Zz;2w7J)hw*uEizS zMgiPHJmFF(4`8?roySSKf0e<)vQbi&CeO zBJ8NcxpN$Py4128REUtncme5z5s&zX5iHzfSubsqh!9Acgw&86^2Nk2ti|8{o;ERj zuENGJP2aU0CZj^qxh&F0-+W%rBA`4(Mo``=qw}s=sr<5)*)Vv*^EfVSHa3c_2x>aD zg#HrLQQH%v*umNN?WVqMA!Rp+2$u`#XTbdWJQLRm*HZ8R9_-U6JDuN@(tCBr)Kj1o zO1961elYaxxi*YYi zw}NsW+}&`&ouo^Ci%EQ|=%vY7(Rqqt${MvOZNk0fZnk_u--+|L(_>;p?jb3V>teQ= zH;mH8K(!DgOu3=L6}d_G8L|C#Te{@ChoH`ndS4qoO5bE?x#8-4(0V%GySne$UhZk} zRWV&h0_bz6mgZia)PR8_fnL&arON2X&tuGNjL(M7VqNlsRkk2+x(-*AU+h z&zA_WQ&`^^f3Zb_SI^F{D5!ZS@U8^{tBhLg5~=NXeLwO@Ut(!2ZjzWViNqL}9>hMa zy7w7NWo-9@kmspgxN2gzGUqS*SnSCtaEgaHk=m^AyiRvFy~-zRACh?Pq_dF<&5U5? z5Sq%{aCvV5gl5vjOL6dm1%+?cZC#2NuPa$bG_>hs(get zYd`t1M)c%@$51bdPM7aj{Sp)<{F?gC)J_S#rFk=6^@NX_dFy2P1j+L`Da-IN2(y^R zbSDdch~P$pOr#E~t(X-_%T8a=SG^)Fx$!$;UC#B-39|Zq)f)Oe*fQT1)=dV?Xyz#{ zKk~yU1{z3A_50uKY&M#dWlIi8Qd;=TloXmMR~sQQVV}nT5rMy4pX$WB90F289aiUX zJ!-Zwi%Mtw)0YJ>aetFgQ^P9)1^?E2HwbptL!ML0xFAjt0JeXkreH-BU3g%V)=L`xEik<5RB=lTr9;jzG6^K*@s;?_% zje2K|UQ)7WGRfbOC(4T*N?f%|GzH(QkJaB3dQDakWMK8-$GT7*SZ%}lDex1PYPq|O zJL77i7}X;v(mMSjQK@uBIRGcTB=#$+_lw*pDMDwvODB@1CT+wX3cPw}cIK6)PbNt4 zsa9sZ5K8FVfK0B>rj*I}dGq&l#O&wW-dikiw@K5Nb!x@y36GqcBqvys-ETPP9{mt_ zYb7d-aFb86BqgAF2q=_Q%u|l5y+>$WV@s7dE>MVh1pf1mM-hDD7+?W5Nu|O53F3J5 zo~Wm$Qpn}p+`I}GO<%Zvw;e5^VM#RoBlZGL1V5`jsnSPICP4eP+l@$Q=QKnL=^obP zs;>(I`0#hb6Qu|7Ce==6ZUM^j&uuD79+r>qOz7YctMR;kZ(z|2S41^_)8ivL8LIY# zQSwl+45D{ zh~#iF{9dM=nWL<)-+?#4&ip$WkP>q@+T}7eLEoH*UaVWWK*^X7Bxo`Xciz(2){SoK!T$<5#FrcK;#wu(14y0a zugrlMh%{XwH+7pQw?Efe5`rE8LHMr!sdEx1o`>Mo>v4YI@~y*r5@7H(#+}XgmhV~F z6S^kQ zbW`Y&;g!v*K&8F%k2_uTCosoI+FLlKeJAa9st({C&YeBDfR)yx4V-muGqigi8O>g$ zlqEaThPA5#_fz$a!