diff --git a/Clustering/1-Visualize/README.md b/Clustering/1-Visualize/README.md
index bb13afb13..c89af7bd5 100644
--- a/Clustering/1-Visualize/README.md
+++ b/Clustering/1-Visualize/README.md
@@ -6,11 +6,15 @@
## [Pre-lecture quiz](link-to-quiz-app)
### Introduction
-Clustering is a type of unsupervised learning that presumes that a dataset is unlabelled. It uses various algorithms to sort through unlabeled data and provide groupings according to patterns it discerns in the data. Clustering is very useful for data exploration. Let's see if it can help discover trends and patterns in the way Nigerian audiences consume music.
+Clustering is a type of [Unsupervised Learning](https://wikipedia.org/wiki/Unsupervised_learning) that presumes that a dataset is unlabelled. It uses various algorithms to sort through unlabeled data and provide groupings according to patterns it discerns in the data. Clustering is very useful for data exploration. Let's see if it can help discover trends and patterns in the way Nigerian audiences consume music.
✅ Take a minute to think about the uses of clustering. In real life, clustering happens whenever you have a pile of laundry and need to sort out your family members' clothes 🧦👕👖🩲. In data science, clustering happens when trying to analyze a user's preferences, or determine the characteristics of any unlabeled dataset. Clustering, in a way, helps make sense of chaos.
-In real life, clustering can be used to determine things like market segmentation, determining what age groups buy what items, for example. Another use would be anomaly detection, perhaps to detect fraud from a dataset of credit card transactions. Or you might use clustering to determine tumors in a batch of medical scans. Alternately, you could use it for grouping search results - by shopping links, images, or reviews, for example. Clustering is useful when you have a large dataset that you want to reduce and on which you want to perform more granular analysis, so the technique can be used to learn about data before other models are constructed.
+In a professional setting, clustering can be used to determine things like market segmentation, determining what age groups buy what items, for example. Another use would be anomaly detection, perhaps to detect fraud from a dataset of credit card transactions. Or you might use clustering to determine tumors in a batch of medical scans.
+
+> Interestingly, Cluster Analysis originated in the fields of Anthropology and Psychology in the 1930s. Can you imagine how it might have been used?
+
+Alternately, you could use it for grouping search results - by shopping links, images, or reviews, for example. Clustering is useful when you have a large dataset that you want to reduce and on which you want to perform more granular analysis, so the technique can be used to learn about data before other models are constructed.
✅ Once your data is organized in clusters, you assign it a cluster Id, and this technique can be useful when preserving a dataset's privacy; you can instead refer to a data point by its cluster id, rather than by more revealing identifiable data. Can you think of other reasons why you'd refer to a cluster Id rather than other elements of the cluster to identify it?
## Getting started with clustering
@@ -51,9 +55,35 @@ In real life, clustering can be used to determine things like market segmentatio
> 🎓 'Density'
>
> Data that is 'noisy' is considered to be 'dense'. The distances between points in each of its clusters may prove, on examination, to be more or less dense, or 'crowded' and thus this data needs to be analyzed with the appropriate clustering method. [This article](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) demonstrates the difference between using K-Means clustering vs. HDBSCAN algorithms to explore a noisy dataset with uneven cluster density.
+
+### Clustering Algorithms
+
+There are over 100 clustering algorithms, and their use depends on the nature of the data at hand. Let's discuss some of the major ones:
+
+**Hierarchical clustering**
+
+If an object is classified by its proximity to a nearby object, rather than to one farther away, clusters are formed based on their members' distance to and from other objects. Scikit-Learn's Agglomerative clustering is hierarchical.
+
+TODO: infographic
+
+**Centroid clustering**
+
+This popular algorithm requires the choice of 'k', or the number of clusters to form, after which the algorithm determines the center point of a cluster and gathers data around that point. [K-means clustering](https://en.wikipedia.org/wiki/K-means_clustering) is a popular version of centroid clustering. The center is determined by the nearest mean, thus the name. The squared distance from the cluster is minimized.
+
+**Distribution-based clustering**
+
+Based in statistical modeling, distribution-based clustering centers on determining the probability that a data point belongs to a cluster, and assigning it accordingly. Gaussian Mixture methods belong to this type.
+
+**Density-based clustering**
+
+Data points are assigned to clusters based on their density, or their grouping around each other. Data points far from the group are considered outliers or noise. DBSCAN, Mean-shift and OPTICS belong to this type of clustering.
+
+**Grid-based clustering**
+
+For multi-dimensional datasets, a grid is created and the data is divided amongst the grid's cells, thereby creating clusters.
### Preparation
-Clustering is heavily dependent on visualization, so let's get started.
+Clustering is heavily dependent on visualization, so let's get started by visualizing our music data. This exercise will help us decide which of the methods of clustering we should most effectively use for the nature of this data.
Open the notebook.ipynb file in this folder and append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to explore this data by importing the libraries and dumping out the data:
@@ -183,6 +213,10 @@ Explore the data by checking the most popular genre:
## Review & Self Study
-Take a look at Stanford's K-Means Simulator [here](https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html). You can use this tool to visualize sample data points and determine its centroids. With fresh data, click 'update' to see how long it takes to find convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids. Does this help you get an idea of how the data can be grouped?
+Before you apply clustering algorithms, as we have learned, you must determine the nature of your dataset. Read more onn this topic [here](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)
+
+[This helpful article](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) walks you through the different ways that various clustering algorithms behave given different data shapes
+
+In the next lesson, you will make use of the most popular clustering method, K-Means. Take a look at Stanford's K-Means Simulator [here](https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html). You can use this tool to visualize sample data points and determine its centroids. With fresh data, click 'update' to see how long it takes to find convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids. Does this help you get an idea of how the data can be grouped?
**Assignment**: [Assignment Name](assignment.md)
diff --git a/Clustering/1-Visualize/solution/notebook.ipynb b/Clustering/1-Visualize/solution/notebook.ipynb
index e7c1e85f1..5f541c573 100644
--- a/Clustering/1-Visualize/solution/notebook.ipynb
+++ b/Clustering/1-Visualize/solution/notebook.ipynb
@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
@@ -44,14 +44,14 @@
"text": [
"Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n",
"Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n",
"Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n",
"Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n",
- "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n",
"Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n",
- "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n",
"Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n",
"Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n",
"Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n",
"\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.1 is available.\n",
@@ -66,7 +66,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -104,7 +104,7 @@
"text/html": "
\n\n
\n \n \n | \n name | \n album | \n artist | \n artist_top_genre | \n release_date | \n length | \n popularity | \n danceability | \n acousticness | \n energy | \n instrumentalness | \n liveness | \n loudness | \n speechiness | \n tempo | \n time_signature | \n
\n \n \n \n | 0 | \n Sparky | \n Mandy & The Jungle | \n Cruel Santino | \n alternative r&b | \n 2019 | \n 144000 | \n 48 | \n 0.666 | \n 0.8510 | \n 0.420 | \n 0.534000 | \n 0.1100 | \n -6.699 | \n 0.0829 | \n 133.015 | \n 5 | \n
\n \n | 1 | \n shuga rush | \n EVERYTHING YOU HEARD IS TRUE | \n Odunsi (The Engine) | \n afropop | \n 2020 | \n 89488 | \n 30 | \n 0.710 | \n 0.0822 | \n 0.683 | \n 0.000169 | \n 0.1010 | \n -5.640 | \n 0.3600 | \n 129.993 | \n 3 | \n
\n \n | 2 | \n LITT! | \n LITT! | \n AYLØ | \n indie r&b | \n 2018 | \n 207758 | \n 40 | \n 0.836 | \n 0.2720 | \n 0.564 | \n 0.000537 | \n 0.1100 | \n -7.127 | \n 0.0424 | \n 130.005 | \n 4 | \n
\n \n | 3 | \n Confident / Feeling Cool | \n Enjoy Your Life | \n Lady Donli | \n nigerian pop | \n 2019 | \n 175135 | \n 14 | \n 0.894 | \n 0.7980 | \n 0.611 | \n 0.000187 | \n 0.0964 | \n -4.961 | \n 0.1130 | \n 111.087 | \n 4 | \n
\n \n | 4 | \n wanted you | \n rare. | \n Odunsi (The Engine) | \n afropop | \n 2018 | \n 152049 | \n 25 | \n 0.702 | \n 0.1160 | \n 0.833 | \n 0.910000 | \n 0.3480 | \n -6.044 | \n 0.0447 | \n 105.115 | \n 4 | \n
\n \n
\n
"
},
"metadata": {},
- "execution_count": 8
+ "execution_count": 21
}
],
"source": [
@@ -118,7 +118,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -135,7 +135,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 23,
"metadata": {},
"outputs": [
{
@@ -162,7 +162,7 @@
]
},
"metadata": {},
- "execution_count": 10
+ "execution_count": 23
}
],
"source": [
@@ -171,7 +171,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 24,
"metadata": {},
"outputs": [
{
@@ -211,7 +211,7 @@
"text/html": "\n\n
\n \n \n | \n release_date | \n length | \n popularity | \n danceability | \n acousticness | \n energy | \n instrumentalness | \n liveness | \n loudness | \n speechiness | \n tempo | \n time_signature | \n
\n \n \n \n | count | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n 530.000000 | \n
\n \n | mean | \n 2015.390566 | \n 222298.169811 | \n 17.507547 | \n 0.741619 | \n 0.265412 | \n 0.760623 | \n 0.016305 | \n 0.147308 | \n -4.953011 | \n 0.130748 | \n 116.487864 | \n 3.986792 | \n
\n \n | std | \n 3.131688 | \n 39696.822259 | \n 18.992212 | \n 0.117522 | \n 0.208342 | \n 0.148533 | \n 0.090321 | \n 0.123588 | \n 2.464186 | \n 0.092939 | \n 23.518601 | \n 0.333701 | \n
\n \n | min | \n 1998.000000 | \n 89488.000000 | \n 0.000000 | \n 0.255000 | \n 0.000665 | \n 0.111000 | \n 0.000000 | \n 0.028300 | \n -19.362000 | \n 0.027800 | \n 61.695000 | \n 3.000000 | \n
\n \n | 25% | \n 2014.000000 | \n 199305.000000 | \n 0.000000 | \n 0.681000 | \n 0.089525 | \n 0.669000 | \n 0.000000 | \n 0.075650 | \n -6.298750 | \n 0.059100 | \n 102.961250 | \n 4.000000 | \n
\n \n | 50% | \n 2016.000000 | \n 218509.000000 | \n 13.000000 | \n 0.761000 | \n 0.220500 | \n 0.784500 | \n 0.000004 | \n 0.103500 | \n -4.558500 | \n 0.097950 | \n 112.714500 | \n 4.000000 | \n
\n \n | 75% | \n 2017.000000 | \n 242098.500000 | \n 31.000000 | \n 0.829500 | \n 0.403000 | \n 0.875750 | \n 0.000234 | \n 0.164000 | \n -3.331000 | \n 0.177000 | \n 125.039250 | \n 4.000000 | \n
\n \n | max | \n 2020.000000 | \n 511738.000000 | \n 73.000000 | \n 0.966000 | \n 0.954000 | \n 0.995000 | \n 0.910000 | \n 0.811000 | \n 0.582000 | \n 0.514000 | \n 206.007000 | \n 5.000000 | \n
\n \n
\n
"
},
"metadata": {},
- "execution_count": 11
+ "execution_count": 24
}
],
"source": [
@@ -220,7 +220,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
@@ -231,18 +231,16 @@
]
},
"metadata": {},
- "execution_count": 13
+ "execution_count": 25
},
{
"output_type": "display_data",
"data": {
"text/plain": "",
- "image/svg+xml": "\n\n\n\n",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7zt9ZzH8de7TuWSUelIN3JpIrdwpBGKJiW6DZGUEBkVNXIbg8owg4bccyfGRK6Fxi3SaMalkqimcSTq6HKSQohTn/nj+9tj2XPq3L67tfbZr+fjcR5nrd/vt9b+1Dp7rff6XlNVSJIkadWtMe4CJEmSVhcGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUpSdwm/GflzU8LvRu4/bdz1SdJMiQuESppJCZcAz67iq+OuZVUkzKtiybjrkDTZbLGSdKtLuG3COxIuT7gs4diEtYZzuyYsTDgm4ZqEnyTscwvPtWXCfyb8OuGLCe9OeN/I+UcmfDvh2oRzErYfOfethKOGv3+VcGrC+sO5eycsSXhOwqXAqcvxfM9JuGSo5eJbqlvS6slgJWkcjgEeANwfeAiwI/CSkfNbAGsDdwGeA5yQcPfpT5IQ4CTg68CdgNcB+4+c3wL4LPAPwAbAK4DPToWnwX7A04CNgfWAw0fOrQk8DNgK2POWnm94zmOBnaq4A/AI4Icr8j9F0uxnsJI0Dk8Djqri6iquBF4DHDByfglwTBV/GLoQvwo8aSnPsyVwb+DVw7WnA/8+cv5A4NNVfLWKm6o4FbgAeOzINe+t4sdVXA98Ethm2s94VRW/reJ3y/l890u4TRU/r+LCFfq/ImnWM1hJulUNrUx3AX46cvinwKYj9xdX8ftp5zdZytNtMlx7w8ixS0du3w3Yf+i2uzbhWmDBtOe6YuT2b4F1R+7fVMXPl+f5qvglLTC+ALgi4ZSEey2lZkmrMYOVpFtVFUULM3cbOXxXYNHI/Q0TbjPt/GjAmXI5MD9hnZFjm4/cvhR4XxXrjfy5fRXHLW+50+7f4vNV8YUqdqIFt58Bxy/nz5G0mjBYSRqHE4GjEu6UcGfamKV/HTm/FvDKhLUTHgPsDHxqKc/zP8BFwCsS1kp4FLDryPkTgH0SdkpYcxg0v1PCXVay7pt9voRNEx6fcDvgBuA3wE0r+XMkzVIGK0nj8Cra2KTzgXOBM4E3jJy/hDbO6grgA8Azq7h4+pMMrV9PAf4a+CXwcuATtGDD8Jgn0gbLX03rUjyclXzvW8bzrQm8bKj5F8BDgcNW5udImr1cx0rSREnYFXh71cqNT0o4GfhWFf/ctzJJWjZbrCTNagkPS9giYY2E3WldgSePuy5Jc9O8cRcgSatoM9r4q/Vpg8ufVcUF4y1J0lxlV6AkSVIndgVKkiR1MhFdgRtuuGFtscUW4y5DkiRpmc4+++yrq2r+0s5NRLDaYostOOuss8ZdhiRJ0jIl+enNnbMrUJIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpk3njLmBFPeTFHx53CXPC2cc+fdwlSJI069hiJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqZNlBqskt0nynSTfT3J+kmOG43dP8u0kC5N8PMnaw/F1hvsLh/NbzOx/giRJ0mRYnharG4DHVNUDgW2AXZNsB7weOK6q7gX8EjhouP4g4JfD8eOG6yRJklZ7ywxW1fxmuLvW8KeAxwCfHI6fAOw13N5zuM9wfqck6VaxJEnShFquMVZJ1kxyLnAV8BXgx8C1VbVkuOQyYNPh9qbApQDD+euAO/UsWpIkaRItV7CqqhurahtgM2Bb4N6r+oOTHJzkrCRnLV68eFWfTpIkaexWaFZgVV0LfB34K2C9JPOGU5sBi4bbi4DNAYbzdwR+sZTnek9VLaiqBfPnz1/J8iVJkibH8swKnJ9kveH2bYGdgQtpAetJw2UHAicPt08Z7jOc/1pVVc+iJUmSJtG8ZV/CxsAJSdakBbGTqurzSS4APpbkNcD3gPcP178f+EiShcA1wL4zULckSdLEWWawqqrzgAct5fjFtPFW04//HtinS3WSJEmziCuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnSwzWCXZPMnXk1yQ5Pwkhw/Hj06yKMm5w5/dRh7z90kWJrkoyS4z+R8gSZI0KeYtxzVLgCOr6pwkdwDOTvKV4dxxVfUvoxcn2RrYF7gvsAnw1SR/WVU39ixckiRp0iyzxaqqLq+qc4bbvwYuBDa9hYfsCXysqm6oqp8AC4FtexQrSZI0yVZojFWSLYAHAd8eDh2W5LwkH0iy/nBsU+DSkYddxlKCWJKDk5yV5KzFixevcOGSJEmTZrmDVZJ1gU8BR1TVr4DjgXsC2wCXA29ckR9cVe+pqgVVtWD+/Pkr8lBJkqSJtFzBKslatFD10ar6NEBVXVlVN1bVTcB7+VN33yJg85GHbzYckyRJWq0tz6zAAO8HLqyqN40c33jksr2BHw63TwH2TbJOkrsDWwLf6VeyJEnSZFqeWYHbAwcAP0hy7nDs5cBTk2wDFHAJ8FyAqjo/yUnABbQZhYc6