From 40a168652e4044ad999372b3315d21ea1f3e5cd5 Mon Sep 17 00:00:00 2001 From: Dmitri Soshnikov Date: Tue, 22 Jun 2021 22:56:47 +0300 Subject: [PATCH 1/6] Fix error caused by different rlboard.py version in root and solution dir --- 8-Reinforcement/1-QLearning/README.md | 2 +- 8-Reinforcement/1-QLearning/rlboard.py | 5 +- .../1-QLearning/solution/notebook.ipynb | 73 ++++++++----------- .../1-QLearning/solution/rlboard.py | 4 +- 4 files changed, 37 insertions(+), 47 deletions(-) diff --git a/8-Reinforcement/1-QLearning/README.md b/8-Reinforcement/1-QLearning/README.md index 8537269c..d856c0f1 100644 --- a/8-Reinforcement/1-QLearning/README.md +++ b/8-Reinforcement/1-QLearning/README.md @@ -222,7 +222,7 @@ for epoch in range(5000): v = probs(Q[x,y]) a = random.choices(list(actions),weights=v)[0] dpos = actions[a] - m.move(dpos) + m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode r = reward(m) cum_reward += r if r==end_reward or cum_reward < -1000: diff --git a/8-Reinforcement/1-QLearning/rlboard.py b/8-Reinforcement/1-QLearning/rlboard.py index 2b877f0b..23418d83 100644 --- a/8-Reinforcement/1-QLearning/rlboard.py +++ b/8-Reinforcement/1-QLearning/rlboard.py @@ -108,9 +108,10 @@ class Board: def move_pos(self, pos, dpos): return (pos[0] + dpos[0], pos[1] + dpos[1]) - def move(self,dpos): + def move(self,dpos,check_correctness=True): new_pos = self.move_pos(self.human,dpos) - self.human = new_pos + if self.is_valid(new_pos) or not check_correctness: + self.human = new_pos def random_pos(self): x = random.randint(0,self.width-1) diff --git a/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/8-Reinforcement/1-QLearning/solution/notebook.ipynb index 88ba802e..fa84de2c 100644 --- a/8-Reinforcement/1-QLearning/solution/notebook.ipynb +++ b/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -10,15 +10,15 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.7.4" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", - "display_name": "Python 3.7.0 64-bit ('3.7')" + "display_name": "Python 3.7.4 64-bit ('base': conda)" }, "interpreter": { - "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + "hash": "c77bccf6af5544921fca6eddbefe5e7c44ddf71c61b63c74bd828ca1d0e389a0" } }, "nbformat": 4, @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -85,15 +85,15 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ338c/v1l7V3dV7ErKREDYJErZAXBgFQUQF3EZwY0RFfcBldMZ9xgURx2VQ5lExKhFxwZVleHDBCCqLCCiEhC2BBEjSWbqru2uvu5zz/FG3mwTT2TtVlfzevOpVVffeqvrlNv3NybnnnBJrLUoppVqH0+gClFJK7RoNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRYzacEtImeKyGMiskpEPjZZn6OUUgcamYxx3CISAR4HTgfWAvcC51trH97rH6aUUgeYyWpxLwRWWWuftNa6wHXAOZP0WUopdUCZrOCeDjyzxfO14TallFJ7KDpJ7yvb2LZVn4yIXARcBBCLxY5//vOfv0cfODw8jOd5W74/fX19e/SeY2q1GoVCgd7e3r3yfpNhZGSEWCxGJpNpdCkTGhgYoL+/n0gk0uhSJvT0008za9asRpcxId/32bx5M9OmTWt0KRMqFov4vk9nZ2ejS5nQ5s2b6ejoIJFINLqUCa1YsYJKpbKtLAVr7V6/AYuA327x/OPAxyc6vr+/3+6Ja6+91vb09FjqfzlYwEajUfsf//Efe/S+Y1auXGkXL168V95rslx//fX2rrvuanQZ23XppZfaXC7X6DImZIyxl1xySaPL2K6hoSF72WWXNbqM7brjjjvsDTfc0Ogytuuqq66yK1eubHQZ2xXm4jYzc7Ja3PcCh4rIHGAdcB7wpr39Ib7v89Of/pT3v//9DA8P/8O+r3zlKwB89KMfJZ1OI7Ltv7yUUqqVTEoft7XWBy4Bfgs8AvzMWrtib3/OunXreOtb3/oPoT2mUqnw+c9/nt///vd7+6OVUqphJqvFjbX2FuCWyXp/gPXr1+M4DkEQTHiMiLBx40aCICAanbQ/rlJK7TMtPXPynnvu2W5oAxhj+Pvf/77VhUullGplLR3cr3vd63Y4QsFxHM466yySyeQ+qkoppSZXSwd3LBZjwYIF2z1mzpw59PT07KOKlFJq8rV0cPf19XHxxRdv95izzjqL4447TkeUKKX2Gy0d3I7jcM4553DTTTdx+OGHb7Uvk8nwk5/8hI985CNNPcheKaV2VUsHN9RHjfz85z/n8ccf32p7qVTiy1/+8tgEoPF7pZRqdS0d3KtWreLDH/4w11577TaD+W9/+xsXXngh99xzD8aYBlSolFJ7X0sGtzGGxx57jA984AMsWbJku8f+/ve/5z3veQ9/+ctfdjh0UCmlWkFLBbe1lmq1yhe/+EVe9KIX8dvf/nanXvfggw9y9tln85a3vIV8Pr/lmipKKdVyWmoqoeu6XHnllXzyk5/c5dfmcjmuu+46UqkUX/rSl3SIoFKqZbVUcH/pS1/i05/+9B69x5IlS4jFYnzjG9/QKfBKqZbUEl0l1louv/xyLr/88r3SxbFkyRL+5V/+RS9YKqVaUtMHt+u6fP3rX+czn/kMlUplq33HHHPMTk15P/LII7dqXXuex3XXXcdFF11EPp+flLqVUmqyNHVwW2v5xje+wUc+8hFc191q36mnnsrPf/7znQrur33ta7z3ve9l4cKF49uDIOD73/8+H/vYxygWi5NSv1JKTYamDu4//vGPfOpTn9pqZb9Zs2Zx+eWX853vfIdsNrvT73XFFVdwxRVXcPLJJ49Pfw+CgKuuuorrrrtOR5kopVpG0wa3MYYf//jHVKvV8W19fX1ceeWVfOhDH2LOnDm79H6O47Bw4UK++tWvsuX3W1prWbJkifZ3K6VaRtMGt4hw/vnnM3/+fAAOO+wwvvvd7/LqV7+aeDy+y4tGiQjRaJRFixaxZMkSFi5ciIgwa9YsLrroIhynaU+FUkptpWnHw4kIL3nJS1i8eDE33ngjr33taznhhBP+4bhd7eIQEY499lhuvPFG/ud//odFixZxxhln6OqBSqmW0bTBPWbhwoWceOKJ2wzWcrmM7/vbfX0QBJTLZay1W73HlClTuPTSSzWwlVItp6n7B0QEEcFxnG0G7LRp0/jc5z633fc4//zzedGLXrTN9x57Xw1vpVQraerg3pFIJEJXV9d2j2lrayOZTGo4K6X2Gy0d3EopdSDS4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFtHRwW2t3OOXdGKMr/yml9it7FNwiskZEHhKRB0TkvnBbt4jcKiIrw/vtT23cA9FolNmzZ4/Pikwmk8yfP3+r2ZT9/f20t7dPVglKKbXP7Y1Fpl5qrR3c4vnHgKXW2i+KyMfC5x/dC5+zTQcffDAXXHABtVqNuXPn8vnPf56rr76apUuXEolEOPHEEyfro5VSqiEmY3XAc4CXhI+vAW5nkoJbRFiwYAFLlizZavuFF17IhRdeOBkfqZRSDbenfdwW+J2I3C8iF4XbplhrBwDC+/49/AyllFJb2NMW9wuttetFpB+4VUQe3dkXhkF/EdRX8Fu5cuUeljJ51q5dy8jISFPXODg4iDGmqWsslUqsXr2awcHBHR/cIK7rNvU5zOfzlEqlpq5xw4YNTf/7MjIywjPPPNPU3zW7vUEVexTc1tr14f0mEbkeWAhsFJFp1toBEZkGbJrgtYuBxQA9PT329ttv35NSJtXIyAhr166lmWt84oknSKfTDA0NNbqUCQ0ODnLXXXeRSCQaXcqEisViU/+cq9Uqd2++mxtvv7HRpUwoPZDmtMppTT2aa926ddx///2sWrWq0aVMaLvnz1q7WzcgA7Rv8fgu4Ezgy8DHwu0fA760o/fq7++3zWzlypV28eLFjS5ju66//np71113NbqM7br00kttLpdrdBkTMsbYSy65pNFlbNfQ0JA9/rLjLU3839Q7ptobbrih0adqu6666iq7cuXKRpexXWEubjMz96TFPQW4PhyKFwV+bK39jYjcC/xMRN4BPA28YQ8+Qyml1HPsdnBba58EjtnG9iHgtD0pSiml1MRaeuakUkodiDS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWswOg1tErhaRTSKyfItt3SJyq4isDO+7wu0iIleKyCoRWSYix01m8UopdSDamRb394Ezn7PtY8BSa+2hwNLwOcArgEPD20XAt/ZOmUqpViIijS5hv7bD4LbW/gnIPWfzOcA14eNrgHO32P4DW/cXoFNEpu2tYpVSrcFa2+gS9mu728c9xVo7ABDe94fbpwPPbHHc2nCbUkqpvWRvX5zc1r+PtvlXr4hcJCL3ich9lUplL5ehlFL7r90N7o1jXSDh/aZw+1pg5hbHzQDWb+sNrLWLrbUnWGtPSKVSu1mGUkodeKK7+bqbgAuAL4b3N26x/RIRuQ44CRgd61LZniAIuOGGG3azlMk3ODjIE0880dQ1Ll++nKeeeoqNGzc2upQJbdiwgd/85jc081/U+Xy+qX/O5XKZzECGuTfMbXQpE2pf087y0vKm7ud+8skniUajLF++fMcHN0gQBBPu22Fwi8hPgJcAvSKyFvg09cD+mYi8A3gaeEN4+C3AWcAqoAy8fWcKdF3hve+dsjOHNkQ6bbjggjRTpjRvjU899RRXXZVlZKR5a5w3L8G55/aRyWQaXcqEotFoU/+ci8UiJyZO5ItTvtjoUib06PCjFJxCU5/HdDrNF7q/QHlKudGlTMgVd8J9Owxua+35E+w6bRvHWuDina5s/HUOGzYs2tWX7TPZ7CqmTRti0aLmrXHjxo2MjExp6vM4Y8ZSjj/+eOLxOIVCga7uTjYOr6c9kyXvbeJ3wz/gyfIKHC9KQtoQE2GgsJ6Tu87kjDnn4ZZrzOibRT6fJ5PJMDw8TDqdxvM8giAgk8lgrSWVSpHL5Whra6NQKJDNZsef12o1stkstVoNay3JZBLHcRARrLX8+Mc/buqfcy6X4957723qGo0xDA4ONnWNy5YtY+joIUbnjTa6lAm1OW0T7tvdrhKldou1hiFvPU+WVuBguGngm8zLHIdrXOKkOCx+EutrTzNaGeGIzmOZ3fN8OmJd/Pttb6Y91sPFx36Kvvg04l4cx3EwxgDgOA5BEGCtpVarISIEQYCI4Hne+H4RwXXd8X+G+r5PPB5v5ClRapdpcKt9ymL5+6Z7+PrfL2NKZgqzsrMZ9T0eXP0wa9Y/w/PmzSTmxXn8yVUMHjbCnOyRCGtJ2A5S0sFPHriaw7uP5uXzXk0ynkJEiEQiGGPG+1Q9zyMWixEEAdFolCAISCQSiAjRaBTf9+u1WIvneRrcquVocKt9ypEIJ/SeyjTvNzz02DJGMmmysRrFQpxEeSqlZ9KU8mVWPLSZDaUc5VlFciNV+vqnsWLt3Rzdfxy3PfoNTpy5iPZKJx0dHRhjqFQqdHZ2YkxAMpkkl8vR3t5BPp+nq6uLwcFB2tvbqdVqdHV1US6XiUQiJJPJRp8SpXaZBrfap4wxZCJprnz1lVx4/dv59fJbMDVI2SRxG+dvqwLesPB1vOP0ExktjRCvxFlb/jXV/BCDuWFWBk/gexHO+darufV9twEQj8dJJpNUK2WWL/0iq+79Ib4fcOSiCzj+VZ+jUCjQ09NDtVollUoxODhIIpHA933K5TI9PT0NPitK7RpdHVDtU47jkEgkqBYrfPt1V3HWEa8kGokwt28uJ887mecfPJ+nNj/FinXLGSrkGBgaIDM0m9JjWY7uOJLK6CCYKsGo8M4r34mIUK1WyeWGKGxcwRMr7mA4X2X6/LPpPGgBhXyetrY2Nm/ejIhQKpXo7e0lGo0SjUbp7Oxs9ClRapdpi1vtU9ZaXNelq6sLz/P41uu+yadS/8Gv7v8VI8URMpEMaUlRE5dNQ48yOjxKe6yDcxadQ7FQJEU3Q5s34XStx93oEQQ+sViM267/GpvW3MnwwDMce+q/8uKz/xXfr++rVCp0dXURBAHpdJrR0VEikQjWWorFItlsttGnRaldosGt9jnHcXAcB2stXaluPvfyzxGTBD//68/YmNsEHogHEgjHzjiWVCTFkwNPkoqmaI/1cMisI/jJ765h7hkbWHLDd3nbqy7g3tt/yZRpMzjn3Vcz5eDnj7//2DC/SCQyPqpky4khuoqdakUa3GqfcxyHYrFIJpOhVCrRkejgi6/8Ap97xad5zTdey3B+mFXPPEl/ey+54hBtsXaq5Sp4ls2bh2iLZTj9+LNZu/Zx/myv5y/vXUJXYDnzpW9h9pGLiMVilMtlEokEtVqNZDJJsVgkHo/jui7pdJogCDDGEIvFGn06lNplGtxqnxobZ93T00Mul6Ozs5NSqUQ8Fsctutx88c2sya3hf+//X0rVEo7vkImnyY/kwQqVcpVEJM4bX/ZGTjjmBP607Hd8567/5J9e+UaOOflVBEFAsViku7ubfD5PNptlZGSE3t5eCoUCqVSKoaEh0uk01lpKpVJTz/BTals0uNU+JSIkEglyuRypVIrR0VFisRi+79PW1oa1lnn983jf6e/DWks8GmHDHb9nw19/RTqRpOelr6Bz0WnEEgmGh4fxNvhURoQXvux1xONxrLV0dnYyuGYN937v/5Jb+zRdhxzJ8Re8i87+vvH+bmMMxpimXjdFqYlocKt9aqzFnc1mGR0dpaOjg3K5TDQapVKpEI1Gwa3i1Ko8+p/vw7pVZrzmzZzw8csx4hCLOKxe/F8MPXg/fmBYNThCYvMmasvv5b47/8SmZX/DCwKOfOOFHPva83BrVYJqjZ9c9FaK+SJn/+dn6ZhzCFNmzsJxHEqlEolEotGnRaldosGt9rlIJILneeOzGMcuJEYiEYLCKOsXf5nS06s48kOfI9begTcyTPXJlSBQszD9tW9h9tsuxi8VmP7HpZzw+CMM3fknDn7xqRz9pnfi+y6l4WHcwiiBBYPl7E9+Bj8w/PlHP2DZHXfw7u9+n7nHHU8kEmn06VBql2lwq31KRLZaR2RszRBrLfg+T33rcoKN65n75vfgbt6Av3kDgmVs8IdYcJ9eTdVaDNBx+JF0LjiewPWpjAyRf+oJAmsJLATWYqwlMGCsxTeW4151Np4x/OjfPsR5l3+JQ086qXEnQ6ndpMGt9ilrLb7v09XVtdXFyWg0yjPX/5DKqkeY85b3gFdFDIiEt63eox7gYAnKJVxr62EdBnRgLMYyHt5+YAmswQ+PmX/KS6lVXa5677v515/+nCOPO65BZ0Op3aPBrfYpx3FIJpMMDAzQ09PD4OAgmUyGWrlE7vc3cfibLyYoj2IdQAQnbKE7YXJba+utc0s9wcdC2liMsfjWEBhLEIAfBrdnDL4F3xgCIwTGcOQLXsimtWupDA428nQotVs0uNU+NdbiTqVSeJ43fmFw6I7fE8+0UR1cR8QRnEh9NQaJQGSL4Da23qq2RiAwGGuwFqwJW9pmLKAtnql3j/jG4lvqAW7q3Sieb+iZMZtvfuD9fGfFw4j2dasWosGt9rmx2Ypj99ZaCn+7i/TB8wgqJcQRrOPUV9JxBHGESJjc1ljEWqwBG9hwWB/hfT28A1MP6WeD2+CZZ4PbC+qt8IMOPYRH772nUadBqd2mwa32qbH1swuFAul0mlKpRDqdJhJxsIFLUCnhOIJxHKxDPcAj9fAGwiY3YAxmLLgt+EE9lP2g3uL2wxa3ZyyeH+Bbi2ssXiB4QRCGOONfxKBUK9HgVvuUMYZarUZnZyflcpmOjg5c18WtudihjSTCdUwkIjiOIBFBHId689viA4Ex9XAObBjQ9ceeDVvTQT2wXb8ezvn8KJF0BjcYC+9wfzgJR6lWo8Gt9inHcYjH4wwNDdHX18fw8DDt7e0kO7IM/PE3xB0HOjshDG+c+pAS360hiRSGse4PqJUKlAc34waGmm9wjaUWGGq+JXCiRHun4CGMrl9Leup0XGPwAqgFAb6BzQMbcKvVRp8SpXaZBrfap4wxuK5LX1/f+LfWuK7LtNe+jc13LmXksYcIps8i09uPcQTjCL6A/8wTxGYeggUqG9fj5Uep1mpUi0WqfoAbWCq+peYHVAODi2CeeRqXCKmZsxgdGEAyGbwAqoFhNJfjyRUPs+BV54KuEKhajAa32ueMMePfEzm2zGrioFmYaByvVIbVKyEIiLe14dmACODmR5Flf62P1Q4CvMDgBgY3eLZ7xLcmHLsNXhBQHclR8w1Dg4NUvAAXoWPmwQwPD7Np3Qaqrs+r3vteXdpVtRwNbrVPiQjxeJxCoUAikaBSqYyHeJBI4RqL9QIi+VH8wCNY/0w4HFAQIMCOT7JxjcEPBNds2Xdtxvu8/XCEiR94BAF4fkClWCQ3sBFjAXFItWUafUqU2mX61WVqnxr7BpzOzk4qlQrt7e0YY4hGoxz85ndSC/upS7kc5WKBWmCoBoZKYCgHhqpvqPj1524AtbDVvVXL25j6jEljx0eX+OHok3xuuP6N8I7Dia97LZLU1QFV69EWt9qnxpZ1HRwcpK2tjZGREeLxOJ7ncdALT+fvBow1GOthCmXwTf36pNTbGNaacBIO+OFkGze8WOmasdEiFjeo7/fGAtxaJJmkWqnVjwl8FrzkJcyaO7fBZ0SpXactbrVPWWvxPI/e3l7K5TLZbHb8m2gKpTLtJ55Sb2X7AcVCkbJXb2GXPRM+tvUWt2+o+AGVcERJ1Q+o+QG1IMD1LW4Q4AZmi7HchlKxjFtzae/r4+XveTeRZIpcLtfoU6LULtPgVvvU2ASccrlMLBajWq2OrxKYam/nsDe9g6pvw4AOqIajRap+QNUPtgjtehdK1bfj3Su1wFILu0vcQHANuIHdary3Zy1TDj2UfG6YRa8+W79IQbUkDW61z1lrx5d1HZsAY60lGo3SNe9wZpxxdhjUYavar/dtP9u/bal49f218LhaOMrEC8O73l0S1EPcWFxTn135vFNeQiBRXvC61xONRvU7J1VL0uBW+9RYaKfTaTzPI5VKjX+JQqVSwcm00TN/AS5OvdUd1LtGyn5AeTzE/frFyvHn9dZ4NaiP4a4ZS9WvT7ZxTUAtbG0bceiaPp1CIc/Rp5xCEASUSqVGnxKldplenFT71Niyrps2baKnp4ehoSHa2trwPI/Ozk6CIOCwN76NJ+64naf+tBRBxtfkBrC2Pu4bwLfPDg30bH2dEi9cf9sLu088Y/ECg43GmX/KS7l36e184+47iSeTWGvp6Oho4NlQavdoi1vtU2MXJ9va2qjVamQymfEJOdVqFdd1cUQ48uzXE8SSVIKwb9sLqHjPtq7LW/Z5B5aqb+ut7bDbZMthgj4OM59/LB7Ci1//OoJYHN/38X2fYrHY6FOi1C7bYXCLyNUisklElm+x7TMisk5EHghvZ22x7+MiskpEHhORl09W4ap1RSIRgiAgFovhed747MloNDr+HZCzTn056SOOoupbyr6l7BvKW16YDLeP9X/XvHp/d238ouWz/d798w4j3dXNmhUPc/RLX0qmrQ0nXMwqGtV/dKrWszMt7u8DZ25j+xXW2gXh7RYAEXkecB5wVPiab4qIrlCvxo1956Trult996S1djxMoT4t/pWXfgWnq2eLwA7CALeUwouSVe/ZMK8EUAlDuxoEmGiMjhmziba1M5rL8doPvJ/DFy4kEomM16EXJ1Ur2mFwW2v/BOzsYNdzgOustTVr7WpgFbBwD+pT+5nndpWk02mMMTiOQ6VSwfM8AOLxOAfNO5Tzvnk17bMOpuKZ8FbvIqmNje8em00ZmPGRKDXfUvMtrhWqrkc+N8yxLzudl7397SRTKQqFAkEQ6MVJ1bL2pI/7EhFZFnaldIXbpgPPbHHM2nDbPxCRi0TkPhG5z/Mqe1CGaiVjMydHRkZIJpPk83kAfN8nk8mQSCSw1lKtVikUCsxbeDKv+tzlHPvaf6ZmZXyUiRuJMufFLxkfIlj1A5K9/bRNPYhqENSnw9c84uk0r3nf+zj9wgsREarVKp2dnUQiEaLRKO3t7Q0+I0rtut3t4PsWcCn1r2y9FPgqcCFbfxn3GLutN7DWLgYWA7S3T7G12m5WolpOPB6nv7+fSCRCX1/f+Op8Y90k0WiUdDo9vu34089k/qIX8ep//xgQfsu7I6Q7OyluMfMxGk+AyFZrbMeTSfpnzcKEQw5TqRQiMj7xRlcGVK1ot4LbWrtx7LGIfAe4OXy6Fpi5xaEzgPW7XZ3aL23Zlz12v6XIc76413EcYl1dtHV1/cOxXVOm7tRnjr3j2OdpYKtWtltdJSIybYunrwHGRpzcBJwnIgkRmQMcCvx1z0pUSim1JRmbzDDhASI/AV4C9AIbgU+HzxdQ7wZZA7zbWjsQHv9J6t0mPvBBa+2vd1RENtttDzvsQ7v7Z5h0sViJo44aZPbs2Y0uZUIbNmzgwQcTVKv/2CptFl1dj7No0ZymHsnx0EMPcfTRRze6jAl5nseaNWs49NBDG13KhHK5HK7rMnXqzv1rqBHWrFnDw30P42W8Rpcyocf/+3FGc6Pb/KfhDoN7X2hv77eu+1ijy5hQR8caDjroTh599M2NLmVCs2f/hm9+s4/jjz++0aVM6Gtf+xpvf/vbyWazjS5lQp/85Ce57LLLGl3GhEZGRvjBD37A+9///kaXMqH77ruPoaEhXv7y5p3Gce2113LKKac0dWPs8MMPZ9OmTdsM7iaZfSC4bvO2FD1viCBINHWNQZAik8nQtY1+4GYRi8XIZrNNW+PYminNWh/Ua4zFYk1dYzqdplwuN3WNiUSCtra2pq5xe9dhdMq7Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9lhcIvITBG5TUQeEZEVIvKBcHu3iNwqIivD+65wu4jIlSKySkSWichxk/2HUEqpA8nOtLh94MPW2iOBk4GLReR5wMeApdbaQ4Gl4XOAVwCHhreLgG/t9aqVUuoAtsPgttYOWGv/Fj4uAI8A04FzgGvCw64Bzg0fnwP8wNb9BegUkWl7vXKllDpA7VIft4gcDBwL3ANMsdYOQD3cgf7wsOnAM1u8bG247bnvdZGI3Cci93leZdcrV0qpA9ROB7eItAG/BD5orc1v79BtbLP/sMHaxdbaE6y1J8RiqZ0tQymlDng7FdwiEqMe2j+y1v4q3LxxrAskvN8Ubl8LzNzi5TOA9XunXKWUUjszqkSA7wGPWGv/e4tdNwEXhI8vAG7cYvvbwtElJwOjY10qSiml9lx0J455IfBW4CEReSDc9gngi8DPROQdwNPAG8J9twBnAauAMvD2vVqxUkod4HYY3NbaO9h2vzXAads43gIX73op/9AN3oSav8b66W9uzV5js9cHWuPe0go1bos0Q+HZbJddsOAtjS5jQpGISzZbJB7vbnQpE/L9PJ2dUdLpdKNLmdCmTZvo6ekhEok0upQJrV27nmj0oEaXsR0BnrOeWH+s0YVMyJQNbX4bHR0djS5lQrlcjra2NuLxeKNLmdAPf/hDhoeHt9loborgbm+fYovFjY0uY0LZ7Cq+/OXbeNe73tXoUiZ0ww03MGXKFE466SRqtRqxWAxjTH2nY9hQe4phfyPWWKLEAaHilUlHOjik4yjERIjHYwRBgIjg+z4iguM4+L5PPB4fvx97f9/3iUQiWx0rIuOvj8Xq4fglgXgAACAASURBVFK/TAKf//znufjii+nq6mrQWdo+ay3//M/v5xe/+J9GlzKhRCLH/P88g/s/cX+jS5nQ1DunctXgVZxzzjmNLmVC3/72tznttNOYN29eo0uZ0JQpU9i4ceM2g3tn+rhVCwmCgKGhIZLtcf46fDP9ydn4TpUnig8y4D5FoVqkUB3loNQhVNwK/bEZrEw+wuqhVVxy0idxax4iQrFYRERIJBIUi0V6e3spFot0d3czOjpKd3c3+XyeTCbDyMgIsViMeDxOPB4nGo1SLBabNqCVanUa3PuZVSMP8svhK5BRYUPtKWI2ie9bMnTRm5hOJ12MlEtUjEd3YgaYGL9+4lekou1c+oePcN78d3BQeibt7e1Ya/F9n56eHkqlEolEgsHBQdra2sjn86RSKWq1Gp2dnVhrCYKAcrkMQDweZ2hoiM7OTqJR/d9Mqb1Jf6P2M33p2Vy39O90J7t5ft/zmdt/BE+uX8M1d/yEeYdl6cu0sXLZAJHpPi983ilE/CSpaCe5wiCJdDtX//VbvPLIczmq6xii0RixWIzNmzfT399PqVSiu6eH3NAQ2WyW0dFRMpkM+XyeWKx+bCaTwXEcSqUSXV1dOI4uQKnU3qbBvZ9JkWbxK6/mI7/7d/7fw7/mt8t/T8LEmdI1FXdzglqhl0P7Z7N+ZDXBiOHuB+5mxvxuVm1Yz7wel5HyKNVawCH/dASd0RQiQltbG67rUisM8PijN1HIF+juP4jeuacRBAHJZHK8H9t1XQAcx6FarZJKpcb3KaX2Dm0O7Wccx+Gw7nl86tRP4kSFJ4aeYLgyTFsyQ9ktU/ZKzOyfyZG9C+iozOPgjudReNwiriFCjac3ree3Dy3lsps/D9Qv2BljwAase/i33H7dB7n/lk9x/+++ioTXtY0xGGPGh1Y5joO1tmWHWinV7DS49zOxWAzP9Vg0YxG/fNMv6W3rwYlEGKmOEotHqQUuD69dwebCZh57+lH+fN/dzE7P5+wpb+XBpY9x4hEzSRci/PzXP8fzPQAK+RE2PXUvf/p//8NIOcGJr/8ep1/4I7ygPqrEdd3xESxjFymNMdraVmqSaFfJfmZ0dHS8P/rIqc/jzvffwWu/+3oGhgZI2DhxmyBJgs1Dm7GuYUrXVAIbsHHTIGcf90ZGHhkhmxihlk3xxDOPc8Sco/jj9V/h0ftvZuacI3nRyy5i/sJXkc/naUunqVardHd3EwQBnudRLBax1pJOpxkcHKSnp0cvTiq1l+lv1H5m7GJhNBqlWq0yJT2Vq8+/mv996H/51h++xfrcALiW9mg7z5v+POISZ9PIJtLRFIV8AQmgffRgCh0jfPbGD/KGQ97IqkeW0Tn1ebz6HV+jZ8psqtUq6XQa13WJxWKUy+Xx8dupVH2lxyAIaG9v14uTSk0CDe79zNgFQc/zxifhHN53GIe99F9ZOP1ENpY28oVffIF1g+t5cuMTdCd7iBNnaHCQWtmjWqzw3nPfy/tecAmj6bV8/4r/omtTwIcv/Q5dfTMpl8ukUimq1SqJRGJ8Us5YP/fYxcmxQE8kEg0+I0rtfzS49zPGGKLRKK7rbnWR0FpYNHcRyVSSM593JrF4jGKhSDwirHvycfqyPdQspLv7SMaTdHV2kc8P89icB3jpha/k4EMXICIEQYDjOBQHN+NFI3iBoeeg6TiOMx7ewPixeoFSqb1Pg3s/k0wmx8dV12o1gPG1QRKJBK7r0p5sZ/C+u0h6FQqbNtK+/inyI8N0Hn0sHQtOprhmFasrFZ7ZsImH/nwnJx/3Irx1T7N+5aMkUynybV089eelPL38Qdr6ppGeexhtPb1MP+oophx6+Pg0+Gw2q10lSk0CDe79TKlUoqenh2KxSDKZxBhDrVZDRKhUKiQrBVb/6CoyXT24qTTZvql0vOCfsCIIUFn7FHY0R8L4ZFY/zgtqZezSm1m/bg3iRBn2XFL90znstDM55LSXYwPDY3f+iQ3LH+Tpv99PoVLl3E/8B129vYyOjtLT06PhrdRepsG9n+no6KivVZJMUi6XcRyHWCyGtZZMLMID73sX2bmH0nXKGTiRKNgAd93T9YV7rSUSiZKddwTGWjIzD2Hea88jCAy1cp5oqo3AGjzPpzKaw1gIjGXG/GOYZi2jQ0Pc9PX/5nv/591c8v0f0tnZ2dQrASrVqrQptJ/J5/P09vaOD8mLxWJ4nkd1eIh73nku6YOmM+0Vr8MURjGjOWxhFKkWkUoRqiVsKU+Q24yf24wpFfBHhwgKw4jr4o7k8IaH8Qt5/FIJv1zCK5dwiwVqxXr3zDkf/DDFDQP83395G8888QRBEDT6lCi139EW934mmUxSKpUQETzPw1pLJBJh4H9/RvfMQzjo5WfjDQ4QCYfvORJ+S4YIYi3GWrCCYMEYrIXAWnwDgTEYazGW8LklMBbPWgJr8I1gjOUF572JW5dczYrb/sCcww9v9ClRar+jwb2fSafTDAwMkM1mqVQqxONxHK9G4fFlTDlyAf7gBhxH6kHtgBOGN/WoxhoDVsLQDkekBPWp7/WgNhgDnjEEBnxrCcLnvrUE1uIABx99DPfceCMvft3r6Z46tbEnRan9jAb3fmZ0dJQpU6ZQqVRoa2vDGMO6W2+CmosJPIJKCXEcEJBIPbQjTv3CZGCpt6gNWAM2MBhTb4UHNsAEEra+LX5g8A34xuBZ8IKAwIJn6o+nzpvHUytXUhwe1uBWai/T4N7PZLNZNm7cSHt7O6VSiUgkQjoRoxCPYNwqxgfrOOCAdQQcwYk4iNTDWowFY7HGYoIAM94lErawg3rXiGssfmDrwR22uL3wuWvCbhPfAx3HrdRep8G9n6lUKrS3twOMz1qsVquYWhVTKRE4EHEiGAdMRDCOg3EEB8HYMLCNITAWEzzbPeIbG7amzXiL2zPgBiYMa4sXgGdsGOKGwPMaeSqU2m9pcO9nIpHI+LfTBEFAJBIhGolRWPkIqfYskkrhRxwkUm91iyMgEQQw1EO3fuExwAts/WYsnjV4PrhBgG/rge0GsOmp1aT7p+I5EbyAekvcgOvXF51SSu19Gtz7mbFx0yIyvpZ2orcPYnHyjzyEHHIoNpHAOg42IlixuKUCkkhDLEbg+3iuT61aZuTRFbi+T9W31Iyl6gdUA0MtgPZD5xPE48TSaaqlMr4IXmCpBfUuk/VPP8Xo5s2IjuM+IOlyvpNLg3s/M7asa6FQIJPJ4Ps+PH8hPYtOZeOvf0FQKdF58CEE6TSBI0TEEmxch0QTEI/jFkapDW7CDer92LXA4AcW17d4QYDvW7zAsG7ZvdR8iPZOoeb5kGmDeBLXCiODOZ5auZKXXPguuqdNa/QpUQ2ga9RMLg3u/Uw6nWZ0dJRIJEK1WgXqrfBKzcU3llq5RGHjetJ9/VRGckSsgWoZ3BqG+oVIY8PANuAFFje86Oib+oiSwD57wbK0fh21wFIJDImePko1l6GNmzEG5h79fFJtbY09IUrthzS49zOu69LW1jY+hjsIAoIgIDV9On4kBr6HFArYeBw7tJmINYg49RnvQGDrFya9sb5qY3HDESOeAc+acGRJOAnHWgLqFzFr1SqVYgUjQqKtg2qthjFG1ypRai/T36j90Ng/U7f85+rct/wfnN6plIOAcrlKaXSUihdQ8QwVz1D2DWUvoOwbKr6l5kPNN9R8g+sTjhqpjxbxjCXwn22Fu4HBIJTyJSqVCr5vOOaVZ3LKm9/UqFOg1H5NW9z7mXg8TqVSwXGcev82z355r9PZh//0aqwNCIplnMAQEVufMzl2MZP6JJxgbHJN2PKuhaHtmvqFSi+ceOOa8FggoN6FcsQLTyGCQzqZ0ta2UpNAf6v2M9VqlY6ODqC+bkk0Gq2Pyw4CDn7be6kFQtU3VKpuvbXthzcvoOqb+sgRL7wPLLXAUg0Mrm+ohfe+b3HD/m/f1IcMup5PtVolkkzgJGKcedG7yefzusiUUpNAW9z7mfb2dgYHB0kmkxSLRUSEWCxGJBJhzkkv5J50G25hFEcg6giOEUTs2Kquz057p97iHluPxA0Duj5WG1wTUAvAC+rHuYHFRmO84A3n8djfH2D2/PlkMhn9omClJsEOW9wiMlNEbhORR0RkhYh8INz+GRFZJyIPhLeztnjNx0VklYg8JiIvn8w/gNpasVgkm81irSWZTBKLxQiCAGMMZc/j1K8vGR+PXQ7qfdsVz1AO+7krQUDFD7ZogRuqXoDrB/VJN+EQQdcfm94eUDPgB4YjXvAi7r/tNi759mLi8TjFYnH8q8yUUnvPzjSHfODD1tq/iUg7cL+I3Bruu8Ja+5UtDxaR5wHnAUcBBwG/F5HDrLX6b+Z9IB6PU61Wt/rOx7F+5ng8TqJ/ClNfeCpP/3kpTri0q1Dv57Y4WOz4Uq5BuJSrHy4sVV+TxI4PEXSNoRbU+7sTHVkqVZeTzjqLqbNnEwQBsVhMJ2IoNQl22OK21g5Ya/8WPi4AjwDTt/OSc4DrrLU1a+1qYBWwcG8Uq3YsmUxSKBQQEVzXxRhDJBKpLzaVThPt7OaghS+g5ttwVEm9ZV3xbf0+HGVS8Q21oN7PXQ0Ib/XWdi2oX6Csd5UYjEQ56tSXUXFdXnD2ubR3dBAEAZlMRoNbqUmwSxcnReRg4FjgnnDTJSKyTESuFpGucNt04JktXraW7Qe92ovy+Tx9fX0YY+pBHY3ieR6e5zE8PEwmneao8y5gxkvPoGLqXSElL6DkBpTD4YHlsKukFAZ41Quo+j41L6A2duHSN7iBIYjEOPxF/0RucIjjXnY60+fPZ2RkhFgsxuDgoF6cVGoS7HRwi0gb8Evgg9baPPAt4BBgATAAfHXs0G28/B/mv4rIRSJyn4jc53mVXS5cbVtHRwe5XA7HcSiXy3ieRywWIxaL0dnZSblcJhKLMev0s/BjqfFx25XA1sdyB+Fz3z474sQ3VH1LNbBUxvq4jYVkkv5D5mGjEcr5UaYfcQQd2SydnZ14nkd3d7d+56RSk2CnLvmLSIx6aP/IWvsrAGvtxi32fwe4OXy6Fpi5xctnAOuf+57W2sXAYoD29im2Vtud8tVzlctlOsKuirFveR8bz+26LslkkiAIWPiaN1DJDXHzZz7F1r0Zz47nrk9/Z3yKu2/DafDGYCVCW0cXxBMMrF7DRV/+Mke9+MVUKhVEhGg0SqFQoKOjQ8Nbqb1sZ0aVCPA94BFr7X9vsX3L1YNeAywPH98EnCciCRGZAxwK/HXvlay2J5VKkc/nsdZSrVbxfR/HcXAch0wmQ7VaxVpLPp/nny58N2d86jP4kVi9NR2O5674BlciVLbYVg0MrnWo+gE131JDKFeqbFjzNG/99Gc59KST6isRJhIkk0l839c+bqUmyc60uF8IvBV4SEQeCLd9AjhfRBZQ7wZZA7wbwFq7QkR+BjxMfUTKxTqiZN+JRCJEo1Gi0ej4lPexx1vui0ajxBMJFr35X5h3/Mnc+q3/S35wM1D/gS5605v5849+iLVgjCWaSjPz6KN55O67MRYsQve0qbz5E5+ge+ZMorHY+PuOfWY0GtXgVmoS7DC4rbV3sO1+61u285rLgMv2oC61mxzHobe3d8L92WwWgEwmA0B/fz/9/f0cdcop/3DsGW9/527XEYvFdvu1Sqnt0ynvSinVYppkPrIlkcg1uogJxeN5qtUquVzz1lgulykWi01do+d5jIyMNPki+0FT/7+YSIwQ8SIkcolGlzKheDFOuVxu6v8Xq9Uq+Xy+qWvc3u+JNMMvUXd3t/23f/u3RpcxoVKpxObNmzn44IMbXcqEBgYGSCQSdHd3N7qUCT322GPMnTu3qbtRHnzwQY455phGlzEhz/O4444nGR4+vNGlTCiZzHHssTWmNfG3H61evZr+/v7xLsNm9JWvfIVcLrfti0TW2obf+vv7bTNbuXKlXbx4caPL2K7rr7/e3nXXXY0uY7suvfRSm8vlGl3GhIwx9pJLLml0Gds1NDRkjz/+MltfEqw5b1On3mFvuOGGRp+q7brqqqvsypUrG13GdoW5uM3M1D5upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYnYY3CKSFJG/isiDIrJCRD4bbp8jIveIyEoR+amIxMPtifD5qnD/wZP7R1BKqQPLzrS4a8Cp1tpjgAXAmSJyMvBfwBXW2kOBYeAd4fHvAIattfOAK8LjlFJK7SU7DG5bVwyfxsKbBU4FfhFuvwY4N3x8TviccP9pIiJ7rWKllDrA7VQft4hEROQBYBNwK/AEMGKt9cND1gLTw8fTgWcAwv2jQM/eLFoppQ5kOxXc1trAWrsAmAEsBI7c1mHh/bZa1/a5G0TkIhG5T0Tuq1QqO1uvUkod8HZpVIm1dgS4HTgZ6BSRaLhrBrA+fLwWmAkQ7s8CuW2812Jr7QnW2hNSqdTuVa+UUgegnRlV0icineHjFPAy4BHgNuD14WEXADeGj28KnxPu/4O19h9a3EoppXZPdMeHMA24RkQi1IP+Z9bam0XkYeA6Efk88Hfge+Hx3wOuFZFV1Fva501C3UopdcDaYXBba5cBx25j+5PU+7ufu70KvGGvVKeUUuof6MxJpZRqMRrcSinVYjS4lVKqxezMxclJZ4zhzjvvbHQZE9qwYQMDAwNNXeOaNWsYHh7GGNPoUiaUy+W49957yWQyjS5lQuVyual/zsVikWQyx9SpzVtjV9djrFlTaOrzODAwwLJly9i4cWOjS5nQ9n6XmyK4rbUMDQ01uowJjY6OUqlUmrrGUqnEkiUOhULz1jhrlstJJw1TrVYbXcqEhod93vrW5j2H0WiZaWfeS+ojv2p0KROKr+6gVPrnpv59qVarfGrkU1Sjzfv/Ys3WJtzXFMEdiUQ4++yzG13GhFatWkUQBE1dozGGTZumsGHDokaXMqGenmWcccYZdHV1NbqUbbLWcu21t7J6dfP+nBOJHB1Tv8Lqs1c3upQJTb1zKkcNHtXUvy8DAwOsP2U9o/NGG13KhNoibRPu0z5upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mB0Gt4gkReSvIvKgiKwQkc+G278vIqtF5IHwtiDcLiJypYisEpFlInLcZP8hlFLqQBLdiWNqwKnW2qKIxIA7ROTX4b5/t9b+4jnHvwI4NLydBHwrvFdKKbUX7LDFbeuK4dNYeLPbeck5wA/C1/0F6BSRaXteqlJKKdjJPm4RiYjIA8Am4FZr7T3hrsvC7pArRCQRbpsOPLPFy9eG25RSSu0FOxXc1trAWrsAmAEsFJH5wMeBI4ATgW7go+Hhsq23eO4GEblIRO4TkfsqlcpuFa+UUgeiXRpVYq0dAW4HzrTWDoTdITVgCbAwPGwtMHOLl80A1m/jvRZba0+w1p6QSqV2q3illDoQ7cyokj4R6Qwfp4CXAY+O9VuLiADnAsvDl9wEvC0cXXIyMGqtHZiU6pVS6gC0M6NKpgHXiEiEetD/zFp7s4j8QUT6qHeNPAC8Jzz+FuAsYBVQBt6+98tWSqkD1w6D21q7DDh2G9tPneB4C1y856UppZTaFp05qZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WJ2ZjjgpPN9n29/+9uNLmNCo6OjrF27tqlrfPLJJ5k1K01v77JGlzKhjo41XHvttSQSiR0f3CC+n2P+/Ob9OUciVbKrs8z/9vxGlzKh9ECau6t3s2HDhkaXMqHly5dzyOghuFm30aVM6Gn/6Qn3NUVwRyIRTjvttEaXMaG1a9fiOE5T1xiNRjn55G6OPvroRpcyoe99bw2XXvpiPK+90aVM6PTT/8b11zfvzzmfz/PLX27i7adte3qExWIxWGuRcPUJG6444UhkfNtkWrZsGSMjI5xyyimT/lm7a3R0lK8u/CozZsxodCkTWuQsmnBfUwS3iDBv3rxGl7FdK1eubOoaly9fzpQpU5q6xkwmQ6FwMLVaV6NLmYDFceJNfQ5zuRyZTIY5c+YwNDRU35jyyJdGyGY7eXDTbdxZvplCdRjjCxmnm1KtRLlW4h1zP0sylmJa2wy6Mj2Mjo4Si8UoFov09vYyODhIR0cH5XKZ3t5eSqUSkUgEz/MIgoBIJEKpVBrfl81m2bx5M729vQA4Tr3ndePGjUQikaY+j9lslhkzZjBz5kyKxSKpVIpSqUQsFiMajVKpVGhvbx/fV6vVEBFisRjlcpmOjg4KhQKpVArP80gkEtSnsEA8HqdYLNLW1kapVCKdTuP7PsYYEokEhUKB9vZ2yuUyyWQSYwy+7xONRkkmk9Qnoz97PrelKYJbKbVrKn6Rhyq3U/RHWZtfwVB1A8lcO2Ki9DtzmJ46mocH7yUaaWd++wKctggP5u7m5lU/5eWz38Bps1/FlOR0rLUkk0lqtdp4iIyFkzFmPIzGQmTsWBGhXC4Tj8fH7+PxeCNPyW4pFotks1mKxSJdXV34vo/neXR3dzM8PExXV9d4CFtrqdVq9Pb2Mjw8THd3N+VymXQ6TaVSQUQwxoy/59DQENlsltHRUaLRKI7jkMvl6OzsZGhoiI6ODvL5PCJCIpGgUqmQSCTGg3t7NLiVakGOOFz512/gBTVmdMxgbtdcEpEM3//DtXS0xzls9jSGnioxVFvBMfNH6I734wWGaalDWLFhGfhR+hJTePlhZwOMh87YY8dxMMbgOA6+72/12SIyfgzUQ31nwqYZpVIpisUi0WiUfD5PJBLBcRxGR0d53/vexwknnMC73/1uyuXy+J95ZGSEZDJJPp8nGo1SrVaJRutR6jjO+F9u2WwW13XJZDIYY7jmmmtYunQp3/72t8lms3ieN77PWrvToQ0a3Eq1pEQkzedP/Cbn/vQcNsUDVkVzpCVNt8wmXU1QXtPG4LoKj27YRCL9EMmhboa7B8lEu4k6cUbzVaquy8kzTiFqY2QyGUqlEiJS/6d/zOJWS8SiEZAkxloikQi1Wo1MJoPv+8RiMUqlEu3t7S0b3KVSia6uLvL5PG1tbQRBgOd5dHR0cMstt3DjjTcSBAFve9vb6OzspFar0dHRMd7iLhaLxONxqtUqwHiLu7Ozk5GREbLZLOvWrWPp0qV89KMfpVarsWTJEkZGRujo6KBYrH9HzVjYp1IpbXErtb+qVqvM7TuYn/3zzzj/52/k/jX3E/Oj9MS7sS4Y13D5+V/kLw/dzayOWfx2xW+ZPrOLNU9vJtHexsDmIaquz+W3foFPv+qzlEolOjo6qNVqxGyVH/7H8Rj//7d37mFyVVWi/+1T765HVz/yJpBAWgly5ZXECRgGEg1EeTo4PBS5ioyvcEcBCXx+AWTu3OFhEkZ8RAYQBgZBGRWQGQVF5bt3RjAkQBIh0khCmiTdnX5Ud9WpqvPY+/5xHqkOeXQi6erC/fu++uqcfU7XWVmVWmedtddeqwJC8bGvriOVn4yUknw+T6lUIhqNUigUaGpqYmBggKamJpqamuqtlgMmFovhOA6RSATXdb1JXf+JAqBcLrNs2TKWL1/OU089xQknnBDGox3HwTAMlFLhU0cQ9lBKEY/HefnllznzzDMpFAqAl0QQiUTCsFIsFgN2PeVoj1ujeRfT1NREb28v09JT+e7HVnPlD6+kZ6CHWW0dRFQEabn86P89QjqSplwxiUdjdD8f5egj5rCt53WG2npot6fzg188wuIZZ/KRD3yE3t5eknF44Rf/TKFoM/HwOXQc/yFErIlqtUokEqG/vz+cnGxtbaW3t5e2traG9bij0Si2bWMYBrZth/+Oe++9N/SiASzL4pJLLuHSSy/l/PPPZ8aMGdx6660opXBdNzTAsViMK664gu7ubh566CEefvjh0GgDuK7LXXfdxRVXXIGUkmg0Gs4jRCKR0cv9TvzjNRrN2GKaJplMBoA5yTn84NKHOPdfzuPVnk1ko1lSIkVVVOmt7mRH73b6d/bz0bln0R6fiiTC+zNzeOql/6Q1ESVhxBgeHqbQ08kTj99Bz5Y1TJx2Igv+dgX5iTMwhCASiSClpK2tLfS4+/r6yGazDe1xl8tlWltbGRoaIpfL4TgOlmXx0EMPYVkjc7y3bdvGrbfeypNPPkk6nWbNmjW4rjviHMMwePLJJ1FKsW7durddTynFXXfdxUUXXUQ+n6dYLCKEIJlMYllW6PHvD71yUqNpQALvTCmFIQxmtXbwq8//ilmT38NQZYhNO/7Imi1reXnry2QzOea+by5lu8yb3VsQUYOhtyxOO2oJmaYoyx9cyhvbOnmzcwOvrn+BBedcz98sfYC2yUci8B7jA4MSpAUKIYhGo0gpiUQib/MWG8UDD248iUSC/v5+TNMEwLbt8JyVK1eOWMOxYcMGnnvuubcZbfBi3GvXrh1htCdNmsT9998f7kejUSZMmIBt2zQ3N5NOpwHvKUqHSjSadzGGYVCpVBC+N2zbNpObJ/Pzz/2MJ9c/yc/W/wf/vfG/2NHXjWmV6JMRqhELaUlw4JVNf2Dx3DM4tf0CJs4XXLnyYt7bG+H4OYt4z0lLaMo0h0Y6yHoQQmBZFrFYDNd1icfj4STl7gYnePwf7wRpgENDQ7S2toYedxD6AM+I/+QnP6GlpWWPxnp/LFq0aMSNwHEcdu7cST6fp1AohB63TgfUaN7lVCqVMDRRJlo9QgAAGThJREFULpdJp9MMDg6SzWZZOGsRfzP3An6+9ufsGN6BVbHIJjOUzTLVsgVK4JzucPik6Syct5DWllZyO1rZ+l8v8eGPfYn2iVPp6+sjnU5j2zbRaDQ00kF+cjKZZHBwMFy4k81mGzKPO0gHjMW8cFEwQVhroFOpFAfb0Pwzn/kMt912G0899VQ4FolEyOVyI9IBwVu4oz1ujeZdTFNTE0NDQ4D3gw9W4wUx21KpxBknnEFhcJCmeJzyYB9v3v8tKp2vkJwyjaO/8g9YsRgRYOeO7exYt41EeiLTD5/FUH8/Ldkslm3T+cSPeeFHDyBiSY4+52856rSFtLS14bou7e3tFItF2trawjzmRqNarZLJZDBNk1QqFa5iTCaT4TmWZZFIJMLMkwPh3HPPBRgx0amUolQqkU6nw/F4PD7CK98fjaltjeYvnFKpFK7mK5fLZDKZMG84eO9e9xyi6w02P/lDYqk07//6KjBiiIiBu3MHryy/DlcYyIpEvrKeie8/kc2P3sfWZ3+NOTxEZvpM3nvexZx98wqkY/OHZ57mwU9fTLy5hYX/6yoyk6dyREcHhUKBVCoVTpY2ErXxe6VUGOL56U9/yuTJkxkeHmbLli2sXbv2bQuRRkNnZycnnXQSnZ2d4fXOP//8cE6gNvXwQOYFtOHWaBqQRCIxIsZtWRbJZBLbtkkmk+x89hdsWbGc6Rd9lvdd+38QAkqbXiGwDUoIjl2+EiWgsmM7Lb/7v1iWRUQYzFl6LURjVMsmVtnE7OtBKsURJ83l8JPmUejv599v+Bq56Ydz2TfuIJXLNazHHYvFqFarGIYRLuUXQozwkO+8807uvPPOg/r8q6++mm3btrFixQrAm5v48pe/TCKRQEpJPB4PbxYHokOdVaLRNCBBNkftAhApJUIIen/zc1674yZmXPI5cke+h+pbm6l2bUFUSohKCSolKJcov/4q5muv4AwPMnHefKZ+8K9pPnwm5d4dlN7aSqVvJ06phFM2sU2T6nCRylCBSCTCX1/6KYa2buXuL34hTGNrRIK0yiDeHBjSFStWHHRce3cCow3e97Z8+XIKBU+PxWKRcrkc1kEZrR4b8zap0fyFE2R1CCHClXymaSL6uun+6YMcft4nSLS2Iwt9GBgI4a8IBAQgUSC9baTCMou4SuFIcKVCKoVU3rYTvEuFi8R2IZ5I8cFLPslj/7yKb33m01zz0A/qq5CDJFi+nkwmGRgYQCnFt7/9bb7xjW+MCI20tLQQiURGpEUODAzs8TObm5uJxWLhjVRKGZ6rlOLuu+8mEolw4403hpkqruseUDqg9rg1mgYkiGkHlecKhQL55mZ2rF9Hrn0y6XwbsjgIFRNRLWJUTSLVEkbV9F6B910uQaUI5RLSLKHMIq5ZxDGLOKVhrFIRuziMVRzGKg1THfbeK8UhpGPz4cs/y0BXF8M9PfVWyUExPDxMPp/Hsiyy2Szf+973uPnmm0csvjnmmGNYu3YtXV1dvP766/T09LBmzRrmzp37ts+bPXs2zzzzDF1dXaxfv56uri6ef/55jjvuuPAc13X5zne+w2233ca2bdsolUqA5/2P1uPWhlujaUCCgkSJRALXdb20tsIgg7/9OUYqiT08ABUTVTah4hlqo2oSrZaIVE1ExYSqGZ7jmiVU2USWS8iyiTRNHNPEMYvYZgkreC+VsEpFrFKRaqmIXbGIpTP85uHG9LhTqRSmaRKNRunu7uaGG24Ycfx973sfq1evprW1NYyFDw0NMWHCBFasWEFHR0d4biKR4JprrqGjo4NqtUo2m8W2bSZNmsQ999zDvHnzRnz2ihUrKJVKYUconQ6o0bzLCUIj4P3gLcsiYQgqf/oDbYvOQpZLuIZBxBCee2ZAxIhgGCAVCKlAKpRUKClRrkJKcKVESnCkwpYKW0ls1wuhOFJ6Y1LhuP62gskzjsB+h+LBY41t2zQ1NVGpVPj85z8fZpcEbN++nWuvvRbXdTn66KP51re+RTKZxDRNTjjhBBYvXsxrr70GwOLFizn99NOxLCu8Idx0002sW7cOKSVbtmwZcW0hBF/60pf48Y9/TDweP6BUQ224NZoGpDZ9LUxpMwRKusiKiWOAYUSQhkAZAgyBiggIDJMEJRVSSqTrvTsSHFfiKLAdiaO8uLblSs+QuxJHSiwpsF2FLSW2K6mUivVWx0ETNDCIRqPcc889/Pa3v+WSSy4Jj/f39/O73/2Oo446iltuuYVIJIJpmiQSCarV6ohMkGw2y4QJE8Isn3Q6zQ033MCSJUtYu3bt2679zW9+k4svvnhEA4vRog23RtOAWJYVrlR0XZdkMkmlMIhbMql0byOVa8Y1IhgRgTBARAQIA4mBROEohSs9g+y4gVetcJTEcsEOPGrXm4wsl8tUbRsSKSypfMMNtnSpmiaNmVPCiKJOkUiEZ5999m3nzJ49m0ceeYRMJkM0GuXpp5+mp6eHfD7Pcccdx2WXXYbjOHzgAx/gueeeY/PmzaRSKc477zySySSPPfYYZ511Fi+99NKIz/3973/Pxz/+8dDDP5DMHG24NZoGJJlM0tPTgxCCdDrt9UHMZpAKhl7dSKTjaEQqCYbhe9p+JontIBJJXCU9w+s4lLZtpVIqUXEllquoOoqqdKk6EGubBNkcFbNM1bIQjovln2dLheW4bNmwgVlz5+1f6HFK0OmnWCyyevVqzjnnHDZt2sSmTZsAwvTA22+/HSEEfX19XHXVVZx88sk8+uijnH/++WF51s997nM8+uijrFy5EvDqkixfvnyEUZ42bRqLFi3iwQcfZNmyZTQ1NY26KmCANtwaTQMSNOsNFotks1mGi8Mcs+wf2fj1L+OuL9H+3mNRiTiuIXAFiKqJHBwgMmkq0nEZ7tyI6ygq1SpV26bqSqoOlB2XqiOpuBJ7xzZsIqh0M5HmPMqs4ESi2C5YrqRz/csY8SaO+eCCeqvkoAga+yaTSZLJJM8//zzt7e188pOfDM959dVX2bRpE88++ywXXnghl19+Oa2trWG6n+u6YfME13XJZDKcffbZ3HvvvaxatYrNmzeH9UgA8vk8q1at4sorr2TmzJlh16EDWYCjDbdG06C4rhv2ffS8xggi24LtSIxSif4/vEjzrKMxXIeIdBF2Fbv3Ldje5eVqS7ClxJKeB205nhft4uduK7CqFhXbpVIYprp1KxVX4sQSpCdPZdvmLQwPm8yY9x6OPfXUOmvj4Aga+1arVVpbW2lpaWHr1q1UKpVwURN4Xvcbb7zBLbfcwsaNG3n88cf5/ve/j1KKVCoVpg8ee+yxXHPNNVx33XU88sgjbwt/GIZBuVxm+/btzJ49O1zkE4vFqFQqYYbJ/hi14RZCRIA1wFtKqbOEEDOBh4FWYC1wqVLKEkIkgH8FTgL6gAuVUptHex2NRrN/gqXagfEOyqsWAZlMYlUrYDuUBgegNIQoDmMYAgOBQuEqiVSe4XYkfsx6V+zaCeLf0ouHS6lwlcKV4No2xYFBKmaZSCKJUo1Tf3t3MplM2I19cHCQeDzO66+/zsknn8wZZ5zB0NBQOIG5evVqlFI88cQTzJ8/n2XLloXd7tPpNEoprr76ah544IERRnvp0qWhRx4UB+vs7GTq1Knkcjlc1w0zUUbLgXjcfw+8AuT8/VuBVUqph4UQq4HLge/67wNKqVlCiIv88y48gOtoNJr9UK1Wwwp2pmnS1NTklVmd/T9o+eBiun/xUyQOqq+PqJAYjkQYAuEbbqlqDLFSXmzbVSMMuFMzeekob8LSVQrHVlQHCkgFkWSSs6/9algjpdEIQk6WZdHc3IxSigULFrBw4UIqlUrYmcYwDDo6OrjqqqsAuOOOO/jKV74SphNalhWukly5cmVotG+88Ua+8IUvkEwmw1WuyWSSSqUSVnUEwm7xoy2NO6oFOEKIw4CPAnf7+wJYCDzqn3I/cJ6/fa6/j398kWjU27FGM05Jp9MUi8URtaSbm5upigi5I2bhSKjakrJZply2MF1J2ZGYjvdediQVxzPWZVt5E5NSYvnpf7ZSVKXCcRWOEli+x21LiZHOeKGEeArbcZj/4TMasm0ZeOVxa3UYhDyGhoZIpVIMDQ2F3e1nz54d/p3jOGEvyUqlQiwWG9EEOKCjo4OWlhZisRiGYZDL5SiXyzQ3N4f1UQJP+0DqmY/W474DuBbI+vttwKBSKljM3wVM87enAVsBlFKOEKLgn79z1FJpNJp9Ypom2Wx2xHahUCCbzWLM6MCYMJXKji5sZRFBEDHwKwN6vppSI73uYHFNmC3iutiuZ7wtGeRzKxwXKgODSAHvX3Q6ydY2ent7yefzoTyNRFDnJcijDuYMotFo2ARYKUUkEhkxeSiECPOugxomta+AoBt8MGbbdpjnHYS4gjh67QTm/tivxy2EOAvoUUq9UDu8h1PVKI7Vfu7fCSHWCCHWvFNVuDSavxSCuGu5XA4nvILH+iNOOY3ktMMpu5KKnx3iediSiuNQcRzKjkvZcXcdD420P1HpKi+fOzDmfp63Lb0QSvuMmfxpw0bO+uJScrlcQ3a/gV2pgIFxrs3pDiowBtUXZ86cOaIxwi9/+UuAMEQSxL/7+voAr2XZscceGx4Lsk4Mw8B13RF/B+98HvcpwDlCiI8ASbwY9x1AXggR9b3uw4Bt/vldwHSgSwgRBZqB/t0/VCl1F3AXwKRJkxo1f1+jqQvBDz/48QcZEIHBmfPVm3nik2dTLheJCOFNTCrP61aABGRQBRCF43iZJJ5xljguWNIz5raUfvaJZ8AT2RwTZ72XCbNm0TplStjuqxEJmgTncjkKhQLxeJxYLBZ2Eurv7yebzWKaJvl8ngULFvDYY49RKpVYunQp06dPDw07QFdXV1gJ8KSTTmLKlClhnfSgpszAwEDYWT5oXWZZ1jubDqiUuh64HkAIcRpwjVLqE0KIHwEX4GWWXAY85v/J4/7+f/vHn1GNWqxXoxmnuK4b/tCDR3rTNInH45TLZfJHHkXT4TPp2fgihjCIhCVdJQoDJXwP0J+cdKXyS7gG9UhE6GnbUlJxvZCJJV2yuTxGPM7M444jm88zNDSEYRgN6XUH1QErlQr5fB4pJa7r0traGrZlK5fLZLNZlFJhfRiA3t5eent79/rZwVNQUHvbMAwGBgZIp9P09/eHMfQg7BI0Cx4Nf051wGXAVUKITrwY9j3++D1Amz9+FXDdn3ENjUazB9LpNMPDwxSLRaLRaJiPbJombW1tmKbJkm9/n6otqTouZdv1wyPKe7ckZdsLn1SDMIqrKLtQcQQVR2K5kqrrjduuxHJcWqYdTscpC0g2pVl80UUMDw/T3t7esJOT2WyWgYEB4vE4AwMDYV510AB5586dRCIRhoaGME2TuXPnMn369P1+7uTJkzn99NPDG0IikcAwjLAfaHt7e5jJkk6nAQ5IhwdkuJVSv1FKneVv/0kpNU8pNUsp9XGlVNUfr/j7s/zjfzqQa2g0mv1TLpdpamoilUqFRfiDFYCFQoFkMomKxjnu0s96htr1DLdp74pte9klrhf/dlWNEfeWtVcdSTWMdytyk6dx5Jx5bNu8mQ99+tMUhoukUikGBwdHtPpqJEzTDDuu53K5MKUxn8+H4RHXdUmn0ySTSU455RTuv/9+8vn8Xj8zHo9z9913c9ppp5FIJBgeHsa2bZRSYbbKwMCAl3fvd8ABDkiHuh63RtOAJBIJbNsOsxTK5XK4gi+TyXiNAVpaaZ9/KsaEKZQdhelITNdLCdyVFqh2bbuSiu16XrbjpQhWXRdLKuK5ZibO6qCvpxtzuMiRxx9PNpulWq2STqcPqLLdeCKZTFIqlYhGo5RKpTAdMLgJDg8PE4lEqFQqYU/K2bNns27dOu677z5yuRzZbJZcLkcul2PVqlVs2rSJ+fPnk81msSyLpqYmotFoWFcmKFHgOA5NTU0j6nGPFr3kXaNpQGqXYgcZEbW1M4JJy5nz5jPnU5/lmVW3Y5ul8O+VvxBHKW+S0iWId+OVcw0X4EiSre1kJk3BLJdJJJLc+vRToQy1k6KNSG17sYDa9mS1x4LyuYZhMHHiRJYsWcKbb76J4zjhykggnG8I6mtLKcPskdrvCLz5idqsk9GiDbdG04C4rhumqgWG03EcDMPAtu3wPR6Ps+Dyz+Mqxc/+99dRIwyUl2HiKryc7mBZu9pVl9tRAsNVFAYGmDFlCp+9/XYMvxJetVoNc5KFEA3Z6b3W6AarG8HzxINyuTDSGw6O1S6cqU3ps22bWCwWZorYth3+rWVZ4bHgO6u9UYwWHSrRaBqQIGe7UqmExf2DsaBrefCobxgG8y75FBd845scdsJcL57tv6bNmUdy0mQqrvRfio5TT6Mq8ZbAS6iYZU788If49D/9E00tLSQSCaSUZDIZqtUqmUymITNKgNCwBothAuNZa3SDpeqBBx5U8gvCKkFuthACwzCIxWJhM2cpJdFoNDwei8VwHGfEseCGdyBPLY13i9RoNAC0trYC3iN8KpVCCBGOtbS0IIRg6tSp4fGFn/qfLPj4hbg1HmAkFkNKF+nu8sSj8Th2TbNcgHgySTyZDL3DXC6HEIK2traGzeEG7waYSCRG6BB2hUuCY7UE3dj3dCxgX3Hrg4lp74423BpNgxIs+oBd1fn29x7JZEb12Uk/RW139va5jUqwiCnYrh3ffWw0x8YKHSrRaDSaBkOMh0WNLS0t6tJLL623GHulWq2Gq6jGK4VCgWg0Gibzj0e6u7vp7m5HqfGbgZDPv8URR0zb/4l1wnVd+vr6mDhxYr1F2SulUgnXdcnlcvs/uU709fWRyWRGvVKxHjzwwAMMDAzs0a0fF4ZbCNELlBi/FQTb0bIdDFq2g0PLdnC822Q7Qik1YU8HxoXhBhBCrFFKzam3HHtCy3ZwaNkODi3bwfGXJJuOcWs0Gk2DoQ23RqPRNBjjyXDfVW8B9oGW7eDQsh0cWraD4y9GtnET49ZoNBrN6BhPHrdGo9FoRkHdDbcQ4kwhxCYhRKcQou5NF4QQm4UQ64UQLwoh1vhjrUKIp4UQr/nvLWMky71CiB4hxIaasT3KIjy+6evxZSHEiXWS7yYhxFu+/l70W94Fx6735dskhDjjEMo1XQjxayHEK0KIjUKIv/fH6667fchWd73510oKIZ4XQrzky/d1f3ymEOI5X3ePCCHi/njC3+/0j8+og2z3CSHeqNHd8f54PX4TESHEOiHEz/z9Q6O33bsTj+ULiACvA0cCceAl4Jg6y7QZaN9t7DbgOn/7OuDWMZLlVOBEYMP+ZAE+AvwnXrPmvwKeq5N8N+G1t9v93GP87zcBzPS/98ghkmsKcKK/nQX+6F+/7rrbh2x115t/PQFk/O0Y8Jyvkx8CF/njq4Ev+NtfBFb72xcBj9RBtvuAC/Zwfj1+E1cBDwE/8/cPid7q7XHPAzqV103HwutfeW6dZdoT5wL3+9v3A+eNxUWVUs/y9kbLe5PlXOBflcfv8Jo5T6mDfHvjXOBhpVRVKfUG0In3/R8KubYrpdb628PAK8A0xoHu9iHb3hgzvfkyKaVU0d+N+S8FLAQe9cd3112g00eBRUIcmiIe+5Btb4zpb0IIcRjwUeBuf19wiPRWb8M9Ddhas9/Fvv8TjwUKeEoI8YIQ4u/8sUlKqe3g/fCAeq433pss40mXS/1H03trwkp1kc9/BD0BzzsbV7rbTTYYJ3rzH/dfBHqAp/G8/EGllLMHGUL5/OMFvB60YyKbUirQ3T/6ulslhAjWsY+17u4ArgWCUottHCK91dtw7+kOU+80l1OUUicCS4AvCSFOrbM8o2W86PK7wFHA8cB2YIU/PubyCSEywL8DX1ZKDe3r1D2MjbVs40ZvSilXKXU8cBiedz97HzKMqXy7yyaEOBa4HjgamAu04jUyH1PZhBBnAT1KqRdqh/dx/T9Ltnob7i6gtmXyYcC2OskCgFJqm//eA/wE7z9ud/CI5b/31E/CvcoyLnSplOr2f1wS+Bd2PdaPqXxCiBieYfw3pdSP/eFxobs9yTZe9FaLUmoQ+A1efDgvhAjKQNfKEMrnH29m9OGzd0K2M/3wk1Jew/LvUx/dnQKcI4TYjBfyXYjngR8SvdXbcP8e6PBnXuN4QfrH6yWMECIthMgG28BiYIMv02X+aZcBj9VHQtiHLI8Dn/Jn0v8KKARhgbFktxji+Xj6C+S7yJ9Nnwl0AM8fIhkEcA/wilJqZc2huutub7KNB735ckwQQuT97RTwIbw4/K+BC/zTdtddoNMLgGeUP+M2RrK9WnMzFngx5Frdjcn3qpS6Xil1mFJqBp4de0Yp9QkOld4O9Szr/l54M79/xIujfa3OshyJN4P/ErAxkAcv9vQr4DX/vXWM5PkB3mOzjXeHvnxvsuA9en3b1+N6YE6d5HvAv/7L/n/OKTXnf82XbxOw5BDK9UG8x86XgRf910fGg+72IVvd9eZf6/3AOl+ODcANNb+N5/EmR38EJPzxpL/f6R8/sg6yPePrbgPwILsyT8b8N+Ff9zR2ZZUcEr3plZMajUbTYNQ7VKLRaDSaA0Qbbo1Go2kwtOHWaDSaBkMbbo1Go2kwtOHWaDSaBkMbbo1Go2kwtOHWaDSaBkMbbo1Go2kw/j9xVD2Fpt2DzwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "metadata": { "tags": [] }, @@ -154,7 +154,7 @@ ] }, "metadata": {}, - "execution_count": 16 + "execution_count": 5 } ], "source": [ @@ -193,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -231,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -282,15 +282,15 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiCKbCC6tuwVFZSkiqC1SXHAB259VYhUVqtWKKCIg7igoBa2CK/AFsWVTgQAJSAiBJGSZfeac5/dHJikICSgJZyZ8Xl5zJXMyM+cmydyePGd5lNYaIYQQkcNmdQAhhBC/jBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhGmw4lZKXa6U2qqU2q6UerCh1iOEEKca1RDHcSul7MA24BJgD/AtcJPW+od6X5kQQpxiGmqLuxewXWu9U2vtB94CrmmgdQkhxCmloYo7C/jpkPt7QsuEEEKcoKgGel11lGWHjckopcYB4wAcDkeP7OzsBopy4nw+H5WVlTRp0sTqKLUqKyvD4XCQkJBgdZRaFRYWkpmZid1utzpKrXbv3k2rVq2sjlGrYDDIgQMHaNGihdVRauV0OgkGg6SmplodpVYHDhwgOTmZmJgYq6PU6vvvv8fj8RytS0FrXe83oDfwySH3HwIequ3xmZmZOpzl5ubqWbNmWR2jTh988IFetWqV1THq9Nhjj+nS0lKrY9TKNE09fvx4q2PUqaSkROfk5Fgdo07ffPONXrRokdUx6jRz5kydm5trdYw6hXrxqJ3ZUEMl3wIdlFJnKKWigWHAhw20LiGEOKU0yFCJ1jqolBoPfALYgVe11t83xLqEEOJU01Bj3GitlwJLG+r1hRDiVCVnTgohRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEiTKMt7ry8vOprgYclwzDYvXu31THq5HK5OHDggNUx6nTgwAFcLpfVMeq0e/duDMOwOkattNbk5eVZHaNOfr+fvXv3Wh2jTmVlZZSVlZ2UdTXY1QGtsnXrVr7++ms2bdpEt27d6N69Oz179rQ61mG++OILtm7dytatW+ncuTOXX345LVu2tDrWYd5++20KCgqoqKigZcuWjBgxIqxmC/H5fMyfP589e/aQlJREVlYWw4YNszrWYQoKCli2bBk//PADHTt25Mwzz2TgwIFWxzrMunXrWL9+PRs3biQ7O5u+ffvSqVMnq2MdZsmSJeTn51NQUEC7du0YMmRIWM2uo7Vm7ty5FBYWAtCiRQtGjRqFUkefvKY+NLot7q+//po1a9bwl7/8hZ07d/LBBx9YHekIs2fPxu12c//997Ns2TI2b95sdaQjPProo3Tp0oXrrruOv//977jdbqsjHcbj8TBjxgyuvfZaunbtyqOPPmp1pCN8//33LF26lEmTJuH1ennllVesjnSERYsWsXPnTh555BHWrl3L119/bXWkIzz11FNkZGQwZswY5s+fz759+6yOdBjTNJk6dSr9+/enX79+TJ06FdM0G3Sdjaq48/Ly2LRpEzExMVx99dU8+OCDxMbGsnLlSquj1Vi4cCG9e/fm448/5uGHH+aFF15gwYIFlJeXWx2txuTJk/nb3/7Ggw8+yKpVq1i0aBG33Xab1bEOc9tttzF58mRGjx5NamoqL7zwAg899JDVsWpUVFQwb948unbtyhVXXMGIESPo27cv7733ntXRaqxatYro6Gh27tzJqFGjeOKJJ9i8eTM7d+60OlqN5557jjvvvJNnn32WefPmMX/+fCZPnhxWQ0/jxo3j6aefZvz48ZSWlvLee+8xbty4Bl1noxoqadOmDd26dWPHjh0sW7aMefPm4fV6ufDCC62OVuP6669n1KhR3HrrrVx66aXcf//93HzzzSQnJ1sdrcbUqVPp3r07c+fOJS0tjRtvvJGlS8NrToyXX36ZSy+9lPfff5+Kigpuu+02NmzYYHWsGklJSYwcOZK3336bzz77jBUrVrBy5Urmz59vdbQavXv3ZunSpVx44YX8/ve/58knn6Rr166cccYZVkercddddzFw4ECeeOIJOnbsyLhx43jyySex2cJnm/Oll14iOzub999/H6h6j2/cuLFB19moilspRffu3cnLy+PZZ5/F6/Vy0UUXNehY0y+llOKqq65iw4YNbN26lczMTNq1axdWGW02GyNHjuSDDz7AZrMxePBg4uPjrY51mNjYWC699FLmzp2LaZqMHDkyrN7MSinatm1L8+bNef755/H7/Vx99dVh9XNWSjFgwAC++OILnn32WQC6d+8edhlvueUWPvvsM7788kuys7Np2rRpWGW02WzccMMNvPnmmwDccMMNDf672KiKG6Bnz5707NmTlStXcuGFF4bVD7ja0KFDue666/juu+84//zzrY5zVPfddx8lJSWUlpbSoUMHq+McIS4ujpycHHJzc0lLS6NJkyZWRzpC+/btycnJYe3atZxzzjk4HA6rIx3hkksuYfDgwaxatYo+ffpYHeeoxo4di8vlYseOHWRnZ1sd5wg2m41HHnmEPXv2AJyUAw0aXXFXC9dfwmpRUVFhW9rVMjIyyMjIsDpGncLxfyo/16tXL6sj1EkpFfbvl4SEhLAs7UOdzCPDwudvSyGEEMdFilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEizAmd8q6UygcqAQMIaq17KqXSgbeBNkA+cIPW+uCJxRRCCFGtPra4B2qtu2utq6eZeRBYrrXuACwP3RdCCFFPGmKo5BpgbujzucC1DbAOIYQ4ZZ1ocWvg30qp75RS1VM+NNNaFwKEPmae4DqEEEIc4kQv69pHa71XKZUJfKqU2nK8TwwV/TiAxMREcnNzTzBKw9mzZw9lZWVhnbG4uBjTNMM6o8vlIi8vj+LiYquj1Mrv94f197CiogKXyxXWGfft2xf275eysjJ++ukntNZWR6lVXfNWnlBxa633hj7uV0p9APQCipRSLbTWhUqpFsD+Wp47C5gFkJGRob/44osTidKgysrK2LNnD+GccceOHcTHx1NSUmJ1lFoVFxezatWqsJot/uecTmdY/5y9Xi+rD6xm8ReLrY5Sq/jCeAZ5BjX4hLknoqCggO+++47t27dbHaVWdX7/tNa/6gYkAEmHfL4KuBx4CngwtPxBYNqxXiszM1OHs9zcXD1r1iyrY9Tpgw8+0KtWrbI6Rp0ee+wxXVpaanWMWpmmqcePH291jDqVlJToHjk9NGH8X/NvmutFixZZ/a2q08yZM3Vubq7VMeoU6sWjduaJbHE3Az4ITQ0WBbyhtf5YKfUt8I5SagywGxh6AusQQgjxM7+6uLXWO4Gzj7K8BBh0IqGEEELUTs6cFEKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhGm1xL1y4MKynJfL7/SxZssTqGHUqKChg3bp1Vseo03fffUdBQYHVMeq0ZMkS/H6/1TEiWnl5eVjPTASwdetWtm7delLWdaJzToadL774gtmzZ9O7d29GjRrFVVddxdCh4TWXw8yZM1mzZg3du3dnxIgRTJo0iezsbKtjHeaee+7BMAzS0tJ47rnnePHFF0lISLA6Vg23280dd9xB27ZtKSsrQynFjBkzrI51mE2bNjFt2jR69uzJ7bffTq9evbjzzjutjhVxcnJy2L17N23btmX27Nk8+eSTnHbaaVbHqmGaJuPGjaNJkyZorSkpKWHWrFnYbA23XdyotrgNw2Dr1q107tyZG2+8kSuvvJINGzYQDAatjlbD7/ezZs0ahg4dyvDhw8nKyiI/Pz+s/jrweDx888033Hnnndxxxx01k7+Gk+rJXkePHs0999zDypUr8Xg8VseqobVm165dNGnShJtuuolbb72V//u//5Mt71/I5/Px5ZdfMnbsWEaPHo1SiqKiorB6v7jdbjZs2MDYsWOZMGECmzZtwu12N+g6G1VxFxQUsHXrVoqKihg5ciSDBw8mOjqa//znP1ZHq/Hvf/+b7t27M3v2bB577DHuuOMOPvroIyorK62OVmP69Oncfffd/OEPf2DZsmVMmzaNKVOmWB3rMFOmTGH48OGMHj2aAwcO8Oc//5lnnnnG6lg1nE4nixYtIjk5mWHDhnHWWWfRo0cPPvnkE6ujRZR58+Zx0003MWXKFF599VUmT57M9OnTw2oi4ilTpnD33XczduxYNm3axNNPP93g75dGNVTSqlUrOnfuzLJly5g9ezYPPPAAmZmZ9OrVy+poNa688kpGjBhBhw4duOOOO7jtttu47777SE5OtjpajSlTpnDWWWcxefJkWrduzdChQ1m7dq3VsQ4zY8YMevbsyauvvsqPP/7I1KlT2bJli9WxaiQlJXHDDTcwbdo0Xn31VaZPn86uXbuYMGGC1dEiytixYxkwYADXXXcdAwcOZPjw4bz++uvY7Xaro9WYPn06bdu25fnnn8fv93P77bezc+fOBl1noypugMsvv5zTTz+dSZMmccstt9CuXTurIx3h/vvvJz8/n6lTpzJp0iR69OhhdaQjvPTSS2zbto3ly5fz/PPPk5iYaHWkwyQkJPDCCy+wYsUKsrKymDVrltWRjnDuuecyadIkcnJyuPrqqxk2bJjVkSLSU089RV5eHnPnziUnJ4eWLVtaHekwNpuN2bNns3HjRgBmz57doOPb0AiLu2XLlrRs2ZILLriA5ORkQrPQh5Vu3brRtWtXBgwYEFZb2ofq378/vXv3JhgMEhcXZ3WcIzgcDi677DL69+9PVFQUDofD6khHaNKkCZdddhm9e/cmKSkpLH8XI0GvXr3o0aMHV1xxRdhtQAAopRg8eDD9+vUDICYmpsHX2eiKu1pKSorVEeqklArb0q7mcDjCshAPFY7/U/m5cP85RwK73R6WpX2ok1HY1RrVzkkhhDgVSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMFLcQggRYY5Z3EqpV5VS+5VSmw9Zlq6U+lQplRv6mBZarpRSzymltiulNiqlzm3I8EIIcSo6ni3u14DLf7bsQWC51roDsDx0H+A3QIfQbRzwYv3EFEJEEjm9v2Eds7i11l8BpT9bfA0wN/T5XODaQ5bP01X+D0hVSrWor7BCiMgQTtfLbox+7Rh3M611IUDoY2ZoeRbw0yGP2xNaJoQQop7U987Jo/19dNT/9Sqlximl1iml1oXTzCVCCBHufm1xF1UPgYQ+7g8t3wOcfsjjWgJ7j/YCWutZWuueWuuekXCFNyGECBe/9rKuHwKjgCdCHxcfsny8Uuot4HygvHpIpS6GYbBo0aJfGaXhFRcXs2PHjrDOuHnzZnbt2kVRUZHVUWq1b98+Pv7447C+FGtFRUVY/5zdbjcJhQm0XdTW6ii1SspPYrNrc1iPc+/cuZOoqCg2b9587AdbxDCMWr92zOJWSr0JXAQ0UUrtAf4fVYX9jlJqDLAbqJ5GfSnwW2A74AZGH09Av19x553NjuehloiPNxk1Kp5mzcI3465du5g5M4WysvDN2L59DNde2zSsZov/uaioqLD+OTudTs6LOY8nmj1hdZRabTm4hUpbZVh/H+Pj43k8/XHczRp2Ut8T4Ve1Tyx9zOLWWt9Uy5cGHeWxGvjjcSereZ6Nfft6/9KnnTQpKdtp0aKE3r3DN2NRURFlZc3C+vvYsuVyevToQVpa2q96fjAYZObMmTz++OOHLZ81axa//e1vT3i6KK01b7zxRlj/nEtLS/n222/DOqNpmhQXF4d1xo0bN1LSrYTy9uVWR6lVoq32iSMa7Qw4onHx+/28+uqrTJgw4Yg/wa+++mo+/PBDLr/8cqKi5FdaNH5yyrsIe4FAgOnTpzNx4sSjjptqrRk5ciTz588nGAxakFCIk0uKW4Q9m83GokWL8Pl8tT7m4MGDrFixosFn1xYiHMhvuQh7mzdv5sCBA8d8XH5+Pnl5eSchkRDWkuIWYc/hcBzX2PXxPk6ISCfFLcJehw4dSEpKOubjmjVrRlaWXGFBNH5S3CLs2e12cnJycDgctT6madOmTJw4EbvdfhKTCWENKW4R9mw2G/369eP8888/6hZ127ZtufDCCzn33HPlcqLilCDFLSJCXFwc8+bNo127doeVs1KKrl27MnfuXBnfFqcMKW4R9rTWBINBxo4dy1dffXXYsdxaaz788EPuuusutNZhfX0MIeqLFLcIW1prDMNg/fr19OnTh+XLl9f62DfeeINrrrmG3NxcTNOUAheNmvxtKcKS1hqXy8Ubb7zBa6+9xrp16+p8vGEYLF26FK01N954IzfddBN2u13GvEWjJMUtwo7WGtM0eeihh3j++eeP+3mmabJ06VI+/vhjCgoKmDRpEjabTcpbNDoyVCLCjt/v56677mLmzJm/+LnVwyuPPfYY06ZNk2uXiEZJiluEFZfLxUMPPcRLL710QqXrdrt5/PHHmT17NoFAoB4TCmE9KW4RNgKBAH/961+ZMWMGpmnWLI+Kijqui0dFRUUddgKO0+nkzjvvZObMmbKzUjQqUtwW8Xg85OTkWB0jrEyePJlnnnnmiOXDhw/nzDPPPObz+/Xrx6BBg44Y037wwQd59tln6y3nL/X444/jdofvTCtaayZPnmx1jDrt27fvVw2dNVZS3Ba45557uOiii8jOzuass87iyy+/tDqSpYLBIPfddx/PPffcYVva8fHxXHvttUyfPp309PQ6X0MpRatWrViwYAFLly4lMfF/s4e43W4efvhhXnjhhcNev6F9/fXXdOrUia5du3LxxRczceLEk7bu4/XMM8+QnZ3N4MGD6dy5M2+99ZbVkY5w4403Mnr0aKKjo+nYsSM7duywOpLlpLhPsoKCAgzDYNKkSWRlZTF58mS2bdt2yo7Daq1ZvXo1H374IX5/1Rx7Sik6duzIihUreOutt0hNTT3u12vSpAmXXHIJb7zxBq1bt67Z+na5XLz22mvk5uaelGGTQCDA1q1buemmm0hMTOSdd97BNE0KCgoafN3Hq6SkhPLycu655x5iY2OZMWMGBQUFuFwuq6PV2LFjB/Hx8UyYMIELLriAsWPHsn79+lN+6EuK+yQrLCwkLS2NTZs2sX79elq3bs2ePXtO6aMfAoHAYVvC3bp14+9//zs9e/YkJibmFx/OZ7fbueSSS8jJyaFVq1Y1y4PBYJ0zZ9enYDDITz/9hNaaL7/8kujoaNLT0yksLDwp6z8epaWl2Gw28vPzWbt2Lc2bN6eysjKsinvnzp20adOG1atXs2XLFjp27MiPP/4oxW11gFNNz5492blzJ6tXr+bcc89lzJgx9O7dm7i4OKujWUIpRa9evXjkkUfIyMjgnHPOYf78+Vx88cUndKW/2NhYrr/+et555x2aNWtGhw4dePTRR2nbtu1JOa47Li6OPn368Prrr3PttdcyatQocnNz6dmzZ4Ov+3h16NCBYDDIsmXLuPLKKxk+fDhZWVlkZmZaHa3GJZdcwooVK8jPzycxMZE777yTIUOGnPIzHckJOBZ48cUXKSsrY/Lkyaxdu/aw8dhTUWJiIjfeeGPNZL8/HxoxTfOYY9PVJ+1orWuKOS4ujl69evH999+jlCI5OfmkXohq4MCBfPvtt9xzzz3Mnj37V89u35CmTJnC3Xffzbhx4/jqq6+Ij4+3OtIRlixZQn5+PvPnz2fTpk0kJydbHclyUtwWSEhIICEhgblz51odJWw4HA6aNGly1K8Fg0HOPvts1q5dW2uBx8bG1mxB/vy63RkZGfWe93g4HA7S0tKYM2eOJes/HnFxccTFxbFw4UKro9QqKSmJbt26MW3aNKujhI1T++8NERGio6OZMGFCnVvL6enpjBw5ss7JFoRoLKS4RUQ41hCHUkpmvxGnDCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEeaYxa2UelUptV8ptfmQZY8opQqUUutDt98e8rWHlFLblVJblVKXNVRwIYQ4VR3PFvdrwOVHWT5Da909dFsKoJTqDAwDuoSe80+llBxcK07YsS4qdKpfdEicWo5Z3Frrr4DS43y9a4C3tNY+rXUesB3odQL5hAA44hoaUVFRh52UY7PZiImJOdmxhLDEiYxxj1dKbQwNpVRfPScL+OmQx+wJLTuCUmqcUmqdUmpdIOA5gRjiVJCZmVlzMS6Hw8GTTz7JfffdV1PeKSkpll2TRIiT7ddeZOpF4DFAhz4+A9wKHO16mUf9G1ZrPQuYBZCU1Ez7fL8yiTglOBwOVq9eTTAYRClF+/bt8fv9jBw5Eq01sbGxJ+VyrUKEg19V3FrrourPlVIvA0tCd/cApx/y0JbA3l+dTogQm812xLyTDoeDs846y6JEQljnVw2VKKVaHHL3OqD6iJMPgWFKqRil1BlAB2DtiUUUQghxKHWsvfFKqTeBi4AmQBHw/0L3u1M1DJIP3K61Lgw9fgpVwyZBYKLWetmxQqSkpOszz7zn1/4bGpzD4aJLl2Jat25tdZRa7du3jw0bYvB6w+9i/dXS0rbRu/cZYX3p1U2bNtGtWzerY9QqEAiQn59Phw4drI5Sq9LSUvx+P82bN7c6Sq3y8/P5oekPBBLCd67XbdO3UV5aftTxv2MW98mQlJSp/f6tVseoVXJyPqedtpItW26xOkqtWrf+mH/+syk9evSwOkqt/v73vzN69GhSUlKsjlKrKVOmkJOTY3WMWpWVlTFv3jwmTJhgdZRarVu3jpKSEi67LHxP45g/fz79+/cP642xjh07sn///qMWd5jMgKPw+8N3SzEQKMEwYsI6o2HEkZCQEJbTY1VzOBykpKSEbUatNXa7PWzzQVXG6pl1wlV8fDxutzusM8bExJCYmBjWGeva2S6nvAshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxi6OqqKhgxYoVTJ8+nbKyMkzTtDrSYbTWlJWVMWPGDJYvX05FRYXVkY4QCAQoKytj9OjRFBQU4HK5rI50BK/Xy8GDBxkyZAhlZWX4fD6rIx3B6XSyefNmHnjgAcrKyjAMw+pIh9FaU15ezptvvsmbb75JeXk5DT2zmBS3OKqePXuydOlSmjZtSvv27SkvL7c60mHKy8tp3749GRkZfPzxx2E5ZdsXX3xBz549ueuuuxg9ejS333671ZGOkJOTw6WXXsoTTzxB3759mTdvntWRjnDFFVfwxBNPcPHFF9OlSxdyc3OtjnQY0zTp0KEDe/bsYc+ePXTo0KHBN3SkuMURFi5cyM0330xCQgItW7ZkxowZzJkzx+pYh5kzZw7jx49nx44d3HHHHYwZM4b33nvP6lg1PB4PK1euZPjw4Xz44YfMmzeP9u3bs27dOquj1di+fTt2u50rrriCf/3rXyxYsICCggL2799vdbQan332GQMHDqRdu3a43W5efPFFFi5cGFZ/Ab722mv84Q9/wOl0MnjwYP7yl7/w2muvNeg6pbjFETp27Mi2bdvo27cvrVq1YvPmzWRnZ1sd6zDZ2dn89NNP9OvXj9TUVH744Qc6depkdawaUVFRtGzZEqUU/fr1IxAIcPDgQVq0aGF1tBppaWmYpkmrVq0477zzKCoqIikpifj4eKuj1WjTpg27d+/m/PPP58wzz2Tbtm107NixzvkYT7bs7Gxyc3Pp168fzZo1Y8OGDQ3+fpHiFkfo2rUrBQUFzJs3j/fee4/333+f8847z+pYhznvvPP46quvWLduHXfffTd5eXl07drV6lg1HA4HHTt25M0338TlcjF06FCUUmRlZVkdrUZGRgYpKSnMmDEDr9fLxIkTycrKIjEx0epoNdq3b4/L5eIf//gHa9as4eWXX+acc84Jq+Lu0aMHGzZsYNmyZTz99NOsXr26wYfuwmSWdxFuvvzyS77//nt+/PHHsBtTBEhOTiY3N5f33nuPK6+8MqxKu1q/fv3YsmULOTk5rFixIqy2ZKvde++93HPPPUyePJkffvjB6jhH9fbbb1NYWMjixYvZunWr1XGOYLPZ2Lx5M1988QVKKaZPn97g65TiFrXq0qULXbp0sTpGnYYMGWJ1hGOaMmWK1RHqpJTib3/7m9Ux6tSiRQvuuOMOq2PU6aKLLjpp65KhEiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBHmmMWtlDpdKfW5UupHpdT3Sqk/hZanK6U+VUrlhj6mhZYrpdRzSqntSqmNSqlzG/ofIYQQp5Lj2eIOAvdqrc8CLgD+qJTqDDwILNdadwCWh+4D/AboELqNA16s99RCCHEKO2Zxa60Ltdb/CX1eCfwIZAHXAHNDD5sLXBv6/Bpgnq7yf0CqUip8LtAghBAR7heNcSul2gDnAGuAZlrrQqgqdyAz9LAs4KdDnrYntOznrzVOKbVOKbUuEPD88uRCCHGKOu7iVkolAguBiVrruq5af7SrvxxxVXGt9SytdU+tdU+HI+54YwghxCnvuIpbKeWgqrQXaK3fDy0uqh4CCX2svojvHuD0Q57eEthbP3GFEEIcz1ElCpgN/Ki1PvSyVx8Co0KfjwIWH7J8ZOjokguA8uohFSGEECfueK4O2AcYAWxSSq0PLZsMPAG8o5QaA+wGhoa+thT4LbAdcAOj6zWxEEKc4o5Z3Frrbzj6uDXAoKM8XgN//OVRGnZyzfoR/hkbepLS+hDuGcM9H0jG+hIJGY9GhUPwlJQ03b37cKtj1Mpu95OS4iQ6Ot3qKLUKBitITY0Ky4v1V9u/fz8ZGRnY7Xaro9Rqz569REWdZnWMOhgEbHtxZDqsDlIr022SGEwkOTnZ6ii1Ki0tJTExkejoaKuj1Or111/n4HFfJVsAACAASURBVMGDR91oDoviTkpqpp3OIqtj1ColZTtPPfU5Y8eOtTpKrRYtWkSzZs04//zz8fl8OByO/02oajPZ59vFwWAR2tREEQ0oPAE38fZk2iV3QZl2oqMdGIaBUopgMIhSCpvNRjAYJDo6uuZj9esHg0Hsdvthj1VK1Tzf4agql+pppqZOncof//hH0tLSLPou1U1rzQ03TOC99/5hdZRaxcSU0vUvl/Ld5O+sjlKr5iubM7N4Jtdcc43VUWr10ksvMWjQINq3b291lFo1a9aMoqKioxa3zIDTyBiGQUlJCbFJ0aw9uITM2NYEbV52ODdQ6N9FpddJpbec0+La4fF7yHS0JDf2R/JKtjP+/Cn4fQGUUjidTpRSxMTE4HQ6adKkCU6nk/T0dMrLy0lPT6eiooKEhATKyspwOBxER0cTHR1NVFQUTqczbAtaiEgnxd3IbC/bwMKDM1Dlin2+XTh0LMGgJoE0msRkkUoaZW4XHjNAekxLMB0s2/E+cVFJPLbifoZ1HcNp8aeTlJSE1ppgMEhGRgYul4uYmBiKi4tJTEykoqKCuLg4fD4fqampaK0xDAO32w1AdHQ0JSUlpKamEhUlv2ZC1Cd5RzUyTeNb89by/5Iem05202zaZnZi59585n7zJu3PTKFpQiK5GwuxZwXp07k/9mAscVGplFYWExOfxKtrX+SKs66lS9rZREU5cDgcHDhwgMzMTFwuF+kZGZSWlJCSkkJ5eTkJCQlUVFTgcFQ9NiEhAZvNhsvlIi0tDZtNLkApRH2T4m5k4ohn1hWvcv+/J/GvH5bxyebPiDGjaZbWHP+BGHyVTeiQ2Zq9ZXkYZSar16+mZdd0tu/bS/sMP2Xucrw+g3YDOpEaFYdSisTERPx+P77KQrZt+ZDKikrSM0+jSdtBGIZBbGxszTi23+8Hqma+9nq9xMXF1XxNCFE/ZHOokbHZbJyZ3p6HL56CLUqxo2QHBz0HSYxNwO134w64OD3zdM5q0p1kT3vaJHemcptG+U3s+Ni9fy+fbFpOzpKpQNUOO9M0QRsU/PAJX7w1ke+WPsx3/34GFdqvbZompmnWHFpls9nQWkfsoVZChDsp7kbG4XAQ8Afo3bI3C29eSJPEDGx2O2XechzRUfgMPz/s+Z4DlQfYunsLX69bTev4rlzdbAQblm/lvE6nE19p591l7xIIBgCorChj/65v+epf/6DMHcN5Q2Zzya0LCBhVR5X4/f6aI1iqd1Kapilb20I0EBkqaWTKy8trxqPPat6ZlRO+4fpXhlBYUkiMjiZaxxBLDAdKDqD9Js3SmmNog6L9xVx97o2U/VhGSkwZvpQ4dvy0jU5ndOHLD55my3dLOP2Ms+g7eBxde11JRUUFifHxeL1e0tPTMQyDQCCA0+lEa018fDzFxcVkZGTIzkkh6pm8oxqZ6p2FUVFReL1emsU359WbXuWjTR/x4ooX2VtaCH5NUlQSnbM6E62i2V+2n/ioOCorKlEGJJW3oTK5jL8unsjQdjey/ceNpDbvzFVj/k5Gs9Z4vV7i4+Px+/04HA7cbnfN8dtxcVVXejQMg6SkJNk5KUQDkOJuZKp3CAYCgZqTcDo2PZMzB95Nr6zzKHIV8fh7j1NQvJedRTtIj80gmmhKiovxuQN4nR7uvPZO7rpwPOXxe3htxpOk7Te497GXSWt6Om63m7i4OLxeLzExMTUn5VSPc1fvnKwu9JiYGIu/I0I0PlLcjYxpmkRFReH3+w/bSag19G7bm9i4WC7vfDmOaAfOSifRdkXBzm00TcnApyE+vSmx0bGkpaZRUXGQrWesZ+CtV9CmQ3eUUhiGgc1mw1l8gECUnYBhknFaFjabraa8gZrHyg5KIeqfFHcjExsbW3Nctc/nA6i5NkhMTAx+v5+k2CSK160iNuChcn8RSXt3UVF2kNRu55Dc/QKc+dvJ83j4ad9+Nn29kgvO7UugYDd7c7cQGxdHRWIau75ezu7NG0hs2oL4tmeSmNGErC5daNahY81p8CkpKTJUIkQDkOJuZFwuFxkZGTidTmJjYzFNE5/Ph1IKj8dDrKeSvAUzSUjLwB8XT0rT5iRfOACtFArw7NmFLi8lxgySkLeNC31u9PIl7C3IR9miOBjwE5eZxZmDLqfdoMvQhsnWlV+xb/MGdv/3Oyo9Xq6d/GfSmjShvLycjIwMKW8h6pkUdyOTnJxcda2S2Fjcbjc2mw2Hw4HWmgSHnfV3jSWlbQfS+l+KzR4F2sBfsLvqwr1aY7dHkdK+E6bWJJzejvbXD8MwTHzuCqLiEjG0SSAQxFNeiqnBMDUtu55NC60pLynhw2enM/sPtzP+tddJTU0N6ysBChGpZFOokamoqKBJkyY1h+Q5HA4CgQDegyWsue1a4k/LosVvfodZWY5ZXoquLEd5nSiPE7wutKsCo/QAwdIDmK5KguUlGJUHUX4//rJSAgcPEqysIOhyEXS7CLhd+J2V+JxVwzPXTLwX575Cnv/9SH7asQPDMKz+lgjR6MgWdyMTGxuLy+VCKUUgEEBrjd1up/Cjd0g/vR2nXXY1geJC7KHD92wqNEuGUiitMbUGrVBoME20BkNrgiYYpompNaYmdF9jmJqA1hjaJGgqTFNz4bCb+XTOq3z/+QrO6NjR6m+JEI2OFHcjEx8fT2FhISkpKXg8HqKjo7EFfFRu20izs7oTLN6HzaaqitoGtlB5U1XVaNMErUKlHToixag69b2qqE1MEwKmiWFCUGuM0P2g1hhaYwPadDubNYsX0+93Q0hv3tzab4oQjYwUt0W01jidTpKSkur1dcvLy2nWrBkej4fExERM06Tg0w/B58c0AhgeF8pmAwXKXlXadlvVjklDU7VFbYI2QRsmplm1FW5oA9NQoa1vTdAwCZoQNE0CGgKGgaEhYFZ93rx9e3bl5uI8eLBBi9vj8RAVFVUzaYNonAzDwOv1kpCQYHWUWlUfxXUyzl2Q4rbApk2byM/PZ/HixQwdOpQePXrQpEmTenntlJQUioqKSEpKwuVyYbfbiY9xUBltx/R7MYOgbTawgbYpsClsdhtKVZW1MjWYGm1qTMPArBkSCW1hG1VDI35TEzR0VXGHtrgDoft+MzRsEgxAAx3HHQgEWLFiBatXryYrK4uOHTvSv3//BlmXsNbatWvJy8tjzZo1XHbZZfTp04fExESrY9XQWrN8+XI2btwIQHZ2NoMGDWrQ6/TIzkkLTJs2jW+++YaHH36Yp556inXr1tXba3s8npqt+JiYmJpT302fF9PjwvC4MD3uqpvXjen1YHrcaHfoo8d9yOM8GB43hsdF0OMm4HET8FTtlAy6nATcLnwuF35XJT6XE5/Lhdflxudy43VWYgQC9fbv+jmXy8Uf//hHBg4cSGxsLOPGjWuwdQlrTZo0ib179zJq1CgmT57Mnj17rI50GNM0GTNmDO3bt6d9+/aMGTPmf9MGNhAp7pNsyZIl9OzZk+3bt/Pss8/yyiuvsHDhQioqKurl9e12O263u2b2Gq01UXYHlbk/4istxnC5CLqdBD3uqgJ2Owm43PhrjhJxEnS7MdxOAm4nAZeTgKtqecDpxO+sxO9y4nc58TmdFG35Hk/ZQbzOSrzOSjzOSrxOF55KJ4EGLO67776bhx56iEcffZQuXbowbdo0cnJyGmx9whqvvPIKv//97/nkk0/4+OOPef3118nJyQmro5Xuvfde/va3v/Hss88SHR3N66+/zr333tug65ShkpPs0ksv5fbbb+e2227jvPPOY/r06Vx11VX1NtZdfdy0UqrmWtoxTZqCI5qKHzeh2nVAx8SgbTa0XaGVxu+qRMXEg8OBEQwS8Afxed2UbfkefzCIN6jxmRpv0MBrmPgMSOrQFSM6Gkd8PF6Xm6BSBAyNz6gaMtm7exflBw6gGug47qlTpzJixAjmzJmDzWbjzjvv5PPPP2+QdYlfrr6GCYYPH84111xDTk4OrVq14v777+fuu+8Oq5O6HnvsMQYNGsSbb75JbGwsv/vd7/j0008bdJ1S3CdZdHQ0559/Pm+//Ta5ubns3r2bYcOG1dsvevVlXSsrK0lISCAYDEJ2LzJ6X0zRsvcwPC5S27TDiI/HsCnsSmMUFaCiYiA6Gn9lOb7i/fiNqnFsn2ESNDT+oCZgGASDmoBhUrDxW3xBiGrSDF8gCAmJEB2LXyvKikvZlZvLRbeOJb1Fi3r5d/1cWloaWVlZzJkzh4MHD9K7d2/i4+MbZF3il6uva9TExsbSr18/Xn75Zdq2bUswGKR58+ZhdZ33hIQEunXrxqxZswDo0qVLg+9EleK2wB133MGtt97KJ598woQJE+r1tePj4ykvL8dut+P1eoGqrXCPz0/Q1PjcLiqL9hLfNBNPWSl2bYLXDX4fJlU7Ik0dKmwTAobGH9rpGDSrjigx9P92WLr2FuAzNB7DJCajKS6fn5KiA5gmtO2WTVwD7USKj49n/vz5rFu3jhYtWpCVldUg6xHWe/jhhykvL+c///kPDzzwgNVxjmCz2Zg9ezZbtmxBKUXHk3DughS3RaKjo7nqqqvq/XX9fj+JiYk1x3AbhoFhGMRlZRG0OyAYQFVWoqOj0SUHsGsTpWxVZ7wDhjarTqoxq0668Zsaf+iIkYAJAW2GjiwJnYSjNQZVx3j7vF48Tg+mUsQkJuP1+TBNs0H/rO3Zs2eDvbYIHykpKQwcONDqGHXq1KnTSVtX+AwUiXpT/WfqoX+uth3+B2xNmuM2DNxuL67ycjwBA0/AxBMwcQdN3AEDd9DEE9T4guALmviCJv5gVYEHDLPqZmqM4P+2wv2GiYnCVeHC4/EQDJqcfcXl9L/lZqu+BUI0arLF3chER0fj8Xiw2WxV49v8b/JeW2pTgrvz0NrAcLqxGSZ2pavOmazemUnVSThG9ck1oS1vX6i0/WbVjspA6MQbvxl6LGBQNYTSqU9/7NiIj40Lq51IQjQW8q5qZLxeL8nJyUDVjp2oqChM08QwDNqMvBOfofAGTTxef9XWdjB0Cxh4g2bVkSOB0EdD4zM0XsPEHzTxhT4Ggxp/aPw7aOqqcfBAEK/Xiz02BluMg8vH3U5FRUVYHbYlRGMhW9yNTFJSEsXFxcTGxuJ0OlFK4XA4sNvtnHF+H9bEJ+KvLMemIMqmsJkKpXT1VV3/d9o7VVvc1dcj8YcKOmCA3wS/aeAzIGBUPc5vaHSUgwuHDmPrf9fTumtXEhISZKJgIRrAMbe4lVKnK6U+V0r9qJT6Xin1p9DyR5RSBUqp9aHbbw95zkNKqe1Kqa1Kqcsa8h8gDud0OklJSUFrTWxsLA6HA8MwME0TdyDAxc/OqTke221UjW17Aibu0Di3xzDwBI1DtsBNvAEDf9DAXz1UYpj4g9Wntxv4TAgaJp0u7Mt3n3/O+JdmER0djdPpbPAzyIQ4FR3P5lAQuFdr/R+lVBLwnVKq+ujyGVrrpw99sFKqMzAM6AKcBnymlDpTay1/M58E0dHReL3ew+Z8rB5njo6OJiazGc37XMzur5djC13aVVE1zq2xodE1l3I1QpdyDYYuLFV1TRJdc4ig3zTxGVXj3THJKXi8fs7/7W9p3ro1hmHgcDjC6nhbIRqLY25xa60Ltdb/CX1eCfwI1HXQ7DXAW1prn9Y6D9gO9KqPsOLYYmNjqaysRCmF3+/HNE3sdnvVxabi44lKTee0XhfiC+rQUSVVW9aeoK76GDrKxBM08RlV49xeg9CtamvbZ1TtoKwaKjExVRRdLh6Mx+/nwquvJSk5GcMwSEhIkOIWogH8op2TSqk2wDnAmtCi8UqpjUqpV5VSaaFlWcBPhzxtD3UXvahHFRUVNG3aFNM0q4o6KopAIEAgEODgwYMkxMfTZdgoWg68FI9ZNRTiChi4/Abu0OGB7tBQiStU4N6AgTcYxBcw8FXvuAya+A0Tw+6gY98BlBaXcO7gS8jq2pWysjIcDgfFxcWyc1KIBnDcxa2USgQWAhO11hXAi0A7oDtQCDxT/dCjPP2I81+VUuOUUuuUUusCAc8vDi6OLjk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OqS3xJ0xNUct+0xdNWx3EboflD/74iToIk3qPEaGk/1GLepITaWzHbt0VF23BXlZHXqRHJKCqmpqQQCAdLT02XOSSEawHHt8ldKOagq7QVa6/cBtNZFh3z9ZWBJ6O4e4PRDnt4S2Pvz19RazwJmASQlNdOha5CLE+R2u0kODVVUz/JefTy33+8nNjYWwzDodd1QPKUlLHnkYQ4fzfjf8dxVp79Tc4p7UIdOgzdNtLKTmJwG0TEU5uUz7qmn6NKvHx6PB6UUUVFRVFZWkpycLOUtRD07nqNKFDAb+FFrPf2Q5YdePeg6YHPo8w+BYUqpGKXUGUAHYG39RRZ1iYuLo6KiAq01Xq+XYDCIzWbDZrORkJCA1+tFa01FRQUDbr2dSx9+hKDdUbU1HTqe2xM08Ss7nkOWeQ0Tv7bhDRr4ghofCrfHy7783Yz4f3+lw/nnV12JMCaG2NhYgsGgjHEL0UCOZ4u7DzAC2KSUWh9aNhm4SSnVnaphkHzgdgCt9fdKqXeAH6g6IuWPckTJyWO324mKiiIqKqrmlPfqzw/9WlRUFNExMfS+5fe073EBn774PBXFB4CqH2jvm2/h6wWvozWYpiYqLp7Tu3Xjx9WrMTVoFOktmnPL5Mmkn346UQ5HzetWrzMqKkqKW4gGcMzi1lp/w9HHrZfW8ZwcQK5qbwGbzVbnNGgpKSkANZedzMzMJDMzky5Hmfbr0tG3/eocMgekEA1HTnkXQogIEybnI2tiYkqtDlGr6OgKvF4vpaXhm9HtduN0OsM6YyAQoKysrN4ust8wjLD+XYyJKcMesBNT2vAzif9a0c5o3G53WP8uer1eKioqwjpjXe8TFQ5vovT0dH3fffdZHaNWLpeLAwcO0KZNG6uj1KqwsJCYmBjS09OtjlKrrVu30rZt27AeRtmwYQNnn3221TFqFQgE+OabnRw82PAX6/+1YmNLOeccHy0aaPaj+pCXl0dmZmaDz1RzIp5++mlKS0uPvpNIa235LTMzU4ez3NxcPWvWLKtj1OmDDz7Qq1atsjpGnR577DFdWlpqdYxamaapx48fb3WMOpWUlOgePXJ01SXBwvPWvPk3etGiRVZ/q+o0c+ZMnZuba3WMOoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwjba4V61aFdZTZAWDQdauXWt1jDqVlJSQm5trdYw6bd++nZKSEqtj1Onbb78lGAxaHSOiuVwuNm3aZHWMOu3Zs4eCgoKTsq4wmXOy/qxbt44PPviA2NhY/vWvf3HRRRdxySWXWB3rMO+++y4bNmwgOjqaxYsXM2rUKM4880yrYx3m6aefpqKiApvNRiAQ4OGHHyYuLs7qWDU8Hg9Tp07F4XBgmiZJSUlMmjTJ6liH2b59O3PmzCEmJobFixeTnZ3NDTfcYHWsiPPyyy+za9cuHA4Hb731FhMnTqRp06ZWx6phmiaPPvpozYaiUoq//OUv2GwNt13cqLa4tdasX78e0zT505/+RPPmzfniiy/Castba81HH31E165dueuuuygqKmLnzp1hl3Hu3Llcd911/P73v+fTTz/F7XZbHeswXq+Xf//734waNYrrr7+eefPmhd33cOfOnezbt4/x48dz9tln8+GHH4ZVxkigtWbBggUMHjyYcePGsWHDBoqLi8Pq+2iaJm+//TbDhg3jpptu4p133sE0zQZdZ6Mq7vz8fDZu3EhlZSW/+c1vGDVqFLGxsaxatcrqaDXef/99LrjgAubMmcOkSZOYOnUqCxYsoKKiwupoNaZMmUJOTg633nory5Yt44033mDcuHFWxzrM2LFjmThxItdffz0+n4/nnnuOyZMnWx2rRmVlJfPmzSMrK4tBgwYxaNAg+vTpw8KFC62OFlH+8Y9/cMcdd/Dggw/y4osv8s9//pMpU6Y0eDH+EuPGjeOJJ57g5ptvZtu2bSfl/dKohkrOOOMMsrOzWbt2LR999BFPPvkkAH369LE42f/87ne/Y8SIEfzmN79h2LBhjB8/nttuu42UlBSro9V4/PHH6dKlC9OnT6d58+Zcd911fPXVV1bHOswrr7xC3759WbBgAUVFRUycOJEffvjB6lg1kpOTGTlyJC+99BJLly7l9ddfZ82aNSxYsMDqaBFlwoQJDBgwgIkTJ3LeeecxYsQIXnrpJex2u9XRarz88st07NiRuXPnAjBkyBC2bt3aoOtsVMUN0LdvX7TW/PWvf6Vr1650797d6khHGDNmDFu2bOGpp57isssuo0uXLlZHOsKf//xnNm/ezOrVq5kwYQLx8fFWRzpMXFwcf/rTn/jggw9ISkriz3/+s9WRjtC5c2cuv/xynn76aTp06MBtt91mdaSIdN9995Gfn88rr7zC8OHDad68udWRDmOz2ZgyZQpffvklSimmTJnSoOPb0AiLu1OnTnTq1ImdO3dyxhlnoJSyOtIRLrroIvr168dPP/1EmzZtrI5zVMOGDcPlcuFyucjMzLQ6zhFiYmIYO3Ys+/fvJz4+nsTERKsjHaFly5aMHTuW/Px8Tj/99LDaSowkV111FT6fj+LiYrKysqyOcwSlFKNHj6asrAyA1NTUBl9noyvuam3btrU6Qp3sdnvYlna1hIQEEhISrI5Rp3D8n8rPhfvPORLExMSEZWkf6mQUdrVGtXNSCCFOBVLcQggRYY5Z3EqpWKXUWqXUBqXU90qpv4aWn6GUWqOUylVKva2Uig4tjwnd3x76epuG/ScIIcSp5Xi2uH3AxVrrs4HuwOVKqQuAJ4EZWusOwEFgTOjxY4CDWuv2wIzQ44QQQtSTYxa3ruIM3XWEbhq4GHgvtHwucG3o82tC9wl9fZAKx0M7hBAiQh3XGLdSyq6UWg/sBz4FdgBlWuvqK+fsAap3+WYBPwGEvl4OZNRnaCGEOJUdV3FrrQ2tdXegJdALOOtoDwt9PNrW9REXFlBKjVNKrVNKrfN4PMebVwghTnm/6KgSrXUZ8AVwAZCqlKo+DrwlsDf0+R7gdIDQ11OA0qO81iytdU+tdc9wuuqcEEKEu+M5qqSpUio19HkcMBj4EfgcGBJ62ChgcejzD0P3CX19hQ6nS3kJIUSEO54zJ1sAc5VSdqqK/h2t9RKl1A/AW0qpqcB/gdmhx88G5iultlO1pT2sAXILIcQp65jFrbXeCJxzlOU7qRrv/vlyLzC0XtIJIYQ4gpw5KYQQEUaKWwghIowUtxBCRJiwuKyraZqsXLnS6hi12rdvH4WFhWGdMT8/n4MHD4bVlE4/V1payrfffhvWl4p1u91h/XN2Op3ExpbSvHn4ZkxL20p+fmVYfx8LCwvZuHEjRUVFVkepVV3v5bAobq01JSUlVseoVXl5OR6PJ6wzulwu5syxUVkZvhlbtfJz/vkH8Xq9Vkep1cGDQUaMCN/vYVSUmxaXf0vc/e9bHaVW0XnJuFw3hPX7xev18nDZw3ijwvd30ad9tX4tLIrbbrdz9dVXWx2jVtu3b8cwjLDOaJom+/c3Y9++3lZHqVVGxkYuvfRS0tLSrI5yVFpr5s//lLy88P05x8SUktz8afKuzrM6Sq2ar2xOl+IuYf1+KSwsZG//vZS3L7c6Sq0S7bXP6iRj3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI22uJ977jm01lbHqJXP5+Pll1+2OkbE++yzz9i+fbvVMUQDKy4u5t1337U6RthodMW9ZMkSBgwYQLNmzRg4cGBYlmNOTg5XXXUV0dHRDBgwgDVr1lgdKeI4nU4GDBjAypUrefzxx7nhhhusjiQayF133cXtt9/O3r17GTBgALt27bI6kuXCYuqy+uL3+8nPz+e6667jnHPO4dFHH+Xf//43LpcrbCaoLS8vZ/fu3dxzzz2cddZZHDx4kLy8PHr27Indbrc6XsTIz8+nSZMmDBkyhObNm3PLLbdQWFhIixYtrI4m6lFxcTEFBQU88MADZGVlUVBQQF5eHq1atUIpZXU8yzSqLe7qH/K+fft45pln6NChAw6Hgx07dlgdrcZ///tf2rZty6JFi3jjjTcYOHAga9euxePxWB0tosyfP5++ffsybdo09u3bxw033MDixYutjiXq2eeff07//v156aWXWLZsGddeey2LFi0K62HQk6FRbXGfdtpptGvXjnnz5vH6668zduxYzj77bLKzs62OVuOiiy5i9uzZAFx33XXccsst5OTkkJhY+8Sg4kgPPfQQXbp04Z///CfLli1j1qxZbNu2zepYop4NHTqUAQMG0KtXLzp37szo0aNZvHgxNluj2ub8xRpVcQMMGTKEvn37MnHiRKZNm0bTpk2tjnSEJ598kqKiIqZOncqCBQto2bKl1ZEiTlJSEsuXL2fhwoV07NiRpUuXWh1JNJB58+aRl5fHu+++y+LFiznjjDOsjmS5RlfcqamppKam8u6772Kz2cJyHOy0006jRYsWzJs375Tfcvi17HY7nTp14qGHHkIpFZY/Z1E/WrduTatWrejfv7+8X0IaXXFXC/cdfVI29UPeyKcGeb8c7pi/9UqpWKXUWqXUBqXU90qpv4aWv6aUylNKrQ/duoeWK6XUc0qp7UqpjUqpcxv6HyGEEKeS49ni9gEXa62dSikH8I1Salnoa5O01u/97PG/ATqEbucDL4Y+CiGEqAfH3OLWVZyhu47Qra5jca4B5oWeqt0stwAAIABJREFU939AqlJKDq4VQoh6clwDhEopu1JqPbAf+FRrXX2qX05oOGSGUiomtCwL+OmQp+8JLRNCCFEPjqu4tdaG1ro70BLopZTqCjwEdALOA9KBB/5/e2ceZ0dVJf7vrbev/XrJRhaSkBgDYc0iEUFIMICDLMoo6gA/FkHHgAoMgXECyowIaCCDgwPIFoIIikQQUGEIyGcYCYQAWSSREBLSJOnu9PKWqvfq1XJ/f9RCd8jSiUleP6jv5/M+Va/u7arT97136tS5557jdt/eDMKHLHQhxMVCiKVCiKXB4pOAgICA/rNbU/JSyh7gBeBkKeVm1x2iA/cB09xurcDIXn82Ati0nXPdJaWcIqWckkgk9kj4gICAgI8j/YkqGSSEyLn7CeBEYLXntxZOjM4ZwEr3T54AznWjS44G8lLKzftE+oCAgICPIf2JKhkGLBBChHAU/a+llE8KIRYLIQbhuEbeAL7p9n8a+DywFtCA8/e+2AEBAQEfX3apuKWUy4Ejt3N8xg76S+Dbf79oAQEBAQHbI1h2FhAQEFBnBIo7ICAgoM4IFHdAQEBAnREo7oCAgIA6I1DcAQEBAXXGgEjrapomd955Z63F2CH5fJ7W1tYBLeO6desYNSpJS8vyWouyQ7LZ9SxcuJBYLLbrzjXCNLuYNGngfs6hUIWGdxuYdOekWouyQ5Kbk/yl8he2bNlSa1F2yMqVKzkofxDVhmqtRdkh75nv7bBtQCjuUCjEzJkzay3GDmltbUVRlAEtYzgc5uijmzj00ENrLcoOueee9fz7vx+LYWRqLcoO+dznlrFo0cD9nAuFAr/9bTvnz9z+8giJRGIjpUS42Sekm3FCESH/2L5k+fLl9PT0cNxxx+3za+0p+XyeedPmDejqU9OV6TtsGxCKWwjBuHHjai3GTnn77bcHtIwrV65kyJAhA1rGVCpFsTgaXW+stSg7QKIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxZvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0h8UiCYekRNKaayefzRCIRSqUSLS0tbN26lWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZWJGRAKO6AgIDdo2yWWFF+gZKZp7Wwis7KFuJdGYQdZrAyhuGJQ/nr1lcJhzJMyhyBkg7xZtdfeHLtI5x04D8y88BTGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkke0SpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjtldsxLJ0R2RGMbRxLLJTi/sULyWaifOLAYXRuUOnUV3H4pB6aooMxLJthiYNYtWU5mGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UqZMmcIll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zYIFC3juuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP8x9eec8cjptEct1oa7SIokTeJAkpUY2vo0W98vs3pLO7HkCuKdTXQ3bSUVbiKsRMkXKlSqVY4ecRxhGSGVSqGqKkII59E/IqlWVCLhEIg4tpSEQiF0XSeVSmGaJpFIBFVVyWQydau4VVWlsbGRQqFAOp3GsiwMwyCbzfL000/z+OOPY1kW5557LrlcDl3XyWazvsVdKpWIRqNUKhUA3+LO5XL09PTQ0NDA+++/z3PPPcecOXPQdZ377ruPnp4estkspZJTo8ZT9olEIrC4AwI+qlQqFcYOGs2vv/xrvvqbr/Da+teImGGao03IKthVmx9/9UZeXvEXRmVH8adVf2L4yEbWv9dBLJNmc0cnlarJj5+9getO/SGqqpLNZtF1nYis8ODcydhmBYTki//yOoncUGzbJpfLoaoq4XCYfD5PMpmku7ubZDJJMpms9bDsNpFIBNM0CYVCWJblTOr2KkxcLpeZM2cOc+fO5ZlnnuHII4/0/dGmaaIoClJK/6nDc3tIKYlGoyxfvpyTTz6ZfD4POEEEoVDIdytFIhHgg6ecwOIOCPgIk0wm6ejoYHjqAP77i3dw6a8vpb27nXHN4wnJEHbV4jcvPUIqlKJc0YiGI7S9EuaTB05hU/s7FJrbaTFG8qs/PcKs0Sfz+U99no6ODuJReO1P/0m+ZDB41BTGH3EiIpJE13VCoRBdXV3+5GRTUxMdHR00NzfXrcUdDocxDANFUTAMw/8/7r33Xt+KBqhWq3zta1/jnHPO4cwzz2T06NHcdNNNSCmxLMtXwJFIhG984xu0tbXx0EMP8fDDD/tKG8CyLO666y6+8Y1vYNs24XDYn0cIhUL9l3tv/PMBAQH7F03TSKfTAEyJT+FX5zzE6b84g9Xta8iEMyREAl3odOhb2dKxma6tXfzD1FNpiR6ATYjD0lN45s0/0BQLE1MiFItF8u1r+f0T82nfsJTBw4/i2C/PIzd4NIoQhEIhbNumubnZt7g7OzvJZDJ1bXGXy2WampooFApks1lM06RarfLQQw9RrfaN8d60aRM33XQTTz31FKlUiqVLl2JZVp8+iqLw1FNPIaXk9ddf/9D1pJTcddddnH322eRyOUqlEkII4vE41WrVt/h3RbByMiCgDvGsMyklilAY1zSe5775HOOGfoJCpcCaLX9j6YZlLN+4nEw6y9RDplI2yrzXtgERVii8X+X4g04hnQwz98HZvLtpLe+tXcnqFa9x7GnX8KXZC2keOhaB8xjvKRQvLFAIQTgcxrZtQqHQh6zFerHAvRtPLBajq6sLTdMAMAzD73PLLbf0WcOxcuVKlixZ8iGlDY6Pe9myZX2U9pAhQ1iwYIH/PhwOM2jQIAzDoKGhgVQqBThPUYGrJCDgI4yiKFQqFYRrDRuGwdCGofzxkid5asVTPLniaf6y6v/Y0tmGVlXptEPooSp21QYT3lrzV2ZNPYnjWs5i8HTBpbd8lQkdIY6YMpNPTD6FZLrBV9Je1IMQgmq1SiQSwbIsotGoP0m5rcLxHv8HOl4YYKFQoKmpybe4PdcHOEp80aJFNDY2bldZ74qZM2f2uRGYpsnWrVvJ5XLk83nf4g7CAQMCPuJUKhXfNVEul0mlUvT09JDJZJgxbiZfmnoWf1z2R7YUt1CtVMnE05S1Mnq5ClJgnmAyashIZkybQVNjE9ktTWz8vzf53Be/TcvgA+js7CSVSmEYBuFw2FfSXnxyPB6np6fHX7iTyWTqMo7bCweMRBx3kTdB2FtBJxIJ9rSg+QUXXMDNN9/MM8884x8LhUJks9k+4YDgLNwJLO6AgI8wyWSSQqEAOD94bzWe57NVVZWTjjyJfE8PyWiUck8n7y34Lypr3yI+bDif/N6/U41ECAFbt2xmy+ubiKUGM3LUOApdXTRmMlQNg7W/f4zXfrMQEYnzydO+zEHHz6CxuRnLsmhpaaFUKtHc3OzHMdcbuq6TTqfRNI1EIuGvYozH436farVKLBbzI092h9NPPx2gz0SnlBJVVUmlUv7xaDTaxyrfFfU52gEBH3NUVfVX85XLZdLptB837G3bXl+CaH2X9U/9mkgixWE/vBWUCCKkYG3dwltzr8YSCnbFxn5rBYMPO4r1j97PxhefRysWSI8cw4QzvsoXrp+HbRr8dfGzPHj+V4k2NDLjsstJDz2AA8ePJ5/Pk0gk/MnSeqK3/15K6bt4fve73zF06FCKxSIbNmxg2bJlH1qI1B/Wrl3L5MmTWbt2rX+9M888058T6B16uDvzAoHiDgioQ2KxWB8fd7VaJR6PYxgG8XicrS/+iQ3z5jLy7Is45KobEALUNW/h6QYpBJPm3oIUUNmymcaX/5dqtUpIKEyZfRWEI+hljWpZQ+tsx5aSAydPZdTkaeS7uvjttd8nO3IU5/10Polstm4t7kgkgq7rKIriL+UXQvSxkH/2s5/xs5/9bI/Of8UVV7Bp0ybmzZsHOHMT3/3ud4nFYti2TTQa9W8WuzOGQVRJQEAd4kVz9F4AYts2Qgg6Xvgjb8//AaO/dgnZsZ9Af389eusGREVFVFSoqFBWKb+zGu3ttzCLPQyeNp0DPvNZGkaNodyxBfX9jVQ6t2KqKmZZw9A09GKJSiFPKBTis+ecS2HjRu7+52/5YWz1iBdW6fmbPUU6b968PfZrb4untMH53ObOnUs+74xjqVSiXC77eVD6O471eZsMCPiY40V1CCH8lXyapiE622j73YOMOuPrxJpasPOdKCgI4a4IBARgI8F29rElVa2EJSWmDZYtsaXEls6+6W1tiYWNYUE0luAzX/snHv/PW/mvC87nyod+VdsB2UO85evxeJzu7m6klNx+++389Kc/7eMaaWxsJBQK9QmL7O7u3u45GxoaiEQi/o3Utm2/r5SSu+++m1AoxHXXXedHqliWtVvhgIHFHRBQh3g+bS/zXD6fJ9fQwJYVr5NtGUoq14xd6oGKhtBLKLpGSFdRdM15edZ3WYVKCcoqtqYitRKWVsLUSphqkapawigVqZaKVNUietHZVkoFbNPgcxdeRHdrK8X29loPyR5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwcffDDLli2jtbWVd955h/b2dpYuXcrUqVM/dL6JEyeyePFiWltbWbFiBa2trbzyyiscfvjhfh/Lsvj5z3/OzTffzKZNm1BVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/4jSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOeQQ7rjjDpqamnxfeKFQYNCgQcybN4/x48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk2b1ufc8+bNQ1VVvyLU7oQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHqq69y9913D1gZBzred/E73/kOhUJhr34XvSRHXqKjarVKRBFU1v2VaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDr6QIy95A/eHrZts2HDBn70ox/t9e+iYRhEo1Fs2+ab3/zmhxTn5s2bueqqqzjxxBOZPXu2n7/cNE2OPPJIZs2a5fedNWsWJ5xwAtVqlXA4jK7rXHPNNZx88snMnj2bDRs29Dm3EIJvf/vbfhjg7oQafuQU94IFC5gwYQKXXXYZhx12GNdff32tRfoQF198MSeeeCJf/vKXGTt2LP/zP/9Ta5E+xBFHHMGdd96JrusMGzaMnp6eWotUdyxevJixY8dy1llnMWvWLC666KK9dm4vfM3zo/ohbbaFXdEwyyVHGZcdS5pyGVlRoawhy97WtbA1Z2uWHYVtllUM1XOXeBZ2Eb1UpFoquEpbpVIqUSkUqKilvfZ/bQ9P8U2YMIGRI0fyt7/9ba+d2ytgEAqFuOeee/jlL3/Zp72rq4uXX36Zrq4ubrzxRkKhEJqmEYvF/MVJHplMhkGDBpFMJv3JzmuvvZZKpcLLL79MW1tbn3PfdtttPPbYY37MeO/VmrviI6W4e3p62LRpExdeeCHLly9n0aJFSClpbW2ttWg+q1evpqWlhXPPPZd8Ps/tt9/O8uXL0XW91qL5vPDCC5xwwglMnz6d6dOnM2fOHJ5++ulai1VX6LrOm2++yQUXXMDbb7/NY489xuDBg1m9evVeOX+1WiUajfqukng8TqVcwVI1Km2bsFTVeWmqo4DLJQxVxShpmKqGqamuL9tpN1QVU3X6VdUShuZsq6UiRklF6+yk1NHuKuyi+1KpqCV0TWNfPY8tXbqUQw45hNNOO43Bgwdzww038Pzzz++1p5feSZ1CoRAvvvjih/pMnDiRRYsWkU6nCYfD/PnPf+bBBx/k2Wef5fDDD+e8887j61//OkcffTRLlizhoYce8hNNxeNxHn/88T4+bo9XX30V0zT9J4jdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2D161w70FnfsrXGMx+O0t7cjhCCVSjl1EDNpbAmF1asIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XTRiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNiw0rVzJu6rRdC70H9P69eBEae/u76H3XS6USd9xxB6eddhpr1qxhzZo1AH544E9+8hOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SuXPn9tFFw4cPZ+bMmTz44IPMmTOHZDK529+Nj5TFncvlGDZsGL/4xS845JBD+OIXv4iiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LooYf6ExQDgeOOO44XX3yRl156iZdeeombb76ZU045pdZi1RWxWIzDDjuMe++9l7Fjx/KlL32Jjo4OJkyYsFfO7xXrbWhowDRNMpkMRb3KwXN+hNbVwdYVr6Hn875PuqKqaF1bKW18F62Yp9zTQ/eyl8gve5nShnWom1vRNreibnqf4qaNFFtbKbz/HltWvc7Gl/+Xre+sRSsUKHV2ohWLlIsltEKR1UteRolEOfgzx+6V/2tbJk+ezFtvvcWiRYtoa2vj3/7t3zj++ON3Wkh3d4hGo75POh6P88orrzB//nyam5v9PqtXr+aBBx7gU5/6FDfccAOf/exnaWpq8m8iXjIub0l8Op3mC1/4Avfeey9Tp07lgQceYPny5f75crkct956K0uWLGHMmDF+kq7dWYDzkbO4zzvvPM455xwuvvhili9fvtc+4L3JXXfdhaZp/Ou//ivr1q0bkDK+8cYbLFu2jDfffJPNmzcPSBkHOjNmzGDdunVcccUVPPvss376zr2FZVn+5+JYjSFEphHDtFFUla6/vkHDuE+iWCYh20IYOkbH+7C51YnVtsGwbaq2Y0FXTceKtnBjtyVU9SoVw6KSL6Jv3EjFsjEjMVJDD2DT+g0Uixqjp32CSccdt1f/t9784Q9/oLW1lYULF7Jx48a9+l30Cvvquk5TUxONjY1s3LiRSqXiP3mCY3W/++673HjjjaxatYonnniC++67DykliUTCDx+cNGkSV155JVdffTWPPPLIh576FUWhXC6zefNmJk6c6C/yiUQiVCqVfhtw/VbcQogQsBR4X0p5qhBiDPAw0AQsA86RUlaFEDHgAWAy0Al8RUq5vr/X+XvxlgDfc889++uSu42iKKTTaW677bZai7JDFEVhypQpTJkypdai1C3ed3H+/Pl7/dzeUm1PeXvpVUuAHY9T1StgmKg93aAWEKUiiiJQEEgklrSxpaO4TRsM1/XhbMG0bUx30Y0pJbYtsaTEssEyDErdPVS0MqFYHCn3bf5tRVEYNWoU3//+9/f6udPptF+Nvaenh2g0yjvvvMOnP/1pTjrpJAqFgj+BeccddyCl5Pe//70/9+NVu0+lUkgpueKKK1i4cGEfpT179my/nJmXHGzt2rUccMABZLNZLMuiWq2SSCT6LffuWNzfAd4Csu77m4BbpZQPCyHuAC4E/tvddkspxwkhznb7fWU3rhMQELALdF33oxE0TSOZTDppViceSuNnZtH2p99hYyI7OwkLG8W0EYpAuIrblr0UsZSOb9uSfRS4r7wtG1OCYdnO6kpDonfnsSWE4nG+cNW/+DlS6g3P5VStVmloaEBKybHHHsuMGTOoVCp+ZRpFURg/fjyXX345APPnz+d73/sehmGQTCapVqu+D/6WW27xlfZ1113Ht771LeLxuL/KNR6PU6lU/KyOgF8tvr+pcfv1zCGEGAH8A3C3+14AM4BH3S4LgDPc/dPd97jtM0UwsxUQsFdJpVKUSqU+uaQbGhrQRYjsgeMwbdANm7JWplyuolk2ZdNGM51t2bSpmI6yLhvSmZi0baq2pGrZGFKi2xLTkphSUHUtbsO2UVJpx5UQTWCYJtM/d1Jdli0DJz1u7zH0XB6FQoFEIkGhUPCr20+cONH/O9M0/VqSlUqFSCTSpwiwx/jx42lsbCQSiaAoCtlslnK5TENDgx8y6Fnau5PPvL8W93zgKiDjvm8GeqSU3mL+VmC4uz8c2AggpTSFEHm3/9Z+SxUQELBTNE0jk8n02c/n82QyGZTR41EGHUBlSyuGrBJCEFJwMwM6tpqUfa1u07adKBEvWsSyMCxHeVddl0nVkpgWVLp7sAUcNvME4k3NdHR0kMvlfHnqCS/Pi23bvnIFxwL2igBLKQmFQn0mD4UQfty1l8Ok98vDWyjlHTMMw8/m6Lm4PD/67oQ47tLiFkKcCrRLKV/rfXg7XWU/2nqf92IhxFIhxNK9lYUrIODjgud3LZfL/oSX91h/4DHHEx8+irJlUzFtKpZnYdtUTJOKaVI2Lcqm9UG7r6TdiUpLUrX4QJlbjvI2bMeF0jJ6DOtWruLUf55NNputy+o38EEooKece8d0exkYvXDEMWPG9CmM4C2c81wknv+7s7MTcEqWTZo0yW/zVtIqioJlWX3+DvZ+HPcxwGlCiM8DcRwf93wgJ4QIu1b3CGCT278VGAm0CiHCQAPQte1JpZR3AXcBDBkyZOAFXAcEDGC8H7734/ciIDyFM+Vfruf3//QFyuUSISGciUnpWN0SsAHbywKIxDSdSBJHOduYFlRtR5kbtu1GnzgKPJbJMnjcBAaNG0fTsGF+jHU94hUJzmaz5PN5otEokUjEryTU1dVFJpNB0zRyuRzHHnssjz/+OKqqMnv2bEaOHOkrdoDW1lY/E+DkyZMZNmyYnyfdyynT3d3tV5b3Spd5IYn9ZZc9pZTXANcACCGOB66UUn5dCPEb4CycyJLzgMfdP3nCff8Xt32xHIgrYQIC6hjLsvwfuvdIr2ka0WiUcrlMbuxBJEeNoX3VGyhCIeSndLWRKEjhWoDu5KRlSzeFq+MyMWzhW9qGbVOxHJdJ1bbIZHMo0ShjDj+cTC5HoVBAUZS6tLq97ICVSoVcLodt21iWRVNTk1+WrVwuk8lkkFL6VeABOjo66Ojo2OG5vacgL/e2oih0d3eTSqXo6uryfeie28UrFtwf/p6AyDnA5UKItTg+bC/+7h6g2T1+OXD133GNgICA7ZBKpSgWi5RKJcLhsB+PrGkazc3NaJrGKbffh27Y6KZF2bBc94h0tlWbsuG4T3TPjWJJyhZUTEHFtKlaNrrlHDcsm6pp0Th8FOOPOZZ4MsWss8+mWCzS0tJSt5OTmUyG7u5uotEo3d3dfly1VwB569athEIhCoUCmqYxdepURo4cucvzDh06lBNOOMG/IcRiMRRF8euBtrS0+JEsXnz/7ozhbiluKeULUspT3f11UsppUspxUsp/lFLq7vGK+36c275ud64REBCwa8rlMslkkkQi4SfhL5VKvoUXj8eR4SiHn3ORo6gtR3Frxge+bSe6xHL835bspcSdZe26aaP7/m5Jduhwxk6Zxqb16znx/PPJF0skEgl6enr6lPqqJzRN8yuuZ7NZP6Qxl8v57hHLskilUsTjcY455hgWLFhALpfb4Tmj0Sh33303xx9/PLFYjGKxiGEYSCn9aJXu7m4n7t6tgAPs1hgGy+ECAuoQLzudF6VQLpf9FXzpdNopDNDYRMv041AGDaNsSjTTRrOckMAPwgLlB/uWTcWwHCvbdEIEdcuiakui2QYGjxtPZ3sbWrHE2COOIJPJoOs6qVRqtzLbDSTi8TiqqhIOh1FV1Q8H9G6CxWKRUChEpVLxa1JOnDiR119/nfvvv59sNksmkyGbzZLNZrn11ltZs2YN06dPJ5PJUK1WSSaThMNhP69MpVIhk8lgmibJZLJPPu7+8pFb8h4Q8HGg91JsLyKid+4Mb9JyzLTpTDn3Ihbf+hMMTfX/XroLcaR0JiktPH83mNKN37ZtTNsm3tRCesgwtHKZWCzOTc8+48vQe1K0HuldXsyjd3my3m29E14NHjyYU045hffeew/TNP2VkYA/3+Dl17Zt248e6f0ZgTM/0TvqpL8EijsgoA7xEht5yiAUCvlFFQzD8LfRaJRjL/wmlpQ8+R8/RPZRUE6EiSVxYrq9Ze0Sf7WkKQWKJcl3dzN62DAu+slPUNxMeLqu+zHJu5skaaDQW+l6qxvBscS9dLnQ1xr22novnOkd0mcYBpFIxI8U8QolgJOO12vzPrPeN4r+ErhKAgLqEC9mu1Kp+Mn9vWNe1XLvUV9RFKZ97VzO+ultjDhyquPPdl/Dp0wjPmQoFct2X5Lxxx2PbuMsgbehopU56nMncv6Pf0yysZFYLIZt26TTaXRdJ51O12VECeArVm8xjKc8eytdb6m6Z4F7BRQ8t4oXm+2lk45EIn4xZ9u2CYfDfnskEsE0zT5t3g1vd55a6u8WGRAQAEBTUxPgPMInEgmEEP6xxsZGhBAccMABfvuMc/8fx/7jV7B6WYChSATbtrCtDyzxcDSK0atYLkA0Hicaj/vWYTabRQhBc3Nz3cZwg3MDjMVifcYQPnCXeG298aqxb6/NY2d+6z3xaW9LoLgDAuqU3ulNPQWyq20one7XueM7SEG7o/PWK94iJm+/9/Ftj/Vbh/pvAAAFwElEQVSnbX8RuEoCAgIC6gwxEBY1NjY2ynPOOafWYuwQXdf9VVQDlXw+Tzgc3uvJ+vcmbW1ttLW1IOXAjUDI5d7nwAOH77pjjbAsi87OTgYPHlxrUXaIqqpYlkU2m9115xrR2dlJOp0eUJWntmXhwoV0d3dv16wfEIpbCNEBqAzcDIItBLLtCYFse0Yg257xUZPtQCnloO01DAjFDSCEWCqlHJDlVgLZ9oxAtj0jkG3P+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkIg254RyLZnBLLtGR8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEUKsFULUvOiCEGK9EGKFEOINIcRS91iTEOJZIcTb7rZxP8lyrxCiXQixstex7coiHG5zx3G5EOKoGsn3AyHE++74veGWvPParnHlWyOEOGkfyjVSCPG8EOItIcQqIcR33OM1H7udyFbzcXOvFRdCvCKEeNOV74fu8TFCiCXu2D0ihIi6x2Pu+7Vu++gayHa/EOLdXmN3hHu8Fr+JkBDidSHEk+77fTNu21Yn3p8vIAS8A4wFosCbwME1lmk90LLNsZuBq939q4Gb9pMsxwFHASt3JQvweeAPOMWajwaW1Ei+H+CUt9u278Hu5xsDxrife2gfyTUMOMrdzwB/c69f87HbiWw1Hzf3egJIu/sRYIk7Jr8GznaP3wF8y93/Z+AOd/9s4JEayHY/cNZ2+tfiN3E58BDwpPt+n4xbrS3uacBa6VTTqeLUrzy9xjJtj9OBBe7+AuCM/XFRKeWLfLjQ8o5kOR14QDq8jFPMeVgN5NsRpwMPSyl1KeW7wFqcz39fyLVZSrnM3S8CbwHDGQBjtxPZdsR+GzdXJimlLLlvI+5LAjOAR93j246dN6aPAjOF2DdJPHYi247Yr78JIcQI4B+Au933gn00brVW3MOBjb3et7LzL/H+QALPCCFeE0Jc7B4bIqXcDM4PD6jleuMdyTKQxnK2+2h6by+3Uk3kcx9Bj8SxzgbU2G0jGwyQcXMf998A2oFncaz8HimluR0ZfPnc9jxODdr9IpuU0hu7H7ljd6sQwlvHvr/Hbj5wFeClWmxmH41brRX39u4wtQ5zOUZKeRRwCvBtIcRxNZanvwyUsfxv4CDgCGAzMM89vt/lE0Kkgd8C35VSFnbWdTvH9rdsA2bcpJSWlPIIYASOdT9xJzLsV/m2lU0IMQm4BvgkMBVowilkvl9lE0KcCrRLKV/rfXgn1/+7ZKu14m4FepdMHgFsqpEsAEgpN7nbdmARzhe3zXvEcrfttZNwh7IMiLGUUra5Py4b+AUfPNbvV/mEEBEcxfhLKeVj7uEBMXbbk22gjFtvpJQ9wAs4/uGcEMJLA91bBl8+t72B/rvP9oZsJ7vuJymdguX3UZuxOwY4TQixHsflOwPHAt8n41Zrxf0qMN6deY3iOOmfqJUwQoiUECLj7QOzgJWuTOe53c4DHq+NhLATWZ4AznVn0o8G8p5bYH+yjQ/xTJzx8+Q7251NHwOMB17ZRzII4B7gLSnlLb2aaj52O5JtIIybK8cgIUTO3U8AJ+L44Z8HznK7bTt23pieBSyW7ozbfpJtda+bscDxIfceu/3yuUopr5FSjpBSjsbRY4ullF9nX43bvp5l3dULZ+b3bzh+tO/XWJaxODP4bwKrPHlwfE/PAW+726b9JM+vcB6bDZw79IU7kgXn0et2dxxXAFNqJN9C9/rL3S/nsF79v+/KtwY4ZR/K9Rmcx87lwBvu6/MDYex2IlvNx8291mHA664cK4Fre/02XsGZHP0NEHOPx933a932sTWQbbE7diuBB/kg8mS//ybc6x7PB1El+2TcgpWTAQEBAXVGrV0lAQEBAQG7SaC4AwICAuqMQHEHBAQE1BmB4g4ICAioMwLFHRAQEFBnBIo7ICAgoM4IFHdAQEBAnREo7oCAgIA64/8DZXgwagiQs0wAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -362,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -383,25 +383,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 11, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Epoch = 2" - ] - }, - { - "output_type": "error", - "ename": "IndexError", - "evalue": "index 8 is out of bounds for axis 0 with size 8", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mgamma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0mai\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maction_idx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mai\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mai\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0malpha\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mgamma\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mdpos\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mdpos\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 31\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m+=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: index 8 is out of bounds for axis 0 with size 8" + "" ] } ], @@ -426,7 +415,7 @@ " v = probs(Q[x,y])\n", " a = random.choices(list(actions),weights=v)[0]\n", " dpos = actions[a]\n", - " m.move(dpos)\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", " r = reward(m)\n", " cum_reward += r\n", " if r==end_reward or cum_reward < -1000:\n", @@ -449,15 +438,15 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 12, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmkx6IaFLL4oI0kVUQBRdFnRRVFR2UVFBLChYFkUFFdS1woMsggUXRVcXROwgSlMpihCUDkogCaRn+sy95/kjySysBJDM5E6S8+aVVzKTm3u/MyG/OXPuOecKKSWKoihK7WEyOoCiKIryx6jCrSiKUsuowq0oilLLqMKtKIpSy6jCrSiKUsuowq0oilLLRKxwCyEGCyF2CCF2CyEejNRxFEVR6hsRiXHcQggzsBMYBGQDG4DrpJQ/h/1giqIo9UykWtw9gd1Syr1SSj+wCBgWoWMpiqLUK5Eq3E2AA0fdzq64T1EURakmS4T2K45z3zF9MkKIW4FbAaxWa7fOnTtHKEr1+Xw+ysrKSE9PNzpKlYqLi7FarcTFxRkdpUo5OTlkZGRgNpuNjlKl3377jebNmxsdo0rBYJAjR47QqFEjo6NUyel0EgwGSU5ONjpKlY4cOUJiYiJ2u93oKFXatm0bHo/neLUUpJRh/wD6AJ8fdfsh4KGqts/IyJDRbNeuXXLu3LlGxzihxYsXy3Xr1hkd44SmTZsmCwsLjY5RJV3X5fjx442OcUIFBQXyySefNDrGCa1Zs0YuWbLE6BgnNGfOHLlr1y6jY5xQRV08bs2MVFfJBqCtEKKlEMIGXAssjdCxFEVR6pWIdJVIKYNCiPHA54AZeE1KuS0Sx1IURalvItXHjZTyE+CTSO1fURSlvlIzJxUlAnRdZ8OGDbz55pvoul55rkdRwkIVbkWJgM6dOzN37lwKCwtp1KgRZWVlRkc6hqZpHDp0yOgYymmKWFeJotRX33zzDYMGDWLSpEnk5+fj8/n47LPPGDFihNHRgPJ8u3fvJisri65du3LJJZfQsGFDo2Mpf0Cta3Hv3buX9957z+gYilKlYDCIxWIhKyuLDz/8EKvVSiAQMDpWyKxZs3A6ndx77728++677Nixw+hIyh9Uq1rcQ4cOJSYmhl69enH22WezcuXKqJ4Uo9RPAwcOZPz48SxZsgSXy0UgEGDPnj1GxwJg0aJFDBo0iCuvvJLJkyczd+5cJk2aRPfu3aN68tbRpJR4vV4WLlxIixYt6Nu3L7GxsUbHqlG1psW9d+9eYmJimDNnDsOHD+fSSy8lKyvL6FiKclxZWVnMnDmT2267jZycHBISEoyOBMCIESNYvnw5K1aswO/3M2XKFMaMGYPD4TA62inzeDw0bdoUn8/H559/TseOHY2OVONqTeHetGkTPXv2pLS0lNdff52GDRuyevVqdbZeiUpmsxmTyYTJZMJisSDE8Wcu1zSTycSQIUP44YcfsFqt7Nixg+bNm0dNvlPxzjvv8Pjjj9OjRw9uv/12br75ZhYvXmx0rBpVa7pKrr76as4++2xyc3Np1KgREydOJCcnp1b9h1Pqly5durB27Vq2bt3K2WefbXSckFGjRuH3+3nqqac444wzaN26tdGR/pCmTZvyyiuvkJuby/jx4zl48CCXXHKJ0bFqVK1pcQOsXLmSIUOG4HK5yM3N5fbbb6e4uNjoWIpyXBkZGei6Tn5+vtFRfsdms3HhhRcipcTv9xsd5w/p168fn332GcFgkClTpvDtt9/Sq1cvo2PVqFpVuNPT07nooot45JFHyMzM5I033uCRRx5h9+7dRkdTlFqnf//++Hw+vv32W6Oj/GE9evSgR48e3HLLLWzevNnoODWuVhXuSpXdI8nJydx999289dZb7N+/39hQiqLUiNmzZ3P77bczfPhwevbsWS+7S2tl4T5amzZtGD16NFOmTMHtdhsdRzkNy5Yto1+/flxyySUEAgE0TUPTNHXiuQaYTKZaNSV/+vTptGvXjpEjRxodxVC1vnADtGjRgjlz5jBq1ChycnIieqx9+/ZF9X/yYDDIgQMHTr5hFBk8eDCff/45b7/9Nn369KFHjx707NmTjRs3sn37drZv347H4zE6Zp308MMPM336dJxOp9FRTqqkpIRDhw7RqVOnetnKPlqtGVVyMg6Hg5kzZzJz5kxGjx5N27Ztw36MFStW8OGHH9K5c2d69OjBOeecE/ZjVNfbb7/Nli1b6NChA0OGDKkVU5ktFgsWiwWHw8HGjRuB8kkWEyZMCBWUs88+OzRBpH///rVuJES0stlsUTWrsyolJSXMnj2bESNG0KpVK8NybN26lYSEBFq0aHFK23/++eccOHCAFi1acPHFF4ctR50p3ACNGjVi9OjRzJ8/nwkTJpCZmRnW/ZtMJh577DGeeOIJjhw5Uq3C7fF4GDt2bFha761bt6by0m/Jycncc8893HbbbXTo0KFahfvnn3/m6aefrnY+KG9V/xFCCF588cXQ7WXLllFQUADAP//5T/Ly8gC48sorueKKK8KSUYleeXl5bN++nYceesiQ4wcCAW677TYaN26M1+vF6/Uyc+bMY1r+q1evZt68ecf83DnnnENaWlrYL9dXpwo3QNu2bZkwYQJjx47lrbfeCus03v79+3PJJZewZ88ePB5PtdZMiY2N5Y033gjLW76YmBg2bdoElA+VGjBgAIcOHeKmm26q1uPv1KkTU6ZMqXY+gJSUlGpN+x4yZEjo69zc3NBqe//+9795/PHHAbj44otDec1m8wlnA1a2Mq1W62lnOhWVL6Ldu3ePmtmT/2vBggVcd911LFu2zOgox6XrOnfffTdvvPGGYRnKysrYuXMnTzzxBC6Xi379+rF8+fJjptr379+fhx9++Jifa9y4cUSWEqhzhRsgMzOTt956i/HjxzNlyhRatmwZlv3+/PPPfPDBB8yePRtN03jwwQertT8hRNj66ioL9969e/nyyy+56667GDt2LH379q3Wfk2m6DsN0rBhw9A7iYceeij0e1ixYgV//vOfgfI/mNtvvx0oL869e/dGCIGUknXr1rFx40Z0XadHjx707ds3Yn2maWlpFBUVoet6RPYfDk2aNOHgwYNGx6jSli1byMzMDPs76D/igQce4MUXX2TNmjXMnj0bp9PJqFGjmDFjxjHb1dTfS50s3ABxcXFMmTKFN998kxtvvDEsfaKbN2/mgw8+wOv1cskll0RlUVu+fDk+n4+WLVvSvHnzqMwYTke/+A0aNIhBgwYBcPDgQWbPnh3a5quvvgLK+85nzZrFrFmzMJvNjBw5kn379kX1lefrs5UrV7Jy5Ur++c9/Gppj5syZdOjQgXnz5jF+/Hjuv/9+nn76acNOktbZwg3QsmVLbrzxRp599lmefvppkpKSqrW/kSNHsmbNmoi20KprwoQJbNmyhe7duxsdxVBNmjThySefBMDv97NixQoA7r//fsrKypg/f37o7ff999/Pc889Z2RcQwkhmDx5Mv/4xz+YOHGi0XFCpJR88cUXXHbZZdjtdkOzWK1W5syZw/r160lMTOTVV181NE+dLtxQfuLumWeeYdSoUcyfP5+0tLRq7e/8888PU7LIsNls9b5o/y+bzcZll10GQO/evenbty8vv/wyCQkJXH311Xz44YcGJzSWEIIuXbqwdOlSo6OEaJrGRx99ROPGjenTp4/RcTCbzQwePJgLL7wQk8lk+AtJnS/cAImJibz22mtMmzaNcePGRWSooFI7JCUl0bVrV+bOnYsQgmbNmpGcnGx0LOV/FBUVMXfuXD75JLquNx4t637Xi8INkJqayh133MGCBQu45ZZbaN68udGRFAOYTCYWLlzIzz//jJSSs846y+hIUSE9PZ327dvz7bffRkULd9asWdx2221Gx4hadfvM1f9o06YNY8aM4cEHH1TT4+u5M888s8aKttlsRtO0GjnW6UpOTqZZs2ZRcXGSYDDI0qVLGTp0qNFRola9KtwAzZo1Y/78+YwePZrs7Gyj4yj1wLJly7j00kuNjlFrPPzww3z00UdROwAgGtS7wg3l/VTPP/88a9asMTqKUg9YLJZaMa28ffv2HD58mMLCQkNzzJgxgyZNmhiaIdrVy8IN5cPFrr32WqNjKErU6NWrF/v37yc3N9foKMpJ1JuTk4qinNz06dNJTEw0OoZyEqpwK0qECSFqzaW10tPTjY6gnIJ621WiKDVFCGH4lG2lblGFW1EUpZapVleJEGI/UAZoQFBK2V0IkQq8C7QA9gMjpJRF1YupKIqiVApHi7u/lLKLlLJygYwHgRVSyrbAiorbiqIoSphEoqtkGPBmxddvAuryJIqiKGFU3cItgS+EEJuEELdW3JcppcwBqPicUc1jKIqiKEep7nDAvlLKQ0KIDOBLIcT2U/3BikJ/K0B8fDy7du2qZpTIyc7Opri4OKoz5ufno+t6VGd0uVzs27eP/Px8o6NUye/3R/VzWFpaisvliuqMubm5Uf/3UlxczIEDB8JyzddIOdFVk6pVuKWUhyo+HxZCLAZ6AnlCiEZSyhwhRCPgcBU/OxeYC5CWlia//vrr6kSJqOLiYrKzs4nmjHv27MHhcIQuqBuN8vPzWbduneFrGZ+I0+mM6t+z1+vl2yPf8uHX0buGuCPHwUDPwKi+XNvBgwfZtGkTu3fvNjpKlU74/EkpT+sDiAMSjvp6HTAYeBZ4sOL+B4FnTravjIwMGc127dol586da3SME1q8eLFct26d0TFOaNq0abKwsNDoGFXSdV2OHz/e6BgnVFBQILs92U0Sxf8armkolyxZYvRTdUJz5syRu3btMjrGCVXUxePWzOr0cWcCa4QQPwHrgY+llJ8BM4BBQohdwKCK28r/cDqdXHXVVUbHUBQlDPbs2cO9995bY8c77a4SKeVe4Jzj3F8ADKxOqPpAShnV3RqKopy6QCBAcXFxjR1PzZxUFEWpZVThVhRFqWVU4VYURallVOFWFEWpZepU4c7JyeGNN94wOoaiKEpE1anCXVJSoq4jGSZOp5PRo0cbHaNOCwQCBINBo2MotZC6Ao5yXJqm8dtvvxkdo07SdZ3vvvuO1atXk5KSQpcuXejRo4e6qnktVtO/uzrV4k5NTaVx48ZkZWUZHUVRquT3+7nmmms466yziImJ4ZprrjE6klJNsobXPKlThTsjI4PmzZuzadMmo6MoSpUeeOABFi5cSDAYpG3btrz00ktMnTrV6FhKLVKnCrei1AYPPvgg1157LWvXrqVly5Y888wz3H333UbHUmoRVbgVpYalpKQQCASw2Ww89dRTtGrViqSkJKNjKbWIOjmpKDVs1qxZvPjii7Rv356kpCTatm1rdCSllqlzLe6hQ4eyadMmDhw4YHQUpRbQNK3GTizpus7TTz9Nu3btGDlyJN27d1dFWzktda5wZ2RkUFJSgtfrNTqKEsWKi4vZtm0bI0aMICsri9zc3Igez+/3M3/+fFq0aMGQIUPU0L86Rg0HVJQa8OGHHzJ27Fief/55pkyZwgsvvBDR41VeQemaa67BZFJ/dnVNTQ8HVH3cSr3x3nvv8dFHHwGwd+9edF1n2rRpzJkzh7lz57J58+aIHFdKyUsvvcTYsWMjsv/aaMaMGWzbti1022q1MnfuXCyW8JSklStXYrVaOf/888Oyv2hTJwt3bGwsXq8XKWXUviV1u93ExsYaHaNKQgjsdjs+n6/GrxHp8/nw+/2ntO1rr712yuvTjBw5kkcffRSA//znP7hcLm644QZ27dqF2+2mXbt2pxu5Sj6fj3HjxjFx4kQ6duwY9v3XVqNGjcLtdoduB4NBevfujaZpx92+adOmvP3221Xuz2KxEBsbi6ZpdOnShcGDB+P3+7nzzjvZtGlTxN/lmEwmzGYzgUAAq9Ua0WNBHS3cr7zyCt26dWPjxo1RW7gvu+wyNmzYYHSMKiUkJHDffffx1FNP8fjjj0fkGFJKVq9e/buLoq5evZqVK1ee0j5GjRp1yhOuhBCh/w+dO3fm6aefpkOHDsybN48RI0bgcDj+2AM4icLCQl566SXuuOMOOnToENZ913aNGzc+5raUkvXr11e5/cGDBxk2bFiV32/fvj3XXHMNmqbh9/u5/PLL6dChA6Wlpfz000907do1bNmPp23btvTp04eFCxfyt7/9LaLHgjpauIUQNd7n9EdF87sB+G+Ri+TzKKVk5cqVBAKBY+6/8MILeeSRRyJ2XIDBgwczePBgZs+ezZdffonJZArrY/V4PMyaNYuLLrqIc889N2z7rauOflE9nmbNmvHVV19V+f1ffvmFhQsXous6paWlrFixgpSUFLp3786mTZsiXrgrs9dU3amThVupHUwmU6jrwijjxo2LyH49Hg9r1qxhypQpEdm/cqyOHTvyxBNPEAwGefXVV0lPT+eLL77gueeeIycnx+h4YadObytKmOXn53PzzTfz/vvvGx2l3jGbzezYsYPU1FSaN2/O9u3bo/qd7emqsy3uAQMG8PXXXzNgwACjoyj1yK5du5gzZw6vvvoqiYmJRsepd4QQpKamMmrUKKOjRFSdbXE/9thjasU1pUZlZ2ezYMECbr/9dtLT042Oo9RhdbZwK0pNklKSm5tLaWmpmsauRFyd7SpRlJr0yy+/MHPmTObPn290FKUeUC1uRQmDTz75hPnz54dt5p+inEid/V8WExPDiBEjWLRoEddee63RcWqdO++8k61bt3LkyBF27NjB/PnziY+PNzpW1Jo4caLREZR6pM4W7osvvpiDBw9SVlbG5MmT2bBhA6mpqUbHqhVcLhebNm3izjvv5Pvvv2fnzp0UFhaqwq0oUaJOFu6tW7fSsmVLHn/8cb788ksA1q9fz+DBgw1OVjvMmjWLiRMn0rJlSwKBADfccANTp05l3rx5RkdTFIU6Wrj37t1LmzZtaNGiBRdffDEHDhzgl19+UYX7FD3wwAN07NiRSZMm0bJlS6655ho2btxodCxFUSqc9OSkEOI1IcRhIUTWUfelCiG+FELsqvicUnG/EEK8LITYLYTYIoQwZJGGYcOGsXDhQl588UUOHjzIvffey4033mhElFrrtddeA+Cbb75h3rx5qptEUaLIqbS43wBmAQuOuu9BYIWUcoYQ4sGK2w8AlwFtKz56Aa9UfK5x69evZ/Pmzaxfv549e/aQkJBgRIxaq0+fPvTo0YNgMEhMTIzRcZRapi5OM48mJy3cUspVQogW/3P3MOCiiq/fBL6mvHAPAxbI8iWyvhNCJAshGkkpa3yVl4SEBPr160e/fv1q+tB1hsViUcPblNMS7atz1nan+1eZWVmMpZQ5QoiMivubAEdfpTe74r66tzzXaVq9ejX/+te/OHDgAGPHjuXyyy8/4TrDiqJEN13Xufvuu9m6dSsAP/zwAy+99FJEL94Q7j0f7/3RcV96hRC3CiE2CiE2ejyeMMeITrqus23bNlq3bk16ejp9+vRhw4YNVV71Q1GU6Ofz+VizZg0DBw7k4osvZs2aNfh8voge83QLd54QohFAxefDFfdnA82O2q4pcOh4O5BSzpVSdpdSdo/mS3iF0/79+9m5cyd/+9vf6NGjB1dccQU2my2qr4SjKMqJ3XfffcyZM4cuXbrQpUsX5syZw3333RfRY55uV8lS4K/AjIrPHx51/3ghxCLKT0qWnEr/tqZpLFmy5DSjRF5+fj579uwJS0abzcbMmTMZPnw48+fP5+DBg+Tm5lZ731lZWfz666/k5eVVO2Ok5Obm8tlnn0X1tTZLS0uj+v+i2+0mLieOVktaGR2lSgn7E8hyZUV1P/fevXuxWCxkZWWdfOOTGDRoEJMmTeLee+8FYNKkSUyYMKHa/49O9E78pIVbCPEO5Sci04UQ2cCjlBfs94QQNwO/AVdXbP4JcDmwG3ADo08loN8vGDs281Q2NYTDofPXvzrIzKx+xqP7szMzMznvvPOqvU+AX3/9lTlzkigujt7nsU0bO1dc0YC4uDijo1TJYrGE5fccKU6nkx72HszInGF0lCptL9pOmaksqp9Hh8PBU6lP4c50n3zjU/E0jGVs6OtxVP/KSn5R9QWzT2VUyXVVfGvgcbaVwB2nnCz0cyZyc/v80R+rMUlJu2nUqIA+faI3Y15eHsXFmVH9PDZtuoJu3bphs9koKysjJTWZvKJDJMQlURo4zBdFC9jr3oYpYMEu4hG6mZyyQ/ROGcwlLa/F7/bRtEFzSktLiYuLo6ioCIfDQSAQQNM04uLikFISGxsbmqJfVlZGUlJS6LbP5yMpKQmfz4eUkpiYGEwmU+j6mm+//XbYfs9+v59AIBDWF6rCwkI2bNhQ7Yy6rvPZZ5+RnZ3NiBEjKC0t5eWXX2batGnVfkek6zr5+flR/feyZcsWCs4uoKRNidFRqhRvqnruhBrrpdQoKXUKAofY69qGCZ2lObNpE3cuft2PjVja2XpxyPcbJZ5iOiR35Yy0ziRaU5i08noSrGnc0fVhGtgaYQvYMJlMoSvEm0wmNE1DSonP50MIgaZpCCEIBAKh7wsh8Pv9obehwWAQm80W9se5YsUKdu3aRV5eHt26dePSSy/FarWG/Tiny+Vy8dFHH3Hvvfdy5ZVX8s4779C4cWNWrVrFpZdeanQ85STUsq5KjZJIfjz8PVM3PsQrG1/G7GxCSUmA77b8zILPlrB25zdk/3aQTd//xJp9K/m18Fey8rZil4nEikTe2fwan+9eitNbhs1mQwiB2Ww+5irtgUAAq9WKpmlYLBY0TcNutyOEwGKxEAwGy7NI+bsrzIfLuHHjSE5OZsCAAdxzzz243WF6Sx4mCQkJDBs2jJtvvpm9e/fy0EMPsXnz5lpRtP1+P3PmzDE6hqFU4VZqlEmY6Z4+gEaBbmzbUciWbUf4cUsOpYds2N0NcR1wcHCnn20/HuH7H39k294NrPrhazyuIOv2fMvhsgLmrPs/Cn35lJWVAeVvzT0eDxaLBZNJ4HDE4vV6sFqt+Hw+YmJicLlcodZ2XFxcqIg7HI6wP8ZHH32UF198kVatWrF7924++OAD7rzzzrAfp7p69erF9OnTSUtLY+TIkTzyyCNGRzqpGTNmMHjwYBISEjj//PNZs2aN0ZEMobpKlBql6zpxZgcv//llblo8mk+zPkH3QayMwSZt/LBb4+qew7l5UA9KXMXYPDay3Z/iLS0gv7CIXdoeggEzw175M1/euRIoH6kTExOD1+Mma8UMdm/4F8GgRsc+f6XbkKmUlZWRlpaG1+slNjaW/Px87HY7wWAQt9tNWlpaWB/j3//+d/r27cu4ceP46aefePPNN3n33XfDeoxwSElJoW/fviQlJdG7d++oXxaipKSE7OxsXn75ZeLi4igpKWHfvn307t273s3wVS1upUaZTCbsdjtep4d/Dp/D5R3+hMVsplWDVvRu05vOLTrx65Ff2XYwi4KyQnIKcogrOAPXjiTOTuyIpyQfdC9aieCWl29BCIHX66WwsICyvG3s2baGolIvTToNJblxF8pKS4mPj+fIkSMIIXC5XKSnp4em8ycnJ4f9Mdrtdvr37897773HmjVraN26tbriexhkZWXRuHHj0FXczz//fH766aeo64aqCfXrZUoxnJQSv99PSkoKgUCAV4bP5uHYR/jPpv9Q7CwmzhyHQ8TiE34OF2ynpKiEBGsiw/oMw1nmJJZUCo4cxpRyCH9eAE0LYrVaWbn4RQ7vX0tRzgG6DphAv6ETCAbLv+fxeEhJSUHTNBwOByUlJZjNZqSUOJ1OkpKSwv44n332Wb744gu+//77WtEFURv07duX119/ndtvv52dO3dy00038eijj9bLF0VVuJUaZzKZQicTU2JTmXrpVKzCzr/Xv0de4WEIgAiA0ARdm3Yl1hzL3py9xFpiSbCm0bp5B9754k1aXZLL60vmMWrIX9nw9QdkNmrKsNteI7NF59D+K4f5mc3m0KiSoyeGqFXsapcnnniCvn370rp1a15//XWaNGlidCRDqMKt1DiTyYTT6SQuLg6Xy0WiPZEZf3qKqZc9ypX/9xeKSovYfWAvGQnpFDoLiLcm4HV7ISA5cqSAeGscg7oNJTt7J6vlYr4b+zopmmRw/xs4o2MfrFYrbrcbu90eOjnpdDqx2Wz4/X4cDgeapqHrekSH6CUnJ6PrOsXFxRHpkqmPGjZsSFJSEt98801UDa+saapwKzWqcpx1WloahYWFJCcn43K5sFlt+J1+lt2xjP2F+/lo00e4vC5MQRNxNgelxaUgBR63F7vZxjUXX0P3c7qzassXvLpuChf+6RrO6T0ETdNwOp2kpqZSWlpKUlISxcXFpKenU1ZWRmxsLAUFBTgcDqSUuFyuiM3w69mzJx999BE//vgj/fv3j8gx6qtIrrxXG6jCrdQoIQR2u53CwkJiY2MpKSnBarUSDAaJj49HSkmbjDbcOehOpJTYLGZy1ywnd/1/cNhjSOt/Gcl9BmK12ykqKiKQG8RTLOh78XBsNhtSSpKTk8nfv58N82dRmP0bKa070u2vY0jOaBDq79Z1HV3Xo3rdFOX3XnrpJSZNmqQKt9EBlPqlssWdlJRESUkJiYmJuN1uLBZLaCw2fi8mn5ftU+5E+r00vfJ6uj80HV2YsJpN7Jv7NAU/bSKo6ezOL8Z+5DC+rA1sXLuKw1t+IKBpdLzmJrr+5Vr8Pi+a18c7t96Is9TJ0CmPk9iyNZnNmmMymXC5XNjtdqOfFuUUbd26lYkTJ9b7cxOqcCs1zmw2EwgEQrMYK08kms1mtLISDs19Ftdvu+l471SsCYkEiovw7t0FAnwSmvzlBs4YdQdBVxlNvllB952/ULB2FS36DeDskbcQDPpxFRXhLytBk6AjGTr5MYKazuqFC9iyZg23zXuDVud2w2w2G/10KMofpgq3UqOEEMesI1K5ZoiUEoJBfn1lOlreIVpdfzv+I7kEj+QikFQ2sIQE/2/78EqJDiS270hyl25o/iCe4gJKf92DJiWaBE1KdCnRdNClJKhLzh0ylICus3DivVw7/Rna9jLkkqjKaVi/fj1nnHEGGRkZJ9+4jlOFW6lRUkqCwSApKSnHnJy0WCwcWPwvPLt/oeUNt2+enMwAACAASURBVEPAi9BBiIqPY/ZRXsBBorld+KUsL9YVBVrTJbokVLyDmkSTOsGKbTpd0B+f18+csbcx4d1/0/Hccw16NpQ/4pdffqFRo0akpqYaHcVwqnArNcpkMhETE0NOTg5paWnk5+cTFxeHz+2icPlS2l9/B5q7BGkChMBU0UI3VVRuKWV561xSXsEri7Qu0XVJUOpoukTTIFhRuAO6TlBCUNfRdIGm63Q8ry+Hs7Px5Ocb+XQoymlRhVupUZUt7tjYWAKBQOjEYMGa5dji4vHmH8RsEpjM5aMGhBnMRxVuXZa3qqUuQNPRpY6UIPWKlrZeWaAlAb28eySoS4KS8gKul3ejBII6aU3PYPbdd/Hqtp8Rqq87qhUXF3Pw4EEuvPBCo6NEhfo9piZKPfroo6GlR+uiyhEBlZ+llJT9sA5HizZoHhe6x4V0u8DrAo8b4XVj9nkw+zwIb/lt6XUhvW50jxvd7UZ3u9DdLjS3E83tJuB2HfXhxO/674e3rAyvq4zGbVuj+bxGPhXKKTp8+DA7duygb9++RkeJCqpwR5GPP/6Yjh07ct5559GjRw+mTJlidKSwq1w/2+v1YrFY8Pv9FfeZkJo/VLh1jwvpcSE9bqgo1sJb/jUeDxy1ne51EfRUfLjdBN1OghVF2+924XM68bvK8LmceJ1uvE4nXqcTT0lJ6EIMilKbqK6SCDty5Ahbt249