#J&AZp2D}gLzZaBlUG2i$>MAZe~ddGI`xuRnE*WJA}_y`)SL- zC0O<-8oL*MPpPUWEQh6>*;25hg;|t~^ghv*^3}7bOrBuvi9tgFF@}L@`j@_CrgisV*ZoZM=sx%Nn9?+UySQ%L@#ZmI z0!utv5nK`v8gF{xVl2yb(n<>4Iu%p_M+tJq&^gAU6Inh^h&)KWqYfC4%py?YqG0P6 zWWY)xf(H^3(uma{3%pVP*9+qdY>}cTdnsSSA^JF|)#o6sb{|x&1 z?G>(Gy5-E)fr;Rlj(;ePe9wGgJGGy7!c>;6HIS2xK(&UmO!fUXye9@deXFhSV}>t- zHLNM|l{kB+Zkl6Qb}{e_n@;rYP3(<}kBVRce5cR%lnr13a`~zYU%Qkm#>sUyO!k>W zm7Jh3uct6Ch_B(t8^__Tqm+%~^p`pSlc_nWTk{j80(P`qq?p7EA@hg0PsfI5hQ7l& zwye4UF=&P|Ge^`<*@gOP9fR)GZy?;B<=j(@ByE!4X24T!31)><5Kv4&GY1IRQtB+n zGW{8>DXd?odZp&9_6j3LvxAo5>#Uv%1uzdgaEaTr5C@m5r*qBzl@lMSAR;ec=K<~< z8-?PAZ-h=p=Q=E9?_b_dNpN8zpju_gk&o=)Fmv}lWbEviYKXN`)DKAaP9N$aQ14W# z<$;*tpa?69sqPq@d952>R5*txNieltI^NRGk^fYlQ9OLe3T*1!|MQQvkqiNqbp8j# z!x~E*r>F?^Lt`HsdnGysj-T?xUR}}pMhMscQ-Ed=W+QtwN#X5a7)3Jsh>I9M#_ghX89hi`|y8A44T@WkhV!3guY_k4x-wyZ;F1a+m=L zKGwRKMnN~@JBXAJDSRKX<)m26O_ON0&Bv-93fpg9ym1#RdoN{Ss=R5fkpy0NY(|1` zvaTr*;&>o1g|J)dOCO>2bzv^VFtL|e%^`Ku91N?wwhNY&HjFGxS}rxY zhRVj#R!(eXfSwEMSyY>|=x|=7T23v%;;OK1vt(iJrA0_6%e$ov8L(Kzwr!Tu0`DSR z{DbTYoIWh(S|b+z(<0q)3#ZcqU`p(_fiEB-W<`m$B%eVL z!sZ1l--Cto9)E`!Q?D<;9PxPeae*#eXxBzUJtz2{Py+sR98zW0nZk!(KN#zpF{`2D z6r}k%yHi^b`Jv%N<;>JyVymB0(&A_`2TJ zN@0+^)>&Yy-zoQ8&*EKEl(y{lg>ZJlnE{R}rQ)ut!Df|ci%gXB_@?@$(Q^nC3QTs| z#0)~oZiyAfHXfS-Z7}=3tdIh8V9l*h0fh`_E+Zig=Pr6>x10GCI1ixKU!j>7mQQbf zg@S6<$eUI@vAfyK?Qfb6^#IFC3szLxXeG8a_p70?oiLXp>-!