I1CSJM0FywxWVfVNIEs5deotPOa1wGtXoS5JkqRZx5XXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ8sMVkk2T/L1JBckOT/J4cPxDZJ8JcmPhr/XH44nyVuTLExyXpIHz/R/hCRJ0iRYnharJcCRVbU1sB1waJKtgZcBp1XVlsBpw32AxwFbDn8OBo7vXrUkSdIEWmawqqrLq+qc4favgQuBTYE9gROGy04A9hpu7wl8uJpvAesl2bh75ZIkSRNmhcZYJdkCeBDwbWCjqrp8OHUFsNFwe1Pg0pGHXTYcm/5cByc5K8lZixcvXsGyJUmSJs9yB6sk6wKfAo6oql+NnquqAmpFfnBVvaeqFlTVgvnz56/IQyVJkibScgWrJGvRQtVHq+rTw+Erp7r4hr+vGo4vAjYfefhmwzFJkqTV2vLMCgzwfuDCqnrTyKlTgAOH2wcCJ48cf/owO3A74LqRLkNJkqTV1rzluGZ74ADgB0nOHY69HHgdcFKSg4CfAk8ezp0K7AYsBH4LPLNrxZIkSRNqmcGqqr4J5GZO77SU6ws4dBXrkiRJmnVceV2SJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyzGCV5ANJrkryw5FjRydZlOTc4c9uI+f+PsnCJBcl2WWmCpckSZo0y9Ni9SFg16UcP66qthn+nAqQZGtgX+C+w2PemWTNXsVKkiRNsmUGq6o6A7hmOZ9vT+BjVXVDVf0EWAhsuwr1SZIkzRqrMsbqsCTnDV2F6w/HNgUuHbnmsuHY/5Pk4CRnJTlr8eLFq1CGJEnSZFjZYHU8cE9gG+By4I0r+gRV9Z6qWlBVC+bPn7+SZUiSJE2OlQpWVXVlVd1YVTcB7+VP3X2LgM1HLt1sOCZJkrTaW6lglWTjkbt7A1MzBk8B9k2yTpK7A1sC31m1EiVJkmaHecu6IMmJwI7AhkkuA44CdkyyDVDAJcBzAarq/CQnARcAS4BDq+rGmSldkiRpsiwzWFXVU5dy+P23cP1rgdeuSlGSJEmzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTpYZrJJ8IMlVSX44cmyDJF9J8qPh7/WH40ny1iQLk5yX5MEzWbwkSdIkWZ4Wqw8Bu0479jLgtKraEjhtuA/wOGDL4c/BwPF9ypQkSZp8ywxWVXUGcM20w3sCJwy3TwD2Gjn+4Wq+BayXZONexUqSJE2ylR1jtVFVXT7cvgLYaLi9KXDpyHWXDcckSZJWe6s8eL2qCqgVfVySg5OcleSsxYsXr2oZkiRJY7eywerKqS6+4e+rhuOLgM1HrttsOPb/VNV7qmpBVS2YP3/+SpYhSZI0OVY2WJ0CHDjcPhA4eeT404fZgdsB1410GUqSJK3W5i3rgiQnAjsCGya5DDgKeB1wUpKDgJ8CTx4uPxXYDVgI/BZ45gzULEmSNJGWGayq6qk3c2qnpVxbwKGrWpQkSdJs5MrrkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqZNlLrcg9fSzV99/3CWs9u76qh+MuwRJmrNssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpm3Kg9Ocgnwa+BGYElVLUiyAfBxYAvgEuDJVfXLVStT0iTY/m3bj7uE1d6Zzz9z3CVIWgU9WqweXVXbVNWC4f7LgNOqakvgtOG+JEnSam8mugL3BE4Ybp8A7DUDP0OSJGnirGqwKuDLSc5OcvBwbKOquny4fQWw0Sr+DEmSpFlhlcZYAY+oqkVJ7gx8Jcl/j56sqkpSS3vgEMQOBrjrXe+6imVIkiSN3yq1WFXVouHvq4DPANsCVybZGGD4+6qbeex7qmpBVS2YP3/+qpQhSZI0EVY6WCW5fZI7TN0GHgv8EDgFOHC47EDg5FUtUpIkaTZYla7AjYDPJJl6nn+rqi8m+S5wUpKDgJ8CT171MiVJkibfSgerqroYeOBSjv8C2GlVipIkSZqNXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZN64C5AkzbxvPGqHcZew2tvhjG+MuwRNAFusJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTfuAiRJ0i17+5GfG3cJq73D3rh7l+exxUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mbFglWTXJBclWZjkZTP1cyRJkibFjASrJGsC7wAeB2wNPDXJ1jPxsyRJkibFTLVYbQssrKqLq+oPwMeAPWfoZ0mSJE2EVFX/J02eBOxaVc8e7h8APKyqDhu55mDg4OHuVsBF3QuZHBsCV4+7CK00X7/Zy9dudvP1m71W99fublU1f2knxrbyelW9B3jPuH7+rSnJWVW1YNx1aOX4+s1evnazm6/f7DWXX7uZ6gpcBGw+cn+z4ZgkSdJqa6aC1XeBLZPcPcnawL7AKTP0syRJkibCjHQFVtWSJIcBXwLWBD5QVefPxM+aJeZEl+dqzNdv9vK1m918/WavOfvazcjgdUmSpLnIldclSZI6MVhJkiR1YrCahZIsSHKHcdchSZL+nMFqdnoO8GXDlSTdvCQZdw2aewxWs0iSBwNU1XOBs4HPGK7Ga2lv3L6Zzy5JHpLELbdWM0lSVZVk+yQHJdlpWP5Hs8Do++iw//CsYbCaXd6Z5GsAw/ZAP8JwNVbDG/ejkjwtye4jb+b+bk2wqTftJAtoW2u9Mslu461KPQ2/h48GPgLcC3gz8IIk9xpvZVqWqffR4fYzgMfOplDsm/8sUlXbAWsm+dxw/3kYrsZi2gfzB4Dtgf2BzyZZo6pusuVqcg0fuo8DTgS+T1vU+JAkTxxvZeolyVbA3wJHVNXfAwcCWwI7j7UwLdNIqDoUOBy4qKr+MN6qlp/BasKNfIDPA6iqHYD508LVfwNfS7Lu2AqdY4YP5p2AvweeXVWHAM8ArgLeMnXN+CrUclgAvKKq3gkcRQtZhybZdbxlaVVkADwKuCewS5LbV9U5tNf44CTrj7VILVOSOwMH0HZuuSTJE5P87fBldqIZrCbYaHMosGmSLeH/Wq7ulOTzw/3DgDOADcZT6Zy1HrA38NDh/h+AdwOzpsl6LllKC+LtaGGYqroK+DbtNXxOkm1v3eq0qkZe3w2BeVX1XuC1QGgfzgBXAL8ejmmCJJmfZLvh9q7AXYCvAMcBHwKeDGwDPGZcNS4vV16fBZIcCewG3Ab4WlW9cjh+BkBVPWqM5c0ZI+OnNgJ+XVW/TfJ44LPAblX1lSQ7A2+gdTf8wlaryZLkocCmtO225gFvBH5XVYcneSDwKmAxcHpVfWx8lWplDOPkXg0sAq4HDgKeSOsGXIP2mh9bVZ8fW5FaqiSb0LbBKdqX0ycDWwFbA2dU1cXDVnkLgGdV1U1jK3YZZmSvQPWT5FnAHlW1Q5K3AS9McruqOrKqHpXkS0k2r6pLx13r6m4IVbsDzwcqyZm0Fqq9gC8lOYn2bfjVVXX1GEvViJFAvCPwLlp37R7Ax4G3Akcn+QawMbDncO6+YypXKynJfYDXAIcB5wL/BnywqvZN8ntgF+AHU6FqWo+Axqyqfp7kv4AXA2+vquuA7wx/pgaxPxvYb5JDFdgVOHGW0l2xEDggyfNp37QfAOyf5F0AVbWLoerWkeSetNaoFwP/QgtRxwD/TusS3B34z6r6zNSYOI1PkrXg/wLxNsCLgMcPLbyXAI8FNqyqJ9EmHjwCuDPwTOCjYylaq+IG4ALgnKr6bVXtBWw8DID+LK2r94FJ9jVUTYalfN59nva7+NdJXjRy3fbA3YD9q+qCW7HEleKb/4QZmQ2xLnBDVZ2R5I7ADsAbqurHQ8vIw5JsUFXXjLPeuWDkTXh94KdV9f3h+M+AhwF/XVUnJzkQOCnJT6rq9PFVrCR3Aj6WZI+q+h3wV8COtC8mP6Z1AR5B+5KydlV9OcndgX2AJ1XVf4+pdC2nkZbINWmNBNfQWh0XAN8cLvsY7W11SZITgD8CXzdUjd+0JRWeQhvz+KOq+nySa4C3JLme9vv6WOA1VXXt+Cpefo6xmhBDa8g6VXVBkhfSvj2vAzyzqq5Kcuxw6S+AbYHDbamaWSNv3LcbxlPdBvgk8MWqevtwzbHAoqp683D/b4Dzq+qi8VUugCR3o71Z/2H4QvISWrh6fVV9I8ntaK2Pn5j6FjzMHrt+bEVrhaQt7Pp02mD0Y2nB6pXA+4HfA39He6/86tiK1C0axk3tD7wdeB/tM+/EtAWx305rAHrGbGipmmKwmgBJbgu8DbiS1pR9MPA82tY1ewMPpnUD7gU8GnhBVf1wPNXOLcPslOcAFwPfog2s3B5Yl/Zt+N20X/r/tHthMiRZs6puHG7/A21A+n1GBr/uDLy1qk7Ln9YcW2PSx23ozyW5N+2D+J9pMwGPpk3P/yNtPNVmwCer6svjqlG3bJgw8mbaZ9v+tMkG69F6Z941fPm5zWzrmTFYTYhhKYUXAn9Ba/H4p+H4ccCuwCOr6uokt6mq34+x1DljmPr7elrofQBtpsofgZNo3Ui/os3S/NzYitSfGWll3A64aghTL6W1XGw/tFwdSQtX+wHXGqhmnyT3o3XnXlRVLxiO7UKblv/Iqlo4xvJ0M5b25TPJhrQemiOqasckz6S1OD6pqj49jjpXlYPXx2h04F5V/Qj4J+A64AFJHjAc/zvgP4CvD2MJZs3qs7NZkk1pA9S/XVWfpA1aP53W1XB5VR0EvLiqPreUAZgakyFUTa2ovulw7PXAm4AzkvxlVb0ReG5VXWOomrX+h7Ym1X2SbJlknar6EvApYP54S9PSTBtTtUOS3ZKsP8ygXgeYGj7xK9qM3e+NqdRVZovVmCxl4N4NtHVX/oO2cvfPgc9U1XnDNRtV1ZXjqneuSbIB8BJaq8Y+VfXt4fiXgddV1dfGWZ+WbhiA/jla9+xZSe4PrFVV5wwtVy8BNhsGtGsWmurqHWZ9vh/4HfBV2jIaJwJ7VtV3x1mjbl6Sv6OtLXYesB2t++8vgGfRhlhsBexeVT8ZW5GryGA1ZsOYj31prSMfo23DcDVtUO1vgA9V1fmO35lZI11I96ON17iY9s1pf9oyCm+mLX1xCvC0attjaAJM+5Jye9oCkdfQWi4eRPvS8uGq+tck97KbaPYa+T2dN8z0Wxt4B233g28AXxhmePp+OYGGnphjqmrvJIcDT6iqnYflae4H3B/4zmyf/GNX4JgkWSPJxrTB6DsB9wBOA75XVRfTugXn0Qa0u+/cDBverHcDTqatY/RZWqA6HTiTttjgO2gr/p5j999kGPmg3S3JUbTWi5/Rumy/TNv+4gu0CSAAs/Zb8Fw09Xs2dPfdZer4EKrmVduY9xDgLNoM0HMMVZNjKe+TlwPfT/Je2m4ijxuO7wlcUFUfme2hCgxWt6pp/8jWpH2r/gVtteBH0bqc/pjkecM1LypX8L5VDC0dhwAHVNWBtIU/dwA2or0+r6S1IM6q2SmruyFU7UHbE+6cqrqpqt5SVYdV1am0QPUM4IvD9TeOr1qtiJHQvAutpfiztE2y7wV/Fq7+SPvdvTNtU3TXZ5wAQ5ftVEvyBsMg9WuALYB7AQcOr+HTaTN37zS2YjszWN1KpnVX7A8cXFU30KbvvwB44rBW0n60PufyQ2BmJVlj+PuhtO6iq2n9+1TVycAPaV2y0GYCngUcNaxnpTFJsvHQuji1uvo+tLWMvp5kpyRvSbLFsA7OK4CjnXI/+wyhagFtG5PdgSNpWw3tNS1crTm0XO0DvHEIWhqjJFvTGgtIW5fx08AZwJNovQLXAq9O8m7ae+x+VXX5mMrtzjFWt7K07RWeRWsZmVqU8OO0NVe+R1vJ+5muUzVzktx2avBykkcAx9M2ad2ONr7q1GHg80OAw4GDhpbEDYGbZtuaKqubIVRdAvy8qq5N8mHgtsOf84GHABdX1cFJNqm2B5ndQ7NMkjsArwN2rap7DsceCTyVtsnyJ6rqf4bjrkM2QZIcQ/tMO5P2ej2Z1np8JPBB2vZC96W1Mp4xmweqL43B6laUZH3a7t0vHdbXWWdotZpaiPIG4JLV7R/ZJBkGp78ZeAJtHM7xtEUE35fkHsChwF2AJbQP6FdW1WfGVa/+JG0l9flD6L0jbfbsycCXgKcA51bV95JsRdtced+q+uX4KtaKmh6AR17LhcDzqy3muiPwNOCffK+cLCPdt2sA/0CbPPKHqtp3OL8d8BnaoPWzx1jqjDJYzaClfUtO8mnadPAPjXQNPgw4zyngM2voNjqe9m3pc7T9p3an7QH49KFlY0PaN617AwuHD3FbO8ZoGJt4B9raRdcBh1bVV5McBDyc1sL4qeHaJ9JW4CpoI6MAAAvLSURBVH7F0J2rWWLkQ3ln4K60z6f3JflL4GW0WbovHMLV+obmybKUULwGbQeRPWgLLX9rGO7yLuDjVfX1MZU64wxWM2TamKotgTWq6qIkz2WYsVRtG5Sn0Kb0P6uqFo+x5NXeEKxeAdyTtlP6c2mTCA6ktVC9uaquGF+FuiVJ/pm2we4S4O1V9YUkB9AmGZw+LKfwhuH2qQbi2SN/2lro8bQtal5M6zL6t6p60TCm6jXANVV1iF1/k2Xa591+tG1pbqiq9yc5AtiG1n37E9pEoB1X59ZGZ0/MgGn/yF5IG1P1uyRfAP6R9o365UmW0D7k9zNUzazhNfljkm/SAtXpI2PcPkPrGnxZkn+qqqvGWav+JMlaI4ORT6e9Yf878OwkVNVHktwEPD7J9VX1kuFxhqpZIG1B1zWqbTW0IXAYbTzOX9LG0e0ztE4dlLacxjoAhqrJMvJ59zzacjX/CuyZ5IlVtdvQoHAo8BVg59U5VIHBakaM/CPbjtZV8QjaG8J3gSVV9cq0NazuRetuWm1mQ0yikS6Ge9AWjfwb4Igkr6HNIjpzaLbei9YtaLCaAGmb7L48yQeHboMv86dJBicAhyS5sao+mrbA4I+nHmuomjUeDvwoyWXV9kI9mPY7eAxtjOMWwMIkv6uqw8ZYp5ZitOVw+B3cAfi7qjoTeGuSzyV5W1U9P8lfAP86Fz7vDFYzJMl9gKNo3RZrVNWVadP6/2uYqXQIbbE0zbAhVO1BW5F7IW1V9XfTZqi8IMlbq+o/kvygqq4dZ636M3emdZPfdxiXcRNtnaKn0sbJ3YbWyrhGVZ0wvjK1soZQvC7w3ST7V9V5STYBzh66Bu9C2+fxS+OtVNMlWQ/YBLhg+Gy7nLZJ/UYjl72YtmE9VXXsrV7kmLiOVSfDANv/U1UXAu+lBasdk2xYba+/7YFHJNlo+mM0M4aWw1cCu9BmpBxCG7j+L7RvWEemLTRoqJogVXUGbS2ce9P2zrwHbdunQ2gTDD5Jm2VrN/osM/Xel7b45/2AjwDvHWbtXgLcMck7aZsqn1xVX/H9cuJsBTwhyQm0MY+X0RbifXeSbYdr/gq4V5LbzaXXz8HrHUwbU7U/sAFtBtOXaJtN7kVbNfiMqroqwyaiYyt4jkmyGW3CwPq0AbD7Ae+irQL8IWBxuWnrxBo+fN8MPIA2fXtX4MyqOm0IxEvGWqBWyvDh+xZa19G3hvGo+9HeL6G93tdX1TfGVaNu3jAZ6IO0WX8vr6q3D8efy5+2GXoIbW/V88dW6BgYrDpK27V7T+ATtBVmT6ft+fcE2rYaH6BN8y/HgNz6krwWuKqq3pK2jcLUivc/HXNpWoZhtti/ANtV1XXTBrVrlkmyOXAcbZbfwSPHXwg8h7a9l4skT5jpszHTdjfYmfal9QfAx6rqxuH41bQxxT8fT7Xj4xirVTBMAd6gqr4zjKl6MG1T5RfT/t/ehTa9/9W0LsGznc0yVj8Anjt80/ob4HBD1ewwLK1wI/A/Se7tGkaz3hLgPNrMsV2ramovxzclWZM2+1MTZmSg+oHAWsDPqur1Sf6WNqnk12kLYd8BeMdcbUCwxWolpW238HLaP66PAt+ndTc9EHgJbQzPs2itIh+vqmPGVKoGw6yUvWlN1x+oqi+MuSStoKHl6vqqOn3ctWj5jczM/SvazNyf0SaRPIO2tclJVXXaGEvUchomAr2R9rn3EOBrVXVckmfTtmTbCdh9rnX/jTJYrYSRxezuSutLDvDBqvrvJE8FHlRVL0nyLNqbxrEuPDk5psbluNbR7OVrN/skeSxtTNWbaGMcnwBcCDye1trxkXKz7ImWtiDvtsA7q+rCtP1UjwG+WlVvTrIO8BdzfV1GuwJXwkh33i60FqqtgNskeR/wX8D7h3WqdqQthmaomiw3gmsdzWa+drPHsEbcerSFefemTe65ADhnWIbmE7R1/lx+ZsKMtDROfZG5K22Cwem0UHwubVmh45KsXVVvwFm6tlitrLRd1t9GS+/b0WYqrUUbT7UurYn0gqq6eGxFStKESPJS4I7AY2gzxX6c5BnAGbTN5x1/OkGmzXbfkjae6oahJ+ZFtAkG5w8Lg94P+EVVXTrGkieGLVYrb13aP6Q/AGckuZ62ps6dgTdU1efHWp0kjVmSbYA9hzGmtwcOAB49hKoHAi+l7T7hF9AJMxKqprYZuirJIloL1TzgxCQHVNX3aS1XGhisVt53gEVJ9gU+UVVnJzmTtujqleMtTZLGY6T76JHAPsAuSa6qqlcN2xQdlbZP6jbAS6vqm2MtWDcrySNoXbg707YXejhwPK07cBPg+CQ7Dg0MGhisVt51wDdpsyAem+Qs2p6AT6yqq8damSTdyqYC1RCqHkWbNXYYsAh4dJJ1qurJw4f1+rTVus92IsLkWMprcSNwblVdkeRK2g4IDwIeVlVHJ3m7oer/M1jdgumLoY0aZpV9hLbdxt60DZUPqNV8125Jmm7Y3+8+SU4fdpW4Ky04nZzkNFrr1OuHz+23jD7WUDUZpo2pej5tHcZjgW2SPLOqPgj8LMlNtAlb3wJ+MbaCJ5jB6haMLIa2P+2N4tfAiVMtUlX1O+B7wPfcWkPSHPZQ4EfA7YduvuuAo5OcVFU/SfKftHWrdkiyuKr+bZzF6v8bCVXPoW1Qf05VXZvkRcCLkmxF26rtgcDRo4/Rn3MT5mUYZkC8DPgxbd+/FyS5/3AuUxtLGqokzVVVdTJwBfBO2l5/X6atVfWWYVzVA2gLKP8I2HRcdeqWDZ93fws8HbgxyZ2B04AjaDM6t8KemWWyxWqapfQx7wi8qKq+mOQM4JXAvsAPTOuS5rLR98uquibJN2i7TvwB+Axt8eSP0LawOYi27dfOw7ZSS3wPHa9p3X8bAr8F9qiqRUleDPx+GPbym6p63liLnUUMVjdj2Pvou7Smz0ck+U5VXZ7kWOADSdarqmvHW6Ukjc8wUH0H4P60rU3em+Q3tG2jbqqqY5O8c7h8W+BVwN7lBtpjNy1UHQbcgxaAPz1ccj2wbpI9gcOT7FZVV42n2tnFYDVIslVVXTS8UfwNbd2Ok2nhanfazL8v0hZCW0L7RiZJc87IkgoPo3X/XQAsSHLmEK5uBPYfFo/8FG3l9YfT1rS6cHyVa8pIqDqE9nn3VOAcYJMkrwN+T1sEexPg6Yaq5WewApLsQluP48G0cQDPBn5YVZcDlyfZHHjUcHxt4PlV9duxFSxJYzSEqm1p+8Q9tarOG9b0e3iS5wzhak3gomGW4C+SHOvU/MmStjH9g4Gn0NYc+x5QwD8CP6C1PO5XVReMrchZaM4Hq+Eb1ba0sVNb06YFfx3YM8kTqurzVfW+JHekrb1y/VzfYFKSaK1Qf01bPPI84JPATQxjqKrqnfBn61sZqiZMVf0qyaEMywZV1aOHCVlXAT8BHmtL1Yqb88FqGJj3Y+AVtMXQHk1rAv0dsEeSJVX1xaq6jjaFWJLmvKr68jBs4p+T/LyqTkzySWBN4Psj1zlAfYIN+//9Fpg3zHjfAvgacJyhauXM+WA1OI82G+JXwB2r6uokn6Z9+zowyR+r6rSxVihJE6aqThnWrfrHJGtX1QnAieOuSyvsZ8DngTfRxlTt44bKKy9z8cvEtNkQawM3VtWNw0JojwGOqqrvJtkMeBzw+WG8lSRpmiR7AK+jdQ1ecXM7VmhyDUtg3IU2m3PRuOuZzeZcsFrKFNOtaS1VR1fV75O8nLb/3+uq6r+SrDkMvpQk3Ywk8x1/Ks3BYDVlmGL6FNou3ecAXwVeVVU/TvIa2t5/z6iq34+xTEmSNIvMyWA1TDF9E20m4D7AbrRZEBsDz6uqhUnuVFVuMClJkpbbnAxWAEnWoU0xffPIFNPFwLtp3YKuDCxJklbInJ0VuJQppnejbTb5bkOVJElaGXO2xQr+r9XqCNpMlqkppq4wK0mSVsqcDlbgFFNJktTPnA9WkiRJvawx7gIkSZJWFwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1Mn/AvdTOoI+fVCkAAAAAElFTkSuQmCC\n"
+ "image/svg+xml": "\n\n\n\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHaCAYAAADc9jeSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeViU9d7H8c/ACC5IKoIokopZuFtqaRlkmahIpnXK5KjtZi4n7bS4lcdKrUxzy3Jfcgf3FDUXSsFMLBFNc8MEBNxxYxHm+YPDpOl53H42g75f19UVczMM32EE3tz3Pb+x2Gw2mwAAAGCMi6MHAAAAuN0QWAAAAIYRWAAAAIYRWAAAAIYRWAAAAIYRWAAAAIZZHT0AgDtHz57SDz/kv71zp1SlilSsWP7l2Ng/3waAws7COlgAHKFyZSkiQmrQwNGTAIB5HCIE4DSio6WHHpLq1pUaNpRWrcrfPnGi1LKl1KyZVKOG1Ly5lJp6+cdfuCC99ZZ0zz1S/fpS1675HyNJJ05InTrlb69TR3r7bSk3N/9jSpSQBgyQHn44f6/a6NF/ft6gIOmBB/68nfHj82/j/vvz5/j99z9nb9gwPxgbNJAWLbq1XysAzo3AAuAUjhyRnntOGjtW2rZNmjxZ6tBB+uOP/Pdv3Ch9/XX+ocU6dfJD6q+++UaKj5d27JBiYqQ9e/5837/+JTVuLMXFSb/8IqWkSCNH5r/v3DnJzy//Y+bMkd59V8rJyX/fb7/lx9P330tr10qzZ0sbNuTfxltvSc8+m3+9Dz6Q3ntP2rJFmjAh/7oA7lycgwXAKcTGSoGBfx4yrF07f29WdHT+5RYt8vdMSdJrr0mNGl1+G8uXS507S+7u+Zdffz1/j5MkLVsmbd2aH2GSdP68VLTonx/bpk3+/x94QMrMzI8uKX9vWsmSf97G7t35oVbgyBHp1Kn8OHzjjfw9V82aSR9/fHNfDwCFG4EFwCnk5V15W8GeJKv10u2urpdf32qVLj6r9OLr5OZKCxdK1arlXz5xQnK5aB9+wQn2Fkv+/wtux8Pj0tt46SXpk0/+vHz4sHTXXVK3btLTT+cf1lyxQho4UNq+/c84A3Bn4RAhAKfQuHH+ob0tW/Ivb9+ef1jwscfyL69enR8zUv5eqLCwy28jNFT69lspOzv/3KqpU/8MppAQacSI/HDKzJRat84/5Hg9QkKkmTOltLT8y2PH5p+HJUkPPiglJOQH2Pjx0tGj0smT13f7AG4f7MEC4BTKlZPmzs0/MT0zM3/v04wZUkBA/vlMFSvmn5OVmirVqvXnob+LvfJK/knn9erl7zmqVOnPvVRjx+YvE1G7dn6AhYTkn+h+PVq1knr3lp54Ij/cSpeWIiPz3zdsWP45We+/n/85P/lE8ve/ua8JgMKLZRoAOL2JE/PPf7raM/OioqTjx/NDTMo/bFeq1J+H9ADg78IhQgC3jZo18599WLdu/tunTuXvUQKAvxt7sAAAAAxjDxYAAIBhBBYAAIBhTvMswszMTCUkJMjb21uuV1rgBgAAwEnk5ubqyJEjqlWrlopevGrxfzlNYCUkJCg8PNzRYwAAAFyzmTNnqsEVXrXeaQLL29tbUv6gvr6+Dp4GAADgf0tNTVV4eLi9X/7KaQKr4LCgr6+vKlas6OBpAAAAru5/ndbESe4AAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGFdrAys7JdfQIdwS+zgAAXD+rowe4UW5FXNXh3ZmOHuO2N+uzcEePAABAoVNo92ABAAA4KwILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAMAILAADAsGsKrJEjR6pVq1YKDQ3VlClTJEkxMTEKCwtT8+bNNWLECPt1f/vtNz3zzDMKCQlRv379dOHChVszOQAAgJO6amBt3rxZmzZt0pIlSxQZGakZM2Zo165d6tu3r7766istX75cCQkJio6OliS98847GjBggFauXCmbzaZ58+bd8jsBAADgTK4aWA8++KCmT58uq9WqY8eOKTc3VxkZGapUqZL8/f1ltVoVFhamqKgoJScnKzMzU/Xq1ZMktWvXTlFRUbf8TgAAADgT67VcqUiRIho1apQmT56sFi1aKD09Xd7e3vb3+/j4KC0t7bLt3t7eSktLu+z2MjIylJGRccm21NTUG70PAAAATuWaAkuSevbsqddee01vvPGGEhMTL3u/xWKRzWa74va/mjZtmsaMGXN9kwIAABQSVw2sffv2KTs7W9WrV1exYsXUvHlzRUVFydXV1X6d9PR0+fj4qFy5cjp69Kh9+5EjR+Tj43PZbXbu3Flt27a9ZFtqaqrCw8Nv5r4AAAA4haueg5WUlKT+/fsrOztb2dnZWrNmjdq3b68DBw7o4MGDys3N1bJlyxQUFCQ/Pz+5u7srLi5OkrRo0SIFBQVddpuenp6qWLHiJf/5+vqav3cAAAAOcNU9WMHBwdq2bZuefvppubq6qnnz5goNDVWZMmXUo0cPZWVlKTg4WC1atJAkDRs2TP3799fZs2dVo0YNderU6ZbfCQAAAGdyTedg9ezZUz179rxkW+PGjbVkyZLLrhsYGKiIiAgz0wEAABRCrOQOAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgGIEFAABgmPVarjRmzBitWLFCkhQcHKx3331Xffr0UVxcnIoVKyZJ6t69u5588knFxMRoyJAhysrKUsuWLdWrV69bNz0AAIATumpgxcTEaMOGDVq4cKEsFoteffVVrV69WgkJCfr222/l4+Njv25mZqb69u2rGTNmqHz58urSpYuio6MVHBx8S+8EAACAM7lqYHl7e+v999+Xm5ubJKlq1apKSUlRSkqKBgwYoJSUFD355JPq3r274uPjValSJfn7+0uSwsLCFBUVdVlgZWRkKCMj45Jtqamppu4TAACAQ101sKpVq2Z/OzExUcuXL9esWbO0efNmDRo0SMWLF1eXLl0UERGh4sWLy9vb2359Hx8fpaWlXXab06ZN05gxYwzdBQAAAOdyTedgSdKePXvUpUsXvffeewoICNDYsWPt7+vYsaMWLVqkFi1aXPZxFovlsm2dO3dW27ZtL9mWmpqq8PDw65kdAADAKV1TYMXFxalnz57q27evQkNDtXv3biUmJiokJESSZLPZZLVaVa5cOR09etT+cenp6Zeco1XA09NTnp6ehu4CAACAc7nqMg2HDx9Wt27dNGzYMIWGhkrKD6rBgwfr1KlTysnJ0dy5c/Xkk0+qbt26OnDggA4ePKjc3FwtW7ZMQUFBt/xOAAAAOJOr7sGaNGmSsrKyNHToUPu29u3b6/XXX9cLL7ygCxcuqHnz5mrdurUkaejQoerRo4eysrIUHBx8xcOGAAAAt7OrBlb//v3Vv3//K77vSudMNW7cWEuWLLn5yQAAAAopVnIHAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAwjMACAAAw7JoCa8yYMQoNDVVoaKg+++wzSVJMTIzCwsLUvHlzjRgxwn7d3377Tc8884xCQkLUr18/Xbhw4dZMDgAA4KSuGlgxMTHasGGDFi5cqEWLFmnHjh1atmyZ+vbtq6+++krLly9XQkKCoqOjJUnvvPOOBgwYoJUrV8pms2nevHm3/E4AAAA4k6sGlre3t95//325ubmpSJEiqlq1qhITE1WpUiX5+/vLarUqLCxMUVFRSk5OVmZmpurVqydJateunaKioi67zYyMDCUlJV3yX2pqqvl7BwAA4ADWq12hWrVq9rcTExO1fPlydezYUd7e3vbtPj4+SktLU3p6+iXbvb29lZaWdtltTps2TWPGjLnZ2QEAAJzSVQOrwJ49e9SlSxe99957slqtOnDgwCXvt1gsstlsl32cxWK5bFvnzp3Vtm3bS7alpqYqPDz8WscBAABwWtcUWHFxcerZs6f69u2r0NBQbd68WUePHrW/Pz09XT4+PipXrtwl248cOSIfH5/Lbs/T01Oenp4GxgcAAHA+Vz0H6/Dhw+rWrZuGDRum0NBQSVLdunV14MABHTx4ULm5uVq2bJmCgoLk5+cnd3d3xcXFSZIWLVqkoKCgW3sPAAAAnMxV92BNmjRJWVlZGjp0qH1b+/btNXToUPXo0UNZWVkKDg5WixYtJEnDhg1T//79dfbsWdWoUUOdOnW6ddMDAAA4oasGVv/+/dW/f/8rvm/JkiWXbQsMDFRERMTNTwYAAFBIsZI7AACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYQQWAACAYdccWGfOnFHr1q2VlJQkSerTp4+aN2+uNm3aqE2bNlq9erUkKSYmRmFhYWrevLlGjBhxa6YGAABwYtZrudK2bdvUv39/JSYm2rclJCTo22+/lY+Pj31bZmam+vbtqxkzZqh8+fLq0qWLoqOjFRwcbHxwAAAAZ3VNe7DmzZunDz/80B5T586dU0pKigYMGKCwsDCNGjVKeXl5io+PV6VKleTv7y+r1aqwsDBFRUVddnsZGRlKSkq65L/U1FSz9wwAAMBBrmkP1ieffHLJ5WPHjqlRo0YaNGiQihcvri5duigiIkLFixeXt7e3/Xo+Pj5KS0u77PamTZumMWPG3OToAAAAzumaAuuv/P39NXbsWPvljh07atGiRWrRosVl17VYLJdt69y5s9q2bXvJttTUVIWHh9/IOAAAAE7lhgJr9+7dSkxMVEhIiCTJZrPJarWqXLlyOnr0qP166enpl5yjVcDT01Oenp43ODIAAIBzu6FlGmw2mwYPHqxTp04pJydHc+fO1ZNPPqm6devqwIEDOnjwoHJzc7Vs2TIFBQWZnhkAAMCp3dAerMDAQL3++ut64YUXdOHCBTVv3lytW7eWJA0dOlQ9evRQVlaWgoODr3jYEAAA4HZ2XYG1du1a+9vh4eFXPGeqcePGWrJkyc1PBgAAUEixkjsAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBhBBYAAIBh1xRYZ86cUevWrZWUlCRJiomJUVhYmJo3b64RI0bYr/fbb7/pmWeeUUhIiPr166cLFy7cmqkBAACc2FUDa9u2bXrhhReUmJgoScrMzFTfvn311Vdfafny5UpISFB0dLQk6Z133tGAAQO0cuVK2Ww2zZs375YODwAA4IyuGljz5s3Thx9+KB8fH0lSfHy8KlWqJH9/f1mtVoWFhSkqKkrJycnKzMxUvXr1JEnt2rVTVFTUrZ0eAADACVmvdoVPPvnkksvp6eny9va2X/bx8VFaWtpl2729vZWWlnbF28zIyFBGRsYl21JTU69rcAAAAGd11cD6K5vNdtk2i8XyP7dfybRp0zRmzJjr/dQAAACFwnUHVrly5XT06FH75fT0dPn4+Fy2/ciRI/bDin/VuXNntW3b9pJtqampCg8Pv95xAAAAnM51B1bdunV14MABHTx4UBUrVtSyZcv0zDPPyM/PT+7u7oqLi1P9+vW1aNEiBQUFXfE2PD095enpedPDAwAAOKPrDix3d3cNHTpUPXr0UFZWloKDg9WiRQtJ0rBhw9S/f3+dPXtWNWrUUKdOnYwPDAAA4OyuObDWrl1rf7tx48ZasmTJZdcJDAxURESEmckAAAAKKVZyBwAAMIzAAgAAMIzAAgAAMIzAAgAAMIzAAgAAMIzAAgAAMIzAgkPkXchx9Ai3Pb7GAOA4173QKGCCi7WI4j571dFj3NbqvzvR0SMAwB2LPVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGEVgAAACGWW/mgzt16qRjx47Jas2/mUGDBumPP/7QuHHjlJOToxdffFHh4eFGBgUAACgsbjiwbDab9u/fr/Xr19sDKy0tTb169dKCBQvk5uam9u3b66GHHtI999xjbGAAjpV9IUdu1iKOHuO2x9cZKNxuOLD2798vi8Wi1157TceOHdNzzz2nEiVKqFGjRipVqpQkKSQkRFFRUerevbuxgQE4lpu1iF6c8i9Hj3Hbm/rSSEePAOAm3HBgZWRkqHHjxho4cKAyMzPVqVMntWzZUt7e3vbr+Pj4KD4+/oofm5GRccm21NTUGx0FAADAqdxwYN1///26//77JUnFixfXs88+qyFDhuiNN9645HoWi+Wyj502bZrGjBlzo58aAADAqd1wYG3ZskU5OTlq3LixpPxzsvz8/HT06FH7ddLT0+Xj43PZx3bu3Flt27a9ZFtqaionxAMAgNvCDS/TcPr0aX322WfKysrSmTNntHDhQn3++eeKjY3V8ePHdf78ea1atUpBQUGXfaynp6cqVqx4yX++vr43dUcAAACcxQ3vwWratKm2bdump59+Wnl5eerQoYPq16+vXr16qVOnTsrJydGzzz6rOnXqmJwXAADA6d3UOlhvvfWW3nrrrUu2hYWFKSws7KaGAgAAKMxYyR0AAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsAAMAwAgsA7iC52TmOHuG2x9cYkmR19AAAgL+Pq1sRLe/0kqPHuK21mj7F0SPACbAHCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwAAwDACCwCAQuJCTq6jR7jtmfoaW43cCgAAuOWsRVw1uF+Eo8e4rfX95Fkjt8MeLAAAAMMILAAAAMMILAAAAMMILAAAAMNuSWAtXbpUrVq10pNPPqmZM2feik8BAADgtIw/izAtLU0jRozQggUL5Obmpvbt2+uhhx7SPffcY/pTAQAAOCXjgRUTE6NGjRqpVKlSkqSQkBBFRUWpe/fu9utkZGQoIyPjko9LTk6WJKWmpl7z58o6d9LAxPj/JCUl3bLbPnI685bdNm7tY5d58twtu23ku5WP3/EsvvdupVv52EnSmbMnbunt3+mu9fEr6JXc3Cuvm2Wx2Ww2Y1NJ+uabb3Tu3Dn16tVLkjR//nzFx8fro48+sl9n9OjRGjNmjMlPCwAA8LebOXOmGjRocNl243uwrtRrFovlksudO3dW27ZtL9mWnZ2tQ4cOqXLlynJ1dTU9lsOlpqYqPDxcM2fOlK+vr6PHwXXgsSvcePwKNx6/wut2f+xyc3N15MgR1apV64rvNx5Y5cqV05YtW+yX09PT5ePjc8l1PD095enpednHBgQEmB7H6fj6+qpixYqOHgM3gMeucOPxK9x4/Aqv2/mxq1Sp0v98n/FnET788MOKjY3V8ePHdf78ea1atUpBQUGmPw0AAIDTuiV7sHr16qVOnTopJydHzz77rOrUqWP60wAAADitW/Jiz2FhYQoLC7sVNw0AAOD0XAcOHDjQ0UPcKdzd3fXQQw/J3d3d0aPgOvHYFW48foUbj1/hdSc/dsaXaQAAALjT8VqEAAAAhhFYAAAAhhFYhVR2drajRwAAAP8DgVUI7d+/Xx9//LEOHz7s6FEAAMAVEFiFTGZmps6fPy8XFxdNnDhRaWlpjh4JAJxWwfO4jh8/riNHjjh4GlyPwv4cPAKrENm3b586d+4sDw8PPffcc7JarRo3bhyR5WAFPwQyMzM5dFuIJSYmKiEhwdFjwDCLxaLvv/9er7/+ul5++WV9/vnn2rFjh6PHwlXYbDb76xgvWrRIkydP1vbt2y95v7MjsAqRqlWr6p577lG/fv1UsmRJPfXUU3J3dyeyHMxisWjNmjXq0qWLevbsqa+//trRI+EaFfyQ3rZtm8aNG6c5c+Zo9+7dDp4KJu3bt08zZszQxx9/rFGjRunkyZP67rvvlJWV5ejR8P8oiKupU6cqMjJSrq6ucnd3V3Z2tnJycmSxWJw+sgisQiAvL095eXmSpE8++USBgYF6++235enpaY+s8ePHc06Wg+zfv19z587VSy+9pJdeeknz5s3TF1984eixcA0sFovWr1+vvn37qly5cjpx4oSWLVum+Ph4R48GA5KTkzV8+HDZbDZVrlxZVapUUffu3bV+/XpFRUU5ejxcwaFDh+zff2fPntXOnTs1cuRI1a5dW+vXr1e3bt300UcfKSsryx5hzoqV3J2czWaTi4uLLBaLtmzZIovFotDQUCUlJWnSpEl66qmnVKVKFcXHx+u3335T48aN5eJCN/9d9uzZozfeeEP16tVTp06dVLFiRYWEhGjw4MG677775O/v7+gR8f/IysrS1KlT1blzZ7Vv31733nuvjhw5oq1bt8rX11deXl6OHhHX6eJDS56ensrJydHevXvl4+MjLy8veXl5KTMzU0WLFlX16tUdPC0ulpOTo9jYWMXFxen333/X+fPnFRcXp6ioKEVFRSkgIED169dXWlpaoVgd/pa8FiHMKfhBMWPGDE2dOlX333+//Pz81KtXL0nSu+++qyFDhqhDhw4qW7asXF1dHTnuHeHiH+DVqlVTcHCwYmNjdf78eRUrVky+vr5q2bKlihQp4uBJcSUXP37u7u5ycXHRDz/8oKCgIFWrVk2nTp3Sd999p2LFiun5559XhQoVHDwxrlXBY7thwwb98ssvOnnypF5//XUdO3ZMa9as0c6dOxUQEKA5c+boo48+cvS4+IsiRYqoVq1amjFjhnbt2qVvv/1Wn3/+ufbu3St/f395eXnp+++/V0JCgi5cuODoca+KPViFwPfff6/IyEhNnjxZCQkJ+uWXX5SYmKi3335be/bsUWRkpDp37qySJUs6etTbXsEP8Li4OEVHR2vfvn169dVXlZycrClTpqhKlSr6448/NGHCBLVs2VK+vr6OHhl/YbFYtG3bNsXFxcnT01NeXl76448/dPToUVWvXl3nzp3Txo0blZGRoYCAAFWsWNHRI+MaFcTVp59+qmbNmmnv3r367rvv1KZNG7m5uWnZsmXau3evunbtqkcffVR5eXlOf5jpTnDx43DXXXcpKytLpUqVUkpKikqXLq26devqyy+/1NKlS7VgwQINHz5cfn5+Dp766ngtQidU8Eu84KGZPHmyXF1d1apVK02ZMkU1atRQZGSkypcvr48++kgZGRkqU6aMg6e+c6xdu1YjR45UcHCwEhMTlZiYqIiICI0aNUqLFi3Sgw8+qPbt2+vBBx+8ZG8JnENsbKwGDhyoMmXKyN/fX8HBwTp69Kg2b96srKwsHT58WBMnTlRkZKRKly6t8PBwR4bXyD0AAB0qSURBVI+M6/DBBx+oQYMGeuqppyRJ48aN06pVqxQZGal58+Zp69ateuKJJ/TII4/Iw8PDwdPi4p+Ry5Yt05kzZ1S3bl35+/tr9OjRstls6tKli/bt2ycPDw95eXmpXLlyDp762nCyjhMqCKuzZ8/KYrEoKChIAQEBio6OVt26dRUWFqYyZcro7NmzOnLkCHH1N8rKytKiRYs0aNAg9e7dW6NGjVK9evXUrVs3/fvf/1bz5s2VkpKiWrVqSRJx5QTOnDmjzMxMSdKuXbs0efJkjR8/XrNnz5a3t7cSEhJUuXJlDR48WL169dKbb76pQ4cOafny5WrSpImDp8f1ys7OVkZGhv1y165dVaZMGR05ckTt27dXQECAYmJiHDghLlbwM3LmzJkaO3asUlNT1bVrVx06dEhdunSRxWJR7969NXXqVN19992FJq4kAsupxMfHKysrSy4uLpo2bZpeffVVjRo1SufPn1dQUJBmz56tM2fOaPPmzTp06JD69++v8uXLO3rsO0peXp7S09MvWRajS5cuKlasmKT8v569vLzUu3fvQnGOwO3uzJkz+vTTT3XmzBllZWVp165d2rJli3bu3ClJevPNN2W1WvXdd99px44d8vX11eHDh/X1119rxIgRqlSpkoPvAa7Ftm3bFBMTox07dig8PFyjR4/Wjz/+KEn69ddfdfjwYXtkv/HGG+rVqxd7r5xIQkKCvvvuO82ePVs1a9ZUhQoV1L17d6Wlpentt9/WSy+9pHfffbfQPWacg+UkbDabhg8frsmTJ8vT01Pff/+9nnvuOe3fv1979+6Vp6en/Pz8tHz5cq1YsUJDhgzhh//foGD39e+//66TJ0/KYrHIz89PUVFR8vHxUfny5fXbb79p9erVevTRR+Xh4aHQ0FA1bNhQnp6ejh7/jufm5qY6dero/Pnzio2N1YMPPqiyZctq4cKF8vX1VdWqVVWvXj0lJCSofv36qlixoh544AE1bdq0UJzjcScr+N78+eef1atXL7m4uOiLL75QpUqV1K5dO/Xp00cHDhzQrFmz9Pbbb+v+++9Xbm6uXFxcVLRoUUePf0f766kThw8f1rFjx1SjRg2tX79eb775pk6ePKn//Oc/euCBBxQUFKRSpUo5cOIbwzlYTiQzM1ODBw9WVFSUBg4cqFatWmnXrl1asWKFcnNzVbt2bTVs2FA5OTmFajdpYVXwQ2Djxo0aNGiQqlWrpoyMDAUGBqpGjRoaO3asnnjiCa1du1Z9+vRR06ZNdeHCBVmtPDnXGeTl5dmXLImKitI333yj1157TfXq1dMPP/ygqKgovfTSSwoODrZfNzc3l2fiFiJxcXFauXKlmjZtqsaNG+uPP/5Qhw4d1KdPHz344IM6deqU8vLydO+993I+pJO4+HE4fPiwSpYsKQ8PD+3Zs0eHDx/W9u3b1a1bN/vK7T169FBAQICDp74x/CZwsIv/sRUtWlT9+/fX2bNnNXLkSDVr1kyBgYGyWCyKiIhQfHy8mjZtKjc3NwdPfWewWCzaunWrZs2apREjRqhy5crauXOnPv30U9WrV0/Dhw/X0aNH1apVK9WpU0c2m424chIF68fFx8fr6NGjatKkiaxWq6ZNmyabzaagoCDl5OTom2++Ue3ate1/HRNXhUtERIRWr16toKAgSdLdd9+twYMHKzIyUqGhofL29rZfl7hyDhefc7V27VqVLVtW2dnZGjFihKZMmaLjx4/rxx9/1MKFCzVhwoRC/UxsDhE60MVxtW7dOu3cuVPnz59XWFiYkpKSNHnyZIWGhsrX11cVKlTgWS9/I5vNpry8PI0fP16rVq1Sjx495OnpKR8fH50+fVqnTp1Sq1atVKVKFfveRH6AOw+LxaIffvhBAwcOlLe3t3Jzc9W0aVP5+vpq+vTp8vT01KOPPqqQkBD5+Pjw2BVSzZo108GDBxUbG6uWLVvKxcVF+/fv1/bt29W8eXOC2UlFRUUpMjJSI0eO1NatW5Wenq7WrVurQYMGWrt2rX799Vd98MEHqlKliqNHvSkcInQCkydP1rp169SgQQOtWbNGb7zxhh5//HENGTJEcXFxioyMdPoVa28XBdF77tw5FS9eXCdPntTAgQN14cIFjRkzRpL07bffas+ePfrPf/7DYQcnZLPZdPz4cXXv3l39+/dXuXLlFBsbqyVLlujVV1/V2bNnNWHCBI0cOVI+Pj6OHhc3KCcnx76Yb69evXTo0CE9+uij2rJlizp37qxmzZo5eEL8LytXrlTRokWVlJSkdevWady4cRo9erQCAgLUpk0bnT9/XsWLF3f0mDeNPVgOlpiYqPnz52vSpEnasWOHzp8/rxdffFF79+5VWFiY9u/frxo1anDC9N+gIJZ+/PFHjR07Vhs3blRqaqo6duyovXv3atSoUSpevLgiIiL0j3/8Q5UrVyaunEjB42exWFS8eHGlpKRo0aJFWr58uXJycuTr66sZM2aoX79+euyxxy45fATnVvDYnjp1Sm5ubrJYLHJ1dVV2drZcXV3VokULbd++XStXrtT777+v4OBg/vhxIn9d0PXw4cN68803dfr0aU2bNk2urq5avHix7rvvPlWtWvW2eRUMAutv9tdvepvNpri4OC1fvlz79u3T6NGjtXbtWkVERKhNmzZq2rQpcfU3KXi9xwEDBuiNN95QsWLFdOjQIW3YsEHdunXT5s2bNW/ePA0ePFiNGzdWTk4OhyCcRMH3VWxsrObPny9XV1dVrlxZRYsWVYcOHdS2bVvVrFlTP/zwgx599FGVLVvW0SPjOlz8oty7du3SkSNHVLNmzUsi6/HHH9fu3bvtJ73fDntACrt9+/apTJkyslgsmj9/vhYuXKjt27frvvvuU40aNbRt2zbde++9io6O1vr16/XPf/6zUD5b8H9hHay/0cVxtWrVKq1atUqxsbHy9vZWSkqK3n33XRUpUkRnz56Vm5ubsrOzxRHcWy8vL8/+dkJCgp5++mkFBQXp2Wef1T/+8Q+dPn1aaWlpGjZsmB555BF9+eWXknTb/JV1Oyj4BTxs2DB5eHjIarXq/vvvV3h4uDIzM/XOO++oY8eO6tChAy/gXAjt3r1bS5cu1auvvqp77rlHP//8s+bMmSNJ9p+VkjRkyBDdc8899jWv4DgF33cff/yxNmzYoCVLlui+++5Tbm6u+vbtKy8vLz3//PP6+uuvFRsbq88+++y2W3qIc7AcYMaMGYqIiNBjjz2mJk2aqGjRooqIiFBqaqpKly6trVu3asyYMbr33nsdPept7eIlFdavX6+TJ0+qaNGiWrZsmfr27Wt/kd+ePXuqbdu2atq0qTIyMvTxxx/rrbfe4kWAHezgwYOaPXu23n//fdlsNg0cOFDt2rWTp6enoqOjFRsbK3d3dwUFBcnNzU0VKlRQgwYNOHRUiOTl5Sk1NVVt27ZVu3bt9N577+no0aPauHGjYmNjVbNmTXXs2FGSWGLDCe3fv18ffvihkpOTNXz4cNWrV0+5ublatGiRYmJi9MUXX9j3QN6Ojx2HCP9mx48f18iRIzVixAiFhITIz89PHh4eSkxMVFhYmDw9PfXGG28U2nU/Cot9+/Zp2bJlqlevnmJjYzV16lQ1bdpUVatW1c6dO3X69Gm5ubnp9OnTmjlzptq0aSMfHx+5u7urWbNmHLZ1sEOHDmn79u2qVq2aihUrJg8PD23evFlRUVGaNm2aqlatal9YslmzZmrUqJE9iIkr53fx+XQFL2Jf8ALqfn5+8vHxUVZWlrZs2aI6deqoZMmS9jXP4FgX/wFTunRp1a9fXytWrNDhw4cVEhIiFxcXFSlSRJs3b9bjjz8uNze32/axY9GeW+zixQ6l/HV28vLy7If+srOzFR8fr9TUVNWvX1/169d31Kh3jLNnz2rgwIF68cUXZbPZNHXqVO3cuVMNGzaUxWLRww8/rG3btum7776Tq6urevbsqVq1al3yQx+ONXToUMXExOjDDz9UWFiYGjVqpJEjR2rHjh0qXbq0KlSooN27d2vKlCn2F/1F4XDxk03Wrl2rhg0b6rXXXlNeXp7atWunxYsX6+6771bTpk316KOPsuiyE7k4rrZs2SKbzaYyZcpowoQJGjx4sD799FO99957OnDggNLS0nT+/Pnbel1HAusWK4irzZs3q1ixYgoMDNTDDz+sbt26afbs2fLw8NC+fft09OhR+8s48Av81nJxcVHJkiW1bNkyrV+/XsOHD1fHjh310ksvaerUqWrRooWaNGmi7Oxs+6r5HFZyLs8995wOHDigpKQk9enTR8OGDVOvXr00YsQIRUZGas2aNdq3b5/69Omj++67z9Hj4jpYLBZFR0fr008/VdOmTfXtt98qKSlJXbp0kYuLi5o3b66VK1fedufr3A4KfkZOmjRJq1evVunSpeXm5qbKlSurX79+6tmzpx5//HHVrVtXgwYN0l133eXgiW8tDhHeIhf/Qp43b54+/vhjpaamaunSperWrZvOnDmjQYMGKSUlRatWrdIHH3ygsmXL8kv8FsvNzZWbm5uKFy+uyZMny9vbW23atNHzzz+vSZMmaf369QoLC5Obm5v90JPEYSVn4+XlpY0bNyo5OVlubm4KDQ1VRESE9uzZox49eqhGjRpq2bKlHnjgAUePimtw/PhxpaSkqEyZMvbTKArO2Vm5cqVsNpsOHjyoV199Ve7u7ipSpAiB5UQKlmHIzc3V7t27NXHiRM2ePVutWrXS3XffrR9++EElSpRQeHi4Dh06pF69ehX6RUSvBSe532LR0dGKi4tThw4dZLVaNX36dP3+++8aNmyY9u/fr7Nnz6pixYry9/d39Ki3vYLo3bJlixYuXKgqVapowYIFatasmXr37i1JeuKJJ1SpUiVNnjzZwdPiYsnJyfrtt98uWTxy27Zt+vnnn2WxWJSUlKR69eppwIABCg4O1ujRox04La5Hdna2JkyYoNatW6t8+fKyWq3q3bu3nn/+ecXHxyswMFCJiYmaPn26GjZsqMGDB8vFxYW9yk4iOTlZc+fOVe/evZWbm6vk5GS99957mjBhgjw8PJSZmanRo0erePHi6tat2yULxN7u2INlWME3fV5ens6dO6fu3bsrPT1dbdq0UZkyZRQQEKDk5GRNmDBBbdq0UY0aNW773aTOwmKxaN26dfrPf/6jEiVKKDc3V4899pgiIyN14sQJPfTQQ+rcubP8/Px4hqATOXfunNq1a6f58+crPT3dfkJz+fLlFRUVpU6dOqlIkSLasGGDOnTooIcffpg/WAqJgtfvfPDBB5WZmanJkyfL09NTrVq1UqlSpTR79mx1795dFotFBw8eVJcuXewLxBJXzmPDhg0aN26cfvvtNzVt2lTbtm2Ti4uLfHx85OHhoR07duj48eNq0qSJXF1d75jHjsAy6OK/qFJTU1WmTBm1bt1ay5cvV2pqqpo0aSIPDw9VrlxZZ86cUY0aNezPkMGtl5iYqOHDh2vSpEmqUaOGvvnmG/n5+emxxx7T5MmTdfr0afuzzfjr2HkUHA76/ffflZSUJF9fX02cOFE1a9ZURkaGli5dqi5duujYsWOqV6+e6taty+NXiBTsVf7uu+906NAhHT16VBUqVFBWVpbWrFmjU6dO6ZtvvtHLL7+sBg0aOHpc/FfB95i7u7v279+vBQsWyM/PT0899ZTOnTunmJgYrVq1SgcOHND8+fPVp08feXl53VHflxwiNOTiH+jTpk1TZGSkatasqaefflrVqlXTK6+8okceeUT//ve/JbFmiyMcPnxYQ4YMUbdu3bR69WrVrl1bixcv1rlz5+Tn56dmzZqpcePGjh4T/0NMTIwGDRqkjh076t5779W4ceNUu3ZtrVixQuPHj1flypUdPSJuQHx8vN59913NmTNHWVlZGjVqlMqUKaP69esrOTlZW7Zs0VNPPaWmTZs6elT818W/73Jzc5WVlaXff/9dCxYskCQNHDhQSUlJ+umnn3Ts2DE1b978jlx6iD1YBly4cMEeSxEREVq+fLn69++vmJgYbdq0Sf7+/nr11Vc1ePBgnThxQo0aNbpt1/1wZu7u7goICFBeXp42bdqkl19+WS4uLvr111/Vs2dP1a5dmz0fTszf319+fn768ssvFRwcrFdeeUUWi0UbNmxQkyZN5Ovr6+gRcZ0yMjI0ffp0JSYmqlOnTrrrrrtUuXJl/fTTTzpx4oSCgoLUoUMHBQQE8L3pJC5+HKZPn65x48Zp69at+sc//qEqVapo06ZN2rx5szw8PPTAAw+oadOmKl26tIOndgwC6ybt3btXCxYsUOXKlVW8eHHNnTtX3bp1U+nSpbVjxw7Vq1dPS5culZeXl95++20FBARwzpWDuLq6ytvbWz/99JN+//13Wa1WTZw4UV27dlWdOnUkcV6Hs6tSpYr8/Pw0ZMgQlS5dWiEhIQoPD1f58uUdPRquUcEv6NzcXBUrVkylSpVSenq6Nm3apFq1atmf9LNhwwY1bNjQ/tJGfG86h4LHYc2aNZo/f7569+6thQsX6ueff1br1q1Vo0YN/fTTT4qMjFTr1q3v6N93HCK8SStWrNAPP/ygatWq6YUXXlBERIT8/Px04MABVa9eXb6+vurXr5+sVqu++uorzrlyAikpKZo0aZK2bdumrl276oknnnD0SLhOq1at0uDBgzVnzhyVLVvW/pJHcG4FcbVu3Tpt3LhRNptNLVu21Pnz5/Xjjz/KZrPptddek4+Pj86fP69ixYo5emRcwS+//KIpU6aoUaNG6tChg/Ly8vTKK6+obNmy+vDDD+Xh4aETJ07csXuuChBYN+jiFdrHjBmj7du36+GHH1a7du1UtGhRhYaGatasWdq7d6+mT5+ujz76iBeZdSK5ubk6d+6cSpYsyaGHQurYsWN8TxVCmzZt0tChQzVq1Cj16NFDNWvWVP/+/bVnzx5FRETIarWqT58+slqtnErhJP76M3L79u2aOXOmzpw5o9dff91+BODZZ59V1apV9emnnzpqVKdCYN2k6dOna/Xq1SpbtqzOnj2rhg0b6umnn9bIkSOVkpKiI0eO6PPPP1dgYKCjRwUAhyl4Ys/IkSNVs2ZNlShRQl9++aWGDRum1atXq2XLlkpNTZWHh4eqVavm6HHxXxfHVXR0tP1JQRcuXNC6deskSSEhIapVq5ak/CMELHOTj/3qNyEtLU2rV6/W119/rRIlSig6OlobNmzQsmXL9Mwzz+jUqVOqUqUKKw4DuOOdPHlSXl5e8vb21ty5c3XmzBkNGzZM/v7+ioqKUv369XX//fc7ekz8RUFczZo1S3PnzlVwcLDGjh2r8PBwVa9eXQkJCYqMjJSrq6uqV69OXF2E/a83oUSJEjp37pxiY2MlScHBwSpdurSWLFmiHTt26LHHHiOuANyxCg6QxMfH29cEbNasmZKSktSqVSt5eXlp586dOnnypP1lqeAcLj64dfDgQS1YsEBjxoxR79699dFHH2njxo1ycXHRU089JU9PT/n4+DhwWufEswhvkM1mk7u7u7KysrRnzx5ZrVZVrFhRqampOnnypF588UWVKFHC0WMCgEMUvHh9dHS0Zs6cqcqVK2v8+PFq2LCh2rVrp1mzZmnlypVatWqVevbsySKiTuTiw4IZGRlyc3PTtm3bFBISoiJFiqhChQrKzMzU4sWL9fLLL+uBBx7gCVxXwCHCa3Clk6ALLj/44INavXq1hgwZoqpVq2r79u0aN26c/eUcAOBOUnAOjqurq/2Fm3v16qVHH31U8fHx6tKliwYPHqxJkybp6NGjOnfunO6++26ebOIkLn4cJk+erOjoaI0fP16pqamaMGGCfbFsq9Wq0qVLKzc3V+7u7o4c2WkRWFdx8T+2ffv22df0KFu2rCQpMDBQ/v7+atGihVJTU/X2229zDBrAHclms2nWrFkKDQ1V9erV7a+/WnCqRJ06dfTee++pa9euGj58uFq1amX/WOLKORQ8DvPnz1dkZKRKlCghd3d3DR8+XB07dlRKSoo8PT0VHx+vwYMH84ok/w+eRXiNpk6dqjVr1sjNzU1ly5ZV8+bNWT8JAP4iNzdXqamp6tevn6ZOnaoPPvhAhw8f1oQJEyRJv/76q8aOHavdu3dr3LhxqlmzpoMnhnTpzoTIyEjNmDFDgwYN0ldffaW3335b1apVU1ZWllasWCGr1aratWtzjvFVsAfrf7j4H9vGjRu1ePFizZo1S0lJSdq1a5fmzp2rcuXK2Z+aCgB3soKfma6urvLy8pKbm5t69eqlESNG6LXXXtOLL76oOnXq6Pvvv9fXX3+tpUuXsvfDSVz8+27nzp26cOGCRo8eLX9/f0myPwHhl19+kbe3tx555BGHzVqY8CzC/+Hi3dU5OTmqWrWqihUrpmrVqqlRo0YqWbKkDh8+7MAJAcB5WCwW/fLLL1q4cKF9/T+LxaJ//etfmjBhgl5//XUFBAToww8/VHJysqKiojgx2kkU/L6bMmWK3n//fW3evFlpaWnKzc1V0aJFdfLkSS1evFiDBg2yRxeujsD6i+PHj9vfnjVrlvr06SMvLy9lZ2fr119/lSR5e3vLw8ND6enpjhoTAJzKpk2b1KdPHy1YsECfffaZ4uPjNWDAALm5ualTp05q3Lix7rnnHsXFxWnw4MH64osv5Ofn5+ix8V+LFy/W2rVrNX78ePvLif3444+yWq368ssvNW/ePI0aNUp33323o0ctNDhEeJF169Zp1apVGjRokBYtWqQlS5bos88+0913363y5csrKipKmzZtkq+vr2JjY/XKK684emQAcLjdu3dr4sSJ+uqrrxQQEKBRo0Zp5cqVslgs6tOnjz755BPt3LlTtWrVUqlSpfT888/zMkdO5MKFC/rpp5/UsWNH2Ww2Va9eXS4uLpozZ448PDyUnJyskSNHqmrVqo4etVBhD9Z/nT17VgsXLlSLFi2UlZWl06dP69dff1VSUpIkqWPHjgoMDFRKSoq2bt2qMWPGUPIA7ni5ubnatWuXfvnlF/te/q5du6pcuXJauHChtm/frqFDh9pPZq9YsSJx5WSsVqsefvhheXp6auXKlWrZsqXeeecdHTp0SF5eXpo4cSJxdQPYg/VfJUqUsL/oaMFq7BaLRV26dNHcuXNVo0YN+fr66umnn1Z2drbc3NwcPTIAOJyrq6tatmypM2fOaP78+brrrrv0xBNPqGvXrho9erR8fX1VpEgRR4+Jq2jRooXOnz+vYcOG6YEHHlBcXJxKly6tl156Sb6+vo4er1C641dyL1ilwmKxyM3NTevWrbMv///QQw/ZX9m9SZMm9n9kPPMFAP7k6uqqwMBAubi4KCIiQsWKFdO9996rxo0b29cMhHNzcXFRbm6utm/fru3bt2vevHn69NNPWYrhJtzR62Bd/NTU5ORklSxZUkWLFtXo0aO1ceNGjRw5Uv7+/ho1apTmzZuntWvXqkiRIiyIBwBXkJ2drYiICC1dulRjxoxR6dKl5eLCmSiFSVpamvbv368KFSoQVzfpjg6sAlOmTNGcOXNUu3ZttW/fXg0aNNCQIUP0yy+/6PPPP1elSpV04sQJlS5d2tGjAoBTy8rK0okTJzishDveHf+nxeLFi7Vu3TpNmzZNKSkpmjhxomJjY9WnTx8FBgaqf//+unDhgkqVKuXoUQHA6bm7uxNXgO7wk9wLnpr6z3/+U3l5eQoMDJSrq6u+/vprnThxQoMGDdKxY8dktd7RXyYAAHCd7ug9WBc/NXXVqlVq2bKl/v3vf+vYsWOKjY3VyZMneToxAAD4v/btmAZiGIii4EqO5NYg3AVa2BhEEJiGCzO64o7ARdtlBsWTdv/fXh1YEd9p6nmeMeeMWmustaK1Ftd1OQsCAI+8/vZ1HEeUUqL3Hvd9x947xhh+CACAx6wIf0xTAYAsAgsAINnrf7AAALIJLACAZAILACCZwAIASCawAACSCSwAgGQCCwAg2QcnM4ussN88aQAAAABJRU5ErkJggg==\n"
},
- "metadata": {