pW2///57Lr74Ymw2G++++y7z5s0jLy8vqq/d90fpuo7P5yM5ORm3201iYiJ+vx+/z48syMNesY6JMAtMJoEwC4TJRHkbQxIENF0nqOsEtfJukEDF1wEpCWgVH7rEH9QJ6lBaWoLZEYdfk/j1o75fMQknklq1asW+ffvo169f1C492rVrVzZt2sRFF11kdJTjklKybds2zjzzTKOjRI3o/J9UhxQUFPD111+f0rY///wzLpeLVatWccstt+BwODhy5EidKtwmkwmbzUZBQQENGjSgqKiIhIQEYhKTyPnmM2wmEyQnQ0XxxlQ+pCTo9yHssehU9luDz1WGO/8Ifk3HF9Tx6xKfpuMLSjSTBUt6JgEEJYeycTRsgl/XCWjg0zSCOhzJycXvjWxXyejRoxk4cCDDhw+PyCqE4fCPf/yDbt268eOPPxod5biklEydOjVq8xlBFe4I69ChA1OnTj2lbd977z0effRRnn/+ea677jo6d+5Mp06dIpywZum6jt/vp0GD8unnycnJ+P1+Gv1lFEfWrqB4x1a0Js2JS89ANwl0kyAoIHhgD9ZmrZGAJ+8QgdISvD5febdHUMOvSTxBiS+o4dV0/Aj0A7/hx0xss+aU5OQg4uIIaODVdEoKC9m77We6DLkC6vksPKX2UYU7ilxxxRUMGjSIcePG8f777xMfX/VVnmszXdcxm83ouh5aZtXeuDm6xUbA5YZ9u0DTsMXHE5AaZsBfWoLYsr58rLamEdB0/JqOX/tv90hQ6hVjtyGgaXiLC/EFdQry8/EENPwIEpu1oKioiMMHc/H6gwwZO7beT5+OdocPH65T7zrDQRXuKGKz2bDZbLzzzjtGR4kYIQQ2m42ysjLsdjsejydUxDV7LH5dIgMa5tISgloA7dCBiuGAAgFoyNAkG7+uE9QEfv3ovms91Ocd1Msn3AS1AJoGgaCGx+mkMCcPXQLCRGx8nNFPiXIS1157LcuWLTM6RlRRo0qUGlV5BZzk5GQ8Hg8JCQnouo7FYqHF9bfgq+indhUW4naW4dN0vJqOR9NxazreoI4nWH7br4GvotV9TMtb18tnTOqVJy/L79MllBYWoes60mSix/C/IGLU6oBK7aNa3EqNqlzWNT8/n/j4eIqLi7HZbAQCARr3HcSPOuhSR5cB9DI3BPXy85OivI0hpV4xCQeCFZNt/BUnK/165WgRiV8r/36gsoBLiYiJwevxlW+jBely0UU0b9XK4GdEOZFgMKgWAjsO1eJWapSUkkAgQHp6Om63m6SkpNCVaMpcbhJ6XFDeyg5qOMucuAPlLWx3QK/4Wpa3uIM6nqCGp2JEiTeo4Qtq+DQNf1Di1zT8mk6gopgHgjoupxu/z09CgwZcevttmGNiKSwsNPopUU7gscce4+GHHyYuTnVpHU0VbqVGVU7AcbvdWK1WvF5vaJXA2IQE2o28GW9QVhRoDW/FaBFvUMMb1I4q2uVdKN6gDHWv+DSJr6K7xK8J/Dr4NXnMeO+AlGS2bUtpYRF9/jxUXUghymmahtlsVieQ/4cq3EqNk1KGlnWtnAAjpcRisZDSpj1NLxlaUagrWtXB8r7t//ZvSzyB8u/7KrbzVYwyCVQU7/LuEq28iOsSvw5BTefMCy5CExbOG34VFoulXl+3UKm9VOFWalRl0XY4HAQCAWJjY0MXUfB4PJji4knr1AU/pvJWt1beNeIOarhDRTxYfrIydLu8Ne7Vysdw+3SJN1g+2cava/gqWtu6MJHSpAllZaWcfcEFaJqGy+Uy+ilRqvDVV1+RkJBAL7Vm+u+owq3UqMplXQ8fPkxcXBwFBQWhK+IkJycTGxtLu2tGkdm7X3nXiF/DHdBwB/Xyj4CO2y/xBSXeoKzoLilvhXuD4NEkvmD5kEBvRfdJQNOQFiudBgxiw4qvmb54CfaYGKxWK2lpaRF/zN27d2f9+vURP05dU9mNpi4t93tqVIlSoypPTsbHx+Pz+YiLiwtNyPF6vUgpMQlBx6FXsffbtQS87qNaF/9dTVCn4qIJFRNuQsu3HjUE0F+xJkkQEy06dyWAoN9Vw9GsNoLBIFJKnE4nCQkJEX3M06dP59xzz2Xz5s0RPY5Sf5y0xS2EeE0IcVgIkXXUfY8JIQ4KITZXfFx+1PceEkLsFkLsEEJcGqngSu1lNpvRNA2r1UogEAjNnrRYLKGhX80HXIqjw1l4gxJ3UIZa3KETkxX3V/Z/+wLl/d2+0EnL//Z7Z7RphyMllf3bfubs/v2Ji4/HVLGYVbQu/FTflZSUsHjxYq6//nqjo0SlU+kqeQMYfJz7X5BSdqn4+ARACHEmcC1wVsXPzBZCqEGYSkjlNScrl3OtPEkppQwVUyifFv+naf/AlJJ2VMGu7DKRuCpOSnoD/y3mHg08FUXbq2noFiuJTc/AEp9ASWEhf7n7Ltr37BkapSCEUCcno1QgEODgwYM0b97c6ChR6aSFW0q5CjjVwa7DgEVSSp+Uch+wG+hZjXxKHfO/XSUOhwNd1zGZTHg8HgKBAFA+/b9xm7ZcO/s1Epq3wBPQKz7KT0T6Ksd3h/q49dBIFF+wvA/cLwVef4DSwiK6XjyIi0ePJiY2lrKyMjRNUycno5jdbmfgwIFGx4ha1Tk5OV4IsaWiKyWl4r4mwIGjtsmuuO93hBC3CiE2CiE2BgKeasRQapPKk03FxcXExMRQWloKlM+Qi4uLw263I6XE6/VSVlZGm569GTJ1Ol3/MgKfFKFRJn6zhZb9LgoNEfQGNWLSM4hv2BivppVPh/cFsDkcXHnnnQy66SaEEHi9XpKTkzGbzVgsloj3byunJyEhgfvuu8/oGFHrdDv4XgGmUX7J1mnAc8BNHHsx7kryeDuQUs4F5gIkJGRKn+80kyi1js1mIyMjA7PZTIMGDUKTKyq7SSwWCw6HI3Rft0GD6dTnfP486UGg4irvJoEjORnnUTMfLTY7CHHMGtu2mBgymjdHrxhyGBsbixAiNPGmJiZ2CCH44IMPIn4cpf44rcItpcyr/FoI8SpQuXRXNtDsqE2bAodOO51SJx3dl135+Wj/uzaFyWTCmpJCfErK77ZNyWx4Sses3GPl8WpyJp4QgtatW9fY8ZS677S6SoQQjY66eSVQOeJkKXCtEMIuhGgJtAXUAFZFiWJCCEaNGmV0DOUPEFIetyfjvxsI8Q5wEZAO5AGPVtzuQnk3yH7gNillTsX2kynvNgkC90gpPz1ZiKSkVNmu3b2n+xgizmp1cdZZ+ZxxxhlGR6lSbm4uP/1kx+v9fas0WqSk7KRPn5ZRPZJj69atnH322UbHqFIgEGD//v20bdvW6ChVKiwsxO/307Dhqb0bMsL+/fv5ucHPBOICRkep0s7nd1JSWHLct4YnLdw1ISEhQ/r9O4yOUaXExP08+ujaao8pPXz48DG3rVYrKcd5+386PvvsMxo0aEC3bt3Csr9IePHFFxk9enTUXnsRYPLkyTz55JNh2Zff7ycQCBAXFxcawZKYmFitfRYXF7NgwQLuuuuusGSMhI0bN1JQUMCll0bvNI633nqLCy64IKobY+3bt+fw4cPHLdxRMvtA4PdHb0sxECjAbrdXq8h+8803DBo0KDTcDeCss87i/fffp0OHDtXOGBsbS1xcXNheCAKBABs2bOC8884Ly/6g/IUqKSkpbBnDrXLNlHDk8/v9LFq0iNTUVJo1a0bz5s156aWXuOuuu2jRokW1MobzBT8SHA4Hbrc7qjPa7Xbi4+PDltHpdLJr1y66du0alv3Bic/DqLVKIiwYDLJ06VKuv/76Y4o2wLZt2xgzZgxbt24lGt75HM3tdvPII48YHaPW0nWdwsJC0tLSeOSRR0It7+LiYqOjKRGQnZ3NzJkza+x4qnBHkJSSr776ittvv52DBw8ed5u1a9dy9dVX/64bRandYmJi6NmzJ2PGjGHTpk0MHz6c/fv306VLF6OjKXVAlHSV1E1SSoqLi09YlKWU7N2793etcaX2GzBgANu2bePyyy9n0aJFUd11oNQuqsUdQT6fj7Vr16Jp2gm3CwQCLF++vIZSKTXFbDbjcDhCE3/U8qRKuKjCHUEWi4U2bdqcdLKH2WzmzDPPrKFUiqLUdqpwR5DZbKZRo0YnvUq1xWKhSZPjLumiKIryO6pwR5AQgkGDBjFy5MgTbvfCCy+QmZlZQ6kURantVOGOICEECQkJ/OUvf+Gmm2763YzBRo0aMXbsWC644IKTtsoVpTo0TeONN94wOsZxffrpp+Tl5Z18QyVEFe4IklIihGDIkCHll9uquKJ5Jbfbzdlnn03Hjh0NSqjUB7Nnz2bYsGFIKbnssstYvXq10ZEAyMvL47LLLmPr1q1MnDgxqmeDRhs1HDDCSktLefzxx3nrrbd+N7qkpKSEiRMnkpaWxpAhQ0JLmSpKuLjdbnbu3MlDDz1Ey5YtcTqd7Nu3jz59+hh62TYpJdnZ2TRt2pRRo0ahaRo333wzxcXFJCcnG5artlAt7gjRdZ39+/czbtw4XnzxRYLB4HG3c7vdXHfddbzwwgsUFhZG3QxKpXb78ccfyczMpH379kybNo1GjRrx448/RsUMznnz5jFmzBiWLl3Kp59+yvDhw1m8eLHRsWoF1eIOs8oukblz57Js2TI+//zzkxZjXdd5+umnycrKYsyYMVx00UWhayIqSnX07duXd955hwkTJnDnnXfSq1cv3nvvPdLT0w3NJYTggQce4NJLL2X+/PmMGzcOm83Gxo0bDc1VW6jCHUaVRfu1117jwQcfDF2W61SUlZWxaNEi1qxZw0cffUTnzp1V4T5KMBgMXeRX+WPuv/9+cnJyeOGFF7j//vuRUobOvxipUaNGLFy4kHfffZcnnngCTdN47rnnmDBhwnEvsKH8lyrcYaTrOq+//jpjx4496WzJqmRnZ3Peeeexbt06ta4F5cuY7t+/nxkzZjBx4kQaNmxI06ZNjY5VqzRv3pxmzZrx5ptvYjabeeihh2jYsCH9+vUztHjb7Xa6d+9Oly5dQoX67bff5o033qBnz56cddZZhr+4RCv1shZGb731FrfeeutpF+1KHo+H6667jlWrVoUpWe21fPlyxo8fz/Tp03nhhRd46qmnjI5UKwkhsNlsmM1mnnnmGZYvX86yZctO/oM1wGKxhC5nd8MNN6BpGnPnzuXjjz82OlrUUoU7TObPn88999xzTH+2EAKHw3HSVoMQgri4uGPu2759O7feeivff/99RPLWBoWFhaxbt4758+fz6quvEh8fT7NmzVi3bp3R0Wq9yZMns3fv3qg8GThmzBieffZZ9uzZw4cffmh0nKikCnc1aZrGO++8w6RJkygpKTnmey1atGDWrFkn7a+zWq0sWbKEpKSkYybp7Nixg6uuuoqdO3fWy9EmiYmJnHPOOSxfvpyxY8dy+eWX8/LLL7N7925KSkrq5XMSLna7nU6dOpGVlVXliCcj2e12xowZw5YtW1i1alXU/65ruktHFe5qkFKyatUqbrzxRoqKikL3N2zYkL59+/Ldd9+Rnp5+Sr/Uc889l99++4377rvvmNZ3dnY2ffr0IScnJyKPIZpZLBZatmzJ4sWLWblyJbNnz+bBBx/kwIEDXH/99axYsYK9e/caHbPWGjBgAE2bNuWtt96KyuLtcDh4+OGHWbJkSdR3G9b0C4sq3NWg6zr/+Mc/junTbty4MVOnTuWTTz6hQYMGp7yvyunxEydO5I477jhmCdCysjLmzJkT9a2OSLjgggtYvnw5fr+fjz/+mLvvvpvJkyfz/vvvs3btWhYsWMBjjz2G1+s1OupxffXVV1xwwQVRuaSrEILRo0cjhOD//u//jI5zXEIInnvuOdauXRuV3TqV0tPTad68OT/++GONHE8V7moQQtCiRYvQOiNWq5Vp06YxcuRIEhMT//DbJyEEaWlpPPDAA4wbNy50v91ur/GRFHFxcYwcOTJq1re45ZZbjpnpFxMTw6OPPsqoUaM4//zzueqqq3jqqadCQ92ixcqVK7nggguIiYkxOkqV/vrXv9K8eXOefvrpqHruKgkhuOeee/j111/55JNPojJjZeHevHlzjRxPFe5qEEIwbdo0Jk2aROvWrdmwYQOjRo363YnGP/ofLSUlhenTp/Pqq6/SqlUrZs2aFWoZ1ZTKbopo74po1aoVAwcO5O2336Z9+/Z07dqVr7/+mkOHDhkdrdYQQjB06FAaNGjAggULjI5zXA6Hg3HjxrF27VrWrVsXlcW7JqnCXQ1CCFJSUnjyySfZvn07nTt3PqZVKKUkEAic0szJoy9dJoTAbrdz0003sWPHDkaNGmXouhLRTghBYmIiw4cPZ/PmzXz++edR+9Y/WpnNZtq2bUtOTs7vTrJHC5vNxpNPPsnSpUv54osvjI5jKFW4q0kIgclkwmKxHLdF3Lp1a7p163bCfVx55ZXH7QM9er9qIsKpmzFjBk8++aTRMWqdfv360bt3b5588snfrWQZTZ544gm2bdvG2LFj2bJli9FxDKEKdwQJIWjZsuVJL0s2cODA33WvKIoRLrroIkaNGsUtt9wSlSNNoPxc0m233cbYsWN5+eWXyc3NNTpSjVOFO8JOpbWsWtRKNDnrrLO45ZZb+Pvf/250lCrFxcXRuXNn5syZwz333MOuXbuMjlSjVOFWFOUYQggaN25MTEwMe/bsMTrOCVksFubOncvrr7/Opk2bjI5TY1ThVhTld1q0aMENN9zAyy+/HBVrd59IYmIi48ePZ/HixezcudPoODVCDVVQFOW42rVrx5QpU0hISDA6ykk1btyYSZMmERsba3SUGqEKt6IoVUpLSzM6wilLSkoyOkKNOWlXiRCimRBipRDiFyHENiHE3RX3pwohvhRC7Kr4nFJxvxBCvCyE2C2E2CKEODfSD0JRFKU+OZU+7iBwn5SyI9AbuEMIcSbwILBCStkWWFFxG+AyoG3Fx63AK2FPrSiKUo+dtHBLKXOklD9UfF0G/AI0AYYBb1Zs9iZwRcXXw4AFstx3QLIQolHYkyuKotRTf2hUiRCiBdAV+B7IlFLmQHlxBzIqNmsCHDjqx7Ir7vvffd0qhNgohNgYCHj+ePJa4lQWPdJ1vd6vvaAoyqk75cIthIgHPgDukVKe6Cq4x5tJ8ruqJKWcK6XsLqXsbrXW3TPBMTExx8yKNJvNxMbGHjPhJi0tTV0cVVGUU3ZK1UIIYaW8aC+UUv6n4u68yi6Qis+HK+7PBpod9eNNgXq7VJvFYiEzM5PExETi4+P529/+xubNmznnnHNwOBykpaWRlpamZk4qSi0lpcTtduP3+/H7/bjd7oi/gz7pcEBRXlHmA79IKZ8/6ltLgb8CMyo+f3jU/eOFEIuAXkBJZZdKfSSE4OGHH2by5Mmh2yaTiY0bN4a2icbW9qZNm8jKyuLAgQOsXbuWXr16qRUKFeU4dF2nRYsWJCcnI4TgkUceIScnJ7ROfyScyl9iX+BGYKsQonKV8L9TXrDfE0LcDPwGXF3xvU+Ay4HdgBsYHdbEtUxV65BE8pcaDtdffz1dunThwIED3HDDDfzwww+kpKQYHUtRos6iRYu4//77SU1NRQhBQUEBixYt4vrrr4/YMU9auKWUazh+vzXAwONsL4E7/niU6D85VxtOIIYj4/PPP8/UqVNJS0vjm2++4bLLLuPvf/87s2fPDkPC6H8ew5nv+uuvJz09PeyPOdqfQ6g/Gc844wy+++47RowYgRCCZ555ht69e0f08YtoeHKTklJkly43GB2jSmazn0aNnKSmphodpUqlpaVYLBYcDkdY9hUXF4emaQQCAeLi4igsLKz24z98+DBpaWlR/W4jO/sQFktjo2OcgEbAdAhrhtXoIFXS3TrxwXgSExONjlKlwsJC4uPjsdlsYdtf5d9HOP5WAP71r39RVFR03EZzVBTuhIRM6XTmGR2jSklJu3n22ZWMGTPG6ChVWrJkCZmZmfTq1Qufz4fVav3vYvgmnVzfrxQF85C6xIINEHgCbhzmRFonnoXQzdhsVjRNQwhBMBgM9ccHg0FsNlvoc+X+g8EgZrP5mG0ru4aCwSBWa3lxqewqeuKJJ7jjjjuitstFSsmIEXfx/vszjY5SJbu9kE5TLmHT36N3JbyGaxsyJ38Ow4YNMzpKlf75z38ycOBA2rRpY3SUKmVmZpKXl3fcwq3ONtUxmqZRUFBATIKN9UXLyIg5g6DJyx7nT+T4f6XM66TMW0Lj2NZ4/B4yrE3ZFfML+wp2M77XZPy+AEIInE5n6BJqTqeT9PR0nM7ydx0lJSWkpqaGWubFxcVYrVZsNhs2mw2LxYLT6YzaAq0okbB+/XqEEPTo0SPix1KF2yAul4tJkyaFrd+40u7in/ig6AVEiSDX9ytWGUMwKIkjhXR7E5JJodjtwqMHSLU3Bd3Kp3v+Q6wlgWlf3c+1nW6msaMZCQkJSCkJBoOkpaXhcrmw2+3k5+cTHx9PaWkpsbGx+Hw+kpOTkVKiaRputxsovz5gQUEBycnJajSKUi9kZWWpwl3X6brOL7/8Evb9NnCcwaIVP5Iak0rnBp1pldGBvYf28+aad2jTLokGcfHs2pKDuUmQvmdegDkYQ6wlmcKyfOyOBF5b/wp/6ngFZ6Wcg8VixWq1cuTIETIyMnC5XKSmpVFYUEBSUhIlJSXExcVRWlqK1Vq+bVxcHCaTCZfLRUpKSlQOdVSU2k4V7jomFgdz//Qa938xiY9//pTPs5Zj121kpjTEf8SOryydthlncKh4H1qxzrebv6Vpp1R25x6iTZqfYncJXp9G6ws7kGwpn+EZHx+P3+/HV5bDzu1LKSstIzWjMemtBqJpGjExMaF+bL/fD5SPTfd6vb+bJaooSvWp5lAdYzKZaJfahocHTMZkEewp2EORp4j4mDjcfjfugItmGc3omN6FRE8bWiSeSdlOifDrmPHx2+FDfL51BU8uewIoP2Gn6zpIjYM/f87Xi+5h0ycPs+mL5xAV57V1XT9mvRWTyXRKa7QoinJ6VOGuY6xWKwF/gD5N+/DByA9Ij0/DZDZT7C3BarPg0/z8nL2NI2VH2PHbdlZv/JYzHJ0YmnkjP63YQY8OzXCUmfn3p/8mEAwAUFZazOFfN7Dq45kUu+30uGo+g25aSEArH1Xi9/tDI1gqT1Lquh721ramaZSVlTFx4kR27doV6k9XlPpGFe46pqSkhIyMDIQUdGx4JmvvWkNyXDI5ZbnkluZxqCSHA0XZfLvzW1ZvX016SgM0qZF3OJ+h515D3C9tSbJbyEiKZc+BnUgp+WbxP5g34yZiktsy8Ib/o1PPIQSJw+Fw4PV6SU1NxeFwhEajFBcXY7PZyM/PR9O0sD22bdu20bFjx9CEoGgebqYokaQKdx1TebJQCIHX6yXT0ZDXrnuNcReOw68H2F+wn+052/Hrfto2aUd6ajqHiw9T5Czk4JFDuL1uEgpbEJsoePzDe/jPR/PY+csWkhueyZ9vfolOPS/H6/XicDjw+/1YrdbQAjsAsbGxOBwONE0jISEhbCcnNU1j2bJlvPLKK5SWljJz5kzOO+88Vq1aFZb9K0ptok5O1jGVJwQDgUBoEk77Bu1o138CPZv0IM+Vx1PvP8XB/EPszdtDakwaNmwU5OfjcwfwOj2MvWIsd543nhJHNm+88DQphzXum/YqKQ2a4Xa7iY2Nxev1YrfbQ5NyKvu5Kwt4ZUG32+1heVxCCFq2bMn+/ftZt24dbdu25dChQzRp8rul3hWlzlOFu47RdR2LxYLf7z/mJKGU0KdVH2JiYxh85mCsNivOMic2s+Dg3p00SErDJ8GR2oAYWwwpySmUlhaxo+Vm+t/0J1q07YIQAk3TMJlMOPOPELCYCWg6aY2bYDKZQsUbCG0brhOUJpOJLl26MHToUPLz8/nss88YPHgwrVu3Dsv+FaU2UYW7jomJiQmNq/b5fMB/VyK02+34/X4SYhLI37iOmICHssN5JBz6ldLiIpLP7kpil9449+9mn8fDgdzDbF29lt7nnk/g4G8c2rWdmNhYSuNT+HX1Cn7L+on4Bo1wtGpHfFo6Tc46i8y27UPT4JOSksI6jrtjx47s2rWLl156iWeeeYa33347bPtWlNpEFe46xuVykZaWhtPpJCYmBl3X8fl8CCHweDzEeMrYt3AOcSlp+GMdJDVoSOJ5FyKFQACe7F+RJYXY9SBx+3Zyns+NXLGMQwf3I0wWigJ+YjOa0G7gYFoPvBSp6exYu4rcrJ/4aREhtAAAIABJREFU7cdNlHm8XPH3R0hJT6ekpCQiV/e5++67ef3118O6T6VuWbt2LVarlZ49exodJSJU4a5jEhMTy9cqiYnB7XZjMpmwWq1IKYmzmtl85xiSWrUl5YJLMJktIDX8B38rX7hXSsxmC0ltOqBLSVyz1rT5y7Vomo7PXYolNh5N6gQCQTwlhegSNF3StNM5NJKSkoIClr70PPPH3cb4N/5FcnJyxFYCrGzVVy5kpShQfhK7X79+9OnTh0AgwMSJE/n666/r3AzeuvVoFEpLS0PrPzscjvJx3YEA3qICvr/lChyNm9DosuHoZSXoJYXIshKE14nwOMHrQrpK0QqPECw8gu4qI1hSgFZWhPD78RcXEigqIlhWStDlIuh2EXC78DvL8DnLu2eG3XMfztwcZv1tFAf27AnrcMCjffbZZwwdOjQi+1Zqr127dpGRkcF11133/+ydd5xU1fn/3+dO3Z2d2cLSpYMFUKrEXgBRExtJFOyxY4tRQPAXa8w3ERSwiw01KApWjBrL18SvYmJBUIpCWJosC8uyfeZOueX8/piZ666ALrDLzC7n/XrNa+6ce+fcZ+7ufOa5z3nOebj11lvp0KEDJSUlmTar2VHC3cbw+/1EIhGEEBiGgWVZuFwuKv6+gKJufeh68liM7VsgpiNiOlpMR8SiiHgMLRZFRCOIaHIf0TBSD2Pp9ZhRHVMPY0bD2NGUaIfDmOEw8UiYRCRMPBLBiMY4avx5lK9fy8p//bPFprunf5AUioZceumlHHnkkTz77LNs2LCB008/nXfeeSfTZjU7SrjbGLm5udTU1AAQjUaTWR7xKPX/XUbBwQMxt2+FmJ4U7ngELa7jSui44jpaIoqI64i4DtEIMqYjYxGkriOjEayojqlHMCMRjEg9RiRMQg9jRiIkwhESkXriej0a0PPQQXy+cCG1FRWZvSCK/YIvv/yScePGcf7553Pfffdx2GGH8cUXXzB16lR+//vfZ9q8ZkcJdxujtraWjh07IqUkLy8Pt9vNlo/eg3gC2zKwohFkNCnMSY87giuu445H0GIRRDwl1rEoUtexIzp2NIIVrcfWk+JtRH8IkxiRMHE9TDxSTyISJhaOEA3X0alvX+qrqghXV7fI5wyFQlxzzTXMmjWrRfpXZDemaVJdXc3VV1/NoEGDePLJJ7n33nu5/PLLWbJkCUIIgsGgs0Z2W0MNTrYx8vPzKS8vJxgMEolEcLlc5Po81Htd2IkYtglS00ADqQnQBJpLQwiQNghbgi2RtsS2LGw7OQBp2TaWDaYlMaQkYUtMS2LaNoYNhm1jpF4nbBvTFtimAS200JSmaYRCIerq6lqkf0V2snLlSkpLS9myZQsvvvgid911l7OmfVqgu3XrxuWXX96ora2hhLuNEY1GCQaDAM6sxVgshh2PJT1nDVyaC1sD2yWwNQ1bE2gIbJkSbNvGsiW2JR3RNm2ZFGgruW1aScFOWHZKrCWGBYYtUyJuY6kYtKKZqKys5P7778ftdqNpGgcccADvvffeLo9vq4KdRgl3hrjhhhuYMWNGs/frcrmc6jTpgUm3y0P9mu/ICeYjcnIwXRrClfS6hSZAuBCATVJ0TRss28KwZPJhSwxpY5iQsCxMmRTshAXbNq4nt0MnDM2FYZH0xG1ImFaLDx4OHTqURYsWsWTJEoYOHdqi51LsWxouC3zTTTexefNmrrnmGg466CC6dMm+Ys7ff/89y5cv5+abb94n51PCnSGWLl3K4MGDm73fdN60EMJZS9tX3B48Xuq+W47o0w/p8yE1DekSSCFJROoRvlzweLBMEyNhEo/p1KxaScI0iZmSuC2JmRYxyyZuQbDfQCyvF09uLrGIjikEhiWJW8mQSdn3G6mtqEC0YEX3oqIipJRUVVW12DkUe8beeLzl5eVs3bqViy++GICHHnqIwYMHO3eS2Yiu69TW1tK5c+d9cj4l3G2M9LKu9fX1BAIBTNOEw0bQ7siRlP/jFaxohIKefbByc7E0gUtIrPLNCLcPvF4S9bXEt28jYSXj2HHLxrQkCVNiWBamKTEsm83LviRugru4I3HDhEAeeP0kpKBmexUb16zhhEuvoGgf/SMrsovdXaPGsizmz5+Pbdt8/fXXRCIRli5d2uZDHnuKEu42Rm5uLrW1tbhcLmKxGJD0wqPxBKYtiesR6svLyG3fgWhNFS5pJ9MDE3FskgORtkwJtg2GJUmkBh1NW2LaEkv+MGAZKdtM3JJELRtfu/ZE4gkqyyuwbeh96GHk5OW16Oc9/fTTmT9/PkcddRS5ubktei5FyzBv3jw+/vhjBg9OLmR2zTXX0Lt370ybldUo4W5jJBIJ8vLyiEajeL1eLMvCsixyunbFdHnANBD19UivF1lZgUvaCKElZ7wDlkwOTBrpWLUtSaQyRgwbDGmnMktIxsKlxCI5iBmPxYiGo9hC4MsLEYvHsW27RacbDx8+nKlTp5JIJJRwtyISiQSbN2/m7LPP5qKLLuL666+nf//+ysNuIkq42yDp29SGt6u9L7iGTe/+HX3zBiw9huWuRRgWLikRAhDJ4y1kKgWQRtkiyedktohhg2X+4IUnLBsbQawuQjQexzRtho09hePOPy9DV0CR7UyaNInS0lI+++wzNE1rc2uJtDRKuNsYXq+XaDSKpmnJ+DY/FO/VCtpjfr8eKS2ssI5m2biERCAhPZgJ2FI6wp32vOMp0U7YyYFKw7YxZFLQLRtMwCIZQjn46ONwoZHrz9knX8jf/OY3LFiwgCuvvLLFz6VoHh588MFMm9CqUT9zbYxYLEYoFAKS65a43e5kXrZl0fOiq4lbgphpE40liBo2UTP1MCxipp3MHDFSz5Ykbklilk3CtImnnk1TkkjFv007mTKYMExisRguvw/N5+GUK6+irq6uxRaZasiECROcSRgKxf6A8rjbGMFgkO3bt+P3+wmHwwgh8Hg8uFwuev3iaD7PzSNRX4smwK0JNFsghEyv6oolkx63TdLjtmwwUzMlk3ndkLAhYVvELTCsVEjFkki3h6POHs/qpV/TY+BAAoEAbrf6F1Mompuf9biFEN2EEP8SQnwnhFgphLgh1X6nEGKzEOLr1OOXDd5zixCiRAixWghxckt+AEVjwuEw+fn5SCnx+/14PB4sy8K2bXTDYOQDzzj52Lplo5s2UcNGN1LblkXUtBp44DYxwyJhWslJN6kUwYSZnt5uEbfBtGwOPuoYvvrXv7ju8Sfwer2Ew2GnlFlLM3z4cJYsWbJPzqVQZJqmhEpMYKKU8hDgCOBaIUT/1L5ZUsrBqcc7AKl944EBwCnAo0KIlpuFoWiE1+slFos5NR/TWR1CCLxeL74OHel09MiUICfDJLppETVNoimhTodHYuYPk26Sj1TYxEp62HEreaxhW/hC+URjCX7xy1/SqUcPLMvC4/HskywBIQS33nor9913X4ufS6HIBn5WuKWUW6SUS1Lb9cB3wE+V1j4TeElKGZdSrgdKgLZZPygL8fv91NfXI4QgkUhg2zYulyu52FRuLu6CIrqMOIq4KYkaP3jWUVMmnw3biX3HLSsl1qQeP4h13JapUImNLdwMGDmaaCLBUWecRTAUwrIsAoHAPk3vUpkJikyxr9MYd+s/XQjRExgCfJ5quk4IsUwIMUcIUZhq6wpsavC2Un5a6BXNSF1dHe3bt8e27aRQu90YhoFhGFRXVxPIzWXA+Is54MQxRO2khx0xLCIJC92wkmGTVKgkkhLwmGERM03ihkU8PXBpJj1vy+XhoGOOp2p7JUNHn0TXgQOpqanB4/Gwffv2fTI4CdC9e3eefvrpfXIuheLH7O5M0b2lycIthMgDXgX+IKWsAx4D+gCDgS1AesWknf307PCphBBXCiEWCyEWG0Z0tw1X7JxQKERVVRWapqHrOoZh4PF48Hg8FBQUoOs6Lo+H7if9EtOTk4xrm5KoJdHNZNw7asrU44esk5gpiVmSaDrGbUvw++nQpy/S7UKvq6XrwQcTys+noKAAwzAoKipqsZqTP0bTNGc1RIWirdOkIX8hhIekaL8gpXwNQEpZ3mD/k8BbqZelQLcGbz8AKPtxn1LKJ4AnAILBjjIe3xPzFT9G13VCqVBFusp7Op87kUjg9/uxLIsRY88mWlXJW3feSuO7vB/yuZPT33GmuJsyNQ3etpHCRV6oELw+tqzfwJX33suAY48lGo0ihMDtdlNfX08oFNpn4q1Q7C80JatEAE8D30kpZzZob7h60FhgRWr7TWC8EMInhOgF9AO+aD6TWzeGYRAOh7Esi0gkQiKRaNb+c3JyqKurQ0pJLBbDNE1nZlogECAWiyGlpK6ujuMvvYoxt96J6fIkvelUPnfUtEkIF9EGbTHLJiE1YqZF3JTEEejRGFs3fM+Fd9xFv1/8IrkSoc+H3+/HNM19HuNWKPYXmuJxHw1cCCwXQnydavt/wLlCiMEkwyAbgKsApJQrhRALgG9JZqRcK6XcN4HOVsCzzz7LzJkz2bRpE8cccwxnnHEGd999d7P173K5cLvduN1uJ+6W3m64z+124/X5OPL839F32BF88NjD1G1P1oeUwJHnnc8nLzyPlGDbEndOLt0OPZTv/vMfbAkSQVHnTpz///4fRd264fZ4nH7T53S73Uq4FW2eZcuWsWLFCsrLy1m0aBFDhw5t8XVzfla4pZSL2Hncepelk6WU/wP8z17Y1SapqKhgy5YtvPDCC1x22WW88sorzJ07l3Xr1jXbamiaplFcXLzL/fn5+QAEAgEAOnToQIcOHRhw3HE7HDvmksv32A6Px7PH71UoWhPXXnstffv2ZdOmTVx99dW8/PLLHHzwwS16TpU/tQ/x+/3k5ORQU1PDgw8+iK7r2Lad1QvEKxSKXfPMM8/wu9/9jkmTJjF8+HCef/557r333hafeJYl85ElPl/2VjHxeuuIxWLNUmnF5/Mxbtw4Fi5cyJgxY7joootwuVx73beu64TD4ayuBmMYBjU1Nfs8dWr3sLL6f9Hnq8FluPBVZW8GjTfsRdf1rP5fjMVi1NXV7bWNo0ePZsKECZx00knccccdTJ8+nfPOO4+ampq9tvGnviciG75ERUVFctKkSZk2Y5dEIhEqKiro2bNnpk3ZJVu2bMHn81FUVJRpU3bJ6tWr6d27d1aHUb755hsGDRqUaTN2iWEYLFq0jurqgzJtyi7x+6sYMiS+z8p47Qnr16+nQ4cOTsgwG7nvvvuoqqra+SBRuihnJh8dOnSQ2cyaNWvkE088kWkzfpLXX39d/vvf/860GT/J3XffLauqqjJtxi6xbVted911mTbjJ6msrJTDhv2PTC4Jlp2PTp0WyTfeeCPTl+onmT17tlyzZk2mzfhJUrq4U81skzHuu+66i02bNv38gQqFQtEKaZPCvW7dOqfeokKhULQ12qRwKxQKxb5m1apVrFq1ap+cK0uyShQKhaJ1Yts2l19+Oe3btweS8zWeeuqpFl2tUgm3QqFQ7AXhcJhvv/2W1157DYBf//rXhMNhp4RgS6BCJQqFQrEX3H777UyfPp333nuP999/n+nTp3P77be36DmVx61QKBR7wYwZM+jduzdDhgxBCMGSJUtYt25di55TedyKrCOdqzphwgRnW6HIVjRNY86cOfTt25c+ffowZ86cFq/GpIRbkXXMnDmTgw8+mMsvv5wDDzyQ2bNnZ9okhWKXCCEYNWoU/fv3Z8CAAYwaNarFV8VUwq3IKrZt20YkEmH+/Pls376d559/nqqqqqxe90Kh2Nco4VZkFaZpIqXE4/GwceNG5s6d26iKj0KhUMKtyDK6dOmCz+fjt7/9LUcccQRPPvkkeXl5P7nGuEKxv6GEW5F1TJ48mW+++Ybp06dTX1+Pbdu8+eabLb7GcUtQVlZGfX19ps1QtDGUcCuyDpfLhdfr5YUXXsDr9TJx4kRKSkqYN29epk3bbR577DEWL16caTMUbQwl3IpWwU033UQikeCpp57KtCkKRcZRwq1oFWiaxgUXXIBpmrz88stYlqo/rdh/UcK9m3z66adZPSEkkUjw1VdfZdqMFsHr9XLVVVexdu1a3nzzzaz+Oyh2xDAM3n33XedhGEamTWq1qCnvu8G8efNYu3Yt77zzDmPGjOH444/PtEk7MGvWLOLxOK+99hpXXnklPXr0yLRJzYoQgqlTp/Lwww/zzDPPcOmll2baJEUTsSyrkVOxaNGinf74nnvuuQwcOHBfmtbqUMK9GwwaNIjTTz+dRx55hE8//ZRjjz020yY5pL8Ao0aNomfPnvz+97/n+++/p1u3bnvc59KlS2muWqDnnHNOs/STZsKECcydO5dnn32Wiy++uMVnqin2Hr/fzx//+Ecg+f/673//e6f5+Y8++ijfffddo7auXbvyt7/9bYdjhRC7/NtLKYlEItx6663MnDnzJ4/dW9Lfv331f9gmhbtjx46Ul5fTt2/fZr2QAwYMYMyYMaxdu5ZoNMrLL7/cbH3vLXl5eUyfPp0+ffowcuRIysrK+PLLL8nLy9vjPocOHcqbb77ZLPZ5PB7uu+++ZukLwO12c+GFF/LII4/wxhtvcMYZZ+ByuZqt/+aiqKiIqqoqbNtu8fUrWhNCCI4++uid7hsxYsQOgr5p0yaGDRu2w7FTp07daXsoFOLWW2/l66+/5r777qN379489dRTjB49unk+wI9Ys2YN//nPf3j00UdbpP8f0yaFe/r06QwZMoSvvvqqWYX7o48+Yv78+fz5z3+muLiYW265pdn63lveeOMNIHn7+fe//50JEyYwdepUjjnmmAxb1nK43W5uuOEGpk2bxiuvvMK4ceMybdIO3HjjjYwaNYrRo0eTn5+faXNaBTk5OTu09e/fn6VLl+7QPmvWLN5+++0d2rt27crKlSs5++yziUajPPDAAyxfvpxjjz0Wn8/X7Dbbto1lWXg8nmbve2e0SeFuKUzT5M4772TgwIEcfvjhmTZnp1RVVfHAAw9w5pln0rdv30ybs0+4+eabefLJJ3nyySe54oorMm2OYh9y44037rR91apVfPTRRxiGgWEYuN3uNpWJpIR7Nxg9ejS9evWid+/eWRtTPf/88ykrK6N79+6ZNmWfIYTgd7/7HXPnzmXevHmMHz9ehSX2cw4++GD69+/PwoULOf744znvvPN46qmnWsTbzgTqv3s36dOnT9aKNiTDB/uTaKfxer1ccsklbN68OWumx9fU1PDZZ59RW1vL4sWLKSkpybRJ+xVPPPEEH3zwAS+++CJr165tsfh2JlDCrWgzaJrG5MmTWbduHc8//3ymzeGLL75g0qRJbNu2jb/97W/ccccdmTZpv8LlchEKhXj44Ydxu91Z7XDtLkq4FW2OG264AcuyMjo9PhwO88Ybb/D000/Tr18/7rnnHoYNG8Z7772XMZsUbYefFW4hhF8I8YUQ4hshxEohxF2p9l5CiM+FEGuEEPOFEN5Uuy/1uiS1v2fLfgSFojEul4sLLrgAwzB45ZVXMjIolZuby5gxY5g/fz7z5s2jrKyMFStWZFXuv6L10hSPOw6MlFIOAgYDpwghjgCmAbOklP2AauCy1PGXAdVSyr7ArNRxCsU+xePxMGHCBEpKSli4cOE+nx6vaRo9evRg8eLFvP766/z1r39lwIAB5Obm7lM7FG2TnxVumSSceulJPSQwEngl1f4ccFZq+8zUa1L7R4m2FFxStBrS0+Pr6uoycv4hQ4bw5ptvUlhYyAsvvMDEiRMzYoei7dGkGLcQwiWE+BrYBnwArAVqpJTp6U2lQNfUdldgE0Bqfy3QrjmNVih2h9/97ncZHZgaN25cm0lDU2QHTRJuKaUlpRwMHACMAA7Z2WGp5519Q3a4TxVCXCmEWCyEWByNRptqr0KhUOz37FZWiZSyBvgIOAIoEEKkJ/AcAJSltkuBbgCp/fnADiW6pZRPSCmHSymH72yKq0KhUCh2TlOyStoLIQpS2znAaOA74F/Ab1OHXQwsTG2/mXpNav8/pVo4WaFQKJqNpkx57ww8J4RwkRT6BVLKt4QQ3wIvCSH+DCwFnk4d/zQwVwhRQtLTHt8CdisUCkXW0Lt3b/7617/us/P9rHBLKZcBQ3bSvo5kvPvH7THg7GaxTqFQKFoBXq+Xjh077rPzqZmTCoVC0cpoc8L97rvvcuqpp7J27Vp+9atf8dxzz/38mxQKhaIV0aaE2zAM1q1bxznnnEOPHj244YYbWLNmDbFYLNOmKRQKRbORFetx27bNp59+utf9bN68mX//+99cffXVBINB8vLyiEajPP300wwePHiP+926dStbtmxpFhtbig0bNlBdXZ0Vy5nuiqqqKr788ksCgUCmTdkluq5n9d85HA7j91fRqVP22lhYuJoNG+qz+jpu2bKFZcuWUV5enmlTdslPfZezQrillFRWVu51P36/n3POOYfKykqmTp1KVVWVU4l9b/qvra0lGo02i40tRSQS4ZlnNOrrs9fG7t0T/OIX1Vl9B1RdbXLhhdl7Dd1unc6nfEnOza9l2pRd4l0fIhI5J6u/L7FYjFtrbiXmzt7/xbiM73JfVgi3y+XijDPOyLQZu6SkpATLsrLaRtu22batI1u3HplpU3ZJu3bLGDNmDIWFhZk2ZadIKZk79wPWr8/ev7PPV0Wo032sP2N9pk3ZJZ0+7cSA7QOy+vuyZcsWyo4ro7ZvbaZN2SV5rl0X+m5TMW6FQqHYH1DCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwZQkpJPB7niSee4OOPPyYe3/W6BAqFQtEQJdwZIhwO06VLFyzL4tVXX2XgwIGZNkmhULQSsmKRqf2Rl19+mTvvvJOhQ4dy6qmnEgqFePvtt/nVr36VadMUCkWWk5Ue99KlS3nllVcybUaL0r59eyoqKvjggw9YtWoV27dvp127dpk2S6FQtAKyTrhHjBjBQw89xJo1a+jVqxfhcDjTJrUIJ554Io8//jjV1dU8//zzfPbZZxxxxBGZNkuhULQCskq4lyxZwqGHHsq0adMYNGgQwWCQTz75JNNmtQiBQIAFCxawcOFCbrzxRpYsWZJpkxSKNk80GmXp0qWZNmOvyaoY98aNG+nVqxf19fV88803hMNhzjvvPCZMmOAc061bN6655poMWtk8JBIJ/vd//5c5c+YwbNiwTJvT5igtLeXrr7/mtNNOy7Qpiixhzpw5lJSU4Pf7WbduHYzKtEV7TlYJ99ixY5k0aRK1tbUcdNBB1NbW8uKLL5Kbm+scU1paygknnNDofVdddRXjxo1r1CaEQAixL8zeIxKJBIsWLeLuu+/OtCltjksuuYR4PM6gQYO49957efXVVykuLs60WYq9QEqJlHKv+liwYAE33XQTgwcP5pFHHmkmyzJDVgk3wLJly/jss89YvXo1GzduJBAINBLgnZUQe+yxx3bwWh944AE6derkvHa73fTu3btljd8NNm3aRNeuXTNtRqvh+++/b3KtysWLF/Pss8/SuXNnNmzYwPr162nXrl1W/5C3RaSUlJSU7LXgQrJg9w033LBXfaxdu5aysjJOOeUU+vTps9c2ZZKsE+5AIMCoUaMYNWrn9zEul4u8vMa12CZPnszkyZMbtd18882NKjj7fD6OPvroRsccdNBBGRsQPP/88/nqq68ycu7WyJw5c1i/vml1Frds2cIDDzzAySefzDnnnMNLL73E8OHDW9hCxY+xLItp06ZhGMZe99WpU6e9jk2fcsopjB8/nhNOOIH7779fhUqykenTpzd6HYlEeOmllxq1ffjhhzz55JON2iZOnEj//v1b3D7F7nHnnXc2+dghQ4bQu3dvOnTowKWXXsqiRYuUt50B3G43Tz31VKbNcLjxxhtZt24djz76aLPcBWSSNivcPyYQCHDZZZc1aquurm7klQP85S9/YcWKFZxyyin85S9/aRFbpkyZwv3336/EpIV47bXX+O677/joo4/4xz/+QYcOHTJtkiILOPnkkzEMg23btvHWW29l2py9Yr8R7p1RWFhIYWFho7Znn30WKWWLimpZWRldu3ZVwt1C9OrVi549e3LKKaegaVmV8arIMB6Pp02MLe3Xwr0zWvqL/vXXX9OzZ88dfjAUzUu2ZxUpFHvDz6qUEMIvhPhCCPGNEGKlEOKuVPuzQoj1QoivU4/BqXYhhHhQCFEihFgmhBja0h+iNfHFF19w4IEHquntCoVij2mKxx0HRkopw0IID7BICPGP1L7JUsofLypyKtAv9fgF8FjqWQFceOGFmTZBoVC0cn5WuGVy+DW9YIgn9fipIdkzgb+l3veZEKJACNFZSrllr61tA+Tk5GTaBIVC0cppUkBXCOESQnwNbAM+kFJ+ntr1P6lwyCwhhC/V1hXY1ODtpak2hUKhUDQDTRJuKaUlpRwMHACMEEIMBG4BDgYOB4qAKanDdzYitIOHLoS4UgixWAixOBqN7pHxCoVCsT+yWykUUsoa4CPgFCnlFpkkDjwDjEgdVgp0a/C2A4CynfT1hJRyuJRyuAofKBQKRdNpSlZJeyFEQWo7BxgNrBJCdE61CeAsYEXqLW8CF6WyS44AalV8W6FQKJqPpmSVdAaeE0K4SAr9AinlW0KIfwoh2pMMjXwNpNdefQf4JVAC6MAlzW+2QqFQ7L80JatkGTBkJ+0jd3G8BK7de9MUCoVCsTPUfGCFQqFoZSjhVigUilaGEm6FQqFoZSjhVigUilaGEm6FQqFoZWTFsq6mafL4449n2oxdUltbS2lpaVbbuG7dOrp3z6W4eFmmTdklodAG5s6di8/n+/mDM4RpVjFwYPb+nV2uGPnr8xn4+MBMm7JLcrfk8p/Yf9i6dWumTdklK1asoE9tHxL5iUybsku+N7/f5b6sEG6Xy7XLGpPZQGlpKZovLkXlAAAgAElEQVSmZbWNbrebI44o4tBDD820Kbvk6ac3cPfdx2IYwUybsktOOmkJr7+evX/nuro6Xn11G5eM2vn0CIlEYieLgaRWn5CpFSc04XLaWpJly5ZRU1PDcccd1yz9WZaFy+XaYXtvqK2tZcaIGRxwwAF73VdLcaR25C73ZYVwCyHo27dvps34SdasWZPVNq5YsYKOHTtmtY2BQID6+p7E49laREKiad5mvYZbtmwhLy+PYLB5fqyqqqoIBAL06tWLysrKZGOOQV2khvz8Ar7Z9i8+1d+iPlaNbQoCWhGReAQ9HuGy3nfh9+TQOe8ACgPtqK2txePxEA6HKS4uZvv27YRCIXRdp7i4mEgkgsvlwjAMRzAjkYizLz8/n4qKCoqLi4EfipCUl5fjcrma5TqWlZUxZcoUHnzwQerq6pg/fz7Dhw9nzJgxe1UoIz8/nwMOOIBu3boRDofJyckhEong8Xhwu91Eo1GCwaCzLx6PI4TA4/Gg6zqhUIj6+npycnIwDAOfz+fUsfR6vYTDYfLy8ohEIuTm5mKaJrZt4/P5qK+vJxgMous6fr8f27YxTRO3243f73c+108VdckK4VYo2iqPPvooI0eO5MQTT2zWfqNmmOXRjwibtZTWraQythV/VRBhu+mg9aJrzqF8u/1L3K4gA4OD0fJcfFP1H94qmc/JPc5mVI/T6OjvipQSv99PPB53RCQtTrZtO2KUFpH0sUIIdF3H6/U6z16vt1k/I8CXX37JYYcdxpYtW5g2bRoXX3wx77//PieddFKzVDgKh8Pk5+cTDocpLCzENE0Mw6CoqIjq6moKCwsdEZZSEo/HKS4uprq6mqKiInRdJzc3l2g0ihAC27adPisrK8nPz6e2tha3242maVRVVVFQUEBlZSWhUIi6ujqEEPh8PqLRKD6fr0mfSwm3QtEK0YTGg188gmHFOSB0AL0Le+NzBXj2n3MJBb0c2KMzlRsjVMZXMmhgDUXeDhiWTeecPqzcugxMN+19HTn5wDMAHNFJb2uahm3baJqGaZqNzp0uC5cWc03TWqxM3Jlnnsnxxx/PBx98wJo1a/jkk0945513mq3EYE5ODuFwGLfbTV1dHS6XC03TqK2t5frrr2f48OFcddVV6LrufOaamhr8fj91dXW43W5isRhud1JKNU1zftzy8/NJJBIEAgFs2+a5557jww8/5PHHHyc/Px/DMJx9UsomizYo4VYoWiU+Vy5/PvxRzpp/Jtu8FiXuKnJFLkWiB7kxH/qGPLZvjrJq6zZ8ucvxVxZRXbSdgLsIt+alti5GLJHgiAOOwy09BAIBIpEIQojkrb9HkohF8LhdIPzYUuJyuYjH4wQCAUzTxOPxEIlECAaDLVrfc8GCBaxatYqHHnqImTNn0rlz52brOxKJUFhYSF1dHXl5eViWhWEYhEIh3nnnHRYuXIhlWVx00UUUFBQQj8cJhUKOxx0Oh/F6vcRiMQDH4y4oKKCmpob8/Hw2b97Mhx9+yJQpU4jH4zzzzDPU1NQQCoUIh5M1atJin5OTozxuhaKtEovF6N2+JwvOWcC5L4/jqw1f4THdtPMWIRNgJ2z+eu49fLb8P3QPdee9le/RtVshG76vwBfMY0tFJbGEyV8/+At3nHYXkUiEUChEPB7HI2M8f9swbDMGQvLryUvJKeiEbdsUFBQQiURwu93U1taSm5tLdXU1ubm55Obmtshn7dixI7W1tQQCAbp3796sfXs8HkzTxOVyYVlWclC3QaHpaDTKlClTuO2223j//fcZMmSIE482TRNN05BSOncd6bCHlBKv18uyZcs45ZRTqK2tBZJJBC6XywkreTwe4Ie7HOVxKxRtmNzcXCoqKuga6MJjv57N9QuuZ1v1Nvq264dLurATFi9/Op+AK0A0puN1eyj/ws3BPYZTtm0tde22UWx048X35jOm5yn88he/pKKiAr8XvnrvAWrDBh26D6ff4NEITy7xeByXy0VVVZUzOFlUVERFRQXt2rVrUY+7JXG73RiGgaZpGIbhfI45c+Y4XjRAIpHgvPPO48ILL2Ts2LH07NmTadOmIaXEsixHgD0eD1dccQXl5eXMmzePl156yRFtSGbFPPHEE1xxxRXYto3b7XbGEXYnW0YJt0LRCtF1nby8PACG+4fz4oXzOPPJs1i1bTVBd5AckUNcxKmIb2drxRaqtlfxq8NPo9jbBRsXh+UN5/1v/kGRz41P81BfX0/tthL+/ub9bNu4mA5dh3LsOTMo6NATTQhcLhe2bdOuXTvH466srCQYDLa4x92SRKNRioqKqKurIxQKYZomiUSCefPmkUg0zvEuKytj2rRpvP322wQCARYvXoxlWY2O0TSNt99+GyklS5cu3eF8UkqeeOIJxo8fT0FBAeFwGCEEfr+fRCLhePw/h5o5qVC0QtLemZQSTWj0LerHhxM+pG+nA6mL1bF6639ZvHEJyzYtI5gX4vABhxM1onxfvhHh1qjbnOCEPqeSl+vmtuevY31ZCd+XrGDV8q849oxb+M11c2nXqTeC5G18WlDSaYFCCNxuN7Zt43K5dvAWW4sHnv7h8fl8VFVVoes6AIZhOMfMnDmz0RyOFStW8Pnnn+8g2pCMcS9ZsqSRaHfs2JHnnnvOee12u2nfvj2GYZCfn08gEACSd1EqVKJQtGE0TSMWiyFS3rBhGHTK78S7V73F28vf5q3l7/Cflf9ma2U5eiJCpe0i7kpgJ2ww4bvV3zLm8JM5rvi3dDhScP3MczmowsXg4aM4cNip5OblOyKdznoQQpBIJPB4PFiWhdfrdQYpfyw46dv/bCedBlhXV0dRUZHjcadDH5AU8ddff53CwsKdivXPMWrUqEY/BKZpsn37dgoKCqitrXU8bpUOqFC0cWKxmBOaiEajBAIBampqCAaDjOw7it8c/lveXfIuW+u3koglCPrziOpR4tEESIF5okn3jt0YOWIkRYVFhLYWsenf33DSr6+luEMXKisrCQQCGIaB2+12RDqdn+z3+6mpqXEm7gSDwRbJ425p0umAHk8yXJQeIGwo0Dk5OexpQfNLL72U6dOn8/777zttLpeLUCjUKB0QkhN3lMetULRhcnNzqaurA5Jf+PRsvHTMNhKJcPKQk6mtqSHX6yVaU8n3zz1MrOQ7/J27cvCNd5PweHAB27duYevSMnyBDnTr3pe6qioKg0EShkHJ31/jq5fnIjx+Dj7jHPqcMJLCdu2wLIvi4mLC4TDt2rVz8phbG/F4nLy8PHRdJycnx5nF6Pf7nWMSiQQ+n8/JPNkdzjzzTIBGA51SSiKRCIFAwGn3er2NvPKfo3VebYViPycSiTiz+aLRKHl5eU7ecPq5fOnniNL1bHh7AZ6cAIfdNQs0D8KlYW3fyne3TcUSGnbMxv5uOR0OG8qGV55l08f/Qq+vI69bLw4661xO/9MMbNPg239+wPOXnIs3v5CRv7+JvE5d6NGvH7W1teTk5DiDpa2JhvF7KaUT4nnjjTfo1KkT9fX1bNy4kSVLluwwEakplJSUMGzYMEpKSpzzjR071hkTaJh6uDvjAq1auP/2t79x4YUXtpqBEIWiufD5fI1i3IlEAr/fj2EY+P1+tn/8Hhtn3Ea38Zcz4Oa/IAREVn9H+qsihWDgbTORAmJbt1D42SISiQQuoTH8upvB7SEe1UlEdfTKbdhS0mPY4XQfNoLaqipevf2PhLp15+L77icnFGq1HrfH4yEej6NpmjOVXwjRyEN+6KGHeOihh/ao/4kTJ1JWVsaMGTOA5NjEH/7wB3w+H7Zt4/V6nR+L3bmGrTKrZOHChYwdOxbTNPn1r3/NG2+8kWmT2hy6rnPHHXdk2gzFLkhnczScAGLbNkIIKj56lzX330nP864i1PtA4ps3EC/diIhFELEIxCIQjRBduwp9zXeY9TV0GHEkXY45nvzuvYhWbCWyeROxyu2YkQhmVMfQdeL1YWJ1tbhcLo6/8CLqNm3iqWuudtLYWiPptMp0vDktpDNmzNjjuPaPSYs2JP9ut912G7W1yesYDoeJRqPOOihNvY6t7mfSMAz++9//cvbZZzN69Gj8fj+rV6/GMIxGI8GKvcMwDBYtWpRpMxS7IJ3VIYRwZvLpuo6oLKf8jefpftb5+IqKsWsr0dAQIjUjEBCAjQQ7uY0tSehhLCkxbbBsiS0ltkxum+lnW2JhY1jg9eVwzHkXsPCBWTx86SVMmvdiZi/IHpKevu73+6murkZKySOPPMJ9993XKDRSWFiIy+VqlBZZXV290z7z8/PxeDzOD6lt286xUkqeeuopXC4Xd9xxh5OpYlnWbqUDtjqPe926ddTU1DBy5EhuvfVWZ3nFdAxJodgfSMe00yvP1dbWUpCfz9blSwkVdyJQ0A47XAMxHREPo8V1XPEIWlxPPtLedzQCsTBEI9h6BKmHsfQwph7GjNSTiIQxwvUkwvUkIvXE65PPsXAdtmlw0mWXU11aSv22bZm+JHtEfX09BQUFJBIJgsEgjz/+OH/6058aTb7p378/S5YsobS0lLVr17Jt2zYWL17M4YcfvkN/hxxyCP/85z8pLS1l+fLllJaW8sUXXzBo0CDnGMuyePTRR5k+fTplZWVEIhEg6f031eNudcJ90EEHUVRUxLXXXsuUKVM4/fTT+fTTT1vlrC2FYk9JL0jk8/mwLCuZ1lZbQ83/vYuW48eor4aYjozqEEsKtRbXcccjuOI6IqZDXHeOsfQIMqpjRyPYUR1b1zF1HVMPY+gREunnSIREJEwiEiYeCWPEEngCeXz0Uuv0uHNyctB1HbfbTXl5Obfffnuj/QMGDGD27NkUFRU5sfC6ujrat2/PjBkz6Nevn3Osz+dj0qRJ9OvXj3g8TjAYxDAMOnbsyNNPP82IESMa9T1jxgwikYhTEarNpwOOHz+eI444gltuucW5nf/jH/8IJAcsm2vJx2zHtm3i8Tg33XQTY8aMybQ5in1IOjQCyS98IpHApwli676l3ajTsKMRLE3DpYmke6aBS3OhaWBLELYEWyJtibRtpCWxbbBsG9sG05YYtsSQNoaVDKGYtp1ssyWmldqW0KlnD4xmigfvawzDIDc3l1gsxoQJE5zskjRbtmzh5ptvxrIsDj74YB5++GH8fj+6rjNkyBDGjBnDmjVrABgzZgwnnngiiUTC+UG48847Wbp0KbZts3HjxkbnFkJw7bXX8tprr+H1encr1bBVCnfXrl3p2rUrQ4cOJScnB4ChQ4eyfv16Jk+ezBVXXEHv3r1b5YSA3eGGG25g0aJFzJ49m8mTJzNt2rRMm6TYRzRMX3NS2jSBtC3smI6pgaa5sDWB1ARoAukSkBYmG6QtsW0b20o+mzaYlo0pwTBtTJmMaycsOynklo1p2yRsgWFJDNvGsGxikXCmL8ceky5g4Ha7efrpp/m///s/zjvvPGd/VVUVn332GX369OGee+7B5XKh6zo+n494PN4oEyQYDNK+fXsnyycQCHD77bdz6qmnsmTJkh3O/eCDD3Luuec2KmDRVFqlcKdJi3Z6u3///px55pnce++9DB06lJ49e/KrX/2qWc/54osvOp5Oplm+fDljx46lvLycm266KdPmKPYhiUTCcUwsy8Lv9xOrrcGK6MTKy8gJ5WNpLjSXQGggXAKEho2GjcSUEstOCrJppb1qiSltEhYYaY/aSg5GRqNR4oYBvhwStkwJNxi2RVzXacmcEikl//rXv5qthuWP+06HJ1wuFx9//PEOxxxyyCHMnz+fvLw83G43H3zwAdu2baOgoIBBgwZx8cUXY5omv/jFL/j888/ZsGEDOTk5nHXWWfj9fhYuXMhpp53GN99806jfL7/8krPPPtvx8HcnM6dVC/fOOO644zjuuON49dVXWbNmDa+++iq/+c1vmq1/TdOyKhSTtic9bba5yMnJ4fTTT+f1119n7Nixzdr3/sTYsWOZO3cuRxxxRCNHY2/x+/1s27YNIQSBQCBZBzGYhy2hbtVKXP0ORuT4QdNSnnYqk8QwET4/lrSTwmuaRMo2EYtEiFk2CUsSNyVx2yJugqddRwiGiOlR4okEwrRIpI4zbEnCtNi4YgV9Dx/x80bvIVJKZs+evdPV9pqDdKWfcDjM7NmzOeOMM1i9ejWrV692zj9jxgzuvfdehBBUVlZy0003cdRRR/HKK68wduxYZ3nWq666ildeeYWZM2cCyXVJbrvttkai3LVrV0aNGsXzzz/PlClTyM3NbfKqgGnanHCn+c1vfoOu6zz00EMMHTqUt956iy5duux1v+PGjWsG65qHpUuX8uqrrzJ69GhuvvnmZg2VeL1eDjvsMD766CMl3HvB0KFDmTx5shP3bC7SxXrTk0WCwSD14Xr6T/kfVt71B6zlEYoPGoj0ebE0gSVAxHXsmmpcHbtgmxb1JSuxTEksHiduGMQtm7gJUdMibtrELBtjaxkGLmQgH1d+AVKPYbrcGBYkLJuS5cvQvLn0P+bYZvts+5J0YV+/34/f7+eLL76guLiYCy64wDlm1apVrF69mo8//phx48Zx2WWXUVRU5KT7WZblFE+wLIu8vDxOP/105syZw6xZs9iwYUMjx6qgoIBZs2Zx/fXX06tXL6fq0O5MwGmzwg3J9RwmT57MpEmTuOiii7j66qvp1asXXbt2zbRpzcL9999PPB5n4sSJ3HjjjZk2R7GPsSzLuftLeo0uRLAQw7TRIhGqvv2a/L4Ho1kmLttCGHGMis2wpTSZq22DYdsk7KQHnTCTXrRFKndbQiKeIGZYxGrriW/aRMyyMT0+Ap26ULZhI/X1Oj1HHMjAFghj7AvShX3j8ThFRUUUFhayadMmYrFYoztZKSXr16/nnnvuYeXKlbz55ps888wzSCnJyclx0gcHDhzIpEmTmDp1KvPnz98h/KFpGtFolC1btnDIIYc4k3w8Hg+xWMzJMPk5mizcQggXsBjYLKU8TQjRC3gJKAKWABdKKRNCCB/wN2AYUAmMk1JuaOp5mpv0P/Zjjz3GX/7yF3Jycrjqqqvo1KlTpkxqNjRNIycnh0cffVTNHt3PSE/VTot3ennVMGD7/STiMTBMIjXVEKlDhOvRNIGGQCKxpI0tk8Jt2qRi1j/Ers10/NtOxsNtW2JJiWWDZRiEq2uI6VFcPj9Stp71t39MXl6eU429pqYGr9fL2rVrOeqoozj55JOpq6tzBjBnz56NlJK///3vHHnkkUyZMsWpdh8IBJBSMnHiRObOndtItK+77jrHI08vDlZSUkKXLl0IhUJYlrXbd2S743HfAHwHhFKvpwGzpJQvCSFmA5cBj6Weq6WUfYUQ41PHZTy+EAqFuOeee/j222+b9Za1rXLZZZexcuVKKisr+eqrr5zBGUV2EI/HnRXsdF0nNzc3uczqIYdSeMwYyt97AxsTWVmJW9hopo3QBCIl3LZsIMRSJmPblmwk4GaDwUtTJgcsLSkxDUm8uhZbgsvv5/SbJztrpLQ20iGnRCJBfn4+UkqOPfZYRo4cSSwWcyrTaJpGv379nCSA+++/nxtvvNFJJ0wkEs4syZkzZzqifccdd3D11Vfj9/udWa5+v59YLOas6gg41eKbmgnXpFE2IcQBwK+Ap1KvBTASeCV1yHPAWantM1OvSe0fJbLo57h///7k5+dn2oysprq6mrVr13LzzTdz5pln4vf72bp1a6bNUjQgEAgQDocbrSWdn59PXLgI9eiLaUPcsInqUaLRBLplEzVtdDP5HDVtYmZSrKOGTA5M2jaJVPqfISVxW2JaElMKEimP27BttEBeMpTgzcEwTY486eRWOwEuNze30TVMhzzq6urIycmhrq7OqW5/yCGHOO8zTdOpJRmLxfB4PI2KAKfp168fhYWFeDweNE0jFAoRjUbJz8931kdJO5K7k77cVI/7fuBmIJh63Q6okVKmJ/OXAunAcVdgE4CU0hRC1KaO395kqxQZ5bnnnuPKK6+kb9++JBIJzjrrLB544IE9XiFN0fzouk4wGGy0XVtbSzAYROvZD619F2JbSzFkAhcCl0ZqZcCkryZlY687PbnGyRaxLAwrKd4JO53PLTEtiFXXYAs4bNSJ+IvaUVFRQUFBgWNPayK9zks6jzodWnW73U4RYCklLper0eChEMLJu06vYdLwkSZdDT7dZhiGk+edDnGl4+i7kxn2sx63EOI0YJuU8quGzTs5VDZhX8N+rxRCLBZCLG6uVbgUzcMf/vAH/vSnP/HJJ59QWFjIBRdcwJ/+9KdMm6VoQDruGo1GnQGv9G19j6NPwN+1O1HLJpbKDkl62DYx0yRmmkRNi6hp/bDfEenUQKUlk/ncaTFP5XkbdjKEUtyzF+tWrOS0a64jFAq12slu6VTAtDg3zOlOr8CYXn2xV69ejQoj/O///i+AEyJJx78rKyuBZMmygQMHOvvSWSeapmFZVqP3QfPncR8NnCGE+CXgJxnjvh8oEEK4U173AUBZ6vhSoBtQKoRwA/lA1Y87lVI+ATwB0LFjx9a5JmQbZv78+axYsYLPPvuMBQsWtEpvqi2T/uKnv/zpDIi04Ayf/Cf+fsHpRKNhXEIkByZl0uuWgA3Y6VUAkZhmMpMkKc42pgUJOynmhm2nsk+SAu4LhujQ9yDa9+1LUefOTrmv1ki6SHAoFKK2thav14vH43EqCVVVVREMBtF1nYKCAo499lgWLlxIJBLhuuuuo1u3bo6wA5SWljorAQ4bNozOnTs766Sn15Sprq52KsunS5clEonmTQeUUt4C3AIghDgBmCSlPF8I8TLwW5KZJRcDC1NveTP1+j+p/f+UrXWx3v2YQYMGOd6CWi5372iJf3/LspwvevqWXtd1vF4v0WiUgt59yO3ei20rv0YTGi5nSVcbiYYUKQ8wNThp2TK1hGt6PRLheNqGbROzkiGThG0RDBWgeb30GjSIYEEBdXV1aJrWKr3u9OqAsViMgoICbNvGsiyKioqcsmzRaJRgMIiUstGs6YqKCioqKnbZd/ouKL32tqZpVFdXEwgEqKqqcmLo6bBLulhwU9ibKYBTgJuEECUkY9hPp9qfBtql2m8Cpu7FORQZxOVyKdFuBlrCGw0EAtTX1xMOh3G73U4+sq7rtGvXDl3XOfWRZ4gbNnHTImpYqfCITD4nbKJGMnwST4dRLEnUgpgpiJk2CcsmbiXbDcsmYVoUdu1Ov6OPxZ8bYMz48dTX11NcXNxqByeDwSDV1dV4vV6qq6udvOp0AeTt27fjcrmoq6tD13UOP/xwunXr9rP9durUiRNPPNH5QfD5fGia5tQDLS4udjJZAoEAwG5dw90SbinlR1LK01Lb66SUI6SUfaWUZ0sp46n2WOp139T+dbtzDoVC8fNEo1Fyc3PJyclxFuFPzwCsra3F7/cj3V4GXXh5UqitpHDrxg+x7WR2iZWMf1uygYgnp7XHTZu4E++WhDp1pffwEZRt2MDoSy6htj5MTk4ONTU1jUp9tSZ0XXcqrodCISelsaCgwAmPWJZFIBDA7/dz9NFH89xzz1FQULDLPr1eL0899RQnnHACPp+P+vp6DMNASulkq1RXVyfz7lMVcIDduobZs+iGQqFoMj6fD8MwnCyFaDTqzODLy8tLFgYoLKL4yOPQ2ncmakp000a3kimBP6QFyh+2LZuYYSW9bDOZIhi3LBK2xBvKp0PfflRuK0evD9N78GCCwSDxeJxAINBq78z8fj+RSAS3200kEnHSAdM/gvX19bhcLmKxmFOT8pBDDmHp0qU8++yzhEIhgsEgoVCIUCjErFmzWL16NUceeSTBYJBEIkFubi5ut9tZVya9RIFpmuTm5jZaj7uptOkp7wpFW6XhVOx0RkTDtTPSg5a9RhzJ8Isu55+z7sXQI877ZWoijpTJQUqLdLyb5HKuzgQcG39RMXkdO6NHo/h8fqZ98L5jQ8NB0dZIw/JiaRqWJ2u4L718rqZpdOjQgVNPPZXvv/8e0zSdmZGAM96QXl/btm0ne6Th3wiS4xMNs06aihJuhaIVYlmWk6qWFk7TNNE0DcMwnGev18uxl03AkpK3/nwXspFAJTNMLEkypzs9rV3+sC63KQWaJamtrqZn585cfu+9aKmV8OLxuJOTLIRolZXeG4puenYjJD3x9HK50NgbTu9rOHGmYUpfuv5tOlPEMAznvYlEwtmX/ps1/KFoKipUolC0QtI527FYzFncP92WrlqevtXXNI0R513Eb+97kAOGHJ6MZ6ceXYePwN+xEzHLTj0k/Y47gbhNcgq8DTE9ytCTRnPJX/9KbmEhPp8P27bJy8sjHo+Tl5fXKjNKAEdY05Nh0uLZUHTTU9XTHnh6Jb90WCWdmy2EQNM0PB6PU8zZtm3cbrez3+PxYJpmo33pH7zduWtpfT+RCkUrIRqNUlFRQSwWo7S0FMMwKC4ubrb+i4qKgOQtfE5ODkIIp62wsBAhBF26dHH2j7zodxx79jisBh6gy+PBti1s6wdP3O31YjQolgvg9fvx+v2OdxgKhRBC0K5du1abww3JH0Cfz9foGsIP4ZL0voakq7HvbF+an4pb70lM+8co4VYoWohPPvmEiRMnsm3bNiZOnEi7du144YUXmq3/hgU90gLyc8+uJi4U5k+lqP2YXfXbWklPYkpvN2z/cVtT9u0rVKhEoWgBdF3nww8/ZM6cOQwcOJAnn3ySAQMGOMWtFYq9QWTDpMbCwkJ54YUXZtqMXRKPx51ZVNlKbW0tbrfbSebPRsrLyykvL0bK7M1AKCjYTI8ee19ow7IsNm7cSO/evVm7di09e/akrq4O27b36v/IsiwqKyvp0KHDXtvYUkQiESzLIhQK/fzBTeS///0vBx54YLP1V1lZSV5eXpNnKmaCuXPnUl1dvVO3PiuEWwhRAUTI3hUEi1G27QnKtj1D2bZntDXbekgp2+9sR1YIN4AQYrGUcnim7dgZyrY9Q9m2Zyjb9oz9yYELnIoAAAUcSURBVDYV41YoFIpWhhJuhUKhaGVkk3A/kWkDfgJl256hbNszlG17xn5jW9bEuBUKhULRNLLJ41YoFApFE8i4cAshThFCrBZClAghMl50QQixQQixXAjxtRBicaqtSAjxgRBiTeq5cB/ZMkcIsU0IsaJB205tEUkeTF3HZUKIoRmy704hxObU9fs6VfIuve+WlH2rhRAnt6Bd3YQQ/xJCfCeEWCmEuCHVnvFr9xO2Zfy6pc7lF0J8IYT4JmXfXan2XkKIz1PXbr4Qwptq96Vel6T298yAbc8KIdY3uHaDU+2Z+E64hBBLhRBvpV63zHX7cXXiffkAXMBaoDfgBb4B+mfYpg1A8Y/apgNTU9tTgWn7yJbjgKHAip+zBfgl8A+SxZqPAD7PkH13kixv9+Nj+6f+vj6gV+rv7mohuzoDQ1PbQeC/qfNn/Nr9hG0Zv26p8wkgL7XtAT5PXZMFwPhU+2zg6tT2NcDs1PZ4YH4GbHsW+O1Ojs/Ed+ImYB7wVur1/2/vfEK8KMM4/nkOW0qFy4aIuAc1hIKILVQEJcJCtMQt8BAEehC81KFTIII3j/65hIfUsD8YaEoeDTfxFBuWbRtqLiQkLu7JVS9m+fXwPuMOP3+/Xys2884Png8MM/POwHz5zswz7/u8M/NW4lvuGvdKYEJpNJ2/SeNXDmfW1I5h4IgvHwHereOgks7x6EDLnbQMA18o8SNpMOeFGfR1Yhj4RtJdSX8CE6TzX4WuSUk/+/Jt4CKwiAZ410VbJ2rzzTVJ0h1f7fNJwFrguJe3eld4ehx406yan3h00daJWu8JMxsE3gEO+rpRkW+5A/ci4K/S+jW6X8R1IOC0mZ03s+1etkDSJKQbD8j5vXEnLU3y8iNvmh4upZWy6PMm6Kuk2lmjvGvRBg3xzZv7F4Ap4HtSLf+mpH/aaHioz7dPk8agrUWbpMK73e7dPjMrvmOv27v9wCdA8avF56nIt9yBu90TJvdrLqslvQZsAD40s9cz65ktTfHyAPACMARMAnu8vHZ9ZvYs8C3wsaRb3XZtU1a3tsb4JulfSUPAIKl2/1IXDbXqa9VmZi8DO4AXgRXAAGkg81q1mdlGYErS+XJxl+M/kbbcgfsaUB4yeRC4nkkLAJKu+3wKOEm6cG8UTSyfT+VT2FFLI7yUdMNvrvvAZ8w062vVZ2Z9pMD4taQTXtwI79ppa4pvZSTdBM6S8sP9Zlb8Brqs4aE+3z6P2afP/g9t6z39JKUByz8nj3ergU1mdpWU8l1LqoFX4lvuwP0TsMx7Xp8iJelP5RJjZs+Y2XPFMrAOGHdNW323rcB3eRRCFy2ngC3ek74KmC7SAnXSkkN8j+Rfoe99701fAiwDRivSYMAh4KKkvaVN2b3rpK0JvrmO+WbW78tzgbdIefgfgM2+W6t3haebgRF5j1tN2i6VHsZGyiGXvavlvEraIWlQ0mJSHBuR9AFV+VZ1L+t/TaSe3z9IebSdmbUsJfXg/wr8Xugh5Z7OAFd8PlCTnqOkZvM90hN6WyctpKbXp+7jb8DyTPq+9OOP+cW5sLT/Ttd3GdhQoa41pGbnGHDBp7eb4F0Xbdl982O9AvziOsaBXaV7Y5TUOXoMeNrL5/j6hG9fmkHbiHs3DnzFzJsntd8Tftw3mHmrpBLf4svJIAiCHiN3qiQIgiB4TCJwB0EQ9BgRuIMgCHqMCNxBEAQ9RgTuIAiCHiMCdxAEQY8RgTsIgqDHiMAdBEHQYzwABkDejHLACiMAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -518,14 +507,14 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Average path length = 5.31, eaten by wolf: 0 times\n" + "Average path length = 3.45, eaten by wolf: 0 times\n" ] } ], @@ -551,25 +540,25 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 15, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - "[]" + "[]" ] }, "metadata": {}, - "execution_count": 57 + "execution_count": 15 