>O@N9VE)^T=ApRb&1wlf%qr2U&W~yCq)N6UYFan)=ug`0Xf0IR z-NyI`aj2OJ{+G*hohKUS9&R0k2xoGNcOPmv0o+NrI*d|k+I+oy+zD6*AF47W^6EMH7p6iKdPL9bxuD2%S*ar^T|Du1ot*FRzlI8^vjxA}>T%UoHr+mfuX^ zSg}XN7k!g<=%-IejqxiY$KTxSLAeQuu{z#`E3r?HLH2eCXkTZU>4EqGRF4Na z`MQ@BV6ozXEB7+^eRh5iro9#Q~1r_&r|$c_!s<&p#VuiU-|sIeE8 z(aZLLY87QhTCir`Qw1y4?hQ3kw$`m^>IaV6`|V5JlGply_##LH>p>fUMc9ChR` zRedkFtrHxqa9IJ-f{1%HoU&d(KQ_!{^I=i}X$!cuYLHb@G+3C`XEA5HZO8MFcbpaj z@)NG<(o{w-+2Rx_&t0dr$(ntS{F%7UrNkrn{7&znlty@XUo z{Jel9HRu$BUq(AiJuE|0l}yirzTP7yrFzD;#_3WO(EGYBb#PV~k?1csYs~zvW>^rv zSccWmX|ao|)t9Ecfd7d}9Oo;KfVPTwlfznsN}G;enu#&>!xQac&99T{E5AkfBJcIY zWS;lDf$J1N`<~YLIcP{AX+=L{yMJY9h*O4=qbd2T*#Zx6fF< zrfPYfjz6eg@PaHb+e+(%+DG<}!MQw+S32(AI)m;onh7HSgMsh3)YvN+mvL1cTDb;S z7v;%ZQ}B!|aq1xK(1^YenSTe=At`$jV&*TWb4S5x93T8xU1Fl0w}?dm!@iCr{YLRQ z+VnsQA#;(A#nnqWM-)*2Nv6l&c14&ZjJ4IMEJ=pJ@=z}=9BEWJU88XM{SaPz&E~1A z5S~wSJUSaE6XvLLup<++Ld1-|Bnfr8flC;FW0i%Wb^%yV*qFeS7%ed#7xMkfFJcDx zPw6~V1ns_C{(Ss{p5%*fmL-b;F`Hx42P9e(SHvwQBT)hqMj!o%E2(s;P02RGFam>x`9&oQOhnw){a14hSuy*&y+P7)J`AB((QzN)4>euC^`=sgdjUnDUqG@i`rMR zD!q866SmQDxUwEDGmA%F7+Gt&B7Z%FRa-ERTs0o?|b$TB5Z)u+&CXhz=-U1*`v%`l$-Zt z#dDI0AS{niA$C+8xcs#e%>z+TBJX?)FQy>|w{DHp38@Ib{0XAU%(5;!(Kk_EIEGVh z@}v;E@5y+yoEHqul#|GynyNZ{zrwtWu4PtTva_EpsB(4lLP(3lh`0LVc;|u)z-J|6 zWO*pQYF-5XBk&Ch7Y&E!eF1Hz%fHV|IU?@#%1aR(-SnY|UtbpGk! za6T97j|UyH0Uh?s*@t4kM)rPK_Z}Encn4`K$CcSDQ*Wv%v$1p05~nz5nA@dl7BQ@T z89m>ue5$D_Io8E!IJIRHqwQ-a9d20}F;&y<>P$}ba4}JqT%|$mi=>%p2Kg8ZuGTbm zhh+`L%_im>wNws*#NtYHt=%`##1_Mf`S}@G_?P(1Z`@?ETMrYn%y7?ARQk)ErS&^N z`mKN@X27eZ^|Rl<(YJqIAMbld$AJUyL+JtM%N4ihpW9xMZA&_juN`CzK$yhCR;4U$ z*IY7^pydJV1L=KyUc2U=+m#vLLIsj@PK4**e)IdcqAcKDcXpA5X#!>w({K1KJL!D)0(~;E=7aJ=e-Crd9?f>$u zaajY|9hCy3Uq3VJ z5XQQ{)v30V40i_Koj(wzCRt)R0zWqBi9ddUeR#EE9!