- "needs_background": "light"
- }
+ "metadata": {}
}
],
"source": [
@@ -257,19 +255,17 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 26,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "",
- "image/svg+xml": "\n\n\n\n",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdebwlZXXv/8+XZpRGiIJGEG0CGESUBhqcFRUJRgOoKE5XicaOMUoiVxCvSlD0F5TcOMTh2jjgFEBxIkoAgxAMgnQzNZMoAgmIQ1AhIJPdZ/3+2NW6OZ4+u093H6qq9+edV71O7aeeXc+q3UbXWWdV7VQVkiRJUtet13YAkiRJ0qowcZUkSVIvmLhKkiSpF0xcJUmS1AsmrpIkSeoFE1dJkiT1gomrJEmSZizJfkmuSXJtkiOnOP6IJGcnuSTJ0iR/usZr+hxXSZIkzUSSOcAPgGcDNwGLgZdW1VVDcxYBl1TVx5LsDJxWVfPWZF0rrpIkSZqpvYBrq+q6qroXOAk4YNKcAh7Y7G8O3Lymi66/pieQJEnS2NkGuHHo9U3A4yfNORo4M8kbgU2BfdZ0URPXDvrNLdd1un9jk62f2nYII13wkD3bDmGkJZnbdggjPeLeZW2HMK03LL+m7RBGes2mO7cdwkiXckfbIYy0Pmk7hJEenI3aDmFac3rwGW7Ugxjfd8OJnQhytnOFDbfa/i+BhUNDi6pq0QxP81LghKr6v0meCHwuyS5VNbG6cZm4SpIk6T6aJHW6RPXHwLZDrx/ejA17DbBfc77zk2wMbAn8fHXjssdVkiSpbyaWz+422mJgxyTbJdkQeAlw6qQ5/wU8CyDJo4GNgf9ek8s2cZUkSdKMVNUy4A3AGcDVwBer6sok70qyfzPtfwOvTXIZcCJwSK3h46xsFZAkSeqb1W8TXXshVJ0GnDZp7Kih/auAJ6/NNa24SpIkqResuEqSJPXNRPsV1zZYcZUkSVIvWHGVJEnqmTV4FGqvWXGVJElSL1hxlSRJ6ht7XCVJkqTusuIqSZLUN/a4SpIkSd1lxVWSJKlvJpa3HUErTFwlSZL6xlYBSZIkqbt6kbgmOSfJgrbjgFWLJcnfJnnA/RWTJEkaMxMTs7t1VGcS1wx0Jp419LeAiaskSdJa1GqimGRekmuSfBa4AvhfSc5PcnGSLyWZO8V79p1qTpKjkixOckWSRUnSjB+a5KokS5Oc1IxtmuRTSS5MckmSA6aJcZMkJyW5OslXgU2Gjn0syZIkVyZ554r1gK2Bs5OcPV3MkiRJq6NqYla3rupChXNH4KPA04HXAPtU1e7AEuCw4YlJtgTevpI5H66qPatqFwbJ5fOa8SOB3arqccDrmrG3Ad+uqr2AZwDHJdl0JfH9FXBnVT0a+Dtgj6Fjb6uqBcDjgKcneVxVfQi4GXhGVT1jRMzD17awSYKXfOKzJ4780CRJksZNF54q8J9VdUGS5wE7A+c1xdINgfMnzX3CNHOekeQIBn+ifxBwJfAvwFLgC0m+BnytmbsvsH+SNzevNwYeAVw9RXxPAz4EUFVLkywdOvbiJAsZfI4Pa2JbOun908X8W1W1CFgE8Jtbrqsp4pAkSRrocB/qbOpC4vrr5meAb1XVS6eZO+WcJBszqNouqKobkxzNIBkFeC6D5PPPgLcleWxznhdW1TWrG3SS7YA3A3tW1a+SnDC05siYJUmSNDNdaBVY4QLgyUl2gN/2oT5qFeesSBhvafpHD2qOrwdsW1VnA28BNgfmAmcAbxzqg91tmrjOBV7WzNuFQVsAwAMZJN23JXko8Jyh99wObDaD65IkSVp1NTG7W0d1oeIKQFX9d5JDgBOTbNQMvx34wag5VfWDJMczuMHrp8Di5tgc4PNJNmdQ+fxQVd2a5BjgA8DSJrm9nt/1xE72MeDTSa5m0EpwURPLZUkuAb4P3AicN/SeRcDpSW5u+lynvS5JkiSNlirbKbum6z2um2z91LZDGOmCh+zZdggjLenBwyUece+ytkOY1huWr3a3z/3mNZvu3HYII13KHW2HMNL6pO0QRnrwb2sT3TSnB5/hRj2I8X03nNiJIO/5/r/Paq6w0U5P78R1TtalVgFJkiRppTrTKtC2JH8CvHfS8PVV9fw24pEkSVqpDvehziYT10ZVncHgpi1JkiR1kImrJElS34zpc1ztcZUkSVIvWHGVJEnqmzHtcbXiKkmSpF6w4ipJktQ39rhKkiRJ3WXFVZIkqWeqlrcdQitMXCVJkvrGm7MkSZKk7rLiKkmS1DfenCVJkiR1lxXXDtpk66e2HcK07rr5O22HMNJfLTii7RBGunH5L9oOYaQ/3uSBbYcwrRPv3a7tEEY6jtvbDmGk7bNp2yGM9PS7qu0QRrphw27/T+oNc7p/M8/djGcVcbXY4ypJkiR1V7d/PZQkSdLvm+h+BX02WHGVJElSL1hxlSRJ6ht7XCVJkqTusuIqSZLUNz7HVZIkSeouK66SJEl9Y4+rJEmS1F1WXCVJkvrGHldJkiSpu6y4SpIk9Y0VV0mSJKm7rLhKkiT1TNXytkNohRVXSZIk9YIVV0mSpL6xx3X8JLljFs45P8mfDr0+Osmb1/Y6kiRJ48aK69o3H1gAnNZ2IJIkaR3lN2eNtySHJ1mcZGmSdzZj85JcneT4JFcmOTPJJs2xPZu5lyY5LskVSTYE3gUc3Iwf3Jx+5yTnJLkuyaEtXaIkSVpXTEzM7tZRJq5Akn2BHYG9GFRM90jytObwjsBHquoxwK3AC5vxTwN/WVXzgeUAVXUvcBRwclXNr6qTm7k7AX/SnP/vkmxwP1yWJEnSOsVWgYF9m+2S5vVcBgnrfwHXV9WlzfhFwLwkWwCbVdX5zfg/A8+b5vzfrKp7gHuS/Bx4KHDT8IQkC4GFAJmzOeutt+maX5UkSVo3jWmrgInrQIC/r6qP32cwmQfcMzS0HNhkNc4/+Ry/97lX1SJgEcD6G25Tq7GGJEnSOs1WgYEzgFcnmQuQZJskD1nZ5Kq6Fbg9yeOboZcMHb4d2GzWIpUkSbLHdXxV1ZkM/tx/fpLLgVMYnXy+Bjg+yaXApsBtzfjZDG7GGr45S5IkSWtorFsFqmru0P4HgQ9OMW2XoTn/MDR+ZVU9DiDJkcCSZs4vgT2nWXOXlR2TJElaJfa4aoaem+StDD7D/wQOaTccSZKkdZuJ62pqHnV18siJkiRJa1uH+1Bnkz2ukiRJ6gUrrpIkSX1jxVWSJEnqLiuukiRJfTOmTxWw4ipJkqResOIqSZLUN/a4SpIkSd1lxVWSJKlv7HGVJEmSusuKqyRJUt/Y4ypJkiR1lxVXSZKkvrHHVZIkSb0wMTG72ypIsl+Sa5Jcm+TIlcx5cZKrklyZ5J/X9LKtuHbQBQ/Zs+0QpvVXC45oO4SRPrbkfW2HMNJHdz+q7RBGmrO87Qimd3huaTuEkf6EP2w7hJF+wrK2Qxjp5E26H+NmVNshTGvTHtSqdl6+QdshaBUlmQN8BHg2cBOwOMmpVXXV0JwdgbcCT66qXyV5yJqua+IqSZLUN+3fnLUXcG1VXQeQ5CTgAOCqoTmvBT5SVb8CqKqfr+mi3f/1S5IkSV2zDXDj0OubmrFhjwIeleS8JBck2W9NF7XiKkmS1Dc1u60pSRYCC4eGFlXVohmeZn1gR2Bv4OHAuUkeW1W3rm5cJq6SJEm6jyZJnS5R/TGw7dDrhzdjw24CvldVvwGuT/IDBons4tWNy1YBSZKkvmn/qQKLgR2TbJdkQ+AlwKmT5nyNQbWVJFsyaB24bk0u28RVkiRJM1JVy4A3AGcAVwNfrKork7wryf7NtDOAXyS5CjgbOLyqfrEm69oqIEmS1DftP1WAqjoNOG3S2FFD+wUc1mxrhRVXSZIk9YIVV0mSpL7xK18lSZKk7rLiKkmS1Dcd6HFtgxVXSZIk9YIVV0mSpL6Z5W/O6iorrpIkSeoFK66SJEl9Y4+rJEmS1F0mrpMkmZfkitV433eH3v+ytR+ZJElSY2JidreOMnFdQ0nWB6iqJzVD8wATV0mSpLWsd4lrU9H8fpIvJLk6ySlJHpDkWUkuSXJ5kk8l2aiZf0OS9zXjFybZoRk/IclBQ+e9YyVrfSfJxc32pGZ872b8VOCqSe8/FnhqkkuTvCnJuUnmD53zP5LsOmsfkCRJWvfVxOxuHdW7xLXxx8BHq+rRwP8AhwEnAAdX1WMZ3HT2V0Pzb2vGPwx8YAbr/Bx4dlXtDhwMfGjo2O7A31TVoya950jgO1U1v6reD3wSOAQgyaOAjavqshnEIEmSdB81UbO6dVVfE9cbq+q8Zv/zwLOA66vqB83YZ4CnDc0/cejnE2ewzgbA8UkuB74E7Dx07MKqun4VzvEl4HlJNgBezSDB/j1JFiZZkmTJV359wwxClCRJGg99fRzW5F8FbgUevIrzV+wvo0nck6wHbDjF+94E/AzYtZl799CxX69SoFV3JvkWcADwYmCPlcxbBCwCWPLwA7v7q44kSWpfh2+gmk19rbg+IsmKyunLgCXAvBX9q8D/Av59aP7BQz/Pb/Zv4HdJ5P4MqquTbQ78pKommnPOWYXYbgc2mzT2CQZtBour6lercA5JkiRN0tfE9Rrgr5NcDfwB8H7gz4EvNX/WnwD+39D8P0iyFPgbBlVUgOOBpye5jEH7wFQV1I8Cr2rm7LSSOZMtBZYnuSzJmwCq6iIGvbifntllSpIkTWFMb87qa6vAsqp6xaSxs4DdVjL/uKp6y/BAVf0MeMLQ0Fua8RuAXZr9HwKPm2LOOcA5k843t/n5G+CZw8eSbM3gl4Qzp70qSZIkrVRfE9feSPJK4D3AYU3LgSRJ0prp8J3/s6l3ietwRXQV58+btWBWbf3PAp9tMwZJkqR1Qe8SV0mSpLHnUwUkSZKk7rLiKkmS1DdWXCVJkqTusuIqSZLUNzWeTxWw4ipJkqResOIqSZLUN/a4SpIkSd1lxVWSJKlvxvSbs6y4SpIkqResuEqSJPVN2eMqSZIkdZYV145akrlthzCNu7lx+a/bDmKkj+5+VNshjPT6i9/VdgjT+vhuR3FGbm07jGnttsFWbYcwvYKfZVnbUYz03Xt+3HYI03rsRg9lWzZqO4xp3cpyvnP3jW2HsVL7bfxI/qvuajuMaW3HXG6eM569mzM2pj2uJq4d1O2kFZPWtaTrSStg0roWmLSuHV1PWoFOJ61A55NWwKR1BsrHYUmSJEndZcVVkiSpb8a0VcCKqyRJknrBiqskSVLf+DgsSZIkqbusuEqSJPWNPa6SJElSd1lxlSRJ6huf4ypJkiR1lxVXSZKkvrHHVZIkSeouK66SJEl943NcJUmSpO6y4ipJktQ39rhKkiRJ3WXFVZIkqWfK57h2R5Kjk7y5a+sn2TrJKc3+3km+0ezvn+TIZv/AJDvfvxFLkiSt+6y4zkBV3QwcNMX4qcCpzcsDgW8AV92PoUmSpHFij2u7krwtyQ+S/Afwx83Ya5MsTnJZki8neUAzfkKSDyX5bpLrkhw0dJ63JLm8ec+xzdj2SU5PclGS7yTZqRn/syTfS3JJkn9L8tChkHZNcn6SHyZ5bTN/XpIrpoj9kCQfTvIkYH/guCSXNutePDRvx+HXkiRJWnWdSFyT7AG8BJgP/CmwZ3PoK1W1Z1XtClwNvGbobQ8DngI8D1iRoD4HOAB4fPOe9zVzFwFvrKo9gDcDH23G/wN4QlXtBpwEHDF0/scBzwSeCByVZOtR11FV32VQeT28quZX1Y+A25LMb6b8OfDplXwGC5MsSbLkO3f8cNRSkiRpnE3U7G4d1ZVWgacCX62qOwGSrPiz+y5J3g1sAcwFzhh6z9eqagK4aqhSug/w6RXnqapfJpkLPAn4UpIV792o+flw4OQkDwM2BK4fOv/Xq+ou4K4kZwN7AZeuxrV9AvjzJIcBBzfn+T1VtYhBgs3/2/YV3f1PjCRJUku6kriuzAnAgVV1WZJDgL2Hjt0ztB9Wbj3g1qqaP8WxfwL+sapOTbI3cPTQscnJ4+omk18G/g74NnBRVf1iNc8jSZI04Ddntepc4MAkmyTZDPizZnwz4CdJNgBevgrn+RaD6uaKXtgHVdX/ANcneVEzliS7NvM3B37c7L9q0rkOSLJxkgczSJgXr+K13N7EDUBV3c2gUvwxVtImIEmSNCNj2irQicS1qi4GTgYuA/6V3yWJ7wC+B5wHfH8VznM6gx7TJUkuZdDPCoOk9zVJLgOuZNAHC4MK65eSXATcMul0S4GzgQuAY5onCqyKk4DDmxu+tm/GvgBMAGeu4jkkSZI0SWdaBarqPcB7pjj0sSnmHjLp9dyh/WNpbtYaGrse2G+K83wd+PoU40evJMYbgF2a/XOAc5r9Exi0NVBV5wGTn+P6FAa9t8unOq8kSdJMVIerorOpM4nruirJV4HtGTyhQJIkSavJxHWWVdXz245BkiStY8a04tqJHldJkiRpFCuukiRJfTPh47AkSZKkzrLiKkmS1Df2uEqSJEndZcVVkiSpb6y4SpIkSd1lxVWSJKlnqqy4SpIkSZ1lxVWSJKlv7HGVJEmSusuKqyRJUt+MacXVxLWDHnHvsrZDmNYfb/LAtkMYac7ytiMY7QW7H9p2CCN95eIPtR3CtObt+GdthzDSO+bu1nYII2294by2Qxjp9GU/bTuEkV694R+1HcK0Ls5dbYcw0vrjmYtpBkxcJUmSeqbGtOJqj6skSZJmLMl+Sa5Jcm2SI6eZ98IklWTBmq5pxVWSJKlvWq64JpkDfAR4NnATsDjJqVV11aR5mwF/A3xvbaxrxVWSJKlvJmZ5G20v4Nqquq6q7gVOAg6YYt4xwHuBu2d+kb/PxFWSJEkztQ1w49Drm5qx30qyO7BtVX1zbS1qq4AkSVLPzPbNWUkWAguHhhZV1aIZvH894B+BQ9ZmXCaukiRJuo8mSZ0uUf0xsO3Q64c3YytsBuwCnJME4A+BU5PsX1VLVjcuE1dJkqS+af9xWIuBHZNsxyBhfQnwshUHq+o2YMsVr5OcA7x5TZJWsMdVkiRJM1RVy4A3AGcAVwNfrKork7wryf6zta4VV0mSpL5ZtTv/Z1VVnQacNmnsqJXM3XttrGnFVZIkSb1gxVWSJKln/MpXSZIkqcOsuEqSJPVNB3pc22DFVZIkSb1gxVWSJKln7HGVJEmSOmysEtckf5vkAUOvT0uyRZsxSZIkzdjELG8dNVaJK/C3wG8T16r606q6tcV4JEmStIpaTVyTfC3JRUmuTLKwGdsvycVJLktyVjP2oGbu0iQXJHlcM350kjcPne+KJPOSbJrkm805rkhycJJDga2Bs5Oc3cy/IcmWzf4rm/NfluRzzdgJST6U5LtJrkty0NBahydZ3Lznnc3Y763bjB+b5Kpm7j/cH5+tJElad9XE7G5d1fbNWa+uql8m2QRYnOTrwPHA06rq+iQPaua9E7ikqg5M8kzgs8D8ac67H3BzVT0XIMnmVXVbksOAZ1TVLcOTkzwGeDvwpKq6ZWhdgIcBTwF2Ak4FTkmyL7AjsBcQ4NQkTwO2mrxukgcDzwd2qqpaWWtCk7gvBHjDZgt4zibbj/70JEmSxkjbrQKHJrkMuADYlkHidm5VXQ9QVb9s5j0F+Fwz9m3gwUkeOM15LweeneS9SZ5aVbeNiOOZwJdWJLRD6wJ8raomquoq4KHN2L7NdglwMYOkdseVrHsbcDfwySQvAO6cKoCqWlRVC6pqgUmrJEmalj2u968kewP7AE+sql0ZJIGXzvA0y7jvNWwMUFU/AHZnkEi+O8lRaxDqPUP7Gfr591U1v9l2qKpPTrVuVS1jUJk9BXgecPoaxCJJkjS22qy4bg78qqruTLIT8AQGiefTkmwHg97WZu53gJc3Y3sDt1TV/wA3MEgUSbI7sOJ9WwN3VtXngeNWzAFuBzabIpZvAy9q/qzPpFaBqZwBvDrJ3Gb+NkkeMtW6zZzNq+o04E3Arqv4+UiSJE3JHtf73+nA65JcDVzDoF3gvxm0C3wlyXrAz4FnA0cDn0qylMGf2l/VnOPLwCuTXAl8D/hBM/5Y4LgkE8BvgL9qxhcBpye5uaqesSKQqroyyXuAf0+ynEH195CVBV5VZyZ5NHB+EoA7gFcAO0yx7mbA15NszKBSe9hqfFaSJEm/0+Hkcja1lrhW1T3Ac1Zy+F8nzf0lcOAU57iLQa/pZDcwqIpOnv9PwD8NvZ43tP8Z4DOT5h8y6fXcof0PAh+ctMSPplqXQauAJEmS1kDbTxWQJEnSDHX5z/mzqe2nCkiSJEmrxIqrJElSz1hxlSRJkjrMiqskSVLPWHGVJEmSOsyKqyRJUt9URs9ZB1lxlSRJUi9YcZUkSeoZe1wlSZKkDrPiKkmS1DM1YY+rJEmS1FlWXCVJknrGHldJkiSpw6y4dtAbll/TdgjTOvHe7doOYaTDc0vbIYy02wZbtR3CSPN2/LO2Q5jWDT/8l7ZDGOlvFhzZdggj7bJ8w7ZDGOmMM97adggjHfHc49sOYVqvuKv7/5P/jxv+su0QeqN8jqskSZLUXd3/9UuSJEn3YY+rJEmS1GFWXCVJknpmXJ/jauIqSZLUM1VtR9AOWwUkSZLUC1ZcJUmSemZcWwWsuEqSJKkXrLhKkiT1jBVXSZIkqcOsuEqSJPWMTxWQJEmSOsyKqyRJUs/Y4ypJkiR1mBVXSZKknqmy4ipJkiR1lhVXSZKknqmJtiNohxXXtSCJvwBIkiTNsrFMXJO8IsmFSS5N8vEkc5LckeQ9SS5LckGShzZzt0ry5SSLm+3JzfjRST6X5Dzgc0kekOSLSa5K8tUk30uyIMmrk3xgaO3XJnl/S5cuSZLWAROVWd26auwS1ySPBg4GnlxV84HlwMuBTYELqmpX4Fzgtc1bPgi8v6r2BF4IfGLodDsD+1TVS4HXA7+qqp2BdwB7NHO+CPxZkg2a138OfGq2rk+SJGldNY5/4n4Wg6RycRKATYCfA/cC32jmXAQ8u9nfB9i5mQvwwCRzm/1Tq+quZv8pDJJcquqKJEub/TuSfBt4XpKrgQ2q6vLJQSVZCCwEePCmD+eBG2+5li5XkiSta8b1qQLjmLgG+ExVvfU+g8mbq377BWrL+d1nsx7whKq6e9J8gF+v4pqfAP4P8H3g01NNqKpFwCKAP9pytzH9IjdJkqSVG7tWAeAs4KAkDwFI8qAkj5xm/pnAG1e8SDJ/JfPOA17czNkZeOyKA1X1PWBb4GXAiWsUvSRJGns1kVndumrsEtequgp4O3Bm8+f8bwEPm+YthwILkixNchXwupXM+yiwVTPn3cCVwG1Dx78InFdVv1rTa5AkSRpH49gqQFWdDJw8aXju0PFTgFOa/VsY3Mw1+RxHTxq6G3hFVd2dZHvg34D/HDr+FMCnCUiSpDVWY9pUOJaJ6yx5AHB28/SAAK+vqnuTbAFcCFxWVWe1GqEkSVKPmbiuJVV1O7BgivFbgUfd/xFJkqR1VZf7UGeTiaskSVLPdPlLAmbT2N2cJUmSpH6y4ipJktQz4/oFBFZcJUmS1AtWXCVJknpmXB+HZcVVkiRJvWDFVZIkqWd8qoAkSZLUYVZcJUmSesanCkiSJEkdZsVVkiSpZ3yqgCRJktRhVlwlSZJ6ZlyfKpAa11pzh73nkS/v9D/KJdzedggj7cZmbYcw0s+yrO0QRtp5+QZthzCtpXPubTuEkT645Ni2QxjpmAXvaDuEkW7k7rZDGGn9jv8Rc6OOxwewBXPaDmGkd9/wz53IGJc8/MBZzRUW3PS1TlznZFZcJUmSesanCkiSJEkdZsVVkiSpZ8a1x9WKqyRJkmYsyX5JrklybZIjpzh+WJKrkixNclaSR67pmiaukiRJPVOzvI2SZA7wEeA5wM7AS5PsPGnaJcCCqnoccArwvtW72t8xcZUkSdJM7QVcW1XXVdW9wEnAAcMTqursqrqzeXkB8PA1XdQeV0mSpJ7pQI/rNsCNQ69vAh4/zfzXAP+6pouauEqSJPXMbD8OK8lCYOHQ0KKqWrSa53oFsAB4+prGZeIqSZKk+2iS1OkS1R8D2w69fngzdh9J9gHeBjy9qu5Z07hMXCVJknpmou0AYDGwY5LtGCSsLwFeNjwhyW7Ax4H9qurna2NRb86SJEnSjFTVMuANwBnA1cAXq+rKJO9Ksn8z7ThgLvClJJcmOXVN17XiKkmS1DNF6zdnUVWnAadNGjtqaH+ftb2mFVdJkiT1ghVXSZKknplYlW8JWAdZcZUkSVIvWHGVJEnqmYkO9Li2YWTFNcl3V+fESQ6c4jtrW5NkiySvX8W5d8x2PJIkSZqZkYlrVT1pNc99IDBl4pqkjUrvFsAqJa6SJEldVmRWt65alYrrHc3PvZOck+SUJN9P8oUkaY4dm+SqJEuT/EOSJwH7A8c1z+3avnnvB5IsAf4myQlJDlrJOv+e5OtJrmvO/fIkFya5PMn2zbytknw5yeJme3IzfnSSTzXrXZfk0GaJY4Htm3iOSzI3yVlJLm7Oe8AU1z7dNe/RxHlRkjOSPKwZP3ToszipGXt6s+6lSS5Jstlq/ntJkiSNrZlWPncDHgPcDJwHPDnJ1cDzgZ2qqpJsUVW3Ng+Z/UZVnQLQ5HsbVtWC5vUJ06yzK/Bo4JfAdcAnqmqvJH8DvBH4W+CDwPur6j+SPILBA3Af3bx/J+AZwGbANUk+BhwJ7FJV85v11weeX1X/k2RL4IIkp1bV5Pv0prrm7wH/BBxQVf+d5GDgPcCrm3W2q6p7kmzRnOPNwF9X1XlJ5gJ3r9KnLUmSNIUOfHNWK2aauF5YVTcBJLkUmAdcwCAR+2SSbwDfmOb9J6/iOour6ifNOj8CzmzGL2eQkALsA+zcJMQAD2ySQoBvNt+He0+SnwMPnWKNAP9fkqcx+Pffppn300nzprrmW4FdgG81688BftLMXwp8IcnXgK81Y+cB/5jkC8BXVpzvPsEkC4GFAAc8aC/2nLvDyj8dSZKkMTTTx2HdM7S/HFi/+cqvvYBTgOcBp0/z/l8P7S9bsX6S9YANV7LOxNDrCX6XbK8HPKGq5jfbNlV1xxTvX87UCfrLga2APZoq7M+AjaeYN9W5Alw5tPZjq2rfZs5zgY8AuwOLk1xNXwAAACAASURBVKxfVccCfwFsApyXZKfJi1TVoqpaUFULTFolSdJ07HFdTU2Vc/Pma7/exODP/AC3M/hT/crcAOzR7O8PbDDDpc9k0DawIo75I+ZPjmdz4OdV9ZskzwAeOYO1rwG2SvLEZu0NkjymScC3raqzgbc0a8xNsn1VXV5V7wUWM2hlkCRJ0gysjbv7NwO+nmRjBpXIw5rxk4Djm5ujDprifcc377uMQZX211PMmc6hwEeSLGVwHecCr1vZ5Kr6RZLzklwB/CvwXuBfklwOLAG+v6oLV9W9zY1lH0qyebP+B4AfAJ9vxgJ8qOn3PaZJjieAK5v1JUmSVsu49rjm9+9FUtve88iXd/of5RJubzuEkXabttjfDT/LsrZDGGnn5TP9Q8j9a+mce9sOYaQPLjm27RBGOmbBO9oOYaQbe3BP6/od/zLKjToeH8AWzGk7hJHefcM/d+Lv6Kc/9CWzmivs97OTOnGdk/nNWZIkST0zrhXX7v/6JUmSJGHFVZIkqXe6fOf/bDJxlSRJ6pmJ8cxbbRWQJElSP1hxlSRJ6pmJMW0VsOIqSZKkXrDiKkmS1DOdfuD7LLLiKkmSpF6w4ipJktQzfgGBJEmS1GFWXCVJknpmIj5VQJIkSeosK66SJEk941MFJEmSpA6z4tpBl3JH2yFMa/ts2nYII/2EZW2HMNJ37/lx2yGMtPWG89oOYVq7LN+w7RBGOmbBO9oOYaR3LDmm7RBG+t8L3tp2CCPtffectkOY1rUbdb9W9dN0/7+7u8KnCkiSJEkdZsVVkiSpZybG86ECVlwlSZLUD1ZcJUmSemaC8Sy5WnGVJElSL1hxlSRJ6hmf4ypJkiR1mBVXSZKknhnXpwqYuEqSJPWMX0AgSZIkdZgVV0mSpJ7x5ixJkiSpw6y4SpIk9cy43pxlxVWSJEm9YMVVkiSpZ3yqgCRJktRh62zimuSO5ufWSU5pOx5JkqS1ZWKWt65a51sFqupm4KC245AkSdKaWWcrriskmZfkimb/giSPGTp2TpIFSTZN8qkkFya5JMkBzfFDknwlyelJfpjkfUPv3TfJ+UkuTvKlJHOb8WOTXJVkaZJ/aMZelOSKJJclOff+/QQkSdK6pjK7W1et84nrJCcDLwZI8jDgYVW1BHgb8O2q2gt4BnBckk2b98wHDgYeCxycZNskWwJvB/apqt2BJcBhSR4MPB94TFU9Dnh3c46jgD+pql2B/acKLMnCJEuSLLnujhvW+oVLkiT13bglrl/kd20DLwZW9L7uCxyZ5FLgHGBj4BHNsbOq6raquhu4Cngk8ARgZ+C85j2vasZvA+4GPpnkBcCdzTnOA05I8lpgzlSBVdWiqlpQVQv+aO68tXS5kiRpXWSP6xioqh8n+UWSxzGoor6uORTghVV1zfD8JI8H7hkaWs7gMwvwrap66eQ1kuwFPItBgvwG4JlV9brmXM8FLkqyR1X9Yi1fniRJ0jpt3CquMGgXOALYvKqWNmNnAG9MEoAku404xwXAk5Ps0MzfNMmjmj7XzavqNOBNwK7N8e2r6ntVdRTw38C2a/2qJEnS2LDiOj5OAT4IHDM0dgzwAWBpkvWA64HnrewEVfXfSQ4BTkyyUTP8duB24OtJNmZQlT2sOXZckh2bsbOAy9be5UiSJI2HdTZxraq5zc8bgF2Gxn/GpOuuqruAv5ziHCcAJwy9ft7Q/reBPadYeq8pzvOCGYYvSZK0UtV2AC0Zx1YBSZIk9dA6W3GVJElaV010+Fmrs8mKqyRJknrBiqskSVLPdPnO/9lkxVWSJEm9YMVVkiSpZ8a14mriKkmS1DM+DkuSJEnqMCuukiRJPePjsCRJkqQOs+IqSZLUM+N6c5YVV0mSJPWCFVdJkqSe8akCkiRJUodZce2g9en2rYJPv6v7v+edvMmytkMY6U83ekTbIYx0+rKfth3CtM44461thzDS65770bZDGOl/L+j+5/h/l/x92yGM9PoFb2k7hGk95+4N2g5hpKs3/k3bIfTGxJjWXK24SpIkqResuEqSJPWMTxWQJEmSOsyKqyRJUs+MZ4erFVdJkiT1hBVXSZKknrHHVZIkSVpFSfZLck2Sa5McOcXxjZKc3Bz/XpJ5a7qmiaskSVLPTGR2t1GSzAE+AjwH2Bl4aZKdJ017DfCrqtoBeD/w3jW9bhNXSZIkzdRewLVVdV1V3QucBBwwac4BwGea/VOAZyVZo29ZssdVkiSpZzrwzVnbADcOvb4JePzK5lTVsiS3AQ8GblndRa24SpIk6T6SLEyyZGhb2HZMYMVVkiSpd2a73lpVi4BF00z5MbDt0OuHN2NTzbkpyfrA5sAv1iQuK66SJEk9MzHL2ypYDOyYZLskGwIvAU6dNOdU4FXN/kHAt6tqjXJuK66SJEmakaZn9Q3AGcAc4FNVdWWSdwFLqupU4JPA55JcC/ySQXK7RkxcJUmSeqYDN2dRVacBp00aO2po/27gRWtzTVsFJEmS1AtWXCVJknqm/XprO9aZimuSO9bSefZO8o21cS5JkiStPVZcJUmSemYV7/xf56wzFdcVMnBckiuSXJ7k4Gb8PpXUJB9Ockizv1+S7ye5GHjB0Jyjk3wqyTlJrkty6NCxVyS5MMmlST6eZE6znTC09puauYcmuSrJ0iQn3V+fhSRJ0rpkXay4vgCYD+wKbAksTnLuyiYn2Rg4HngmcC1w8qQpOwHPADYDrknyMWAH4GDgyVX1myQfBV4OXAlsU1W7NOfeojnHkcB2VXXP0NjkOBYCCwEWPGhXdpg7b6bXLUmSxkQXnirQhnWu4go8BTixqpZX1c+Afwf2nGb+TsD1VfXD5qG4n590/JtVdU9V3QL8HHgo8CxgDwZJ8aXN6z8CrgP+KMk/JdkP+J/mHEuBLyR5BbBsqiCqalFVLaiqBSatkiRJv29dTFxXZhn3vd6NV/F99wztL2dQpQ7wmaqa32x/XFVHV9WvGFR6zwFeB3yied9zgY8AuzNIdtfFSrckSbqf1CxvXbUuJq7fAQ5u+k23Ap4GXAj8J7Bzko2aP9c/q5n/fWBeku2b1y9dhTXOAg5K8hCAJA9K8sgkWwLrVdWXgbcDuydZD9i2qs4G3sLge3rnrp1LlSRJGh/rYuXvq8ATgcsY/NJwRFX9FCDJF4ErgOuBS2DwrQ5Nf+k3k9zJIPHdbLoFquqqJG8HzmwS098Afw3cBXy6GQN4K4OvQft8ks0ZVGo/VFW3rs0LliRJ42VcnyqwziSuVTW3+VnA4c02ec4RwBFTjJ/OoNd18vjRk17vMrR/Mr9/IxcM2gEme8r00UuSJGmUdSZxlSRJGhfV6U7U2bMu9rhKkiRpHWTFVZIkqWfGtcfViqskSZJ6wYqrJElSz/jNWZIkSVKHWXGVJEnqmfGst5q4SpIk9Y6tApIkSVKHWXGVJEnqGR+HJUmSJHWYFVdJkqSe8StfJUmSpA6z4ipJktQz49rjauLaQQ/ORm2HMK0bNuz+f2w268GfUP7l7hvaDmGkV2/4R22HMK0jnnt82yGMtH4P/rC1991z2g5hpNcveEvbIYz00SXvbTuEab1vj3e0HcJI29XGbYegjut+BiJJkqT7sMdVkiRJ6jArrpIkST0zrj2uVlwlSZLUC1ZcJUmSemai7HGVJEmSOsuKqyRJUs+MZ73ViqskSZJ6woqrJElSz0