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxFZDqIrAbXHFdvGMVENddRbn/FldxLT9/2FWQx0/Rn6KP1bDsityECgiCUCi0CiyXVqi0EKD30hZ6Ib3f0ja9Jm3apk2apEmb6/f3x3wnmSQzmTPJTM7MnPfz8cgjM9/5npnvmTPzme/53o455xARkWg4JuwCiIjI8FHQFxGJEAV9EZEIUdAXEYkQBX0RkQgZGXYBBnLyySe7kpKSsIshIlJQli9ffsA5NyrZY3kd9EtKSigvLw+7GCIiBcXMdqZ6TM07IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvIoEt3FLLzoPNYRdDhiCvJ2eJSH65euIyAHbcdVnIJZHBUk1fRCRCFPRFRCJEQV9EJEIU9EVEIkRBX0QkQhT0RUQiJFDQN7MbzGy9ma0zs2fN7O1mdoaZLTWzLWY22cyO9XmP8/cr/eMlCc9zo0/fZGYX5WaXREQklbRB38xOBf4fMNo59zFgBDAGGAfc55w7E6gHrvGbXAPUO+c+BNzn82FmZ/ntPgpcDDxsZiOyuzsiIjKQoM07I4F3mNlI4J1ADfBl4Hn/+BPA1/ztK/x9/OMXmJn59Oecc63Oue1AJfC5oe+CiIgElTboO+d2A/cAu4gF+wZgOXDIOdfhs1UDp/rbpwJVftsOn/+9ielJtulmZteZWbmZldfW1g5mn0REJIUgzTsnEqulnwF8ADgeuCRJVhffJMVjqdJ7Jzg3wTk32jk3etSopNf1FRGRQQrSvPMVYLtzrtY51w5MBT4PnOCbewBOA/b429XA6QD+8fcAdYnpSbYREZFhECTo7wLONbN3+rb5C4ANwDzgSp9nLDDN357u7+Mfn+uccz59jB/dcwZwJrAsO7shIiJBpF1l0zm31MyeB1YAHcBKYAJQBjxnZrf7tIl+k4nAU2ZWSayGP8Y/z3ozm0LsB6MDuN4515nl/RERkQEEWlrZOXczcHOf5G0kGX3jnDsKfDPF89wB3JFhGUVEJEs0I1dEJEIU9EVEIkRBX0QkQhT0RUQiREFfRCRCFPRFRCJEQV9EJEIU9EVkUI62d9J0tD3sYkiGFPRFZFAuuPd1Pv7rmWEXQzKkoC8ig7L70JGwiyCDoKAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLxIRn71jNhMWbA27GBIyBX2RiKhtauU3r1SEXQwJmYK+iEiEFG3Q/8Xzq3lheXXYxRARyStFG/SnlFfz8z+vDrsYIiJ5pWiDvoiI9KegLyISIQr6IjIkXV2OW1/aQFVdS9hFkQAU9EVkSDbUNDLpje1c/8yKsIsiASjoi8iQOBf73xW/IXlNQV9EJEIU9EVEIkRBX0QkQhT0RUQiREFfRLo1t3Zw7RNvUdOgSyEWKwV9EelWtraG2Rv3c+/MzWEXRXJEQV9EJEIU9EVEIkRBX0SyQnOzCoOCvogMiVnYJZBMKOiLiESIgr5IxM3esI/1exrCLoYMEwV9kYi79slyLntg0ZCfZ/2eRg63dmShRJJLCvoikjWvrK0JuwiSRqCgb2YnmNnzZlZhZhvN7DwzO8nMZpnZFv//RJ/XzOwBM6s0szVmdnbC84z1+beY2dhc7ZSIDB+N2iksQWv6vwdec859BPgksBEoBeY4584E5vj7AJcAZ/q/64DxAGZ2EnAzcA7wOeDm+A+FiIgMj7RB38zeDXwRmAjgnGtzzh0CrgCe8NmeAL7mb18BPOlilgAnmNkpwEXALOdcnXOuHpgFXJzVvRERkQEFqel/EKgF/mhmK83scTM7Hni/c64GwP9/n89/KlCVsH21T0uV3ouZXWdm5WZWXltbm/EOiYhIakGC/kjgbGC8c+7TQDM9TTnJJJuq4QZI753g3ATn3Gjn3OhRo0YFKJ6IiAQVJOhXA9XOuaX+/vPEfgT2+WYb/P/9CflPT9j+NGDPAOkiIjJM0gZ959xeoMrM/t4nXQBsAKYD8RE4Y4Fp/vZ04Dt+FM+5QINv/pkBXGhmJ/oO3At9mogUMC3DUFhGBsz3Y+BpMzsW2AZ8l9gPxhQzuwbYBXzT530FuBSoBFp8XpxzdWZ2G/CWz3erc64uK3shIiKBBAr6zrlVwOgkD12QJK8Drk/xPJOASZkUUESGrq65bXheSGP2855m5IpEwPefLA+7CJInFPRFIqC6viXsIkieUNAXkaxasauehpb2sIshKSjoi0hWff3hN/n2xCVhF0NSUNAXiQBLOjcyd9btbhzW15PgFPRFRCJEQV9EJEIU9EUiQLNmJU5BX0QkQhT0RSSQnz63Mm0epym5eU9BXyQCBtu6s3BLLT9+NhbsX1ylRXGLgYK+iKR09cRlvLRawb6YKOiLRICpJ1c8BX0RkQhR0BeRrHHqx817CvoiMiSNR7S4WiFR0BeRjM1cv7f7dunUtSGWRDKloC8iGbvuqeXdt3fV9azVr9ad/KegLyL9tHZ0UVWnC68Uo6AXRheRCHlp9R6Nzy9SqumLSNYkjt7ZtLcpvIJISgr6IhEQxtysyx9cOPwvKmkp6ItITrR3qls3Hynoi4hEiIK+SARo6R2JU9AXEYkQBX0RyRpdRCX/KeiLRIAN+jIqMU4rqRUNBX0RkQhR0BcRiRAFfZEI0OgdiVPQF5GsUdN//lPQFxGJEAV9EZEIUdAXEYkQBX0RSStoW72a9POfgr5IBAzb4B315OY9BX0R6ZEiZu9tPDq85ZCcCRz0zWyEma00s5f9/TPMbKmZbTGzyWZ2rE8/zt+v9I+XJDzHjT59k5ldlO2dEZHc+Pxdc8MugmRJJjX9nwAbE+6PA+5zzp0J1APX+PRrgHrn3IeA+3w+zOwsYAzwUeBi4GEzGzG04otIEBZ0dpYmcRW9QEHfzE4DLgMe9/cN+DLwvM/yBPA1f/sKfx//+AU+/xXAc865VufcdqAS+Fw2dkJERIIJWtO/H/gF0OXvvxc45Jzr8PergVP97VOBKgD/eIPP352eZJtuZnadmZWbWXltbW0GuyIiIumkDfpmdjmw3zm3PDE5SVaX5rGBtulJcG6Cc260c270qFGj0hUvrUMtbUN+DpFCN1ytNpPLq9JnklAFqemfD/yLme0AniPWrHM/cIKZjfR5TgP2+NvVwOkA/vH3AHWJ6Um2yZmVVYdy/RIi4q3b3Rh2ESSNtEHfOXejc+4051wJsY7Yuc65bwPzgCt9trHANH97ur+Pf3yui12BYTowxo/uOQM4E1iWtT0REZG0RqbPktIvgefM7HZgJTDRp08EnjKzSmI1/DEAzrn1ZjYF2AB0ANc75zqH8PoiEpRG5YiXUdB3zs0H5vvb20gy+sY5dxT4Zort7wDuyLSQIpJ7JaVl/N9/+ruwiyE5phm5ItJt7W71gRU7BX2RCFDrjsQp6IuIRIiCvohIhCjoi0i3A02azFjsFPRFpNumfU1hF0FyrOiDvjqwRDJYZVOKXtEHfV3HR0Skx1Bm5IpIAXt22S6O0QlA5Cjoi0RAsth+49S1w14OCV/RN++IiEgPBX2RItfR2cX2A81hF0PyhIK+SJH77YxNdHRpSIPEKOiLFLkJC7b1S6tpOBJCSSQfKOiLREx9cxvn3Tk37GJISBT0RSKm8Wh72EWQEBV90NcwZBGRHkUf9EVEpEfRB32NWRAR6VH0QV9ERHoo6ItEjKmnK9IU9EUipvbw0bCLICFS0BeJmG+MXxx2ESRECvoiIhGioC8iEiEK+iIiEVL0QV/jFEREehR90BcRkR4K+iIiEaKgLyISIUUf9LX2jkh4SkrLmLVhX9jFkARFH/RFJFw3Tl0TdhEkgYK+iOSNyx9cyIsrd4ddjKKmoC8ieWPd7kZ+OnlV2MUoagr6IiIRoqAvIjmmKZL5pOiDvj5uImHTGLp8UvRBX6SYjJ+/lfIddWEXQwpY2qBvZqeb2Twz22hm683sJz79JDObZWZb/P8TfbqZ2QNmVmlma8zs7ITnGuvzbzGzsbnbLZHiNO61Cq58ROvhy+AFqel3AD93zv0DcC5wvZmdBZQCc5xzZwJz/H2AS4Az/d91wHiI/UgANwPnAJ8Dbo7/UIhIMVMjaz5JG/SdczXOuRX+dhOwETgVuAJ4wmd7Aviav30F8KSLWQKcYGanABcBs5xzdc65emAWcHFW90ZERAaUUZu+mZUAnwaWAu93ztVA7IcBeJ/PdipQlbBZtU9Lld73Na4zs3IzK6+trc2keEmpC0lEpEfgoG9m7wJeAH7qnGscKGuSNDdAeu8E5yY450Y750aPGjUqaPFERCSAQEHfzN5GLOA/7Zyb6pP3+WYb/P/9Pr0aOD1h89OAPQOkS8h2HWxhX+PRsIshgzCvYj/1zW1hF0MKSJDROwZMBDY6536X8NB0ID4CZywwLSH9O34Uz7lAg2/+mQFcaGYn+g7cC32ahOyLd8/jnN/MCbsYBePg4VY+fNOrLN9ZH2o5Go60890/vcW1T5aHWg4pLEFq+ucDVwNfNrNV/u9S4C7gq2a2Bfiqvw/wCrANqAQeA34I4JyrA24D3vJ/t/o0kYKybHsdbZ1dPLZgW6jl6OjsAmD7geZQyyGFZWS6DM65RaQec3VBkvwOuD7Fc00CJmVSwKHSYDGR4lSxt5GP/PW7wy5GwdGMXJFBcnkyNixWz8pfloOa12vrarj4/oW8tFrdgplS0BdJ0N7ZxY1T17Dn0JGUeXIRxAbD8qUgIdi877D/3xRySQqPgr5IgkWVB3h2WRWlU9emzRt2BTvfa/iJaptauXtGBV1dhVPmYqWgL5JEdOvQuVH6whoemreVxdsOpswzmB+xAvrdyxsK+iJJFEIsKaTmndaO2EijrixF6cLZ8/yTdvSOSKGqaTjC20eO4MTjjw2U/9aXNvDK2poAOfMr5BTCD1RctmrmRzs6s/NEEVT0Nf1C+kJIdp1351zOuTP4pLNJb2xnbwHNTM6vn57Uaptas975/dC8rdl9wjzQcKSdktIypq6ozunrFH3QX7I1dRuiFL8236yQTusgao59KxRdXY5OdVQWtfbOLhqPtg9qu6UD9GcAVNW1APD4wu2DKltQRR/0F2w5EHYRpAC0BvxxqK5vSdnh+H8mLuXv/vOVQb1+2Zoaxr1WMaht+1q5qz70JSKGy3DPlbj+6RV84tczM97u3pmb+daEJayqOpSDUmWm6IN+oZwCB7Wt9jAz1+/l9c1DX3a6EOwIaYmBZIG9qq6FL4ybx32zNyfd5s0hnFVe/8wKxs/PTpPFvz78Jt8Y/2ZWnivbBgrR+TASZ/nOekpKy9jflLyZb+aGfQA0HW2noSV4jX+Ln09woKl16IUcoqIP+sXmy/e+znVPLWfspGVs2ht8YopzjntnbmJr7eEclq63hpZ2PnzTq7y5dXBnW9NW7eaf75mfNz9w+/0XNj4xKFemvFXFhj0DrV4eTHxtnnxV03CEktIyVuzK/llJSWkZ1z6R+UJ0k96INa0s2dZ7WbDWjk4WJHwOP33rLD55a+Y1/jz4XSv+oJ8Pb3KuNGXQtlh7uJUH51Zy9eNLc1ii3tbsPkRbZxcPzasc1PZrqxsA2JzBj1sQnV2Ou2dUcPBw6lrXGv/aA8lVzfQXL6zh0gcWBs6fqhz51Cnd3tl/yOZC3/T6zNJdQ3rug4dbaTjS/7swe+M+pq3aTUlpWeCLycdbBvqe6d3y0ga+M2lZ9/2OAu67KfqgL57/jLZ1Dt+H1fxXaKjBMVm7bXtnF0fbBzdsb1HlAR6at5X//EvqWbfxILJpbxMX3Dufhpb2jEegxEdjzKuIXWqitaOTWb55IKgbp65h9O2zkj6WrjzOwewMXy9X4jXn58v7j0xJ9fno6Oxi9wDLYcR95vbZnH1b8vfoZ1NWAwS+mPwxKd7U9WnOvK4c/2bWmudyreiD/saaoZ8mF4Vh6txwznXXkuLfn8EG/YGC2kX3LeAj//1aRs9XUlpGSWlZd7NHYudtqjI+MHcLW2ubmb95P19/OLN28njz28PzY2c6417dxPefLGfZ9uArij+7rIoDh5NfJCXI+7okzYiR4ZZYI0/3kbzt5Q2cf9fcAc/I4u/BYEdNNR1t7zVyK/6Ze2DOloyep3xn/YAd8fk0j67og74Mr0t+v5AP/9erQM+XevG2g73aQ7Nh2xA6eJOdmh9pS37W8PaRIwBobR9a+7hzrru9uL6ljX2NR7uH6AVRXd87byGtu5Mo2VnbCyuqk+5PvC+n8WjHoF8vXaz9+K9ncuX4nrOAeP6ttb0/X9mK2bvqWkKviCroS1ZV7G2ivdPR1tFFe0JwTWwPzTfOOf705o5+6X+Yu4Xj3hb7iqQbx78lyWqPiYGsrU+n6jm/mcM//nYer66toS7A5Q4nLtrOtj6d8Mlqj8natgvBil31Kfvf4u9jVV0L63b37mtpSfFj3b1tkrSuLtfrR3RtwnO+uCrzpZr/68X0i/PF3fbyBi75ffD+mlxQ0C8Sdc1tlJSWMW3V7jQ5h6eGePZtsxibpUCfy0rt+XfN5SP//RqPvN6/PfaemZvT1PB6CvbV+xYEfs2lCSNDfvD0Cq594q3u+6lGKv3xjR29gkWq96Q2YajhYwu3USj9jTdPX8+qqt6jePquLfSPv53H5Q8u6pWW+GO9/UAzi/sMm03W7PPIgq18Ydw8KvcPPArrwOHWQP1G/7NkaB3Ri7ce5MAATVjZpqBfwBI/zvFa4JOLdw64zYHDbdxRtiHpY//x59XZKhqHWwd/Sp7KrA37OO/OOYFm2QZZwtc52H3oyIATs5riTQuDaJRNDFqW8PMRb+aJS+ysHOiHMrGclz24iE/dGuu8dM6x/UBzvzOGJxfv7PdaYUv8sUp8f9btbuQb41N3tgZpzvrSPfO56rElA66fdLS9k2krY7X5dJ3Eo2+fzff+9JYva9qXB2JnWsnLmvoJrnpsCf/26OLuH5jBzPjNhIJ+AXsqSYAP8uV4LMU07z8v7xlZ8WblgUGPjgnirF+9xuMLM7vG7K+nr6em4WjKiTOJVmZp5uP0+JWZkryv8aRU71Mu2937tgt/6Z75fPG388j36YhB35KfT+mpgDhiHaVBJftexP3gf5azyTfFBTk+mU64++QtMxmf5KwxlXhn/7baZp5dVgVAdX36EUtDoaAfsj+XV/WaAdh0NDbM7y8r0y+6ND3hUnHpaiKWQTCo2NvI/358Kbe+nPyMIG7d7gZKSsuo2Jt5x1RLWye3l23sl/7k4h3dNbD4j1Pfr2awwJE6U7Zj8V2v9h61cailLaPOun2N2Tm1z8XZVVheWFHdfcH3xiPtVGTwfqZavrmzyzFvU3YHFCSb7PjK2hpeWr0H5xyvb67lR8+sYE5F76GzOw82M37+Vv6QMIels6vnTO7VQKu9Do6CfsimlMd+3RdsPkBJaRmPvh6r/T4yP7NacDLlO+oCtPH3d8hPL0/X5vnaur0AzFqfnbHgBw638qtp6/n3ScuyfpbRu20386h/NMnoHTMYM2Fxv07grz30Bpf8fuGQ17vv2z5dDAbzlpS+sJZjRwYPVamO7ld/93rKbQb7Xn/r0f5NUut2N/LjZ1dyy0sbGDtpGS+vqelX0bh64jLGvdZ7gmBilh88vWJQ5QlCQT9k8Rp4fNr9tNWxIB3/ctSmWaujb9t14r0rH1nMT55blXS7DXsa07ZpLtteN+D6Isf4MgbtLDzoO8ZSnVbHA3PDkXb+4/k13emT36oacCmGIDXce2du6r49mJr+joP9h4g613+6fixvbGTI/Qlr9Hx9/BsZv+ZVjy3JeJt8Gg+eTK82/YDb1LW08bYRPaFqoOsXx14keXLfYb6J2dK916nKmmoOBcCW/alnku9KMlx3uA5dpIP+3TMqumurYevwp3aJX4q5Ffv47B2zBwx4fZtgVu4K1pZ96QMLOf+uuWnz/fCZ5SzfWefL5noHbB9h7pu9OdCww8/cPpurJy7ttY+zN+zrniyVmL46oU1++4HmlB2cm/Y28bGbZzBmwmJKSsu6hyz+6JmVvfItquxZ/2cwV3FK9sM2x8+0TSWxPXjd7uEZm70oz1eV7XKOKeVVfPORN7vXMkqns8sx4piekPj5NJ/bbF2daziE8SMd6StnxS/EsOOuy4BYe/rHfz2Tcd/4ON/67N8MSxmW+TVB+o66qWtu44XlsVr/ql2H+KcPj0q6/Z/e3MH5HzqZk45/W3eac65f00ImH67EYPVG5UHeqFzMjrsu485XK5iwYBtbf3MpI44xEr6HlO+o615LZSBv7ajv9aW89slyfnLBmew82Mwx/gnNkpc3WVq8PyFe475h8iou/uhfU9PQu7N3ZEJhb3lpPUCg8vZ9nXyUGOJunr4+tHIEsXR7HUv9jOS3dgTrnD3GrHspiyCChvz6ABWVoQjy2/NGZc93rX/fVf/vcTZEuqbfVzxQpLuIwcHDrZSUljFzfc9ZwqGWnnHybR1dtLQNrVNtf1MrZQE7c77/ZDmJJ4e3l23kMwlrkRxqaUs54zSZVFPQJy2KvS/xZpi+65Q8tWTg4aJxfT/cVfUtvLhqD1NX+KatDE50+zZfza3Yzy9eWNMr7cE5W3p9eeozWBI3LugZlGTfMZbZpKmg1xL42ZTsDVFOJtORP31/JHJ1wqKgD/zomRW0dXQFfpMr/DCr383qabONjzSYtGg735qwmLN+NWNQZRnsgW440lNrmbhoOwcTajGfunUW/+sPi5JtFthD8yr71bQHWwfpN2Gmz90gC4ll4t5Z6SZZ5Va6WaND1TSEZQoKQdBmoFwajovQ96vp5+h1Ihv0EzuDXl5TQ/nOuu51QYIe34qEJX8TPxTZrhUGuTrQ9/408Nrhh1LUbvu2xaeaGPLHN3Z03/7ELTPYvK+puzkmVsbgfjald+2877Y1DUeTBul876RMJd0KjZIf7p6RfMG0P8zdEsqVyHI1zyOyQf/IAEMCDeOOsg3dwWn9ngYu/f1Cmls7uOKhN/h2kjXpu9fhTvO6Bw+3cuerG9nbkHyCUbJOqF11LYFmmA5G3yVpU10K7sDhVtr9ssxH27t4uk9TzoQFwYeYvrK2d+d50I63+DDmwVwiL5PJPRJNqS62fs/M5FdKy7aXVvduwspVTT9SHbnj529lx4Fmxl35iQFP9xuPtndPDPrdv32Kyx6INY08NK+y16iSREGXEf7lC2uZvXEfj76+jUW//FK/x/t2QAJMXbGbvz3peD71NycM/OTDLLFNfyg1oWTvWbLT6Xiz0K+m5XdnpUg2qE0/C8a9VsFkPxkqmfibnCzwAjwc4CIJA9VCu7ocszf2TGT6wrh5aZ8vbun2g1lbwCwbHNlbqz3oZzs+rDVfLp8okku5uuh7JIJ+kLaxsjXJR8qUlJYNuF1zawfNrR38a5ILbNwweRV3z6jAOUdnl+O19YOfEzCUi27nwtyK/VkLvnsb+k+22Z5kvfzBXihDpBDlqqYfqeaduAWba/sFlaeX7uKMk4/P+LlumLyKq875m+6AlDgJ5y8rY0MQP3DCO7jpL+sKtiMymWwuChV0vPZghlqKSG+RCPrNbZ2867ieXU11QY9kC4Cls3FvY9rhgDf9ZR2Q23XhRaS45GpmcSSC/sdunsHlnzglJ89dVZfbZVBFJJrUkTtEL6dos8+GHUO4XquISDK5qulHJujn0q9fGnjdeRGRTN0wOfkKuUOloC8ikodmbwy+yFwmFPRFRCJk2IO+mV1sZpvMrNLMSof79UVEomxYg76ZjQAeAi4BzgKuMrOzhrMMIiJRNtw1/c8Blc65bc65NuA54Ipsv0h1ff9LkYmIyPAH/VOBxMVvqn1aNzO7zszKzay8tnZw0/yzfVFtEZHh9pV/eH9Onne4J2clm7zaazCqc24CMAFg9OjRgxqo+qH3/VX3JRBFRKTHcNf0q4HTE+6fBgS/DpqIiAzJcAf9t4AzzewMMzsWGANMH+YyiIhE1rA27zjnOszsR8AMYAQwyTmnK2KIiAyTYV9wzTn3CvDKcL+uiIhoRq6ISKQo6IuIRIiCvohIhCjoi4hEiAW5aHhYzKwW2DmEpzgZOJCl4hSCqO0vaJ+jQvucmb91zo1K9kBeB/2hMrNy59zosMsxXKK2v6B9jgrtc/aoeUdEJEIU9EVEIqTYg/6EsAswzKK2v6B9jgrtc5YUdZu+iIj0Vuw1fRERSaCgLyISIUUZ9Ivp4utmdrqZzTOzjWa23sx+4tNPMrNZZrbF/z/Rp5uZPeD3fY2ZnZ3wXGN9/i1mNjasfQrCzEaY2Uoze9nfP8PMlvqyT/ZLc2Nmx/n7lf7xkoTnuNGnbzKzi8LZk2DM7AQze97MKvyxPi8Cx/gG/5leZ2bPmtnbi+04m9kkM9tvZusS0rJ2XM3sM2a21m/zgJklu1BVb865ovojtmTzVuCDwLHAauCssMs1hP05BTjb3/4rYDOxi8r/Fij16aXAOH/7UuBVYlcpOxdY6tNPArb5/yf62yeGvX8D7PfPgGeAl/39KcAYf/sR4Af+9g+BR/ztMcBkf/ssf+yPA87wn4kRYe/XAPv7BHCtv30scEIxH2Nil0ndDrwj4fj+e7EdZ+CLwNnAuoS0rB1XYBlwnt/mVeCStGUK+03JwZt8HjAj4f6NwI1hlyuL+zcN+CqwCTjFp50CbPK3HwWuSsi/yT9+FfBoQnqvfPn0R+yKanOALwMv+w/0AWBk32NM7NoM5/nbI30+63vcE/Pl2x/wbh8ArU96MR/j+PWyT/LH7WXgomI8zkBJn6CflePqH6tISO+VL9VfMTbvpL34eqHyp7SfBpYC73fO1QD4/+/z2VLtfyG9L/cDvwC6/P33Aoeccx3+fmLZu/fLP97g8xfS/n4QqAX+6Ju0Hjez4yniY+yc2w3cA+wCaogdt+UU93GOy9ZxPdXf7ps+oGIM+mkvvl6IzOxdwAvAT51zjQNlTZLmBkjPK2Z2ObDfObc8MWI8FM0AAAIASURBVDlJVpfmsYLYX28ksSaA8c65TwPNxE77Uyn4ffbt2FcQa5L5AHA8cEmSrMV0nNPJdB8Hte/FGPSL7uLrZvY2YgH/aefcVJ+8z8xO8Y+fAuz36an2v1Del/OBfzGzHcBzxJp47gdOMLP4ld4Sy969X/7x9wB1FM7+Qqys1c65pf7+88R+BIr1GAN8BdjunKt1zrUDU4HPU9zHOS5bx7Xa3+6bPqBiDPpFdfF13xs/EdjonPtdwkPTgXgv/lhibf3x9O/4kQDnAg3+FHIGcKGZnehrWRf6tLzinLvROXeac66E2LGb65z7NjAPuNJn67u/8ffhSp/f+fQxftTHGcCZxDq98o5zbi9QZWZ/75MuADZQpMfY2wWca2bv9J/x+D4X7XFOkJXj6h9rMrNz/Xv4nYTnSi3sTo4cdZxcSmyUy1bgprDLM8R9+QKxU7Y1wCr/dymx9sw5wBb//ySf34CH/L6vBUYnPNf3gEr/992w9y3Avv8zPaN3Pkjsy1wJ/Bk4zqe/3d+v9I9/MGH7m/z7sIkAoxpC3tdPAeX+OL9IbJRGUR9j4BagAlgHPEVsBE5RHWfgWWJ9Fu3EaubXZPO4AqP9+7cV+AN9BgMk+9MyDCIiEVKMzTsiIpKCgr6ISIQo6IuIRIiCvohIhCjoi4hEiIK+iEiEKOiLiETI/wcP3A3H9eR3GAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" diff --git a/8-Reinforcement/1-QLearning/solution/rlboard.py b/8-Reinforcement/1-QLearning/solution/rlboard.py index 1a2d572d..3b37c10f 100644 --- a/8-Reinforcement/1-QLearning/solution/rlboard.py +++ b/8-Reinforcement/1-QLearning/solution/rlboard.py @@ -108,9 +108,9 @@ class Board: def move_pos(self, pos, dpos): return (pos[0] + dpos[0], pos[1] + dpos[1]) - def move(self,dpos): + def move(self,dpos,check_correctness=True): new_pos = self.move_pos(self.human,dpos) - if self.is_valid(new_pos): + if self.is_valid(new_pos) or not check_correctness: self.human = new_pos def random_pos(self): From 96dfcd7598cc5889adb2e5198a983aa4882a3c97 Mon Sep 17 00:00:00 2001 From: "Stephen Howell (MSFT)" <38020233+stephen-howell@users.noreply.github.com> Date: Tue, 22 Jun 2021 21:14:25 +0100 Subject: [PATCH 2/6] Update README.md --- 6-NLP/4-Hotel-Reviews-1/README.md | 502 ++++++++++++++++++++++++++++-- 1 file changed, 474 insertions(+), 28 deletions(-) diff --git a/6-NLP/4-Hotel-Reviews-1/README.md b/6-NLP/4-Hotel-Reviews-1/README.md index c479031a..b0e47ada 100644 --- a/6-NLP/4-Hotel-Reviews-1/README.md +++ b/6-NLP/4-Hotel-Reviews-1/README.md @@ -1,55 +1,501 @@ -# [Lesson Topic] +# Sentiment Analysis -Add a sketchnote if possible/appropriate +In this section you will use the techniques in the previous lessons to do some exploratory data analysis of a large dataset. Once you have a good understanding of the usefulness of the various columns, you will learn how to remove the unneeded columns, calculate some new data based on the existing columns, and save the resulting dataset for use in the final challenge. -![Embed a video here if available](video-url) +### Introduction -## [Pre-lecture quiz](link-to-quiz-app) 37 +So far you've learned about how text data is quite unlike numerical types of data. If it's text that was written or spoken by a human, if can be analysed to find patterns and frequencies, sentiment and meaning. This final lesson takes you into a real data set with a real challenge. This lesson is a lot of code and analysis of a data set, it is quite dense but very amenable to experimentation in your favourite IDE or Notebook. -Describe what we will learn +> This lesson uses the data set **515K Hotel Reviews Data in Europe**, CC0: Public Domain license, scraped from Booking.com from public sources. The creator of the dataset was Jiashen Liu. -### Introduction +### Preparation -Describe what will be covered +You will need: -> Notes +* Python 3 -### Prerequisite +* pandas +* **TODO install NTLK details** -What steps should have been covered before this lesson? +* The data set is available on Kaggle [515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe), it is around 230 MB unzipped. -### Preparation +## Exploratory Data Analysis + +This challenge assumes you are building a hotel recommendation bot using sentiment analysis and guest reviews scores. The dataset you will be starting from has over 515,000 rows reviewing 1493 different hotels in 6 cities. + +Using Python, a dataset of hotel reviews, and NLTK's sentiment analysis you could find out: + +* what are the most frequently used words and phrases in reviews? +* do the official *tags* describing a hotel correlate with review scores (e.g. are the more negative reviews for a particular hotel for *Family with young children* than by *Solo traveller*, perhaps indicating it is better for *Solo travellers*?) +* do the NLTK sentiment scores 'agree' with the hotel reviewer's numerical score? + +#### Dataset + +Let's explore the dataset first. Remember to download and save the CSV file here: https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe. + +The dataset was created by **Jiashen Liu** 4 years ago (as of writing) and is licensed [CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/). + +> "This dataset contains 515,000 customer reviews and scoring of 1493 luxury hotels across Europe. Meanwhile, the geographical location of hotels are also provided for further analysis." + +You could open the file in an editor like VS Code or even Excel, and as it's a text CSV file, any editor that can handle large text files should be able to open it. + +The headers in the dataset are as follows: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +and Jiashen provides the description of each item on Kaggle. + +Here they are grouped in a way that might be easier to examine: + +##### Hotel columns + +* `Hotel_Name`, `Hotel_Address`, `lat` (latitude), `lng` (longitude) + * Using *lat* and *lng* you could plot a map with Python showing the hotel locations (perhaps colour coded for negative and positive reviews) + * Hotel_Address is not obviously useful to us, and we'll probably replace that with a country for easier sorting & searching + +**Hotel Meta-review columns** + +* `Average_Score` + * According to the dataset creator, this column is *Average Score of the hotel, calculated based on the latest comment in the last year*. This seems like an unusual way to calculate the score, but it is the data scraped so we may take it as face value for now. Based on the other columns in this data, can you think of another way to calculate the average score? +* `Total_Number_of_Reviews` + * The total number of reviews this hotel has received - it is not clear (without writing some code) if this refers to the reviews in the dataset. More on this discrepancy below in the **Average hotel score** section. +* `Additional_Number_of_Scoring` + * This means a review score was given but no positive or negative review was written by the reviewer + +**Review columns** + +- `Reviewer_Score` + - This is a numerical value with at most 1 decimal place between the min and max values 2.5 and 10 + - It is not explained why 2.5 is the lowest score possible +- `Negative_Review` + - If a reviewer wrote nothing, this field will have "**No Negative**" + - Note that a reviewer may write a positive review in the Negative review column (e.g. "there is nothing bad about this hotel") +- `Review_Total_Negative_Word_Counts` + - Are higher negative word counts indicative of a lower score (without checking the sentimentality) +- `Positive_Review` + - If a reviewer wrote nothing, this field will have "**No Positive**" + - Note that a reviewer may write a negative review in the Positive review column (e.g. "there is nothing good about this hotel at all") +- `Review_Total_Positive_Word_Counts` + - Are higher positive word counts indicative of a higher score (without checking the sentimentality) +- `Review_Date` and `days_since_review` + - A freshness or staleness measure might be applied to a review (older reviews might not be as accurate as newer ones because hotel management changed, or renovations have been done, or a pool was added etc.) +- `Tags` + - These are short descriptors that a reviewer may select to describe the type of guest they were (e.g. solo or family), the type of room they had, the length of stay and how the review was submitted. + - Unfortunately, using these tags is problematic, check the section below which discusses their usefulness + +**Reviewer columns** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - This might be an factor in a recommendation model, for instance, if you could determine that more prolific reviewers with hundreds of reviews were more likely to be negative rather than positive. However, the reviewer of any particular review is not identified with a unique code, and therefore cannot be linked to a set of reviews. There are 30 reviewers with 100 or more reviews, but hard to see how this can aid the recommendation model. +- `Reviewer_Nationality` + - Some people might think that certain nationalities are more likely to give a positive or negative review because of a national inclination. Be careful building such anecdotal views into your models. These are national (and sometimes racial) stereotypes, and each reviewer was an individual who wrote a review based on their experience. It may have been filtered through many lens, such as their previous hotel stays, the distance travelled, and their personal temperament - but thinking that their nationality was the reason for a review score is a hard to justify assumption. + +##### Examples + +| Average Score | Total Number Reviews | Reviewer Score | Negative
Review | Positive Review | Tags | +| -------------- | ---------------------- | ---------------- | :----------------------------------------------------------- | --------------------------------- | ------------------------------------------------------------ | +| 7.8 | 1945 | 2.5 | This is currently not a hotel but a construction site I was terroized from early morning and all day with unacceptable building noise while resting after a long trip and working in the room People were working all day i e with jackhammers in the adjacent rooms I asked for a room change but no silent room was available To make thinks worse I was overcharged I checked out in the evening since I had to leave very early flight and received an appropiate bill A day later the hotel made another charge without my concent in excess of booked price It s a terrible place Don t punish yourself by booking here | Nothing Terrible place Stay away | Business trip Couple Standard Double Room Stayed 2 nights | -Preparatory steps to start this lesson +As you can see from this guest, they did not have a happy stay at this hotel. The hotel has a good average score of 7.8 and 1945 reviews, but this reviewer gave it 2.5 and wrote 115 words about how negative their stay was. If they wrote nothing at all in the Positive_Review column, you might surmise there was nothing positive, but alas they wrote 7 words of warning. If we just counted words instead of the meaning, or sentiment of the words, we might have a skewed view of the reviewers intent. Strangely, their score of 2.5 is confusing, because if that hotel stay was so bad, why give it any points at all? Investigating the dataset closely, you'll see that the lowest possible score is 2.5, not 0. The highest possible score is 10. ---- +##### Tags -[Step through content in blocks] +As mentioned above, at first glance, the idea to use `Tags` to categorise the data makes sense. Unfortunately these tags are not standardised, which means in one hotel, the options might be *Single room*, *Twin room*, and *Double room*, but in the next hotel, they are *Deluxe Single Room*, *Classic Queen Room*, and *Executive King Room*. These might be the same things, but there are so many variations, the choice becomes: -## [Topic 1] +1. Attempt to change all terms to a single standard, which is very difficult, because it is not clear what the conversion path would be in each case (e.g. *Classic single room* maps to *Single room* but *Superior Queen Room with Courtyard Garden or City View* is much harder to map) +2. We can take an NLP approach and measure the frequency of certain terms like *Solo*, *Business Traveller*, or *Family with young kids* as they apply to each hotel, and factor that into the recommendation -### Task: +Tags are usually (but not always) a single field containing a list of 5 to 6 comma separated values aligning to *Type of trip*, *Type of guests*, *Type of room*, *Number of nights*, and *Type of device review was submitted on*. However, because some reviewers don't fill in each field (they might leave one blank), the values are not always in the same order. -Work together to progressively enhance your codebase to build the project with shared code: +As an example, take *Type of group*. There are 1025 unique possibilities in this field in the `Tags` column, and unfortunately only some of them refer to a group (some are the type of room etc.). If you filter only the ones that mention family, the results contain many *Family room* type results. If you include the term *with*, i.e. count the *Family with* values, the results are better, with over 80,000 of the 515,000 results containing the phrase "Family with young children" or "Family with older children". -```html -code blocks +This means the tags column is not completely useless to us, but will take some work to make it useful. + +##### Average Hotel Score + +There are a number of oddities or discrepancies with the data set that I can't figure out, but are illustrated here so you are aware of them when building your models. If you figure it out, please let us know! + +The dataset has the following columns relating to the average score and number of reviews: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +If we take a single hotel and count the reviews, we see that the single hotel with the most reviews in this dataset is *Britannia International Hotel Canary Wharf* with 4789 reviews out of 515,000. But if we look at the `Total_Number_of_Reviews` value for this hotel, it is 9086. You might surmise that there are many more scores without reviews, so perhaps we should add in the `Additional_Number_of_Scoring` column value. That value is 2682, and adding it to 4789 gets us 7,471 which is still 1615 short of the `Total_Number_of_Reviews`. + +If you take the `Average_Score` columns, you might surmise it is the average of the reviews in the dataset, but the description from Kaggle is "*Average Score of the hotel, calculated based on the latest comment in the last year*". That doesn't seem that useful, but we can calculate our own average based on the reviews scores in the data set. Using the same hotel as an example, the average hotel score is given as 7.1 but the calculated score (average reviewer score *in* the dataset) is 6.8. This is close, but not the same value, and we can only guess that the scores given in the `Additional_Number_of_Scoring` reviews increased the average to 7.1. Unfortunately with no way to test or prove that assertion, it is difficult to use or trust `Average_Score`, `Additional_Number_of_Scoring` and `Total_Number_of_Reviews` when they are based on, or refer to, data we do not have. + +To complicate things further, the hotel with the second highest number of reviews has a calculated average score of 8.12 and the dataset `Average_Score` is 8.1. Is this correct score a coincidence or is the first hotel a discrepancy? + +On the possibility that these hotel might be an outlier, and that maybe most of the values tally up (but some do not for some reason) we will write a short programs next to explore the values in the dataset and determine the correct usage (or non-usage) of the values. + +##### A note of caution when working with datasets with human written reviews + +Most of the time working with this dataset, you will write code that calculates something from the text, without having to read or analyse the text yourself. This is the essence of NLP, interpreting meaning or sentiment without having to have a human do it. However, it is possible you will read some of the negative reviews. I would urge you not to, because you don't have to. However they were written by humans, hotel guests who decided to write a review. Some of them are silly, or irrelevant negative hotel reviews, such as "The weather wasn't great", something beyond the control of the hotel, or indeed, anyone. But there is a dark side to some reviews too. Sometimes the negative reviews are racist, sexist, or ageist. This is unfortunate but to be expected in a dataset scraped off a public website. Some reviewers leave reviews that you would find distasteful, uncomfortable, or upsetting. Better to let the code measure the sentiment, than read them yourself and be upset. That said, it is a minority that write such things, but they exist all the same. + +#### Loading the CSV data into a pandas DataFrame + +That's enough examining the data visually, now you'll write some code and get some answers! This section is focused on the pandas library. Your very first task is to ensure you can load and read the CSV data. The pandas library has a fast CSV loader, and the result is placed in a *DataFrame*. If you've never used a DataFrame before, imagine it's a 2D structure with rows and columns. The CSV we are loading has over half a million rows, but only 17 columns. pandas gives you lots of powerful ways to interact with a DataFrame, including the ability to perform operations on every row. + +Learning pandas is hard but very worth while, it is a great library to be a master of. For this lesson, you need to understand the following items like DataFrames, Series, value_count(), apply(), groupBy(), and transform(). + +There are some great guides and docs at the [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/) and it's worth following the *Getting started* and *User guide*. + +From here on in this lesson, there will be code snippets and some explanations of the code and some discussion about what the results mean. Try to do each section in turn, and you may find the Juypter notebook useful as it contains all the sections. **TODO: clean and upload notebook too** + +Let's start with loading the data file you be using: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' +df = pd.read_csv('Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") ``` -✅ Knowledge Check - use this moment to stretch students' knowledge with open questions +Now that the data is loaded, we can perform some operations on it. Keep this code at the top of your program for the next part. + +#### Exploring the data + +In this case, the data is already *clean*, that means that it is ready to work with, and does not have characters in other languages that might trip up the algorithms expecting only English characters. You might have to work with data that required some initial processing to format it before applying NLP techniques, but not this time. + +However, you should take a moment to ensure you that once loaded, you can explore the data with code. It's very easy to want to focus on the `Negative_Review` and `Positive_Review` columns. They are filled with natural text for your NLP algorithms to process. But wait! Before you jump into the NLP and sentiment, you should follow the code below, to get used to working with DataFrames and also to ascertain if the values given in the dataset match the values you calculate with *pandas*. + +#### DataFrame operations + +The first task in this lesson is to check if the following assertions are correct by writing some code that examines the data frame (without changing it). The first is below as an example and the others are similar, but this is a great way to learn how to work with a DataFrame (if this is your first time encountering them, you should definitely try to complete them before the next section). + +> Like many programming tasks, there are several ways to complete this, but good advice is to do it in the simplest, easiest way you can, especially if it will be easier to understand when you come back this code in the future. With DataFrames, there is a comprehensive API that will often have a way to do what you want efficiently. + +If you prefer, you can treat these as coding tasks and attempt to answer them without looking at the solution. If you are new to DataFrames, try following and executing the code of each step, paying attention to methods you do not recognise. + +With each of these questions, you can build on the previous answer by adding each solution beneath the previous answer (you don't have to create a new Python file for each answer). Remember to include the code in the *Loading the CSV file* above, that code is *required* before your code. + +Here are the questions on their own, followed by the code and explanations: -## [Topic 2] +1. Print out the *shape* of the data frame you have just loaded (the shape is the number of rows and columns) +2. Calculate the frequency count for reviewer nationalities: + 1. How many distinct values are there for the column `Reviewer_Nationality` and what are they? + 2. What reviewer nationality is the most common in the dataset (print country and number of reviews)? + 3. What are the next top 10 most frequently found nationalities, and their frequency count? +3. What was the most frequently reviewed hotel for each of the top 10 most reviewer nationalities? +4. How many reviews are there per hotel (frequency count of hotel) in the dataset? +5. While there is an `Average_Score` column for each hotel in the dataset, you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel). Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. +6. Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`? + 1. Try writing a Python function that takes a Series (row) as an argument and compares the values, printing out a message when the values are not equal. Then use the `.apply()` method to process every row with the function. +7. Calculate and print out how many rows have column `Negative_Review` values of "No Negative" +8. Calculate and print out how many rows have column `Positive_Review` values of "No Positive" +9. Calculate and print out how many rows have column `Positive_Review` values of "No Positive" **and** `Negative_Review` values of "No Negative" -## [Topic 3] +### Code -## 🚀Challenge +1. Print out the *shape* of the data frame you have just loaded (the shape is the number of rows and columns) -Add a challenge for students to work on collaboratively in class to enhance the project + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` -Optional: add a screenshot of the completed lesson's UI if appropriate +2. Calculate the frequency count for reviewer nationalities: -## [Post-lecture quiz](link-to-quiz-app) 38 + 1. How many distinct values are there for the column `Reviewer_Nationality` and what are they? + 2. What reviewer nationality is the most common in the dataset (print country and number of reviews)? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. What are the next top 10 most frequently found nationalities, and their frequency count? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. What was the most frequently reviewed hotel for each of the top 10 most reviewer nationalities? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. How many reviews are there per hotel (frequency count of hotel) in the dataset? + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + + Hotel_Name Total_Number_of_Reviews Total_Reviews_Found + Britannia International Hotel Canary Wharf 9086 4789 + Park Plaza Westminster Bridge London 12158 4169 + Copthorne Tara Hotel London Kensington 7105 3578 + ... + Mercure Paris Porte d Orleans 110 10 + Hotel Wagner 135 10 + Hotel Gallitzinberg 173 8 + ``` + + You may notice that the *counted in the dataset* results do not match the value in `Total_Number_of_Reviews`. It is unclear if this value in the dataset represented the total number of reviews the hotel had, but not all were scraped, or some other calculation. `Total_Number_of_Reviews` is not used in the model because of this unclarity. + +5. While there is an `Average_Score` column for each hotel in the dataset, you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel). Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. Print out the columns `Hotel_Name`, `Average_Score`, and `Calc_Average_Score`. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + You may also wonder about the supplied in dataset `Average_Score` value and why it is sometimes different from the calculated average score. As we can't know why some of the values match, but others have a difference, it's safest in this case to use the review scores that we have to calculate the average ourselves. That said, the differences are usually very small, here are the hotels with the greatest deviation from the dataset average and the calculated average: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + With only 1 hotel having a difference of score greater than 1, it means we can probably ignore the difference and use the calculated average score. + +6. Calculate and print out how many rows have column `Negative_Review` values of "No Negative" + +7. Calculate and print out how many rows have column `Positive_Review` values of "No Positive" + +8. Calculate and print out how many rows have column `Positive_Review` values of "No Positive" **and** `Negative_Review` values of "No Negative" + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lamdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lamdas took 9.64 seconds + ``` + + Another way to do that one is without Lambdas, and use sum to count the rows: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + You may have noticed that there are 127 rows that have both "No Negative" and "No Positive" values for the columns `Negative_Review` and `Positive_Review` respectively. That means that the reviewer gave the hotel a numerical score, but declined to write either a positive or negative review. Luckily this is a small amount of rows (127 out of 515738, or 0.02%), so it probably won't skew our model or results in any particular direction, but you might not have expected a data set of reviews to have rows with no reviews, so worth exploring the data to discover rows like this. + +### Modifying the DataFrame + +Now that you've explored the dataset, you can see some issues with it. Some columns are are filled with useless information, others are just incorrect, or if they are correct, it's unclear how to they were calculated, and answers cannot be independently verified by your own calculations. + +Next, you will add columns that will be useful later, change the values in other columns, and drop certain columns completely. + +Follow these steps in order: + +1. `Hotel_Name`, `Hotel_Address`, `lat` (latitude), `lng` (longitude) + + 1. Drop lat and lng + + 2. Replace Hotel_Address values with the following values (if the address contains the same of the city and the country, change it to just the city and the country). + + These are the only cities and countries in the dataset: + + Amsterdam, Netherlands + + Barcelona, Spain + + London, United Kingdom + + Milan, Italy + + Paris, France + + Vienna, Austria + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + Now you can query country level data: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | ---------------------: | ---------: | + | Amsterdam, Netherlands | 105 | + | Barcelona, Spain | 211 | + | London, United Kingdom | 400 | + | Milan, Italy | 162 | + | Paris, France | 458 | + | Vienna, Austria | 158 | + + + +2. Hotel Meta-review columns: `Average_Score`, `Total_Number_of_Reviews`, `Additional_Number_of_Scoring` + +* Drop `Additional_Number_of_Scoring` +* Replace `Total_Number_of_Reviews` with the total number of reviews for that hotel that are actually in the dataset and + +* Replace `Average_Score` with our own calculated score + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +**Review columns** + +- Drop `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` and `days_since_review` +- Keep `Reviewer_Score`, `Negative_Review`, and `Positive_Review` as they are, +- Keep `Tags` + - We'll be doing some NLP operations on the tags in the next section. + +**Reviewer columns** + +- Drop `Total_Number_of_Reviews_Reviewer_Has_Given` +- Keep `Reviewer_Nationality` + +Finally, save the dataset as it is now with a new name, then proceed to the NLP section. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'Hotel_Reviews_Filtered.csv', index = False) +``` -## Review & Self Study +### NLP & Sentiment Analysis Operations -## Assignment [Assignment Name](assignment.md) +*I'm currently editing this final section* From 6836b415a7fbd4261af0e9a0d578ea05c147392c Mon Sep 17 00:00:00 2001 From: softchris Date: Tue, 22 Jun 2021 21:26:33 +0100 Subject: [PATCH 3/6] web app editorial --- 3-Web-App/1-Web-App/README.md | 461 +++++++++++++++++++--------------- 1 file changed, 260 insertions(+), 201 deletions(-) diff --git a/3-Web-App/1-Web-App/README.md b/3-Web-App/1-Web-App/README.md index 8dc8b235..77db4f98 100644 --- a/3-Web-App/1-Web-App/README.md +++ b/3-Web-App/1-Web-App/README.md @@ -1,19 +1,34 @@ # Build a Web App to use a ML Model -In this lesson, you will train a ML model on a dataset that's out of this world: UFO sightings over the past century, sourced from [NUFORC's database](https://www.nuforc.org). We will continue our use of notebooks to clean data and train our model, but you can take the process one step further by exploring using a model 'in the wild', so to speak: in a web app. To do this, you need to build a web app using Flask. +In this lesson, you will train an ML model on a data set that's out of this world: _UFO sightings over the past century_, sourced from [NUFORC's database](https://www.nuforc.org). + +We will continue our use of notebooks to clean data and train our model, but you can take the process one step further by exploring using a model 'in the wild', so to speak: in a web app. + +To do this, you need to build a web app using Flask. + ## [Pre-lecture quiz](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/17/) -There are several ways to build web apps to consume machine learning models. Your web architecture may influence the way your model is trained. Imagine that you are working in a business where the data science group has trained a model that they want you to use in an app. There are many questions you need to ask: Is it a web app, or a mobile app? Where will the model reside, in the cloud or locally? Does the app have to work offline? And what technology was used to train the model, because that may influence the tooling you need to use? +## Building an app + +There are several ways to build web apps to consume machine learning models. Your web architecture may influence the way your model is trained. Imagine that you are working in a business where the data science group has trained a model that they want you to use in an app. -If you are training a model using TensorFlow, for example, that ecosystem provides the ability to convert a TensorFlow model for use in a web app by using [TensorFlow.js](https://www.tensorflow.org/js/). If you are building a mobile app or need to use the model in an IoT context, you could use [TensorFlow Lite](https://www.tensorflow.org/lite/) and use the model in an Android or iOS app. +### Considerations -If you are building a model using a library such as [PyTorch](https://pytorch.org/), you have the option to export it in [ONNX](https://onnx.ai/) (Open Neural Network Exchange) format for use in JavaScript web apps that can use the [Onnx Runtime](https://www.onnxruntime.ai/). This option will be explored in a future lesson for a Scikit-learn-trained model. +There are many questions you need to ask: -If you are using an ML SaaS (Software as a Service) system such as [Lobe.ai](https://lobe.ai/) or [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) to train a model, this type of software provides ways to export the model for many platforms, including building a bespoke API to be queried in the cloud by your online application. +- **Is it a web app or a mobile app?** If you are building a mobile app or need to use the model in an IoT context, you could use [TensorFlow Lite](https://www.tensorflow.org/lite/) and use the model in an Android or iOS app. +- **Where will the model reside**, in the cloud or locally? +- **Offline support**. Does the app have to work offline? +- **What technology was used to train the model?