+IZAA*@E#P)h}1Q+()4fRE`FbG`S5Bq z=>~8k6h=HIpou6rQ*FCJ@8rfdXsM4oJY-U+sd~pT>r>L{IPuLRV(jp4m;c$9?^7jk zy%cDsN9o4lXB~N$slpRfuX3_kMtk)qO1GpStz+8iR3+oY-382 zGcsiN0;?^S(sBIrL_^!WBpUh+mte&CTU=(I)Ew14zjneK9)jPsr?P_QNjpFN(#6%M zlAy<@_XFwYN#(h6g+eqVwNQF>Qss-^#vfRBy#h41dvyMOpelA7V268#;NIb?uLoGb zLSYVVIZ@)xpu5ga3;XE0I;bBM;BzbpuydZ%A+k|u+kgUROi#(De18%{{ zJxj7{j?$t@Tf%zFIK4PgkT?Y z^H7Of_x1oBPeCge&og|N*&{Po&TWa#y@TD7!5On-w461$uu6gpP`l&hgz#}oa)fw9 zZY30te*59*A7kvg3$EbV0a8%e{FN9{uzBE-^1fRc_u$XK-8uJtZp@l(ZtDEb5wp$& zce``5cftwn1gKAGXvcdS{zSa2%|X4ws6dLnmcQ_~oi6CbnRuPY7p!yoy2$D*dr4A7 zZXKf2^0Vfh`Gp2b*W=MAJt(=O+N`jJ-Z^(`{n@J2_aMvPj0E*>&MRbA&nJY0Sl=o- zXmo(W{EX>s7F-mxIJOADn(_{-3b(v6>gfR`&X@9gI!MM* z-7lp_tRf4H4f7ox3PNOx!?P1v$bcl3&30tNA-KYE`A8{}u*Czyz+mjCquTH@xK3A~ zTiAMTGPI4tcTeOl3Oky+tYm3laxQ^xwV>Ype1!ESQSFO0KpsI&yL4M+(niR%It`JF zFxp~&bKlggaLVNF@e|4Lsz(+yXQIx|H<~U`63LyD9m>ifx&Wm}+DgCVxi{y9`rRPS zFqo4LVI*L89p?Mivy1T4FuVO;@qKn&ez|S&GCimp>kt}$IraAUMrw7K@b+M#nD3SM z7~}E6%!Ux&3@`5Fb}RPffFiT9mKa{{Me%Z1+bQ%j0y`7abUH;t&z=4bje)J6Wfjcd z+WVFRM7bj9sbkDn`gMuHzN0%F?^d;7?FpX7tC0^&F$;Dv6jXZjB#J3Yf@A>|-O4B) z+Umv4@rOpw8ek)pn+^m6Wvv6gVl~5Yf=B)2-af~CN5)sJ7Q0oDCoww@UWta6D!Ebp zxS<^R3+q@41k{Cd9uDcl6EitmUX_%MV(qEx=IzyD;@EC!dG4jT z=kC%IDHlxCACEUm4(pnyxQ)@Iowu*+urqcR^LbzR5GhIlU2(TKp(!I-(dxyO)VzSN zOW3bY6atqvW`ho2>#5<*TN9@!3|hPlWe^ek3W0hmqqO5DU8G8Dz!JFb3z~ z(Jl%$pElkbnR$F>%@|Y*_|j(&W-zNomohe04BRXRd|CafIN9@~WQm(wlcsR%i1Y4I zDAs9*GGy*eK$}jDbSxSI4@QiAZxoT;PU-t068hxQA z-)y5BCpT!