yMac3ViqskSZJ6wYqrJElSz/jNWZIkSVKHWXGVJEnqmXH95iwTV0mSpJ7x5ixJkiSpw6y4SpIk9Yw3Z0mSJEkdNraJa5Ibkmw5xfj+SY5sIyZJkqRVMTHLW1fZKjBJVZ0KnNp2HJIkSbqvTlRck2ya5JtJLktyRZKDm4ro+5JcnuTCJDs0c7dK8uUki5vtyUPn+FQz95IkBzTjc5L8Q3PepUneOLT0G5Nc3KyxUzP/kCQfbvZPSPKhJN9Ncl2Sg4ZiPrxZf2mSd67sOprxY5Nc1cz9h/vlQ5UkSeusqprVrau6UnHdD7i5qp4LkGRz4L3AbVX12CSvBD4APA/4IPD+qvqPJI8AzgAeDbwN+HZVvTrJFsCFSf4NeCUwD5hfVcuSPGho3VuqavckrwfeDPzFFLE9DHgKsBODSuwpSfYFdgT2AgKcmuRpwFaTryPJg4HnAztVVTWx/Z4kC4GFAHs/aA8es9n2M/4QJUmS1mWdqLgClwPPTvLeJE+tqtua8ROHfj6x2d8H+HCSSxkkkg9MMhfYFziyGT8H2Bh4RDP/41W1DKCqfjm07leanxcxSG6n8rWqmqiqq4CHNmP7NtslwMUMktodV3IdtwF3A59M8gLgzqkWqapFVbWgqhaYtEqSpOlMULO6dVUnKq5V9YMkuwN/Crw7yVkrDg1Pa36uBzyhqu4ePkeSAC+sqmsmjU+39D3Nz+Ws/LO4Z2g/Qz//vqo+Pnny5Ouoqncl2Qt4FnAQ8AbgmdMFJUmSpN/XiYprkq2BO6vq88BxwO7NoYOHfp7f7J8JvHHovfOb3TMY9KymGd+tGf8W8JdJ1m/Gh1sFVtcZwKubSi9JtknykKmuo5mzeVWdBrwJ2HUtrC9JksaYTxVo12OB45JMAL8B/go4BfiDJEsZVD1f2sw9FPhIM74+cC7wOuAYBn2wS5OsB1zPoCf2E8CjmvHfAMcDH16TYKvqzCSPBs5v8uQ7gFcAO0xxHZsBX0+yMYNK7WFrsrYkSdK46kTiWlVnMKhi/laTEB5XVW+ZNPcWfleJHR6/C/jLKcaXMUgWD5s0Pm9ofwmwd7N/AnBCs3/IpPfMHdr/IIMbxYb9aPJ1NPaaYkySJGm1+M1ZkiRJUod1ouI6leGKqCRJkn6ny3f+zyYrrpIkSeqFzlZcJUmSNLUuf7vVbLLiKkmSpF6w4ipJktQzXX7W6myy4ipJkqResOIqSZLUMz7HVZIkSeowK66SJEk9M67PcTVxlSRJ6hkfhyVJkiR1mBVXSZKknhnXVgErrpIkSeoFK64dNIe0HcK0bpizvO0QRtq0B7+T7bzRQ9oOYaSLc1fbIUzrFXd1/7/Cvr5J9/+zeO1G3Y/xOXdv0HYII71vj3e0HcK0jrjomLZDGOkvFhzedgi94eOwJEmSpA7rfrlCkiRJ9zHhUwUkSZKk7rLiKkmS1DPjWW+14ipJkqSesOIqSZLUMz7HVZIkSeowK66SJEk9Y8VVkiRJWkNJHpTkW0l+2Pz8gynmzE9yfpIrkyxNcvCqnNvEVZIkqWeqala3NXQkcFZV7Qic1bye7E7glVX1GGA/4ANJthh1YhNXSZIkrU0HAJ9p9j8DHDh5QlX9oKp+2OzfDPwc2GrUie1xlSRJ6pmO97g+tKp+0uz/FHjodJOT7AVsCPxo1IlNXCVJknQfSRYCC4eGFlXVoqHj/wb84RRvfdvwi6qqJCvNspM8DPgc8KqqmhgVl4mrJElSz9QsV1ybJHXRNMf3WdmxJD9L8rCq+kmTmP58JfMeCHwTeFtVXbAqcdnjKkmSpLXpVOBVzf6rgK9PnpBkQ+CrwGer6pRVPbGJqyRJUs90/KkCxwLPTvJDYJ/mNUkWJPlEM+fFwNOAQ5Jc2mzzR514bFsFmkcuvKyqPtp2LJIkSTPR5ZuzquoXwLOmGF8C/EWz/3ng8zM99zhXXLcAXt92EJIkSVo145y4Hgts35Smj0tyeJLFzbc3vBMgybwk309yQpIfJPlCkn2SnNd8G8Rezbyjk3yu+QaIHyZ5bTOe5txXJLl8Vb8VQpIkaTodbxWYNWPbKsDgWxx2qar5SfYFDgL2AgKcmuRpwH8BOwAvAl4NLAZeBjwF2B/4P/zuobqPA54AbApckuSbwBOB+cCuwJbA4iTnDj3bTJIkSatonCuuw/ZttkuAi4GdgB2bY9dX1eXNs8WuZPAVZgVcDswbOsfXq+quqroFOJtBEvwU4MSqWl5VPwP+HdhzqgCSLEyyJMmSK24f+fxdSZI0xiaoWd26ysR1IMDfV9X8Ztuhqj7ZHLtnaN7E0OsJ7luxnvyvPKN/9apaVFULqmrBLpttP5O3SpIkjYVxTlxvBzZr9s8AXp1kLkCSbZI8ZIbnOyDJxkkeDOzNoK3gO8DBSeYk2YrBYx8uXCvRS5KksVWz/H9dNbY9rlX1i+YmqyuAfwX+GTg/CcAdwCuA5TM45VIGLQJbAsdU1c1Jvsqgz/UyBhXYI6rqp2vxMiRJksbG2CauAFX1sklDH5xi2i5D8w8Z2r9h+BiwtKpeOen8BRzebJIkSWvFRIfv/J9N49wqIEmSpB4Z64rr2lJVR7cdgyRJGh9d7kOdTVZcJUmS1AtWXCVJknrGHldJkiSpw6y4SpIk9Yw9rpIkSVKHWXGVJEnqGXtcJUmSpA6z4ipJktQz9rhKkiRJHWbFVZIkqWfGtcfVxFWSJKlnbBWQJEmSOsyKqyRJUs9UTbQdQitMXDtoI9J2CNO6m+7/P8vOyzdoO4SRNpqzadshjLR+x/8S9Y8b/rLtEEbagz9oO4SRfpplbYcw0tUb/6btEEbarjZuO4Rp/cWCw9sOYaRPLDmu7RDUcSaukiRJPTNhj6skSZLUXVZcJUmSeqbG9HFYVlwlSZLUC1ZcJUmSesYeV0mSJKnDrLhKkiT1jD2ukiRJUodZcZUkSeqZCSuukiRJUndZcZUkSeqZ8qkCkiRJUndZcZUkSeoZnyogSZIkdZgVV0mSpJ7xm7MkSZKkDrPiKkmS1DP2uK4FSbZI8vpmf+skp6zN86/C+guSfGgWzntgkp3X9nklSZJWx0TVrG5dtbZbBbYAXg9QVTdX1UFr+fzTqqolVXXoLJz6QGBGiWsSq9mSJElr0dpOXI8Ftk9yaZIvJbkCIMkhSb6W5FtJbkjyhiSHJbkkyQVJHtTM2z7J6UkuSvKdJDutbKEkL0pyRZLLkpzbjO2d5BvN/lbNelcm+USS/0yyZZJ5Sa5Ocnxz7MwkmzTveW2Sxc05v5zkAUmeBOwPHNdc1/ZJzkmyoHnPlkluGLrOU5N8GzirGTu8OefSJO9cy5+3JEkaQ1U1q1tXre3E9UjgR1U1Hzh80rFdgBcAewLvAe6sqt2A84FXNnMWAW+sqj2ANwMfnWato4A/qapdGSSWk/0d8O2qegxwCvCIoWM7Ah9pjt0KvLAZ/0pV7dmc82rgNVX1XeBU4PCqml9VPxrxGewOHFRVT0+yb7PWXsB8YI8kT5vqTUkWJlmSZMllt187YglJkqTxc3/+OfvsqroduD3JbcC/NOOXA49LMhd4EvClJCves9E05zsPOCHJF4GvTHH8KcDzAarq9CS/Gjp2fVVd2uxfBMxr9ndJ8m4GLQ9zgTNmcH0rfKuqftns79tslzSv5zJIZM+d/KaqWsQgceeIeS/t7q86kiSpdeP6OKz7M3G9Z2h/Yuj1RBPHesCtTbV2pKp6XZLHA88FLkqyx2rGshzYpNk/ATiwqi5Lcgj/f3v3HWZnVa99/HsnBPMGCISXIiCRojTpgoDCsYIoRUWKShMFETiI4EHlBUQQ5aUdRVCkeDiAIFWkKUWkKJ2EEuoFUuRQBSmRTrjPH2vtzJ49LWWStZ6d3+e65prZz8yQm5l59l7Pen7rt+BjA3z/2/TMVo/u+NwrbR8LOMz2CdORLYQQQggh9GO4SwUmA/PNyDfafhl4RNJWAEpWG+jrJS1r+2bbPwD+ASzZ8SXXA1vnr90IGDcNMeYDnpI0Cti27Xjn/9ejQGugPNgCtMuBr+XZZCQtIWmRacgRQgghhDCgqHEdBrafB67Pi7KOnIH/xLbA1yXdCdwDfG6Qrz1S0qT8b90A3Nnx+YOBjfLntwKeJg1AB3MgcDNp0Ht/2/GzgH3zYrJlgaOA3STdDiw00H/M9hXAmcCNkiaRam1naGAfQgghhDCnU82j6pkh6V3AFNtvS1oPOH5ayxBKq73G9XXeKR1hSCtNGVU6wpCeHFn1rxmAuSqPeOM7/xz6iwr74MhpudlT1qsNOKdf4K3SEYa0tDsrx+ryN71eOsKQTr5tRua8Zq9RCy2job9q1pt3zNKz9Bn6X68+UsX/Z6du7jU6HjhH0gjgTWCXwnlCCCGEEMJMqH7gKml/0q3+dufa/vFg32f7QWCNWRYshBBCCKEQR1eBOuUB6qCD1BBCCCGE0P2qH7iGEEIIIYTe3unSNUpDGe52WCGEEEIIIcwSMeMaQgghhNAw3doVaigx4xpCCCGEEBohZlxDCCGEEBpmTu0qEDOuIYQQQgihEWLGNYQQQgihYaLGNYQQQgghhIrFjGsIIYQQQsPEjGsIIYQQQggVixnXEEIIIYSGmTPnW0Fz6lTznETSN2yfWDrHYCLj8IiMM6/2fBAZh0vtGWvPB5ExzH5RKjBn+EbpANMgMg6PyDjzas8HkXG41J6x9nwQGcNsFgPXEEIIIYTQCDFwDSGEEEIIjRAD1zlDE2p7IuPwiIwzr/Z8EBmHS+0Za88HkTHMZrE4K4QQQgghNELMuIYQQgghhEaIgWsIIYQQQmiEGLiGEEIIIYRGiIFrKErSSEmLSxrfeiudqZ2kVUpnCLOepKMlfaB0jsFImkfSiPzxcpI2lzSqdK6BSBonadXSOQYjaYSksaVzNI2kRSVtmt8WKZ1nIJLWl7RT/nhhSUuXzhRmXgxcu5ikMZIOlHRSfvx+SZuWztUiaU/gGeBK4NL8dknRUH39UtItknaXNH/pMJ0kTZC0h6RxpbMMRNIRksZKGiXpKkn/kLRd6Vwd7gNOlHSzpG/W+LsGrgNGS1oCuALYHvjvook6SLom/64XBCYCJ0n6z9K52kk6M2ecB7gbuFfSvqVztdR+vkjaGrgF2ArYGrhZ0pZlU/Ul6SDge8B++dAo4DflEoXhEgPX7nYK8AawXn78BHBouTh97AUsb/sDtlfJb1XN0NjeANgWWBKYkF/0Niwcq902wOLArZLOkvRpSSodqsNGtl8GNgUeBd4HVDNQALB9su2PADsASwF35d/1x8sm60W2XwW2AH5peyugtlni+fPvegvgNNvrAJ8qnKnTSjnj54E/AkuTLgJqUfv5sj+wtu0dbe8AfAg4sHCm/nwB2Bx4BcD2k8B8RROFYRED1+62rO0jgLcA8oteTYOax4GXSocYiu0HgQNIV+8fBX4u6X5JW5RNBrYfsr0/sBxwJvBfwGOSDs6zXjWYK7/fBDjXdpW/c0kjgRXy23PAncA+ks4qGqyHJK1HupC6NB8bWTBPf+aStBhpJq62uycto3KJxeeBi2y/BdTUF7L282WE7WfbHj9PnWOJN536fRpSqU3hPGGYzDX0l4QGe1PS/6HnxF2WNANblKR98ocPA9dIupS2XLarubWYa/R2Ir2IXAlsZnuipMWBG4HflcwHvTJ+FjgfOANYH/gzsHrBaC2XSLofeA3YTdLCwOuFM/Ui6afAZsBVwE9s35I/dbikB8ol6+XbpNueF9i+R9IywNWFM3U6BLgc+KvtW3PGBwtn6nQCaSbzTuA6Se8FXi6aqLfaz5fLJF0O/DY/3gb4Q8E8AzlH0gnAApJ2Ab4GnFQ4UxgGsQFBF5O0Eem2zkqkmriPADvZLvpil2uPBmLbh8y2MEOQdC1wMnCe7dc6Pre97dPLJJuaYQLwIvBr4Hzbb7R97ne2i88KA+TZ35dsT5E0Bhhr++nSuVryAo5zbL/Sz+fmr23WKy/SmjffUg4zSdJctt8unaOlAefLFqSLY4C/2L6gZJ6B5LKujUh3Gi+3fWXhSGEYxMC1y0n6v8C6pBP3JtvPFY40laStbJ871LGSJH3b9s86ju1l+5hSmdpJWsb2wx3Hlrb9SKlMnSRtBVxme7KkA4A1gUNtTywcbSpJa/Zz+CXgsVoGNJLOBL4JTAFuBcYCx9g+smiwNpKOINXRvwZcBqwK7G27mkUxkvYi1f9PJl2UrgF83/YVRYNlDTlf3g2sA7wD3FrToBqmlv38yXZNNephmNRYlxKGiaSrbD9v+1Lbl9h+TtJVpXO12W8aj5W0Qz/Hvjq7QwzivGk8VtKB+UV4fdJCnV8DxxfO1OmXwE2kPc1PIpWBnAs8kO9c1KD2RUVQ/8IigK/ljBsB40g/w/9fNlIvVZ8vknYmdRX4ArAlcJOkr5VN1ZvtKcA7lXYHCTMpaly7kKTRwBhgodwmqbUgayywRLFgmaTPkOoxl5D087ZPjQVqmd36MvAVYGlJF7V9aj7gn2VS9ZC0AmlF+fwdi8TGAqPLpBrQlPx+E+BE25dKqqm7BcCTwNdt3wMgaSVSveZ3SXXMNczGtS8qOs72W5Jqu2XWZ2FRfU0upj4ffhY4PdcL1xSy9vNlX2AN28/D1Lt6N5AWhtbkX8AkSVeSOwsA2P5WuUhhOMTAtTvtSlrIsTgwgZ4n6peB40qFavMkcBupVcmEtuOTgb2LJOrrBuApYCHg6Lbjk4G7iiTqbXnSrNYCpEVFLZOBXYokGtgTeZHEhqTFTu+ivrs9y7UGrQC275W0gu2HKxrT1L6oCOpfWASprd0VpBnr/STNR7rlXYvaz5fnSc8zLZPzsdr8jgoWz4bhFzWuXUzSnraPLZ1jIJJG5VY0YQZJWs/2jaVzDCYvLtkYmGT7wdwuaZVaagoBJJ1DevFttb7ahnTRsj1phfzapbINprZFRdBnYdE8wHw11UDmhW2rAw/bfjHPGC5hu4YL0urPF0mnAasAF5I61nyOdDF/F9TVFSZ0p5hx7WK2j5W0MqmrwOi246eVS9XLxH5udb5Emo09tHUrqgRJf7W9vqTJ9O7xKFLng6LbREr6bu7R+5Vc1tBLTbfDbL8q6VnSKuQHSeUgtbVI2hHYnXSnAuB64D9IPZCrWOAhaVHgJ8Ditj+TyxnWI9VAViEPunYHxgPfIN31WZ66erqa9Jy4KakcZB4qKq9pwPnyt/zWcmF+X1Vzf0mP0E9/XtvLFIgThlHMuHax3HbqY6Qn6T8AnyHNHlWxPV9egTyF1DgfvaTwxAAAGD9JREFU4Euk2tyngfVtbzbQ987pJG1m+2JJO/b3edunzu5MA8l/h2uRdklbLvfAPTfvVFVcXoF8mu1tS2cZjKQ/klbD7297NUlzAbfbXqVwtKkknU0q/9nB9sp5IHuD7Rr6CQMg6XhSacAnbK+Y1wFcUcuseu3nS1PkmfSW0aQtahe0/YNCkcIwiRnX7rYlsBrpxW2nPGNTTVsa4FO229sQTZI00faaqmBv7jygucf2CqWzdLJ9cX5fzQB1EF8gtRyaCGnrxVxXWIV8S/u9kua2/WbpPINYyPY5kvYDsP22pClDfdNstqztbVp3AfLsYTVFwtk6+TnmdgDbL0iau3SoNlWfL5LWIvUHfy9tYwjXt1135x27n+W+1zFwbbgYuHa312y/I+ltSWOBZ4ElS4dqM1LSh1q7FElam54tLIvX7eUBzQOSxtv+e+k87SRdzCDbVNrefDbGGcqbtt0qC1GdWy8+DFyfO0i0r0CuqV7vlTyL1Po5rkt9WyZXuVtfh7fyRWkr48LUtTir9vPlDFJngUnU9XPrpaM38wjSLHaMebpA/BK7222SFiD1pZxAag9S00KenYH/kjQvqXb0ZWDn/ER9WNFkPcYB90i6hd4DmtIDw6MK//vTowlbL7bq9kZQWa1em32Ai4BlJV0PLEy6q1KTg0gbDywp6QzSbn1fLZqor58DFwCLSPox6Wd4QNlIvdR+vvzD9kVDf1lx7d1g3gYeAbYulCUMo6hxnUNIWoq0bWAVK2fbtZpE17atJoCkj/Z33Pa1sztLk6khWy9KGmP71dI5BpLrWpcn/RwfqLErhyrera8l90H+JCnjVbbvKxypl5rPF0mfBL4MXEXbbLrtqlpPqQG7CoYZEwPXLqT+t6+cqpatA3N/wi8CS9G7VuqQUpmaQtI5treWNIn+ux5UVW9WO0mt1fnz2h4vaTVgV9u7F47Wi6QP0/d8qaVLCACSlqBv/eN15RL1lUsFFqV3xqrKgWol6TfACsA99JQK2HZVu2e11kt0HJtg+4OlMoXhEaUC3al1i2Q0qa7nTtKAZlVSq6n1CuXqdCGpRm8C9dXBAVPrCI8FVgTmJtXgvlK6HRawV36/adEU00BpZ6/DgUVIf4dVtBTr8DPg06Rb8di+U9K/lY3Um6TTgWWBO+jZXclANQNXSYeTeuD2GtQA1QxcJe1JKml4hvRzFCljFRd7DThf1ra9fOkQA1GzdhUMMyAGrl3I9scBJP0OWNP2pPx4ZeCHBaN1eo/tjUuHGMJxpDZd55IuAnYAliuaCLD9VH7/mKR3Ax8ivfjeWlOz9+wIYLPabsd2sv14xwL42lbsrwWs5Lpvk32e1MapygvRbC9Sxhp3e4L6z5cbJK1k+97SQQbQpF0FwwyIgWt3W741aAWwfbekFUsG6nCDpFXaM9bI9kOSRtqeApyS2+jsVzoXgKSdSe1d/kyamTlW0iG2a9o3/JmKX4RbHs+34S1pFGlwU1vmu4F3k7YirtXDwCgqvYOSPU593Rja1X6+rAvckRv8v0Fl5Um2LwQuVAN2FQwzJgau3e0uSSfT07t1W/K2fJVYH/hqrU+A2au5x+MdecOEp6hr3/B9gTVas0d5YcwNQE0D19tyY/rfU+9ijm8CxwBLAE8AVwB7FE3U10LAvbnDRfvPsXSHi3avks6VzoU71ezkRhpcXyPpUnpnrKX1We3nS+13yVpul7QHqWygfefIqmpxw/SLgWt32wnYjZ56yOuA48vF6eMzpQNMg+1Jda3/DuxN6oP7xaKJenuedAusZXI+VpOxpAHNRm3HDNTyQkxe+V71zlnUVeYzkIvyW83+nt/mzm+1qfp8yeVJ6wPvt31K7oM7b+lc/TgduJ9Uu34I6fyueSY7TKPoKjAHk3S+7aKDsP6eAKNdydAk7ZM/XB1YhbTQzcDngLtsf7VQtEbKf3u70HfFfszOTKe8AcF42w+UzhKGX1O2pJV0u+01JN1le9VcAvQX2+uWzhZmTsy4ztmWKfmPtz8BkvZgH0Uqayj+BNhPm6leKihnaDXJbzXOb7mwQJZBSToV2Mv2i/nxOODoygaFFwJ/Af5EZYuyJE2m/7/F2labI2kz0uYYcwNLS1odOKSGcobad5uT9F3bR0g6ln5yVlRuUfWWtG1aPY5fzAuTnyZ1aggNFwPXOVvp6faanwCrbjNl++DSGabDqq1BK0zdG36NkoH6Mcb290qH6I/tWs6JafFDUoeLawBs3yGp6AVym9Zuc1uQFrm1av+/TGqNVVrrNvZtRVMMrfYtaVtOzBfJB5LKV+YlLWQNDRcD11BStU+Ath8rnWFa5Fvc36XvAoRPFAvV1whJ42y/ACBpQep77rlE0mdt/6F0kKFIWoTev+uaGue/ZfuljrZiVexn39rtTtLRttdq+9TFkooPFm1fnN+fWjrLEGrfkhYA2yfnD6+l8N3FMLxqe/EIs5eG/pJZqvonwI7btHOTyhlq2ICg5QzgbNIM8TeBHYF/FE3U19HAjZLOJf3NbQn8uGykPvYC9pP0JukWY4234Tcn/SwXB54l7U51H+mipRb3SPoKMFLS+4Fvkbpc1GSe9u1AJS0NVHPRLGk54D/oW29dy8XowsB5wMukMq8fAJ8qmqgfsTNj94rFWV1usIUSkjayfUWBWO0Zqt2Tu5PSNNLngHVtf790HujZwrC1ACEfu9X22qWztZO0EtB64f1zbc3LJY0grTpe2vYhksYDi9m+uXC0qSTdSfoZ/ikvOvk4sJ3trxeONpWkMcD+9KyIvxw41Pbr5VL1Jmlj4ERSWyyRLgB2tX150WBZ/j3/irSj4NR6a9sTioVqM8BWqlOff2oh6TJ6dmZs/zkePeA3hUaIgWsXa18oYbuqhRJN1lqtWjoHgKSbbK8r6XLg58CTwHm2ly0cDUljbb+cSwP6sP3P2Z1pIJKOJ93S/oTtFXNt3BU1XQBIus32Wnlgs4btdyTdaXu10tlaJK1pe2LpHEPJs3Er5If317TTV+titHSOTpJ2A3Yn3XZvXxA6H3C97e2KBBuApLttr1w6Rxh+USrQ3X5I34USS5cMBI1bJd2+1/UIUheEamaPgEMlzQ98BziW1ANy77KRpjqTVMIwgd6/79be8DXVna1je828K1prAVltPT5flDQvqR/zGZKeBV4pnKnT0XkL4vOAs23fXTpQJ0k7dBxaTRK2TysSKGu7wLtY0u7ABfTegKD0hd6ZwB+Bw4D2O06TK8jWn0bszBimX8y4drG22bipM4Q13tKpmaRT2h6+DTwKnGT72TKJwqwg6Wbgw8CteQC7MGnGtYqZdZi6ePE10gXUtsD8wG9qGzTkgevWwDakC6mzbR9aNlWP3G6qZTTwSWCi7S0LRQIg7yBo+l97YNs1XehVT9K9wPuAmndmDDMgBq5dTNKvgatIV8dfJC2UGGX7m0WDhWGTF3IcDyxqe2VJqwKbVzZQuMr2J4c6VpKkbUkDrTWBU0kLyA6wfW7RYG0kHd7Zsqu/Y7WQtAqp48U2tmubvZ5K0gLAWbabspVpmAaS3tvf8aZ0jAkDq2nP9TD89iStOH4D+C1pFei3iyZqGEnLSLpY0j8kPSvpwor6UkLqwrAfudm27buALxVNlEkanW9/LiRpnKQF89tSwBJl0/Vm+wzSIOsw4Cng8zUNWrMN+zlW1bbJklaU9EOlDTyOJXUUeE/hWEN5BSheQtUiaY88mG49HpdLB8L0mdzP25NFE4VhETOucwhJI4F5bL9cOkuTSLoJ+AVp4A9pULin7XXKperR6iDQUQ5yh+3VK8i2F+lCaXHgCXpugb5MKrc4rlS2JmnSohhJN5Las51ju8pBgnrvoDUSWJGUt5ZOIX3O35oWhDaFpEeBJYEXSM89C5B2z3oG2KWWLg1h+sXirC4m6UxSb88pwK3AWEnH2D6ybLJGGWP79LbHv5G0b7E0fT0naVnyC7GkLUkzhsXZPgY4RtKeto8d8hvCQBqzKMb2eqUzTIOj2j5+G3jM9v+UCtOPkZLkPKuUJx2qLbWo2JWkDiuXQ2r/SCqZOwX4JVDF5EOYfjHj2sVaV+65fm9N0ovehChOn3aSDiddsZ9FGhxuA4wDjoTyK31z2cKJpIVFL5AWImxn+9GSudpJ2gq4zPZkSQeQ/hYPbULbpNrkQcyi9G6oXnznLEnn2N46lwj06SBR23OOpEWBVquzW2pabCnpSFJv2RPyoV2Bx21/p1yq5pE0yfYqHcfusr1qLXelwoyJgWsXk3QPsDppxuY429fW1vexdnml70CqWembV5yPsD25dJZObS8W6wOHkgb9P6il3KIpJP07qcXdM/Rso1rFoFDSYrafasKCGElbk/4GryENrDcA9rV9XslcLUqbYexK6nYAaebwZNtTBv6u0EnSFaTFyWflQ9uQ6sQ3JncPKZUtzJwYuHYxSd8CvgfcCWwCjCe1z9mgaLAwbCT9BDjC9ov58TjgO7YPKJusR6s+T9JhwCTbZ0bN3vST9BCp3+zzpbM0Wd7AYcPWLGtuffanmi7oNciOh2HaSFoIOAhYPx+6HjiYtJvWeNsPlcoWZk4MXOcwkuay/XbpHE0haRSwG/Bv+dA1wAm23yoWqk1/A0D1syVjSZIuIS3O2pBUJvAa6fZsNQOFJpB0NWnAVd3527BNRXrdQs4znHd23lYuRdLmpBnh2PEwhH7E4qwuJ2kTUkus0W2HDykUp4mOB0aRivkBts/Hdi6WqLeRkt7V2rIyz9S8q3CmTluTbs8dZftFSYsBNS1wa4qHgWskXUrvHZX+s1ykqRnmK51hOlymtEVyq1PINsAfCubpdBAV7njYFJJ+ZvvbHd0jpooLgOaLgWsXk/QrYAzwceBkUlP1W4qGap61O2YG/5xvNdbiDOCqth2+diI10K/JQsBtAJLG52P3l4vTWH/Pb3MTq8xnmO19JX0R+Eg+dKLtC0pm6vCW7ZekXhtoxa3RadfqAnPUoF8VGitKBbpY26KY1vt5gT9Gjeu0kzQR2Mr23/LjZUgtVmq6Ff8Z2hZytNq/1KJtpblIM/9LAw/Y/kDRYA0laYztV0vnCLNG7Hg4/HLt/5J5g5bQcDHj2t1ey+9flbQ48DywWME8TbQvcLWkh/PjpUizmtWw/UdSn88q9dOSZk1SQ/0wHSStB/wamBcYL2k1YFfb8bOcBg2qw90T2J9UDnImcDmpG0eYDpKuATYnjXMmAM9Kut72PkWDhZkWA9fudkneOvBIYCLpSfvkspEa53pSP8VPAi+SXkRuLJqojaQtgMOBRUgvwLW9CPdhe6KkaIU1/X4GfBq4CMD2nZL+bfBvCS1NqcPNs+n7S/pxzKzPlPltvyxpZ+A02wdJihnXLhAD1y5m+0f5w/Pzyu7Rtl8qmamBTiNtUdr6WX6FVEO1VbFEvR0BbGb7vtJBBiKpfYZjBKmzQJXbgdbO9uMdtY/R27PLSPowaYIhZtZnzlx5IejWpBns0CVi4NrFJI0BvkPqWbeLpPGSNrB9SelsDbKy7ZXaHl8t6d5iafp6puZBa9Y+0/U2cClwfqEsTfZ4HtQ4t2nbC6j9dx+m30+JmfXhcAjpDtlfbd+a1yc8WDhTGAYxcO1up5Bqe1r7hz8BnAvEwHXaTZS0ru2bAPIt7tsKZ2p3m6Szgd/Tu0XS78pF6s32wQB5cSC2/1U2UWN9EzgGWIJ0Ll8B7FE0UZglYmZ95tk+l/R613r8MGmxGwCS9rN9WIlsYebEwLW7LWt7G0lfhlQ7pY5nwzCkDwI3SGrtBz8eeKC1Ur6C7TbHAq8CG7UdM1DNwFXSyqTyigXz4+eAHW3fXTRYw9h+Dti2dI4wy8XM+uyxFRAD1waKgWt3ezM3pDeApGVpm5UL02Tj0gEGY7uqDgcDOBHYx/bVAJI+lo99uGSopslN6PckdbaY+twdDdW7TvvM+pOk290xsz78YhKnoWLg2t0OAi4DlpR0Bqnh9leLJmoY24+VzjAYSaOBr9OxO5rtrxUL1dc8rUErgO1rJM1TMlBD/Z7UDuti4J3CWcIsEjPrs000sW+oGLh2MdtX5gb665KuLvfKT4qhe5xO2oXq06TFCNtS323FhyUdSM+ONtuRti8N0+d12z8vHSLMWnkR0TGk522T2u/tnWs0w/CJGdeGip2zulBu8D4g2xNnV5Ywa0m63fYabbujjQL+Ynvd0tla8q41BwPrk16I/wIcbPuFosEaRtJXgPeTFmW1L8SL87mLSLoJ+AXw23zoS8CetqP38TCS9P9s/6R0jjD9YuDahSRdPcinbfsTsy1MmKUk3WL7Q5KuI+1G9TRwi+1lCkcLw0zSYcD2wN/oKRWI87nLtC5CO47daXu1UpmaSNJywPHAorZXlrQqsLnt2IWs4WLgGkKD5V1hzgdWAf6b1LT8QNsnlMzVTtKVwFa2X8yPxwFn2f502WTNIukhYCXbb5bOEmYdSYcDLwBnke5QbAOMI+2AiO1/lkvXHJKuJW3ZfYLtNfKxu22vXDZZmFlR49rF8gYE+5A2IPiGpPcDy8cGBM3XsRtVq7PAL/L72hY+LdQatALYfkHSIiUDNdTdwALAs6WDhFlq6/x+V3oWEIlUMmAg7qZMmzG2b+noAPl2qTBh+MTAtbu1NiBotR2KDQi6R2s3quWBtcm77ACbAbcUSTSwdySNt/13AElLESt6Z8QCwP2SbqV3jWu0w+ou3wMus/1yXtS4JvCjqGWebs/lFpCtdpBbAk+VjRSGQ5QKdDFJt9leq7WAJx+LWqkukmtbN7E9OT+eD7jUdjVbREramNS39VrSzNEGwDdsX140WMNI+mh/x21fO7uzhFmnbaHl+sCPgKOAH8TirOmTuzO0+kW/ADwCbGf70ZK5wsyLGdfuFhsQdL9FgfaaxzfzsWrYvkzSWsA3gNtJ/UhfK5uqeWKAOsdobe+6CXCS7UslxYKi6ZTbh30q94we0bq4D80XA9culbd2/RWxAUG3Ow24RdIF+fHnSYu0qpEXkO0FvAe4g9Sf8kYgVsNPB0mT6SmxmBsYBbxie2y5VGEWeELSCcCGwOGS3gWMKJypcSQtAOxA3mmuVetq+1sFY4VhEKUCXUzSJOBj9GxAcFNsQNB9ct/eDfLD62zfXjJPp/x3uDbp7291SSsAP7G9ReFojZUvTD8HrGv7+6XzhOGTF9VuDEyy/aCkxYBVbF9ROFqjSLoBuAmYRNtOc7ZPLRYqDIsYuHYxSacCx9m+tXSWMOeSdKvttSXdAaxj+w1J99j+QOlsTddevx5C6CFpou1BN+MJzRSlAt1tHWBbSY8Br5BmXd3Z3DqEWex/8m273wNXSnoBeKxwpsaR1D5DPQJYC3i9UJwQane6pF1IXXTau3BEH9yGixnXLibpvf0dtx2DhlBEXhk/P6ndTzTSnw6STml7+DbwKGnxTvR1DaGDpD2AHwMv0lMb7thVsPli4BpCCJWTNBL4lu2fls4SQhNIehj4UKzr6D6xUjGEECpnewrw5dI5QmiQh4BXS4cIwy9qXEMIoRmul3QccDapZh2A2FEphH69Atwh6Wp617hGO6yGi1KBEEJogPwC3Mm2ox9uCB0k7djf8WiH1XwxcA0hhAaQtEzeDWjQYyGE0M1i4BpCCA3QX19KSRNsf7BUphBqI+kc21vnjU86Bzi2vVqJXGH4RI1rCCFULO809gFg/o5ermOB0WVShVCtvfL7+4B9244LOGL2xwnDLQauIYRQt+WBTYEFgM3ajk8GdimSKIRK2X4qf/i+zp7l+SIwNFyUCoQQQgNIWs/2jaVzhFAzSbsBuwPLAH9r+9R8wPW2tysSLAybGLiGEEIDSDoCOBR4DbgMWBXY2/ZvigYLoSKS5gfGAYcB32/71OTY7rU7xMA1hBAaQNIdtleX9AVS6cA+wHWx2CSEMCeJnbNCCKEZRuX3mwDn2n6pZJgQQighFmeFEEIzXCzpflKpwG6SFgZeL5wphBBmqygVCCGEhpC0IPCS7SmSxgBjbT9dOlcIIcwuMeMaQgjNsQKwlKT25+7TSoUJIYTZLQauIYTQAJJOB5YF7gCm5MMmBq4hhDlIlAqEEEIDSLoPWMnxpB1CmINFV4EQQmiGu4F3lw4RQgglRalACCE0w0LAvZJuAd5oHbS9eblIIYQwe8XANYQQmuGHpQOEEEJpUeMaQgghhBAaIWZcQwihYpL+ant9SZNJXQSmfgqw7bGFooUQwmwXM64hhBBCCKERoqtACCGEEEJohBi4hhBCCCGERoiBawghhBBCaIQYuIYQQgghhEaIgWsIIYQQQmiE/wXNHLmmwQtm6gAAAABJRU5ErkJggg==\n"