** The chosen technology may influence the tooling you need to use. + - **Using Tensor flow**. If you are training a model using TensorFlow, for example, that ecosystem provides the ability to convert a TensorFlow model for use in a web app by using [TensorFlow.js](https://www.tensorflow.org/js/). + - **Using PyTorch**. If you are building a model using a library such as [PyTorch](https://pytorch.org/), you have the option to export it in [ONNX](https://onnx.ai/) (Open Neural Network Exchange) format for use in JavaScript web apps that can use the [Onnx Runtime](https://www.onnxruntime.ai/). This option will be explored in a future lesson for a Scikit-learn-trained model. + - **Using Lobe.ai or Azure Custom vision**. If you are using an ML SaaS (Software as a Service) system such as [Lobe.ai](https://lobe.ai/) or [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) to train a model, this type of software provides ways to export the model for many platforms, including building a bespoke API to be queried in the cloud by your online application. -You also have the opportunity to build an entire Flask web app that would be able to train the model itself in a web browser. This can also be done using TensorFlow.js in a JavaScript context. For our purposes, since we have been working with Python-based notebooks, let's explore the steps you need to take to export a trained model from such a notebook to a format readable by a Python-built web app. +You also have the opportunity to build an entire Flask web app that would be able to train the model itself in a web browser. This can also be done using TensorFlow.js in a JavaScript context. -## Tools +For our purposes, since we have been working with Python-based notebooks, let's explore the steps you need to take to export a trained model from such a notebook to a format readable by a Python-built web app. + +## Tool For this task, you need two tools: Flask and Pickle, both of which run on Python. @@ -21,92 +36,106 @@ For this task, you need two tools: Flask and Pickle, both of which run on Python ✅ What's [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 is a Python module that serializes and de-serializes a Python object structure. When you 'pickle' a model, you serialize or flatten its structure for use on the web. Be careful: pickle is not intrinsically secure, so be careful if prompted to 'un-pickle' a file. A pickled file has the suffix `.pkl`. -## Clean your data - -In this lesson you'll use data from 80,000 UFO sightings, gathered by [NUFORC](https://nuforc.org) (The National UFO Reporting Center). This data has some interesting descriptions of UFO sightings, for example "A man emerges from a beam of light that shines on a grassy field at night and he runs towards the Texas Instruments parking lot" or simply "the lights chased us". The [ufos.csv](./data/ufos.csv) spreadsheet includes columns about the city, state and country where the sighting occurred, the object's shape and its latitude and longitude. +## Exercise - clean your data -In the blank [notebook](notebook.ipynb) included in this lesson, import pandas, matplotlib, and numpy as you did in previous lessons and import the ufos spreadsheet. You can take a look at a sample data set: +In this lesson you'll use data from 80,000 UFO sightings, gathered by [NUFORC](https://nuforc.org) (The National UFO Reporting Center). This data has some interesting descriptions of UFO sightings, for example: -```python -import pandas as pd -import numpy as np +- **Long example description**. "A man emerges from a beam of light that shines on a grassy field at night and he runs towards the Texas Instruments parking lot". +- **Short example description**. "the lights chased us". -ufos = pd.read_csv('../data/ufos.csv') -ufos.head() -``` -Convert the ufos data to a small dataframe with fresh titles. Check the unique values in the Country field. +The [ufos.csv](./data/ufos.csv) spreadsheet includes columns about the `city`, `state` and `country` where the sighting occurred, the object's `shape` and its `latitude` and `longitude`. -```python -ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) +In the blank [notebook](notebook.ipynb) included in this lesson: -ufos.Country.unique() -``` +1. import `pandas`, `matplotlib`, and `numpy` as you did in previous lessons and import the ufos spreadsheet. You can take a look at a sample data set: -Now, you can reduce the amount of data we need to deal with by dropping any null values and only importing sightings between 1-60 seconds: + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('../data/ufos.csv') + ufos.head() + ``` -```python -ufos.dropna(inplace=True) +1. Convert the ufos data to a small dataframe with fresh titles. Check the unique values in the `Country` field. -ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` -ufos.info() -``` +1. Now, you can reduce the amount of data we need to deal with by dropping any null values and only importing sightings between 1-60 seconds: -Next, import Scikit-learn's LabelEncoder library to convert the text values for countries to a number. + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` -✅ LabelEncoder encodes data alphabetically +1. Import Scikit-learn's `LabelEncoder` library to convert the text values for countries to a number: -```python -from sklearn.preprocessing import LabelEncoder + ✅ LabelEncoder encodes data alphabetically -ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` -ufos.head() -``` + Your data should look like this: -Your data should look like this: + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` -``` - Seconds Country Latitude Longitude -2 20.0 3 53.200000 -2.916667 -3 20.0 4 28.978333 -96.645833 -14 30.0 4 35.823889 -80.253611 -23 60.0 4 45.582778 -122.352222 -24 3.0 3 51.783333 -0.783333 -``` -## Build your model +## Exercise - build your model -Now you can get ready to train a model by diving the data into the training and testing group. Select the three features you want to train on as your X vector, and the y vector will be the Country. You want to be able to input seconds, latitude and longitude and get a country id to return. +Now you can get ready to train a model by diving the data into the training and testing group. -```python -from sklearn.model_selection import train_test_split +1. Select the three features you want to train on as your X vector, and the y vector will be the `Country`. You want to be able to input `Seconds`, `Latitude` and `Longitude` and get a country id to return. -Selected_features = ['Seconds','Latitude','Longitude'] + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` -X = ufos[Selected_features] -y = ufos['Country'] +1. Train your model using logistic regression: -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) -``` + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` -Finally, train your model using logistic regression: +The accuracy isn't bad **(around 95%)**, unsurprisingly, as `Country` and `Latitude/Longitude` correlate. -```python -from sklearn.metrics import accuracy_score, classification_report -from sklearn.linear_model import LogisticRegression -model = LogisticRegression() -model.fit(X_train, y_train) -predictions = model.predict(X_test) - -print(classification_report(y_test, predictions)) -print('Predicted labels: ', predictions) -print('Accuracy: ', accuracy_score(y_test, predictions)) -``` +The model you created isn't very revolutionary as it's you should be able to infer a `Country` from its `Latitude` and `Longitude`, but it's a good exercise to try to train from raw data that you cleaned, exported, and then use this model in a web app. -The accuracy isn't bad (around 95%), unsurprisingly, as country and latitude/longitude correlate. The model you created isn't very revolutionary as it's obvious you should be able to infer a country from its latitude and longitude, but it's a good exercise to try to train from raw data that you cleaned, exported, and then use this model in a web app. -## Pickle your model +## Exercise - 'pickle' your model -Now, it's time to pickle your model! You can do that in just a few lines of code. Once it's pickled, load your pickled model and test it against a sample data array containing values for seconds, latitude and longitude, +Now, it's time to _pickle_ your model! You can do that in a few lines of code. Once it's _pickled_, load your pickled model and test it against a sample data array containing values for seconds, latitude and longitude, ```python import pickle @@ -116,147 +145,176 @@ pickle.dump(model, open(model_filename,'wb')) model = pickle.load(open('ufo-model.pkl','rb')) print(model.predict([[50,44,-12]])) ``` -The model returns '3', which is the country code for the UK. Wild! 👽 - -## Build a Flask app - -Now you can build a Flask app to call your model and return similar results, but in a more visually pleasing way. - -Start by creating a folder called web-app next to the _notebook.ipynb_ file where your _ufo-model.pkl_ file resides. In that folder create three more folders: `static`, with a folder `css` inside it, and `templates`. - -✅ Refer to the solution folder for a view of the finished app - -The first file to create in `web-app` is a `requirements.txt` file. Like `package.json` in a JavaScript app, this file lists dependencies required by the app. In `requirements.txt` add the lines: - -```text -scikit-learn -pandas -numpy -flask -``` -Now, run this file by navigating to `web-app` (`cd web-app`) in your terminal and typing `pip install -r requirements.txt`. - -Now, you're ready to create three more files to finish the app: - -1. Create `app.py` in the root -2. Create `index.html` in `templates` -3. Create `styles.css` in `static/css` - -Build out the styles.css file with a few styles: - -```css -body { - width: 100%; - height: 100%; - font-family: 'Helvetica'; - background: black; - color: #fff; - text-align: center; - letter-spacing: 1.4px; - font-size: 30px; -} - -input { - min-width: 150px; -} - -.grid { - width: 300px; - border: 1px solid #2d2d2d; - display: grid; - justify-content: center; - margin: 20px auto; -} - -.box { - color: #fff; - background: #2d2d2d; - padding: 12px; - display: inline-block; -} -``` -Next, build out the `index.html` file: - -```html - - - - - 🛸 UFO Appearance Prediction! 👽 - - - - -
- -
- -

According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

- -
- - - - -
- - -

{{ prediction_text }}

- -
-
- - - -``` -Take a look at the templating in this file. Notice the 'mustache' syntax around variables that will be provided by the app, like the prediction text: `{{}}`. There's also a form that posts a prediction to the `/predict` route. - -Finally, you're ready to build the python file that drives the consumption of the model and the display of predictions: - -In `app.py` add: - -```python -import numpy as np -from flask import Flask, request, render_template -import pickle - -app = Flask(__name__) - -model = pickle.load(open("../ufo-model.pkl", "rb")) - - -@app.route("/") -def home(): - return render_template("index.html") - - -@app.route("/predict", methods=["POST"]) -def predict(): - int_features = [int(x) for x in request.form.values()] - final_features = [np.array(int_features)] - prediction = model.predict(final_features) +The model returns **'3'**, which is the country code for the UK. Wild! 👽 - output = prediction[0] +## Exercise - build a Flask app - countries = ["Australia", "Canada", "Germany", "UK", "US"] - - return render_template( - "index.html", prediction_text="Likely country: {}".format(countries[output]) - ) - - -if __name__ == "__main__": - app.run(debug=True) -``` +Now you can build a Flask app to call your model and return similar results, but in a more visually pleasing way. -> 💡 Tip: when you add [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) while running the web app using Flask, any changes you make to your application will be reflected immediately without the need to restart the server. Beware! Don't enable this mode in a production app. +1. Start by creating a folder called **web-app** next to the _notebook.ipynb_ file where your _ufo-model.pkl_ file resides. + +1. In that folder create three more folders: **static**, with a folder **css** inside it, and **templates`**. You should now have the following files and directories: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pk1 + ``` + + ✅ Refer to the solution folder for a view of the finished app + +1. The first file to create in _web-app_ folder is **requirements.txt** file. Like _package.json_ in a JavaScript app, this file lists dependencies required by the app. In **requirements.txt** add the lines: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. Now, run this file by navigating to _web-app_: + + ```bash + cd web-app + ``` + +1. In your terminal type `pip install`, to install the libraries listed in _reuirements.txt_: + + ```bash + pip install -r requirements.txt + ``` + +1. Now, you're ready to create three more files to finish the app: + + 1. Create **app.py** in the root + 2. Create **index.html** in _templates_ directory. + 3. Create **styles.css** in _static/css_ directory. + +1. Build out the _styles.css__ file with a few styles: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. Next, build out the _index.html_ file: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
+ +
+ +

According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

+ +
+ + + + +
+ + +

{{ prediction_text }}

+ +
+
+ + + + ``` + + Take a look at the templating in this file. Notice the 'mustache' syntax around variables that will be provided by the app, like the prediction text: `{{}}`. There's also a form that posts a prediction to the `/predict` route. + + Finally, you're ready to build the python file that drives the consumption of the model and the display of predictions: + +1. In `app.py` add: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("../ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 Tip: when you add [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) while running the web app using Flask, any changes you make to your application will be reflected immediately without the need to restart the server. Beware! Don't enable this mode in a production app. If you run `python app.py` or `python3 app.py` - your web server starts up, locally, and you can fill out a short form to get an answer to your burning question about where UFOs have been sighted! -Before doing that, take a look at the parts of `app.py`. +Before doing that, take a look at the parts of `app.py`: + +1. First, dependencies are loaded and the app starts. +1. Then, the model is imported. +1. Then, index.html is rendered on the home route. -First, dependencies are loaded and the app starts. Then, the model is imported. Then, index.html is rendered on the home route. On the `/predict` route, several things happen when the form is posted: +On the `/predict` route, several things happen when the form is posted: 1. The form variables are gathered and converted to a numpy array. They are then sent to the model and a prediction is returned. 2. The Countries that we want displayed are re-rendered as readable text from their predicted country code, and that value is sent back to index.html to be rendered in the template. @@ -266,6 +324,7 @@ Using a model this way, with Flask and a pickled model, is relatively straightfo In a professional setting, you can see how good communication is necessary between the folks who train the model and those who consume it in a web or mobile app. In our case, it's only one person, you! --- + ## 🚀 Challenge: Instead of working in a notebook and importing the model to the Flask app, you could train the model right within the Flask app! Try converting your Python code in the notebook, perhaps after your data is cleaned, to train the model from within the app on a route called `train`. What are the pros and cons of pursuing this method? From 9f7910bcd20d9bef884304c8ea009c3f062b61fa Mon Sep 17 00:00:00 2001 From: softchris Date: Tue, 22 Jun 2021 21:28:49 +0100 Subject: [PATCH 4/6] editorial --- 2-Regression/4-Logistic/README.md | 232 +++++++++++++++++------------- 1 file changed, 132 insertions(+), 100 deletions(-) diff --git a/2-Regression/4-Logistic/README.md b/2-Regression/4-Logistic/README.md index f230d5a0..b41e36d7 100644 --- a/2-Regression/4-Logistic/README.md +++ b/2-Regression/4-Logistic/README.md @@ -4,107 +4,137 @@ > Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) ## [Pre-lecture quiz](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/15/) -### Introduction +## Introduction -In this final lesson on Regression, one of the basic 'classic' ML techniques, we will take a look at Logistic Regression. You would use this technique to discover patterns to predict binary categories. Is this candy chocolate or not? Is this disease contagious or not? Will this customer choose this product or not? +In this final lesson on Regression, one of the basic _classic_ ML techniques, we will take a look at Logistic Regression. You would use this technique to discover patterns to predict binary categories. Is this candy chocolate or not? Is this disease contagious or not? Will this customer choose this product or not? In this lesson, you will learn: + - A new library for data visualization - Techniques for logistic regression -Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) +✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) ## Prerequisite -Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one binary category that we can work with: Color. Let's build a logistic regression model to predict that, given some variables, what color a given pumpkin is likely to be (orange 🎃 or white 👻). +Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one binary category that we can work with: `Color`. + +Let's build a logistic regression model to predict that, given some variables, _what color a given pumpkin is likely to be_ (orange 🎃 or white 👻). > Why are we talking about binary classification in a lesson grouping about regression? Only for linguistic convenience, as logistic regression is [really a classification method](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), albeit a linear-based one. Learn about other ways to classify data in the next lesson group. +## Define the question + For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped' category in our dataset but there are few instances of it, so we will not use it. It disappears once we remove null values from the dataset, anyway. > 🎃 Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to carve, so they aren't as popular as the orange ones but they are cool looking! + ## About logistic regression Logistic regression differs from linear regression, which you learned about previously, in a few important ways. + ### Binary classification -Logistic regression does not offer the same features as linear regression. The former offers a prediction about a binary category ("orange or not orange") whereas the latter is capable of predicting continual values, for example given the origin of a pumpkin and the time of harvest, how much its price will rise. +Logistic regression does not offer the same features as linear regression. The former offers a prediction about a binary category ("orange or not orange") whereas the latter is capable of predicting continual values, for example given the origin of a pumpkin and the time of harvest, _how much its price will rise_. ![Pumpkin classification Model](./images/pumpkin-classifier.png) > Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) ### Other classifications -There are other types of logistic regression, including multinomial and ordinal. Multinomial involves having more than one categories - "Orange, White, and Striped". Ordinal involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl). +There are other types of logistic regression, including multinomial and ordinal: + +- **Multinomial**, involves having more than one category - "Orange, White, and Striped". +- **Ordinal**, involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl). ![Multinomial vs ordinal regression](./images/multinomial-ordinal.png) > Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) ### It's still linear -Even though this type of Regression is all about category predictions, it still works best when there is a clear linear relationship between the dependent variable (color) and the other independent variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is any linearity dividing these variables or not. +Even though this type of Regression is all about 'category predictions', it still works best when there is a clear linear relationship between the dependent variable (color) and the other independent variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is any linearity dividing these variables or not. ### Variables DO NOT have to correlate Remember how linear regression worked better with more correlated variables? Logistic regression is the opposite - the variables don't have to align. That works for this data which has somewhat weak correlations. + ### You need a lot of clean data Logistic regression will give more accurate results if you use more data; our small dataset is not optimal for this task, so keep that in mind. ✅ Think about the types of data that would lend themselves well to logistic regression -## Tidy the data + +## Exercise - tidy the data First, clean the data a bit, dropping null values and selecting only some of the columns: -```python -from sklearn.preprocessing import LabelEncoder +1. Add the following code: -new_columns = ['Color','Origin','Item Size','Variety','City Name','Package'] + ```python + from sklearn.preprocessing import LabelEncoder + + new_columns = ['Color','Origin','Item Size','Variety','City Name','Package'] + + new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1) + + new_pumpkins.dropna(inplace=True) + + new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform) + ``` -new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1) + You can always take a peek at your new dataframe: -new_pumpkins.dropna(inplace=True) + ```python + new_pumpkins.info + ``` -new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform) -``` +### Visualization - side-by-side grid -You can always take a peek at your new dataframe: +By now you have loaded up the [starter notebook](./notebook.ipynb) with pumpkin data once again and cleaned it so as to preserve a dataset containing a few variables, including `Color`. Let's visualize the dataframe in the notebook using a different library: [Seaborn](https://seaborn.pydata.org/index.html), which is built on Matplotlib which we used earlier. -```python -new_pumpkins.info -``` -### Visualization +Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by side grid. -By now you have loaded up the [starter notebook](./notebook.ipynb) with pumpkin data once again and cleaned it so as to preserve a dataset containing a few variables, including Color. Let's visualize the dataframe in the notebook using a different library: [Seaborn](https://seaborn.pydata.org/index.html), which is built on Matplotlib which we used earlier. Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by side grid. +1. Create such a grid by instantiating a `PairGrid`, using our pumpkin data `new_pumpkins`, followed by calling `map()`: -```python -import seaborn as sns + ```python + import seaborn as sns + + g = sns.PairGrid(new_pumpkins) + g.map(sns.scatterplot) + ``` -g = sns.PairGrid(new_pumpkins) -g.map(sns.scatterplot) -``` + ![A grid of visualized data](images/grid.png) -![A grid of visualized data](images/grid.png) + By observing data side-by-side, you can see how the Color data relates to the other columns. -By observing data side-by-side, you can see how the Color data relates to the other columns. + ✅ Given this scatterplot grid, what are some interesting explorations you can envision? -✅ Given this scatterplot grid, what are some interesting explorations you can envision? +### Use a swarm plot -Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more [specialized approach](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) to visualization'. There are other ways to visualize the relationship of this category with other variables. You can visualize variables side-by-side with Seaborn plots. Try a 'swarm' plot to show the distribution of values: +Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more [specialized approach](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) to visualization'. There are other ways to visualize the relationship of this category with other variables. -```python -sns.swarmplot(x="Color", y="Item Size", data=new_pumpkins) -``` +You can visualize variables side-by-side with Seaborn plots. + +1. Try a 'swarm' plot to show the distribution of values: + + ```python + sns.swarmplot(x="Color", y="Item Size", data=new_pumpkins) + ``` -![A swarm of visualized data](images/swarm.png) + ![A swarm of visualized data](images/swarm.png) + +### Violin plot A 'violin' type plot is useful as you can easily visualize the way that data in the two categories is distributed. Violin plots don't work so well with smaller datasets as the distribution is displayed more 'smoothly'. -```python -sns.catplot(x="Color", y="Item Size", - kind="violin", data=new_pumpkins) -``` -![a violin type chart](images/violin.png) +1. As parameters `x=Color`, `kind="violin"` and call `catplot()`: -✅ Try creating this plot, and other Seaborn plots, using other variables. + ```python + sns.catplot(x="Color", y="Item Size", + kind="violin", data=new_pumpkins) + ``` + + ![a violin type chart](images/violin.png) + + ✅ Try creating this plot, and other Seaborn plots, using other variables. Now that we have an idea of the relationship between the binary categories of color and the larger group of sizes, let's explore logistic regression to determine a given pumpkin's likely color. @@ -120,75 +150,77 @@ Now that we have an idea of the relationship between the binary categories of co Building a model to find these binary classification is surprisingly straightforward in Scikit-learn. -Select the variables you want to use in your classification model and split the training and test sets: - -```python -from sklearn.model_selection import train_test_split - -Selected_features = ['Origin','Item Size','Variety','City Name','Package'] - -X = new_pumpkins[Selected_features] -y = new_pumpkins['Color'] - -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) - -``` - -Now you can train your model and print out its result: - -```python -from sklearn.model_selection import train_test_split -from sklearn.metrics import accuracy_score, classification_report -from sklearn.linear_model import LogisticRegression - -model = LogisticRegression() -model.fit(X_train, y_train) -predictions = model.predict(X_test) - -print(classification_report(y_test, predictions)) -print('Predicted labels: ', predictions) -print('Accuracy: ', accuracy_score(y_test, predictions)) -``` - -Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000 rows of data: - -``` - precision recall f1-score support - - 0 0.85 0.95 0.90 166 - 1 0.38 0.15 0.22 33 - - accuracy 0.82 199 - macro avg 0.62 0.55 0.56 199 -weighted avg 0.77 0.82 0.78 199 - -Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 - 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 1 0 1 0 0 1 0 0 0 1 0] -``` +1. Select the variables you want to use in your classification model and split the training and test sets calling `train_test_split()`: + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Origin','Item Size','Variety','City Name','Package'] + + X = new_pumpkins[Selected_features] + y = new_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +1. Now you can train your model, by calling `fit()` with your training data, and print out its result: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + + Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000 rows of data: + + ```output + precision recall f1-score support + + 0 0.85 0.95 0.90 166 + 1 0.38 0.15 0.22 33 + + accuracy 0.82 199 + macro avg 0.62 0.55 0.56 199 + weighted avg 0.77 0.82 0.78 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 + 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 1 0 1 0 0 1 0 0 0 1 0] + ``` ## Better comprehension via a confusion matrix -While you can get a scoreboard report [terms](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) by printing out the items above, you might be able to understand your model more easily by using a [confusion matrix](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) to help us understand how the model is performing. +While you can get a scoreboard report [terms](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) by printing out the items above, you might be able to understand your model more easily by using a [confusion matrix](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) to help us understand how the model is performing. > 🎓 A '[confusion matrix](https://wikipedia.org/wiki/Confusion_matrix)' (or 'error matrix') is a table that expresses your model's true vs. false positives and negatives, thus gauging the accuracy of predictions. -```python -from sklearn.metrics import confusion_matrix -confusion_matrix(y_test, predictions) -``` +1. To use a confusion metrics, call `confusin_matrix()`: -Take a look at your model's confusion matrix: + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` -``` -array([[162, 4], - [ 33, 0]]) -``` + Take a look at your model's confusion matrix: + + ```output + array([[162, 4], + [ 33, 0]]) + ``` -What's going on here? Let's say our model is asked to classify items between two binary categories, category 'pumpkin' and category 'not-a-pumpkin'. +What's going on here? Let's say our model is asked to classify items between two binary categories, category 'pumpkin' and category 'not-a-pumpkin'. - If your model predicts something as a pumpkin and it belongs to category 'pumpkin' in reality we call it a true positive, shown by the top left number. - If your model predicts something as not a pumpkin and it belongs to category 'pumpkin' in reality we call it a false positive, shown by the top right number. From 29e96668c5a17d22994b2d60533969b8f176e546 Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Tue, 22 Jun 2021 17:36:33 -0400 Subject: [PATCH 5/6] just a few typos --- 2-Regression/4-Logistic/README.md | 6 +- 3-Web-App/1-Web-App/README.md | 9 ++- .../1-QLearning/solution/notebook.ipynb | 24 +++---- 8-Reinforcement/2-Gym/solution/notebook.ipynb | 71 +++++++------------ 4 files changed, 48 insertions(+), 62 deletions(-) diff --git a/2-Regression/4-Logistic/README.md b/2-Regression/4-Logistic/README.md index b41e36d7..a4488c11 100644 --- a/2-Regression/4-Logistic/README.md +++ b/2-Regression/4-Logistic/README.md @@ -42,8 +42,8 @@ Logistic regression does not offer the same features as linear regression. The f There are other types of logistic regression, including multinomial and ordinal: -- **Multinomial**, involves having more than one category - "Orange, White, and Striped". -- **Ordinal**, involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl). +- **Multinomial**, which involves having more than one category - "Orange, White, and Striped". +- **Ordinal**, which involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl). ![Multinomial vs ordinal regression](./images/multinomial-ordinal.png) > Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) @@ -90,7 +90,7 @@ First, clean the data a bit, dropping null values and selecting only some of the By now you have loaded up the [starter notebook](./notebook.ipynb) with pumpkin data once again and cleaned it so as to preserve a dataset containing a few variables, including `Color`. Let's visualize the dataframe in the notebook using a different library: [Seaborn](https://seaborn.pydata.org/index.html), which is built on Matplotlib which we used earlier. -Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by side grid. +Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by-side grid. 1. Create such a grid by instantiating a `PairGrid`, using our pumpkin data `new_pumpkins`, followed by calling `map()`: diff --git a/3-Web-App/1-Web-App/README.md b/3-Web-App/1-Web-App/README.md index 77db4f98..f848d807 100644 --- a/3-Web-App/1-Web-App/README.md +++ b/3-Web-App/1-Web-App/README.md @@ -2,6 +2,11 @@ In this lesson, you will train an ML model on a data set that's out of this world: _UFO sightings over the past century_, sourced from [NUFORC's database](https://www.nuforc.org). +You will learn: + +- How to 'pickle' a trained model +- How to use that model in a Flask app + We will continue our use of notebooks to clean data and train our model, but you can take the process one step further by exploring using a model 'in the wild', so to speak: in a web app. To do this, you need to build a web app using Flask. @@ -17,7 +22,7 @@ There are several ways to build web apps to consume machine learning models. You There are many questions you need to ask: - **Is it a web app or a mobile app?** If you are building a mobile app or need to use the model in an IoT context, you could use [TensorFlow Lite](https://www.tensorflow.org/lite/) and use the model in an Android or iOS app. -- **Where will the model reside**, in the cloud or locally? +- **Where will the model reside**? In the cloud or locally? - **Offline support**. Does the app have to work offline? - **What technology was used to train the model?** The chosen technology may influence the tooling you need to use. - **Using Tensor flow**. If you are training a model using TensorFlow, for example, that ecosystem provides the ability to convert a TensorFlow model for use in a web app by using [TensorFlow.js](https://www.tensorflow.org/js/). @@ -131,7 +136,7 @@ Now you can get ready to train a model by diving the data into the training and The accuracy isn't bad **(around 95%)**, unsurprisingly, as `Country` and `Latitude/Longitude` correlate. -The model you created isn't very revolutionary as it's you should be able to infer a `Country` from its `Latitude` and `Longitude`, but it's a good exercise to try to train from raw data that you cleaned, exported, and then use this model in a web app. +The model you created isn't very revolutionary as you should be able to infer a `Country` from its `Latitude` and `Longitude`, but it's a good exercise to try to train from raw data that you cleaned, exported, and then use this model in a web app. ## Exercise - 'pickle' your model diff --git a/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/8-Reinforcement/1-QLearning/solution/notebook.ipynb index fa84de2c..22915fcb 100644 --- a/8-Reinforcement/1-QLearning/solution/notebook.ipynb +++ b/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -10,15 +10,15 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", - "display_name": "Python 3.7.4 64-bit ('base': conda)" + "display_name": "Python 3.7.0 64-bit ('3.7')" }, "interpreter": { - "hash": "c77bccf6af5544921fca6eddbefe5e7c44ddf71c61b63c74bd828ca1d0e389a0" + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } }, "nbformat": 4, @@ -92,8 +92,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ338c/v1l7V3dV7ErKREDYJErZAXBgFQUQF3EZwY0RFfcBldMZ9xgURx2VQ5lExKhFxwZVleHDBCCqLCCiEhC2BBEjSWbqru2uvu5zz/FG3mwTT2TtVlfzevOpVVffeqvrlNv3NybnnnBJrLUoppVqH0+gClFJK7RoNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRYzacEtImeKyGMiskpEPjZZn6OUUgcamYxx3CISAR4HTgfWAvcC51trH97rH6aUUgeYyWpxLwRWWWuftNa6wHXAOZP0WUopdUCZrOCeDjyzxfO14TallFJ7KDpJ7yvb2LZVn4yIXARcBBCLxY5//vOfv0cfODw8jOd5W74/fX19e/SeY2q1GoVCgd7e3r3yfpNhZGSEWCxGJpNpdCkTGhgYoL+/n0gk0uhSJvT0008za9asRpcxId/32bx5M9OmTWt0KRMqFov4vk9nZ2ejS5nQ5s2b6ejoIJFINLqUCa1YsYJKpbKtLAVr7V6/AYuA327x/OPAxyc6vr+/3+6Ja6+91vb09FjqfzlYwEajUfsf//Efe/S+Y1auXGkXL168V95rslx//fX2rrvuanQZ23XppZfaXC7X6DImZIyxl1xySaPL2K6hoSF72WWXNbqM7brjjjvsDTfc0Ogytuuqq66yK1eubHQZ2xXm4jYzc7Ja3PcCh4rIHGAdcB7wpr39Ib7v89Of/pT3v//9DA8P/8O+r3zlKwB89KMfJZ1OI7Ltv7yUUqqVTEoft7XWBy4Bfgs8AvzMWrtib3/OunXreOtb3/oPoT2mUqnw+c9/nt///vd7+6OVUqphJqvFjbX2FuCWyXp/gPXr1+M4DkEQTHiMiLBx40aCICAanbQ/rlJK7TMtPXPynnvu2W5oAxhj+Pvf/77VhUullGplLR3cr3vd63Y4QsFxHM466yySyeQ+qkoppSZXSwd3LBZjwYIF2z1mzpw59PT07KOKlFJq8rV0cPf19XHxxRdv95izzjqL4447TkeUKKX2Gy0d3I7jcM4553DTTTdx+OGHb7Uvk8nwk5/8hI985CNNPcheKaV2VUsHN9RHjfz85z/n8ccf32p7qVTiy1/+8tgEoPF7pZRqdS0d3KtWreLDH/4w11577TaD+W9/+xsXXngh99xzD8aYBlSolFJ7X0sGtzGGxx57jA984AMsWbJku8f+/ve/5z3veQ9/+ctfdjh0UCmlWkFLBbe1lmq1yhe/+EVe9KIX8dvf/nanXvfggw9y9tln85a3vIV8Pr/lmipKKdVyWmoqoeu6XHnllXzyk5/c5dfmcjmuu+46UqkUX/rSl3SIoFKqZbVUcH/pS1/i05/+9B69x5IlS4jFYnzjG9/QKfBKqZbUEl0l1louv/xyLr/88r3SxbFkyRL+5V/+RS9YKqVaUtMHt+u6fP3rX+czn/kMlUplq33HHHPMTk15P/LII7dqXXuex3XXXcdFF11EPp+flLqVUmqyNHVwW2v5xje+wUc+8hFc191q36mnnsrPf/7znQrur33ta7z3ve9l4cKF49uDIOD73/8+H/vYxygWi5NSv1JKTYamDu4//vGPfOpTn9pqZb9Zs2Zx+eWX853vfIdsNrvT73XFFVdwxRVXcPLJJ49Pfw+CgKuuuorrrrtOR5kopVpG0wa3MYYf//jHVKvV8W19fX1ceeWVfOhDH2LOnDm79H6O47Bw4UK++tWvsuX3W1prWbJkifZ3K6VaRtMGt4hw/vnnM3/+fAAOO+wwvvvd7/LqV7+aeDy+y4tGiQjRaJRFixaxZMkSFi5ciIgwa9YsLrroIhynaU+FUkptpWnHw4kIL3nJS1i8eDE33ngjr33taznhhBP+4bhd7eIQEY499lhuvPFG/ud//odFixZxxhln6OqBSqmW0bTBPWbhwoWceOKJ2wzWcrmM7/vbfX0QBJTLZay1W73HlClTuPTSSzWwlVItp6n7B0QEEcFxnG0G7LRp0/jc5z633fc4//zzedGLXrTN9x57Xw1vpVQraerg3pFIJEJXV9d2j2lrayOZTGo4K6X2Gy0d3EopdSDS4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFtHRwW2t3OOXdGKMr/yml9it7FNwiskZEHhKRB0TkvnBbt4jcKiIrw/vtT23cA9FolNmzZ4/Pikwmk8yfP3+r2ZT9/f20t7dPVglKKbXP7Y1Fpl5qrR3c4vnHgKXW2i+KyMfC5x/dC5+zTQcffDAXXHABtVqNuXPn8vnPf56rr76apUuXEolEOPHEEyfro5VSqiEmY3XAc4CXhI+vAW5nkoJbRFiwYAFLlizZavuFF17IhRdeOBkfqZRSDbenfdwW+J2I3C8iF4XbplhrBwDC+/49/AyllFJb2NMW9wuttetFpB+4VUQe3dkXhkF/EdRX8Fu5cuUeljJ51q5dy8jISFPXODg4iDGmqWsslUqsXr2awcHBHR/cIK7rNvU5zOfzlEqlpq5xw4YNTf/7MjIywjPPPNPU3zW7vUEVexTc1tr14f0mEbkeWAhsFJFp1toBEZkGbJrgtYuBxQA9PT329ttv35NSJtXIyAhr166lmWt84oknSKfTDA0NNbqUCQ0ODnLXXXeRSCQaXcqEisViU/+cq9Uqd2++mxtvv7HRpUwoPZDmtMppTT2aa926ddx///2sWrWq0aVMaLvnz1q7WzcgA7Rv8fgu4Ezgy8DHwu0fA760o/fq7++3zWzlypV28eLFjS5ju66//np71113NbqM7br00kttLpdrdBkTMsbYSy65pNFlbNfQ0JA9/rLjLU3839Q7ptobbrih0adqu6666iq7cuXKRpexXWEubjMz96TFPQW4PhyKFwV+bK39jYjcC/xMRN4BPA28YQ8+Qyml1HPsdnBba58EjtnG9iHgtD0pSiml1MRaeuakUkodiDS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWswOg1tErhaRTSKyfItt3SJyq4isDO+7wu0iIleKyCoRWSYix01m8UopdSDamRb394Ezn7PtY8BSa+2hwNLwOcArgEPD20XAt/ZOmUqpViIijS5hv7bD4LbW/gnIPWfzOcA14eNrgHO32P4DW/cXoFNEpu2tYpVSrcFa2+gS9mu728c9xVo7ABDe94fbpwPPbHHc2nCbUkqpvWRvX5zc1r+PtvlXr4hcJCL3ich9lUplL5ehlFL7r90N7o1jXSDh/aZw+1pg5hbHzQDWb+sNrLWLrbUnWGtPSKVSu1mGUkodeKK7+bqbgAuAL4b3N26x/RIRuQ44CRgd61LZniAIuOGGG3azlMk3ODjIE0880dQ1Ll++nKeeeoqNGzc2upQJbdiwgd/85jc081/U+Xy+qX/O5XKZzECGuTfMbXQpE2pf087y0vKm7ud+8skniUajLF++fMcHN0gQBBPu22Fwi8hPgJcAvSKyFvg09cD+mYi8A3gaeEN4+C3AWcAqoAy8fWcKdF3hve+dsjOHNkQ6bbjggjRTpjRvjU899RRXXZVlZKR5a5w3L8G55/aRyWQaXcqEotFoU/+ci8UiJyZO5ItTvtjoUib06PCjFJxCU5/HdDrNF7q/QHlKudGlTMgVd8J9Owxua+35E+w6bRvHWuDina5s/HUOGzYs2tWX7TPZ7CqmTRti0aLmrXHjxo2MjExp6vM4Y8ZSjj/+eOLxOIVCga7uTjYOr6c9kyXvbeJ3wz/gyfIKHC9KQtoQE2GgsJ6Tu87kjDnn4ZZrzOibRT6fJ5PJMDw8TDqdxvM8giAgk8lgrSWVSpHL5Whra6NQKJDNZsef12o1stkstVoNay3JZBLHcRARrLX8+Mc/buqfcy6X4957723qGo0xDA4ONnWNy5YtY+joIUbnjTa6lAm1OW0T7tvdrhKldou1hiFvPU+WVuBguGngm8zLHIdrXOKkOCx+EutrTzNaGeGIzmOZ3fN8OmJd/Pttb6Y91sPFx36Kvvg04l4cx3EwxgDgOA5BEGCtpVarISIEQYCI4Hne+H4RwXXd8X+G+r5PPB5v5ClRapdpcKt9ymL5+6Z7+PrfL2NKZgqzsrMZ9T0eXP0wa9Y/w/PmzSTmxXn8yVUMHjbCnOyRCGtJ2A5S0sFPHriaw7uP5uXzXk0ynkJEiEQiGGPG+1Q9zyMWixEEAdFolCAISCQSiAjRaBTf9+u1WIvneRrcquVocKt9ypEIJ/SeyjTvNzz02DJGMmmysRrFQpxEeSqlZ9KU8mVWPLSZDaUc5VlFciNV+vqnsWLt3Rzdfxy3PfoNTpy5iPZKJx0dHRhjqFQqdHZ2YkxAMpkkl8vR3t5BPp+nq6uLwcFB2tvbqdVqdHV1US6XiUQiJJPJRp8SpXaZBrfap4wxZCJprnz1lVx4/dv59fJbMDVI2SRxG+dvqwLesPB1vOP0ExktjRCvxFlb/jXV/BCDuWFWBk/gexHO+darufV9twEQj8dJJpNUK2WWL/0iq+79Ib4fcOSiCzj+VZ+jUCjQ09NDtVollUoxODhIIpHA933K5TI9PT0NPitK7RpdHVDtU47jkEgkqBYrfPt1V3HWEa8kGokwt28uJ887mecfPJ+nNj/FinXLGSrkGBgaIDM0m9JjWY7uOJLK6CCYKsGo8M4r34mIUK1WyeWGKGxcwRMr7mA4X2X6/LPpPGgBhXyetrY2Nm/ejIhQKpXo7e0lGo0SjUbp7Oxs9ClRapdpi1vtU9ZaXNelq6sLz/P41uu+yadS/8Gv7v8VI8URMpEMaUlRE5dNQ48yOjxKe6yDcxadQ7FQJEU3Q5s34XStx93oEQQ+sViM267/GpvW3MnwwDMce+q/8uKz/xXfr++rVCp0dXURBAHpdJrR0VEikQjWWorFItlsttGnRaldosGt9jnHcXAcB2stXaluPvfyzxGTBD//68/YmNsEHogHEgjHzjiWVCTFkwNPkoqmaI/1cMisI/jJ765h7hkbWHLDd3nbqy7g3tt/yZRpMzjn3Vcz5eDnj7//2DC/SCQyPqpky4khuoqdakUa3GqfcxyHYrFIJpOhVCrRkejgi6/8Ap97xad5zTdey3B+mFXPPEl/ey+54hBtsXaq5Sp4ls2bh2iLZTj9+LNZu/Zx/myv5y/vXUJXYDnzpW9h9pGLiMVilMtlEokEtVqNZDJJsVgkHo/jui7pdJogCDDGEIvFGn06lNplGtxqnxobZ93T00Mul6Ozs5NSqUQ8Fsctutx88c2sya3hf+//X0rVEo7vkImnyY/kwQqVcpVEJM4bX/ZGTjjmBP607Hd8567/5J9e+UaOOflVBEFAsViku7ubfD5PNptlZGSE3t5eCoUCqVSKoaEh0uk01lpKpVJTz/BTals0uNU+JSIkEglyuRypVIrR0VFisRi+79PW1oa1lnn983jf6e/DWks8GmHDHb9nw19/RTqRpOelr6Bz0WnEEgmGh4fxNvhURoQXvux1xONxrLV0dnYyuGYN937v/5Jb+zRdhxzJ8Re8i87+vvH+bmMMxpimXjdFqYlocKt9aqzFnc1mGR0dpaOjg3K5TDQapVKpEI1Gwa3i1Ko8+p/vw7pVZrzmzZzw8csx4hCLOKxe/F8MPXg/fmBYNThCYvMmasvv5b47/8SmZX/DCwKOfOOFHPva83BrVYJqjZ9c9FaK+SJn/+dn6ZhzCFNmzsJxHEqlEolEotGnRaldosGt9rlIJILneeOzGMcuJEYiEYLCKOsXf5nS06s48kOfI9begTcyTPXJlSBQszD9tW9h9tsuxi8VmP7HpZzw+CMM3fknDn7xqRz9pnfi+y6l4WHcwiiBBYPl7E9+Bj8w/PlHP2DZHXfw7u9+n7nHHU8kEmn06VBql2lwq31KRLZaR2RszRBrLfg+T33rcoKN65n75vfgbt6Av3kDgmVs8IdYcJ9eTdVaDNBx+JF0LjiewPWpjAyRf+oJAmsJLATWYqwlMGCsxTeW4151Np4x/OjfPsR5l3+JQ086qXEnQ6ndpMGt9ilrLb7v09XVtdXFyWg0yjPX/5DKqkeY85b3gFdFDIiEt63eox7gYAnKJVxr62EdBnRgLMYyHt5+YAmswQ+PmX/KS6lVXa5677v515/+nCOPO65BZ0Op3aPBrfYpx3FIJpMMDAzQ09PD4OAgmUyGWrlE7vc3cfibLyYoj2IdQAQnbKE7YXJba+utc0s9wcdC2liMsfjWEBhLEIAfBrdnDL4F3xgCIwTGcOQLXsimtWupDA428nQotVs0uNU+NdbiTqVSeJ43fmFw6I7fE8+0UR1cR8QRnEh9NQaJQGSL4Da23qq2RiAwGGuwFqwJW9pmLKAtnql3j/jG4lvqAW7q3Sieb+iZMZtvfuD9fGfFw4j2dasWosGt9rmx2Ypj99ZaCn+7i/TB8wgqJcQRrOPUV9JxBHGESJjc1ljEWqwBG9hwWB/hfT28A1MP6WeD2+CZZ4PbC+qt8IMOPYRH772nUadBqd2mwa32qbH1swuFAul0mlKpRDqdJhJxsIFLUCnhOIJxHKxDPcAj9fAGwiY3YAxmLLgt+EE9lP2g3uL2wxa3ZyyeH+Bbi2ssXiB4QRCGOONfxKBUK9HgVvuUMYZarUZnZyflcpmOjg5c18WtudihjSTCdUwkIjiOIBFBHId689viA4Ex9XAObBjQ9ceeDVvTQT2wXb8ezvn8KJF0BjcYC+9wfzgJR6lWo8Gt9inHcYjH4wwNDdHX18fw8DDt7e0kO7IM/PE3xB0HOjshDG+c+pAS360hiRSGse4PqJUKlAc34waGmm9wjaUWGGq+JXCiRHun4CGMrl9Leup0XGPwAqgFAb6BzQMbcKvVRp8SpXaZBrfap4wxuK5LX1/f+LfWuK7LtNe+jc13LmXksYcIps8i09uPcQTjCL6A/8wTxGYeggUqG9fj5Uep1mpUi0WqfoAbWCq+peYHVAODi2CeeRqXCKmZsxgdGEAyGbwAqoFhNJfjyRUPs+BV54KuEKhajAa32ueMMePfEzm2zGrioFmYaByvVIbVKyEIiLe14dmACODmR5Flf62P1Q4CvMDgBgY3eLZ7xLcmHLsNXhBQHclR8w1Dg4NUvAAXoWPmwQwPD7Np3Qaqrs+r3vteXdpVtRwNbrVPiQjxeJxCoUAikaBSqYyHeJBI4RqL9QIi+VH8wCNY/0w4HFAQIMCOT7JxjcEPBNds2Xdtxvu8/XCEiR94BAF4fkClWCQ3sBFjAXFItWUafUqU2mX61WVqnxr7BpzOzk4qlQrt7e0YY4hGoxz85ndSC/upS7kc5WKBWmCoBoZKYCgHhqpvqPj1524AtbDVvVXL25j6jEljx0eX+OHok3xuuP6N8I7Dia97LZLU1QFV69EWt9qnxpZ1HRwcpK2tjZGREeLxOJ7ncdALT+fvBow1GOthCmXwTf36pNTbGNaacBIO+OFkGze8WOmasdEiFjeo7/fGAtxaJJmkWqnVjwl8FrzkJcyaO7fBZ0SpXactbrVPWWvxPI/e3l7K5TLZbHb8m2gKpTLtJ55Sb2X7AcVCkbJXb2GXPRM+tvUWt2+o+AGVcERJ1Q+o+QG1IMD1LW4Q4AZmi7HchlKxjFtzae/r4+XveTeRZIpcLtfoU6LULtPgVvvU2ASccrlMLBajWq2OrxKYam/nsDe9g6pvw4AOqIajRap+QNUPtgjtehdK1bfj3Su1wFILu0vcQHANuIHdary3Zy1TDj2UfG6YRa8+W79IQbUkDW61z1lrx5d1HZsAY60lGo3SNe9wZpxxdhjUYavar/dtP9u/bal49f218LhaOMrEC8O73l0S1EPcWFxTn135vFNeQiBRXvC61xONRvU7J1VL0uBW+9RYaKfTaTzPI5VKjX+JQqVSwcm00TN/AS5OvdUd1LtGyn5AeTzE/frFyvHn9dZ4NaiP4a4ZS9WvT7ZxTUAtbG0bceiaPp1CIc/Rp5xCEASUSqVGnxKldplenFT71Niyrps2baKnp4ehoSHa2trwPI/Ozk6CIOCwN76NJ+64naf+tBRBxtfkBrC2Pu4bwLfPDg30bH2dEi9cf9sLu088Y/ECg43GmX/KS7l36e184+47iSeTWGvp6Oho4NlQavdoi1vtU2MXJ9va2qjVamQymfEJOdVqFdd1cUQ48uzXE8SSVIKwb9sLqHjPtq7LW/Z5B5aqb+ut7bDbZMthgj4OM59/LB7Ci1//OoJYHN/38X2fYrHY6FOi1C7bYXCLyNUisklElm+x7TMisk5EHghvZ22x7+MiskpEHhORl09W4ap1RSIRgiAgFovhed747MloNDr+HZCzTn056SOOoupbyr6l7BvKW16YDLeP9X/XvHp/d238ouWz/d798w4j3dXNmhUPc/RLX0qmrQ0nXMwqGtV/dKrWszMt7u8DZ25j+xXW2gXh7RYAEXkecB5wVPiab4qIrlCvxo1956Trult996S1djxMoT4t/pWXfgWnq2eLwA7CALeUwouSVe/ZMK8EUAlDuxoEmGiMjhmziba1M5rL8doPvJ/DFy4kEomM16EXJ1Ur2mFwW2v/BOzsYNdzgOustTVr7WpgFbBwD+pT+5nndpWk02mMMTiOQ6VSwfM8AOLxOAfNO5Tzvnk17bMOpuKZ8FbvIqmNje8em00ZmPGRKDXfUvMtrhWqrkc+N8yxLzudl7397SRTKQqFAkEQ6MVJ1bL2pI/7EhFZFnaldIXbpgPPbHHM2nDbPxCRi0TkPhG5z/Mqe1CGaiVjMydHRkZIJpPk83kAfN8nk8mQSCSw1lKtVikUCsxbeDKv+tzlHPvaf6ZmZXyUiRuJMufFLxkfIlj1A5K9/bRNPYhqENSnw9c84uk0r3nf+zj9wgsREarVKp2dnUQiEaLRKO3t7Q0+I0rtut3t4PsWcCn1r2y9FPgqcCFbfxn3GLutN7DWLgYWA7S3T7G12m5WolpOPB6nv7+fSCRCX1/f+Op8Y90k0WiUdDo9vu34089k/qIX8ep//xgQfsu7I6Q7OyluMfMxGk+AyFZrbMeTSfpnzcKEQw5TqRQiMj7xRlcGVK1ot4LbWrtx7LGIfAe4OXy6Fpi5xaEzgPW7XZ3aL23Zlz12v6XIc76413EcYl1dtHV1/cOxXVOm7tRnjr3j2OdpYKtWtltdJSIybYunrwHGRpzcBJwnIgkRmQMcCvx1z0pUSim1JRmbzDDhASI/AV4C9AIbgU+HzxdQ7wZZA7zbWjsQHv9J6t0mPvBBa+2vd1RENtttDzvsQ7v7Z5h0sViJo44aZPbs2Y0uZUIbNmzgwQcTVKv/2CptFl1dj7No0ZymHsnx0EMPcfTRRze6jAl5nseaNWs49NBDG13KhHK5HK7rMnXqzv1rqBHWrFnDw30P42W8Rpcyocf/+3FGc6Pb/KfhDoN7X2hv77eu+1ijy5hQR8caDjroTh599M2NLmVCs2f/hm9+s4/jjz++0aVM6Gtf+xpvf/vbyWazjS5lQp/85Ce57LLLGl3GhEZGRvjBD37A+9///kaXMqH77ruPoaEhXv7y5p3Gce2113LKKac0dWPs8MMPZ9OmTdsM7iaZfSC4bvO2FD1viCBINHWNQZAik8nQtY1+4GYRi8XIZrNNW+PYminNWh/Ua4zFYk1dYzqdplwuN3WNiUSCtra2pq5xe9dhdMq7Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9lhcIvITBG5TUQeEZEVIvKBcHu3iNwqIivD+65wu4jIlSKySkSWichxk/2HUEqpA8nOtLh94MPW2iOBk4GLReR5wMeApdbaQ4Gl4XOAVwCHhreLgG/t9aqVUuoAtsPgttYOWGv/Fj4uAI8A04FzgGvCw64Bzg0fnwP8wNb9BegUkWl7vXKllDpA7VIft4gcDBwL3ANMsdYOQD3cgf7wsOnAM1u8bG247bnvdZGI3Cci93leZdcrV0qpA9ROB7eItAG/BD5orc1v79BtbLP/sMHaxdbaE6y1J8RiqZ0tQymlDng7FdwiEqMe2j+y1v4q3LxxrAskvN8Ubl8LzNzi5TOA9XunXKWUUjszqkSA7wGPWGv/e4tdNwEXhI8vAG7cYvvbwtElJwOjY10qSiml9lx0J455IfBW4CEReSDc9gngi8DPROQdwNPAG8J9twBnAauAMvD2vVqxUkod4HYY3NbaO9h2vzXAads43gIX73op/9AN3oSav8b66W9uzV5js9cHWuPe0go1bos0Q+HZbJddsOAtjS5jQpGISzZbJB7vbnQpE/L9PJ2dUdLpdKNLmdCmTZvo6ekhEok0upQJrV27nmj0oEaXsR0BnrOeWH+s0YVMyJQNbX4bHR0djS5lQrlcjra2NuLxeKNLmdAPf/hDhoeHt9loborgbm+fYovFjY0uY0LZ7Cq+/OXbeNe73tXoUiZ0ww03MGXKFE466SRqtRqxWAxjTH2nY9hQe4phfyPWWKLEAaHilUlHOjik4yjERIjHYwRBgIjg+z4iguM4+L5PPB4fvx97f9/3iUQiWx0rIuOvj8Xq4fglgXgAACAASURBVFK/TAKf//znufjii+nq6mrQWdo+ay3//M/v5xe/+J9GlzKhRCLH/P88g/s/cX+jS5nQ1DunctXgVZxzzjmNLmVC3/72tznttNOYN29eo0uZ0JQpU9i4ceM2g3tn+rhVCwmCgKGhIZLtcf46fDP9ydn4TpUnig8y4D5FoVqkUB3loNQhVNwK/bEZrEw+wuqhVVxy0idxax4iQrFYRERIJBIUi0V6e3spFot0d3czOjpKd3c3+XyeTCbDyMgIsViMeDxOPB4nGo1SLBabNqCVanUa3PuZVSMP8svhK5BRYUPtKWI2ie9bMnTRm5hOJ12MlEtUjEd3YgaYGL9+4lekou1c+oePcN78d3BQeibt7e1Ya/F9n56eHkqlEolEgsHBQdra2sjn86RSKWq1Gp2dnVhrCYKAcrkMQDweZ2hoiM7OTqJR/d9Mqb1Jf6P2M33p2Vy39O90J7t5ft/zmdt/BE+uX8M1d/yEeYdl6cu0sXLZAJHpPi983ilE/CSpaCe5wiCJdDtX//VbvPLIczmq6xii0RixWIzNmzfT399PqVSiu6eH3NAQ2WyW0dFRMpkM+XyeWKx+bCaTwXEcSqUSXV1dOI4uQKnU3qbBvZ9JkWbxK6/mI7/7d/7fw7/mt8t/T8LEmdI1FXdzglqhl0P7Z7N+ZDXBiOHuB+5mxvxuVm1Yz7wel5HyKNVawCH/dASd0RQiQltbG67rUisM8PijN1HIF+juP4jeuacRBAHJZHK8H9t1XQAcx6FarZJKpcb3KaX2Dm0O7Wccx+Gw7nl86tRP4kSFJ4aeYLgyTFsyQ9ktU/ZKzOyfyZG9C+iozOPgjudReNwiriFCjac3ree3Dy3lsps/D9Qv2BljwAase/i33H7dB7n/lk9x/+++ioTXtY0xGGPGh1Y5joO1tmWHWinV7DS49zOxWAzP9Vg0YxG/fNMv6W3rwYlEGKmOEotHqQUuD69dwebCZh57+lH+fN/dzE7P5+wpb+XBpY9x4hEzSRci/PzXP8fzPQAK+RE2PXUvf/p//8NIOcGJr/8ep1/4I7ygPqrEdd3xESxjFymNMdraVmqSaFfJfmZ0dHS8P/rIqc/jzvffwWu/+3oGhgZI2DhxmyBJgs1Dm7GuYUrXVAIbsHHTIGcf90ZGHhkhmxihlk3xxDOPc8Sco/jj9V/h0ftvZuacI3nRyy5i/sJXkc/naUunqVardHd3EwQBnudRLBax1pJOpxkcHKSnp0cvTiq1l+lv1H5m7GJhNBqlWq0yJT2Vq8+/mv996H/51h++xfrcALiW9mg7z5v+POISZ9PIJtLRFIV8AQmgffRgCh0jfPbGD/KGQ97IqkeW0Tn1ebz6HV+jZ8psqtUq6XQa13WJxWKUy+Xx8dupVH2lxyAIaG9v14uTSk0CDe79zNgFQc/zxifhHN53GIe99F9ZOP1ENpY28oVffIF1g+t5cuMTdCd7iBNnaHCQWtmjWqzw3nPfy/tecAmj6bV8/4r/omtTwIcv/Q5dfTMpl8ukUimq1SqJRGJ8Us5YP/fYxcmxQE8kEg0+I0rtfzS49zPGGKLRKK7rbnWR0FpYNHcRyVSSM593JrF4jGKhSDwirHvycfqyPdQspLv7SMaTdHV2kc8P89icB3jpha/k4EMXICIEQYDjOBQHN+NFI3iBoeeg6TiOMx7ewPixeoFSqb1Pg3s/k0wmx8dV12o1gPG1QRKJBK7r0p5sZ/C+u0h6FQqbNtK+/inyI8N0Hn0sHQtOprhmFasrFZ7ZsImH/nwnJx/3Irx1T7N+5aMkUynybV089eelPL38Qdr6ppGeexhtPb1MP+oophx6+Pg0+Gw2q10lSk0CDe79TKlUoqenh2KxSDKZxBhDrVZDRKhUKiQrBVb/6CoyXT24qTTZvql0vOCfsCIIUFn7FHY0R8L4ZFY/zgtqZezSm1m/bg3iRBn2XFL90znstDM55LSXYwPDY3f+iQ3LH+Tpv99PoVLl3E/8B129vYyOjtLT06PhrdRepsG9n+no6KivVZJMUi6XcRyHWCyGtZZMLMID73sX2bmH0nXKGTiRKNgAd93T9YV7rSUSiZKddwTGWjIzD2Hea88jCAy1cp5oqo3AGjzPpzKaw1gIjGXG/GOYZi2jQ0Pc9PX/5nv/591c8v0f0tnZ2dQrASrVqrQptJ/J5/P09vaOD8mLxWJ4nkd1eIh73nku6YOmM+0Vr8MURjGjOWxhFKkWkUoRqiVsKU+Q24yf24wpFfBHhwgKw4jr4o7k8IaH8Qt5/FIJv1zCK5dwiwVqxXr3zDkf/DDFDQP83395G8888QRBEDT6lCi139EW934mmUxSKpUQETzPw1pLJBJh4H9/RvfMQzjo5WfjDQ4QCYfvORJ+S4YIYi3GWrCCYMEYrIXAWnwDgTEYazGW8LklMBbPWgJr8I1gjOUF572JW5dczYrb/sCcww9v9ClRar+jwb2fSafTDAwMkM1mqVQqxONxHK9G4fFlTDlyAf7gBhxH6kHtgBOGN/WoxhoDVsLQDkekBPWp7/WgNhgDnjEEBnxrCcLnvrUE1uIABx99DPfceCMvft3r6Z46tbEnRan9jAb3fmZ0dJQpU6ZQqVRoa2vDGMO6W2+CmosJPIJKCXEcEJBIPbQjTv3CZGCpt6gNWAM2MBhTb4UHNsAEEra+LX5g8A34xuBZ8IKAwIJn6o+nzpvHUytXUhwe1uBWai/T4N7PZLNZNm7cSHt7O6VSiUgkQjoRoxCPYNwqxgfrOOCAdQQcwYk4iNTDWowFY7HGYoIAM94lErawg3rXiGssfmDrwR22uL3wuWvCbhPfAx3HrdRep8G9n6lUKrS3twOMz1qsVquYWhVTKRE4EHEiGAdMRDCOg3EEB8HYMLCNITAWEzzbPeIbG7amzXiL2zPgBiYMa4sXgGdsGOKGwPMaeSqU2m9pcO9nIpHI+LfTBEFAJBIhGolRWPkIqfYskkrhRxwkUm91iyMgEQQw1EO3fuExwAts/WYsnjV4PrhBgG/rge0GsOmp1aT7p+I5EbyAekvcgOvXF51SSu19Gtz7mbFx0yIyvpZ2orcPYnHyjzyEHHIoNpHAOg42IlixuKUCkkhDLEbg+3iuT61aZuTRFbi+T9W31Iyl6gdUA0MtgPZD5xPE48TSaaqlMr4IXmCpBfUuk/VPP8Xo5s2IjuM+IOlyvpNLg3s/M7asa6FQIJPJ4Ps+PH8hPYtOZeOvf0FQKdF58CEE6TSBI0TEEmxch0QTEI/jFkapDW7CDer92LXA4AcW17d4QYDvW7zAsG7ZvdR8iPZOoeb5kGmDeBLXCiODOZ5auZKXXPguuqdNa/QpUQ2ga9RMLg3u/Uw6nWZ0dJRIJEK1WgXqrfBKzcU3llq5RGHjetJ9/VRGckSsgWoZ3BqG+oVIY8PANuAFFje86Oib+oiSwD57wbK0fh21wFIJDImePko1l6GNmzEG5h79fFJtbY09IUrthzS49zOu69LW1jY+hjsIAoIgIDV9On4kBr6HFArYeBw7tJmINYg49RnvQGDrFya9sb5qY3HDESOeAc+acGRJOAnHWgLqFzFr1SqVYgUjQqKtg2qthjFG1ypRai/T36j90Ng/U7f85+rct/wfnN6plIOAcrlKaXSUihdQ8QwVz1D2DWUvoOwbKr6l5kPNN9R8g+sTjhqpjxbxjCXwn22Fu4HBIJTyJSqVCr5vOOaVZ3LKm9/UqFOg1H5NW9z7mXg8TqVSwXGcev82z355r9PZh//0aqwNCIplnMAQEVufMzl2MZP6JJxgbHJN2PKuhaHtmvqFSi+ceOOa8FggoN6FcsQLTyGCQzqZ0ta2UpNAf6v2M9VqlY6ODqC+bkk0Gq2Pyw4CDn7be6kFQtU3VKpuvbXthzcvoOqb+sgRL7wPLLXAUg0Mrm+ohfe+b3HD/m/f1IcMup5PtVolkkzgJGKcedG7yefzusiUUpNAW9z7mfb2dgYHB0kmkxSLRUSEWCxGJBJhzkkv5J50G25hFEcg6giOEUTs2Kquz057p97iHluPxA0Duj5WG1wTUAvAC+rHuYHFRmO84A3n8djfH2D2/PlkMhn9omClJsEOW9wiMlNEbhORR0RkhYh8INz+GRFZJyIPhLeztnjNx0VklYg8JiIvn8w/gNpasVgkm81irSWZTBKLxQiCAGMMZc/j1K8vGR+PXQ7qfdsVz1AO+7krQUDFD7ZogRuqXoDrB/VJN+EQQdcfm94eUDPgB4YjXvAi7r/tNi759mLi8TjFYnH8q8yUUnvPzjSHfODD1tq/iUg7cL+I3Bruu8Ja+5UtDxaR5wHnAUcBBwG/F5HDrLX6b+Z9IB6PU61Wt/rOx7F+5ng8TqJ/ClNfeCpP/3kpTri0q1Dv57Y4WOz4Uq5BuJSrHy4sVV+TxI4PEXSNoRbU+7sTHVkqVZeTzjqLqbNnEwQBsVhMJ2IoNQl22OK21g5Ya/8WPi4AjwDTt/OSc4DrrLU1a+1qYBWwcG8Uq3YsmUxSKBQQEVzXxRhDJBKpLzaVThPt7OaghS+g5ttwVEm9ZV3xbf0+HGVS8Q21oN7PXQ0Ib/XWdi2oX6Csd5UYjEQ56tSXUXFdXnD2ubR3dBAEAZlMRoNbqUmwSxcnReRg4FjgnnDTJSKyTESuFpGucNt04JktXraW7Qe92ovy+Tx9fX0YY+pBHY3ieR6e5zE8PEwmneao8y5gxkvPoGLqXSElL6DkBpTD4YHlsKukFAZ41Quo+j41L6A2duHSN7iBIYjEOPxF/0RucIjjXnY60+fPZ2RkhFgsxuDgoF6cVGoS7HRwi0gb8Evgg9baPPAt4BBgATAAfHXs0G28/B/mv4rIRSJyn4jc53mVXS5cbVtHRwe5XA7HcSiXy3ieRywWIxaL0dnZSblcJhKLMev0s/BjqfFx25XA1sdyB+Fz3z474sQ3VH1LNbBUxvq4jYVkkv5D5mGjEcr5UaYfcQQd2SydnZ14nkd3d7d+56RSk2CnLvmLSIx6aP/IWvsrAGvtxi32fwe4OXy6Fpi5xctnAOuf+57W2sXAYoD29im2Vtud8tVzlctlOsKuirFveR8bz+26LslkkiAIWPiaN1DJDXHzZz7F1r0Zz47nrk9/Z3yKu2/DafDGYCVCW0cXxBMMrF7DRV/+Mke9+MVUKhVEhGg0SqFQoKOjQ8Nbqb1sZ0aVCPA94BFr7X9vsX3L1YNeAywPH98EnCciCRGZAxwK/HXvlay2J5VKkc/nsdZSrVbxfR/HcXAch0wmQ7VaxVpLPp/nny58N2d86jP4kVi9NR2O5674BlciVLbYVg0MrnWo+gE131JDKFeqbFjzNG/99Gc59KST6isRJhIkk0l839c+bqUmyc60uF8IvBV4SEQeCLd9AjhfRBZQ7wZZA7wbwFq7QkR+BjxMfUTKxTqiZN+JRCJEo1Gi0ej4lPexx1vui0ajxBMJFr35X5h3/Mnc+q3/S35wM1D/gS5605v5849+iLVgjCWaSjPz6KN55O67MRYsQve0qbz5E5+ge+ZMorHY+PuOfWY0GtXgVmoS7DC4rbV3sO1+61u285rLgMv2oC61mxzHobe3d8L92WwWgEwmA0B/fz/9/f0cdcop/3DsGW9/527XEYvFdvu1Sqnt0ynvSinVYppkPrIlkcg1uogJxeN5qtUquVzz1lgulykWi01do+d5jIyMNPki+0FT/7+YSIwQ8SIkcolGlzKheDFOuVxu6v8Xq9Uq+Xy+qWvc3u+JNMMvUXd3t/23f/u3RpcxoVKpxObNmzn44IMbXcqEBgYGSCQSdHd3N7qUCT322GPMnTu3qbtRHnzwQY455phGlzEhz/O4444nGR4+vNGlTCiZzHHssTWmNfG3H61evZr+/v7xLsNm9JWvfIVcLrfti0TW2obf+vv7bTNbuXKlXbx4caPL2K7rr7/e3nXXXY0uY7suvfRSm8vlGl3GhIwx9pJLLml0Gds1NDRkjz/+MltfEqw5b1On3mFvuOGGRp+q7brqqqvsypUrG13GdoW5uM3M1D5upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYnYY3CKSFJG/isiDIrJCRD4bbp8jIveIyEoR+amIxMPtifD5qnD/wZP7R1BKqQPLzrS4a8Cp1tpjgAXAmSJyMvBfwBXW2kOBYeAd4fHvAIattfOAK8LjlFJK7SU7DG5bVwyfxsKbBU4FfhFuvwY4N3x8TviccP9pIiJ7rWKllDrA7VQft4hEROQBYBNwK/AEMGKt9cND1gLTw8fTgWcAwv2jQM/eLFoppQ5kOxXc1trAWrsAmAEsBI7c1mHh/bZa1/a5G0TkIhG5T0Tuq1QqO1uvUkod8HZpVIm1dgS4HTgZ6BSRaLhrBrA+fLwWmAkQ7s8CuW2812Jr7QnW2hNSqdTuVa+UUgegnRlV0icineHjFPAy4BHgNuD14WEXADeGj28KnxPu/4O19h9a3EoppXZPdMeHMA24RkQi1IP+Z9bam0XkYeA6Efk88Hfge+Hx3wOuFZFV1Fva501C3UopdcDaYXBba5cBx25j+5PU+7ufu70KvGGvVKeUUuof6MxJpZRqMRrcSinVYjS4lVKqxezMxclJZ4zhzjvvbHQZE9qwYQMDAwNNXeOaNWsYHh7GGNPoUiaUy+W49957yWQyjS5lQuVyual/zsVikWQyx9SpzVtjV9djrFlTaOrzODAwwLJly9i4cWOjS5nQ9n6XmyK4rbUMDQ01uowJjY6OUqlUmrrGUqnEkiUOhULz1jhrlstJJw1TrVYbXcqEhod93vrW5j2H0WiZaWfeS+ojv2p0KROKr+6gVPrnpv59qVarfGrkU1Sjzfv/Ys3WJtzXFMEdiUQ4++yzG13GhFatWkUQBE1dozGGTZumsGHDokaXMqGenmWcccYZdHV1NbqUbbLWcu21t7J6dfP+nBOJHB1Tv8Lqs1c3upQJTb1zKkcNHtXUvy8DAwOsP2U9o/NGG13KhNoibRPu0z5upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mB0Gt4gkReSvIvKgiKwQkc+G278vIqtF5IHwtiDcLiJypYisEpFlInLcZP8hlFLqQBLdiWNqwKnW2qKIxIA7ROTX4b5/t9b+4jnHvwI4NLydBHwrvFdKKbUX7LDFbeuK4dNYeLPbeck5wA/C1/0F6BSRaXteqlJKKdjJPm4RiYjIA8Am4FZr7T3hrsvC7pArRCQRbpsOPLPFy9eG25RSSu0FOxXc1trAWrsAmAEsFJH5wMeBI4ATgW7go+Hhsq23eO4GEblIRO4TkfsqlcpuFa+UUgeiXRpVYq0dAW4HzrTWDoTdITVgCbAwPGwtMHOLl80A1m/jvRZba0+w1p6QSqV2q3illDoQ7cyokj4R6Qwfp4CXAY+O9VuLiADnAsvDl9wEvC0cXXIyMGqtHZiU6pVS6gC0M6NKpgHXiEiEetD/zFp7s4j8QUT6qHeNPAC8Jzz+FuAsYBVQBt6+98tWSqkD1w6D21q7DDh2G9tPneB4C1y856UppZTaFp05qZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WJ2ZjjgpPN9n29/+9uNLmNCo6OjrF27tqlrfPLJJ5k1K01v77JGlzKhjo41XHvttSQSiR0f3CC+n2P+/Ob9OUciVbKrs8z/9vxGlzKh9ECau6t3s2HDhkaXMqHly5dzyOghuFm30aVM6Gn/6Qn3NUVwRyIRTjvttEaXMaG1a9fiOE5T1xiNRjn55G6OPvroRpcyoe99bw2XXvpiPK+90aVM6PTT/8b11zfvzzmfz/PLX27i7adte3qExWIxWGuRcPUJG6444UhkfNtkWrZsGSMjI5xyyimT/lm7a3R0lK8u/CozZsxodCkTWuQsmnBfUwS3iDBv3rxGl7FdK1eubOoaly9fzpQpU5q6xkwmQ6FwMLVaV6NLmYDFceJNfQ5zuRyZTIY5c+YwNDRU35jyyJdGyGY7eXDTbdxZvplCdRjjCxmnm1KtRLlW4h1zP0sylmJa2wy6Mj2Mjo4Si8UoFov09vYyODhIR0cH5XKZ3t5eSqUSkUgEz/MIgoBIJEKpVBrfl81m2bx5M729vQA4Tr3ndePGjUQikaY+j9lslhkzZjBz5kyKxSKpVIpSqUQsFiMajVKpVGhvbx/fV6vVEBFisRjlcpmOjg4KhQKpVArP80gkEtSnsEA8HqdYLNLW1kapVCKdTuP7PsYYEokEhUKB9vZ2yuUyyWQSYwy+7xONRkkmk9Qnoz97PrelKYJbKbVrKn6Rhyq3U/RHWZtfwVB1A8lcO2Ki9DtzmJ46mocH7yUaaWd++wKctggP5u7m5lU/5eWz38Bps1/FlOR0rLUkk0lqtdp4iIyFkzFmPIzGQmTsWBGhXC4Tj8fH7+PxeCNPyW4pFotks1mKxSJdXV34vo/neXR3dzM8PExXV9d4CFtrqdVq9Pb2Mjw8THd3N+VymXQ6TaVSQUQwxoy/59DQENlsltHRUaLRKI7jkMvl6OzsZGhoiI6ODvL5PCJCIpGgUqmQSCTGg3t7NLiVakGOOFz512/gBTVmdMxgbtdcEpEM3//DtXS0xzls9jSGnioxVFvBMfNH6I734wWGaalDWLFhGfhR+hJTePlhZwOMh87YY8dxMMbgOA6+72/12SIyfgzUQ31nwqYZpVIpisUi0WiUfD5PJBLBcRxGR0d53/vexwknnMC73/1uyuXy+J95ZGSEZDJJPp8nGo1SrVaJRutR6jjO+F9u2WwW13XJZDIYY7jmmmtYunQp3/72t8lms3ieN77PWrvToQ0a3Eq1pEQkzedP/Cbn/vQcNsUDVkVzpCVNt8wmXU1QXtPG4LoKj27YRCL9EMmhboa7B8lEu4k6cUbzVaquy8kzTiFqY2QyGUqlEiJS/6d/zOJWS8SiEZAkxloikQi1Wo1MJoPv+8RiMUqlEu3t7S0b3KVSia6uLvL5PG1tbQRBgOd5dHR0cMstt3DjjTcSBAFve9vb6OzspFar0dHRMd7iLhaLxONxqtUqwHiLu7Ozk5GREbLZLOvWrWPp0qV89KMfpVarsWTJEkZGRujo6KBYrH9HzVjYp1IpbXErtb+qVqvM7TuYn/3zzzj/52/k/jX3E/Oj9MS7sS4Y13D5+V/kLw/dzayOWfx2xW+ZPrOLNU9vJtHexsDmIaquz+W3foFPv+qzlEolOjo6qNVqxGyVH/7H8Rj//7d37mFyVVWi/+1T765HVz/yJpBAWgly5ZXECRgGEg1EeTo4PBS5ioyvcEcBCXx+AWTu3OFhEkZ8RAYQBgZBGRWQGQVF5bt3RjAkQBIh0khCmiTdnX5Ud9WpqvPY+/5xHqkOeXQi6erC/fu++uqcfU7XWVmVWmedtddeqwJC8bGvriOVn4yUknw+T6lUIhqNUigUaGpqYmBggKamJpqamuqtlgMmFovhOA6RSATXdb1JXf+JAqBcLrNs2TKWL1/OU089xQknnBDGox3HwTAMlFLhU0cQ9lBKEY/HefnllznzzDMpFAqAl0QQiUTCsFIsFgN2PeVoj1ujeRfT1NREb28v09JT+e7HVnPlD6+kZ6CHWW0dRFQEabn86P89QjqSplwxiUdjdD8f5egj5rCt53WG2npot6fzg188wuIZZ/KRD3yE3t5eknF44Rf/TKFoM/HwOXQc/yFErIlqtUokEqG/vz+cnGxtbaW3t5e2traG9bij0Si2bWMYBrZth/+Oe++9N/SiASzL4pJLLuHSSy/l/PPPZ8aMGdx6660opXBdNzTAsViMK664gu7ubh566CEefvjh0GgDuK7LXXfdxRVXXIGUkmg0Gs4jRCKR0cv9TvzjNRrN2GKaJplMBoA5yTn84NKHOPdfzuPVnk1ko1lSIkVVVOmt7mRH73b6d/bz0bln0R6fiiTC+zNzeOql/6Q1ESVhxBgeHqbQ08kTj99Bz5Y1TJx2Igv+dgX5iTMwhCASiSClpK2tLfS4+/r6yGazDe1xl8tlWltbGRoaIpfL4TgOlmXx0EMPYVkjc7y3bdvGrbfeypNPPkk6nWbNmjW4rjviHMMwePLJJ1FKsW7durddTynFXXfdxUUXXUQ+n6dYLCKEIJlMYllW6PHvD71yUqNpQALvTCmFIQxmtXbwq8//ilmT38NQZYhNO/7Imi1reXnry2QzOea+by5lu8yb3VsQUYOhtyxOO2oJmaYoyx9cyhvbOnmzcwOvrn+BBedcz98sfYC2yUci8B7jA4MSpAUKIYhGo0gpiUQib/MWG8UDD248iUSC/v5+TNMEwLbt8JyVK1eOWMOxYcMGnnvuubcZbfBi3GvXrh1htCdNmsT9998f7kejUSZMmIBt2zQ3N5NOpwHvKUqHSjSadzGGYVCpVBC+N2zbNpObJ/Pzz/2MJ9c/yc/W/wf/vfG/2NHXjWmV6JMRqhELaUlw4JVNf2Dx3DM4tf0CJs4XXLnyYt7bG+H4OYt4z0lLaMo0h0Y6yHoQQmBZFrFYDNd1icfj4STl7gYnePwf7wRpgENDQ7S2toYedxD6AM+I/+QnP6GlpWWPxnp/LFq0aMSNwHEcdu7cST6fp1AohB63TgfUaN7lVCqVMDRRJlo9QgAAGThJREFULpdJp9MMDg6SzWZZOGsRfzP3An6+9ufsGN6BVbHIJjOUzTLVsgVK4JzucPik6Syct5DWllZyO1rZ+l8v8eGPfYn2iVPp6+sjnU5j2zbRaDQ00kF+cjKZZHBwMFy4k81mGzKPO0gHjMW8cFEwQVhroFOpFAfb0Pwzn/kMt912G0899VQ4FolEyOVyI9IBwVu4oz1ujeZdTFNTE0NDQ4D3gw9W4wUx21KpxBknnEFhcJCmeJzyYB9v3v8tKp2vkJwyjaO/8g9YsRgRYOeO7exYt41EeiLTD5/FUH8/Ldkslm3T+cSPeeFHDyBiSY4+52856rSFtLS14bou7e3tFItF2trawjzmRqNarZLJZDBNk1QqFa5iTCaT4TmWZZFIJMLMkwPh3HPPBRgx0amUolQqkU6nw/F4PD7CK98fjaltjeYvnFKpFK7mK5fLZDKZMG84eO9e9xyi6w02P/lDYqk07//6KjBiiIiBu3MHryy/DlcYyIpEvrKeie8/kc2P3sfWZ3+NOTxEZvpM3nvexZx98wqkY/OHZ57mwU9fTLy5hYX/6yoyk6dyREcHhUKBVCoVTpY2ErXxe6VUGOL56U9/yuTJkxkeHmbLli2sXbv2bQuRRkNnZycnnXQSnZ2d4fXOP//8cE6gNvXwQOYFtOHWaBqQRCIxIsZtWRbJZBLbtkkmk+x89hdsWbGc6Rd9lvdd+38QAkqbXiGwDUoIjl2+EiWgsmM7Lb/7v1iWRUQYzFl6LURjVMsmVtnE7OtBKsURJ83l8JPmUejv599v+Bq56Ydz2TfuIJXLNazHHYvFqFarGIYRLuUXQozwkO+8807uvPPOg/r8q6++mm3btrFixQrAm5v48pe/TCKRQEpJPB4PbxYHokOdVaLRNCBBNkftAhApJUIIen/zc1674yZmXPI5cke+h+pbm6l2bUFUSohKCSolKJcov/4q5muv4AwPMnHefKZ+8K9pPnwm5d4dlN7aSqVvJ06phFM2sU2T6nCRylCBSCTCX1/6KYa2buXuL34hTGNrRIK0yiDeHBjSFStWHHRce3cCow3e97Z8+XIKBU+PxWKRcrkc1kEZrR4b8zap0fyFE2R1CCHClXymaSL6uun+6YMcft4nSLS2Iwt9GBgI4a8IBAQgUSC9baTCMou4SuFIcKVCKoVU3rYTvEuFi8R2IZ5I8cFLPslj/7yKb33m01zz0A/qq5CDJFi+nkwmGRgYQCnFt7/9bb7xjW+MCI20tLQQiURGpEUODAzs8TObm5uJxWLhjVRKGZ6rlOLuu+8mEolw4403hpkqruseUDqg9rg1mgYkiGkHlecKhQL55mZ2rF9Hrn0y6XwbsjgIFRNRLWJUTSLVEkbV9F6B910uQaUI5RLSLKHMIq5ZxDGLOKVhrFIRuziMVRzGKg1THfbeK8UhpGPz4cs/y0BXF8M9PfVWyUExPDxMPp/Hsiyy2Szf+973uPnmm0csvjnmmGNYu3YtXV1dvP766/T09LBmzRrmzp37ts+bPXs2zzzzDF1dXaxfv56uri6ef/55jjvuuPAc13X5zne+w2233ca2bdsolUqA5/2P1uPWhlujaUCCgkSJRALXdb20tsIgg7/9OUYqiT08ABUTVTah4hlqo2oSrZaIVE1ExYSqGZ7jmiVU2USWS8iyiTRNHNPEMYvYZgkreC+VsEpFrFKRaqmIXbGIpTP85uHG9LhTqRSmaRKNRunu7uaGG24Ycfx973sfq1evprW1NYyFDw0NMWHCBFasWEFHR0d4biKR4JprrqGjo4NqtUo2m8W2bSZNmsQ999zDvHnzRnz2ihUrKJVKYUconQ6o0bzLCUIj4P3gLcsiYQgqf/oDbYvOQpZLuIZBxBCee2ZAxIhgGCAVCKlAKpRUKClRrkJKcKVESnCkwpYKW0ls1wuhOFJ6Y1LhuP62gskzjsB+h+LBY41t2zQ1NVGpVPj85z8fZpcEbN++nWuvvRbXdTn66KP51re+RTKZxDRNTjjhBBYvXsxrr70GwOLFizn99NOxLCu8Idx0002sW7cOKSVbtmwZcW0hBF/60pf48Y9/TDweP6BUQ224NZoGpDZ9LUxpMwRKusiKiWOAYUSQhkAZAgyBiggIDJMEJRVSSqTrvTsSHFfiKLAdiaO8uLblSs+QuxJHSiwpsF2FLSW2K6mUivVWx0ETNDCIRqPcc889/Pa3v+WSSy4Jj/f39/O73/2Oo446iltuuYVIJIJpmiQSCarV6ohMkGw2y4QJE8Isn3Q6zQ033MCSJUtYu3bt2679zW9+k4svvnhEA4vRog23RtOAWJYVrlR0XZdkMkmlMIhbMql0byOVa8Y1IhgRgTBARAQIA4mBROEohSs9g+y4gVetcJTEcsEOPGrXm4wsl8tUbRsSKSypfMMNtnSpmiaNmVPCiKJOkUiEZ5999m3nzJ49m0ceeYRMJkM0GuXpp5+mp6eHfD7Pcccdx2WXXYbjOHzgAx/gueeeY/PmzaRSKc477zySySSPPfYYZ511Fi+99NKIz/3973/Pxz/+8dDDP5DMHG24NZoGJJlM0tPTgxCCdDrt9UHMZpAKhl7dSKTjaEQqCYbhe9p+JontIBJJXCU9w+s4lLZtpVIqUXEllquoOoqqdKk6EGubBNkcFbNM1bIQjovln2dLheW4bNmwgVlz5+1f6HFK0OmnWCyyevVqzjnnHDZt2sSmTZsAwvTA22+/HSEEfX19XHXVVZx88sk8+uijnH/++WF51s997nM8+uijrFy5EvDqkixfvnyEUZ42bRqLFi3iwQcfZNmyZTQ1NY26KmCANtwaTQMSNOsNFotks1mGi8Mcs+wf2fj1L+OuL9H+3mNRiTiuIXAFiKqJHBwgMmkq0nEZ7tyI6ygq1SpV26bqSqoOlB2XqiOpuBJ7xzZsIqh0M5HmPMqs4ESi2C5YrqRz/csY8SaO+eCCeqvkoAga+yaTSZLJJM8//zzt7e188pOfDM959dVX2bRpE88++ywXXnghl19+Oa2trWG6n+u6YfME13XJZDKcffbZ3HvvvaxatYrNmzeH9UgA8vk8q1at4sorr2TmzJlh16EDWYCjDbdG06C4rhv2ffS8xggi24LtSIxSif4/vEjzrKMxXIeIdBF2Fbv3Ldje5eVqS7ClxJKeB205nhft4uduK7CqFhXbpVIYprp1KxVX4sQSpCdPZdvmLQwPm8yY9x6OPfXUOmvj4Aga+1arVVpbW2lpaWHr1q1UKpVwURN4Xvcbb7zBLbfcwsaNG3n88cf5/ve/j1KKVCoVpg8ee+yxXHPNNVx33XU88sgjbwt/GIZBuVxm+/btzJ49O1zkE4vFqFQqYYbJ/hi14RZCRIA1wFtKqbOEEDOBh4FWYC1wqVLKEkIkgH8FTgL6gAuVUptHex2NRrN/gqXagfEOyqsWAZlMYlUrYDuUBgegNIQoDmMYAgOBQuEqiVSe4XYkfsx6V+zaCeLf0ouHS6lwlcKV4No2xYFBKmaZSCKJUo1Tf3t3MplM2I19cHCQeDzO66+/zsknn8wZZ5zB0NBQOIG5evVqlFI88cQTzJ8/n2XLloXd7tPpNEoprr76ah544IERRnvp0qWhRx4UB+vs7GTq1Knkcjlc1w0zUUbLgXjcfw+8AuT8/VuBVUqph4UQq4HLge/67wNKqVlCiIv88y48gOtoNJr9UK1Wwwp2pmnS1NTklVmd/T9o+eBiun/xUyQOqq+PqJAYjkQYAuEbbqlqDLFSXmzbVSMMuFMzeekob8LSVQrHVlQHCkgFkWSSs6/9algjpdEIQk6WZdHc3IxSigULFrBw4UIqlUrYmcYwDDo6OrjqqqsAuOOOO/jKV74SphNalhWukly5cmVotG+88Ua+8IUvkEwmw1WuyWSSSqUSVnUEwm7xoy2NO6oFOEKIw4CPAnf7+wJYCDzqn3I/cJ6/fa6/j398kWjU27FGM05Jp9MUi8URtaSbm5upigi5I2bhSKjakrJZply2MF1J2ZGYjvdediQVxzPWZVt5E5NSYvnpf7ZSVKXCcRWOEli+x21LiZHOeKGEeArbcZj/4TMasm0ZeOVxa3UYhDyGhoZIpVIMDQ2F3e1nz54d/p3jOGEvyUqlQiwWG9EEOKCjo4OWlhZisRiGYZDL5SiXyzQ3N4f1UQJP+0DqmY/W474DuBbI+vttwKBSKljM3wVM87enAVsBlFKOEKLgn79z1FJpNJp9Ypom2Wx2xHahUCCbzWLM6MCYMJXKji5sZRFBEDHwKwN6vppSI73uYHFNmC3iutiuZ7wtGeRzKxwXKgODSAHvX3Q6ydY2ent7yefzoTyNRFDnJcijDuYMotFo2ARYKUUkEhkxeSiECPOugxomta+AoBt8MGbbdpjnHYS4gjh67QTm/tivxy2EOAvoUUq9UDu8h1PVKI7Vfu7fCSHWCCHWvFNVuDSavxSCuGu5XA4nvILH+iNOOY3ktMMpu5KKnx3iediSiuNQcRzKjkvZcXcdD420P1HpKi+fOzDmfp63Lb0QSvuMmfxpw0bO+uJScrlcQ3a/gV2pgIFxrs3pDiowBtUXZ86cOaIxwi9/+UuAMEQSxL/7+voAr2XZscceGx4Lsk4Mw8B13RF/B+98HvcpwDlCiI8ASbwY9x1AXggR9b3uw4Bt/vldwHSgSwgRBZqB/t0/VCl1F3AXwKRJkxo1f1+jqQvBDz/48QcZEIHBmfPVm3nik2dTLheJCOFNTCrP61aABGRQBRCF43iZJJ5xljguWNIz5raUfvaJZ8AT2RwTZ72XCbNm0TplStjuqxEJmgTncjkKhQLxeJxYLBZ2Eurv7yebzWKaJvl8ngULFvDYY49RKpVYunQp06dPDw07QFdXV1gJ8KSTTmLKlClhnfSgpszAwEDYWT5oXWZZ1jubDqiUuh64HkAIcRpwjVLqE0KIHwEX4GWWXAY85v/J4/7+f/vHn1GNWqxXoxmnuK4b/tCDR3rTNInH45TLZfJHHkXT4TPp2fgihjCIhCVdJQoDJXwP0J+cdKXyS7gG9UhE6GnbUlJxvZCJJV2yuTxGPM7M444jm88zNDSEYRgN6XUH1QErlQr5fB4pJa7r0traGrZlK5fLZLNZlFJhfRiA3t5eent79/rZwVNQUHvbMAwGBgZIp9P09/eHMfQg7BI0Cx4Nf051wGXAVUKITrwY9j3++D1Amz9+FXDdn3ENjUazB9LpNMPDwxSLRaLRaJiPbJombW1tmKbJkm9/n6otqTouZdv1wyPKe7ckZdsLn1SDMIqrKLtQcQQVR2K5kqrrjduuxHJcWqYdTscpC0g2pVl80UUMDw/T3t7esJOT2WyWgYEB4vE4AwMDYV510AB5586dRCIRhoaGME2TuXPnMn369P1+7uTJkzn99NPDG0IikcAwjLAfaHt7e5jJkk6nAQ5IhwdkuJVSv1FKneVv/0kpNU8pNUsp9XGlVNUfr/j7s/zjfzqQa2g0mv1TLpdpamoilUqFRfiDFYCFQoFkMomKxjnu0s96htr1DLdp74pte9klrhf/dlWNEfeWtVcdSTWMdytyk6dx5Jx5bNu8mQ99+tMUhoukUikGBwdHtPpqJEzTDDuu53K5MKUxn8+H4RHXdUmn0ySTSU455RTuv/9+8vn8Xj8zHo9z9913c9ppp5FIJBgeHsa2bZRSYbbKwMCAl3fvd8ABDkiHuh63RtOAJBIJbNsOsxTK5XK4gi+TyXiNAVpaaZ9/KsaEKZQdhelITNdLCdyVFqh2bbuSiu16XrbjpQhWXRdLKuK5ZibO6qCvpxtzuMiRxx9PNpulWq2STqcPqLLdeCKZTFIqlYhGo5RKpTAdMLgJDg8PE4lEqFQqYU/K2bNns27dOu677z5yuRzZbJZcLkcul2PVqlVs2rSJ+fPnk81msSyLpqYmotFoWFcmKFHgOA5NTU0j6nGPFr3kXaNpQGqXYgcZEbW1M4JJy5nz5jPnU5/lmVW3Y5ul8O+VvxBHKW+S0iWId+OVcw0X4EiSre1kJk3BLJdJJJLc+vRToQy1k6KNSG17sYDa9mS1x4LyuYZhMHHiRJYsWcKbb76J4zjhykggnG8I6mtLKcPskdrvCLz5idqsk9GiDbdG04C4rhumqgWG03EcDMPAtu3wPR6Ps+Dyz+Mqxc/+99dRIwyUl2HiKryc7mBZu9pVl9tRAsNVFAYGmDFlCp+9/XYMvxJetVoNc5KFEA3Z6b3W6AarG8HzxINyuTDSGw6O1S6cqU3ps22bWCwWZorYth3+rWVZ4bHgO6u9UYwWHSrRaBqQIGe7UqmExf2DsaBrefCobxgG8y75FBd845scdsJcL57tv6bNmUdy0mQqrvRfio5TT6Mq8ZbAS6iYZU788If49D/9E00tLSQSCaSUZDIZqtUqmUymITNKgNCwBothAuNZa3SDpeqBBx5U8gvCKkFuthACwzCIxWJhM2cpJdFoNDwei8VwHGfEseCGdyBPLY13i9RoNAC0trYC3iN8KpVCCBGOtbS0IIRg6tSp4fGFn/qfLPj4hbg1HmAkFkNKF+nu8sSj8Th2TbNcgHgySTyZDL3DXC6HEIK2traGzeEG7waYSCRG6BB2hUuCY7UE3dj3dCxgX3Hrg4lp74423BpNgxIs+oBd1fn29x7JZEb12Uk/RW139va5jUqwiCnYrh3ffWw0x8YKHSrRaDSaBkOMh0WNLS0t6tJLL623GHulWq2Gq6jGK4VCgWg0Gibzj0e6u7vp7m5HqfGbgZDPv8URR0zb/4l1wnVd+vr6mDhxYr1F2SulUgnXdcnlcvs/uU709fWRyWRGvVKxHjzwwAMMDAzs0a0fF4ZbCNELlBi/FQTb0bIdDFq2g0PLdnC822Q7Qik1YU8HxoXhBhBCrFFKzam3HHtCy3ZwaNkODi3bwfGXJJuOcWs0Gk2DoQ23RqPRNBjjyXDfVW8B9oGW7eDQsh0cWraD4y9GtnET49ZoNBrN6BhPHrdGo9FoRkHdDbcQ4kwhxCYhRKcQou5NF4QQm4UQ64UQLwoh1vhjrUKIp4UQr/nvLWMky71CiB4hxIaasT3KIjy+6evxZSHEiXWS7yYhxFu+/l70W94Fx6735dskhDjjEMo1XQjxayHEK0KIjUKIv/fH6667fchWd73510oKIZ4XQrzky/d1f3ymEOI5X3ePCCHi/njC3+/0j8+og2z3CSHeqNHd8f54PX4TESHEOiHEz/z9Q6O33bsTj+ULiACvA0cCceAl4Jg6y7QZaN9t7DbgOn/7OuDWMZLlVOBEYMP+ZAE+AvwnXrPmvwKeq5N8N+G1t9v93GP87zcBzPS/98ghkmsKcKK/nQX+6F+/7rrbh2x115t/PQFk/O0Y8Jyvkx8CF/njq4Ev+NtfBFb72xcBj9RBtvuAC/Zwfj1+E1cBDwE/8/cPid7q7XHPAzqV103HwutfeW6dZdoT5wL3+9v3A+eNxUWVUs/y9kbLe5PlXOBflcfv8Jo5T6mDfHvjXOBhpVRVKfUG0In3/R8KubYrpdb628PAK8A0xoHu9iHb3hgzvfkyKaVU0d+N+S8FLAQe9cd3112g00eBRUIcmiIe+5Btb4zpb0IIcRjwUeBuf19wiPRWb8M9Ddhas9/Fvv8TjwUKeEoI8YIQ4u/8sUlKqe3g/fCAeq433pss40mXS/1H03trwkp1kc9/BD0BzzsbV7rbTTYYJ3rzH/dfBHqAp/G8/EGllLMHGUL5/OMFvB60YyKbUirQ3T/6ulslhAjWsY+17u4ArgWCUottHCK91dtw7+kOU+80l1OUUicCS4AvCSFOrbM8o2W86PK7wFHA8cB2YIU/PubyCSEywL8DX1ZKDe3r1D2MjbVs40ZvSilXKXU8cBiedz97HzKMqXy7yyaEOBa4HjgamAu04jUyH1PZhBBnAT1KqRdqh/dx/T9Ltnob7i6gtmXyYcC2OskCgFJqm//eA/wE7z9ud/CI5b/31E/CvcoyLnSplOr2f1wS+Bd2PdaPqXxCiBieYfw3pdSP/eFxobs9yTZe9FaLUmoQ+A1efDgvhAjKQNfKEMrnH29m9OGzd0K2M/3wk1Jew/LvUx/dnQKcI4TYjBfyXYjngR8SvdXbcP8e6PBnXuN4QfrH6yWMECIthMgG28BiYIMv02X+aZcBj9VHQtiHLI8Dn/Jn0v8KKARhgbFktxji+Xj6C+S7yJ9Nnwl0AM8fIhkEcA/wilJqZc2huutub7KNB735ckwQQuT97RTwIbw4/K+BC/zTdtddoNMLgGeUP+M2RrK9WnMzFngx5Frdjcn3qpS6Xil1mFJqBp4de0Yp9QkOld4O9Szr/l54M79/xIujfa3OshyJN4P/ErAxkAcv9vQr4DX/vXWM5PkB3mOzjXeHvnxvsuA9en3b1+N6YE6d5HvAv/7L/n/OKTXnf82XbxOw5BDK9UG8x86XgRf910fGg+72IVvd9eZf6/3AOl+ODcANNb+N5/EmR38EJPzxpL/f6R8/sg6yPePrbgPwILsyT8b8N+Ff9zR2ZZUcEr3plZMajUbTYNQ7VKLRaDSaA0Qbbo1Go2kwtOHWaDSaBkMbbo1Go2kwtOHWaDSaBkMbbo1Go2kwtOHWaDSaBkMbbo1Go2kw/j9xVD2Fpt2DzwAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" @@ -289,8 +289,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiCKbCC6tuwVFZSkiqC1SXHAB259VYhUVqtWKKCIg7igoBa2CK/AFsWVTgQAJSAiBJGSZfeac5/dHJikICSgJZyZ8Xl5zJXMyM+cmydyePGd5lNYaIYQQkcNmdQAhhBC/jBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhGmw4lZKXa6U2qqU2q6UerCh1iOEEKca1RDHcSul7MA24BJgD/AtcJPW+od6X5kQQpxiGmqLuxewXWu9U2vtB94CrmmgdQkhxCmloYo7C/jpkPt7QsuEEEKcoKgGel11lGWHjckopcYB4wAcDkeP7OzsBopy4nw+H5WVlTRp0sTqKLUqKyvD4XCQkJBgdZRaFRYWkpmZid1utzpKrXbv3k2rVq2sjlGrYDDIgQMHaNGihdVRauV0OgkGg6SmplodpVYHDhwgOTmZmJgYq6PU6vvvv8fj8RytS0FrXe83oDfwySH3HwIequ3xmZmZOpzl5ubqWbNmWR2jTh988IFetWqV1THq9Nhjj+nS0lKrY9TKNE09fvx4q2PUqaSkROfk5Fgdo07ffPONXrRokdUx6jRz5kydm5trdYw6hXrxqJ3ZUEMl3wIdlFJnKKWigWHAhw20LiGEOKU0yFCJ1jqolBoPfALYgVe11t83xLqEEOJU01Bj3GitlwJLG+r1hRDiVCVnTgohRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEiTKMt7ry8vOprgYclwzDYvXu31THq5HK5OHDggNUx6nTgwAFcLpfVMeq0e/duDMOwOkattNbk5eVZHaNOfr+fvXv3Wh2jTmVlZZSVlZ2UdTXY1QGtsnXrVr7++ms2bdpEt27d6N69Oz179rQ61mG++OILtm7dytatW+ncuTOXX345LVu2tDrWYd5++20KCgqoqKigZcuWjBgxIqxmC/H5fMyfP589e/aQlJREVlYWw4YNszrWYQoKCli2bBk//PADHTt25Mwzz2TgwIFWxzrMunXrWL9+PRs3biQ7O5u+ffvSqVMnq2MdZsmSJeTn51NQUEC7du0YMmRIWM2uo7Vm7ty5FBYWAtCiRQtGjRqFUkefvKY+NLot7q+//po1a9bwl7/8hZ07d/LBBx9YHekIs2fPxu12c//997Ns2TI2b95sdaQjPProo3Tp0oXrrruOv//977jdbqsjHcbj8TBjxgyuvfZaunbtyqOPPmp1pCN8//33LF26lEmTJuH1ennllVesjnSERYsWsXPnTh555BHWrl3L119/bXWkIzz11FNkZGQwZswY5s+fz759+6yOdBjTNJk6dSr9+/enX79+TJ06FdM0G3Sdjaq48/Ly2LRpEzExMVx99dU8+OCDxMbGsnLlSquj1Vi4cCG9e/fm448/5uGHH+aFF15gwYIFlJeXWx2txuTJk/nb3/7Ggw8+yKpVq1i0aBG33Xab1bEOc9tttzF58mRGjx5NamoqL7zwAg899JDVsWpUVFQwb948unbtyhVXXMGIESPo27cv7733ntXRaqxatYro6Gh27tzJqFGjeOKJJ9i8eTM7d+60OlqN5557jjvvvJNnn32WefPmMX/+fCZPnhxWQ0/jxo3j6aefZvz48ZSWlvLee+8xbty4Bl1noxoqadOmDd26dWPHjh0sW7aMefPm4fV6ufDCC62OVuP6669n1KhR3HrrrVx66aXcf//93HzzzSQnJ1sdrcbUqVPp3r07c+fOJS0tjRtvvJGlS8NrToyXX36ZSy+9lPfff5+Kigpuu+02NmzYYHWsGklJSYwcOZK3336bzz77jBUrVrBy5Urmz59vdbQavXv3ZunSpVx44YX8/ve/58knn6Rr166cccYZVkercddddzFw4ECeeOIJOnbsyLhx43jyySex2cJnm/Oll14iOzub999/H6h6j2/cuLFB19moilspRffu3cnLy+PZZ5/F6/Vy0UUXNehY0y+llOKqq65iw4YNbN26lczMTNq1axdWGW02GyNHjuSDDz7AZrMxePBg4uPjrY51mNjYWC699FLmzp2LaZqMHDkyrN7MSinatm1L8+bNef755/H7/Vx99dVh9XNWSjFgwAC++OILnn32WQC6d+8edhlvueUWPvvsM7788kuys7Np2rRpWGW02WzccMMNvPnmmwDccMMNDf672KiKG6Bnz5707NmTlStXcuGFF4bVD7ja0KFDue666/juu+84//zzrY5zVPfddx8lJSWUlpbSoUMHq+McIS4ujpycHHJzc0lLS6NJkyZWRzpC+/btycnJYe3atZxzzjk4HA6rIx3hkksuYfDgwaxatYo+ffpYHeeoxo4di8vlYseOHWRnZ1sd5wg2m41HHnmEPXv2AJyUAw0aXXFXC9dfwmpRUVFhW9rVMjIyyMjIsDpGncLxfyo/16tXL6sj1EkpFfbvl4SEhLAs7UOdzCPDwudvSyGEEMdFilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEizAmd8q6UygcqAQMIaq17KqXSgbeBNkA+cIPW+uCJxRRCCFGtPra4B2qtu2utq6eZeRBYrrXuACwP3RdCCFFPGmKo5BpgbujzucC1DbAOIYQ4ZZ1ocWvg30qp75RS1VM+NNNaFwKEPmae4DqEEEIc4kQv69pHa71XKZUJfKqU2nK8TwwV/TiAxMREcnNzTzBKw9mzZw9lZWVhnbG4uBjTNMM6o8vlIi8vj+LiYquj1Mrv94f197CiogKXyxXWGfft2xf275eysjJ++ukntNZWR6lVXfNWnlBxa633hj7uV0p9APQCipRSLbTWhUqpFsD+Wp47C5gFkJGRob/44osTidKgysrK2LNnD+GccceOHcTHx1NSUmJ1lFoVFxezatWqsJot/uecTmdY/5y9Xi+rD6xm8ReLrY5Sq/jCeAZ5BjX4hLknoqCggO+++47t27dbHaVWdX7/tNa/6gYkAEmHfL4KuBx4CngwtPxBYNqxXiszM1OHs9zcXD1r1iyrY9Tpgw8+0KtWrbI6Rp0ee+wxXVpaanWMWpmmqcePH291jDqVlJToHjk9NGH8X/NvmutFixZZ/a2q08yZM3Vubq7VMeoU6sWjduaJbHE3Az4ITQ0WBbyhtf5YKfUt8I5SagywGxh6AusQQgjxM7+6uLXWO4Gzj7K8BBh0IqGEEELUTs6cFEKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhGm1xL1y4MKynJfL7/SxZssTqGHUqKChg3bp1Vseo03fffUdBQYHVMeq0ZMkS/H6/1TEiWnl5eVjPTASwdetWtm7delLWdaJzToadL774gtmzZ9O7d29GjRrFVVddxdCh4TWXw8yZM1mzZg3du3dnxIgRTJo0iezsbKtjHeaee+7BMAzS0tJ47rnnePHFF0lISLA6Vg23280dd9xB27ZtKSsrQynFjBkzrI51mE2bNjFt2jR69uzJ7bffTq9evbjzzjutjhVxcnJy2L17N23btmX27Nk8+eSTnHbaaVbHqmGaJuPGjaNJkyZorSkpKWHWrFnYbA23XdyotrgNw2Dr1q107tyZG2+8kSuvvJINGzYQDAatjlbD7/ezZs0ahg4dyvDhw8nKyiI/Pz+s/jrweDx888033Hnnndxxxx01k7+Gk+rJXkePHs0999zDypUr8Xg8VseqobVm165dNGnShJtuuolbb72V//u//5Mt71/I5/Px5ZdfMnbsWEaPHo1SiqKiorB6v7jdbjZs2MDYsWOZMGECmzZtwu12N+g6G1VxFxQUsHXrVoqKihg5ciSDBw8mOjqa//znP1ZHq/Hvf/+b7t27M3v2bB577DHuuOMOPvroIyorK62OVmP69Oncfffd/OEPf2DZsmVMmzaNKVOmWB3rMFOmTGH48OGMHj2aAwcO8Oc//5lnnnnG6lg1nE4nixYtIjk5mWHDhnHWWWfRo0cPPvnkE6ujRZR58+Zx0003MWXKFF599VUmT57M9OnTw2oi4ilTpnD33XczduxYNm3axNNPP93g75dGNVTSqlUrOnfuzLJly5g9ezYPPPAAmZmZ9OrVy+poNa688kpGjBhBhw4duOOOO7jtttu47777SE5OtjpajSlTpnDWWWcxefJkWrduzdChQ1m7dq3VsQ4zY8YMevbsyauvvsqPP/7I1KlT2bJli9WxaiQlJXHDDTcwbdo0Xn31VaZPn86uXbuYMGGC1dEiytixYxkwYADXXXcdAwcOZPjw4bz++uvY7Xaro9WYPn06bdu25fnnn8fv93P77bezc+fOBl1noypugMsvv5zTTz+dSZMmccstt9CuXTurIx3h/vvvJz8/n6lTpzJp0iR69OhhdaQjvPTSS2zbto3ly5fz/PPPk5iYaHWkwyQkJPDCCy+wYsUKsrKymDVrltWRjnDuuecyadIkcnJyuPrqqxk2bJjVkSLSU089RV5eHnPnziUnJ4eWLVtaHekwNpuN2bNns3HjRgBmz57doOPb0AiLu2XLlrRs2ZILLriA5ORkQrPQh5Vu3brRtWtXBgwYEFZb2ofq378/vXv3JhgMEhcXZ3WcIzgcDi677DL69+9PVFQUDofD6khHaNKkCZdddhm9e/cmKSkpLH8XI0GvXr3o0aMHV1xxRdhtQAAopRg8eDD9+vUDICYmpsHX2eiKu1pKSorVEeqklArb0q7mcDjCshAPFY7/U/m5cP85RwK73R6WpX2ok1HY1RrVzkkhhDgVSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMFLcQggRYY5Z3EqpV5VS+5VSmw9Zlq6U+lQplRv6mBZarpRSzymltiulNiqlzm3I8EIIcSo6ni3u14DLf7bsQWC51roDsDx0H+A3QIfQbRzwYv3EFEJEEjm9v2Eds7i11l8BpT9bfA0wN/T5XODaQ5bP01X+D0hVSrWor7BCiMgQTtfLbox+7Rh3M611IUDoY2ZoeRbw0yGP2xNaJoQQop7U987Jo/19dNT/9Sqlximl1iml1oXTzCVCCBHufm1xF1UPgYQ+7g8t3wOcfsjjWgJ7j/YCWutZWuueWuuekXCFNyGECBe/9rKuHwKjgCdCHxcfsny8Uuot4HygvHpIpS6GYbBo0aJfGaXhFRcXs2PHjrDOuHnzZnbt2kVRUZHVUWq1b98+Pv7447C+FGtFRUVY/5zdbjcJhQm0XdTW6ii1SspPYrNrc1iPc+/cuZOoqCg2b9587AdbxDCMWr92zOJWSr0JXAQ0UUrtAf4fVYX9jlJqDLAbqJ5GfSnwW2A74AZGH09Av19x553NjuehloiPNxk1Kp5mzcI3465du5g5M4WysvDN2L59DNde2zSsZov/uaioqLD+OTudTs6LOY8nmj1hdZRabTm4hUpbZVh/H+Pj43k8/XHczRp2Ut8T4Ve1Tyx9zOLWWt9Uy5cGHeWxGvjjcSereZ6Nfft6/9KnnTQpKdtp0aKE3r3DN2NRURFlZc3C+vvYsuVyevToQVpa2q96fjAYZObMmTz++OOHLZ81axa//e1vT3i6KK01b7zxRlj/nEtLS/n222/DOqNpmhQXF4d1xo0bN1LSrYTy9uVWR6lVoq32iSMa7Qw4onHx+/28+uqrTJgw4Yg/wa+++mo+/PBDLr/8cqKi5FdaNH5yyrsIe4FAgOnTpzNx4sSjjptqrRk5ciTz588nGAxakFCIk0uKW4Q9m83GokWL8Pl8tT7m4MGDrFixosFn1xYiHMhvuQh7mzdv5sCBA8d8XH5+Pnl5eSchkRDWkuIWYc/hcBzX2PXxPk6ISCfFLcJehw4dSEpKOubjmjVrRlaWXGFBNH5S3CLs2e12cnJycDgctT6madOmTJw4EbvdfhKTCWENKW4R9mw2G/369eP8888/6hZ127ZtufDCCzn33HPlcqLilCDFLSJCXFwc8+bNo127doeVs1KKrl27MnfuXBnfFqcMKW4R9rTWBINBxo4dy1dffXXYsdxaaz788EPuuusutNZhfX0MIeqLFLcIW1prDMNg/fr19OnTh+XLl9f62DfeeINrrrmG3NxcTNOUAheNmvxtKcKS1hqXy8Ubb7zBa6+9xrp16+p8vGEYLF26FK01N954IzfddBN2u13GvEWjJMUtwo7WGtM0eeihh3j++eeP+3mmabJ06VI+/vhjCgoKmDRpEjabTcpbNDoyVCLCjt/v56677mLmzJm/+LnVwyuPPfYY06ZNk2uXiEZJiluEFZfLxUMPPcRLL710QqXrdrt5/PHHmT17NoFAoB4TCmE9KW4RNgKBAH/961+ZMWMGpmnWLI+Kijqui0dFRUUddgKO0+nkzjvvZObMmbKzUjQqUtwW8Xg85OTkWB0jrEyePJlnnnnmiOXDhw/nzDPPPObz+/Xrx6BBg44Y037wwQd59tln6y3nL/X444/jdofvTCtaayZPnmx1jDrt27fvVw2dNVZS3Ba45557uOiii8jOzuass87iyy+/tDqSpYLBIPfddx/PPffcYVva8fHxXHvttUyfPp309PQ6X0MpRatWrViwYAFLly4lMfF/s4e43W4efvhhXnjhhcNev6F9/fXXdOrUia5du3LxxRczceLEk7bu4/XMM8+QnZ3N4MGD6dy5M2+99ZbVkY5w4403Mnr0aKKjo+nYsSM7duywOpLlpLhPsoKCAgzDYNKkSWRlZTF58mS2bdt2yo7Daq1ZvXo1H374IX5/1Rx7Sik6duzIihUreOutt0hNTT3u12vSpAmXXHIJb7zxBq1bt67Z+na5XLz22mvk5uaelGGTQCDA1q1buemmm0hMTOSdd97BNE0KCgoafN3Hq6SkhPLycu655x5iY2OZMWMGBQUFuFwuq6PV2LFjB/Hx8UyYMIELLriAsWPHsn79+lN+6EuK+yQrLCwkLS2NTZs2sX79elq3bs2ePXtO6aMfAoHAYVvC3bp14+9//zs9e/YkJibmFx/OZ7fbueSSS8jJyaFVq1Y1y4PBYJ0zZ9enYDDITz/9hNaaL7/8kujoaNLT0yksLDwp6z8epaWl2Gw28vPzWbt2Lc2bN6eysjKsinvnzp20adOG1atXs2XLFjp27MiPP/4oxW11gFNNz5492blzJ6tXr+bcc89lzJgx9O7dm7i4OKujWUIpRa9evXjkkUfIyMjgnHPOYf78+Vx88cUndKW/2NhYrr/+et555x2aNWtGhw4dePTRR2nbtu1JOa47Li6OPn368Prrr3PttdcyatQocnNz6dmzZ4Ov+3h16NCBYDDIsmXLuPLKKxk+fDhZWVlkZmZaHa3GJZdcwooVK8jPzycxMZE777yTIUOGnPIzHckJOBZ48cUXKSsrY/Lkyaxdu/aw8dhTUWJiIjfeeGPNZL8/HxoxTfOYY9PVJ+1orWuKOS4ujl69evH999+jlCI5OfmkXohq4MCBfPvtt9xzzz3Mnj37V89u35CmTJnC3Xffzbhx4/jqq6+Ij4+3OtIRlixZQn5+PvPnz2fTpk0kJydbHclyUtwWSEhIICEhgblz51odJWw4HA6aNGly1K8Fg0HOPvts1q5dW2uBx8bG1mxB/vy63RkZGfWe93g4HA7S0tKYM2eOJes/HnFxccTFxbFw4UKro9QqKSmJbt26MW3aNKujhI1T++8NERGio6OZMGFCnVvL6enpjBw5ss7JFoRoLKS4RUQ41hCHUkpmvxGnDCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEeaYxa2UelUptV8ptfmQZY8opQqUUutDt98e8rWHlFLblVJblVKXNVRwIYQ4VR3PFvdrwOVHWT5Da909dFsKoJTqDAwDuoSe80+llBxcK07YsS4qdKpfdEicWo5Z3Frrr4DS43y9a4C3tNY+rXUesB3odQL5hAA44hoaUVFRh52UY7PZiImJOdmxhLDEiYxxj1dKbQwNpVRfPScL+OmQx+wJLTuCUmqcUmqdUmpdIOA5gRjiVJCZmVlzMS6Hw8GTTz7JfffdV1PeKSkpll2TRIiT7ddeZOpF4DFAhz4+A9wKHO16mUf9G1ZrPQuYBZCU1Ez7fL8yiTglOBwOVq9eTTAYRClF+/bt8fv9jBw5Eq01sbGxJ+VyrUKEg19V3FrrourPlVIvA0tCd/cApx/y0JbA3l+dTogQm812xLyTDoeDs846y6JEQljnVw2VKKVaHHL3OqD6iJMPgWFKqRil1BlAB2DtiUUUQghxKHWsvfFKqTeBi4AmQBHw/0L3u1M1DJIP3K61Lgw9fgpVwyZBYKLWetmxQqSkpOszz7zn1/4bGpzD4aJLl2Jat25tdZRa7du3jw0bYvB6w+9i/dXS0rbRu/cZYX3p1U2bNtGtWzerY9QqEAiQn59Phw4drI5Sq9LSUvx+P82bN7c6Sq3y8/P5oekPBBLCd67XbdO3UV5aftTxv2MW98mQlJSp/f6tVseoVXJyPqedtpItW26xOkqtWrf+mH/+syk9evSwOkqt/v73vzN69GhSUlKsjlKrKVOmkJOTY3WMWpWVlTFv3jwmTJhgdZRarVu3jpKSEi67LHxP45g/fz79+/cP642xjh07sn///qMWd5jMgKPw+8N3SzEQKMEwYsI6o2HEkZCQEJbTY1VzOBykpKSEbUatNXa7PWzzQVXG6pl1wlV8fDxutzusM8bExJCYmBjWGeva2S6nvAshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxi6OqqKhgxYoVTJ8+nbKyMkzTtDrSYbTWlJWVMWPGDJYvX05FRYXVkY4QCAQoKytj9OjRFBQU4HK5rI50BK/Xy8GDBxkyZAhlZWX4fD6rIx3B6XSyefNmHnjgAcrKyjAMw+pIh9FaU15ezptvvsmbb75JeXk5DT2zmBS3OKqePXuydOlSmjZtSvv27SkvL7c60mHKy8tp3749GRkZfPzxx2E5ZdsXX3xBz549ueuuuxg9ejS333671ZGOkJOTw6WXXsoTTzxB3759mTdvntWRjnDFFVfwxBNPcPHFF9OlSxdyc3OtjnQY0zTp0KEDe/bsYc+ePXTo0KHBN3SkuMURFi5cyM0330xCQgItW7ZkxowZzJkzx+pYh5kzZw7jx49nx44d3HHHHYwZM4b33nvP6lg1PB4PK1euZPjw4Xz44YfMmzeP9u3bs27dOquj1di+fTt2u50rrriCf/3rXyxYsICCggL2799vdbQan332GQMHDqRdu3a43W5efPFFFi5cGFZ/Ab722mv84Q9/wOl0MnjwYP7yl7/w2muvNeg6pbjFETp27Mi2bdvo27cvrVq1YvPmzWRnZ1sd6zDZ2dn89NNP9OvXj9TUVH744Qc6depkdawaUVFRtGzZEqUU/fr1IxAIcPDgQVq0aGF1tBppaWmYpkmrVq0477zzKCoqIikpifj4eKuj1WjTpg27d+/m/PPP58wzz2Tbtm107NixzvkYT7bs7Gxyc3Pp168fzZo1Y8OGDQ3+fpHiFkfo2rUrBQUFzJs3j/fee4/333+f8847z+pYhznvvPP46quvWLduHXfffTd5eXl07drV6lg1HA4HHTt25M0338TlcjF06FCUUmRlZVkdrUZGRgYpKSnMmDEDr9fLxIkTycrKIjEx0epoNdq3b4/L5eIf//gHa9as4eWXX+acc84Jq+Lu0aMHGzZsYNmyZTz99NOsXr26wYfuwmSWdxFuvvzyS77//nt+/PHHsBtTBEhOTiY3N5f33nuPK6+8MqxKu1q/fv3YsmULOTk5rFixIqy2ZKvde++93HPPPUyePJkffvjB6jhH9fbbb1NYWMjixYvZunWr1XGOYLPZ2Lx5M1988QVKKaZPn97g65TiFrXq0qULXbp0sTpGnYYMGWJ1hGOaMmWK1RHqpJTib3/7m9Ux6tSiRQvuuOMOq2PU6aKLLjpp65KhEiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBHmmMWtlDpdKfW5UupHpdT3Sqk/hZanK6U+VUrlhj6mhZYrpdRzSqntSqmNSqlzG/ofIYQQp5Lj2eIOAvdqrc8CLgD+qJTqDDwILNdadwCWh+4D/AboELqNA16s99RCCHEKO2Zxa60Ltdb/CX1eCfwIZAHXAHNDD5sLXBv6/Bpgnq7yf0CqUip8LtAghBAR7heNcSul2gDnAGuAZlrrQqgqdyAz9LAs4KdDnrYntOznrzVOKbVOKbUuEPD88uRCCHGKOu7iVkolAguBiVrruq5af7SrvxxxVXGt9SytdU+tdU+HI+54YwghxCnvuIpbKeWgqrQXaK3fDy0uqh4CCX2svojvHuD0Q57eEthbP3GFEEIcz1ElCpgN/Ki1PvSyVx8Co0KfjwIWH7J8ZOjokguA8uohFSGEECfueK4O2AcYAWxSSq0PLZsMPAG8o5QaA+wGhoa+thT4LbAdcAOj6zWxEEKc4o5Z3Frrbzj6uDXAoKM8XgN//OVRGnZyzfoR/hkbepLS+hDuGcM9H0jG+hIJGY9GhUPwlJQ03b37cKtj1Mpu95OS4iQ6Ot3qKLUKBitITY0Ky4v1V9u/fz8ZGRnY7Xaro9Rqz569REWdZnWMOhgEbHtxZDqsDlIr022SGEwkOTnZ6ii1Ki0tJTExkejoaKuj1Or111/n4HFfJVsAACAASURBVMGDR91oDoviTkpqpp3OIqtj1ColZTtPPfU5Y8eOtTpKrRYtWkSzZs04//zz8fl8OByO/02oajPZ59vFwWAR2tREEQ0oPAE38fZk2iV3QZl2oqMdGIaBUopgMIhSCpvNRjAYJDo6uuZj9esHg0Hsdvthj1VK1Tzf4agql+pppqZOncof//hH0tLSLPou1U1rzQ03TOC99/5hdZRaxcSU0vUvl/Ld5O+sjlKr5iubM7N4Jtdcc43VUWr10ksvMWjQINq3b291lFo1a9aMoqKioxa3zIDTyBiGQUlJCbFJ0aw9uITM2NYEbV52ODdQ6N9FpddJpbec0+La4fF7yHS0JDf2R/JKtjP+/Cn4fQGUUjidTpRSxMTE4HQ6adKkCU6nk/T0dMrLy0lPT6eiooKEhATKyspwOBxER0cTHR1NVFQUTqczbAtaiEgnxd3IbC/bwMKDM1Dlin2+XTh0LMGgJoE0msRkkUoaZW4XHjNAekxLMB0s2/E+cVFJPLbifoZ1HcNp8aeTlJSE1ppgMEhGRgYul4uYmBiKi4tJTEykoqKCuLg4fD4fqampaK0xDAO32w1AdHQ0JSUlpKamEhUlv2ZC1Cd5RzUyTeNb89by/5Iem05202zaZnZi59585n7zJu3PTKFpQiK5GwuxZwXp07k/9mAscVGplFYWExOfxKtrX+SKs66lS9rZREU5cDgcHDhwgMzMTFwuF+kZGZSWlJCSkkJ5eTkJCQlUVFTgcFQ9NiEhAZvNhsvlIi0tDZtNLkApRH2T4m5k4ohn1hWvcv+/J/GvH5bxyebPiDGjaZbWHP+BGHyVTeiQ2Zq9ZXkYZSar16+mZdd0tu/bS/sMP2Xucrw+g3YDOpEaFYdSisTERPx+P77KQrZt+ZDKikrSM0+jSdtBGIZBbGxszTi23+8Hqma+9nq9xMXF1XxNCFE/ZHOokbHZbJyZ3p6HL56CLUqxo2QHBz0HSYxNwO134w64OD3zdM5q0p1kT3vaJHemcptG+U3s+Ni9fy+fbFpOzpKpQNUOO9M0QRsU/PAJX7w1ke+WPsx3/34GFdqvbZompmnWHFpls9nQWkfsoVZChDsp7kbG4XAQ8Afo3bI3C29eSJPEDGx2O2XechzRUfgMPz/s+Z4DlQfYunsLX69bTev4rlzdbAQblm/lvE6nE19p591l7xIIBgCorChj/65v+epf/6DMHcN5Q2Zzya0LCBhVR5X4/f6aI1iqd1Kapilb20I0EBkqaWTKy8trxqPPat6ZlRO+4fpXhlBYUkiMjiZaxxBLDAdKDqD9Js3SmmNog6L9xVx97o2U/VhGSkwZvpQ4dvy0jU5ndOHLD55my3dLOP2Ms+g7eBxde11JRUUFifHxeL1e0tPTMQyDQCCA0+lEa018fDzFxcVkZGTIzkkh6pm8oxqZ6p2FUVFReL1emsU359WbXuWjTR/x4ooX2VtaCH5NUlQSnbM6E62i2V+2n/ioOCorKlEGJJW3oTK5jL8unsjQdjey/ceNpDbvzFVj/k5Gs9Z4vV7i4+Px+/04HA7cbnfN8dtxcVVXejQMg6SkJNk5KUQDkOJuZKp3CAYCgZqTcDo2PZMzB95Nr6zzKHIV8fh7j1NQvJedRTtIj80gmmhKiovxuQN4nR7uvPZO7rpwPOXxe3htxpOk7Te497GXSWt6Om63m7i4OLxeLzExMTUn5VSPc1fvnKwu9JiYGIu/I0I0PlLcjYxpmkRFReH3+w/bSag19G7bm9i4WC7vfDmOaAfOSifRdkXBzm00TcnApyE+vSmx0bGkpaZRUXGQrWesZ+CtV9CmQ3eUUhiGgc1mw1l8gECUnYBhknFaFjabraa8gZrHyg5KIeqfFHcjExsbW3Nctc/nA6i5NkhMTAx+v5+k2CSK160iNuChcn8RSXt3UVF2kNRu55Dc/QKc+dvJ83j4ad9+Nn29kgvO7UugYDd7c7cQGxdHRWIau75ezu7NG0hs2oL4tmeSmNGErC5daNahY81p8CkpKTJUIkQDkOJuZFwuFxkZGTidTmJjYzFNE5/Ph1IKj8dDrKeSvAUzSUjLwB8XT0rT5iRfOACtFArw7NmFLi8lxgySkLeNC31u9PIl7C3IR9miOBjwE5eZxZmDLqfdoMvQhsnWlV+xb/MGdv/3Oyo9Xq6d/GfSmjShvLycjIwMKW8h6pkUdyOTnJxcda2S2Fjcbjc2mw2Hw4HWmgSHnfV3jSWlbQfS+l+KzR4F2sBfsLvqwr1aY7dHkdK+E6bWJJzejvbXD8MwTHzuCqLiEjG0SSAQxFNeiqnBMDUtu55NC60pLynhw2enM/sPtzP+tddJTU0N6ysBChGpZFOokamoqKBJkyY1h+Q5HA4CgQDegyWsue1a4k/LosVvfodZWY5ZXoquLEd5nSiPE7wutKsCo/QAwdIDmK5KguUlGJUHUX4//rJSAgcPEqysIOhyEXS7CLhd+J2V+JxVwzPXTLwX575Cnv/9SH7asQPDMKz+lgjR6MgWdyMTGxuLy+VCKUUgEEBrjd1up/Cjd0g/vR2nXXY1geJC7KHD92wqNEuGUiitMbUGrVBoME20BkNrgiYYpompNaYmdF9jmJqA1hjaJGgqTFNz4bCb+XTOq3z/+QrO6NjR6m+JEI2OFHcjEx8fT2FhISkpKXg8HqKjo7EFfFRu20izs7oTLN6HzaaqitoGtlB5U1XVaNMErUKlHToixag69b2qqE1MEwKmiWFCUGuM0P2g1hhaYwPadDubNYsX0+93Q0hv3tzab4oQjYwUt0W01jidTpKSkur1dcvLy2nWrBkej4fExERM06Tg0w/B58c0AhgeF8pmAwXKXlXadlvVjklDU7VFbYI2QRsmplm1FW5oA9NQoa1vTdAwCZoQNE0CGgKGgaEhYFZ93rx9e3bl5uI8eLBBi9vj8RAVFVUzaYNonAzDwOv1kpCQYHWUWlUfxXUyzl2Q4rbApk2byM/PZ/HixQwdOpQePXrQpEmTenntlJQUioqKSEpKwuVyYbfbiY9xUBltx/R7MYOgbTawgbYpsClsdhtKVZW1MjWYGm1qTMPArBkSCW1hG1VDI35TEzR0VXGHtrgDoft+MzRsEgxAAx3HHQgEWLFiBatXryYrK4uOHTvSv3//BlmXsNbatWvJy8tjzZo1XHbZZfTp04fExESrY9XQWrN8+XI2btwIQHZ2NoMGDWrQ6/TIzkkLTJs2jW+++YaHH36Yp556inXr1tXba3s8npqt+JiYmJpT302fF9PjwvC4MD3uqpvXjen1YHrcaHfoo8d9yOM8GB43hsdF0OMm4HET8FTtlAy6nATcLnwuF35XJT6XE5/Lhdflxudy43VWYgQC9fbv+jmXy8Uf//hHBg4cSGxsLOPGjWuwdQlrTZo0ib179zJq1CgmT57Mnj17rI50GNM0GTNmDO3bt6d9+/aMGTPmf9MGNhAp7pNsyZIl9OzZk+3bt/Pss8/yyiuvsHDhQioqKurl9e12O263u2b2Gq01UXYHlbk/4istxnC5CLqdBD3uqgJ2Owm43PhrjhJxEnS7MdxOAm4nAZeTgKtqecDpxO+sxO9y4nc58TmdFG35Hk/ZQbzOSrzOSjzOSrxOF55KJ4EGLO67776bhx56iEcffZQuXbowbdo0cnJyGmx9whqvvPIKv//97/nkk0/4+OOPef3118nJyQmro5Xuvfde/va3v/Hss88SHR3N66+/zr333tug65ShkpPs0ksv5fbbb+e2227jvPPOY/r06Vx11VX1NtZdfdy0UqrmWtoxTZqCI5qKHzeh2nVAx8SgbTa0XaGVxu+qRMXEg8OBEQwS8Afxed2UbfkefzCIN6jxmRpv0MBrmPgMSOrQFSM6Gkd8PF6Xm6BSBAyNz6gaMtm7exflBw6gGug47qlTpzJixAjmzJmDzWbjzjvv5PPPP2+QdYlfrr6GCYYPH84111xDTk4OrVq14v777+fuu+8Oq5O6HnvsMQYNGsSbb75JbGwsv/vd7/j0008bdJ1S3CdZdHQ0559/Pm+//Ta5ubns3r2bYcOG1dsvevVlXSsrK0lISCAYDEJ2LzJ6X0zRsvcwPC5S27TDiI/HsCnsSmMUFaCiYiA6Gn9lOb7i/fiNqnFsn2ESNDT+oCZgGASDmoBhUrDxW3xBiGrSDF8gCAmJEB2LXyvKikvZlZvLRbeOJb1Fi3r5d/1cWloaWVlZzJkzh4MHD9K7d2/i4+MbZF3il6uva9TExsbSr18/Xn75Zdq2bUswGKR58+ZhdZ33hIQEunXrxqxZswDo0qVLg+9EleK2wB133MGtt97KJ598woQJE+r1tePj4ykvL8dut+P1eoGqrXCPz0/Q1PjcLiqL9hLfNBNPWSl2bYLXDX4fJlU7Ik0dKmwTAobGH9rpGDSrjigx9P92WLr2FuAzNB7DJCajKS6fn5KiA5gmtO2WTVwD7USKj49n/vz5rFu3jhYtWpCVldUg6xHWe/jhhykvL+c///kPDzzwgNVxjmCz2Zg9ezZbtmxBKUXHk3DughS3RaKjo7nqqqvq/XX9fj+JiYk1x3AbhoFhGMRlZRG0OyAYQFVWoqOj0SUHsGsTpWxVZ7wDhjarTqoxq0668Zsaf+iIkYAJAW2GjiwJnYSjNQZVx3j7vF48Tg+mUsQkJuP1+TBNs0H/rO3Zs2eDvbYIHykpKQwcONDqGHXq1KnTSVtX+AwUiXpT/WfqoX+uth3+B2xNmuM2DNxuL67ycjwBA0/AxBMwcQdN3AEDd9DEE9T4guALmviCJv5gVYEHDLPqZmqM4P+2wv2GiYnCVeHC4/EQDJqcfcXl9L/lZqu+BUI0arLF3chER0fj8Xiw2WxV49v8b/JeW2pTgrvz0NrAcLqxGSZ2pavOmazemUnVSThG9ck1oS1vX6i0/WbVjspA6MQbvxl6LGBQNYTSqU9/7NiIj40Lq51IQjQW8q5qZLxeL8nJyUDVjp2oqChM08QwDNqMvBOfofAGTTxef9XWdjB0Cxh4g2bVkSOB0EdD4zM0XsPEHzTxhT4Ggxp/aPw7aOqqcfBAEK/Xiz02BluMg8vH3U5FRUVYHbYlRGMhW9yNTFJSEsXFxcTGxuJ0OlFK4XA4sNvtnHF+H9bEJ+KvLMemIMqmsJkKpXT1VV3/d9o7VVvc1dcj8YcKOmCA3wS/aeAzIGBUPc5vaHSUgwuHDmPrf9fTumtXEhISZKJgIRrAMbe4lVKnK6U+V0r9qJT6Xin1p9DyR5RSBUqp9aHbbw95zkNKqe1Kqa1Kqcsa8h8gDud0OklJSUFrTWxsLA6HA8MwME0TdyDAxc/OqTke221UjW17Aibu0Di3xzDwBI1DtsBNvAEDf9DAXz1UYpj4g9Wntxv4TAgaJp0u7Mt3n3/O+JdmER0djdPpbPAzyIQ4FR3P5lAQuFdr/R+lVBLwnVKq+ujyGVrrpw99sFKqMzAM6AKcBnymlDpTay1/M58E0dHReL3ew+Z8rB5njo6OJiazGc37XMzur5djC13aVVE1zq2xodE1l3I1QpdyDYYuLFV1TRJdc4ig3zTxGVXj3THJKXi8fs7/7W9p3ro1hmHgcDjC6nhbIRqLY25xa60Ltdb/CX1eCfwI1HXQ7DXAW1prn9Y6D9gO9KqPsOLYYmNjqaysRCmF3+/HNE3sdnvVxabi44lKTee0XhfiC+rQUSVVW9aeoK76GDrKxBM08RlV49xeg9CtamvbZ1TtoKwaKjExVRRdLh6Mx+/nwquvJSk5GcMwSEhIkOIWogH8op2TSqk2wDnAmtCi8UqpjUqpV5VSaaFlWcBPhzxtD3UXvahHFRUVNG3aFNM0q4o6KopAIEAgEODgwYMkxMfTZdgoWg68FI9ZNRTiChi4/Abu0OGB7tBQiStU4N6AgTcYxBcw8FXvuAya+A0Tw+6gY98BlBaXcO7gS8jq2pWysjIcDgfFxcWyc1KIBnDcxa2USgQWAhO11hXAi0A7oDtQCDxT/dCjPP2I81+VUuOUUuuUUusCAc8vDi6OLjk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OqS3xJ0xNUct+0xdNWx3EboflD/74iToIk3qPEaGk/1GLepITaWzHbt0VF23BXlZHXqRHJKCqmpqQQCAdLT02XOSSEawHHt8ldKOagq7QVa6/cBtNZFh3z9ZWBJ6O4e4PRDnt4S2Pvz19RazwJmASQlNdOha5CLE+R2u0kODVVUz/JefTy33+8nNjYWwzDodd1QPKUlLHnkYQ4fzfjf8dxVp79Tc4p7UIdOgzdNtLKTmJwG0TEU5uUz7qmn6NKvHx6PB6UUUVFRVFZWkpycLOUtRD07nqNKFDAb+FFrPf2Q5YdePeg6YHPo8w+BYUqpGKXUGUAHYG39RRZ1iYuLo6KiAq01Xq+XYDCIzWbDZrORkJCA1+tFa01FRQUDbr2dSx9+hKDdUbU1HTqe2xM08Ss7nkOWeQ0Tv7bhDRr4ghofCrfHy7783Yz4f3+lw/nnV12JMCaG2NhYgsGgjHEL0UCOZ4u7DzAC2KSUWh9aNhm4SSnVnaphkHzgdgCt9fdKqXeAH6g6IuWPckTJyWO324mKiiIqKqrmlPfqzw/9WlRUFNExMfS+5fe073EBn774PBXFB4CqH2jvm2/h6wWvozWYpiYqLp7Tu3Xjx9WrMTVoFOktmnPL5Mmkn346UQ5HzetWrzMqKkqKW4gGcMzi1lp/w9HHrZfW8ZwcQK5qbwGbzVbnNGgpKSkANZedzMzMJDMzky5Hmfbr0tG3/eocMgekEA1HTnkXQogIEybnI2tiYkqtDlGr6OgKvF4vpaXhm9HtduN0OsM6YyAQoKysrN4ust8wjLD+XYyJKcMesBNT2vAzif9a0c5o3G53WP8uer1eKioqwjpjXe8TFQ5vovT0dH3fffdZHaNWLpeLAwcO0KZNG6uj1KqwsJCYmBjS09OtjlKrrVu30rZt27AeRtmwYQNnn3221TFqFQgE+OabnRw82PAX6/+1YmNLOeccHy0aaPaj+pCXl0dmZmaDz1RzIp5++mlKS0uPvpNIa235LTMzU4ez3NxcPWvWLKtj1OmDDz7Qq1atsjpGnR577DFdWlpqdYxamaapx48fb3WMOpWUlOgePXJ01SXBwvPWvPk3etGiRVZ/q+o0c+ZMnZuba3WMOoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwjba4V61aFdZTZAWDQdauXWt1jDqVlJSQm5trdYw6bd++nZKSEqtj1Onbb78lGAxaHSOiuVwuNm3aZHWMOu3Zs4eCgoKTsq4wmXOy/qxbt44PPviA2NhY/vWvf3HRRRdxySWXWB3rMO+++y4bNmwgOjqaxYsXM2rUKM4880yrYx3m6aefpqKiApvNRiAQ4OGHHyYuLs7qWDU8Hg9Tp07F4XBgmiZJSUlMmjTJ6liH2b59O3PmzCEmJobFixeTnZ3NDTfcYHWsiPPyyy+za9cuHA4Hb731FhMnTqRp06ZWx6phmiaPPvpozYaiUoq//OUv2GwNt13cqLa4tdasX78e0zT505/+RPPmzfniiy/Castba81HH31E165dueuuuygqKmLnzp1hl3Hu3Llcd911/P73v+fTTz/F7XZbHeswXq+Xf//734waNYrrr7+eefPmhd33cOfOnezbt4/x48dz9tln8+GHH4ZVxkigtWbBggUMHjyYcePGsWHDBoqLi8Pq+2iaJm+//TbDhg3jpptu4p133sE0zQZdZ6Mq7vz8fDZu3EhlZSW/+c1vGDVqFLGxsaxatcrqaDXef/99LrjgAubMmcOkSZOYOnUqCxYsoKKiwupoNaZMmUJOTg633nory5Yt44033mDcuHFWxzrM2LFjmThxItdffz0+n4/nnnuOyZMnWx2rRmVlJfPmzSMrK4tBgwYxaNAg+vTpw8KFC62OFlH+8Y9/cMcdd/Dggw/y4osv8s9//pMpU6Y0eDH+EuPGjeOJJ57g5ptvZtu2bSfl/dKohkrOOOMMsrOzWbt2LR999BFPPvkkAH369LE42f/87ne/Y8SIEfzmN79h2LBhjB8/nttuu42UlBSro9V4/PHH6dKlC9OnT6d58+Zcd911fPXVV1bHOswrr7xC3759WbBgAUVFRUycOJEffvjB6lg1kpOTGTlyJC+99BJLly7l9ddfZ82aNSxYsMDqaBFlwoQJDBgwgIkTJ3LeeecxYsQIXnrpJex2u9XRarz88st07NiRuXPnAjBkyBC2bt3aoOtsVMUN0LdvX7TW/PWvf6Vr1650797d6khHGDNmDFu2bOGpp57isssuo0uXLlZHOsKf//xnNm/ezOrVq5kwYQLx8fFWRzpMXFwcf/rTn/jggw9ISkriz3/+s9WRjtC5c2cuv/xynn76aTp06MBtt91mdaSIdN9995Gfn88rr7zC8OHDad68udWRDmOz2ZgyZQpffvklSimmTJnSoOPb0AiLu1OnTnTq1ImdO3dyxhlnoJSyOtIRLrroIvr168dPP/1EmzZtrI5zVMOGDcPlcuFyucjMzLQ6zhFiYmIYO3Ys+/fvJz4+nsTERKsjHaFly5aMHTuW/Px8Tj/99LDaSowkV111FT6fj+LiYrKysqyOcwSlFKNHj6asrAyA1NTUBl9noyvuam3btrU6Qp3sdnvYlna1hIQEEhISrI5Rp3D8n8rPhfvPORLExMSEZWkf6mQUdrVGtXNSCCFOBVLcQggRYY5Z3EqpWKXUWqXUBqXU90qpv4aWn6GUWqOUylVKva2Uig4tjwnd3x76epuG/ScIIcSp5Xi2uH3AxVrrs4HuwOVKqQuAJ4EZWusOwEFgTOjxY4CDWuv2wIzQ44QQQtSTYxa3ruIM3XWEbhq4GHgvtHwucG3o82tC9wl9fZAKx0M7hBAiQh3XGLdSyq6UWg/sBz4FdgBlWuvqK+fsAap3+WYBPwGEvl4OZNRnaCGEOJUdV3FrrQ2tdXegJdALOOtoDwt9PNrW9REXFlBKjVNKrVNKrfN4PMebVwghTnm/6KgSrXUZ8AVwAZCqlKo+DrwlsDf0+R7gdIDQ11OA0qO81iytdU+tdc9wuuqcEEKEu+M5qqSpUio19HkcMBj4EfgcGBJ62ChgcejzD0P3CX19hQ6nS3kJIUSEO54zJ1sAc5VSdqqK/h2t9RKl1A/AW0qpqcB/gdmhx88G5iultlO1pT2sAXILIcQp65jFrbXeCJxzlOU7qRrv/vlyLzC0XtIJIYQ4gpw5KYQQEUaKWwghIowUtxBCRJiwuKyraZqsXLnS6hi12rdvH4WFhWGdMT8/n4MHD4bVlE4/V1payrfffhvWl4p1u91h/XN2Op3ExpbSvHn4ZkxL20p+fmVYfx8LCwvZuHEjRUVFVkepVV3v5bAobq01JSUlVseoVXl5OR6PJ6wzulwu5syxUVkZvhlbtfJz/vkH8Xq9Vkep1cGDQUaMCN/vYVSUmxaXf0vc/e9bHaVW0XnJuFw3hPX7xev18nDZw3ijwvd30ad9tX4tLIrbbrdz9dVXWx2jVtu3b8cwjLDOaJom+/c3Y9++3lZHqVVGxkYuvfRS0tLSrI5yVFpr5s//lLy88P05x8SUktz8afKuzrM6Sq2ar2xOl+IuYf1+KSwsZG//vZS3L7c6Sq0S7bXP6iRj3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI22uJ977jm01lbHqJXP5+Pll1+2OkbE++yzz9i+fbvVMUQDKy4u5t1337U6RthodMW9ZMkSBgwYQLNmzRg4cGBYlmNOTg5XXXUV0dHRDBgwgDVr1lgdKeI4nU4GDBjAypUrefzxx7nhhhusjiQayF133cXtt9/O3r17GTBgALt27bI6kuXCYuqy+uL3+8nPz+e6667jnHPO4dFHH+Xf//43LpcrbCaoLS8vZ/fu3dxzzz2cddZZHDx4kLy8PHr27Indbrc6XsTIz8+nSZMmDBkyhObNm3PLLbdQWFhIixYtrI4m6lFxcTEFBQU88MADZGVlUVBQQF5eHq1atUIpZXU8yzSqLe7qH/K+fft45pln6NChAw6Hgx07dlgdrcZ///tf2rZty6JFi3jjjTcYOHAga9euxePxWB0tosyfP5++ffsybdo09u3bxw033MDixYutjiXq2eeff07//v156aWXWLZsGddeey2LFi0K62HQk6FRbXGfdtpptGvXjnnz5vH6668zduxYzj77bLKzs62OVuOiiy5i9uzZAFx33XXccsst5OTkkJhY+8Sg4kgPPfQQXbp04Z///CfLli1j1qxZbNu2zepYop4NHTqUAQMG0KtXLzp37szo0aNZvHgxNluj2ub8xRpVcQMMGTKEvn37MnHiRKZNm0bTpk2tjnSEJ598kqKiIqZOncqCBQto2bKl1ZEiTlJSEsuXL2fhwoV07NiRpUuXWh1JNJB58+aRl5fHu+++y+LFiznjjDOsjmS5RlfcqamppKam8u6772Kz2cJyHOy0006jRYsWzJs375Tfcvi17HY7nTp14qGHHkIpFZY/Z1E/WrduTatWrejfv7+8X0IaXXFXC/cdfVI29UPeyKcGeb8c7pi/9UqpWKXUWqXUBqXU90qpv4aWv6aUylNKrQ/duoeWK6XUc0qp7UqpjUqpcxv6HyGEEKeS49ni9gEXa62dSikH8I1Salnoa5O01u/97PG/ATqEbucDL4Y+CiGEqAfH3OLWVZyhu47Qra5jca4B5oWeqt0stwAAIABJREFU939AqlJKDq4VQoh6clwDhEopu1JqPbAf+FRrXX2qX05oOGSGUiomtCwL+OmQp+8JLRNCCFEPjqu4tdaG1ro70BLopZTqCjwEdALOA9KBB/5/e2ceZ0dVJf7vrbev/XrJRhaSkBgDYc0iEUFIMICDLMoo6gA/FkHHgAoMgXECyowIaCCDgwPIFoIIikQQUGEIyGcYCYQAWSSREBLSJOnu9PKWqvfq1XJ/f9RCd8jSiUleP6jv5/M+Va/u7arT97136tS5557jdt/eDMKHLHQhxMVCiKVCiKXB4pOAgICA/rNbU/JSyh7gBeBkKeVm1x2iA/cB09xurcDIXn82Ati0nXPdJaWcIqWckkgk9kj4gICAgI8j/YkqGSSEyLn7CeBEYLXntxZOjM4ZwEr3T54AznWjS44G8lLKzftE+oCAgICPIf2JKhkGLBBChHAU/a+llE8KIRYLIQbhuEbeAL7p9n8a+DywFtCA8/e+2AEBAQEfX3apuKWUy4Ejt3N8xg76S+Dbf79oAQEBAQHbI1h2FhAQEFBnBIo7ICAgoM4IFHdAQEBAnREo7oCAgIA6I1DcAQEBAXXGgEjrapomd955Z63F2CH5fJ7W1tYBLeO6desYNSpJS8vyWouyQ7LZ9SxcuJBYLLbrzjXCNLuYNGngfs6hUIWGdxuYdOekWouyQ5Kbk/yl8he2bNlSa1F2yMqVKzkofxDVhmqtRdkh75nv7bBtQCjuUCjEzJkzay3GDmltbUVRlAEtYzgc5uijmzj00ENrLcoOueee9fz7vx+LYWRqLcoO+dznlrFo0cD9nAuFAr/9bTvnz9z+8giJRGIjpUS42Sekm3FCESH/2L5k+fLl9PT0cNxxx+3za+0p+XyeedPmDejqU9OV6TtsGxCKWwjBuHHjai3GTnn77bcHtIwrV65kyJAhA1rGVCpFsTgaXW+stSg7QKIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxZvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0h8UiCYekRNKaayefzRCIRSqUSLS0tbN26lWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZWJGRAKO6AgIDdo2yWWFF+gZKZp7Wwis7KFuJdGYQdZrAyhuGJQ/nr1lcJhzJMyhyBkg7xZtdfeHLtI5x04D8y88BTGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkke0SpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjtldsxLJ0R2RGMbRxLLJTi/sULyWaifOLAYXRuUOnUV3H4pB6aooMxLJthiYNYtWU5mGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UqZMmcIll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zYIFC3juuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP8x9eec8cjptEct1oa7SIokTeJAkpUY2vo0W98vs3pLO7HkCuKdTXQ3bSUVbiKsRMkXKlSqVY4ecRxhGSGVSqGqKkII59E/IqlWVCLhEIg4tpSEQiF0XSeVSmGaJpFIBFVVyWQydau4VVWlsbGRQqFAOp3GsiwMwyCbzfL000/z+OOPY1kW5557LrlcDl3XyWazvsVdKpWIRqNUKhUA3+LO5XL09PTQ0NDA+++/z3PPPcecOXPQdZ377ruPnp4estkspZJTo8ZT9olEIrC4AwI+qlQqFcYOGs2vv/xrvvqbr/Da+teImGGao03IKthVmx9/9UZeXvEXRmVH8adVf2L4yEbWv9dBLJNmc0cnlarJj5+9getO/SGqqpLNZtF1nYis8ODcydhmBYTki//yOoncUGzbJpfLoaoq4XCYfD5PMpmku7ubZDJJMpms9bDsNpFIBNM0CYVCWJblTOr2KkxcLpeZM2cOc+fO5ZlnnuHII4/0/dGmaaIoClJK/6nDc3tIKYlGoyxfvpyTTz6ZfD4POEEEoVDIdytFIhHgg6ecwOIOCPgIk0wm6ejoYHjqAP77i3dw6a8vpb27nXHN4wnJEHbV4jcvPUIqlKJc0YiGI7S9EuaTB05hU/s7FJrbaTFG8qs/PcKs0Sfz+U99no6ODuJReO1P/0m+ZDB41BTGH3EiIpJE13VCoRBdXV3+5GRTUxMdHR00NzfXrcUdDocxDANFUTAMw/8/7r33Xt+KBqhWq3zta1/jnHPO4cwzz2T06NHcdNNNSCmxLMtXwJFIhG984xu0tbXx0EMP8fDDD/tKG8CyLO666y6+8Y1vYNs24XDYn0cIhUL9l3tv/PMBAQH7F03TSKfTAEyJT+FX5zzE6b84g9Xta8iEMyREAl3odOhb2dKxma6tXfzD1FNpiR6ATYjD0lN45s0/0BQLE1MiFItF8u1r+f0T82nfsJTBw4/i2C/PIzd4NIoQhEIhbNumubnZt7g7OzvJZDJ1bXGXy2WampooFApks1lM06RarfLQQw9RrfaN8d60aRM33XQTTz31FKlUiqVLl2JZVp8+iqLw1FNPIaXk9ddf/9D1pJTcddddnH322eRyOUqlEkII4vE41WrVt/h3RbByMiCgDvGsMyklilAY1zSe5775HOOGfoJCpcCaLX9j6YZlLN+4nEw6y9RDplI2yrzXtgERVii8X+X4g04hnQwz98HZvLtpLe+tXcnqFa9x7GnX8KXZC2keOhaB8xjvKRQvLFAIQTgcxrZtQqHQh6zFerHAvRtPLBajq6sLTdMAMAzD73PLLbf0WcOxcuVKlixZ8iGlDY6Pe9myZX2U9pAhQ1iwYIH/PhwOM2jQIAzDoKGhgVQqBThPUYGrJCDgI4yiKFQqFYRrDRuGwdCGofzxkid5asVTPLniaf6y6v/Y0tmGVlXptEPooSp21QYT3lrzV2ZNPYnjWs5i8HTBpbd8lQkdIY6YMpNPTD6FZLrBV9Je1IMQgmq1SiQSwbIsotGoP0m5rcLxHv8HOl4YYKFQoKmpybe4PdcHOEp80aJFNDY2bldZ74qZM2f2uRGYpsnWrVvJ5XLk83nf4g7CAQMCPuJUKhXfNVEul0mlUvT09JDJZJgxbiZfmnoWf1z2R7YUt1CtVMnE05S1Mnq5ClJgnmAyashIZkybQVNjE9ktTWz8vzf53Be/TcvgA+js7CSVSmEYBuFw2FfSXnxyPB6np6fHX7iTyWTqMo7bCweMRBx3kTdB2FtBJxIJ9rSg+QUXXMDNN9/MM8884x8LhUJks9k+4YDgLNwJLO6AgI8wyWSSQqEAOD94bzWe57NVVZWTjjyJfE8PyWiUck8n7y34Lypr3yI+bDif/N6/U41ECAFbt2xmy+ubiKUGM3LUOApdXTRmMlQNg7W/f4zXfrMQEYnzydO+zEHHz6CxuRnLsmhpaaFUKtHc3OzHMdcbuq6TTqfRNI1EIuGvYozH436farVKLBbzI092h9NPPx2gz0SnlBJVVUmlUv7xaDTaxyrfFfU52gEBH3NUVfVX85XLZdLptB837G3bXl+CaH2X9U/9mkgixWE/vBWUCCKkYG3dwltzr8YSCnbFxn5rBYMPO4r1j97PxhefRysWSI8cw4QzvsoXrp+HbRr8dfGzPHj+V4k2NDLjsstJDz2AA8ePJ5/Pk0gk/MnSeqK3/15K6bt4fve73zF06FCKxSIbNmxg2bJlH1qI1B/Wrl3L5MmTWbt2rX+9M888058T6B16uDvzAoHiDgioQ2KxWB8fd7VaJR6PYxgG8XicrS/+iQ3z5jLy7Is45KobEALUNW/h6QYpBJPm3oIUUNmymcaX/5dqtUpIKEyZfRWEI+hljWpZQ+tsx5aSAydPZdTkaeS7uvjttd8nO3IU5/10Polstm4t7kgkgq7rKIriL+UXQvSxkH/2s5/xs5/9bI/Of8UVV7Bp0ybmzZsHOHMT3/3ud4nFYti2TTQa9W8WuzOGQVRJQEAd4kVz9F4AYts2Qgg6Xvgjb8//AaO/dgnZsZ9Af389eusGREVFVFSoqFBWKb+zGu3ttzCLPQyeNp0DPvNZGkaNodyxBfX9jVQ6t2KqKmZZw9A09GKJSiFPKBTis+ecS2HjRu7+52/5YWz1iBdW6fmbPUU6b968PfZrb4untMH53ObOnUs+74xjqVSiXC77eVD6O471eZsMCPiY40V1CCH8lXyapiE622j73YOMOuPrxJpasPOdKCgI4a4IBARgI8F29rElVa2EJSWmDZYtsaXEls6+6W1tiYWNYUE0luAzX/snHv/PW/mvC87nyod+VdsB2UO85evxeJzu7m6klNx+++389Kc/7eMaaWxsJBQK9QmL7O7u3u45GxoaiEQi/o3Utm2/r5SSu+++m1AoxHXXXedHqliWtVvhgIHFHRBQh3g+bS/zXD6fJ9fQwJYVr5NtGUoq14xd6oGKhtBLKLpGSFdRdM15edZ3WYVKCcoqtqYitRKWVsLUSphqkapawigVqZaKVNUietHZVkoFbNPgcxdeRHdrK8X29loPyR5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwcffDDLli2jtbWVd955h/b2dpYuXcrUqVM/dL6JEyeyePFiWltbWbFiBa2trbzyyiscfvjhfh/Lsvj5z3/OzTffzKZNm1BVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/4jSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOeQQ7rjjDpqamnxfeKFQYNCgQcybN4/x48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk2b1ufc8+bNQ1VVvyLU7oQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHqq69y9913D1gZBzred/E73/kOhUJhr34XvSRHXqKjarVKRBFU1v2VaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDr6QIy95A/eHrZts2HDBn70ox/t9e+iYRhEo1Fs2+ab3/zmhxTn5s2bueqqqzjxxBOZPXu2n7/cNE2OPPJIZs2a5fedNWsWJ5xwAtVqlXA4jK7rXHPNNZx88snMnj2bDRs29Dm3EIJvf/vbfhjg7oQafuQU94IFC5gwYQKXXXYZhx12GNdff32tRfoQF198MSeeeCJf/vKXGTt2LP/zP/9Ta5E+xBFHHMGdd96JrusMGzaMnp6eWotUdyxevJixY8dy1llnMWvWLC666KK9dm4vfM3zo/ohbbaFXdEwyyVHGZcdS5pyGVlRoawhy97WtbA1Z2uWHYVtllUM1XOXeBZ2Eb1UpFoquEpbpVIqUSkUqKilvfZ/bQ9P8U2YMIGRI0fyt7/9ba+d2ytgEAqFuOeee/jlL3/Zp72rq4uXX36Zrq4ubrzxRkKhEJqmEYvF/MVJHplMhkGDBpFMJv3JzmuvvZZKpcLLL79MW1tbn3PfdtttPPbYY37MeO/VmrviI6W4e3p62LRpExdeeCHLly9n0aJFSClpbW2ttWg+q1evpqWlhXPPPZd8Ps/tt9/O8uXL0XW91qL5vPDCC5xwwglMnz6d6dOnM2fOHJ5++ulai1VX6LrOm2++yQUXXMDbb7/NY489xuDBg1m9evVeOX+1WiUajfqukng8TqVcwVI1Km2bsFTVeWmqo4DLJQxVxShpmKqGqamuL9tpN1QVU3X6VdUShuZsq6UiRklF6+yk1NHuKuyi+1KpqCV0TWNfPY8tXbqUQw45hNNOO43Bgwdzww038Pzzz++1p5feSZ1CoRAvvvjih/pMnDiRRYsWkU6nCYfD/PnPf+bBBx/k2Wef5fDDD+e8887j61//OkcffTRLlizhoYce8hNNxeNxHn/88T4+bo9XX30V0zT9J4jdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2D161w70FnfsrXGMx+O0t7cjhCCVSjl1EDNpbAmF1asIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XTRiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNiw0rVzJu6rRdC70H9P69eBEae/u76H3XS6USd9xxB6eddhpr1qxhzZo1AH544E9+8hOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SuXPn9tFFw4cPZ+bMmTz44IPMmTOHZDK529+Nj5TFncvlGDZsGL/4xS845JBD+OIXv4iiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LooYf6ExQDgeOOO44XX3yRl156iZdeeombb76ZU045pdZi1RWxWIzDDjuMe++9l7Fjx/KlL32Jjo4OJkyYsFfO7xXrbWhowDRNMpkMRb3KwXN+hNbVwdYVr6Hn875PuqKqaF1bKW18F62Yp9zTQ/eyl8gve5nShnWom1vRNreibnqf4qaNFFtbKbz/HltWvc7Gl/+Xre+sRSsUKHV2ohWLlIsltEKR1UteRolEOfgzx+6V/2tbJk+ezFtvvcWiRYtoa2vj3/7t3zj++ON3Wkh3d4hGo75POh6P88orrzB//nyam5v9PqtXr+aBBx7gU5/6FDfccAOf/exnaWpq8m8iXjIub0l8Op3mC1/4Avfeey9Tp07lgQceYPny5f75crkct956K0uWLGHMmDF+kq7dWYDzkbO4zzvvPM455xwuvvhili9fvtc+4L3JXXfdhaZp/Ou//ivr1q0bkDK+8cYbLFu2jDfffJPNmzcPSBkHOjNmzGDdunVcccUVPPvss376zr2FZVn+5+JYjSFEphHDtFFUla6/vkHDuE+iWCYh20IYOkbH+7C51YnVtsGwbaq2Y0FXTceKtnBjtyVU9SoVw6KSL6Jv3EjFsjEjMVJDD2DT+g0Uixqjp32CSccdt1f/t9784Q9/oLW1lYULF7Jx48a9+l30Cvvquk5TUxONjY1s3LiRSqXiP3mCY3W/++673HjjjaxatYonnniC++67DykliUTCDx+cNGkSV155JVdffTWPPPLIh576FUWhXC6zefNmJk6c6C/yiUQiVCqVfhtw/VbcQogQsBR4X0p5qhBiDPAw0AQsA86RUlaFEDHgAWAy0Al8RUq5vr/X+XvxlgDfc889++uSu42iKKTTaW677bZai7JDFEVhypQpTJkypdai1C3ed3H+/Pl7/dzeUm1PeXvpVUuAHY9T1StgmKg93aAWEKUiiiJQEEgklrSxpaO4TRsM1/XhbMG0bUx30Y0pJbYtsaTEssEyDErdPVS0MqFYHCn3bf5tRVEYNWoU3//+9/f6udPptF+Nvaenh2g0yjvvvMOnP/1pTjrpJAqFgj+BeccddyCl5Pe//70/9+NVu0+lUkgpueKKK1i4cGEfpT179my/nJmXHGzt2rUccMABZLNZLMuiWq2SSCT6LffuWNzfAd4Csu77m4BbpZQPCyHuAC4E/tvddkspxwkhznb7fWU3rhMQELALdF33oxE0TSOZTDppViceSuNnZtH2p99hYyI7OwkLG8W0EYpAuIrblr0UsZSOb9uSfRS4r7wtG1OCYdnO6kpDonfnsSWE4nG+cNW/+DlS6g3P5VStVmloaEBKybHHHsuMGTOoVCp+ZRpFURg/fjyXX345APPnz+d73/sehmGQTCapVqu+D/6WW27xlfZ1113Ht771LeLxuL/KNR6PU6lU/KyOgF8tvr+pcfv1zCGEGAH8A3C3+14AM4BH3S4LgDPc/dPd97jtM0UwsxUQsFdJpVKUSqU+uaQbGhrQRYjsgeMwbdANm7JWplyuolk2ZdNGM51t2bSpmI6yLhvSmZi0baq2pGrZGFKi2xLTkphSUHUtbsO2UVJpx5UQTWCYJtM/d1Jdli0DJz1u7zH0XB6FQoFEIkGhUPCr20+cONH/O9M0/VqSlUqFSCTSpwiwx/jx42lsbCQSiaAoCtlslnK5TENDgx8y6Fnau5PPvL8W93zgKiDjvm8GeqSU3mL+VmC4uz8c2AggpTSFEHm3/9Z+SxUQELBTNE0jk8n02c/n82QyGZTR41EGHUBlSyuGrBJCEFJwMwM6tpqUfa1u07adKBEvWsSyMCxHeVddl0nVkpgWVLp7sAUcNvME4k3NdHR0kMvlfHnqCS/Pi23bvnIFxwL2igBLKQmFQn0mD4UQfty1l8Ok98vDWyjlHTMMw8/m6Lm4PD/67oQ47tLiFkKcCrRLKV/rfXg7XWU/2nqf92IhxFIhxNK9lYUrIODjgud3LZfL/oSX91h/4DHHEx8+irJlUzFtKpZnYdtUTJOKaVI2Lcqm9UG7r6TdiUpLUrX4QJlbjvI2bMeF0jJ6DOtWruLUf55NNputy+o38EEooKece8d0exkYvXDEMWPG9CmM4C2c81wknv+7s7MTcEqWTZo0yW/zVtIqioJlWX3+DvZ+HPcxwGlCiM8DcRwf93wgJ4QIu1b3CGCT278VGAm0CiHCQAPQte1JpZR3AXcBDBkyZOAFXAcEDGC8H7734/ciIDyFM+Vfruf3//QFyuUSISGciUnpWN0SsAHbywKIxDSdSBJHOduYFlRtR5kbtu1GnzgKPJbJMnjcBAaNG0fTsGF+jHU94hUJzmaz5PN5otEokUjEryTU1dVFJpNB0zRyuRzHHnssjz/+OKqqMnv2bEaOHOkrdoDW1lY/E+DkyZMZNmyYnyfdyynT3d3tV5b3Spd5IYn9ZZc9pZTXANcACCGOB66UUn5dCPEb4CycyJLzgMfdP3nCff8Xt32xHIgrYQIC6hjLsvwfuvdIr2ka0WiUcrlMbuxBJEeNoX3VGyhCIeSndLWRKEjhWoDu5KRlSzeFq+MyMWzhW9qGbVOxHJdJ1bbIZHMo0ShjDj+cTC5HoVBAUZS6tLq97ICVSoVcLodt21iWRVNTk1+WrVwuk8lkkFL6VeABOjo66Ojo2OG5vacgL/e2oih0d3eTSqXo6uryfeie28UrFtwf/p6AyDnA5UKItTg+bC/+7h6g2T1+OXD133GNgICA7ZBKpSgWi5RKJcLhsB+PrGkazc3NaJrGKbffh27Y6KZF2bBc94h0tlWbsuG4T3TPjWJJyhZUTEHFtKlaNrrlHDcsm6pp0Th8FOOPOZZ4MsWss8+mWCzS0tJSt5OTmUyG7u5uotEo3d3dfly1VwB569athEIhCoUCmqYxdepURo4cucvzDh06lBNOOMG/IcRiMRRF8euBtrS0+JEsXnz/7ozhbiluKeULUspT3f11UsppUspxUsp/lFLq7vGK+36c275ud64REBCwa8rlMslkkkQi4SfhL5VKvoUXj8eR4SiHn3ORo6gtR3Frxge+bSe6xHL835bspcSdZe26aaP7/m5Jduhwxk6Zxqb16znx/PPJF0skEgl6enr6lPqqJzRN8yuuZ7NZP6Qxl8v57hHLskilUsTjcY455hgWLFhALpfb4Tmj0Sh33303xx9/PLFYjGKxiGEYSCn9aJXu7m4n7t6tgAPs1hgGy+ECAuoQLzudF6VQLpf9FXzpdNopDNDYRMv041AGDaNsSjTTRrOckMAPwgLlB/uWTcWwHCvbdEIEdcuiakui2QYGjxtPZ3sbWrHE2COOIJPJoOs6qVRqtzLbDSTi8TiqqhIOh1FV1Q8H9G6CxWKRUChEpVLxa1JOnDiR119/nfvvv59sNksmkyGbzZLNZrn11ltZs2YN06dPJ5PJUK1WSSaThMNhP69MpVIhk8lgmibJZLJPPu7+8pFb8h4Q8HGg91JsLyKid+4Mb9JyzLTpTDn3Ihbf+hMMTfX/XroLcaR0JiktPH83mNKN37ZtTNsm3tRCesgwtHKZWCzOTc8+48vQe1K0HuldXsyjd3my3m29E14NHjyYU045hffeew/TNP2VkYA/3+Dl17Zt248e6f0ZgTM/0TvqpL8EijsgoA7xEht5yiAUCvlFFQzD8LfRaJRjL/wmlpQ8+R8/RPZRUE6EiSVxYrq9Ze0Sf7WkKQWKJcl3dzN62DAu+slPUNxMeLqu+zHJu5skaaDQW+l6qxvBscS9dLnQ1xr22novnOkd0mcYBpFIxI8U8QolgJOO12vzPrPeN4r+ErhKAgLqEC9mu1Kp+Mn9vWNe1XLvUV9RFKZ97VzO+ultjDhyquPPdl/Dp0wjPmQoFct2X5Lxxx2PbuMsgbehopU56nMncv6Pf0yysZFYLIZt26TTaXRdJ51O12VECeArVm8xjKc8eytdb6m6Z4F7BRQ8t4oXm+2lk45EIn4xZ9u2CYfDfnskEsE0zT5t3g1vd55a6u8WGRAQAEBTUxPgPMInEgmEEP6xxsZGhBAccMABfvuMc/8fx/7jV7B6WYChSATbtrCtDyzxcDSK0atYLkA0Hicaj/vWYTabRQhBc3Nz3cZwg3MDjMVifcYQPnCXeG298aqxb6/NY2d+6z3xaW9LoLgDAuqU3ulNPQWyq20one7XueM7SEG7o/PWK94iJm+/9/Ftj/Vbh/pvAAAFwElEQVSnbX8RuEoCAgIC6gwxEBY1NjY2ynPOOafWYuwQXdf9VVQDlXw+Tzgc3uvJ+vcmbW1ttLW1IOXAjUDI5d7nwAOH77pjjbAsi87OTgYPHlxrUXaIqqpYlkU2m9115xrR2dlJOp0eUJWntmXhwoV0d3dv16wfEIpbCNEBqAzcDIItBLLtCYFse0Yg257xUZPtQCnloO01DAjFDSCEWCqlHJDlVgLZ9oxAtj0jkG3P+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkIg254RyLZnBLLtGR8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEUKsFULUvOiCEGK9EGKFEOINIcRS91iTEOJZIcTb7rZxP8lyrxCiXQixstex7coiHG5zx3G5EOKoGsn3AyHE++74veGWvPParnHlWyOEOGkfyjVSCPG8EOItIcQqIcR33OM1H7udyFbzcXOvFRdCvCKEeNOV74fu8TFCiCXu2D0ihIi6x2Pu+7Vu++gayHa/EOLdXmN3hHu8Fr+JkBDidSHEk+77fTNu21Yn3p8vIAS8A4wFosCbwME1lmk90LLNsZuBq939q4Gb9pMsxwFHASt3JQvweeAPOMWajwaW1Ei+H+CUt9u278Hu5xsDxrife2gfyTUMOMrdzwB/c69f87HbiWw1Hzf3egJIu/sRYIk7Jr8GznaP3wF8y93/Z+AOd/9s4JEayHY/cNZ2+tfiN3E58BDwpPt+n4xbrS3uacBa6VTTqeLUrzy9xjJtj9OBBe7+AuCM/XFRKeWLfLjQ8o5kOR14QDq8jFPMeVgN5NsRpwMPSyl1KeW7wFqcz39fyLVZSrnM3S8CbwHDGQBjtxPZdsR+GzdXJimlLLlvI+5LAjOAR93j246dN6aPAjOF2DdJPHYi247Yr78JIcQI4B+Au933gn00brVW3MOBjb3et7LzL/H+QALPCCFeE0Jc7B4bIqXcDM4PD6jleuMdyTKQxnK2+2h6by+3Uk3kcx9Bj8SxzgbU2G0jGwyQcXMf998A2oFncaz8HimluR0ZfPnc9jxODdr9IpuU0hu7H7ljd6sQwlvHvr/Hbj5wFeClWmxmH41brRX39u4wtQ5zOUZKeRRwCvBtIcRxNZanvwyUsfxv4CDgCGAzMM89vt/lE0Kkgd8C35VSFnbWdTvH9rdsA2bcpJSWlPIIYASOdT9xJzLsV/m2lU0IMQm4BvgkMBVowilkvl9lE0KcCrRLKV/rfXgn1/+7ZKu14m4FepdMHgFsqpEsAEgpN7nbdmARzhe3zXvEcrfttZNwh7IMiLGUUra5Py4b+AUfPNbvV/mEEBEcxfhLKeVj7uEBMXbbk22gjFtvpJQ9wAs4/uGcEMJLA91bBl8+t72B/rvP9oZsJ7vuJymdguX3UZuxOwY4TQixHsflOwPHAt8n41Zrxf0qMN6deY3iOOmfqJUwQoiUECLj7QOzgJWuTOe53c4DHq+NhLATWZ4AznVn0o8G8p5bYH+yjQ/xTJzx8+Q7251NHwOMB17ZRzII4B7gLSnlLb2aaj52O5JtIIybK8cgIUTO3U8AJ+L44Z8HznK7bTt23pieBSyW7ozbfpJtda+bscDxIfceu/3yuUopr5FSjpBSjsbRY4ullF9nX43bvp5l3dULZ+b3bzh+tO/XWJaxODP4bwKrPHlwfE/PAW+726b9JM+vcB6bDZw79IU7kgXn0et2dxxXAFNqJN9C9/rL3S/nsF79v+/KtwY4ZR/K9Rmcx87lwBvu6/MDYex2IlvNx8291mHA664cK4Fre/02XsGZHP0NEHOPx933a932sTWQbbE7diuBB/kg8mS//ybc6x7PB1El+2TcgpWTAQEBAXVGrV0lAQEBAQG7SaC4AwICAuqMQHEHBAQE1BmB4g4ICAioMwLFHRAQEFBnBIo7ICAgoM4IFHdAQEBAnREo7oCAgIA64/8DZXgwagiQs0wAAAAASUVORK5CYII=\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -445,8 +445,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmkx6IaFLL4oI0kVUQBRdFnRRVFR2UVFBLChYFkUFFdS1woMsggUXRVcXROwgSlMpihCUDkogCaRn+sy95/kjySysBJDM5E6S8+aVVzKTm3u/MyG/OXPuOecKKSWKoihK7WEyOoCiKIryx6jCrSiKUsuowq0oilLLqMKtKIpSy6jCrSiKUsuowq0oilLLRKxwCyEGCyF2CCF2CyEejNRxFEVR6hsRiXHcQggzsBMYBGQDG4DrpJQ/h/1giqIo9UykWtw9gd1Syr1SSj+wCBgWoWMpiqLUK5Eq3E2AA0fdzq64T1EURakmS4T2K45z3zF9MkKIW4FbAaxWa7fOnTtHKEr1+Xw+ysrKSE9PNzpKlYqLi7FarcTFxRkdpUo5OTlkZGRgNpuNjlKl3377jebNmxsdo0rBYJAjR47QqFEjo6NUyel0EgwGSU5ONjpKlY4cOUJiYiJ2u93oKFXatm0bHo/neLUUpJRh/wD6AJ8fdfsh4KGqts/IyJDRbNeuXXLu3LlGxzihxYsXy3Xr1hkd44SmTZsmCwsLjY5RJV3X5fjx442OcUIFBQXyySefNDrGCa1Zs0YuWbLE6BgnNGfOHLlr1y6jY5xQRV08bs2MVFfJBqCtEKKlEMIGXAssjdCxFEVR6pWIdJVIKYNCiPHA54AZeE1KuS0Sx1IURalvItXHjZTyE+CTSO1fURSlvlIzJxUlAnRdZ8OGDbz55pvoul55rkdRwkIVbkWJgM6dOzN37lwKCwtp1KgRZWVlRkc6hqZpHDp0yOgYymmKWFeJotRX33zzDYMGDWLSpEnk5+fj8/n47LPPGDFihNHRgPJ8u3fvJisri65du3LJJZfQsGFDo2Mpf0Cta3Hv3buX9957z+gYilKlYDCIxWIhKyuLDz/8EKvVSiAQMDpWyKxZs3A6ndx77728++677Nixw+hIyh9Uq1rcQ4cOJSYmhl69enH22WezcuXKqJ4Uo9RPAwcOZPz48SxZsgSXy0UgEGDPnj1GxwJg0aJFDBo0iCuvvJLJkyczd+5cJk2aRPfu3aN68tbRpJR4vV4WLlxIixYt6Nu3L7GxsUbHqlG1psW9d+9eYmJimDNnDsOHD+fSSy8lKyvL6FiKclxZWVnMnDmT2267jZycHBISEoyOBMCIESNYvnw5K1aswO/3M2XKFMaMGYPD4TA62inzeDw0bdoUn8/H559/TseOHY2OVONqTeHetGkTPXv2pLS0lNdff52GDRuyevVqdbZeiUpmsxmTyYTJZMJisSDE8Wcu1zSTycSQIUP44YcfsFqt7Nixg+bNm0dNvlPxzjvv8Pjjj9OjRw9uv/12br75ZhYvXmx0rBpVa7pKrr76as4++2xyc3Np1KgREydOJCcnp1b9h1Pqly5durB27Vq2bt3K2WefbXSckFGjRuH3+3nqqac444wzaN26tdGR/pCmTZvyyiuvkJuby/jx4zl48CCXXHKJ0bFqVK1pcQOsXLmSIUOG4HK5yM3N5fbbb6e4uNjoWIpyXBkZGei6Tn5+vtFRfsdms3HhhRcipcTv9xsd5w/p168fn332GcFgkClTpvDtt9/Sq1cvo2PVqFpVuNPT07nooot45JFHyMzM5I033uCRRx5h9+7dRkdTlFqnf//++Hw+vv32W6Oj/GE9evSgR48e3HLLLWzevNnoODWuVhXuSpXdI8nJydx999289dZb7N+/39hQiqLUiNmzZ3P77bczfPhwevbsWS+7S2tl4T5amzZtGD16NFOmTMHtdhsdRzkNy5Yto1+/flxyySUEAgE0TUPTNHXiuQaYTKZaNSV/+vTptGvXjpEjRxodxVC1vnADtGjRgjlz5jBq1ChycnIieqx9+/ZF9X/yYDDIgQMHTr5hFBk8eDCff/45b7/9Nn369KFHjx707NmTjRs3sn37drZv347H4zE6Zp308MMPM336dJxOp9FRTqqkpIRDhw7RqVOnetnKPlqtGVVyMg6Hg5kzZzJz5kxGjx5N27Ztw36MFStW8OGHH9K5c2d69OjBOeecE/ZjVNfbb7/Nli1b6NChA0OGDKkVU5ktFgsWiwWHw8HGjRuB8kkWEyZMCBWUs88+OzRBpH///rVuJES0stlsUTWrsyolJSXMnj2bESNG0KpVK8NybN26lYSEBFq0aHFK23/++eccOHCAFi1acPHFF4ctR50p3ACNGjVi9OjRzJ8/nwkTJpCZmRnW/ZtMJh577DGeeOIJjhw5Uq3C7fF4GDt2bFha761bt6by0m/Jycncc8893HbbbXTo0KFahfvnn3/m6aefrnY+KG9V/xFCCF588cXQ7WXLllFQUADAP//5T/Ly8gC48sorueKKK8KSUYleeXl5bN++nYceesiQ4wcCAW677TYaN26M1+vF6/Uyc+bMY1r+q1evZt68ecf83DnnnENaWlrYL9dXpwo3QNu2bZkwYQJjx47lrbfeCus03v79+3PJJZewZ88ePB5PtdZMiY2N5Y033gjLW76YmBg2bdoElA+VGjBgAIcOHeKmm26q1uPv1KkTU6ZMqXY+gJSUlGpN+x4yZEjo69zc3NBqe//+9795/PHHAbj44otDec1m8wlnA1a2Mq1W62lnOhWVL6Ldu3ePmtmT/2vBggVcd911LFu2zOgox6XrOnfffTdvvPGGYRnKysrYuXMnTzzxBC6Xi379+rF8+fJjptr379+fhx9++Jifa9y4cUSWEqhzhRsgMzOTt956i/HjxzNlyhRatmwZlv3+/PPPfPDBB8yePRtN03jwwQertT8hRNj66ioL9969e/nyyy+56667GDt2LH379q3Wfk2m6DsN0rBhw9A7iYceeij0e1ixYgV//vOfgfI/mNtvvx0oL869e/dGCIGUknXr1rFx40Z0XadHjx707ds3Yn2maWlpFBUVoet6RPYfDk2aNOHgwYNGx6jSli1byMzMDPs76D/igQce4MUXX2TNmjXMnj0bp9PJqFGjmDFjxjHb1dTfS50s3ABxcXFMmTKFN998kxtvvDEsfaKbN2/mgw8+wOv1cskll0RlUVu+fDk+n4+WLVvSvHnzqMwYTke/+A0aNIhBgwYBcPDgQWbPnh3a5quvvgLK+85nzZrFrFmzMJvNjBw5kn379kX1lefrs5UrV7Jy5Ur++c9/Gppj5syZdOjQgXnz5jF+/Hjuv/9+nn76acNOktbZwg3QsmVLbrzxRp599lmefvppkpKSqrW/kSNHsmbNmoi20KprwoQJbNmyhe7duxsdxVBNmjThySefBMDv97NixQoA7r//fsrKypg/f37o7ff999/Pc889Z2RcQwkhmDx5Mv/4xz+YOHGi0XFCpJR88cUXXHbZZdjtdkOzWK1W5syZw/r160lMTOTVV181NE+dLtxQfuLumWeeYdSoUcyfP5+0tLRq7e/8888PU7LIsNls9b5o/y+bzcZll10GQO/evenbty8vv/wyCQkJXH311Xz44YcGJzSWEIIuXbqwdOlSo6OEaJrGRx99ROPGjenTp4/RcTCbzQwePJgLL7wQk8lk+AtJnS/cAImJibz22mtMmzaNcePGRWSooFI7JCUl0bVrV+bOnYsQgmbNmpGcnGx0LOV/FBUVMXfuXD75JLquNx4t637Xi8INkJqayh133MGCBQu45ZZbaN68udGRFAOYTCYWLlzIzz//jJSSs846y+hIUSE9PZ327dvz7bffRkULd9asWdx2221Gx4hadfvM1f9o06YNY8aM4cEHH1TT4+u5M888s8aKttlsRtO0GjnW6UpOTqZZs2ZRcXGSYDDI0qVLGTp0qNFRola9KtwAzZo1Y/78+YwePZrs7Gyj4yj1wLJly7j00kuNjlFrPPzww3z00UdROwAgGtS7wg3l/VTPP/88a9asMTqKUg9YLJZaMa28ffv2HD58mMLCQkNzzJgxgyZNmhiaIdrVy8IN5cPFrr32WqNjKErU6NWrF/v37yc3N9foKMpJ1JuTk4qinNz06dNJTEw0OoZyEqpwK0qECSFqzaW10tPTjY6gnIJ621WiKDVFCGH4lG2lblGFW1EUpZapVleJEGI/UAZoQFBK2V0IkQq8C7QA9gMjpJRF1YupKIqiVApHi7u/lLKLlLJygYwHgRVSyrbAiorbiqIoSphEoqtkGPBmxddvAuryJIqiKGFU3cItgS+EEJuEELdW3JcppcwBqPicUc1jKIqiKEep7nDAvlLKQ0KIDOBLIcT2U/3BikJ/K0B8fDy7du2qZpTIyc7Opri4OKoz5ufno+t6VGd0uVzs27eP/Px8o6NUye/3R/VzWFpaisvliuqMubm5Uf/3UlxczIEDB8JyzddIOdFVk6pVuKWUhyo+HxZCLAZ6AnlCiEZSyhwhRCPgcBU/OxeYC5CWlia//vrr6kSJqOLiYrKzs4nmjHv27MHhcIQuqBuN8vPzWbduneFrGZ+I0+mM6t+z1+vl2yPf8uHX0buGuCPHwUDPwKi+XNvBgwfZtGkTu3fvNjpKlU74/EkpT+sDiAMSjvp6HTAYeBZ4sOL+B4FnTravjIwMGc127dol586da3SME1q8eLFct26d0TFOaNq0abKwsNDoGFXSdV2OHz/e6BgnVFBQILs92U0Sxf8armkolyxZYvRTdUJz5syRu3btMjrGCVXUxePWzOr0cWcCa4QQPwHrgY+llJ8BM4BBQohdwKCK28r/cDqdXHXVVUbHUBQlDPbs2cO9995bY8c77a4SKeVe4Jzj3F8ADKxOqPpAShnV3RqKopy6QCBAcXFxjR1PzZxUFEWpZVThVhRFqWVU4VYURallVOFWFEWpZepU4c7JyeGNN94wOoaiKEpE1anCXVJSoq4jGSZOp5PRo0cbHaNOCwQCBINBo2MotZC6Ao5yXJqm8dtvvxkdo07SdZ3vvvuO1atXk5KSQpcuXejRo4e6qnktVtO/uzrV4k5NTaVx48ZkZWUZHUVRquT3+7nmmms466yziImJ4ZprrjE6klJNsobXPKlThTsjI4PmzZuzadMmo6MoSpUeeOABFi5cSDAYpG3btrz00ktMnTrV6FhKLVKnCrei1AYPPvgg1157LWvXrqVly5Y888wz3H333UbHUmoRVbgVpYalpKQQCASw2Ww89dRTtGrViqSkJKNjKbWIOjmpKDVs1qxZvPjii7Rv356kpCTatm1rdCSllqlzLe6hQ4eyadMmDhw4YHQUpRbQNK3GTizpus7TTz9Nu3btGDlyJN27d1dFWzktda5wZ2RkUFJSgtfrNTqKEsWKi4vZtm0bI0aMICsri9zc3Igez+/3M3/+fFq0aMGQIUPU0L86Rg0HVJQa8OGHHzJ27Fief/55pkyZwgsvvBDR41VeQemaa67BZFJ/dnVNTQ8HVH3cSr3x3nvv8dFHHwGwd+9edF1n2rRpzJkzh7lz57J58+aIHFdKyUsvvcTYsWMjsv/aaMaMGWzbti1022q1MnfuXCyW8JSklStXYrVaOf/888Oyv2hTJwt3bGwsXq8XKWXUviV1u93ExsYaHaNKQgjsdjs+n6/GrxHp8/nw+/2ntO1rr712yuvTjBw5kkcffRSA//znP7hcLm644QZ27dqF2+2mXbt2pxu5Sj6fj3HjxjFx4kQ6duwY9v3XVqNGjcLtdoduB4NBevfujaZpx92+adOmvP3221Xuz2KxEBsbi6ZpdOnShcGDB+P3+7nzzjvZtGlTxN/lmEwmzGYzgUAAq9Ua0WNBHS3cr7zyCt26dWPjxo1RW7gvu+wyNmzYYHSMKiUkJHDffffx1FNP8fjjj0fkGFJKVq9e/buLoq5evZqVK1ee0j5GjRp1yhOuhBCh/w+dO3fm6aefpkOHDsybN48RI0bgcDj+2AM4icLCQl566SXuuOMOOnToENZ913aNGzc+5raUkvXr11e5/cGDBxk2bFiV32/fvj3XXHMNmqbh9/u5/PLL6dChA6Wlpfz000907do1bNmPp23btvTp04eFCxfyt7/9LaLHgjpauIUQNd7n9EdF87sB+G+Ri+TzKKVk5cqVBAKBY+6/8MILeeSRRyJ2XIDBgwczePBgZs+ezZdffonJZArrY/V4PMyaNYuLLrqIc889N2z7rauOflE9nmbNmvHVV19V+f1ffvmFhQsXous6paWlrFixgpSUFLp3786mTZsiXrgrs9dU3amThVupHUwmU6jrwijjxo2LyH49Hg9r1qxhypQpEdm/cqyOHTvyxBNPEAwGefXVV0lPT+eLL77gueeeIycnx+h4YadObytKmOXn53PzzTfz/vvvGx2l3jGbzezYsYPU1FSaN2/O9u3bo/qd7emqsy3uAQMG8PXXXzNgwACjoyj1yK5du5gzZw6vvvoqiYmJRsepd4QQpKamMmrUKKOjRFSdbXE/9thjasU1pUZlZ2ezYMECbr/9dtLT042Oo9RhdbZwK0pNklKSm5tLaWmpmsauRFyd7SpRlJr0yy+/MHPmTObPn290FKUeUC1uRQmDTz75hPnz54dt5p+inEid/V8WExPDiBEjWLRoEddee63RcWqdO++8k61bt3LkyBF27NjB/PnziY+PNzpW1Jo4caLREZR6pM4W7osvvpiDBw9SVlbG5MmT2bBhA6mpqUbHqhVcLhebNm3izjvv5Pvvv2fnzp0UFhaqwq0oUaJOFu6tW7fSsmVLHn/8cb788ksA1q9fz+DBgw1OVjvMmjWLiRMn0rJlSwKBADfccANTp05l3rx5RkdTFIU6Wrj37t1LmzZtaNGiBRdffDEHDhzgl19+UYX7FD3wwAN07NiRSZMm0bJlS6655ho2btxodCxFUSqc9OSkEOI1IcRhIUTWUfelCiG+FELsqvicUnG/EEK8LITYLYTYIoQwZJGGYcOGsXDhQl588UUOHjzIvffey4033mhElFrrtddeA+Cbb75h3rx5qptEUaLIqbS43wBmAQuOuu9BYIWUcoYQ4sGK2w8AlwFtKz56Aa9UfK5x69evZ/Pmzaxfv549e/aQkJBgRIxaq0+fPvTo0YNgMEhMTIzRcZRapi5OM48mJy3cUspVQogW/3P3MOCiiq/fBL6mvHAPAxbI8iWyvhNCJAshGkkpa3yVl4SEBPr160e/fv1q+tB1hsViUcPblNMS7atz1nan+1eZWVmMpZQ5QoiMivubAEdfpTe74r66tzzXaVq9ejX/+te/OHDgAGPHjuXyyy8/4TrDiqJEN13Xufvuu9m6dSsAP/zwAy+99FJEL94Q7j0f7/3RcV96hRC3CiE2CiE2ejyeMMeITrqus23bNlq3bk16ejp9+vRhw4YNVV71Q1GU6Ofz+VizZg0DBw7k4osvZs2aNfh8voge83QLd54QohFAxefDFfdnA82O2q4pcOh4O5BSzpVSdpdSdo/mS3iF0/79+9m5cyd/+9vf6NGjB1dccQU2my2qr4SjKMqJ3XfffcyZM4cuXbrQpUsX5syZw3333RfRY55uV8lS4K/AjIrPHx51/3ghxCLKT0qWnEr/tqZpLFmy5DSjRF5+fj579uwJS0abzcbMmTMZPnw48+fP5+DBg+Tm5lZ731lZWfz666/k5eVVO2Ok5Obm8tlnn0X1tTZLS0uj+v+i2+0mLieOVktaGR2lSgn7E8hyZUV1P/fevXuxWCxkZWWdfOOTGDRoEJMmTeLee+8FYNKkSUyYMKHa/49O9E78pIVbCPEO5Sci04UQ2cCjlBfs94QQNwO/AVdXbP4JcDmwG3ADo08loN8vGDs281Q2NYTDofPXvzrIzKx+xqP7szMzMznvvPOqvU+AX3/9lTlzkigujt7nsU0bO1dc0YC4uDijo1TJYrGE5fccKU6nkx72HszInGF0lCptL9pOmaksqp9Hh8PBU6lP4c50n3zjU/E0jGVs6OtxVP/KSn5R9QWzT2VUyXVVfGvgcbaVwB2nnCz0cyZyc/v80R+rMUlJu2nUqIA+faI3Y15eHsXFmVH9PDZtuoJu3bphs9koKysjJTWZvKJDJMQlURo4zBdFC9jr3oYpYMEu4hG6mZyyQ/ROGcwlLa/F7/bRtEFzSktLiYuLo6ioCIfDQSAQQNM04uLikFISGxsbmqJfVlZGUlJS6LbP5yMpKQmfz4eUkpiYGEwmU+j6mm+//XbYfs9+v59AIBDWF6rCwkI2bNhQ7Yy6rvPZZ5+RnZ3NiBEjKC0t5eWXX2batGnVfkek6zr5+flR/feyZcsWCs4uoKRNidFRqhRvqnruhBrrpdQoKXUKAofY69qGCZ2lObNpE3cuft2PjVja2XpxyPcbJZ5iOiR35Yy0ziRaU5i08noSrGnc0fVhGtgaYQvYMJlMoSvEm0wmNE1DSonP50MIgaZpCCEIBAKh7wsh8Pv9obehwWAQm80W9se5YsUKdu3aRV5eHt26dePSSy/FarWG/Tiny+Vy8dFHH3Hvvfdy5ZVX8s4779C4cWNWrVrFpZdeanQ85STUsq5KjZJIfjz8PVM3PsQrG1/G7GxCSUmA77b8zILPlrB25zdk/3aQTd//xJp9K/m18Fey8rZil4nEikTe2fwan+9eitNbhs1mQwiB2Ww+5irtgUAAq9WKpmlYLBY0TcNutyOEwGKxEAwGy7NI+bsrzIfLuHHjSE5OZsCAAdxzzz243WF6Sx4mCQkJDBs2jJtvvpm9e/fy0EMPsXnz5lpRtP1+P3PmzDE6hqFU4VZqlEmY6Z4+gEaBbmzbUciWbUf4cUsOpYds2N0NcR1wcHCnn20/HuH7H39k294NrPrhazyuIOv2fMvhsgLmrPs/Cn35lJWVAeVvzT0eDxaLBZNJ4HDE4vV6sFqt+Hw+YmJicLlcodZ2XFxcqIg7HI6wP8ZHH32UF198kVatWrF7924++OAD7rzzzrAfp7p69erF9OnTSUtLY+TIkTzyyCNGRzqpGTNmMHjwYBISEjj//PNZs2aN0ZEMobpKlBql6zpxZgcv//llblo8mk+zPkH3QayMwSZt/LBb4+qew7l5UA9KXMXYPDay3Z/iLS0gv7CIXdoeggEzw175M1/euRIoH6kTExOD1+Mma8UMdm/4F8GgRsc+f6XbkKmUlZWRlpaG1+slNjaW/Px87HY7wWAQt9tNWlpaWB/j3//+d/r27cu4ceP46aefePPNN3n33XfDeoxwSElJoW/fviQlJdG7d++oXxaipKSE7OxsXn75ZeLi4igpKWHfvn307t273s3wVS1upUaZTCbsdjtep4d/Dp/D5R3+hMVsplWDVvRu05vOLTrx65Ff2XYwi4KyQnIKcogrOAPXjiTOTuyIpyQfdC9aieCWl29BCIHX66WwsICyvG3s2baGolIvTToNJblxF8pKS4mPj+fIkSMIIXC5XKSnp4em8ycnJ4f9Mdrtdvr37897773HmjVraN26tbriexhkZWXRuHHj0FXczz//fH766aeo64aqCfXrZUoxnJQSv99PSkoKgUCAV4bP5uHYR/jPpv9Q7CwmzhyHQ8TiE34OF2ynpKiEBGsiw/oMw1nmJJZUCo4cxpRyCH9eAE0LYrVaWbn4RQ7vX0tRzgG6DphAv6ETCAbLv+fxeEhJSUHTNBwOByUlJZjNZqSUOJ1OkpKSwv44n332Wb744gu+//77WtEFURv07duX119/ndtvv52dO3dy00038eijj9bLF0VVuJUaZzKZQicTU2JTmXrpVKzCzr/Xv0de4WEIgAiA0ARdm3Yl1hzL3py9xFpiSbCm0bp5B9754k1aXZLL60vmMWrIX9nw9QdkNmrKsNteI7NF59D+K4f5mc3m0KiSoyeGqFXsapcnnniCvn370rp1a15//XWaNGlidCRDqMKt1DiTyYTT6SQuLg6Xy0WiPZEZf3qKqZc9ypX/9xeKSovYfWAvGQnpFDoLiLcm4HV7ISA5cqSAeGscg7oNJTt7J6vlYr4b+zopmmRw/xs4o2MfrFYrbrcbu90eOjnpdDqx2Wz4/X4cDgeapqHrekSH6CUnJ6PrOsXFxRHpkqmPGjZsSFJSEt98801UDa+saapwKzWqcpx1WloahYWFJCcn43K5sFlt+J1+lt2xjP2F+/lo00e4vC5MQRNxNgelxaUgBR63F7vZxjUXX0P3c7qzassXvLpuChf+6RrO6T0ETdNwOp2kpqZSWlpKUlISxcXFpKenU1ZWRmxsLAUFBTgcDqSUuFyuiM3w69mzJx999BE//vgj/fv3j8gx6qtIrrxXG6jCrdQoIQR2u53CwkJiY2MpKSnBarUSDAaJj49HSkmbjDbcOehOpJTYLGZy1ywnd/1/cNhjSOt/Gcl9BmK12ykqKiKQG8RTLOh78XBsNhtSSpKTk8nfv58N82dRmP0bKa070u2vY0jOaBDq79Z1HV3Xo3rdFOX3XnrpJSZNmqQKt9EBlPqlssWdlJRESUkJiYmJuN1uLBZLaCw2fi8mn5ftU+5E+r00vfJ6uj80HV2YsJpN7Jv7NAU/bSKo6ezOL8Z+5DC+rA1sXLuKw1t+IKBpdLzmJrr+5Vr8Pi+a18c7t96Is9TJ0CmPk9iyNZnNmmMymXC5XNjtdqOfFuUUbd26lYkTJ9b7cxOqcCs1zmw2EwgEQrMYK08kms1mtLISDs19Ftdvu+l471SsCYkEiovw7t0FAnwSmvzlBs4YdQdBVxlNvllB952/ULB2FS36DeDskbcQDPpxFRXhLytBk6AjGTr5MYKazuqFC9iyZg23zXuDVud2w2w2G/10KMofpgq3UqOEEMesI1K5ZoiUEoJBfn1lOlreIVpdfzv+I7kEj+QikFQ2sIQE/2/78EqJDiS270hyl25o/iCe4gJKf92DJiWaBE1KdCnRdNClJKhLzh0ylICus3DivVw7/Rna9jLkkqjKaVi/fj1nnHEGGRkZJ9+4jlOFW6lRUkqCwSApKSnHnJy0WCwcWPwvPLt/oeUNt2+enMwAACAASURBVEPAi9BBiIqPY/ZRXsBBorld+KUsL9YVBVrTJbokVLyDmkSTOsGKbTpd0B+f18+csbcx4d1/0/Hccw16NpQ/4pdffqFRo0akpqYaHcVwqnArNcpkMhETE0NOTg5paWnk5+cTFxeHz+2icPlS2l9/B5q7BGkChMBU0UI3VVRuKWV561xSXsEri7Qu0XVJUOpoukTTIFhRuAO6TlBCUNfRdIGm63Q8ry+Hs7Px5Ocb+XQoymlRhVupUZUt7tjYWAKBQOjEYMGa5dji4vHmH8RsEpjM5aMGhBnMRxVuXZa3qqUuQNPRpY6UIPWKlrZeWaAlAb28eySoS4KS8gKul3ejBII6aU3PYPbdd/Hqtp8Rqq87qhUXF3Pw4EEuvPBCo6NEhfo9piZKPfroo6GlR+uiyhEBlZ+llJT9sA5HizZoHhe6x4V0u8DrAo8b4XVj9nkw+zwIb/lt6XUhvW50jxvd7UZ3u9DdLjS3E83tJuB2HfXhxO/674e3rAyvq4zGbVuj+bxGPhXKKTp8+DA7duygb9++RkeJCqpwR5GPP/6Yjh07ct5559GjRw+mTJlidKSwq1w/2+v1YrFY8Pv9FfeZkJo/VLh1jwvpcSE9bqgo1sJb/jUeDxy1ne51EfRUfLjdBN1OghVF2+924XM68bvK8LmceJ1uvE4nXqcTT0lJ6EIMilKbqK6SCDty5Ahbt249pW2///57Lr74Ymw2G++++y7z5s0jLy8vqq/d90fpuo7P5yM5ORm3201iYiJ+vx+/z48syMNesY6JMAtMJoEwC4TJRHkbQxIENF0nqOsEtfJukEDF1wEpCWgVH7rEH9QJ6lBaWoLZEYdfk/j1o75fMQknklq1asW+ffvo169f1C492rVrVzZt2sRFF11kdJTjklKybds2zjzzTKOjRI3o/J9UhxQUFPD111+f0rY///wzLpeLVatWccstt+BwODhy5EidKtwmkwmbzUZBQQENGjSgqKiIhIQEYhKTyPnmM2wmEyQnQ0XxxlQ+pCTo9yHssehU9luDz1WGO/8Ifk3HF9Tx6xKfpuMLSjSTBUt6JgEEJYeycTRsgl/XCWjg0zSCOhzJycXvjWxXyejRoxk4cCDDhw+PyCqE4fCPf/yDbt268eOPPxod5biklEydOjVq8xlBFe4I69ChA1OnTj2lbd977z0effRRnn/+ea677jo6d+5Mp06dIpywZum6jt/vp0GD8unnycnJ+P1+Gv1lFEfWrqB4x1a0Js2JS89ANwl0kyAoIHhgD9ZmrZGAJ+8QgdISvD5febdHUMOvSTxBiS+o4dV0/Aj0A7/hx0xss+aU5OQg4uIIaODVdEoKC9m77We6DLkC6vksPKX2UYU7ilxxxRUMGjSIcePG8f777xMfX/VVnmszXdcxm83ouh5aZtXeuDm6xUbA5YZ9u0DTsMXHE5AaZsBfWoLYsr58rLamEdB0/JqOX/tv90hQ6hVjtyGgaXiLC/EFdQry8/EENPwIEpu1oKioiMMHc/H6gwwZO7beT5+OdocPH65T7zrDQRXuKGKz2bDZbLzzzjtGR4kYIQQ2m42ysjLsdjsejydUxDV7LH5dIgMa5tISgloA7dCBiuGAAgFoyNAkG7+uE9QEfv3ovms91Ocd1Msn3AS1AJoGgaCGx+mkMCcPXQLCRGx8nNFPiXIS1157LcuWLTM6RlRRo0qUGlV5BZzk5GQ8Hg8JCQnouo7FYqHF9bfgq+indhUW4naW4dN0vJqOR9NxazreoI4nWH7br4GvotV9TMtb18tnTOqVJy/L79MllBYWoes60mSix/C/IGLU6oBK7aNa3EqNqlzWNT8/n/j4eIqLi7HZbAQCARr3HcSPOuhSR5cB9DI3BPXy85OivI0hpV4xCQeCFZNt/BUnK/165WgRiV8r/36gsoBLiYiJwevxlW+jBely0UU0b9XK4GdEOZFgMKgWAjsO1eJWapSUkkAgQHp6Om63m6SkpNCVaMpcbhJ6XFDeyg5qOMucuAPlLWx3QK/4Wpa3uIM6nqCGp2JEiTeo4Qtq+DQNf1Di1zT8mk6gopgHgjoupxu/z09CgwZcevttmGNiKSwsNPopUU7gscce4+GHHyYuTnVpHU0VbqVGVU7AcbvdWK1WvF5vaJXA2IQE2o28GW9QVhRoDW/FaBFvUMMb1I4q2uVdKN6gDHWv+DSJr6K7xK8J/Dr4NXnMeO+AlGS2bUtpYRF9/jxUXUghymmahtlsVieQ/4cq3EqNk1KGlnWtnAAjpcRisZDSpj1NLxlaUagrWtXB8r7t//ZvSzyB8u/7KrbzVYwyCVQU7/LuEq28iOsSvw5BTefMCy5CExbOG34VFoulXl+3UKm9VOFWalRl0XY4HAQCAWJjY0MXUfB4PJji4knr1AU/pvJWt1beNeIOarhDRTxYfrIydLu8Ne7Vysdw+3SJN1g+2cava/gqWtu6MJHSpAllZaWcfcEFaJqGy+Uy+ilRqvDVV1+RkJBAL7Vm+u+owq3UqMplXQ8fPkxcXBwFBQWhK+IkJycTGxtLu2tGkdm7X3nXiF/DHdBwB/Xyj4CO2y/xBSXeoKzoLilvhXuD4NEkvmD5kEBvRfdJQNOQFiudBgxiw4qvmb54CfaYGKxWK2lpaRF/zN27d2f9+vURP05dU9mNpi4t93tqVIlSoypPTsbHx+Pz+YiLiwtNyPF6vUgpMQlBx6FXsffbtQS87qNaF/9dTVCn4qIJFRNuQsu3HjUE0F+xJkkQEy06dyWAoN9Vw9GsNoLBIFJKnE4nCQkJEX3M06dP59xzz2Xz5s0RPY5Sf5y0xS2EeE0IcVgIkXXUfY8JIQ4KITZXfFx+1PceEkLsFkLsEEJcGqngSu1lNpvRNA2r1UogEAjNnrRYLKGhX80HXIqjw1l4gxJ3UIZa3KETkxX3V/Z/+wLl/d2+0EnL//Z7Z7RphyMllf3bfubs/v2Ji4/HVLGYVbQu/FTflZSUsHjxYq6//nqjo0SlU+kqeQMYfJz7X5BSdqn4+ARACHEmcC1wVsXPzBZCqEGYSkjlNScrl3OtPEkppQwVUyifFv+naf/AlJJ2VMGu7DKRuCpOSnoD/y3mHg08FUXbq2noFiuJTc/AEp9ASWEhf7n7Ltr37BkapSCEUCcno1QgEODgwYM0b97c6ChR6aSFW0q5CjjVwa7DgEVSSp+Uch+wG+hZjXxKHfO/XSUOhwNd1zGZTHg8HgKBAFA+/b9xm7ZcO/s1Epq3wBPQKz7KT0T6Ksd3h/q49dBIFF+wvA/cLwVef4DSwiK6XjyIi0ePJiY2lrKyMjRNUycno5jdbmfgwIFGx4ha1Tk5OV4IsaWiKyWl4r4mwIGjtsmuuO93hBC3CiE2CiE2BgKeasRQapPKk03FxcXExMRQWloKlM+Qi4uLw263I6XE6/VSVlZGm569GTJ1Ol3/MgKfFKFRJn6zhZb9LgoNEfQGNWLSM4hv2BivppVPh/cFsDkcXHnnnQy66SaEEHi9XpKTkzGbzVgsloj3byunJyEhgfvuu8/oGFHrdDv4XgGmUX7J1mnAc8BNHHsx7kryeDuQUs4F5gIkJGRKn+80kyi1js1mIyMjA7PZTIMGDUKTKyq7SSwWCw6HI3Rft0GD6dTnfP486UGg4irvJoEjORnnUTMfLTY7CHHMGtu2mBgymjdHrxhyGBsbixAiNPGmJiZ2CCH44IMPIn4cpf44rcItpcyr/FoI8SpQuXRXNtDsqE2bAodOO51SJx3dl135+Wj/uzaFyWTCmpJCfErK77ZNyWx4Sses3GPl8WpyJp4QgtatW9fY8ZS677S6SoQQjY66eSVQOeJkKXCtEMIuhGgJtAXUAFZFiWJCCEaNGmV0DOUPEFIetyfjvxsI8Q5wEZAO5AGPVtzuQnk3yH7gNillTsX2kynvNgkC90gpPz1ZiKSkVNmu3b2n+xgizmp1cdZZ+ZxxxhlGR6lSbm4uP/1kx+v9fas0WqSk7KRPn5ZRPZJj69atnH322UbHqFIgEGD//v20bdvW6ChVKiwsxO/307Dhqb0bMsL+/fv5ucHPBOICRkep0s7nd1JSWHLct4YnLdw1ISEhQ/r9O4yOUaXExP08+ujaao8pPXz48DG3rVYrKcd5+386PvvsMxo0aEC3bt3Csr9IePHFFxk9enTUXnsRYPLkyTz55JNh2Zff7ycQCBAXFxcawZKYmFitfRYXF7NgwQLuuuuusGSMhI0bN1JQUMCll0bvNI633nqLCy64IKobY+3bt+fw4cPHLdxRMvtA4PdHb0sxECjAbrdXq8h+8803DBo0KDTcDeCss87i/fffp0OHDtXOGBsbS1xcXNheCAKBABs2bOC8884Ly/6g/IUqKSkpbBnDrXLNlHDk8/v9LFq0iNTUVJo1a0bz5s156aWXuOuuu2jRokW1MobzBT8SHA4Hbrc7qjPa7Xbi4+PDltHpdLJr1y66du0alv3Bic/DqLVKIiwYDLJ06VKuv/76Y4o2wLZt2xgzZgxbt24lGt75HM3tdvPII48YHaPW0nWdwsJC0tLSeOSRR0It7+LiYqOjKRGQnZ3NzJkza+x4qnBHkJSSr776ittvv52DBw8ed5u1a9dy9dVX/64bRandYmJi6NmzJ2PGjGHTpk0MHz6c/fv306VLF6OjKXVAlHSV1E1SSoqLi09YlKWU7N2793etcaX2GzBgANu2bePyyy9n0aJFUd11oNQuqsUdQT6fj7Vr16Jp2gm3CwQCLF++vIZSKTXFbDbjcDhCE3/U8qRKuKjCHUEWi4U2bdqcdLKH2WzmzDPPrKFUiqLUdqpwR5DZbKZRo0YnvUq1xWKhSZPjLumiKIryO6pwR5AQgkGDBjFy5MgTbvfCCy+QmZlZQ6kURantVOGOICEECQkJ/OUvf+Gmm2763YzBRo0aMXbsWC644IKTtsoVpTo0TeONN94wOsZxffrpp+Tl5Z18QyVEFe4IklIihGDIkCHll9uquKJ5Jbfbzdlnn03Hjh0NSqjUB7Nnz2bYsGFIKbnssstYvXq10ZEAyMvL47LLLmPr1q1MnDgxqmeDRhs1HDDCSktLefzxx3nrrbd+N7qkpKSEiRMnkpaWxpAhQ0JLmSpKuLjdbnbu3MlDDz1Ey5YtcTqd7Nu3jz59+hh62TYpJdnZ2TRt2pRRo0ahaRo333wzxcXFJCcnG5artlAt7gjRdZ39+/czbtw4XnzxRYLB4HG3c7vdXHfddbzwwgsUFhZG3QxKpXb78ccfyczMpH379kybNo1GjRrx448/RsUMznnz5jFmzBiWLl3Kp59+yvDhw1m8eLHRsWoF1eIOs8oukblz57Js2TI+//zzkxZjXdd5+umnycrKYsyYMVx00UWhayIqSnX07duXd955hwkTJnDnnXfSq1cv3nvvPdLT0w3NJYTggQce4NJLL2X+/PmMGzcOm83Gxo0bDc1VW6jCHUaVRfu1117jwQcfDF2W61SUlZWxaNEi1qxZw0cffUTnzp1V4T5KMBgMXeRX+WPuv/9+cnJyeOGFF7j//vuRUobOvxipUaNGLFy4kHfffZcnnngCTdN47rnnmDBhwnEvsKH8lyrcYaTrOq+//jpjx4496WzJqmRnZ3Peeeexbt06ta4F5cuY7t+/nxkzZjBx4kQaNmxI06ZNjY5VqzRv3pxmzZrx5ptvYjabeeihh2jYsCH9+vUztHjb7Xa6d+9Oly5dQoX67bff5o033qBnz56cddZZhr+4RCv1shZGb731FrfeeutpF+1KHo+H6667jlWrVoUpWe21fPlyxo8fz/Tp03nhhRd46qmnjI5UKwkhsNlsmM1mnnnmGZYvX86yZctO/oM1wGKxhC5nd8MNN6BpGnPnzuXjjz82OlrUUoU7TObPn88999xzTH+2EAKHw3HSVoMQgri4uGPu2759O7feeivff/99RPLWBoWFhaxbt4758+fz6quvEh8fT7NmzVi3bp3R0Wq9yZMns3fv3qg8GThmzBieffZZ9uzZw4cffmh0nKikCnc1aZrGO++8w6RJkygpKTnmey1atGDWrFkn7a+zWq0sWbKEpKSkYybp7Nixg6uuuoqdO3fWy9EmiYmJnHPOOSxfvpyxY8dy+eWX8/LLL7N7925KSkrq5XMSLna7nU6dOpGVlVXliCcj2e12xowZw5YtW1i1alXU/65ruktHFe5qkFKyatUqbrzxRoqKikL3N2zYkL59+/Ldd9+Rnp5+Sr/Uc889l99++4377rvvmNZ3dnY2ffr0IScnJyKPIZpZLBZatmzJ4sWLWblyJbNnz+bBBx/kwIEDXH/99axYsYK9e/caHbPWGjBgAE2bNuWtt96KyuLtcDh4+OGHWbJkSdR3G9b0C4sq3NWg6zr/+Mc/junTbty4MVOnTuWTTz6hQYMGp7yvyunxEydO5I477jhmCdCysjLmzJkT9a2OSLjgggtYvnw5fr+fjz/+mLvvvpvJkyfz/vvvs3btWhYsWMBjjz2G1+s1OupxffXVV1xwwQVRuaSrEILRo0cjhOD//u//jI5zXEIInnvuOdauXRuV3TqV0tPTad68OT/++GONHE8V7moQQtCiRYvQOiNWq5Vp06YxcuRIEhMT//DbJyEEaWlpPPDAA4wbNy50v91ur/GRFHFxcYwcOTJq1re45ZZbjpnpFxMTw6OPPsqoUaM4//zzueqqq3jqqadCQ92ixcqVK7nggguIiYkxOkqV/vrXv9K8eXOefvrpqHruKgkhuOeee/j111/55JNPojJjZeHevHlzjRxPFe5qEEIwbdo0Jk2aROvWrdmwYQOjRo363YnGP/ofLSUlhenTp/Pqq6/SqlUrZs2aFWoZ1ZTKbopo74po1aoVAwcO5O2336Z9+/Z07dqVr7/+mkOHDhkdrdYQQjB06FAaNGjAggULjI5zXA6Hg3HjxrF27VrWrVsXlcW7JqnCXQ1CCFJSUnjyySfZvn07nTt3PqZVKKUkEAic0szJoy9dJoTAbrdz0003sWPHDkaNGmXouhLRTghBYmIiw4cPZ/PmzXz++edR+9Y/WpnNZtq2bUtOTs7vTrJHC5vNxpNPPsnSpUv54osvjI5jKFW4q0kIgclkwmKxHLdF3Lp1a7p163bCfVx55ZXH7QM9er9qIsKpmzFjBk8++aTRMWqdfv360bt3b5588snfrWQZTZ544gm2bdvG2LFj2bJli9FxDKEKdwQJIWjZsuVJL0s2cODA33WvKIoRLrroIkaNGsUtt9wSlSNNoPxc0m233cbYsWN5+eWXyc3NNTpSjVOFO8JOpbWsWtRKNDnrrLO45ZZb+Pvf/250lCrFxcXRuXNn5syZwz333MOuXbuMjlSjVOFWFOUYQggaN25MTEwMe/bsMTrOCVksFubOncvrr7/Opk2bjI5TY1ThVhTld1q0aMENN9zAyy+/HBVrd59IYmIi48ePZ/HixezcudPoODVCDVVQFOW42rVrx5QpU0hISDA6ykk1btyYSZMmERsba3SUGqEKt6IoVUpLSzM6wilLSkoyOkKNOWlXiRCimRBipRDiFyHENiHE3RX3pwohvhRC7Kr4nFJxvxBCvCyE2C2E2CKEODfSD0JRFKU+OZU+7iBwn5SyI9AbuEMIcSbwILBCStkWWFFxG+AyoG3Fx63AK2FPrSiKUo+dtHBLKXOklD9UfF0G/AI0AYYBb1Zs9iZwRcXXw4AFstx3QLIQolHYkyuKotRTf2hUiRCiBdAV+B7IlFLmQHlxBzIqNmsCHDjqx7Ir7vvffd0qhNgohNgYCHj+ePJa4lQWPdJ1vd6vvaAoyqk75cIthIgHPgDukVKe6Cq4x5tJ8ruqJKWcK6XsLqXsbrXW3TPBMTExx8yKNJvNxMbGHjPhJi0tTV0cVVGUU3ZK1UIIYaW8aC+UUv6n4u68yi6Qis+HK+7PBpod9eNNgXq7VJvFYiEzM5PExETi4+P529/+xubNmznnnHNwOBykpaWRlpamZk4qSi0lpcTtduP3+/H7/bjd7oi/gz7pcEBRXlHmA79IKZ8/6ltLgb8CMyo+f3jU/eOFEIuAXkBJZZdKfSSE4OGHH2by5Mmh2yaTiY0bN4a2icbW9qZNm8jKyuLAgQOsXbuWXr16qRUKFeU4dF2nRYsWJCcnI4TgkUceIScnJ7ROfyScyl9iX+BGYKsQonKV8L9TXrDfE0LcDPwGXF3xvU+Ay4HdgBsYHdbEtUxV65BE8pcaDtdffz1dunThwIED3HDDDfzwww+kpKQYHUtRos6iRYu4//77SU1NRQhBQUEBixYt4vrrr4/YMU9auKWUazh+vzXAwONsL4E7/niU6D85VxtOIIYj4/PPP8/UqVNJS0vjm2++4bLLLuPvf/87s2fPDkPC6H8ew5nv+uuvJz09PeyPOdqfQ6g/Gc844wy+++47RowYgRCCZ555ht69e0f08YtoeHKTklJkly43GB2jSmazn0aNnKSmphodpUqlpaVYLBYcDkdY9hUXF4emaQQCAeLi4igsLKz24z98+DBpaWlR/W4jO/sQFktjo2OcgEbAdAhrhtXoIFXS3TrxwXgSExONjlKlwsJC4uPjsdlsYdtf5d9HOP5WAP71r39RVFR03EZzVBTuhIRM6XTmGR2jSklJu3n22ZWMGTPG6ChVWrJkCZmZmfTq1Qufz4fVav3vYvgmnVzfrxQF85C6xIINEHgCbhzmRFonnoXQzdhsVjRNQwhBMBgM9ccHg0FsNlvoc+X+g8EgZrP5mG0ru4aCwSBWa3lxqewqeuKJJ7jjjjuitstFSsmIEXfx/vszjY5SJbu9kE5TLmHT36N3JbyGaxsyJ38Ow4YNMzpKlf75z38ycOBA2rRpY3SUKmVmZpKXl3fcwq3ONtUxmqZRUFBATIKN9UXLyIg5g6DJyx7nT+T4f6XM66TMW0Lj2NZ4/B4yrE3ZFfML+wp2M77XZPy+AEIInE5n6BJqTqeT9PR0nM7ydx0lJSWkpqaGWubFxcVYrVZsNhs2mw2LxYLT6YzaAq0okbB+/XqEEPTo0SPix1KF2yAul4tJkyaFrd+40u7in/ig6AVEiSDX9ytWGUMwKIkjhXR7E5JJodjtwqMHSLU3Bd3Kp3v+Q6wlgWlf3c+1nW6msaMZCQkJSCkJBoOkpaXhcrmw2+3k5+cTHx9PaWkpsbGx+Hw+kpOTkVKiaRputxsovz5gQUEBycnJajSKUi9kZWWpwl3X6brOL7/8Evb9NnCcwaIVP5Iak0rnBp1pldGBvYf28+aad2jTLokGcfHs2pKDuUmQvmdegDkYQ6wlmcKyfOyOBF5b/wp/6ngFZ6Wcg8VixWq1cuTIETIyMnC5XKSmpVFYUEBSUhIlJSXExcVRWlqK1Vq+bVxcHCaTCZfLRUpKSlQOdVSU2k4V7jomFgdz//Qa938xiY9//pTPs5Zj121kpjTEf8SOryydthlncKh4H1qxzrebv6Vpp1R25x6iTZqfYncJXp9G6ws7kGwpn+EZHx+P3+/HV5bDzu1LKSstIzWjMemtBqJpGjExMaF+bL/fD5SPTfd6vb+bJaooSvWp5lAdYzKZaJfahocHTMZkEewp2EORp4j4mDjcfjfugItmGc3omN6FRE8bWiSeSdlOifDrmPHx2+FDfL51BU8uewIoP2Gn6zpIjYM/f87Xi+5h0ycPs+mL5xAV57V1XT9mvRWTyXRKa7QoinJ6VOGuY6xWKwF/gD5N+/DByA9Ij0/DZDZT7C3BarPg0/z8nL2NI2VH2PHbdlZv/JYzHJ0YmnkjP63YQY8OzXCUmfn3p/8mEAwAUFZazOFfN7Dq45kUu+30uGo+g25aSEArH1Xi9/tDI1gqT1Lquh721ramaZSVlTFx4kR27doV6k9XlPpGFe46pqSkhIyMDIQUdGx4JmvvWkNyXDI5ZbnkluZxqCSHA0XZfLvzW1ZvX016SgM0qZF3OJ+h515D3C9tSbJbyEiKZc+BnUgp+WbxP5g34yZiktsy8Ib/o1PPIQSJw+Fw4PV6SU1NxeFwhEajFBcXY7PZyM/PR9O0sD22bdu20bFjx9CEoGgebqYokaQKdx1TebJQCIHX6yXT0ZDXrnuNcReOw68H2F+wn+052/Hrfto2aUd6ajqHiw9T5Czk4JFDuL1uEgpbEJsoePzDe/jPR/PY+csWkhueyZ9vfolOPS/H6/XicDjw+/1YrdbQAjsAsbGxOBwONE0jISEhbCcnNU1j2bJlvPLKK5SWljJz5kzOO+88Vq1aFZb9K0ptok5O1jGVJwQDgUBoEk77Bu1o138CPZv0IM+Vx1PvP8XB/EPszdtDakwaNmwU5OfjcwfwOj2MvWIsd543nhJHNm+88DQphzXum/YqKQ2a4Xa7iY2Nxev1YrfbQ5NyKvu5Kwt4ZUG32+1heVxCCFq2bMn+/ftZt24dbdu25dChQzRp8rul3hWlzlOFu47RdR2LxYLf7z/mJKGU0KdVH2JiYxh85mCsNivOMic2s+Dg3p00SErDJ8GR2oAYWwwpySmUlhaxo+Vm+t/0J1q07YIQAk3TMJlMOPOPELCYCWg6aY2bYDKZQsUbCG0brhOUJpOJLl26MHToUPLz8/nss88YPHgwrVu3Dsv+FaU2UYW7jomJiQmNq/b5fMB/VyK02+34/X4SYhLI37iOmICHssN5JBz6ldLiIpLP7kpil9449+9mn8fDgdzDbF29lt7nnk/g4G8c2rWdmNhYSuNT+HX1Cn7L+on4Bo1wtGpHfFo6Tc46i8y27UPT4JOSksI6jrtjx47s2rWLl156iWeeeYa33347bPtWlNpEFe46xuVykZaWhtPpJCYmBl3X8fl8CCHweDzEeMrYt3AOcSlp+GMdJDVoSOJ5FyKFQACe7F+RJYXY9SBx+3Zyns+NXLGMQwf3I0wWigJ+YjOa0G7gYFoPvBSp6exYu4rcrJ/4aREhtAAAIABJREFU7cdNlHm8XPH3R0hJT6ekpCQiV/e5++67ef3118O6T6VuWbt2LVarlZ49exodJSJU4a5jEhMTy9cqiYnB7XZjMpmwWq1IKYmzmtl85xiSWrUl5YJLMJktIDX8B38rX7hXSsxmC0ltOqBLSVyz1rT5y7Vomo7PXYolNh5N6gQCQTwlhegSNF3StNM5NJKSkoIClr70PPPH3cb4N/5FcnJyxFYCrGzVVy5kpShQfhK7X79+9OnTh0AgwMSJE/n666/r3AzeuvVoFEpLS0PrPzscjvJx3YEA3qICvr/lChyNm9DosuHoZSXoJYXIshKE14nwOMHrQrpK0QqPECw8gu4qI1hSgFZWhPD78RcXEigqIlhWStDlIuh2EXC78DvL8DnLu2eG3XMfztwcZv1tFAf27AnrcMCjffbZZwwdOjQi+1Zqr127dpGRkcF11133/+ydd5xU1fn/3+dO3Z2d2cLSpYMFUKrEXgBRExtJFOyxY4tRQPAXa8w3ERSwiw01KApWjBrL18SvYmJBUIpCWJosC8uyfeZOueX8/piZ666ALrDLzC7n/XrNa+6ce+fcZ+7ufOa5z3nOebj11lvp0KEDJSUlmTar2VHC3cbw+/1EIhGEEBiGgWVZuFwuKv6+gKJufeh68liM7VsgpiNiOlpMR8SiiHgMLRZFRCOIaHIf0TBSD2Pp9ZhRHVMPY0bD2NGUaIfDmOEw8UiYRCRMPBLBiMY4avx5lK9fy8p//bPFprunf5AUioZceumlHHnkkTz77LNs2LCB008/nXfeeSfTZjU7SrjbGLm5udTU1AAQjUaTWR7xKPX/XUbBwQMxt2+FmJ4U7ngELa7jSui44jpaIoqI64i4DtEIMqYjYxGkriOjEayojqlHMCMRjEg9RiRMQg9jRiIkwhESkXriej0a0PPQQXy+cCG1FRWZvSCK/YIvv/yScePGcf7553Pfffdx2GGH8cUXXzB16lR+//vfZ9q8ZkcJdxujtraWjh07IqUkLy8Pt9vNlo/eg3gC2zKwohFkNCnMSY87giuu445H0GIRRDwl1rEoUtexIzp2NIIVrcfWk+JtRH8IkxiRMHE9TDxSTyISJhaOEA3X0alvX+qrqghXV7fI5wyFQlxzzTXMmjWrRfpXZDemaVJdXc3VV1/NoEGDePLJJ7n33nu5/PLLWbJkCUIIgsGgs0Z2W0MNTrYx8vPzKS8vJxgMEolEcLlc5Po81Htd2IkYtglS00ADqQnQBJpLQwiQNghbgi2RtsS2LGw7OQBp2TaWDaYlMaQkYUtMS2LaNoYNhm1jpF4nbBvTFtimAS200JSmaYRCIerq6lqkf0V2snLlSkpLS9myZQsvvvgid911l7OmfVqgu3XrxuWXX96ora2hhLuNEY1GCQaDAM6sxVgshh2PJT1nDVyaC1sD2yWwNQ1bE2gIbJkSbNvGsiW2JR3RNm2ZFGgruW1aScFOWHZKrCWGBYYtUyJuY6kYtKKZqKys5P7778ftdqNpGgcccADvvffeLo9vq4KdRgl3hrjhhhuYMWNGs/frcrmc6jTpgUm3y0P9mu/ICeYjcnIwXRrClfS6hSZAuBCATVJ0TRss28KwZPJhSwxpY5iQsCxMmRTshAXbNq4nt0MnDM2FYZH0xG1ImFaLDx4OHTqURYsWsWTJEoYOHdqi51LsWxouC3zTTTexefNmrrnmGg466CC6dMm+Ys7ff/89y5cv5+abb94n51PCnSGWLl3K4MGDm73fdN60EMJZS9tX3B48Xuq+W47o0w/p8yE1DekSSCFJROoRvlzweLBMEyNhEo/p1KxaScI0iZmSuC2JmRYxyyZuQbDfQCyvF09uLrGIjikEhiWJW8mQSdn3G6mtqEC0YEX3oqIipJRUVVW12DkUe8beeLzl5eVs3bqViy++GICHHnqIwYMHO3eS2Yiu69TW1tK5c+d9cj4l3G2M9LKu9fX1BAIBTNOEw0bQ7siRlP/jFaxohIKefbByc7E0gUtIrPLNCLcPvF4S9bXEt28jYSXj2HHLxrQkCVNiWBamKTEsm83LviRugru4I3HDhEAeeP0kpKBmexUb16zhhEuvoGgf/SMrsovdXaPGsizmz5+Pbdt8/fXXRCIRli5d2uZDHnuKEu42Rm5uLrW1tbhcLmKxGJD0wqPxBKYtiesR6svLyG3fgWhNFS5pJ9MDE3FskgORtkwJtg2GJUmkBh1NW2LaEkv+MGAZKdtM3JJELRtfu/ZE4gkqyyuwbeh96GHk5OW16Oc9/fTTmT9/PkcddRS5ubktei5FyzBv3jw+/vhjBg9OLmR2zTXX0Lt370ybldUo4W5jJBIJ8vLyiEajeL1eLMvCsixyunbFdHnANBD19UivF1lZgUvaCKElZ7wDlkwOTBrpWLUtSaQyRgwbDGmnMktIxsKlxCI5iBmPxYiGo9hC4MsLEYvHsW27RacbDx8+nKlTp5JIJJRwtyISiQSbN2/m7LPP5qKLLuL666+nf//+ysNuIkq42yDp29SGt6u9L7iGTe/+HX3zBiw9huWuRRgWLikRAhDJ4y1kKgWQRtkiyedktohhg2X+4IUnLBsbQawuQjQexzRtho09hePOPy9DV0CR7UyaNInS0lI+++wzNE1rc2uJtDRKuNsYXq+XaDSKpmnJ+DY/FO/VCtpjfr8eKS2ssI5m2biERCAhPZgJ2FI6wp32vOMp0U7YyYFKw7YxZFLQLRtMwCIZQjn46ONwoZHrz9knX8jf/OY3LFiwgCuvvLLFz6VoHh588MFMm9CqUT9zbYxYLEYoFAKS65a43e5kXrZl0fOiq4lbgphpE40liBo2UTP1MCxipp3MHDFSz5Ykbklilk3CtImnnk1TkkjFv007mTKYMExisRguvw/N5+GUK6+irq6uxRaZasiECROcSRgKxf6A8rjbGMFgkO3bt+P3+wmHwwgh8Hg8uFwuev3iaD7PzSNRX4smwK0JNFsghEyv6oolkx63TdLjtmwwUzMlk3ndkLAhYVvELTCsVEjFkki3h6POHs/qpV/TY+BAAoEAbrf6F1Mompuf9biFEN2EEP8SQnwnhFgphLgh1X6nEGKzEOLr1OOXDd5zixCiRAixWghxckt+AEVjwuEw+fn5SCnx+/14PB4sy8K2bXTDYOQDzzj52Lplo5s2UcNGN1LblkXUtBp44DYxwyJhWslJN6kUwYSZnt5uEbfBtGwOPuoYvvrXv7ju8Sfwer2Ew2GnlFlLM3z4cJYsWbJPzqVQZJqmhEpMYKKU8hDgCOBaIUT/1L5ZUsrBqcc7AKl944EBwCnAo0KIlpuFoWiE1+slFos5NR/TWR1CCLxeL74OHel09MiUICfDJLppETVNoimhTodHYuYPk26Sj1TYxEp62HEreaxhW/hC+URjCX7xy1/SqUcPLMvC4/HskywBIQS33nor9913X4ufS6HIBn5WuKWUW6SUS1Lb9cB3wE+V1j4TeElKGZdSrgdKgLZZPygL8fv91NfXI4QgkUhg2zYulyu52FRuLu6CIrqMOIq4KYkaP3jWUVMmnw3biX3HLSsl1qQeP4h13JapUImNLdwMGDmaaCLBUWecRTAUwrIsAoHAPk3vUpkJikyxr9MYd+s/XQjRExgCfJ5quk4IsUwIMUcIUZhq6wpsavC2Un5a6BXNSF1dHe3bt8e27aRQu90YhoFhGFRXVxPIzWXA+Is54MQxRO2khx0xLCIJC92wkmGTVKgkkhLwmGERM03ihkU8PXBpJj1vy+XhoGOOp2p7JUNHn0TXgQOpqanB4/Gwffv2fTI4CdC9e3eefvrpfXIuheLH7O5M0b2lycIthMgDXgX+IKWsAx4D+gCDgS1AesWknf307PCphBBXCiEWCyEWG0Z0tw1X7JxQKERVVRWapqHrOoZh4PF48Hg8FBQUoOs6Lo+H7if9EtOTk4xrm5KoJdHNZNw7asrU44esk5gpiVmSaDrGbUvw++nQpy/S7UKvq6XrwQcTys+noKAAwzAoKipqsZqTP0bTNGc1RIWirdOkIX8hhIekaL8gpXwNQEpZ3mD/k8BbqZelQLcGbz8AKPtxn1LKJ4AnAILBjjIe3xPzFT9G13VCqVBFusp7Op87kUjg9/uxLIsRY88mWlXJW3feSuO7vB/yuZPT33GmuJsyNQ3etpHCRV6oELw+tqzfwJX33suAY48lGo0ihMDtdlNfX08oFNpn4q1Q7C80JatEAE8D30kpZzZob7h60FhgRWr7TWC8EMInhOgF9AO+aD6TWzeGYRAOh7Esi0gkQiKRaNb+c3JyqKurQ0pJLBbDNE1nZlogECAWiyGlpK6ujuMvvYoxt96J6fIkvelUPnfUtEkIF9EGbTHLJiE1YqZF3JTEEejRGFs3fM+Fd9xFv1/8IrkSoc+H3+/HNM19HuNWKPYXmuJxHw1cCCwXQnydavt/wLlCiMEkwyAbgKsApJQrhRALgG9JZqRcK6XcN4HOVsCzzz7LzJkz2bRpE8cccwxnnHEGd999d7P173K5cLvduN1uJ+6W3m64z+124/X5OPL839F32BF88NjD1G1P1oeUwJHnnc8nLzyPlGDbEndOLt0OPZTv/vMfbAkSQVHnTpz///4fRd264fZ4nH7T53S73Uq4FW2eZcuWsWLFCsrLy1m0aBFDhw5t8XVzfla4pZSL2Hncepelk6WU/wP8z17Y1SapqKhgy5YtvPDCC1x22WW88sorzJ07l3Xr1jXbamiaplFcXLzL/fn5+QAEAgEAOnToQIcOHRhw3HE7HDvmksv32A6Px7PH71UoWhPXXnstffv2ZdOmTVx99dW8/PLLHHzwwS16TpU/tQ/x+/3k5ORQU1PDgw8+iK7r2Lad1QvEKxSKXfPMM8/wu9/9jkmTJjF8+HCef/557r333hafeJYl85ElPl/2VjHxeuuIxWLNUmnF5/Mxbtw4Fi5cyJgxY7joootwuVx73beu64TD4ayuBmMYBjU1Nfs8dWr3sLL6f9Hnq8FluPBVZW8GjTfsRdf1rP5fjMVi1NXV7bWNo0ePZsKECZx00knccccdTJ8+nfPOO4+ampq9tvGnviciG75ERUVFctKkSZk2Y5dEIhEqKiro2bNnpk3ZJVu2bMHn81FUVJRpU3bJ6tWr6d27d1aHUb755hsGDRqUaTN2iWEYLFq0jurqgzJtyi7x+6sYMiS+z8p47Qnr16+nQ4cOTsgwG7nvvvuoqqra+SBRuihnJh8dOnSQ2cyaNWvkE088kWkzfpLXX39d/vvf/860GT/J3XffLauqqjJtxi6xbVted911mTbjJ6msrJTDhv2PTC4Jlp2PTp0WyTfeeCPTl+onmT17tlyzZk2mzfhJUrq4U81skzHuu+66i02bNv38gQqFQtEKaZPCvW7dOqfeokKhULQ12qRwKxQKxb5m1apVrFq1ap+cK0uyShQKhaJ1Yts2l19+Oe3btweS8zWeeuqpFl2tUgm3QqFQ7AXhcJhvv/2W1157DYBf//rXhMNhp4RgS6BCJQqFQrEX3H777UyfPp333nuP999/n+nTp3P77be36DmVx61QKBR7wYwZM+jduzdDhgxBCMGSJUtYt25di55TedyKrCOdqzphwgRnW6HIVjRNY86cOfTt25c+ffowZ86cFq/GpIRbkXXMnDmTgw8+mMsvv5wDDzyQ2bNnZ9okhWKXCCEYNWoU/fv3Z8CAAYwaNarFV8VUwq3IKrZt20YkEmH+/Pls376d559/nqqqqqxe90Kh2Nco4VZkFaZpIqXE4/GwceNG5s6d26iKj0KhUMKtyDK6dOmCz+fjt7/9LUcccQRPPvkkeXl5P7nGuEKxv6GEW5F1TJ48mW+++Ybp06dTX1+Pbdu8+eabLb7GcUtQVlZGfX19ps1QtDGUcCuyDpfLhdfr5YUXXsDr9TJx4kRKSkqYN29epk3bbR577DEWL16caTMUbQwl3IpWwU033UQikeCpp57KtCkKRcZRwq1oFWiaxgUXXIBpmrz88stYlqo/rdh/UcK9m3z66adZPSEkkUjw1VdfZdqMFsHr9XLVVVexdu1a3nzzzaz+Oyh2xDAM3n33XedhGEamTWq1qCnvu8G8efNYu3Yt77zzDmPGjOH444/PtEk7MGvWLOLxOK+99hpXXnklPXr0yLRJzYoQgqlTp/Lwww/zzDPPcOmll2baJEUTsSyrkVOxaNGinf74nnvuuQwcOHBfmtbqUMK9GwwaNIjTTz+dRx55hE8//ZRjjz020yY5pL8Ao0aNomfPnvz+97/n+++/p1u3bnvc59KlS2muWqDnnHNOs/STZsKECcydO5dnn32Wiy++uMVnqin2Hr/fzx//+Ecg+f/673//e6f5+Y8++ijfffddo7auXbvyt7/9bYdjhRC7/NtLKYlEItx6663MnDnzJ4/dW9Lfv331f9gmhbtjx46Ul5fTt2/fZr2QAwYMYMyYMaxdu5ZoNMrLL7/cbH3vLXl5eUyfPp0+ffowcuRIysrK+PLLL8nLy9vjPocOHcqbb77ZLPZ5PB7uu+++ZukLwO12c+GFF/LII4/wxhtvcMYZZ+ByuZqt/+aiqKiIqqoqbNtu8fUrWhNCCI4++uid7hsxYsQOgr5p0yaGDRu2w7FTp07daXsoFOLWW2/l66+/5r777qN379489dRTjB49unk+wI9Ys2YN//nPf3j00UdbpP8f0yaFe/r06QwZMoSvvvqqWYX7o48+Yv78+fz5z3+muLiYW265pdn63lveeOMNIHn7+fe//50JEyYwdepUjjnmmAxb1nK43W5uuOEGpk2bxiuvvMK4ceMybdIO3HjjjYwaNYrRo0eTn5+faXNaBTk5OTu09e/fn6VLl+7QPmvWLN5+++0d2rt27crKlSs5++yziUajPPDAAyxfvpxjjz0Wn8/X7Dbbto1lWXg8nmbve2e0SeFuKUzT5M4772TgwIEcfvjhmTZnp1RVVfHAAw9w5pln0rdv30ybs0+4+eabefLJJ3nyySe54oorMm2OYh9y44037rR91apVfPTRRxiGgWEYuN3uNpWJpIR7Nxg9ejS9evWid+/eWRtTPf/88ykrK6N79+6ZNmWfIYTgd7/7HXPnzmXevHmMHz9ehSX2cw4++GD69+/PwoULOf744znvvPN46qmnWsTbzgTqv3s36dOnT9aKNiTDB/uTaKfxer1ccsklbN68OWumx9fU1PDZZ59RW1vL4sWLKSkpybRJ+xVPPPEEH3zwAS+++CJr165tsfh2JlDCrWgzaJrG5MmTWbduHc8//3ymzeGLL75g0qRJbNu2jb/97W/ccccdmTZpv8LlchEKhXj44Ydxu91Z7XDtLkq4FW2OG264AcuyMjo9PhwO88Ybb/D000/Tr18/7rnnHoYNG8Z7772XMZsUbYefFW4hhF8I8YUQ4hshxEohxF2p9l5CiM+FEGuEEPOFEN5Uuy/1uiS1v2fLfgSFojEul4sLLrgAwzB45ZVXMjIolZuby5gxY5g/fz7z5s2jrKyMFStWZFXuv6L10hSPOw6MlFIOAgYDpwghjgCmAbOklP2AauCy1PGXAdVSyr7ArNRxCsU+xePxMGHCBEpKSli4cOE+nx6vaRo9evRg8eLFvP766/z1r39lwIAB5Obm7lM7FG2TnxVumSSceulJPSQwEngl1f4ccFZq+8zUa1L7R4m2FFxStBrS0+Pr6uoycv4hQ4bw5ptvUlhYyAsvvMDEiRMzYoei7dGkGLcQwiWE+BrYBnwArAVqpJTp6U2lQNfUdldgE0Bqfy3QrjmNVih2h9/97ncZHZgaN25cm0lDU2QHTRJuKaUlpRwMHACMAA7Z2WGp5519Q3a4TxVCXCmEWCyEWByNRptqr0KhUOz37FZWiZSyBvgIOAIoEEKkJ/AcAJSltkuBbgCp/fnADiW6pZRPSCmHSymH72yKq0KhUCh2TlOyStoLIQpS2znAaOA74F/Ab1OHXQwsTG2/mXpNav8/pVo4WaFQKJqNpkx57ww8J4RwkRT6BVLKt4QQ3wIvCSH+DCwFnk4d/zQwVwhRQtLTHt8CdisUCkXW0Lt3b/7617/us/P9rHBLKZcBQ3bSvo5kvPvH7THg7GaxTqFQKFoBXq+Xjh077rPzqZmTCoVC0cpoc8L97rvvcuqpp7J27Vp+9atf8dxzz/38mxQKhaIV0aaE2zAM1q1bxznnnEOPHj244YYbWLNmDbFYLNOmKRQKRbORFetx27bNp59+utf9bN68mX//+99cffXVBINB8vLyiEajPP300wwePHiP+926dStbtmxpFhtbig0bNlBdXZ0Vy5nuiqqqKr788ksCgUCmTdkluq5n9d85HA7j91fRqVP22lhYuJoNG+qz+jpu2bKFZcuWUV5enmlTdslPfZezQrillFRWVu51P36/n3POOYfKykqmTp1KVVWVU4l9b/qvra0lGo02i40tRSQS4ZlnNOrrs9fG7t0T/OIX1Vl9B1RdbXLhhdl7Dd1unc6nfEnOza9l2pRd4l0fIhI5J6u/L7FYjFtrbiXmzt7/xbiM73JfVgi3y+XijDPOyLQZu6SkpATLsrLaRtu22batI1u3HplpU3ZJu3bLGDNmDIWFhZk2ZadIKZk79wPWr8/ev7PPV0Wo032sP2N9pk3ZJZ0+7cSA7QOy+vuyZcsWyo4ro7ZvbaZN2SV5rl0X+m5TMW6FQqHYH1DCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwKhULRylDCrVAoFK0MJdwZQkpJPB7niSee4OOPPyYe3/W6BAqFQtEQJdwZIhwO06VLFyzL4tVXX2XgwIGZNkmhULQSsmKRqf2Rl19+mTvvvJOhQ4dy6qmnEgqFePvtt/nVr36VadMUCkWWk5Ue99KlS3nllVcybUaL0r59eyoqKvjggw9YtWoV27dvp127dpk2S6FQtAKyTrhHjBjBQw89xJo1a+jVqxfhcDjTJrUIJ554Io8//jjV1dU8//zzfPbZZxxxxBGZNkuhULQCskq4lyxZwqGHHsq0adMYNGgQwWCQTz75JNNmtQiBQIAFCxawcOFCbrzxRpYsWZJpkxSKNk80GmXp0qWZNmOvyaoY98aNG+nVqxf19fV88803hMNhzjvvPCZMmOAc061bN6655poMWtk8JBIJ/vd//5c5c+YwbNiwTJvT5igtLeXrr7/mtNNOy7Qpiixhzpw5lJSU4Pf7WbduHYzKtEV7TlYJ99ixY5k0aRK1tbUcdNBB1NbW8uKLL5Kbm+scU1paygknnNDofVdddRXjxo1r1CaEQAixL8zeIxKJBIsWLeLuu+/OtCltjksuuYR4PM6gQYO49957efXVVykuLs60WYq9QEqJlHKv+liwYAE33XQTgwcP5pFHHmkmyzJDVgk3wLJly/jss89YvXo1GzduJBAINBLgnZUQe+yxx3bwWh944AE6derkvHa73fTu3btljd8NNm3aRNeuXTNtRqvh+++/b3KtysWLF/Pss8/SuXNnNmzYwPr162nXrl1W/5C3RaSUlJSU7LXgQrJg9w033LBXfaxdu5aysjJOOeUU+vTps9c2ZZKsE+5AIMCoUaMYNWrn9zEul4u8vMa12CZPnszkyZMbtd18882NKjj7fD6OPvroRsccdNBBGRsQPP/88/nqq68ycu7WyJw5c1i/vml1Frds2cIDDzzAySefzDnnnMNLL73E8OHDW9hCxY+xLItp06ZhGMZe99WpU6e9jk2fcsopjB8/nhNOOIH7779fhUqykenTpzd6HYlEeOmllxq1ffjhhzz55JON2iZOnEj//v1b3D7F7nHnnXc2+dghQ4bQu3dvOnTowKWXXsqiRYuUt50B3G43Tz31VKbNcLjxxhtZt24djz76aLPcBWSSNivcPyYQCHDZZZc1aquurm7klQP85S9/YcWKFZxyyin85S9/aRFbpkyZwv3336/EpIV47bXX+O677/joo4/4xz/+QYcOHTJtkiILOPnkkzEMg23btvHWW29l2py9Yr8R7p1RWFhIYWFho7Znn30WKWWLimpZWRldu3ZVwt1C9OrVi549e3LKKaegaVmV8arIMB6Pp02MLe3Xwr0zWvqL/vXXX9OzZ88dfjAUzUu2ZxUpFHvDz6qUEMIvhPhCCPGNEGKlEOKuVPuzQoj1QoivU4/BqXYhhHhQCFEihFgmhBja0h+iNfHFF19w4IEHquntCoVij2mKxx0HRkopw0IID7BICPGP1L7JUsofLypyKtAv9fgF8FjqWQFceOGFmTZBoVC0cn5WuGVy+DW9YIgn9fipIdkzgb+l3veZEKJACNFZSrllr61tA+Tk5GTaBIVC0cppUkBXCOESQnwNbAM+kFJ+ntr1P6lwyCwhhC/V1hXY1ODtpak2hUKhUDQDTRJuKaUlpRwMHACMEEIMBG4BDgYOB4qAKanDdzYitIOHLoS4UgixWAixOBqN7pHxCoVCsT+yWykUUsoa4CPgFCnlFpkkDjwDjEgdVgp0a/C2A4CynfT1hJRyuJRyuAofKBQKRdNpSlZJeyFEQWo7BxgNrBJCdE61CeAsYEXqLW8CF6WyS44AalV8W6FQKJqPpmSVdAaeE0K4SAr9AinlW0KIfwoh2pMMjXwNpNdefQf4JVAC6MAlzW+2QqFQ7L80JatkGTBkJ+0jd3G8BK7de9MUCoVCsTPUfGCFQqFoZSjhVigUilaGEm6FQqFoZSjhVigUilaGEm6FQqFoZWTFsq6mafL4449n2oxdUltbS2lpaVbbuG7dOrp3z6W4eFmmTdklodAG5s6di8/n+/mDM4RpVjFwYPb+nV2uGPnr8xn4+MBMm7JLcrfk8p/Yf9i6dWumTdklK1asoE9tHxL5iUybsku+N7/f5b6sEG6Xy7XLGpPZQGlpKZovLkXlAAAgAElEQVSmZbWNbrebI44o4tBDD820Kbvk6ac3cPfdx2IYwUybsktOOmkJr7+evX/nuro6Xn11G5eM2vn0CIlEYieLgaRWn5CpFSc04XLaWpJly5ZRU1PDcccd1yz9WZaFy+XaYXtvqK2tZcaIGRxwwAF73VdLcaR25C73ZYVwCyHo27dvps34SdasWZPVNq5YsYKOHTtmtY2BQID6+p7E49laREKiad5mvYZbtmwhLy+PYLB5fqyqqqoIBAL06tWLysrKZGOOQV2khvz8Ar7Z9i8+1d+iPlaNbQoCWhGReAQ9HuGy3nfh9+TQOe8ACgPtqK2txePxEA6HKS4uZvv27YRCIXRdp7i4mEgkgsvlwjAMRzAjkYizLz8/n4qKCoqLi4EfipCUl5fjcrma5TqWlZUxZcoUHnzwQerq6pg/fz7Dhw9nzJgxe1UoIz8/nwMOOIBu3boRDofJyckhEong8Xhwu91Eo1GCwaCzLx6PI4TA4/Gg6zqhUIj6+npycnIwDAOfz+fUsfR6vYTDYfLy8ohEIuTm5mKaJrZt4/P5qK+vJxgMous6fr8f27YxTRO3243f73c+108VdckK4VYo2iqPPvooI0eO5MQTT2zWfqNmmOXRjwibtZTWraQythV/VRBhu+mg9aJrzqF8u/1L3K4gA4OD0fJcfFP1H94qmc/JPc5mVI/T6OjvipQSv99PPB53RCQtTrZtO2KUFpH0sUIIdF3H6/U6z16vt1k/I8CXX37JYYcdxpYtW5g2bRoXX3wx77//PieddFKzVDgKh8Pk5+cTDocpLCzENE0Mw6CoqIjq6moKCwsdEZZSEo/HKS4uprq6mqKiInRdJzc3l2g0ihAC27adPisrK8nPz6e2tha3242maVRVVVFQUEBlZSWhUIi6ujqEEPh8PqLRKD6fr0mfSwm3QtEK0YTGg188gmHFOSB0AL0Le+NzBXj2n3MJBb0c2KMzlRsjVMZXMmhgDUXeDhiWTeecPqzcugxMN+19HTn5wDMAHNFJb2uahm3baJqGaZqNzp0uC5cWc03TWqxM3Jlnnsnxxx/PBx98wJo1a/jkk0945513mq3EYE5ODuFwGLfbTV1dHS6XC03TqK2t5frrr2f48OFcddVV6LrufOaamhr8fj91dXW43W5isRhud1JKNU1zftzy8/NJJBIEAgFs2+a5557jww8/5PHHHyc/Px/DMJx9UsomizYo4VYoWiU+Vy5/PvxRzpp/Jtu8FiXuKnJFLkWiB7kxH/qGPLZvjrJq6zZ8ucvxVxZRXbSdgLsIt+alti5GLJHgiAOOwy09BAIBIpEIQojkrb9HkohF8LhdIPzYUuJyuYjH4wQCAUzTxOPxEIlECAaDLVrfc8GCBaxatYqHHnqImTNn0rlz52brOxKJUFhYSF1dHXl5eViWhWEYhEIh3nnnHRYuXIhlWVx00UUUFBQQj8cJhUKOxx0Oh/F6vcRiMQDH4y4oKKCmpob8/Hw2b97Mhx9+yJQpU4jH4zzzzDPU1NQQCoUIh5M1atJin5OTozxuhaKtEovF6N2+JwvOWcC5L4/jqw1f4THdtPMWIRNgJ2z+eu49fLb8P3QPdee9le/RtVshG76vwBfMY0tFJbGEyV8/+At3nHYXkUiEUChEPB7HI2M8f9swbDMGQvLryUvJKeiEbdsUFBQQiURwu93U1taSm5tLdXU1ubm55Obmtshn7dixI7W1tQQCAbp3796sfXs8HkzTxOVyYVlWclC3QaHpaDTKlClTuO2223j//fcZMmSIE482TRNN05BSOncd6bCHlBKv18uyZcs45ZRTqK2tBZJJBC6XywkreTwe4Ie7HOVxKxRtmNzcXCoqKuga6MJjv57N9QuuZ1v1Nvq264dLurATFi9/Op+AK0A0puN1eyj/ws3BPYZTtm0tde22UWx048X35jOm5yn88he/pKKiAr8XvnrvAWrDBh26D6ff4NEITy7xeByXy0VVVZUzOFlUVERFRQXt2rVrUY+7JXG73RiGgaZpGIbhfI45c+Y4XjRAIpHgvPPO48ILL2Ts2LH07NmTadOmIaXEsixHgD0eD1dccQXl5eXMmzePl156yRFtSGbFPPHEE1xxxRXYto3b7XbGEXYnW0YJt0LRCtF1nby8PACG+4fz4oXzOPPJs1i1bTVBd5AckUNcxKmIb2drxRaqtlfxq8NPo9jbBRsXh+UN5/1v/kGRz41P81BfX0/tthL+/ub9bNu4mA5dh3LsOTMo6NATTQhcLhe2bdOuXTvH466srCQYDLa4x92SRKNRioqKqKurIxQKYZomiUSCefPmkUg0zvEuKytj2rRpvP322wQCARYvXoxlWY2O0TSNt99+GyklS5cu3eF8UkqeeOIJxo8fT0FBAeFwGCEEfr+fRCLhePw/h5o5qVC0QtLemZQSTWj0LerHhxM+pG+nA6mL1bF6639ZvHEJyzYtI5gX4vABhxM1onxfvhHh1qjbnOCEPqeSl+vmtuevY31ZCd+XrGDV8q849oxb+M11c2nXqTeC5G18WlDSaYFCCNxuN7Zt43K5dvAWW4sHnv7h8fl8VFVVoes6AIZhOMfMnDmz0RyOFStW8Pnnn+8g2pCMcS9ZsqSRaHfs2JHnnnvOee12u2nfvj2GYZCfn08gEACSd1EqVKJQtGE0TSMWiyFS3rBhGHTK78S7V73F28vf5q3l7/Cflf9ma2U5eiJCpe0i7kpgJ2ww4bvV3zLm8JM5rvi3dDhScP3MczmowsXg4aM4cNip5OblOyKdznoQQpBIJPB4PFiWhdfrdQYpfyw46dv/bCedBlhXV0dRUZHjcadDH5AU8ddff53CwsKdivXPMWrUqEY/BKZpsn37dgoKCqitrXU8bpUOqFC0cWKxmBOaiEajBAIBampqCAaDjOw7it8c/lveXfIuW+u3koglCPrziOpR4tEESIF5okn3jt0YOWIkRYVFhLYWsenf33DSr6+luEMXKisrCQQCGIaB2+12RDqdn+z3+6mpqXEm7gSDwRbJ425p0umAHk8yXJQeIGwo0Dk5OexpQfNLL72U6dOn8/777zttLpeLUCjUKB0QkhN3lMetULRhcnNzqaurA5Jf+PRsvHTMNhKJcPKQk6mtqSHX6yVaU8n3zz1MrOQ7/J27cvCNd5PweHAB27duYevSMnyBDnTr3pe6qioKg0EShkHJ31/jq5fnIjx+Dj7jHPqcMJLCdu2wLIvi4mLC4TDt2rVz8phbG/F4nLy8PHRdJycnx5nF6Pf7nWMSiQQ+n8/JPNkdzjzzTIBGA51SSiKRCIFAwGn3er2NvPKfo3VebYViPycSiTiz+aLRKHl5eU7ecPq5fOnniNL1bHh7AZ6cAIfdNQs0D8KlYW3fyne3TcUSGnbMxv5uOR0OG8qGV55l08f/Qq+vI69bLw4661xO/9MMbNPg239+wPOXnIs3v5CRv7+JvE5d6NGvH7W1teTk5DiDpa2JhvF7KaUT4nnjjTfo1KkT9fX1bNy4kSVLluwwEakplJSUMGzYMEpKSpzzjR071hkTaJh6uDvjAq1auP/2t79x4YUXtpqBEIWiufD5fI1i3IlEAr/fj2EY+P1+tn/8Hhtn3Ea38Zcz4Oa/IAREVn9H+qsihWDgbTORAmJbt1D42SISiQQuoTH8upvB7SEe1UlEdfTKbdhS0mPY4XQfNoLaqipevf2PhLp15+L77icnFGq1HrfH4yEej6NpmjOVXwjRyEN+6KGHeOihh/ao/4kTJ1JWVsaMGTOA5NjEH/7wB3w+H7Zt4/V6nR+L3bmGrTKrZOHChYwdOxbTNPn1r3/NG2+8kWmT2hy6rnPHHXdk2gzFLkhnczScAGLbNkIIKj56lzX330nP864i1PtA4ps3EC/diIhFELEIxCIQjRBduwp9zXeY9TV0GHEkXY45nvzuvYhWbCWyeROxyu2YkQhmVMfQdeL1YWJ1tbhcLo6/8CLqNm3iqWuudtLYWiPptMp0vDktpDNmzNjjuPaPSYs2JP9ut912G7W1yesYDoeJRqPOOihNvY6t7mfSMAz++9//cvbZZzN69Gj8fj+rV6/GMIxGI8GKvcMwDBYtWpRpMxS7IJ3VIYRwZvLpuo6oLKf8jefpftb5+IqKsWsr0dAQIjUjEBCAjQQ7uY0tSehhLCkxbbBsiS0ltkxum+lnW2JhY1jg9eVwzHkXsPCBWTx86SVMmvdiZi/IHpKevu73+6murkZKySOPPMJ9993XKDRSWFiIy+VqlBZZXV290z7z8/PxeDzOD6lt286xUkqeeuopXC4Xd9xxh5OpYlnWbqUDtjqPe926ddTU1DBy5EhuvfVWZ3nFdAxJodgfSMe00yvP1dbWUpCfz9blSwkVdyJQ0A47XAMxHREPo8V1XPEIWlxPPtLedzQCsTBEI9h6BKmHsfQwph7GjNSTiIQxwvUkwvUkIvXE65PPsXAdtmlw0mWXU11aSv22bZm+JHtEfX09BQUFJBIJgsEgjz/+OH/6058aTb7p378/S5YsobS0lLVr17Jt2zYWL17M4YcfvkN/hxxyCP/85z8pLS1l+fLllJaW8sUXXzBo0CDnGMuyePTRR5k+fTplZWVEIhEg6f031eNudcJ90EEHUVRUxLXXXsuUKVM4/fTT+fTTT1vlrC2FYk9JL0jk8/mwLCuZ1lZbQ83/vYuW48eor4aYjozqEEsKtRbXcccjuOI6IqZDXHeOsfQIMqpjRyPYUR1b1zF1HVMPY+gREunnSIREJEwiEiYeCWPEEngCeXz0Uuv0uHNyctB1HbfbTXl5Obfffnuj/QMGDGD27NkUFRU5sfC6ujrat2/PjBkz6Nevn3Osz+dj0qRJ9OvXj3g8TjAYxDAMOnbsyNNPP82IESMa9T1jxgwikYhTEarNpwOOHz+eI444gltuucW5nf/jH/8IJAcsm2vJx2zHtm3i8Tg33XQTY8aMybQ5in1IOjQCyS98IpHApwli676l3ajTsKMRLE3DpYmke6aBS3OhaWBLELYEWyJtibRtpCWxbbBsG9sG05YYtsSQNoaVDKGYtp1ssyWmldqW0KlnD4xmigfvawzDIDc3l1gsxoQJE5zskjRbtmzh5ptvxrIsDj74YB5++GH8fj+6rjNkyBDGjBnDmjVrABgzZgwnnngiiUTC+UG48847Wbp0KbZts3HjxkbnFkJw7bXX8tprr+H1encr1bBVCnfXrl3p2rUrQ4cOJScnB4ChQ4eyfv16Jk+ezBVXXEHv3r1b5YSA3eGGG25g0aJFzJ49m8mTJzNt2rRMm6TYRzRMX3NS2jSBtC3smI6pgaa5sDWB1ARoAukSkBYmG6QtsW0b20o+mzaYlo0pwTBtTJmMaycsOynklo1p2yRsgWFJDNvGsGxikXCmL8ceky5g4Ha7efrpp/m///s/zjvvPGd/VVUVn332GX369OGee+7B5XKh6zo+n494PN4oEyQYDNK+fXsnyycQCHD77bdz6qmnsmTJkh3O/eCDD3Luuec2KmDRVFqlcKdJi3Z6u3///px55pnce++9DB06lJ49e/KrX/2qWc/54osvOp5Oplm+fDljx46lvLycm266KdPmKPYhiUTCcUwsy8Lv9xOrrcGK6MTKy8gJ5WNpLjSXQGggXAKEho2GjcSUEstOCrJppb1qiSltEhYYaY/aSg5GRqNR4oYBvhwStkwJNxi2RVzXacmcEikl//rXv5qthuWP+06HJ1wuFx9//PEOxxxyyCHMnz+fvLw83G43H3zwAdu2baOgoIBBgwZx8cUXY5omv/jFL/j888/ZsGEDOTk5nHXWWfj9fhYuXMhpp53GN99806jfL7/8krPPPtvx8HcnM6dVC/fOOO644zjuuON49dVXWbNmDa+++iq/+c1vmq1/TdOyKhSTtic9bba5yMnJ4fTTT+f1119n7Nixzdr3/sTYsWOZO3cuRxxxRCNHY2/x+/1s27YNIQSBQCBZBzGYhy2hbtVKXP0ORuT4QdNSnnYqk8QwET4/lrSTwmuaRMo2EYtEiFk2CUsSNyVx2yJugqddRwiGiOlR4okEwrRIpI4zbEnCtNi4YgV9Dx/x80bvIVJKZs+evdPV9pqDdKWfcDjM7NmzOeOMM1i9ejWrV692zj9jxgzuvfdehBBUVlZy0003cdRRR/HKK68wduxYZ3nWq666ildeeYWZM2cCyXVJbrvttkai3LVrV0aNGsXzzz/PlClTyM3NbfKqgGnanHCn+c1vfoOu6zz00EMMHTqUt956iy5duux1v+PGjWsG65qHpUuX8uqrrzJ69GhuvvnmZg2VeL1eDjvsMD766CMl3HvB0KFDmTx5shP3bC7SxXrTk0WCwSD14Xr6T/kfVt71B6zlEYoPGoj0ebE0gSVAxHXsmmpcHbtgmxb1JSuxTEksHiduGMQtm7gJUdMibtrELBtjaxkGLmQgH1d+AVKPYbrcGBYkLJuS5cvQvLn0P+bYZvts+5J0YV+/34/f7+eLL76guLiYCy64wDlm1apVrF69mo8//phx48Zx2WWXUVRU5KT7WZblFE+wLIu8vDxOP/105syZw6xZs9iwYUMjx6qgoIBZs2Zx/fXX06tXL6fq0O5MwGmzwg3J9RwmT57MpEmTuOiii7j66qvp1asXXbt2zbRpzcL9999PPB5n4sSJ3HjjjZk2R7GPsSzLuftLeo0uRLAQw7TRIhGqvv2a/L4Ho1kmLttCGHGMis2wpTSZq22DYdsk7KQHnTCTXrRFKndbQiKeIGZYxGrriW/aRMyyMT0+Ap26ULZhI/X1Oj1HHMjAFghj7AvShX3j8ThFRUUUFhayadMmYrFYoztZKSXr16/nnnvuYeXKlbz55ps888wzSCnJyclx0gcHDhzIpEmTmDp1KvPnz98h/KFpGtFolC1btnDIIYc4k3w8Hg+xWMzJMPk5mizcQggXsBjYLKU8TQjRC3gJKAKWABdKKRNCCB/wN2AYUAmMk1JuaOp5mpv0P/Zjjz3GX/7yF3Jycrjqqqvo1KlTpkxqNjRNIycnh0cffVTNHt3PSE/VTot3ennVMGD7/STiMTBMIjXVEKlDhOvRNIGGQCKxpI0tk8Jt2qRi1j/Ers10/NtOxsNtW2JJiWWDZRiEq2uI6VFcPj9Stp71t39MXl6eU429pqYGr9fL2rVrOeqoozj55JOpq6tzBjBnz56NlJK///3vHHnkkUyZMsWpdh8IBJBSMnHiRObOndtItK+77jrHI08vDlZSUkKXLl0IhUJYlrXbd2S743HfAHwHhFKvpwGzpJQvCSFmA5cBj6Weq6WUfYUQ41PHZTy+EAqFuOeee/j222+b9Za1rXLZZZexcuVKKisr+eqrr5zBGUV2EI/HnRXsdF0nNzc3uczqIYdSeMwYyt97AxsTWVmJW9hopo3QBCIl3LZsIMRSJmPblmwk4GaDwUtTJgcsLSkxDUm8uhZbgsvv5/SbJztrpLQ20iGnRCJBfn4+UkqOPfZYRo4cSSwWcyrTaJpGv379nCSA+++/nxtvvNFJJ0wkEs4syZkzZzqifccdd3D11Vfj9/udWa5+v59YLOas6gg41eKbmgnXpFE2IcQBwK+Ap1KvBTASeCV1yHPAWantM1OvSe0fJbLo57h///7k5+dn2oysprq6mrVr13LzzTdz5pln4vf72bp1a6bNUjQgEAgQDocbrSWdn59PXLgI9eiLaUPcsInqUaLRBLplEzVtdDP5HDVtYmZSrKOGTA5M2jaJVPqfISVxW2JaElMKEimP27BttEBeMpTgzcEwTY486eRWOwEuNze30TVMhzzq6urIycmhrq7OqW5/yCGHOO8zTdOpJRmLxfB4PI2KAKfp168fhYWFeDweNE0jFAoRjUbJz8931kdJO5K7k77cVI/7fuBmIJh63Q6okVKmJ/OXAunAcVdgE4CU0hRC1KaO395kqxQZ5bnnnuPKK6+kb9++JBIJzjrrLB544IE9XiFN0fzouk4wGGy0XVtbSzAYROvZD619F2JbSzFkAhcCl0ZqZcCkryZlY687PbnGyRaxLAwrKd4JO53PLTEtiFXXYAs4bNSJ+IvaUVFRQUFBgWNPayK9zks6jzodWnW73U4RYCklLper0eChEMLJu06vYdLwkSZdDT7dZhiGk+edDnGl4+i7kxn2sx63EOI0YJuU8quGzTs5VDZhX8N+rxRCLBZCLG6uVbgUzcMf/vAH/vSnP/HJJ59QWFjIBRdcwJ/+9KdMm6VoQDruGo1GnQGv9G19j6NPwN+1O1HLJpbKDkl62DYx0yRmmkRNi6hp/bDfEenUQKUlk/ncaTFP5XkbdjKEUtyzF+tWrOS0a64jFAq12slu6VTAtDg3zOlOr8CYXn2xV69ejQoj/O///i+AEyJJx78rKyuBZMmygQMHOvvSWSeapmFZVqP3QfPncR8NnCGE+CXgJxnjvh8oEEK4U173AUBZ6vhSoBtQKoRwA/lA1Y87lVI+ATwB0LFjx9a5JmQbZv78+axYsYLPPvuMBQsWtEpvqi2T/uKnv/zpDIi04Ayf/Cf+fsHpRKNhXEIkByZl0uuWgA3Y6VUAkZhmMpMkKc42pgUJOynmhm2nsk+SAu4LhujQ9yDa9+1LUefOTrmv1ki6SHAoFKK2thav14vH43EqCVVVVREMBtF1nYKCAo499lgWLlxIJBLhuuuuo1u3bo6wA5SWljorAQ4bNozOnTs766Sn15Sprq52KsunS5clEonmTQeUUt4C3AIghDgBmCSlPF8I8TLwW5KZJRcDC1NveTP1+j+p/f+UrXWx3v2YQYMGOd6CWi5372iJf3/LspwvevqWXtd1vF4v0WiUgt59yO3ei20rv0YTGi5nSVcbiYYUKQ8wNThp2TK1hGt6PRLheNqGbROzkiGThG0RDBWgeb30GjSIYEEBdXV1aJrWKr3u9OqAsViMgoICbNvGsiyKioqcsmzRaJRgMIiUstGs6YqKCioqKnbZd/ouKL32tqZpVFdXEwgEqKqqcmLo6bBLulhwU9ibKYBTgJuEECUkY9hPp9qfBtql2m8Cpu7FORQZxOVyKdFuBlrCGw0EAtTX1xMOh3G73U4+sq7rtGvXDl3XOfWRZ4gbNnHTImpYqfCITD4nbKJGMnwST4dRLEnUgpgpiJk2CcsmbiXbDcsmYVoUdu1Ov6OPxZ8bYMz48dTX11NcXNxqByeDwSDV1dV4vV6qq6udvOp0AeTt27fjcrmoq6tD13UOP/xwunXr9rP9durUiRNPPNH5QfD5fGia5tQDLS4udjJZAoEAwG5dw90SbinlR1LK01Lb66SUI6SUfaWUZ0sp46n2WOp139T+dbtzDoVC8fNEo1Fyc3PJyclxFuFPzwCsra3F7/cj3V4GXXh5UqitpHDrxg+x7WR2iZWMf1uygYgnp7XHTZu4E++WhDp1pffwEZRt2MDoSy6htj5MTk4ONTU1jUp9tSZ0XXcqrodCISelsaCgwAmPWJZFIBDA7/dz9NFH89xzz1FQULDLPr1eL0899RQnnHACPp+P+vp6DMNASulkq1RXVyfz7lMVcIDduobZs+iGQqFoMj6fD8MwnCyFaDTqzODLy8tLFgYoLKL4yOPQ2ncmakp000a3kimBP6QFyh+2LZuYYSW9bDOZIhi3LBK2xBvKp0PfflRuK0evD9N78GCCwSDxeJxAINBq78z8fj+RSAS3200kEnHSAdM/gvX19bhcLmKxmFOT8pBDDmHp0qU8++yzhEIhgsEgoVCIUCjErFmzWL16NUceeSTBYJBEIkFubi5ut9tZVya9RIFpmuTm5jZaj7uptOkp7wpFW6XhVOx0RkTDtTPSg5a9RhzJ8Isu55+z7sXQI877ZWoijpTJQUqLdLyb5HKuzgQcG39RMXkdO6NHo/h8fqZ98L5jQ8NB0dZIw/JiaRqWJ2u4L718rqZpdOjQgVNPPZXvv/8e0zSdmZGAM96QXl/btm0ne6Th3wiS4xMNs06aihJuhaIVYlmWk6qWFk7TNNE0DcMwnGev18uxl03AkpK3/nwXspFAJTNMLEkypzs9rV3+sC63KQWaJamtrqZn585cfu+9aKmV8OLxuJOTLIRolZXeG4puenYjJD3x9HK50NgbTu9rOHGmYUpfuv5tOlPEMAznvYlEwtmX/ps1/KFoKipUolC0QtI527FYzFncP92WrlqevtXXNI0R513Eb+97kAOGHJ6MZ6ceXYePwN+xEzHLTj0k/Y47gbhNcgq8DTE9ytCTRnPJX/9KbmEhPp8P27bJy8sjHo+Tl5fXKjNKAEdY05Nh0uLZUHTTU9XTHnh6Jb90WCWdmy2EQNM0PB6PU8zZtm3cbrez3+PxYJpmo33pH7zduWtpfT+RCkUrIRqNUlFRQSwWo7S0FMMwKC4ubrb+i4qKgOQtfE5ODkIIp62wsBAhBF26dHH2j7zodxx79jisBh6gy+PBti1s6wdP3O31YjQolgvg9fvx+v2OdxgKhRBC0K5du1abww3JH0Cfz9foGsIP4ZL0voakq7HvbF+an4pb70lM+8co4VYoWohPPvmEiRMnsm3bNiZOnEi7du144YUXmq3/hgU90gLyc8+uJi4U5k+lqP2YXfXbWklPYkpvN2z/cVtT9u0rVKhEoWgBdF3nww8/ZM6cOQwcOJAnn3ySAQMGOMWtFYq9QWTDpMbCwkJ54YUXZtqMXRKPx51ZVNlKbW0tbrfbSebPRsrLyykvL0bK7M1AKCjYTI8ee19ow7IsNm7cSO/evVm7di09e/akrq4O27b36v/IsiwqKyvp0KHDXtvYUkQiESzLIhQK/fzBTeS///0vBx54YLP1V1lZSV5eXpNnKmaCuXPnUl1dvVO3PiuEWwhRAUTI3hUEi1G27QnKtj1D2bZntDXbekgp2+9sR1YIN4AQYrGUcnim7dgZyrY9Q9m2Zyjb9oz9yYELnIoAAAUcSURBVDYV41YoFIpWhhJuhUKhaGVkk3A/kWkDfgJl256hbNszlG17xn5jW9bEuBUKhULRNLLJ41YoFApFE8i4cAshThFCrBZClAghMl50QQixQQixXAjxtRBicaqtSAjxgRBiTeq5cB/ZMkcIsU0IsaJB205tEUkeTF3HZUKIoRmy704hxObU9fs6VfIuve+WlH2rhRAnt6Bd3YQQ/xJCfCeEWCmEuCHVnvFr9xO2Zfy6pc7lF0J8IYT4JmXfXan2XkKIz1PXbr4Qwptq96Vel6T298yAbc8KIdY3uHaDU+2Z+E64hBBLhRBvpV63zHX7cXXiffkAXMBaoDfgBb4B+mfYpg1A8Y/apgNTU9tTgWn7yJbjgKHAip+zBfgl8A+SxZqPAD7PkH13kixv9+Nj+6f+vj6gV+rv7mohuzoDQ1PbQeC/qfNn/Nr9hG0Zv26p8wkgL7XtAT5PXZMFwPhU+2zg6tT2NcDs1PZ4YH4GbHsW+O1Ojs/Ed+ImYB7wVur1/2/vfEK8KMM4/nkOW0qFy4aIuAc1hIKILVQEJcJCtMQt8BAEehC81KFTIII3j/65hIfUsD8YaEoeDTfxFBuWbRtqLiQkLu7JVS9m+fXwPuMOP3+/Xys2884Png8MM/POwHz5zswz7/u8M/NW4lvuGvdKYEJpNJ2/SeNXDmfW1I5h4IgvHwHereOgks7x6EDLnbQMA18o8SNpMOeFGfR1Yhj4RtJdSX8CE6TzX4WuSUk/+/Jt4CKwiAZ410VbJ2rzzTVJ0h1f7fNJwFrguJe3eld4ehx406yan3h00daJWu8JMxsE3gEO+rpRkW+5A/ci4K/S+jW6X8R1IOC0mZ03s+1etkDSJKQbD8j5vXEnLU3y8iNvmh4upZWy6PMm6Kuk2lmjvGvRBg3xzZv7F4Ap4HtSLf+mpH/aaHioz7dPk8agrUWbpMK73e7dPjMrvmOv27v9wCdA8avF56nIt9yBu90TJvdrLqslvQZsAD40s9cz65ktTfHyAPACMARMAnu8vHZ9ZvYs8C3wsaRb3XZtU1a3tsb4JulfSUPAIKl2/1IXDbXqa9VmZi8DO4AXgRXAAGkg81q1mdlGYErS+XJxl+M/kbbcgfsaUB4yeRC4nkkLAJKu+3wKOEm6cG8UTSyfT+VT2FFLI7yUdMNvrvvAZ8w062vVZ2Z9pMD4taQTXtwI79ppa4pvZSTdBM6S8sP9Zlb8Brqs4aE+3z6P2afP/g9t6z39JKUByz8nj3ergU1mdpWU8l1LqoFX4lvuwP0TsMx7Xp8iJelP5RJjZs+Y2XPFMrAOGHdNW323rcB3eRRCFy2ngC3ek74KmC7SAnXSkkN8j+Rfoe99701fAiwDRivSYMAh4KKkvaVN2b3rpK0JvrmO+WbW78tzgbdIefgfgM2+W6t3haebgRF5j1tN2i6VHsZGyiGXvavlvEraIWlQ0mJSHBuR9AFV+VZ1L+t/TaSe3z9IebSdmbUsJfXg/wr8Xugh5Z7OAFd8PlCTnqOkZvM90hN6WyctpKbXp+7jb8DyTPq+9OOP+cW5sLT/Ttd3GdhQoa41pGbnGHDBp7eb4F0Xbdl982O9AvziOsaBXaV7Y5TUOXoMeNrL5/j6hG9fmkHbiHs3DnzFzJsntd8Tftw3mHmrpBLf4svJIAiCHiN3qiQIgiB4TCJwB0EQ9BgRuIMgCHqMCNxBEAQ9RgTuIAiCHiMCdxAEQY8RgTsIgqDHiMAdBEHQYzwABkDejHLACiMAAAAASUVORK5CYII=\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -547,7 +547,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "[]" + "[]" ] }, "metadata": {}, @@ -557,8 +557,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxFZDqIrAbXHFdvGMVENddRbn/FldxLT9/2FWQx0/Rn6KP1bDsityECgiCUCi0CiyXVqi0EKD30hZ6Ib3f0ja9Jm3apk2apEmb6/f3x3wnmSQzmTPJTM7MnPfz8cgjM9/5npnvmTPzme/53o455xARkWg4JuwCiIjI8FHQFxGJEAV9EZEIUdAXEYkQBX0RkQgZGXYBBnLyySe7kpKSsIshIlJQli9ffsA5NyrZY3kd9EtKSigvLw+7GCIiBcXMdqZ6TM07IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvIoEt3FLLzoPNYRdDhiCvJ2eJSH65euIyAHbcdVnIJZHBUk1fRCRCFPRFRCJEQV9EJEIU9EVEIkRBX0QkQhT0RUQiJFDQN7MbzGy9ma0zs2fN7O1mdoaZLTWzLWY22cyO9XmP8/cr/eMlCc9zo0/fZGYX5WaXREQklbRB38xOBf4fMNo59zFgBDAGGAfc55w7E6gHrvGbXAPUO+c+BNzn82FmZ/ntPgpcDDxsZiOyuzsiIjKQoM07I4F3mNlI4J1ADfBl4Hn/+BPA1/ztK/x9/OMXmJn59Oecc63Oue1AJfC5oe+CiIgElTboO+d2A/cAu4gF+wZgOXDIOdfhs1UDp/rbpwJVftsOn/+9ielJtulmZteZWbmZldfW1g5mn0REJIUgzTsnEqulnwF8ADgeuCRJVhffJMVjqdJ7Jzg3wTk32jk3etSopNf1FRGRQQrSvPMVYLtzrtY51w5MBT4PnOCbewBOA/b429XA6QD+8fcAdYnpSbYREZFhECTo7wLONbN3+rb5C4ANwDzgSp9nLDDN357u7+Mfn+uccz59jB/dcwZwJrAsO7shIiJBpF1l0zm31MyeB1YAHcBKYAJQBjxnZrf7tIl+k4nAU2ZWSayGP8Y/z3ozm0LsB6MDuN4515nl/RERkQEEWlrZOXczcHOf5G0kGX3jnDsKfDPF89wB3JFhGUVEJEs0I1dEJEIU9EVEIkRBX0QkQhT0RUQiREFfRCRCFPRFRCJEQV9EJEIU9EVkUI62d9J0tD3sYkiGFPRFZFAuuPd1Pv7rmWEXQzKkoC8ig7L70JGwiyCDoKAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLxIRn71jNhMWbA27GBIyBX2RiKhtauU3r1SEXQwJmYK+iEiEFG3Q/8Xzq3lheXXYxRARyStFG/SnlFfz8z+vDrsYIiJ5pWiDvoiI9KegLyISIQr6IjIkXV2OW1/aQFVdS9hFkQAU9EVkSDbUNDLpje1c/8yKsIsiASjoi8iQOBf73xW/IXlNQV9EJEIU9EVEIkRBX0QkQhT0RUQiREFfRLo1t3Zw7RNvUdOgSyEWKwV9EelWtraG2Rv3c+/MzWEXRXJEQV9EJEIU9EVEIkRBX0SyQnOzCoOCvogMiVnYJZBMKOiLiESIgr5IxM3esI/1exrCLoYMEwV9kYi79slyLntg0ZCfZ/2eRg63dmShRJJLCvoikjWvrK0JuwiSRqCgb2YnmNnzZlZhZhvN7DwzO8nMZpnZFv//RJ/XzOwBM6s0szVmdnbC84z1+beY2dhc7ZSIDB+N2iksQWv6vwdec859BPgksBEoBeY4584E5vj7AJcAZ/q/64DxAGZ2EnAzcA7wOeDm+A+FiIgMj7RB38zeDXwRmAjgnGtzzh0CrgCe8NmeAL7mb18BPOlilgAnmNkpwEXALOdcnXOuHpgFXJzVvRERkQEFqel/EKgF/mhmK83scTM7Hni/c64GwP9/n89/KlCVsH21T0uV3ouZXWdm5WZWXltbm/EOiYhIakGC/kjgbGC8c+7TQDM9TTnJJJuq4QZI753g3ATn3Gjn3OhRo0YFKJ6IiAQVJOhXA9XOuaX+/vPEfgT2+WYb/P/9CflPT9j+NGDPAOkiIjJM0gZ959xeoMrM/t4nXQBsAKYD8RE4Y4Fp/vZ04Dt+FM+5QINv/pkBXGhmJ/oO3At9mogUMC3DUFhGBsz3Y+BpMzsW2AZ8l9gPxhQzuwbYBXzT530FuBSoBFp8XpxzdWZ2G/CWz3erc64uK3shIiKBBAr6zrlVwOgkD12QJK8Drk/xPJOASZkUUESGrq65bXheSGP2855m5IpEwPefLA+7CJInFPRFIqC6viXsIkieUNAXkaxasauehpb2sIshKSjoi0hWff3hN/n2xCVhF0NSUNAXiQBLOjcyd9btbhzW15PgFPRFRCJEQV9EJEIU9EUiQLNmJU5BX0QkQhT0RSSQnz63Mm0epym5eU9BXyQCBtu6s3BLLT9+NhbsX1ylRXGLgYK+iKR09cRlvLRawb6YKOiLRICpJ1c8BX0RkQhR0BeRrHHqx817CvoiMiSNR7S4WiFR0BeRjM1cv7f7dunUtSGWRDKloC8iGbvuqeXdt3fV9azVr9ad/KegLyL9tHZ0UVWnC68Uo6AXRheRCHlp9R6Nzy9SqumLSNYkjt7ZtLcpvIJISgr6IhEQxtysyx9cOPwvKmkp6ItITrR3qls3Hynoi4hEiIK+SARo6R2JU9AXEYkQBX0RyRpdRCX/KeiLRIAN+jIqMU4rqRUNBX0RkQhR0BcRiRAFfZEI0OgdiVPQF5GsUdN//lPQFxGJEAV9EZEIUdAXEYkQBX0RSStoW72a9POfgr5IBAzb4B315OY9BX0R6ZEiZu9tPDq85ZCcCRz0zWyEma00s5f9/TPMbKmZbTGzyWZ2rE8/zt+v9I+XJDzHjT59k5ldlO2dEZHc+Pxdc8MugmRJJjX9nwAbE+6PA+5zzp0J1APX+PRrgHrn3IeA+3w+zOwsYAzwUeBi4GEzGzG04otIEBZ0dpYmcRW9QEHfzE4DLgMe9/cN+DLwvM/yBPA1f/sKfx//+AU+/xXAc865VufcdqAS+Fw2dkJERIIJWtO/H/gF0OXvvxc45Jzr8PergVP97VOBKgD/eIPP352eZJtuZnadmZWbWXltbW0GuyIiIumkDfpmdjmw3zm3PDE5SVaX5rGBtulJcG6Cc260c270qFGj0hUvrUMtbUN+DpFCN1ytNpPLq9JnklAFqemfD/yLme0AniPWrHM/cIKZjfR5TgP2+NvVwOkA/vH3AHWJ6Um2yZmVVYdy/RIi4q3b3Rh2ESSNtEHfOXejc+4051wJsY7Yuc65bwPzgCt9trHANH97ur+Pf3yui12BYTowxo/uOQM4E1iWtT0REZG0RqbPktIvgefM7HZgJTDRp08EnjKzSmI1/DEAzrn1ZjYF2AB0ANc75zqH8PoiEpRG5YiXUdB3zs0H5vvb20gy+sY5dxT4Zort7wDuyLSQIpJ7JaVl/N9/+ruwiyE5phm5ItJt7W71gRU7BX2RCFDrjsQp6IuIRIiCvohIhCjoi0i3A02azFjsFPRFpNumfU1hF0FyrOiDvjqwRDJYZVOKXtEHfV3HR0Skx1Bm5IpIAXt22S6O0QlA5Cjoi0RAsth+49S1w14OCV/RN++IiEgPBX2RItfR2cX2A81hF0PyhIK+SJH77YxNdHRpSIPEKOiLFLkJC7b1S6tpOBJCSSQfKOiLREx9cxvn3Tk37GJISBT0RSKm8Wh72EWQEBV90NcwZBGRHkUf9EVEpEfRB32NWRAR6VH0QV9ERHoo6ItEjKmnK9IU9EUipvbw0bCLICFS0BeJmG+MXxx2ESRECvoiIhGioC8iEiEK+iIiEVL0QV/jFEREehR90BcRkR4K+iIiEaKgLyISIUUf9LX2jkh4SkrLmLVhX9jFkARFH/RFJFw3Tl0TdhEkgYK+iOSNyx9cyIsrd4ddjKKmoC8ieWPd7kZ+OnlV2MUoagr6IiIRoqAvIjmmKZL5pOiDvj5uImHTGLp8UvRBX6SYjJ+/lfIddWEXQwpY2qBvZqeb2Twz22hm683sJz79JDObZWZb/P8TfbqZ2QNmVmlma8zs7ITnGuvzbzGzsbnbLZHiNO61Cq58ROvhy+AFqel3AD93zv0DcC5wvZmdBZQCc5xzZwJz/H2AS4Az/d91wHiI/UgANwPnAJ8Dbo7/UIhIMVMjaz5JG/SdczXOuRX+dhOwETgVuAJ4wmd7Aviav30F8KSLWQKcYGanABcBs5xzdc65emAWcHFW90ZERAaUUZu+mZUAnwaWAu93ztVA7IcBeJ/PdipQlbBZtU9Lld73Na4zs3IzK6+trc2keEmpC0lEpEfgoG9m7wJeAH7qnGscKGuSNDdAeu8E5yY450Y750aPGjUqaPFERCSAQEHfzN5GLOA/7Zyb6pP3+WYb/P/9Pr0aOD1h89OAPQOkS8h2HWxhX+PRsIshgzCvYj/1zW1hF0MKSJDROwZMBDY6536X8NB0ID4CZywwLSH9O34Uz7lAg2/+mQFcaGYn+g7cC32ahOyLd8/jnN/MCbsYBePg4VY+fNOrLN9ZH2o5Go60890/vcW1T5aHWg4pLEFq+ucDVwNfNrNV/u9S4C7gq2a2Bfiqvw/wCrANqAQeA34I4JyrA24D3vJ/t/o0kYKybHsdbZ1dPLZgW6jl6OjsAmD7geZQyyGFZWS6DM65RaQec3VBkvwOuD7Fc00CJmVSwKHSYDGR4lSxt5GP/PW7wy5GwdGMXJFBcnkyNixWz8pfloOa12vrarj4/oW8tFrdgplS0BdJ0N7ZxY1T17Dn0JGUeXIRxAbD8qUgIdi877D/3xRySQqPgr5IgkWVB3h2WRWlU9emzRt2BTvfa/iJaptauXtGBV1dhVPmYqWgL5JEdOvQuVH6whoemreVxdsOpswzmB+xAvrdyxsK+iJJFEIsKaTmndaO2EijrixF6cLZ8/yTdvSOSKGqaTjC20eO4MTjjw2U/9aXNvDK2poAOfMr5BTCD1RctmrmRzs6s/NEEVT0Nf1C+kJIdp1351zOuTP4pLNJb2xnbwHNTM6vn57Uaptas975/dC8rdl9wjzQcKSdktIypq6ozunrFH3QX7I1dRuiFL8236yQTusgao59KxRdXY5OdVQWtfbOLhqPtg9qu6UD9GcAVNW1APD4wu2DKltQRR/0F2w5EHYRpAC0BvxxqK5vSdnh+H8mLuXv/vOVQb1+2Zoaxr1WMaht+1q5qz70JSKGy3DPlbj+6RV84tczM97u3pmb+daEJayqOpSDUmWm6IN+oZwCB7Wt9jAz1+/l9c1DX3a6EOwIaYmBZIG9qq6FL4ybx32zNyfd5s0hnFVe/8wKxs/PTpPFvz78Jt8Y/2ZWnivbBgrR+TASZ/nOekpKy9jflLyZb+aGfQA0HW2noSV4jX+Ln09woKl16IUcoqIP+sXmy/e+znVPLWfspGVs2ht8YopzjntnbmJr7eEclq63hpZ2PnzTq7y5dXBnW9NW7eaf75mfNz9w+/0XNj4xKFemvFXFhj0DrV4eTHxtnnxV03CEktIyVuzK/llJSWkZ1z6R+UJ0k96INa0s2dZ7WbDWjk4WJHwOP33rLD55a+Y1/jz4XSv+oJ8Pb3KuNGXQtlh7uJUH51Zy9eNLc1ii3tbsPkRbZxcPzasc1PZrqxsA2JzBj1sQnV2Ou2dUcPBw6lrXGv/aA8lVzfQXL6zh0gcWBs6fqhz51Cnd3tl/yOZC3/T6zNJdQ3rug4dbaTjS/7swe+M+pq3aTUlpWeCLycdbBvqe6d3y0ga+M2lZ9/2OAu67KfqgL57/jLZ1Dt+H1fxXaKjBMVm7bXtnF0fbBzdsb1HlAR6at5X//EvqWbfxILJpbxMX3Dufhpb2jEegxEdjzKuIXWqitaOTWb55IKgbp65h9O2zkj6WrjzOwewMXy9X4jXn58v7j0xJ9fno6Oxi9wDLYcR95vbZnH1b8vfoZ1NWAwS+mPwxKd7U9WnOvK4c/2bWmudyreiD/saaoZ8mF4Vh6txwznXXkuLfn8EG/YGC2kX3LeAj//1aRs9XUlpGSWlZd7NHYudtqjI+MHcLW2ubmb95P19/OLN28njz28PzY2c6417dxPefLGfZ9uArij+7rIoDh5NfJCXI+7okzYiR4ZZYI0/3kbzt5Q2cf9fcAc/I4u/BYEdNNR1t7zVyK/6Ze2DOloyep3xn/YAd8fk0j67og74Mr0t+v5AP/9erQM+XevG2g73aQ7Nh2xA6eJOdmh9pS37W8PaRIwBobR9a+7hzrru9uL6ljX2NR7uH6AVRXd87byGtu5Mo2VnbCyuqk+5PvC+n8WjHoF8vXaz9+K9ncuX4nrOAeP6ttb0/X9mK2bvqWkKviCroS1ZV7G2ivdPR1tFFe0JwTWwPzTfOOf705o5+6X+Yu4Xj3hb7iqQbx78lyWqPiYGsrU+n6jm/mcM//nYer66toS7A5Q4nLtrOtj6d8Mlqj8natgvBil31Kfvf4u9jVV0L63b37mtpSfFj3b1tkrSuLtfrR3RtwnO+uCrzpZr/68X0i/PF3fbyBi75ffD+mlxQ0C8Sdc1tlJSWMW3V7jQ5h6eGePZtsxibpUCfy0rt+XfN5SP//RqPvN6/PfaemZvT1PB6CvbV+xYEfs2lCSNDfvD0Cq594q3u+6lGKv3xjR29gkWq96Q2YajhYwu3USj9jTdPX8+qqt6jePquLfSPv53H5Q8u6pWW+GO9/UAzi/sMm03W7PPIgq18Ydw8KvcPPArrwOHWQP1G/7NkaB3Ri7ce5MAATVjZpqBfwBI/zvFa4JOLdw64zYHDbdxRtiHpY//x59XZKhqHWwd/Sp7KrA37OO/OOYFm2QZZwtc52H3oyIATs5riTQuDaJRNDFqW8PMRb+aJS+ysHOiHMrGclz24iE/dGuu8dM6x/UBzvzOGJxfv7PdaYUv8sUp8f9btbuQb41N3tgZpzvrSPfO56rElA66fdLS9k2krY7X5dJ3Eo2+fzff+9JYva9qXB2JnWsnLmvoJrnpsCf/26OLuH5jBzPjNhIJ+AXsqSYAP8uV4LMU07z8v7xlZ8WblgUGPjgnirF+9xuMLM7vG7K+nr6em4WjKiTOJVmZp5uP0+JWZkryv8aRU71Mu2937tgt/6Z75fPG388j36YhB35KfT+mpgDhiHaVBJftexP3gf5azyTfFBTk+mU64++QtMxmf5KwxlXhn/7baZp5dVgVAdX36EUtDoaAfsj+XV/WaAdh0NDbM7y8r0y+6ND3hUnHpaiKWQTCo2NvI/358Kbe+nPyMIG7d7gZKSsuo2Jt5x1RLWye3l23sl/7k4h3dNbD4j1Pfr2awwJE6U7Zj8V2v9h61cailLaPOun2N2Tm1z8XZVVheWFHdfcH3xiPtVGTwfqZavrmzyzFvU3YHFCSb7PjK2hpeWr0H5xyvb67lR8+sYE5F76GzOw82M37+Vv6QMIels6vnTO7VQKu9Do6CfsimlMd+3RdsPkBJaRmPvh6r/T4yP7NacDLlO+oCtPH3d8hPL0/X5vnaur0AzFqfnbHgBw638qtp6/n3ScuyfpbRu20386h/NMnoHTMYM2Fxv07grz30Bpf8fuGQ17vv2z5dDAbzlpS+sJZjRwYPVamO7ld/93rKbQb7Xn/r0f5NUut2N/LjZ1dyy0sbGDtpGS+vqelX0bh64jLGvdZ7gmBilh88vWJQ5QlCQT9k8Rp4fNr9tNWxIB3/ctSmWaujb9t14r0rH1nMT55blXS7DXsa07ZpLtteN+D6Isf4MgbtLDzoO8ZSnVbHA3PDkXb+4/k13emT36oacCmGIDXce2du6r49mJr+joP9h4g613+6fixvbGTI/Qlr9Hx9/BsZv+ZVjy3JeJt8Gg+eTK82/YDb1LW08bYRPaFqoOsXx14keXLfYb6J2dK916nKmmoOBcCW/alnku9KMlx3uA5dpIP+3TMqumurYevwp3aJX4q5Ffv47B2zBwx4fZtgVu4K1pZ96QMLOf+uuWnz/fCZ5SzfWefL5noHbB9h7pu9OdCww8/cPpurJy7ttY+zN+zrniyVmL46oU1++4HmlB2cm/Y28bGbZzBmwmJKSsu6hyz+6JmVvfItquxZ/2cwV3FK9sM2x8+0TSWxPXjd7uEZm70oz1eV7XKOKeVVfPORN7vXMkqns8sx4piekPj5NJ/bbF2daziE8SMd6StnxS/EsOOuy4BYe/rHfz2Tcd/4ON/67N8MSxmW+TVB+o66qWtu44XlsVr/ql2H+KcPj0q6/Z/e3MH5HzqZk45/W3eac65f00ImH67EYPVG5UHeqFzMjrsu485XK5iwYBtbf3MpI44xEr6HlO+o615LZSBv7ajv9aW89slyfnLBmew82Mwx/gnNkpc3WVq8PyFe475h8iou/uhfU9PQu7N3ZEJhb3lpPUCg8vZ9nXyUGOJunr4+tHIEsXR7HUv9jOS3dgTrnD3GrHspiyCChvz6ABWVoQjy2/NGZc93rX/fVf/vcTZEuqbfVzxQpLuIwcHDrZSUljFzfc9ZwqGWnnHybR1dtLQNrVNtf1MrZQE7c77/ZDmJJ4e3l23kMwlrkRxqaUs54zSZVFPQJy2KvS/xZpi+65Q8tWTg4aJxfT/cVfUtvLhqD1NX+KatDE50+zZfza3Yzy9eWNMr7cE5W3p9eeozWBI3LugZlGTfMZbZpKmg1xL42ZTsDVFOJtORP31/JHJ1wqKgD/zomRW0dXQFfpMr/DCr383qabONjzSYtGg735qwmLN+NWNQZRnsgW440lNrmbhoOwcTajGfunUW/+sPi5JtFthD8yr71bQHWwfpN2Gmz90gC4ll4t5Z6SZZ5Va6WaND1TSEZQoKQdBmoFwajovQ96vp5+h1Ihv0EzuDXl5TQ/nOuu51QYIe34qEJX8TPxTZrhUGuTrQ9/408Nrhh1LUbvu2xaeaGPLHN3Z03/7ELTPYvK+puzkmVsbgfjald+2877Y1DUeTBul876RMJd0KjZIf7p6RfMG0P8zdEsqVyHI1zyOyQf/IAEMCDeOOsg3dwWn9ngYu/f1Cmls7uOKhN/h2kjXpu9fhTvO6Bw+3cuerG9nbkHyCUbJOqF11LYFmmA5G3yVpU10K7sDhVtr9ssxH27t4uk9TzoQFwYeYvrK2d+d50I63+DDmwVwiL5PJPRJNqS62fs/M5FdKy7aXVvduwspVTT9SHbnj529lx4Fmxl35iQFP9xuPtndPDPrdv32Kyx6INY08NK+y16iSREGXEf7lC2uZvXEfj76+jUW//FK/x/t2QAJMXbGbvz3peD71NycM/OTDLLFNfyg1oWTvWbLT6Xiz0K+m5XdnpUg2qE0/C8a9VsFkPxkqmfibnCzwAjwc4CIJA9VCu7ocszf2TGT6wrh5aZ8vbun2g1lbwCwbHNlbqz3oZzs+rDVfLp8okku5uuh7JIJ+kLaxsjXJR8qUlJYNuF1zawfNrR38a5ILbNwweRV3z6jAOUdnl+O19YOfEzCUi27nwtyK/VkLvnsb+k+22Z5kvfzBXihDpBDlqqYfqeaduAWba/sFlaeX7uKMk4/P+LlumLyKq875m+6AlDgJ5y8rY0MQP3DCO7jpL+sKtiMymWwuChV0vPZghlqKSG+RCPrNbZ2867ieXU11QY9kC4Cls3FvY9rhgDf9ZR2Q23XhRaS45GpmcSSC/sdunsHlnzglJ89dVZfbZVBFJJrUkTtEL6dos8+GHUO4XquISDK5qulHJujn0q9fGnjdeRGRTN0wOfkKuUOloC8ikodmbwy+yFwmFPRFRCJk2IO+mV1sZpvMrNLMSof79UVEomxYg76ZjQAeAi4BzgKuMrOzhrMMIiJRNtw1/c8Blc65bc65NuA54Ipsv0h1ff9LkYmIyPAH/VOBxMVvqn1aNzO7zszKzay8tnZw0/yzfVFtEZHh9pV/eH9Onne4J2clm7zaazCqc24CMAFg9OjRgxqo+qH3/VX3JRBFRKTHcNf0q4HTE+6fBgS/DpqIiAzJcAf9t4AzzewMMzsWGANMH+YyiIhE1rA27zjnOszsR8AMYAQwyTmnK2KIiAyTYV9wzTn3CvDKcL+uiIhoRq6ISKQo6IuIRIiCvohIhCjoi4hEiAW5aHhYzKwW2DmEpzgZOJCl4hSCqO0vaJ+jQvucmb91zo1K9kBeB/2hMrNy59zosMsxXKK2v6B9jgrtc/aoeUdEJEIU9EVEIqTYg/6EsAswzKK2v6B9jgrtc5YUdZu+iIj0Vuw1fRERSaCgLyISIUUZ9Ivp4utmdrqZzTOzjWa23sx+4tNPMrNZZrbF/z/Rp5uZPeD3fY2ZnZ3wXGN9/i1mNjasfQrCzEaY2Uoze9nfP8PMlvqyT/ZLc2Nmx/n7lf7xkoTnuNGnbzKzi8LZk2DM7AQze97MKvyxPi8Cx/gG/5leZ2bPmtnbi+04m9kkM9tvZusS0rJ2XM3sM2a21m/zgJklu1BVb865ovojtmTzVuCDwLHAauCssMs1hP05BTjb3/4rYDOxi8r/Fij16aXAOH/7UuBVYlcpOxdY6tNPArb5/yf62yeGvX8D7PfPgGeAl/39KcAYf/sR4Af+9g+BR/ztMcBkf/ssf+yPA87wn4kRYe/XAPv7BHCtv30scEIxH2Nil0ndDrwj4fj+e7EdZ+CLwNnAuoS0rB1XYBlwnt/mVeCStGUK+03JwZt8HjAj4f6NwI1hlyuL+zcN+CqwCTjFp50CbPK3HwWuSsi/yT9+FfBoQnqvfPn0R+yKanOALwMv+w/0AWBk32NM7NoM5/nbI30+63vcE/Pl2x/wbh8ArU96MR/j+PWyT/LH7WXgomI8zkBJn6CflePqH6tISO+VL9VfMTbvpL34eqHyp7SfBpYC73fO1QD4/+/z2VLtfyG9L/cDvwC6/P33Aoeccx3+fmLZu/fLP97g8xfS/n4QqAX+6Ju0Hjez4yniY+yc2w3cA+wCaogdt+UU93GOy9ZxPdXf7ps+oGIM+mkvvl6IzOxdwAvAT51zjQNlTZLmBkjPK2Z2ObDfObc8MWI8FM0AAAIASURBVDlJVpfmsYLYX28ksSaA8c65TwPNxE77Uyn4ffbt2FcQa5L5AHA8cEmSrMV0nNPJdB8Hte/FGPSL7uLrZvY2YgH/aefcVJ+8z8xO8Y+fAuz36an2v1Del/OBfzGzHcBzxJp47gdOMLP4ld4Sy969X/7x9wB1FM7+Qqys1c65pf7+88R+BIr1GAN8BdjunKt1zrUDU4HPU9zHOS5bx7Xa3+6bPqBiDPpFdfF13xs/EdjonPtdwkPTgXgv/lhibf3x9O/4kQDnAg3+FHIGcKGZnehrWRf6tLzinLvROXeac66E2LGb65z7NjAPuNJn67u/8ffhSp/f+fQxftTHGcCZxDq98o5zbi9QZWZ/75MuADZQpMfY2wWca2bv9J/x+D4X7XFOkJXj6h9rMrNz/Xv4nYTnSi3sTo4cdZxcSmyUy1bgprDLM8R9+QKxU7Y1wCr/dymx9sw5wBb//ySf34CH/L6vBUYnPNf3gEr/992w9y3Avv8zPaN3Pkjsy1wJ/Bk4zqe/3d+v9I9/MGH7m/z7sIkAoxpC3tdPAeX+OL9IbJRGUR9j4BagAlgHPEVsBE5RHWfgWWJ9Fu3EaubXZPO4AqP9+7cV+AN9BgMk+9MyDCIiEVKMzTsiIpKCgr6ISIQo6IuIRIiCvohIhCjoi4hEiIK+iEiEKOiLiETI/wcP3A3H9eR3GAAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" diff --git a/8-Reinforcement/2-Gym/solution/notebook.ipynb b/8-Reinforcement/2-Gym/solution/notebook.ipynb index d7f5297a..49e1c43e 100644 --- a/8-Reinforcement/2-Gym/solution/notebook.ipynb +++ b/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -44,24 +44,12 @@ "output_type": "stream", "name": "stdout", "text": [ - "Collecting gym\n", - " Downloading gym-0.18.3.tar.gz (1.6 MB)\n", - "\u001b[K |████████████████████████████████| 1.6 MB 2.3 MB/s \n", - "\u001b[?25hRequirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", - "Collecting pyglet<=1.5.15,>=1.4.0\n", - " Downloading pyglet-1.5.15-py3-none-any.whl (1.1 MB)\n", - "\u001b[K |████████████████████████████████| 1.1 MB 3.7 MB/s \n", - "\u001b[?25hRequirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", - "Collecting cloudpickle<1.7.0,>=1.2.0\n", - " Downloading cloudpickle-1.6.0-py3-none-any.whl (23 kB)\n", - "Building wheels for collected packages: gym\n", - " Building wheel for gym (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for gym: filename=gym-0.18.3-py3-none-any.whl size=1657514 sha256=578c789ab75e603e58dd1152b2bd60d9a5adc6a057559cf8b5bdd6ee8b80abf2\n", - " Stored in directory: /Users/jenlooper/Library/Caches/pip/wheels/1a/ec/6d/705d53925f481ab70fd48ec7728558745eeae14dfda3b49c99\n", - "Successfully built gym\n", - "Installing collected packages: pyglet, cloudpickle, gym\n", - "Successfully installed cloudpickle-1.6.0 gym-0.18.3 pyglet-1.5.15\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" ] @@ -99,7 +87,7 @@ "output_type": "stream", "name": "stdout", "text": [ - "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n1\n" + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" ] } ] @@ -159,32 +147,25 @@ "output_type": "stream", "name": "stdout", "text": [ - "[-0.035025 0.21201857 -0.010404 -0.3300738 ] -> 1.0\n", - "[-0.03078463 0.40728707 -0.01700547 -0.62601941] -> 1.0\n", - "[-0.02263889 0.21240657 -0.02952586 -0.3387403 ] -> 1.0\n", - "[-0.01839076 0.01771693 -0.03630067 -0.05551247] -> 1.0\n", - "[-0.01803642 0.21334007 -0.03741092 -0.35942391] -> 1.0\n", - "[-0.01376962 0.40897331 -0.0445994 -0.66366469] -> 1.0\n", - "[-0.00559015 0.21449925 -0.05787269 -0.38535156] -> 1.0\n", - "[-0.00130017 0.410393 -0.06557972 -0.69570532] -> 1.0\n", - "[ 0.00690769 0.21623893 -0.07949383 -0.42436686] -> 1.0\n", - "[ 0.01123247 0.02232776 -0.08798116 -0.15776523] -> 1.0\n", - "[ 0.01167903 0.21859198 -0.09113647 -0.47685598] -> 1.0\n", - "[ 0.01605087 0.02486705 -0.10067359 -0.21423159] -> 1.0\n", - "[ 0.01654821 0.22127341 -0.10495822 -0.53689749] -> 1.0\n", - "[ 0.02097368 0.02777162 -0.11569617 -0.27904318] -> 1.0\n", - "[ 0.02152911 -0.16552613 -0.12127703 -0.02497378] -> 1.0\n", - "[ 0.01821859 -0.35871897 -0.12177651 0.22711886] -> 1.0\n", - "[ 0.01104421 -0.16208621 -0.11723413 -0.10135989] -> 1.0\n", - "[ 0.00780248 -0.35534992 -0.11926133 0.15215788] -> 1.0\n", - "[ 0.00069548 -0.15874009 -0.11621817 -0.17564179] -> 1.0\n", - "[-0.00247932 0.03783674 -0.11973101 -0.50260923] -> 1.0\n", - "[-0.00172258 0.23442478 -0.12978319 -0.83049704] -> 1.0\n", - "[ 0.00296591 0.04129289 -0.14639313 -0.58128481] -> 1.0\n", - "[ 0.00379177 0.23812991 -0.15801883 -0.9162682 ] -> 1.0\n", - "[ 0.00855437 0.04545686 -0.17634419 -0.67712384] -> 1.0\n", - "[ 0.00946351 0.24253346 -0.18988667 -1.01973114] -> 1.0\n", - "[ 0.01431417 0.05037919 -0.21028129 -0.7921723 ] -> 1.0\n" + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" ] } ] @@ -281,7 +262,7 @@ "output_type": "stream", "name": "stdout", "text": [ - "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 0, -4, -3)\n(0, 1, -5, -6)\n(0, 2, -6, -9)\n(0, 1, -8, -6)\n(0, 2, -9, -9)\n(0, 2, -11, -13)\n(0, 2, -14, -10)\n(0, 1, -16, -8)\n(0, 2, -18, -11)\n(0, 3, -20, -15)\n(0, 2, -23, -12)\n" + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" ] } ], From 7b0c52d643f9ec5a44be427dc4b623e3765b149f Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Tue, 22 Jun 2021 17:42:17 -0400 Subject: [PATCH 6/6] NLP 5 --- 6-NLP/5-Hotel-Reviews-2/README.md | 0 6-NLP/5-Hotel-Reviews-2/assignment.md | 9 +++++++++ 6-NLP/5-Hotel-Reviews-2/translations/README.es.md | 0 6-NLP/README.md | 3 ++- 4 files changed, 11 insertions(+), 1 deletion(-) create mode 100644 6-NLP/5-Hotel-Reviews-2/README.md create mode 100644 6-NLP/5-Hotel-Reviews-2/assignment.md create mode 100644 6-NLP/5-Hotel-Reviews-2/translations/README.es.md diff --git a/6-NLP/5-Hotel-Reviews-2/README.md b/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 00000000..e69de29b diff --git a/6-NLP/5-Hotel-Reviews-2/assignment.md b/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 00000000..d4badb79 --- /dev/null +++ b/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,9 @@ +# [Assignment Name] + +## Instructions + +## Rubric + +| Criteria | Exemplary | Adequate | Needs Improvement | +| -------- | --------- | -------- | ----------------- | +| | | | | diff --git a/6-NLP/5-Hotel-Reviews-2/translations/README.es.md b/6-NLP/5-Hotel-Reviews-2/translations/README.es.md new file mode 100644 index 00000000..e69de29b diff --git a/6-NLP/README.md b/6-NLP/README.md index c6d388d2..173304da 100644 --- a/6-NLP/README.md +++ b/6-NLP/README.md @@ -14,7 +14,8 @@ In these lessons we'll learn the basics of NLP by building small conversational 1. [Introduction to natural language processing](1-Introduction-to-NLP/README.md) 2. [Common NLP tasks and techniques](2-Tasks/README.md) 3. [Translation and sentiment analysis with machine learning](3-Translation-Sentiment/README.md) -4. TBD +4. [NLTK for Sentiment Analysis](4-Hotel-Reviews-1/README.md) +5. TBD ## Credits