%YsljgW%LE)50nzxU;U&B3t(t8=TxY(sHkSU?yrHO>+fKmH^{b z?zJJ)OJ&}_OrkfaBa+weFofMK2(dO|RK`2%Gj0+IA#JX$6hpNE3SL%GNd_#t!F3?v_&p`Eju`S7x>bqK(Ov|-ZwfY% zJ}0kw{&IShpEYgqY&ZAgxr=@Jp8256MeCPTY94@Z%Nt=bYZr~G!54d41D`YbupgNh zwlgg3_r8y~j^u399*dJDY$_SICHyKRGVE;d&J(DKQ(`l*{}|qS3|ORhpQ{U}cM*>+ z3$J=sL`~tQobKqj(^8!cXVb2>B|c%pfn1UWLp4(0-De_Epe$m=g43?JV_13ytK5rG zQcsrd&9n25iLPZaCG?2HKBmBK9CBddBz(o0e9jCSXFG%|IVso`l!Q1Py)PwZRTS z-Aogw8Fd}lj$c_=b{^zV+4a&4=D#y5aYCGlDv+SbB1G2j1NO69HH|G+vjds_gYMA4 zfr8MSjo9u@mH1RvI>fiLI``-yDt+LsS2T-YH0*<_luidMJxQkU#R@>D9C%iT&b;R8 z=zplX@g!cG;yW46fc-O*-oR|@Sn^2=@H=DJZK-(P5_{4U&|iq~BT}sp2(!vaBb0yz zI11JWo1#7g_xvfQD)algey7F5W@LFw1vJK#s)~FUMbN2}`6B=FqN@< z;^5wFtl#M(teWtO7MdW|-OocA0#~qocu99@l7jZV%4GRBxIq|VC$SZfk`aQjF5bTZ zrlWT~>#c3sFYBfyBEKkU(^Q+;Vr3+$W1no_;7#*iE0PbEKB*W4N4HDbP5om)xav)b zVV-s#ZKUZHuQTgKSgZ5erFXp$vnD6Yxcp}b3f%hZU%Ke-(FF6poMucn6p!b0x%N*1}Dpj;qQ`T$0ta#V2%mtM}jfA;Uw*9U2=C-;Rf z(K;pYs?0kSgCMP+)!O>%+%et(oUge^X0H3UoYUZNCF9<}+Kxa%9B=gg6Q7=|RP!;& zIi>Wnt;GNHG6?}&vwjTEJI7mMXZbR$B8T%kHGA{7GwQWASO3IUK!FbW(plngVq3eJ z(XmteDn8U`5}%!!xI#S))vPPAU|*+F6}a47JyYGJ1$Yo}ZDf06&srrO3aK=qETJ*j zpD$sj@Zw*SBdaT`22Z}G8FrW~qzUbrtNUSirkEOQq zt||h;BLXpIC46`SoIj(=c~OYT*}01P7K6sYF%*L9^!Vh(qB)p^x3pWYvyO8$#>Muf zzQHAx-pvi*5jf$g3P}Acx{aQSS2l_I>Qir+KlcM4UNJ?#JJtf%L}aOiwY+^+zqKAz zTB6BF1G!TCqcFnLlhhunGO%KPaP?~boa+L4TFS5CE_lXQx`aa$$CP{m;7|zm5v`S? zhbq`0WWP(kQU zt5d5FKJiCsKG_KOGb$r|M|1EvTzevX@$`*8!TF_Y{L3_zY9~RWxQx|=QRbL|+5Nz7 zw^SR0s#&wT0})dHe>gfSA)3DS_SM*c+loEBq5t$RWT*iTQi$w4|WRNP*l`HXT%L0*j-=&<#ue&l|( zN%IekT}lCwwIDVv@X~ewV)5#al{o<&UmYu&La-OnT_?Aim;EH|=^K{eqYjU6U-s2Y zpX5gdLJdgkA{YP{j{Eoa$7ArYKLv1hRrX{DF@lLg7D}h8HhLE`7hfq|m|A3#jBUWC zisB(ciRg+T)ochG1 zL`jtLqFzm6JZOI2{kq-obl7IK%n^b)t>+k0wV6#mZ+PayOBAR(+ybDp6*f42IAyS-}3vi@3w4AAgm7lS!*q;{{0`B`(pgj$aoNt~Xw z+Y{1_Vp_;d5)NNXK@_XDDIDoxHe<%%5mBu(0&V@Nn#y&K(_XvQO08%hGd!EPMEPAdA(5@qpGu(O<&}NN+`y0W9zzGWz6V=v<2iJH*s{A5Rmc*1X z?A$i4pNTLE!e|AMXRqXZd?NRkfN|_@q%5+DjV;oAmf(Z~WgD`;XvMc?aw>vAU~PmDA*V^3O(L4oXUEp0Yq2 z$CXXk(CWA_N)SF$|3hGbZ>-%mheuTPl)&C8?Gt9SjxV`3$>NBNQ8w+kYSxx`=PcPu z@=IVqUy}odD_(%Y+PTqjhAO+>XOh2cO5Xch;52{{p6HR3@3k>&(!*Qt^Bt^vs80gc z&X6%wj(T7YJ=WXt&9a}I8D@B#cCU$f^fKE?SWUdvlakdZ*5Dmlh(2bjZZR%L#8|nw zE#`W}qt>O^oVPv--Q(OMZlvixDkMPw2qk}{b@4k}a(G%5eIqzAlKA0aKPp6JTGNkq zCa07RwIA1CGP)yd?UDqT(WRuvcUhbl^rDQSKUjbHeU;?-W#B$(V2-t% z8*u&>)cVHZ`p96PZ9fkeZr(iZI#^av6NqIK+%KkJ7oD;$ZGr&)xVWEB;d5gDdP+Ax zi1l-u9sW&ktTe!`oOHHH`%GjwbwY@uP&1Pg0!Zw|(EClj#$7{W^T_gdDMD^G%}Fv; zov}3y7U0U2vsC8&{s52PTF*;bo8-cf#p>^srnT{qd)%!aySvNf#mz(RDJwk)IIms; zZY6U!i5GNOIo89qL^;bgI?=E5&ksPCOC&+b{r(V=R|<_`WYZ^bf7;ITK~a;>df5!@ z15dV;_N9u}ocO*^gF=(4KYib+L%>Ji$9^6g>+2D{)NaD{o9}*6>EGqWf>xErBTqkY zB>c;z2L>{2RF!0va*{!Ak=MYXof5UZQ+I)54#&RS&s)1-Sk@AZTIuow>^@eX@J&mi z&FAA(S0AMFal?5TEozvDy}#eod-+)38MqQD?9Erx)H4cu6&eKhMmxX4-L`7m;!?bI z+vyl~Q%XAhWTe6CyWAaa9n;g)%vbPOV0!>Q>vcKi>+tDUUawbbP6Obyy58IgZ29K+ zRtf+{z6ct*JyhxENXYF&P%e(I=0Rvn?1P5Q3>Z1M1&Er_xnc?i2KN(`xm36r^iCi7 zP|ckgbe{pou|;PeRKhJ)OZMKP{7J4d zlxfgTNCoV>mUsO^Br;$s;0w&6UQ2148Y1u&AbQm6p-w_c?IzUh^#yC3o8ClIovkoN zV$#kS?bQ@=&aCfU5YAJRh*|>SPWnHnq61+(P~FAUZjUlUHq$2#LEOTm6b1!C-fozo zi)h2MUr?T5k%aR436W{%kp`)nM+_+oz)mdCg>j9p`s#VuPIGr?-2Cane@%Lq##Wk@ zq^`b4a`eWBU}~KqMm}1{nbjOa@(+fZArAaz6IaUB3Ey&Hdi#jakvQZvvWKUXGA=0R z!df11GY9@Ps#tFLa0W1taLj7n`UW8I0EOT3bNvyrHU~cx_D{Ls@(%#yfKDcJ2z^GR z%D->ds*BYxn#@^dD>k@72JUzEMT1oLB|lF3pH7TmtC_m{z*ds;$SEGI<&grpI!>!c zCH<5ZP##WmFyA)?86G%1=I7|5558->!y3rem9+!Cm+WTUR}=%k$iLpgc2*s z?3Jg*%)4?F|B2@_XYu*!S>NeR+zjpiUkf;ayX(=^^x6$iy zT&(yRU)FeWu`Rm1T`P`GamHqNd)mL^yRgR+s4-XUxrFR-8o&)Z2fJ-_yybLK*}guA2400qtnyDvhtR}>zqvb5{JD^81_jpuBq?!me~AI; zeL=!v7ACKMwBT~B!l@thsgqSn*X3~4H$JzcH9aD`l`CM=!gp!F^o?QPLp)=_9F61} z@+?IB%#Gh)FR-P`&Kxjt$?LbYTP0o!X$+t;dl2Eb%Q&o6_+r2ynoNeDe#3D#>!|t) zbceSzw9EkDm=BF%7If=nS4S+*qXg1@?;xC0ACSK46xx%4^$^PrzQ+Q-r#nwJ?o~Sn z^KY@AU*D`*6ofnVU)PT*DQaj2)*iQz``UuxJssVUnMpp&HW@CaX>E*OW=5VBz%2vd z{9?v|C;uQX2r8=WfxMlDJ&C)!*QwC~<62bgh?H{z$vD@B?+y|S_0brXj7JE!OIST% zYlW4vo()uf-WHpkzM+%;<4@cN5dlIQOl8B#BsySm_NMhI76jPqG#|{OzQsUXo<}JN z?2Te)TOVzrub+IdDF3>1AQ|)@H0k8sT+6Gl+J$(aKeNFNmAvaGjyvC=aF7S2z%582 zKb}#W9g5F$T14)?hG765W0y^WDgAaI_IkOE(vr`A7chtL$;eHqPkTwrQoPjeQX zvMKX#FTpTOu<>63NLdweAwq6zGJH4`#aF+ze?)$T>hOJgHyRBq8w_PYC+eYBzZFf8 z){VB`E*P3bMEsaES?QNt83lYT_ZNH~Yxk0UJL{=kh=(|p;kVAWG~Dgv6w^lpq_wJ9 zl%s&S((ho!m9zQ}Kzk?KSlLHS50sM+m=Qd`5En>k$=grG3A8k*syw|9RpA1$n7Ir{ zr__YB+ewyOtGztqmt^L!tSms9ZQ}@kW@D<)_BqGp4zls1xAi9$DCLnXB9KQ-)L#zt z@Dy3*06nksfRb%bo{cay1W)vu0x#nI?A1I&=^PI?0JdJ>6neP%sZ1voLp!Y-TEsR` zK4modb+<#VYpJfiVYc?AOf%$rCxzFW?+rAo%rz)%L*Cf(*vw=Wq zLA^tgv0C(0VZfh806Rl0+w22j6j5Ti>1q+wyp%YOs(1JQHjMu$&3E&uu$qG@lh~;Q z0b=0#gs|fH=j#e8W6D2b+02GW^a8%_^t#rLL3~FcT=^gHi4Fml>)6@WTE?3$&4E7z zTumS;Xp2d)>x1cSeVzLu=zsMru0Qhq$y+XUTUXW9oNgF#G8xAVVSAu)LfL1Veu24G z4DjgBp{X>`+2Z@xN@*GJZs*94>(nM#W=-OQApw8=49|p#`3)-?aO*U>jMyc-u#+bu z`PEzvDtBr80lz$ZE-rlUq1h^bfl)QMqyaXu{PmN`hYzsbN?`FJp1iYk%p6Bs)_?R~(fWZA zxrEVL^SF%D-7nF_5&V; zg1)R?sqm|cuubmkRY2-dOb%`Eg=2HN5SAc_eCL16GbvP&+Zq(>GevmO{r}nix655kpO2z0+9dzPDl#-Kf&s-c<-r`SIwy9NQA$r;2 zZE))i0=R8e#|0+IDkf?7l4bnMcha6OUuso&0+M6z z>R5z7u;ol2UDX^g0`1Lgqa{ndsTy=tmnMto`Ps6`dfAdf$h;nJD(19+!|8LwiGyEv zy{XG$zR!ptIsO&Zw-~!{h26Z-e;?L+-aG%$g7h^(=QBYazm>eoga&N$n(G9tqTl@MDRE0fy+{t8BcHm(X zSg%B;zfXa?pVSNCpm7u)1Z}_R-TJLN1`)7q-}-mZzu)^c)hKY{6MEAI>rir6((HjN0Nz+T2`f>Q3({oFkjMqUO##ax?hO(5)LEH3#2wMq#;1rdVuBBav>WqWxtg(X0 zmA~;0jtH^l^aW9UsJEUJyAMUfU5ns3M&C}FAT7;!<^?Bq#+uq?VyYlZo1GWdV2@?NQ-1QDP`2o!#`!q(ZDt z37<`cz}ponkmohPJ{$Yop^tCv3LjVeB(kx{ump=gepPn>Wjt=v0RvQOlyW4t zzlp)Z8cL-Q)ZZC8YLF60VEN#!i(Zm z7(~h6+*hYNc_&`pnW0)KRJ;EXfE*h3K{~0eGFY+D|!k|?^P^CUkd?R#_IeRt$a>81g>-{Zj3c?@w}+g zi+9GdUpUN*`4(BW4aqp?Mb)qAfD`7V7tUGhZL?nYi|-d*GIVvk_@F$AiTyl`zI?x- zoH;pgi|A_l{z}aEU(3y}8(492vDQXpdz$U64YYfsLe*rnI?eJ0wFGtj>;1IdxQaxY z71CIat1>`Gk{jP-12< z`qa*<)d&9p>Wzy`PVL2%P_E=3wk>!l`bYEnKBb|K06=LgTlhd+P@NbFa_6|1|M z?xB2sLRt1~&(FQ>Yf#y09?{F$@8lGSASTeqm@b6i1C(X->*uvUA1s?{zdW{?n#NN> z%vk^ij0Yt9g{-Z;k7mjMS*stQT{@+G(Jb{>p><{MIOfIYAiZ%+oY`xE5^hK0K=fPa zN2#Olm~ZB|`OmL%liR<4h<%z*rI}Ev`q#gK;c)TPTc3awr0ULKq%8(RbErUv<3SZR;Oc5e^>+t02(=bd`6k?k z!k7Z=>FRhytiry~c;>Fs?Z?IjH5XTlXT46z53k&azk4B;1H}vh3!fg~-d}O>kGBDE z$7v4UWQtYfOdOzxof3s5;G#&@=qw9g(wAhrE>OMa)L>E>opTJ;N9#~ba+60@S%(iH zf0&E$Hhp>5xPdq4meZx3PnG-W7htS?7PyzPySSg-;W-$eB0$?2s+vUal=*Hf09Tuh zAYrA2lv!6P+Cno?16pow11?$@Ic<0qI!Ljh7W;Cm z8&phMReE6|^lPkBtM-%O3bc;@BHm=liXz-!;-9z2KQ$mwqs~G7d$U6iyUdF;-JYGA z6h+IMwY-8Z1fW<%^V>XMOo5-KJ#DCA1%~+AoJ=@G>$C(J;JVR4iXnB>5p=m1?y#u(>wD{ZP zhd6Wn--R78H~w*)>4jck|BB(b68F?~9@VluUikgnk4%(>QmeLBi&>C1R*V%0710Mc zJPHaA%}F?~UpjGi4LOUY&-OOXiT7mdY4S~WLV%>ig>l9^Z^Y