+ "image/svg+xml": "\n\n\n\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAJYCAYAAABIA98BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdf3zN9eP///txbDOxtthWGi8/iii/iizl15Qhw6yXprD2Kf1ghldWZKSQGC0sCb1qFcWL+TGyeUcvefm9oiU/yguh2kbDGGM753z/6Ps6pbETmefzOLfr5XIul53neZ7n834O6bH7eZzH0+JwOBwCAAAATKyC0QEAAAAAVxi0AgAAwPQYtAIAAMD0GLQCAADA9Bi0AgAAwPQYtAIAAMD0GLQCAADgiqSnp6tr16566KGHNG/evFKPf/vtt4qKilL37t31zDPPqKCg4IrPxaAVAAAAly03N1fJycmaP3++li1bpgULFmjfvn0X7DNhwgTFx8dr+fLlqlOnjt59990rPh+DVgAAAFy2jRs3KjQ0VP7+/qpcubLCw8OVkZFxwT52u12FhYWSpLNnz6pSpUpXfL6KfyktAAAArisFBQUX/Rjfz89Pfn5+zvt5eXkKDAx03g8KClJ2dvYFzxkxYoRiY2P12muvydfXVwsXLrziXAxaTab42H6jI5TJt0YboyO4tDmopdERXMqyVDE6gku1zpcYHaFMcba9Rkdw6ckbGhkdwaUdOm10BJcqymJ0hDJVs/gYHcElq8nfQ0nycYOMkw9+bHQESeU/Vkj9eKVSUlJKbY+Li9PgwYOd9x0OR6l9LJbf/hyLioo0atQopaamqkmTJnrvvff04osvavbs2VeUi0ErAAAAnGJiYhQZGVlq++9bVkkKDg5WVlaW835eXp6CgoKc97/77jv5+PioSZMmkqRHH31U06ZNu+JcDFoBAADcid1Wrof/4zSAS2ndurVmzJih/Px8+fr6avXq1Ro3bpzz8b/97W/KycnR/v37VbduXa1Zs0aNGze+4lwMWgEAAHDZgoODNWzYMPXv31/FxcV65JFH1KRJEw0YMEDx8fFq3LixJk6cqKFDh8rhcKhatWp67bXXrvh8DFoBAADcicNudAKniIgIRUREXLBtzpw5zp/btWundu3aXZVzseQVAAAATI+mFQAAwJ3YzdO0Xks0rQAAADA9mlYAAAA34jDRnNZriaYVAAAApkfTCgAA4E6Y0woAAACYE00rAACAO2FOKwAAAGBONK0AAADuxG4zOoEhaFoBAABgejStAAAA7oQ5reaQlpamESNGGB3D6c/kWbBggVasWHGNEgEAAHge0w1a3dH27dt1/vx5o2MAAABPYLeX782krun0gC1btigpKUl2u1233nqrKleurO+//142m00DBgxQt27dLtg/OztbEydOVFFRkQICAvTKK6+oZs2a2rp1q5KTk1VUVKSTJ08qISFBXbp0UXp6uubOnSur1aqQkBAlJSXJx8dHs2fP1qpVq2Sz2fTAAw8oISFBFovlkjmXLl2qt99+W1WqVHHmlKRVq1bpvffeU1FRkc6dO6fx48eruLhYa9eu1ebNmxUYGKiGDRtqzJgxysnJkcVi0fPPP6/WrVuXOkdBQYEKCgpKbQ+u9BffZAAAcF3z1Mu4XvM5rQcPHtTnn3+ud955R0FBQZo0aZJOnz6t6OhoNW3a1Lnf+fPnlZiYqFmzZqlGjRpav369Ro8erffff18fffSRxo8fr3r16mnTpk167bXX1KVLF7355ptauHChqlWrpuTkZO3fv19Hjx7Vzp07tWjRIlksFiUkJGj58uXq0aPHRfPl5uZqypQpWrp0qfz9/fXMM8+ocuXKstvt+uSTTzRr1izddNNNWrRokd59913NmjVLYWFhuvfee9WmTRsNGzZMUVFR6tixo/Ly8vTYY49p6dKlqlKlygXnSU1NVUpKSqnz79yw6uq+4QAAANeBaz5orVOnjqpWraqNGzeqqKhIixcvliSdOXNG33//vXO/gwcP6vDhw3ruueec206fPi1JSkpK0ueff66MjAx9/fXXKiwslCR16NBBffr0UceOHRUeHq6GDRtq+fLlys7OVq9evSRJRUVFqlGjxiXzbd++Xc2bN1f16tUlSREREdq8ebMqVKigt956S2vXrtWBAwe0detWVahQenbFxo0btX//fk2fPl2SVFJSosOHD6thw4YX7BcTE6PIyMiLJGCaAQAAKIOJP8IvT9d80Fqp0q+ff9vtdiUlJenOO++UJB07dkw33nij0tPTnY+HhIRo2bJlkiSbzaZjx45Jkh577DG1atVKrVq10n333afhw4dLkhITE7Vnzx6tW7dOCQkJiouLk81mU0xMjGJjYyX9+rG81Wq9ZD6LxSL77/4yVKz461tUWFioqKgo9ejRQy1btlSDBg00b968Us+32+1KTU2Vv7+/pF+b2/8NgH/Pz89Pfn5+pbYXH9tf1tsHAADgkQz7IlZoaKg+/vhjSVJeXp66d++un3/+2fl43bp1dfLkSWVlZUmSFi9erOHDh+vEiRM6ePCghgwZonbt2mnDhg2y2WwqKSlRp06dFBAQoGeeeUY9evTQ7t27FRoaqmXLlqmwsFAlJSUaNGiQMjMzL5nrnnvu0ddff63c3FzZ7XZ9+umnkn5tfitUqKBnn31WoaGh+uKLL2Sz/bq4r9Vqdf4cGhqq+fPnS5L27dun7t276+zZs1f/DQQAAJ7JYS/fm0kZtk5rXFycxo4dq27duslmsykhIUG1atVyDlK9vb01bdo0TZgwQefOnVOVKlU0adIk+fv76+9//7sefvhhValSRc2aNVNRUZHOnz+v+Ph4xcbGqlKlSvLz89OkSZMUHBysPXv2qHfv3rLZbGrTps0lPpb/VfXq1ZWYmKgnnnhCvr6+uu222yRJd9xxhxo2bKguXbqoUqVKatmypX766SdJUuvWrfXGG2+oatWqSkxM1JgxYxQRESFJmjx5cqn5rAAAALg8FofD4TA6BH5j9ukBvjXaGB3Bpc1BLY2O4FKWxfy/yNQ6X2J0hDLF2fYaHcGlJ29oZHQEl3botNERXKqoS6/2YgbVLD5GR3DJavL3UJJ83CDj5IMfGx1BknRuz7pyPb7PHe3K9fhXyiOviFVUVKRHH330oo/Fx8erY8eO1zgRAAAAyuKRg9ZKlSo5v+AFAADgVkw877Q8cUUsAAAAmJ5HNq0AAABuy0PXaaVpBQAAgOnRtAIAALgT5rQCAAAA5kTTCgAA4E6Y0woAAACYE00rAACAG3E4bEZHMARNKwAAAEyPphUAAMCdsHoAAAAAYE40rQAAAO7EQ1cPYNBqMr412hgdoUxnf1pvdASXnmvxgtERXDps+8XoCC418PUzOkKZPj5fx+gILiXplNERXKpnucHoCC61O+swOkKZDnqb/3+lB63m/+JOkTxzIHZFmB4AAAAAmJP5fz0EAADAb+zmb87LA00rAAAATI+mFQAAwJ0wpxUAAAAwJ5pWAAAAd+KhS17RtAIAAMD0aFoBAADcCXNaAQAAAHOiaQUAAHAnzGkFAAAAzImmFQAAwJ3QtAIAAADmRNMKAADgRhwOm9ERDEHTCgAAANOjaQUAAHAnzGn1HFu2bFG/fv2u2vEOHz6sl156qVyODQAAAJrWq+Knn37S4cOHjY4BAAA8gYdeEcujB60//PCDxo4dqxMnTqhSpUoaPXq0GjVqpBEjRqhKlSr69ttvlZubq0GDBikqKkqnTp3SCy+8oEOHDqlmzZrKyclRSkqKxo8fryNHjuiVV15R586dlZ+frwEDBujQoUOqU6eOpk+fLm9vb6NfLgAAgNvy6EHriy++qDFjxqhRo0bat2+fBg0apMzMTElSTk6O5s+fr++++079+/dXVFSU3nrrLdWpU0dvv/22vvnmG/Xu3VuSlJiYqJSUFL388svasmWLfvrpJ82aNUu33nqrevfurY0bN6p9+/YXnLugoEAFBQXX+iUDAAB356FzWj120FpYWKjvvvtOI0eOdG47c+aMjh8/Lkm6//77ZbFYVL9+fZ04cUKStGHDBk2ZMkWS1LhxYzVo0OCix77jjjtUs2ZNSVK9evWcx/y91NRUpaSkXNXXBAAAPADTAzyL3W6Xt7e3li1b5tyWk5Mjf39/SZKPj48kyWKxOB+3Wq1yOBwuj12x4m9vq8ViuehzYmJiFBkZWWp77bqt/vyLAAAA8BAeuXqAJFWtWlW1a9d2Dlo3bNigxx9/vMzntG7dWunp6ZKkvXv36vvvv5fFYpHValVJScllnd/Pz08hISGlbgAAAGWy28v3ZlIeO2iVpKSkJC1atEgRERGaOnWqkpOTL2hW/2jgwIE6dOiQIiIiNH36dFWvXl2VKlVSvXr1dOrUKSUkJFzD9AAAAJ7D4vgzn3dDkrRs2TKFhITonnvu0U8//aS+ffvqs88+U4UKV2/sX9H71qt2rPJw9qf1Rkdw6bkWLxgdwaXDtkKjI7jUwOpndIQyPX6+2OgILiV5Xd4nMEaoZ7nB6AgutTtr7v9NHfQ2/0y7g1bzX/azSOZt+P5n+sEFRkeQJJ3NLN/vxPiGx5Xr8a+U+f9LM5G6devq5Zdflt1uV4UKFfTqq69e1QErAAAALo5B62Vo3Lix0tLSjI4BAAA8mYnnnZYnakIAAACYHk0rAACAO6FpBQAAAMyJphUAAMCdeOgVsWhaAQAAYHo0rQAAAO6EOa0AAACAOdG0AgAAuBPmtAIAAADmRNMKAADgTpjTCgAAAJgTTSsAAIA7YU4rAAAA8Oelp6era9eueuihhzRv3rxSj+/fv1/9+vVT9+7d9eSTT+rkyZNXfC6aVpPZHNTS6Ahleq7FC0ZHcOntrMlGR3Bp5t1jjI7gktVmdIKyJViOGR3BpXDdbHQEl35WidERXFrga+6MVeUwOoJLN7hBR9XI5mV0BPdhkjmtubm5Sk5OVlpamry9vRUdHa1WrVrptttukyQ5HA4999xzGjVqlNq2baspU6Zo9uzZSkhIuKLzMWgFAABwJyYZtG7cuFGhoaHy9/eXJIWHhysjI0NxcXGSpG+//VaVK1dW27ZtJUnPPvusCgoKrvh8DFoBAADgVFBQcNHBpZ+fn/z8/Jz38/LyFBgY6LwfFBSk7Oxs5/1Dhw6pevXqevHFF7Vr1y7Vr19fo0ePvuJc5v+8AAAAAL9xOMr1lpqaqo4dO5a6paam/iFG6akxFovF+XNJSYm2bt2qvn37Kj09XTVr1tTrr79+xS+bphUAAABOMTExioyMLLX99y2rJAUHBysrK8t5Py8vT0FBQc77gYGB+tvf/qbGjRtLkrp166b4+PgrzsWgFQAAwJ2U85zWP04DuJTWrVtrxowZys/Pl6+vr1avXq1x48Y5H2/evLny8/O1Z88e3XHHHVq7dq3uvPPOK87FoBUAAACXLTg4WMOGDVP//v1VXFysRx55RE2aNNGAAQMUHx+vxo0b66233lJiYqLOnj2rm2++WZMnX/kKPwxaAQAA3IlJVg+QpIiICEVERFywbc6cOc6fmzZtqkWLFl2Vc/FFLAAAAJgeTSsAAIA74TKuAAAAgDnRtAIAALgTE81pvZZoWgEAAGB6NK0AAADu5CJXovIENK0AAAAwPZpWAAAAd8KcVgAAAMCcGLT+Tr9+/bRly5Y/vf+aNWs0bdo0SdL06dOVlZVVXtEAAAB+ZbeX782kGLT+BR07dtSQIUMkSdu2bZPNZjM4EQAAwPXJrQatW7ZsUd++ffXEE08oPDxcCQkJOn/+vBYvXqxu3bopIiJCI0aMUGFhoSQpNDRUI0eOVEREhKKjo3XkyBFJUlhYmPPnLVu2qF+/fhecp6SkRImJiXr00UfVsWNHPfXUUyoqKtKRI0fUuXNn9enTR0888YTS0tI0YsQILV26VDt37lRiYqL27t2r9u3by/7//6aydetWPfXUU9fwXQIAANc1h718byblVoNWScrOztaYMWOUkZGhc+fOafbs2Zo1a5Y+/PBDpaeny9fXVykpKZKk48eP695771V6eroefvhhjR8//k+dY/v27fLy8tKCBQv0f//3fzp37pzWrVsnSTpw4ICSkpL0/vvvO/fv2bOn7rrrLo0fP14NGjRQSEiIc5rBkiVL1KtXr1LnKCgo0JEjR0rdAAAAUJrbrR7QsmVL1a1bV5LUo0cPDR48WH379lVAQIAk6dFHH9XIkSMlST4+PurZs6ckKTIyUm+88cafPoe/v7/mzZun/fv36+DBgzpz5owkqVq1agoJCSnz+VFRUVq+fLmaNWumzZs365VXXim1T2pqqnNw/Xvz1PBPZQQAAJ7JYffMdVrdbtBqtVqdPzscDufH8L/fVlJSIkmqUKGCLBaLJMlut5d6riTnvr+3Zs0aTZ8+Xf3791evXr10/Phx5/6VKlVymbFz585KTk5WZmam2rZtK29v71L7xMTEKDIystT2nNA4l8cHAADwNG43PeDLL79Ubm6u7Ha7li5dqpEjR2rt2rU6ceKEJGnhwoVq1aqVJOns2bNau3atJCktLU1t27aVJAUEBGjfvn2Sfh2g/tGmTZvUpUsXRUVFqXr16n/qS1ZWq9W5j6+vr9q2bas33njjolMDJMnPz08hISGlbgAAAGVi9QD3EBQUpBdeeEFdu3ZVcHCw+vbtq2eeeUb9+vVT586dVVBQoKFDhzr3z8jIUEREhNavX6+XXnpJkhQfH68JEyYoKipKVatWLXWOv//971q5cqV69uypwYMHq1mzZi7nm7Zp00Yvv/yyvvrqK0nSww8/rCpVqqhp06ZX8dUDAACP56FfxLI4HO5zAdstW7YoJSVFH3744Z/av0GDBtq7d285pyrNZrMpOTlZ1apVU2xs7GU9NyukZzmlujpmVTT/jJK3syYbHcGlmXePMTqCS1aT/8uw0P6z0RFcCq94s9ERXPrZUnqKlNmckrkzVnWDmXY3uEFHVcdmdb2TwZ49/JHRESRJZ94eXK7Hr/zcjHI9/pUy/39pbigqKkoBAQF6++23jY4CAACuN3wRy/xatWrlnK/6ZxjRskrS0qVLDTkvAADA9cqtBq0AAAAez8RflipP5p/kAgAAAI9H0woAAOBOaFoBAAAAc6JpBQAAcCfus1rpVUXTCgAAANOjaQUAAHAnzGkFAAAAzImmFQAAwJ146BWxaFoBAABgejStAAAA7sTBnFYAAADAlGhaAQAA3ImHzmll0GoyWZYqRkco02HbL0ZHcGnm3WOMjuDSwK9eNTqCS73ujjc6QpmaewUaHcGlXJUYHcGljed+NDqCS119ahkdoUzpRQeNjuBSI58goyO45GO9wegIMDkGrQAAAG7EwTqtAAAAgDnRtAIAALgT5rQCAADA9FjyCgAAADAnmlYAAAB34qHTA2haAQAAYHo0rQAAAO6EJa8AAAAAc6JpBQAAcCfMaQUAAADMiaYVAADAnbBOKwAAAGBONK0AAADuhDmtAAAAgDnRtAIAALgRB+u0msOIESOUlpZmyLmPHDmisLCwiz42YMAA5ebmKi0tTSNGjLhg2+HDh/XSSy9dy6gAAAAehab1T5ozZ84lt23ZskWHDx++1pEAAIAn8tA5rYYPWh0Oh15//XX9+9//VlBQkGw2m+69914lJydr06ZNOnnypAICAjRjxgwFBgbqgQceUHh4uL788ktZrVa9+eabqlmzpjZu3KjXX39dDodDNWrU0NSpU+Xr66vJkydr69atstls6tWrl5544gmVlJRo7Nix+v7773Xs2DHVqVNHKSkpkqRz585pyJAhOnDggGrVqqUJEyboxhtvVFhYmD744IMLsv9v2/jx43XkyBG98sorOn36tFq0aKFHH31UktSvXz8NHz5cTZs2vebvLQAAwPXC8OkBmZmZ2rVrl1asWKFp06bp0KFDstls2r9/vz755BNlZmaqVq1aSk9PlyQdPXpU9913n5YuXaqWLVtq3rx5On/+vIYPH65JkyYpPT1dDRo00JIlS7Rw4UJJ0pIlS7Ro0SKtWbNGWVlZ2r59u7y8vLRgwQL93//9n86dO6d169ZJkn755Rf169dPy5cvV61atfTWW2+5fA2JiYm666679PLLLysqKkrLly+XJP3444/Kz8+/6IC1oKBAR44cKXUDAAAok91RvjeTMrxp3bp1qzp16iQvLy/ddNNNatu2raxWq1588UX961//0oEDB7Rjxw7VqlXL+Zw2bdpIkm6//XZlZWVp7969Cg4OVsOGDSVJ//jHPyRJ8fHx2r17tzZv3ixJOnPmjPbu3avHH39c/v7+mjdvnvbv36+DBw/qzJkzkqQ6deqoRYsWkqTu3bs756/+Wa1atdLo0aN15MgRLVu2TD169Ljofqmpqc529/eGqeVlnQ8AAMATGD5otVgssv/uW3AVK1bUiRMn9OSTT+qJJ55QeHi4KlSoIIfjt5G/j4+P87kOh0NeXl4XHPPUqVMqLCyUzWZTQkKCOnXqJEnKz89X5cqVtWbNGk2fPl39+/dXr169dPz4cefxK1a88C354/0/83p69uyplStXKiMjQ3Pnzr3ofjExMYqMjCy1fcV9lzdIBgAAHoYrYhnjvvvuU0ZGhs6fP6+TJ09q/fr1slgsuvfee9WnTx/ddttt2rBhg2w22yWPUadOHeXn52vfvn2SpLlz5+rjjz9WaGioFi5cqOLiYhUWFuqxxx7T119/rU2bNqlLly6KiopS9erVtW3bNufx//vf/2rXrl2SpEWLFql169YuX4PValVJSYnzfq9evfTJJ5/o5ptvVnBw8EWf4+fnp5CQkFI3AAAAlGZ40/rggw/qm2++Ubdu3VS9enXVq1dPRUVF2rNnjyIiIuTl5aUGDRqUOd/Tx8dHSUlJeuGFF1RcXKxatWpp8uTJ8vb21g8//KDIyEiVlJSoV69eatWqlfz9/TV8+HBlZGTI29tbzZo1cx7/f/NYDx06pPr162vYsGEuX0O9evV06tQpJSQkKCkpSbfccotuueWWizapAAAAf4mJ552WJ4vj95+74y9zOBzKy8tTv379tGLFCnl7e1/W82fV7FtOya6OJfrF6AgudbVUMzqCSwO/etXoCC71ujve6AhlqluhitERXHLI/P+8/ufcj0ZHcKmrTy3XOxkoveig0RFcauQTZHQEl2633GB0BJdePTjP6AiSpFNDI8r1+FXfTC/X418pw6cHXG8yMzPVo0cP/eMf/7jsASsAAAAuzvDpAdebzp07q3PnzkbHAAAA1ysPnR5A0woAAADTo2kFAABwJ3aWvAIAAABMiaYVAADAnTCnFQAAADAnmlYAAAB3QtMKAAAAmBNNKwAAgBvx1IuZ0rQCAADA9GhaAQAA3AlzWgEAAABzomkFAABwJx7atDJoNZla50uMjlCmBr5+RkdwyWozOoFrve6ONzqCS2lfTTc6Qplq3x5hdASXRldpbnQEl2p41zY6gksZJTlGRyjT//Oua3QEl76ynDU6gksVPXMchsvAoBUAAMCNODy0aWVOKwAAAK5Ienq6unbtqoceekjz5s275H7//ve/FRYW9pfORdMKAADgTkzStObm5io5OVlpaWny9vZWdHS0WrVqpdtuu+2C/Y4dO6ZJkyb95fPRtAIAAOCybdy4UaGhofL391flypUVHh6ujIyMUvslJiYqLi7uL5+PphUAAMCd2Mv38AUFBSooKCi13c/PT35+v30hOy8vT4GBgc77QUFBys7OvuA5H3zwgRo1aqSmTZv+5VwMWgEAANxIeX8R64PUVKWkpJTaHhcXp8GDB/+W4yKXk7VYLM6fv/vuO61evVrvv/++cnL++iogDFoBAADgFBMTo8jIyFLbf9+ySlJwcLCysrKc9/Py8hQUFOS8n5GRoaNHjyoqKkrFxcXKy8vTY489pvnz519RLgatAAAA7qScm9Y/TgO4lNatW2vGjBnKz8+Xr6+vVq9erXHjxjkfj4+PV3z8r+uSHzlyRP3797/iAavEF7EAAABwBYKDgzVs2DD1799fPXv2VLdu3dSkSRMNGDBA33zzzVU/H00rAACAOynnL2JdjoiICEVEXHiFwjlz5pTaLyQkRGvXrv1L56JpBQAAgOnRtAIAALgRLuMKAAAAmBRNKwAAgDsx0ZzWa4mmFQAAAKZH0woAAOBGmNMKAAAAmNR1P2gdOXKkfvzxR0nSgAEDlJuba3AiAACAv8BezjeTuu4HrVu2bJHD8WuNPmfOHAUHBxucCAAAAJfrms5pLSkp0dixY/X999/r2LFjqlOnjlJSUvTJJ5/o448/ltVqVYcOHZSQkKBjx45p1KhR+umnn1SxYkUNGzZMbdu21YwZMyRJgwcPliSFhYXpgw8+0OnTpzVmzBiVlJTIx8dHEydO1OrVq5WXl6enn35a8+bNU1RUlD744AMFBgbqlVde0ZdffikvLy8NHDhQXbt2VVhYmLp3767//Oc/Onv2rCZNmqS77rpLP/zwg8aOHasTJ06oUqVKGj16tBo1aqT09HTNnTtXVqtVISEhSkpK0vHjxzV8+HCdOXNGFSpUUGJiopo1a1bqvSgoKFBBQcG1fPsBAMB1wGHiNrQ8XdNB6/bt2+Xl5aUFCxbIbrcrJiZGH3zwgRYtWqTFixfL19dXTz31lHbu3Kk5c+YoNDRUsbGxOnz4sPr06aOlS5de8tipqamKjY1Vly5d9Omnn2rHjh16+umn9cknn2j27NkKCAhw7vvhhx/qzJkzWrVqlX755Rc98cQTevDBByVJ/v7+WrRokT788EO98847mjFjhl588UWNGTNGjRo10r59+zRo0CBlZmbqzTff1MKFC1WtWjUlJydr//79WrNmjdq3b6+nnnpKW7Zs0ZdffnnRQWtqaqpSUlJKbU9W86vwTgMAAFxfrumgtWXLlvL399e8efO0f/9+HTx4UK1atVKHDh1UtWpVSdL7778vSdq8ebPGjx8vSapZs6aaNm2qr7/++pLHbteunV599VWtX79eHTp0UHh4+CX33bZtm3r37q0KFSooMDBQK1eudD7Wpk0bSdLtt9+u1atXq7CwUDt37tTIkSOd+5w5c0bHjx9Xhw4d1KdPH3Xs2FHh4fCYrxkAACAASURBVOFq2LChzpw5o8GDB2v37t1q166d+vbte9EMMTExioyMLLU9+57hl8wNAABg5nmn5emaDlrXrFmj6dOnq3///urVq5eOHz+uqlWr6tSpU859cnNz5evr65yH+j8Oh0M2m00Wi0V2+29/WsXFxZKkzp07q3nz5vr888+VmpqqdevWOQe9f1Sx4oUv+4cfftAtt9wiSfLx8ZEkWSwWSZLdbpe3t7eWLVvm3D8nJ0f+/v5KTEzUnj17tG7dOiUkJCguLk49evTQypUr9e9//1uffvqplixZovfee69UBj8/P/n5+ZXann3ptw8AAMBjXdMvYm3atEldunRRVFSUqlevrm3btslms+mLL75QYWGhSkpK9Pzzz2vnzp0KDQ3VokWLJEmHDx/WV199pWbNmikgIED79u2TJGVnZ+vo0aOSpKFDhyo7O1vR0dEaMmSIdu3aJUmyWq2y2WwX5GjZsqVWrVolh8OhX375RX379tX58+cvmrlq1aqqXbu2c9C6YcMGPf744yopKVGnTp0UEBCgZ555Rj169NDu3bs1efJkLVu2TJGRkRozZowzBwAAwNXgsJfvzayuadP697//XcOHD1dGRoa8vb3VrFkznTx5Un379lV0dLTsdrseeughtW7dWvXq1dOYMWOUlpYmSRo/fryCgoLUtWtXZWZmqmvXrrrzzjvVqFEjSdKzzz6rUaNGaebMmbJarRoxYoQkqX379nr66ac1d+5cZ47HHntM48ePV/fu3SVJo0ePVpUqVS6ZOykpSWPHjtXcuXPl5eWl5ORkeXl5KT4+XrGxsapUqZL8/Pw0adIk2e12Pf/881qyZImsVqtefvnl8no7AQAAPIbF8cfP4WGoT4OjjY5Qpgxf8/91qW/zMjqCS5mWE0ZHcCntq+lGRyhT7dsjjI7g0ugq5v9i5Qk3WPgww5ZjdIQyRVa42egILn1V4azREVyq56hkdASXxvwwz+gIkqRj4e3K9fjVM9eV6/GvlBv8cwUAAABPd02nBwAAAOCvMfO80/LEoBUAAMCNeOqglekBAAAAMD2aVgAAADdC0woAAACYFE0rAACAO3FYjE5gCJpWAAAAmB5NKwAAgBthTisAAABgUjStAAAAbsRhZ04rAAAAYEo0rQAAAG6EOa0AAACASdG0mkycba/REcr08fk6RkdwKcFyzOgILjX3CjQ6gku1b48wOkKZDn6fbnQEl4a0GGF0BJfusnkbHcGlzMyRRkco0wsPzzE6gkt9z5r/f/dveOcbHcFtOFinFQAAADAn8//qBQAAACfmtAIAAAAmRdMKAADgRlinFQAAADApmlYAAAA34nAYncAYNK0AAAAwPZpWAAAAN+Kpc1oZtAIAALgRTx20Mj0AAAAApkfTCgAA4Eb4IhYAAABgUjStAAAAboQ5rQAAAIBJ0bQCAAC4EYeDphUAAAAwJZpWAAAAN+KwG53AGDStAAAAMD2PaVpnz56tVatWyWaz6YEHHlCfPn00ePBg3X777dq9e7eqVaumadOmyd/fX1988YWmT5+ukpIShYSEaNy4cQoICFBYWJiaNGmi3bt3a/78+Vq5cqU++ugjVa1aVXXr1lWtWrV08803a/PmzZo6daokKSUlRd7e3nr66acNfgcAAMD1wM6c1uvXF198oZ07d2rRokVaunSpcnNzlZ6erj179ig2NlYrVqyQn5+f0tPTlZ+fr6lTp+rdd9/V0qVL9cADD2jKlCnOY7Vt21aZmZk6evSo5s2bp7S0NM2fP18//PCDJKlr167atGmTCgsL5XA4lJ6erh49epTKVFBQoCNHjpS6AQAAoDSPaFo3bdqk7Oxs9erVS5JUVFQkh8OhatWqqVGjRpKk22+/XSdPntTXX3+tn3/+Wf3795ck2e123Xjjjc5jNW3a1HnMDh06qEqVKpKkhx9+WAUFBbrhhhvUrl07rV69WjVr1lTNmjUVHBxcKlNqaqpSUlIukrby1XzpAADgOuOpqwd4xKDVZrMpJiZGsbGxkn5tOXNycrRjxw7nPhaLRQ6HQzabTXfffbdmzZolSTp37pwKCwud+/n4+EiSKlSoILv94jOho6Ki9PbbbyskJMQ5UP6jmJgYRUZGltretlnElb1IAACA65hHTA8IDQ3VsmXLVFhYqJKSEg0aNEg7d+686L5NmzbVjh07dODAAUnSzJkzNXny5FL73XfffVq3bp1Onz6t8+fPa/Xq1bJYfv3Np0WLFsrJydGWLVv04IMPXvQ8fn5+CgkJKXUDAAAoi8NuKdebWXlE0xoWFqY9e/aod+/estlsatOmjVq2bHnRfQMDA/Xaa69p6NChstvtCg4OVlJSUqn96tevr/79++vRRx9V5cqVFRAQ4GxhJemhhx7SiRMn5O3tXW6vCwAAwFN4xKBVkgYOHKiBAwdesG3t2rXOnwcPHuz8OSwsTGFhYaWO8fv9Dxw4oOLiYq1cuVKS9Nxzz6levXpyOBwqLi7Wtm3b9NJLL13tlwEAADycw2F0AmN4xPSA8nDrrbfqm2++Ubdu3RQREaHatWurQ4cOOnr0qO6//341bdpUd955p9ExAQAArgse07Rebd7e3s61WH8vKChI27ZtMyARAADwBGaed1qeaFoBAABgejStAAAAbsRTr4jFoBUAAMCNeOrFBZgeAAAAANOjaQUAAHAjLHkFAAAAmBRNKwAAgBvx1C9i0bQCAADA9GhaAQAA3AirBwAAAAAmRdMKAADgRlg9AAAAADApmlYAAAA34qmrB1gcDk8tmc1pwt8eNzpCmbbrlNERXGquqkZHcCnXUmJ0BJca2byMjlCmbOt5oyO4NC3rdaMjuDSuxWijI7h0WEVGRyhTRTf40NLHDTL6y2p0BJfGH5xvdARJUlZIz3I9fosjS8v1+FeKphUAAMCNsHoAAAAAYFI0rQAAAG7EU+e00rQCAADgiqSnp6tr16566KGHNG/evFKPf/bZZ+rRo4e6d++ugQMH6uTJk1d8LgatAAAAbsRRzrc/Kzc3V8nJyZo/f76WLVumBQsWaN++fc7HT58+rbFjx2r27Nlavny5GjRooBkzZlzx62bQCgAAgMu2ceNGhYaGyt/fX5UrV1Z4eLgyMjKcjxcXF2vs2LEKDg6WJDVo0EA///zzFZ+POa0AAABupLzntBYUFKigoKDUdj8/P/n5+Tnv5+XlKTAw0Hk/KChI2dnZzvsBAQF68MEHJUlFRUWaPXu2+vXrd8W5GLQCAADAKTU1VSkpKaW2x8XFafDgwc77F1vq32IpPaA+deqUBg4cqDvuuEORkZFXnItBKwAAgBsp73VaY2JiLjq4/H3LKknBwcHKyspy3s/Ly1NQUNAF++Tl5enJJ59UaGioXnrppb+Ui0ErAACAG7GX8/H/OA3gUlq3bq0ZM2YoPz9fvr6+Wr16tcaNG+d83Gaz6dlnn1WXLl00cODAv5yLQSsAAAAuW3BwsIYNG6b+/furuLhYjzzyiJo0aaIBAwYoPj5eOTk52rVrl2w2mzIzMyVJd911lyZMmHBF52PQCgAA4EYcMs/FBSIiIhQREXHBtjlz5kiSGjdurD179ly1c7HkFQAAAEyPphUAAMCN2C/nCgDXEZpWAAAAmB5NKwAAgBuxm2hO67Xksmn95ptvNGrUqMs66P8WkTWDBQsWaMWKFWXuM2PGjL90LVwAAACUL5dNa+PGjdW4cePLOujJkyev6rfF/ort27fr3nvvNToGAADAVWGm1QOuJZeD1i1btjgv5dW4cWN9+eWXys/PV2Jiotq1a6f09HTNnTtXVqtVISEhSkpK0vjx45WXl6dBgwZp5MiReuqppxQQECAfHx91795dW7du1euvvy5J6tevn+Li4iRJs2bNksPh0KFDhxQeHq6qVavqs88+kyTNnj1b1atX1xdffKHp06erpKREISEhGjdunAICAhQWFqbu3bvrP//5j86ePatJkyapoKBAa9eu1ebNmxUYGKjg4GCNGzdOZ86cUX5+vmJjY9W/f/8LXu8DDzyg8PBwffnll7JarXrzzTdVs2ZNZWdna+LEiSoqKlJAQIBeeeUV1axZU++9956WLFmiChUqqEmTJnr11Ve1Z88ejRkzRiUlJfLx8dHEiRNVu3btq/nnBgAA4FEu64tYxcXFWrBggUaOHKlp06ZJkt58803985//VFpamurUqaP9+/crMTFRQUFBeuuttyRJBw4cUFJSkt5///0yj//1119r4sSJWrlypT755BPddNNNSktLU4MGDbRy5Url5+dr6tSpevfdd7V06VI98MADmjJlivP5/v7+WrRokaKjo/XOO++odevWCgsLU3x8vNq0aaN//etfGjhwoBYvXqwPPvhAycnJpTIcPXpU9913n5YuXaqWLVtq3rx5On/+vBITEzV16lQtWbJEsbGxGj16tEpKSvTOO+9o8eLFSktLk8ViUW5urlJTUxUbG6u0tDT169dPO3bsKHWegoICHTlypNQNAACgLPZyvpnVZX0Rq02bNpKk22+/XSdOnJAkdejQQX369FHHjh0VHh6uhg0blhp8VatWTSEhIS6PX79+fd1yyy2SpICAAN13332SpBo1aqigoEBff/21fv75Z2c7arfbdeONN1403+rVq0sdf8SIEVq/fr3eeecd7d27V2fOnHH5OrOysnTw4EEdPnxYzz33nHOf06dPq2LFimrevLkeeeQRdezYUY8//riCg4PVrl07vfrqq1q/fr06dOig8PDwUudITU11Nti/118tXL5PAAAAnuayBq0+Pj6SJIvlt7kUiYmJ2rNnj9atW6eEhATFxcXpnnvuueB5lSpVcv5ssVjkcPy2wFhxcbHzZy8vrwueZ7VaL7hvs9l09913a9asWZKkc+fOqbCwsMx8vzd06FD5+fmpQ4cO6tq1q1auXOnydTocDtntdoWEhGjZsmXOHMeOHZMkzZw5Uzt27NAXX3yhp556SlOmTFHnzp3VvHlzff7550pNTdW6des0fvz4C84RExOjyMjIUudOvf/Fi2YCAACQPHdO619ap7WkpESdOnVSQECAnnnmGfXo0UO7d+9WxYoVVVJSctHnBAQE6L///a8cDocOHz6svXv3/unzNW3aVDt27NCBAwck/TpgnDx5cpnPsVqtstlskqQNGzYoPj5eDz74oLZt2yZJzsfKUrduXZ08eVJZWVmSpMWLF2v48OHKz89Xly5dVL9+fQ0ZMkT333+/9u7dq6FDhyo7O1vR0dEaMmSIdu3aVeqYfn5+CgkJKXUDAABAaX9pndaKFSsqPj5esbGxqlSpkvz8/DRp0iTddNNNqlGjhvr166eJEyde8JzWrVtr8eLF6ty5s+rUqVOqlS1LYGCgXnvtNQ0dOlR2u13BwcFKSkoq8zmtW7fWG2+8oapVq2rw4MF67LHH5Ofnpzp16ujWW2/9U/NIvb29NW3aNE2YMEHnzp1TlSpVnK8zOjpajzzyiHx9fXXLLbcoMjJSLVu21KhRozRz5kxZrVaNGDHiT79GAACAsph53ml5sjh+/1k9DDfhb48bHaFM23XK6AguNVdVoyO4lGu5+CcRZtLI5uV6JwNlW88bHcGlaVmvGx3BpXEtRhsdwaXDKjI6QpkqusHFJX3cIKO/rK53Mtj4g/ONjiBJygiOLtfjd879pFyPf6W4IhYAAIAb8dSm1fy/egEAAMDj0bQCAAC4EVYPAAAAAEyKphUAAMCN2D2zaKVpBQAAgPnRtAIAALgRu4fOaWXQCgAA4EY8dYF9pgcAAADA9GhaAQAA3AgXFwAAAABMiqYVAADAjdgtnvlFLJpWAAAAmB5NKwAAgBth9QAAAADApGhaTWaHThsdoUz1LDcYHcGln1VidASXNp770egILtXwrm10hDLdZfM2OoJL41qMNjqCS6OzxhkdwaXnW4w0OkKZ2hdZjY7g0j4f83dUORbz/9ttFqweAAAAAJgUTSsAAIAbsXvm4gE0rQAAADA/mlYAAAA3YpdnVq00rQAAADA9mlYAAAA3wjqtAAAAgEnRtAIAALgRVg8AAAAATIqmFQAAwI1wRSwAAADApGhaAQAA3Iinrh7AoBUAAMCN8EUsAAAAwKRoWgEAANwIX8QCAAAATOq6a1q3bNmilJQU1apVS9HR0WrcuLHRkQAAAK4aT21ar7tB6/9MmDDB6AgAAAC4Sq7b6QH9+vXTli1bFBcXp4yMDOf2Xr166dtvv9UPP/yg2NhYRUZGqk+fPtq1a5ckacSIERo/frz69OmjsLAwLV68WJJUWFioF198Ub169VKPHj20YsUKSdKePXvUu3dv9erVS3369NHBgwdVXFyshIQE9ezZUz179tTChQuv/RsAAACuSw5L+d7M6rptWv+nR48eSk9PV+fOnXXw4EGdO3dOd955p6KjozVmzBg1atRI+/bt06BBg5SZmSlJysnJ0fz58/Xdd9+pf//+ioqK0ttvv60777xTkyZN0unTpxUdHa2mTZsqNTVVsbGx6tKliz799FPt2LFDeXl5OnnypJYuXarjx49r0qRJ6t279wW5CgoKVFBQYMRbAgAA4Hau+0Fru3btNG7cOJ0+fVorVqxQRESECgsLtXPnTo0cOdK535kzZ3T8+HFJ0v333y+LxaL69evrxIkTkqSNGzeqqKjI2byeOXNG33//vdq1a6dXX31V69evV4cOHRQeHq6CggIdOHBATz75pNq2bavhw4eXypWamqqUlJRS25vojvJ4GwAAwHWCOa3XKW9vb7Vv315r165VRkaG3nnnHdntdnl7e2vZsmXO/XJycuTv7y9J8vHxkSRZLL915Ha7XUlJSbrzzjslSceOHdONN94oLy8vNW/eXJ9//rlSU1O1bt06jR8/XitXrtSGDRu0bt06RUZGauXKlfLz83MeLyYmRpGRkaXyDrt/ULm8DwAAAO7sup3T+ns9evTQe++9pxtvvFG33nqrqlatqtq1azsHrRs2bNDjjz9e5jFCQ0P18ccfS5Ly8vLUvXt3/fzzzxo6dKiys7MVHR2tIUOGaNeuXVqzZo2GDx+u9u3bKzExUZUrV9bPP/98wfH8/PwUEhJS6gYAAFAWeznfzOq6b1ol6Z577tGpU6cUHR3t3JaUlKSxY8dq7ty58vLyUnJy8gXN6h/FxcVp7Nix6tatm2w2mxISElSrVi09++yzGjVqlGbOnCmr1aoRI0aoefPmyszM1MMPPywfHx916tRJDRo0uBYvFQAA4LpkcTgcDqND4Dd//1sPoyOUqa6lstERXCo09e+Jv9p47kejI7jU27u20RHK5Gf+P2blWM3/z+vorHFGR3Dp+RYjXe9koPZFVqMjuLTPx/wfrOZYSoyO4NIbBz8xOoIkaUbNvuV6/MGHPyrX418p8/8tBgAAgMfziOkBAAAA1wu7iddSLU80rQAAADA9mlYAAAA34gZT+ssFTSsAAABMj6YVAADAjdC0AgAAACZF0woAAOBGzL8CdPlg0AoAAOBGWPIKAAAAMCmaVgAAADfCF7EAAAAAk6JpBQAAcCOe+kUsmlYAAACYHk2ryVSUub8S2O6s+X+/W+BbYnQEl7r61DI6gksZJTlGRyhTZuZIoyO49OzDM42O4NLzLcz/Pk7Nmmh0BJcGtnjR6Ahl6lLkZXQEl3ZXKjY6gtuwe2jXStMKAMBfYPYBK3C9oGkFAABwI6weAAAAAJgUTSsAAIAb8cwZrTStAAAAcAM0rQAAAG6EOa0AAADAZUhPT1fXrl310EMPad68eaUe3717t6KiohQeHq5Ro0appOTKl6Vk0AoAAOBG7Jbyvf1Zubm5Sk5O1vz587Vs2TItWLBA+/btu2CfhIQEjR49WpmZmXI4HFq4cOEVv24GrQAAALhsGzduVGhoqPz9/VW5cmWFh4crIyPD+fiPP/6ooqIiNWvWTJLUq1evCx6/XMxpBQAAcCPlfUWsgoICFRQUlNru5+cnPz8/5/28vDwFBgY67wcFBSk7O/uSjwcGBio3N/eKczFoBQAAgFNqaqpSUlJKbY+Li9PgwYOd9x2O0oNni8Xypx+/XAxaAQAA3Eh5r9MaExOjyMjIUtt/37JKUnBwsLKyspz38/LyFBQUdMHjx44dc94/evToBY9fLua0AgAAwMnPz08hISGlbn8ctLZu3VqbNm1Sfn6+zp49q9WrV6tt27bOx2+99Vb5+Pjoyy+/lCQtXbr0gscvF4NWAAAAN2Iv59ufFRwcrGHDhql///7q2bOnunXrpiZNmmjAgAH65ptvJElTpkzRxIkT1aVLF509e1b9+/e/4tfN9AAAAAA3Ut5fxLocERERioiIuGDbnDlznD/fcccdWrRo0VU5F00rAAAATI+mFQAAwI2Yp2e9tty6ad2yZYv69ev3l48TFhamI0eOXIVEAAAAKA80rQAAAG7kcr4sdT25LgatBw4c0JgxY3TixAlVrlxZo0aNUpMmTTRixAjde++96tWrlySpQYMG2rt3r06cOKGEhATl5OSoXr16OnfunCQpLS1N69ev18mTJ3X48GHdf//9Gjt2rCRp9uzZWrVqlWw2mx544AElJCSosLBQ//jHP5xrkA0aNEgdO3bUe++9pyVLlqhChQpq0qSJXn311VKZL3W1CQAAAJR2XQxaExIS9PTTT6tTp07asWOHhgwZoszMzEvuP336dDVq1Ehz5szRtm3btGrVKudj27dv14oVK2S1WtW5c2f16dNHubm52rlzpxYtWiSLxaKEhAQtX75cdrtdt956q2bPnq3//ve/WrRokdq1a6d33nlH69evl9Vq1SuvvKLc3FwFBwdfkOFSV5u4Ww2v3hsDAACuO2ZaPeBacvtBa2FhoY4cOaJOnTpJkpo1a6Ybb7xR+/fvv+Rztm7dqqlTp0qSWrZsqZo1azofa968uapUqSJJqlmzpk6ePKlNmzYpOzvb2dgWFRWpRo0aioqK0htvvKHc3Fy1b99egwYNUsWKFdW8eXM98sgj6tixox5//PFSA1bp0lebSLg/7srfDAAAgOuU2w9aHQ5HqWvbOhwO2Ww2WSwW52PFxcXOx3+/XZKsVqvzZx8fn1L72Ww2xcTEKDY2VtKvH+1brVbdcMMNWrVqldavX6/PP/9c//znP7Vq1SrNnDlTO3bs0BdffKGnnnpKU6ZM0b333ntBRj8/v1JXlgAAAHDFM3tWN189QJKqVKmimjVravXq1ZKkHTt26NixY7r99tvl7++vffv2SZI+++wz53Puu+8+LVu2TJKUnZ2tQ4cOlXmO0NBQLVu2TIWFhSopKdGgQYOUmZmpjz76SDNmzFCXLl308ssvKz8/X8ePH1eXLl1Uv359DRkyRPfff7/27t1bTq8eAADAM7h90ypJSUlJGjt2rGbMmCEvLy/NmDFD3t7eeuyxxzR06FBFREQoNDRUgYGBkqT4+HiNGDFCDz/8sOrWrXvB9ICLCQsL0549e9S7d2/ZbDa1adNGkZGRzi9iRUREqGLFioqLi9NNN92k6OhoPfLII/L19dUtt9xy0WkAAAAAV8JTVw+wOP742ToM1edvPY2OUKZ+RZWMjuDSAt9i1zsZrKZ8XO9ksP+U5BkdoUyZmSONjuDSsw/PNDqCS1XdoLuYmjXR6AhlGtjiRaMjuNSlyMvoCC6lVzpndASX3ju42OgIkqQhtaPL9fjTDn5Srse/Uub/1woAAABODg+d1er2c1oBAABw/aNpBQAAcCOeOqeVphUAAACmR9MKAADgRjz1ilg0rQAAADA9mlYAAAA34pk9K00rAAAA3ABNKwAAgBthTisAAABgUjStAAAAbsRT12ll0AoAAOBGuIwrAAAAYFI0rQAAAG6E6QEwhWoWH6MjlOmgt/n/ylR1g49N0osOGh3Bpf/nXdfoCGV64eE5RkdwqaIbfJjVvshqdASXBrZ40egIZZqZNcnoCC5Nvme00RFcquOoZHQEmJz5RyAAAABwYk4rAAAAYFI0rQAAAG7EU+e00rQCAADA9GhaAQAA3IjdwZxWAAAAwJRoWgEAANyIZ/asNK0AAABwAzStAAAAbsTuoV0rTSsAAABMj6YVAADAjXBFLAAAAMCkaFoBAADcCFfEAgAAAEyKphUAAMCNsHoAAAAAYFI0rQAAAG6E1QM8QIMGDS66fcCAAcrNzb3GaQAAAC6fvZxvZkXTKmnOnDlGRwAAAEAZDBu05vx/7d19XI33/wfw1+lEGSOLzE0Mc7t9sWmTiSUb2lapiFEMczO6mduKFJJRuUtmbHN/f1e5vylsjdzOPRmG5C6tFEp1zrl+f/TrmrNyu+z6nOP19OjxOOc6dXp11Dnv87k+n/fn1i2MHDkSOTk5MDExQVBQEIYPHw4HBwccOXIEADB58mQ0bdoUV69exfjx43H37l2Ym5tj3LhxaNq0KdLT0xEcHIxbt25BpVJhxIgR+Oijj3D37l2MHTsWf/75J8qWLYuAgAC0bt0aABAcHIzjx48DAGbPno06derAwcEBS5YswaFDh5CYmIisrCxcu3YNbdq0wfjx4wEA8+fPx7Zt26DVamFnZ4dRo0bhwYMHGD58ONLT0wEAQ4cORYcOHbBw4ULExMTAxMQEzZo1w8SJE4v9/NnZ2cjOzv4PHmkiIiIyJpL0ak4PUKxoXbduHezt7fH111/j4MGDOHr0KADAwsICsbGx2L17N/z9/bFp0yb4+/sjODgYTZs2xcWLFzF06FDs2LEDYWFhcHd3R4cOHZCWloaePXsiNjYWs2bNQu3atTFnzhycP38ewcHBctH60UcfYeLEiZg6dSpWrVoFf39/vVzHjh3D5s2boVar0blzZ3z55Ze4ffs2Tp8+jXXr1kGlUmHUqFHYuHEjdDodatasifnz5+PSpUtYt24dPv74Y8ybNw+JiYlQq9WYMGECbt++jWrVqul9n8WLFyM6OrrY4/IpWrykR5yIiIjIcClWtLZu3Ro+P51WdQAAIABJREFUPj44d+4cPv74Y3h6emL58uXw8PAAADg4OCAgIAC3bt3C6dOnERgYKH9tTk4OMjMzsX//fvz555+IiooCAGg0Gly7dg2HDx9GZGQkgMJ5rKtXr5a/9pNPPgEAvP322/KI7qPee+89VKhQAQBgbW2NrKwsJCUl4eTJk3BzcwMAPHz4EDVq1IC7uzumT5+O27dvw97eHkOHDoWpqSnee+89dO3aFR06dECvXr2KFawA0KdPH7i6uhY7PsVuxAs9nkRERPRqeFVbXilWtLZs2RJbtmzB3r17sXXrVsTExBQGMv07kk6ng1arRdmyZREXFycfv3XrFiwsLKDT6bB48WJYWFgAAG7fvo0qVaro3QcAXLp0CXXr1tW7f5VKVeLwupmZmXy56HO0Wi369OmDvn37Aig8ta9Wq1G+fHls27YNiYmJ2LNnDxYsWIBt27bh+++/x/Hjx/Hrr7/i66+/RmRkJD788EO971OxYkVUrFjxhR8/IiIioleJYt0DwsPDERcXB1dXVwQHB+Ps2bMAgC1btgAAdu3ahfr166NmzZp466235KJ137596NWrFwDA1tYWK1asAABcvHgRzs7OyM3NhY2NDbZu3QqgsGAdMGAAVCrVC2e1tbVFXFwcHjx4AI1GI09PWLZsGWbPng1HR0eEhIQgIyMDmZmZcHR0RMOGDeHn54c2bdrg/PnzL/y9iYiIiB7F7gH/MS8vL4wYMQIxMTFQq9UICQlBZGQkfv/9d6xbtw7lypXDlClTAAAREREYP348fvrpJ5QpUwYzZsyASqVCUFAQgoOD4eTkBKCwEK5QoQJ8fX0RFBQEZ2dnmJqaIjw8/F8VrQ4ODkhOToaHhwe0Wi3atm0LV1dXeSGWk5MTTE1N4e3tjTfeeAM9evRA165dUa5cOVSvXr3EaQBERERE9OxUkkBL0IpW8deqVUvpKIrxfqu70hGeqKm2jNIRnuqsukDpCE+V+PCa0hGeql/ZekpHeKI/TTRKR3iqHGiVjvBUjg/F/5veZi723/T3R6YqHeGpwluOUzrCU4n/1wIEX12udAQAwBe1P3+p9785ZctLvf8X9UptLkBEREREhkmozQV2796tdAQiIiIiob2q3QM40kpEREREwhNqpJWIiIiInkyg5Uj/KY60EhEREZHwONJKREREZEBE7qX6MnGklYiIiIiEx5FWIiIiIgMisXsAEREREZGYONJKREREZEDYp5WIiIiISFAcaSUiIiIyIK9qn1YWrUREREQGhNMDiIiIiIgExZFWwaihUjrCE11Ra5WO8FTlDeC9WFMzK6UjPNXvqlylIzyRZ674T19x5cT/XbxoJn5Gx4dllI7wROEtxykd4alGHw1VOsJTfW0zSukIBoMtr4iIiIiIBCX+UAURERERyXSv6EIsjrQSERERkfA40kpERERkQF7NcVaOtBIRERGRAeBIKxEREZEBYZ9WIiIiIiJBcaSViIiIyIBwpJWIiIiI6F+6ceMGevXqhc6dO+Obb77BgwcPin1OWloa+vfvDxcXF7i6uiIpKemp98uilYiIiMiASJL0Uj/+rQkTJqBnz57Yvn073n33XXz//ffFPic8PBzt27dHXFwcpk2bhpEjR0KrffKumyxaiYiIiKhUFBQU4PDhw+jUqRMAwM3NDdu3by/2eR07doSTkxMAoE6dOsjLy0NOTs4T75tzWomIiIgMyMue05qdnY3s7OxixytWrIiKFSs+8WszMzNRoUIFmJoWlphVq1bF7du3i31ex44d5cs///wzmjRpgtdff/2J982ilYiIiIhkixcvRnR0dLHj3t7e8PHxka9v27YN3333nd7nvPXWW8W+TqVSPfZ7LVq0CKtXr8ayZcuemotFKxEREZEBkV7ySGufPn3g6upa7Pg/R1kdHR3h6Oiod6ygoACtWrWCVquFWq3GnTt3YGVlVeL3CQ8Pxy+//ILly5fjzTfffGouFq1EREREJHuWaQCPU6ZMGdjY2GDr1q1wcnJCbGws2rVrV+zzFi1ahIMHD2LlypXP/L1YtBIREREZkNJY4f8yhYSEICAgAHPnzkX16tUxffp0AMDKlSuRlpYGX19fzJkzBxUqVICXl5f8dfPnz0e1atUee7+vXNF67949+Pv7l9h+gYiIiIj+nZo1a2Lp0qXFjn/55Zfy5cOHDz/3/b5yRWtWVhaSk5OVjkFERET0Ql7VHbFeuaJ10qRJSEtLw9ChQ/Hpp59i8eLF0Ol0eOeddxASEgIzMzO0adMG7du3x5EjR1C1alX07NkTS5cuxa1btzBlyhR8+OGH8PLyQr169XDy5Enk5eVhzJgxsLOzQ3p6OsaOHYsbN27A1NQUw4YNK3EuBxEREdGLEH16wMvyym0uEBQUBCsrK3z77bdYs2YNVq1ahbi4OFhaWuLnn38GAKSnp8Pe3l5uhhsfH48VK1bAx8cHixcvlu8rPz8fMTExmDZtGgICApCfn4/Q0FDY2tpi06ZNiIqKwpgxY5Cenl4sR3Z2NlJTU4t9EBEREVFxr9xIa5GDBw/i6tWr8PDwAFDYoqFp06by7UWjozVr1kTLli0BADVq1NBrtlv0tU2aNEHVqlVx/vx5HDhwAJMmTQIAWFtbo3nz5jhx4gQ6dOig9/0f1wOtM94rxZ+SiIiIjA2nB7xitFotHB0dERQUBAB48OCB3p63ZcuWlS+r1eoS7+PR4zqdDqampsWG7CVJKnEv3cf1QIuwG/l8PwgRERHRK+CVmx5gamoKjUaDVq1aYdeuXfjrr78gSRLGjx+vd+r/WWzduhUAcOrUKWRnZ6Nhw4awtbXFunXrAADXrl3D77//jhYtWhT72ooVK6JWrVrFPoiIiIieRHrJ/0T1yo20WlpaokaNGggLC4O3tzf69OkDnU6HJk2aYODAgc91X9euXZNHS2fMmAG1Wo2xY8ciODgYGzZsAFC48OtxO0EQERER0bN55YrWMmXKYNWqVfL1bt26Ffuc8+fPy5enTJkiX27VqhVatWolX+/du7fedQCoVq0a5s2bV5qRiYiIiGQ6dg8gIiIiIhLTKzfSWlpK2umBiIiI6GUTed7py8SRViIiIiISHkdaiYiIiAwI57QSEREREQmKI61EREREBoRzWomIiIiIBMWRViIiIiIDwjmtRERERESC4kgrERERkQHhnFYiIiIiIkFxpJWIiIjIgHBOKxERERGRoDjSSkRERGRAOKeViIiIiEhQHGkVjBlUSkd4oofQKR3hqZpqyygd4anM1OWVjvBUpoK/kZ9eNkPpCE/VEpWVjvBUt1QapSM81TnzAqUjPFFdyVzpCE/1tc0opSM81U9HIpSOYDAkSfzX4peBRSsRERGRAdFxegARERERkZg40kpERERkQCS2vCIiIiIiEhNHWomIiIgMCOe0EhEREREJiiOtRERERAaEc1qJiIiIiATFkVYiIiIiA6LjSCsRERERkZg40kpERERkQCR2DyAiIiIiEhNHWomIiIgMCLsHEBEREREJiiOtRERERAaEO2IREREREQmq1IrWe/fuYciQIbh9+zYGDBhQWnf7zMaOHYtTp06V6n1GRUXhyJEjpXqfRERERP+GJEkv9UNUpVa0ZmVlITk5GdWqVcOPP/5YWnf7zMLCwvC///2vVO/z8OHD0Gq1pXqfRERERPT8Sm1O66RJk5CWloahQ4fi3Llz2L17NwICAlCuXDkcPXoU9+7dw5gxYxAXF4fk5GR88sknCAgIgFarRXh4OA4dOgStVgs3Nzd89dVXj/0+9+/fx/Dhw5Geng4AGDp0KDp06AAvLy94e3ujVatWmDZtGnbs2IHKlSujatWqcHBwwIcffghvb280aNAA586dg6WlJWbNmgULCwssW7YMcXFxyM3NhUqlwsyZM3Hq1CmcPn0aQUFBiI6OxqRJk+T7T01NRe/eveWf8e7du7h69SpGjRqFKlWq4LvvvsPDhw9RuXJlTJgwAdbW1qX1MBMREdErjjti/UtBQUGwsrJCYGCg3vG0tDRs3LgRvr6+CAwMxIQJExAbG4s1a9bg3r17WLNmDQAgJiYG69atQ0JCwhNPye/atQs1a9bEhg0bEBERUexzd+/ejaNHj2Lz5s2YP38+zp49K9+WnJyMvn37YvPmzahYsSI2bdqE+/fvIz4+HkuXLsXmzZvxySefYMWKFejSpQveffddTJo0CY0aNXriz25hYYFt27bBzs4OQUFBmDZtGmJiYtC3b1+MGzeuxK/Jzs5GampqsQ8iIiIiKu6ldw9o164dAKBGjRpo0KABLC0tARQWellZWUhKSsK5c+dw4MABAEBOTg7Onz8PGxubEu/vvffew/Tp03H79m3Y29tj6NCherfv378fjo6OKFu2LMqWLYtPPvlEvs3S0hJNmzYFADRo0ABZWVmoUKECpk2bhi1btuDKlStITExEkyZNnutnbNasGQDgypUruHbtGr755hv5tvv375f4NYsXL0Z0dHSx4y54/7m+NxEREb1aRJ53+jK99KK1TJkyf38z0+LfTqvVYtSoUejYsSMAICMjA6+99tpj7++tt97Ctm3bkJiYiD179mDBggXYtm2bfLuJiQl0Ol2JX2tmZiZfVqlUkCQJN2/ehJeXFzw9PdGuXTtUqVIF586dK/Hri35JNBqN3nFzc3MAgE6nQ61atRAXFyf/bEXTGP6pT58+cHV1LXY8ym7U4350IiIiIra8+rdMTU2LFXPPwtbWFmvWrEFBQQEePHiAnj174sSJE4/9/GXLlmH27NlwdHRESEgIMjIycO/ePfn2Nm3aYOfOncjPz8f9+/exd+9eqFSqx97fqVOnUKdOHXz11Vdo3rw5fv31V3nxlVqtli9XrlwZFy9eBADEx8eXeF/16tVDVlaWPGVh/fr1GDlyZImfW7FiRdSqVavYBxEREREVV2ojrZaWlqhRo0axOa1P06NHD1y9ehWurq7QaDRwc3NDq1atHvv5Xbp0wfDhw+Hk5ARTU1N4e3ujYsWK8u0ff/wxfv/9d7i6uqJSpUqwsrLSG2H9pzZt2mDlypX47LPPULZsWTRr1gwXLlwAALRt2xYhISGYOnUqvv76awQEBGD9+vXo0KFDifdVtmxZzJo1C2FhYcjLy0OFChUwderU53o8iIiIiJ7kVZ0eoJKM7Cc/duwYrly5AldXVxQUFKB79+6YPHkyGjdurHS0ZzL6rS+VjvBED1Hy1AuRNNWWefonKeyGWvw/O1PBIybpMpSO8FQt1ZWVjvBUOQbwN52JAqUjPFFdyVzpCE91SfVQ6QhP9dORCKUjPFWZKvWUjgAAqFj+5ebIfvDnS73/FyXkNq4pKSnw8fEp8bZJkyY9sR9r3bp1ER0djYULF0KSJHTp0sVgClYiIiKip3lVW14JWbTWrl1bXsz0vCwsLPDzzz+XciIiIiIiUpKQRSsRERERlUxi9wAiIiIiIjFxpJWIiIjIgLyqc1o50kpEREREwuNIKxEREZEBMbJupc+MI61EREREJDyOtBIREREZEHYPICIiIiISFEdaiYiIiAwI57QSEREREQmKI61EREREBoQjrUREREREguJIKxEREZEBeTXHWQFIZLSysrKkqKgoKSsrS+koj8WMpUP0jKLnkyRmLC2iZxQ9nyQxY2kxhIz0fDg9wIhlZ2cjOjoa2dnZSkd5LGYsHaJnFD0fwIylRfSMoucDmLG0GEJGej4sWomIiIhIeCxaiYiIiEh4LFqJiIiISHgsWomIiIhIeOrx48ePVzoEvTxmZmZo1aoVzMzMlI7yWMxYOkTPKHo+gBlLi+gZRc8HMGNpMYSM9OxUkvSKbqtARERERAaD0wOIiIiISHgsWomIiIhIeCxaiYiIiEh4LFqJDNTJkyeVjkBERPSfYdFqxHJycpCcnAxJkpCTk6N0HD0FBQX45ZdfEBsbq/chkgEDBmDbtm0oKChQOkqJIiMj4eTkhJ9++gl37txROk6JTp48iYULFyI/Px/9+vWDra0tduzYoXQsPSI/fkVSUlKwceNGSJKEcePGwd3dHUeOHFE6Vonu37+PCxcuKB2jRGlpaQCAI0eOYPny5cI9LwLiZ8zIyMCePXsQHx+P9PR0peMUc/36dfTt2xcdO3ZEWloaevfujdTUVKVjUSlh0WqkkpKS4OLigiFDhuDOnTtwcHDAb7/9pnQsmZ+fH6Kjo3HgwAEcPHhQ/hDJwIEDkZiYiE6dOmHChAnCjWwuWbIEP/zwA/Lz89G/f38MGjQI27dvF6rInjRpEt59913s2LED5ubmiImJwfz585WOpefhw4fw9PTEwIEDhX2TEhgYiDJlyiAhIQFXrlxBYGAgwsPDlY4lW7t2LQIDA5GRkYHPPvsMvr6+mDFjhtKx9ISEhGDu3Lm4ePEiRowYgTNnzsDf31/pWHpEz5iYmAgXFxds2LABMTExcHZ2xp49e5SOpSc4OBj9+/dH+fLlUbVqVXzxxRdCPYb0L0lklLp27SqlpaVJLi4ukiRJ0oULFyQnJyeFU/2tU6dOSkd4Zrm5uVJMTIz08ccfS59//rm0cOFCKS8vT+lYsuvXr0vz5s2T2rdvL/Xs2VPq2LGjtHPnTqVjSZIkSe7u7pIkSdLw4cOlmJgYSZIk+XdSNIcPH5ZCQkIkR0dHacKECdLZs2eVjiQrehzHjBkjrV69WpIkSXJ1dVUykh5XV1cpMzNTWrx4sTR+/HipoKBAqHySVJhRp9NJUVFRUlRUlCRJkuTm5qZwKn2iZ3R1dZVSUlLk6ykpKZKzs7OCiYor+r179HlGtIz04jjSaqR0Oh2qVq0qX3/77bcVTFNc7dq1cePGDaVjPNXBgwcxceJEzJgxA23btsXYsWPx119/4ZtvvlE6GtasWQNPT0/07dsXWq0WK1aswPLly7FkyRKEhIQoHQ8AUK5cOSxYsAAHDx5E+/btsXjxYpQvX17pWMXk5uYiNTUV165dg4mJCSpVqoSwsDBMmzZN6WgAALVajR07dmDv3r2wt7dHfHw8TEzEevq2sLDAL7/8Ant7e5iamiIvL0/pSHq0Wi10Oh0SEhLQrl075ObmIjc3V+lYekTPqNFoYG1tLV+3traGTqdTMFFx5ubmuHXrFlQqFYDCaRZly5ZVOBWVFlOlA9DL8eabb2LPnj1QqVTIzs7G8uXLUaNGDaVjwcvLCyqVChkZGXByckLjxo2hVqvl25csWaJgOn3t27dHrVq14O7ujuDgYJibmwMAWrVqBXd3d4XTFT4Z+/j4oFWrVnrHq1WrJkzRGhkZibVr1yIqKgqVKlVCWlqaMIVgkREjRuDAgQP4+OOP8c0338DGxgYAkJ+fDzs7O4wYMULhhMDEiROxaNEiBAcHw8rKClu2bMGkSZOUjiV7++23MWjQIKSmpqJ169bw8/PDu+++q3QsPV26dIGdnR3ef/99NG/eHI6OjujRo4fSsfSInrFGjRpYtGgRunbtCgBYt24datasqXAqfYGBgRg0aBBSUlLg4uKCrKwszJo1S+lYVEq4I5aR+uuvvxAWFob9+/dDkiS0atUK48aN0xt9VcKhQ4eeePuHH374HyV5uj/++AMNGzbUO3b8+HG0aNFCoUT6QkNDMW7cOL1j/v7+mDp1qkKJisvPz8eff/6Jxo0bY9OmTTh79iz69u0LKysrpaPJ1q1bh88++wyvvfZasdvu3Lmj+N9MkbS0NFhZWeHIkSM4f/48XF1dS8ysBI1Gg2PHjqFBgwawsLDAnj170LZtW5iaijUuotVq5TfJmZmZqFy5ssKJihM5419//YXQ0FAcOHAAkiTB1tYWY8eOFervee/evWjTpg2uXLkCrVaLevXqcaTViLBoNVL79u1DmzZt9I7t3LkTHTt2VCiRPpELrqNHj0Kn0yEoKAhhYWEo+hPRaDQYP3684qvfx44di2vXruH06dN6o1kajQb37t3Dpk2bFEynz8/PD/Xq1YO9vT1GjRoFFxcXHD16FAsWLFA6miw6Olrvukqlgrm5OerXrw97e3tlQv1DSEgITExM0KtXL/Tv3x9t2rTBvXv3MHv2bKWjASjsbnD8+HE4OTkhODgYZ8+eRWBgoDxqLYI9e/bgyJEjGDJkCLp27YqMjAz4+vqiV69eSkeTGUJGjUaD5ORkmJqaolGjRvJpeFF8/vnn2LJli9Ix6CUR620w/Wtbt25Ffn4+oqKi4OvrKx/XaDSYN2+e4kXrowXXo21xtFotsrOzFUz2t/379+PQoUNIS0vTO61kamqK7t27K5is0DfffIPr168jLCwM3t7e8nG1Wo369esrmKy41NRUzJo1C+Hh4ejatSsGDhwoxNSKR6WkpODq1av4/PPPARS+uatQoQKOHj2KQ4cOYfTo0QonBE6dOoX169cjOjoaXbt2hY+PD9zc3JSOJQsMDISnp2ex7gZr1qxROposOjoa4eHh2Lp1K5o1a4bg4GB4eXkJVRCKnnHfvn3w9/eHlZUVdDodsrOzMXPmTDRr1kzpaDJra2sEBgaiefPm8pQuoHDqBRk+Fq1G5v79+zh27BgePHig10JKrVZj2LBhCiYrZAgFl4+PDwAgNjZWyCc6MzMztGrVCj/88EOx23JycmBhYaFAqpJptVpkZGQgISEBs2fPxp07d/Dw4UOlY+m5fPkyli9fLp9C7NGjB7y8vLB69Wo4OzsLUbQ+ukBnwoQJyM3NFepxzMvLg6OjI8aOHQsnJyfY2NhAo9EoHauY+vXrY/r06XB2dkb58uWFbG8mcsbvvvsOP/30Exo3bgyg8M1USEgINmzYoHCyvxVNpzhx4oTecRGfy+n5sWg1Mh4eHvDw8EBSUhJat26tdJxiatWqhVq1amHu3Ll6p5VUKpUwq1Bnz54NHx+fx/aO/e677xRI9begoCDMmzcPnp6exW5TqVRISEhQIFXJ+vfvDw8PDzg4OKBhw4bo1KkT/Pz8lI6lJzs7GxqNRi5aCwoK5IbuosyeEn2BzqPdDfz8/ITsblClShWEhobi9OnTiIiIwJQpU4RYnPoo0TOWLVtWLlgB4H//+5+CaUqm9PMzvVyc02qkjhw5gp9//hk5OTmQJAk6nQ43btzA7t27lY4GAHB1dcUff/yBRo0aQZIkXLhwAVWrVoVarUZoaKiiBffu3bvh4OCAmJiYEm93dXX9jxMZvqysLFSqVAkajUa4xTlLlizBypUrYW9vD0mS8Msvv8DT0xMFBQU4deqUMN0OHl2gk5GRgTfeeEPhRH87f/48Fi1ahPbt26Njx44YNmwYBg0apFfgKO3+/fuIj4/H+++/j9q1a2P58uVwcXFBhQoVlI4mEz3j+PHjUVBQAA8PD6jVamzZsgWpqano3bs3AOCDDz5QOCHg4OBQ4jxbkd7M04tj0WqkOnfujAEDBiAmJgZeXl749ddfUb58eYwZM0bpaACAwYMHw9vbW15IdP78eURHR2PMmDHw8fHBunXrFE4I9OvXT6gFQ0UCAwOfeLtIIw3Jycn49ttv8fDhQ6xevRqenp6YOXMm3nnnHaWjyTIyMnDnzh0kJSXBxMQErVu3RoMGDXDlyhXUqFFDiJXH169fR1BQEK5fv45ly5Zh5MiRmDx5MmrVqqV0NNm1a9dw6dIltG3bFjdu3NDr5ymKjRs34tKlSxg8eDB27Ngh5CljkTN6eXk99jaVSiVEy8Lr16/LlzUaDXbt2oX8/HwMGTJEwVRUWsQa8qBSY25uDnd3d1y/fh0VK1bEpEmThFq4cf36db2V740aNUJKSgqqV68OrVarYLK/5eXl4ebNm6hevbrSUfSI1BbsaUJDQzFnzhyMGDEC1apVw/jx4xESEiLEm5IivXr1wrZt29CoUSO942+99ZYygUpQtDVlZGSk3taUy5cvVzoagMIFoHPnzsXDhw+xatUq9OjRA6NHj4aLi4vS0WSRkZG4desWzpw5gwEDBmD9+vVITk5GQECA0tFkomdcunSp0hGe6p99Y7/++mu4ubmxaDUSLFqNlJmZGe7evYu6devixIkTaN26tTxPTwTW1taIjIyEi4sLdDodNm/ejDp16uDYsWPCzIXLyMiAg4MDLC0tYWZmBkmShJgzamdnh6pVqxrEjmK5ubl6C+zatGkjRFuzRzVu3BixsbFo1qyZ3mpjkeYSZmZmws7ODpGRkVCpVPDw8BCmYAWAH3/8EStXroSnpycsLS0RExODvn37ClW0/vbbb4iJiYGrqysqVKiAhQsXwtnZWZiCEBA/45EjR7B48WJkZWXpHRdhhLXI4cOH5ctFU89E252NXhyLViP11VdfYdiwYZg9eza6du2KTZs2CbVDTXh4OKKjozFixAio1Wp89NFHmDx5Mnbv3o0JEyYoHQ8A8NNPPykdoUSPLsRSqVR6i4VEKKofZWFhgeTkZHmO2caNG1GpUiWFU+k7ceJEsZXGoj2Oom9NaWJiojfv0srKSpg3n0WK8hQ9hvn5+cz4nAICAuDt7S3UG7p/ioqKki+rVCpUrlwZU6ZMUTARlSbOaTViRSODOTk5uHLlCpo0aSJcI2iR5efn45dffsGDBw8AFC6ESU1NFW71u8hSUlLg7++PU6dOwdzcHHXq1EFERATq1aundDSDcurUKQQFBSElJQW1a9dGVlYWZs6cKczubAEBAXj33XexatUqREREYMWKFXj48CEiIiKUjiabP38+zpw5g1OnTqF3797YuHEjOnbsiMGDBysdTSZ6xl69egk1wl8S0XcypH+HRauRMZRFOhs2bMDUqVPlDQWKCuxz584pnOxvAwcORG5uLlJSUmBjY4PDhw+jRYsWeu/klXTv3j3MmTMHhw4dgqmpKT766CMMGjQI5cqVUzpaMTk5OdDpdMKsgn5UVlYWIiIikJKSIm+EEBgYiIoVKyodTU9BQYGwW1Pm5ORg7ty52L9/P3Q6HWxtbTF06FDh/r8TExP1MrZv317pSMWInHH79u1QDxvFAAAeMklEQVSIj4+Hra2tXhcQERaLib6TIZUOFq1GpqhN0549e/DgwQM4OzvD1NQUW7duxeuvvy7MaZIOHTpg7ty5xd4Ri+TTTz/Fzp07ERYWBnd3d7zxxhvw8/PDqlWrlI4GAPD19YW1tTWcnZ0hSRLWr1+PzMxMREZGKh1NdvbsWfzwww/IysrSm8Yg0hw4X19ftGnTBsuXL8e6deswZ84cnDt3DvPnz1c6mqyoa8A/H0dR3oQaigsXLhR7DEVo0/QokTMWtbb652InEX4PZ8+ejUOHDhXb3trU1BRt27ZFv379FExHpYVzWo1MUQ/RFStWYPXq1fJ8KEdHR3h4eCgZTU+1atWELlgBwNLSEiqVCnXr1sX58+fRpUsX5OfnKx1LdvXqVb1R36LdiETi7++P7t27o0GDBsJOTUlNTUX37t2xcuVKlC1bFsOGDYOzs7PSsfR8++23sLGxgY2NjZCPoyGcOZkwYQL27Nmj14pLlDZNRUTPeOfOHWzbtk3pGCUSfSdDKh0sWo3UvXv3cPfuXbkBeXp6ulDdA9555x15hMvMzEw+LtKTTYMGDRAaGoovv/wSI0eORFpamlBbKtatWxfHjh3De++9B6CwJ6pIbZqAwgVEJe3cJRK1Wo179+7JxeCVK1eEWvwCFJ7i9Pf3VzrGY82ZMwdLly4V+o3ovn37sH37dr0OEaIRPaONjQ327NmDtm3bCrdJSJFmzZph0qRJehvrpKamCj8Xl56NmL919K8NHjwYzs7OeP/996HT6XDixAmMGzdO6Viy+/fvo3z58jh+/LjecZGK1vHjx+PYsWN4++234evri/379wuxO1LRji95eXnYsWMH6tWrBxMTE/z555+oU6eO0vH02NnZYenSpbCzs9N7cyLS6mNfX194eXnh5s2bGDJkCI4fP47JkycrHUtPy5YtsXv3btjZ2Qk1l7WIIZw5sba2FmZb3scRPeOePXuwdu1aAJA7l4g2oj5s2DB06NABR48ehaurK3799Vc0aNBA6VhUSjin1YilpaXh2LFjUKlUaNmyJSwtLQEUPvGIMrm/aHtPkTza568kSs8ve3THl5L8c76ZkhwcHIodE62dFFDYk/fkyZPQarVo3rw5qlSponQkPXZ2dkhPT9c7JlKxEBYWhtu3bwt95mT48OE4fvw43nvvPb3CX4T5mEUMIaPonJycsGnTJkyfPh3t2rVDs2bN0KNHD2zYsEHpaFQKONJqxKysrNCpU6dix6OiohQvWkXe3vNJ3QFEmF9WVJQaQkuu3bt3o6CgAGXKlEFBQQHy8/NRvnx5pWPpyc7OxrZt23D37l1IkiQXgt7e3gon+9tvv/2mdIQnMoQzJ23btkXbtm2VjvFEomfMz8/HggULcPnyZYwbNw6LFi3CwIEDhRr9L1euHPLz8/HWW2/hzJkzsLGx4eYCRoRF6ytIhMF1kbf3NIStCoHCoqqkllwi2bZtG77//nts2rQJN2/ehJeXF8aNG4dPPvlE6WgyPz8/vP7660IuFouOjn7i7aIU1kUjgSKeOSnaOa5Vq1YKJ3m8O3fuoGrVqkJnBICJEyfijTfewJkzZ6BWq5GSkoKxY8cK1Y/X2dkZgwcPRmRkJLp3747ExERUq1ZN6VhUSli0voJEeGE2hO09vby8SnyslB5pLXL58mW9llyjR48WapQVAL7//nssXLgQAFC7dm1s2LAB/fr1E6poTU9PlzPSixH5zEnRznF5eXn466+/YG1tDRMTE3mjhu3btysd0WB2uTtz5gxiYmLw66+/oly5cpg6dapwHUs8PT3RpUsXVKhQAUuXLsWpU6dgZ2endCwqJSxaSRGGsL1nUQsVoHD1dkJCglAN50VvyQUUNsR/dH6opaWlECP9j2rSpAmSk5PRuHFjpaMU87iRVEmSkJqa+h+neTyRz5zs3r0bQOECnV69esHGxgYAcPLkSWG2ap43bx6Av7OKSqVSIT8/X37ezszMFGIQ5FHZ2dnYtGmTPN0HAM6fPy/MWQn6d1i0kiLGjx8Pf39/XLx4ETY2NqhTp45QTfEB4MMPP9S7/tFHH6Fbt27CjGaK3pILKFz1Pnz4cHk0Ztu2bcJNYbhw4QLc3Nzwxhtv6C0iEmV0CwCWLVuG6dOnIzc3Vz5Wq1Yt7Nq1S8FUfzOEMyeXLl2SC1agsDXS5cuXFUxU3LVr17Bq1SpkZmYKuYlE79690bdvX9y5cwdhYWHYtWuXcMWgyNN96N9j0foKUnKk69FT7qampmjYsCF0Oh1ee+01hISECHPqHfh7LhxQ+JhdvHgRd+/eVTCRvkdbcvn4+CApKUmIllyPCgkJwdKlS7F69WqYmprCxsYGPXv2VDqWntmzZ2PTpk24ePEiBg8ejNOnTyveIeKfFixYgLi4OMycORPDhg3DoUOHsG/fPqVjyQzhzMmbb76JWbNm4bPPPoNOp8PGjRuF62vs4+OD1q1bC7uJREJCAiZOnIgDBw5Ap9Phhx9+wHfffYeuXbsqHU3G6T7GjUWrEXv0hXjHjh3ySt7Vq1crlunRU+6ie7QpvkqlwhtvvIGgoCAFE+lTq9VQqVRYuXIl3N3dUbFiRWF6ZRYtLElPT4ejoyMcHR3l29LT04Xq07pq1SrcunULZ8+eRfXq1TFx4kScP38eAQEBSkeTWVpawtraGo0aNcIff/wBNzc3LFu2TOlYsqIzJxcuXBD2zElERASioqIwfPhwAIVnTkQZwSwiSZKQm0gMHToUycnJSEtLw9mzZ+WBj59//hnVq1dXOJ0+kaf70L/HPq1GKjIyErdu3cKZM2ewdu1afPPNN3jnnXeEeiGmf2fx4sWIj49HWloaVq1ahZ49e6Jr167o37+/0tEwaNAgzJs3T94IoUhRM3KRTr136dIFMTExcHV1RWxsLDQaDZydnbF161alo8l69+6NIUOGIC8vD/Hx8fD19cWXX36J+Ph4paMBAM6dO4cmTZogJycHOp0OFSpUUDqSQRo/fjzatGmDDh06CLUr2/3793H37l2EhYXpvXE3NTWFpaWlULtjubq6Ijk5GZaWljAzMxPyOYdeHItWI2UIL8Siu3HjBiZNmoQDBw7A1NQU7dq1w5gxY+StcZXWpUsXrFmzBh4eHoiNjcWDBw/QrVs3of6P7969CwsLC71jqampqFWrlkKJinNzc8P69evh5uaGmJgY5OTkwMPDA5s3b1Y6muzChQtYu3YtAgIC4Ofnh6SkJHh7e+Orr75SOhoAwN3dHfn5+XBycoKTk5Nwo28A0Lhx42Kn3KtWrYpff/1VoUR/K8pW9HJclFPEHadE97jNV0TadIVenDhvj6hUFb1LL3ryy8/PF+qduyEYOXIkPvvsM4SHh0On02HDhg3w9/fHjz/+qHQ0AIX/x4829TYzM4NarVYw0d9u3rwJSZIwcOBA/Pjjj/KLsVarxYABA4RoM1Skc+fO+Pbbb5GVlYVFixZh48aN+OKLL5SOpSctLQ1jxowBUDgHFwB27typZCQ969evx5UrV7BlyxYMHDgQFhYWcHZ2Rrdu3ZSOJktOTpYvFxQUID4+vthmCEp5NFuRooKVnk9JOxqam5vjwYMHwkyfohfHotVI/fOFOC4uTrgXYtHdv39fb17rV199JdRWgB9++CGmTp2K3NxcxMfHY/Xq1bC1tVU6FoDCXcUOHjyItLQ09OrVSz5uamoKe3t75YKVYODAgUhMTESNGjVw8+ZN+Pj4KL5jXJGtW7ciPz8fUVFR8PX1lY9rNBrMmzcPHTt2VDCdvrfeegt9+/ZF7dq1sXDhQvz4449CFa2PKlOmDBwdHfHDDz8oHUXPwYMHMWPGDKxatQqXL1/GgAEDEBERgffff1/paAYjISEBZ8+elXtB7927F1ZWVsjJyYGTk5MwZyfoxXB6gBFLTEzE/v37odPp0Lp1a+GKBdEFBgbC1tYWLi4uAAqf/LZv344pU6YonKyQTqfDmjVr9P6Pu3fvLtT8svnz52PgwIFKxzBYa9aswbFjx7B79244ODjIx9VqNT766CN89tlnCqb7286dO7F582acPHkS9vb2cHZ2Fq7Qio2NlS9LkoQLFy7g0KFDQvSSLeLq6oqpU6fKI4KXLl3C6NGjsX79eoWTGY4ePXpg/vz5ck/t+/fvY/DgwVi0aBHc3NywceNGhRPSvyHOqxuVqvz8fFStWhX+/v7YuHEjDh48iKZNm8LKykrpaAZj7969iImJQXBwMExMTOQembGxsULMM8vNzYVWq0VUVBRu376NVatWoaCgQKiitVOnTti4cSOcnJwQEhKCM2fOIDAwUK9fJj2eh4cHPDw8kJSUhNatWysd57E2bdoEFxcXTJs2DWXKlFE6TokOHjyod71y5cqYMWOGQmlKlpeXp3cKu379+tBoNAomMjyZmZkoX768fN3MzAxZWVkwNTXldAsjIM6rG5WqUaNGoV69esjPz8ecOXPg7OyMgIAALFiwQOloBiMpKUnpCE80YsQINGrUCABQvnx56HQ6jB49Wp7zKIIxY8bA09MTCQkJuHz5MgIDAxEeHo41a9YoHc2gVKpUCb6+vsjKytLrs6x0X+MzZ87gnXfekfsv/3OOqEj9br/77jsUFBTg8uXL0Gq1aNCggVBv8ACgXr16iIiIkM/ubNmyRbhesqLr2LEj+vTpA0dHR+h0OuzcuRMdOnRAbGwsqlatqnQ8+pc4PcBIubu7Y/369QgPD4eFhQUGDhwoH6Nnk5ubi+joaCQlJUGr1cLW1hZ+fn547bXXlI4GAHB2di52qsvFxQVxcXEKJSqua9euWLduHcaOHYvmzZvDw8MDbm5uQs0NNgROTk7o3r17sV1+/rlr239t3LhxCA0N1ds05FFKF9WPOn36NHx9fWFhYQGdTof09HTMmTMHzZs3VzqaLCsrC7NmzcLhw4flzTh8fX3x+uuvKx3NoOzZswf79u2Tp9F8/PHHOH78OOrWrSvcphf0fMR6m0mlRqvVIiMjAwkJCZg9ezbu3LmDhw8fKh3LoEycOBHlypXD5MmTARTOLwwJCUFERITCyQqpVCqcP39eHm29dOmScCNHarUaO3bswN69e+Hn54f4+Hh2sXgB5ubmeosCRXHlyhX07t0bQPGd9kQ7FTtp0iTMmDFDLlKPHz+O0NBQoea0VqpUCSNHjkRKSgoaNmyIhw8fCvMmWXRFo/6HDx9GhQoV0KlTJ/m2w4cPCzXqTy9OrFc4KjX9+/eHh4cHHBwc0LBhQ3Tq1Al+fn5KxzIoZ86c0RvJDA4OFmbhCwD4+/ujX79+qFatGoDCuVzh4eEKp9I3ceJELFq0CMHBwbCyssKWLVswadIkpWMZHDs7OyxduhR2dnYwMzOTjyu9s5gh7XCXk5OjN6raokUL5OXlKZiouKSkJAQHB0Or1WL16tVwcnJCZGQk7OzslI4mvFWrViE0NBRRUVHFblOpVEKN+tOL4/SAV4RWq0VBQQHMzc2VjmIwnJycsHz5cnkVanZ2Nnr16oVNmzYpnOxv+fn5+OOPP2Bqaop69erp9W0VwY0bN0o8rnSxZWge7RxQhLv8PB8vLy/06dNHboW0a9cuLFmyBEuXLlU42d+6deuG77//HgMGDEBsbCwuXryI4cOHc8X7v3D//n3u0GZEONJqpHbs2IE5c+YgJycHkiRBp9MhNzcXBw4cUDqawfjqq6/QrVs3ODg4QJIk7N69W6j2TdevX8eyZcuKLc4RaT91T09PeacfjUaD9PR0NGnShHOrn9Pu3buVjmDwQkNDMWrUKIwdOxYAYG1tLcxUnyI6nU5vsdDbb7+tYBrDtGfPHhw5cgRDhgxB165dkZGRAV9fX71+0WS4WLQaqYiICEyaNAkLFy7E4MGD8dtvvyEzM1PpWAbFyckJN2/exNy5cyFJEgIDA+Hu7q50LNm3334LGxsb2NjYCDd/sMg/i62TJ09i+fLlCqUxXFlZWYiIiEBKSgpmzZqF8PBwBAYGymcB6PEeXSRmbm6OWrVqQZIklCtXDiEhIUKdNn7zzTexZ88eqFQqZGdnY/ny5Twr8Zyio6MRHh6OrVu3olmzZggODoaXlxeLViPBotVIVaxYEba2tvj9999x7949+Pj4wM3NTelYBmXcuHHIy8vD7NmzodPpEBcXh5SUFHmkRmkajQb+/v5Kx3guzZo1k7cjpWc3btw4tGnTBidPnkT58uVhZWWFkSNHYv78+UpHE54hzbudOHEiwsLCcPPmTXz66ado1aoVJk6cqHQsg1O/fn1Mnz4dzs7OKF++PAoKCpSORKWERauRMjc3x+XLl1G/fn0cOnQItra2uHfvntKxDMqJEyewfft2+bqDg4NQW+G2bNkSu3fvhp2dnXBzWYtER0frXb948SIsLS0VSmO4UlNT0b17d6xcuRJly5bFsGHD4OzsrHQsg6B0W7DnYWlpienTp+Pu3buwsLBQOo5BqlKlCkJDQ3H69GlERERgypQpHK02Iuw9Y6S+/fZbzJw5E+3bt0dSUhLatGkjL0CgZ1O9enVcvXpVvp6eni6v1BfB9u3bMWTIEDRr1gyNGzdG48aN0aRJE6VjPdEHH3yAWbNmKR3D4KjVaty7d08+zX3lyhW2DjNC586dQ+fOndGlSxfcvn0bn376Kc6cOaN0LIMybdo0/O9//8OSJUvw2muvwdraGtOmTQMAPpZGgN0DXhFZWVlsqvycvLy8cOrUKdjY2MDU1BRHjx5F1apVUaVKFQBiNU4XWUZGBk6cOAGtVosWLVrIjx89u8TEREybNg03b95Ey5Ytcfz4cUyePBn29vZKR6NS1KtXL0ycOBEjRoxAbGws9u3bhxkzZgjVS9aQubq6IiYmRukY9C9weoCRun79OoKCgnD9+nUsX74cI0aMwOTJk1GrVi2loxmMf86F69evn0JJSvbXX39h06ZNePDggdwhIjU1VaherYmJiRgzZgxatGgBnU6H4OBghIWFoX379kpHMyht27bFO++8g5MnT0Kr1WLixIks/o1Qbm4u6tevL19v06YNpk6dqmAi48IxOsPHotVIBQcHo3///oiMjESVKlXwxRdfwN/fnyu3n4Poc+G8vb1Ru3ZtHD9+HJ988gn27duHxo0bKx1Lz4wZM7BixQpYW1sDAK5duwZvb28Wrc8pIyMDW7ZsQVZWFoDC08hA4e8AGQ8LCwskJyfL00A2btzIM2SlSNQuK/TsOCnKSGVmZsq7qKhUKnh4eOD+/fsKp6LSlJmZialTp8LBwQEdO3bE0qVLceHCBaVj6dFoNHLBChT2xtTpdAomMkwDBgzA2bNnlY5BL9n48eMxYcIEXLhwATY2Nli8eDEmTJigdCwiYXCk1UiZm5vj1q1b8jvLI0eOCLvCnF5M0QhM3bp1kZycjObNmwvX2qVGjRpYtGgRunbtCgBYt24datasqXAqwyTSphH0ctSuXRsrV67E7du3odPpUL16daUjEQmFRauRCggIwKBBg5CSkgIXFxdkZWVh5syZSseiUmRrawtfX1/4+/ujX79+OHPmDMqVK6d0LD1hYWEIDQ3FDz/8AEmSYGtry76TL+CTTz7B2rVrYWtrC7VaLR9nKx/jkpycjNGjR+P27duQJAn16tXD1KlTUadOHaWjGQXOaTV87B5gxAoKCnDlyhVotVoh96WnFxMbGytf1mg0MDU1RWZmJlQqFfLy8jBo0CAF0xV39uxZNG3aFPfu3cPp06fRunVrpSMZnPDwcKxcuRKVK1eWj6lUKiQkJCiYikqbm5sbfHx85Dnfu3btwsKFC7FixQqFkxmWo0eP4o8//oC7uztOnDiBDz74AEDhnPpHpyuR4eFIq5EJDAx84u08xWj4Dh48CKDwCfjq1ato164d1Go1fvvtN+H2Ko+MjMTZs2exYMEC5Obm4vvvv8eRI0cMapciEezcuRNJSUkwNzdXOgq9RJIk6S1S/PTTTzFnzhwFExmexYsXIz4+HmlpaejcuTOCg4PRtWtX9O/fnwWrEWDRamREX/FO/17RGw8vLy/ExcXhjTfeAFDYi3fo0KFKRitm7969iIuLAwBYWVlh4cKFcHV1ZdH6nKytrZGVlcWi1cjZ2Nhgzpw56N69O9RqNbZu3Yr69evjxo0bADgd5FnExMRgzZo18PDwQOXKlbFu3Tp069YN/fv3VzoalQIWrUbG1dVVvpyamoqLFy/Czs4ON2/e5LtMI5OWlqa31WO5cuVw584dBRMVp9Fo8PDhQ5QvXx4AhFsoZihUKhU+//xzNGjQAGXKlJGPc4ML45KQkACVSoX169fLi2glSYKnpyengzwjExMTvalwZmZmevPAybCxaDVSW7duxdy5c/Hw4UOsWrUKPXr0wOjRo+Hi4qJ0NCol9vb26Nu3Lzp27AidToft27fD0dFR6Vh6evToATc3Nzg4OECSJCQmJqJXr15KxzI4gwcPVjoC/QdmzJiBo0ePwtPTE4MHD8aZM2cwYcIEdO7cWeloBuPDDz/E1KlTkZubi/j4eKxevRq2trZKx6JSwoVYRsrV1RVLly6Fp6cnYmNjkZaWhr59+2LLli1KR6NStGPHDhw6dAgqlQqtW7dGhw4dlI6kJy8vD0uWLEF+fj4qVqwIjUaD7Oxs+Pn5KR3NoBw+fLjE40ULTMg4eHh4YNSoUbh9+za2bt2KcePGwdvbG+vXr1c6msHQ6XRYs2YN9u/fD51OB1tbW/To0QOmphyjMwb8XzRSJiYmqFChgnzdysoKJibcS8LYdOrUCZ06dVI6xmP5+PggNzcXKSkpsLGxweHDh9GiRQulYxmcqKgo+bJGo8H58+dhY2PDotXI6HQ6fPDBBxgxYgQ6duyI6tWrQ6vVKh3LoJiYmOCLL75Au3bt5GNpaWmcD2wkWLQaqQYNGmDZsmXQaDQ4d+4cVqxYIdwWn2T8Ll++jJ07dyIsLAzu7u4YPXo0R1lfwNKlS/WuX7t2jZ1AjFC5cuWwYMECHDx4EMHBwVi8eLE8H5yezdSpU7FmzRp5vr8kSZwPbERYtBqpnJwc3L59G2ZmZhgzZgxsbW3h7++vdCx6xVhaWkKlUqFu3bo4f/48unTpgvz8fKVjGTxra2v8+eefSsegUhYZGYm1a9ciKioKlSpVQlpaGqZNm6Z0LIOSkJCAX3/9lcW+kWLRaqSuX7+OyZMnY8SIEUpHoVdYgwYNEBoaii+//BIjR45EWloaOwi8gH/2X7506RIaNmyoUBp6WapVqwZvb2/5+qhRoxRMY5gaNWqE/Px8Fq1GiguxjFS3bt1w9epV1K1bF2ZmZvJxtsih/5JWq8WxY8dgY2ODhIQEJCUlwcPDgwXXc4qJiZEvq1QqVK5cGa1bt+Yud0T/EB8fj8DAQDRs2FCv1RVf+4wDi1YjdejQoRKPc/MBIsPTr18/LFiwQOkYRMJzcHCAr69vsYVXfO0zDpweYKT4B0pkPPLy8nDz5k1Ur15d6ShEQnv99dfRpUsXpWPQS8KilYhIcH/99RccHBxgaWkJMzMzrogmeoyWLVvCx8cH7dq109s9joWscWDRSkQkuJ9//lnpCEQGITc3FxUqVMDvv/+ud5xFq3HgnFYiIsH5+Phg9uzZesf69OmDxYsXK5SIiOi/x5FWIiJBDR06FMnJyUhLS9Pbolej0XB+K9EjBg0ahHnz5sHBwQEqlUo+LkkSTExMEB8fr2A6Ki0caSUiEtT9+/dx9+5dhIWFISgoSD5uamoKS0tL7qdO9P/u3LmDqlWrwtvbG2PGjJHnfUuShMDAQLa8MhIsWomIBJefn48///wTjRs3xqZNm3D27Fn07dsXVlZWSkcjEsKjZyUe/bvQarWoXr06Vq5cqWA6Ki0sWomIBOfn54d69erB3t4eo0aNgouLC44ePcrerUT/j2clXg0sWomIBOfu7o7169cjPDwcFhYWGDhwoHyMiOhVYaJ0ACIiejKtVouMjAwkJCTA3t4ed+7cwcOHD5WORUT0n+J4ORGR4Pr37w8PDw84ODigYcOG6NSpE/z8/JSORUT0n+L0ACIiA6PVaqFWq5WOQUT0n+JIKxGR4BITEzFz5kxkZWXh0XEGbuNKRK8SjrQSEQmuU6dOCAgIQIMGDfQap9esWVPBVERE/y2OtBIRCa5y5cpo37690jGIiBTFkVYiIsFFRERAo9Ggbdu2MDMzk49/8MEHCqYiIvpvcaSViEhwJ0+ehEqlwrlz5/SOc2tKInqVsE8rEZGgxo0bJ1+WJEnvg4joVcORViIiQXXv3h0A4OPjo3ASIiLlcU4rEREREQmP0wOIiIiISHgsWomIiIhIeCxaiYiIiEh4LFqJiIiISHgsWomIiIhIeP8HgckUqImtabIAAAAASUVORK5CYII=\n"
},
- "metadata": {
- "needs_background": "light"
- }
+ "metadata": {}
}
],
"source": [
@@ -280,7 +276,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 27,
"metadata": {},
"outputs": [
{
@@ -294,7 +290,7 @@
"output_type": "display_data",
"data": {
"text/plain": "",
- "image/svg+xml": "\n\n\n\n",
+ "image/svg+xml": "\n\n\n\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVfr48c+U9Myk994IARJ6BxGwgQ2wLAqCvet+9WfBtaEurnVV0FVEV110cZFebBTpvSYhgZCE9J5MMn0y5f7+GIgioSeZBM779eJFmLm59wlJznPPuec8RyZJkoQgCIIguJjc1QEIgiAIAoiEJAiCIHQSIiEJgiAInYJISIIgCEKnIBKSIAiC0CmIhCQIgiB0CiIhCYIgCJ2C0tUBCBeuss7AzkNVlFbrkMtlJEX5MbhXOAEqT1eHJgiCcN5kYmFs12MwWflyRTbrdpfgkMDf1wOb3YHeZMVdKef6EYlMua47Hm4KV4cqCIJwzkRC6mLKanS8/uVOqhuM3DAigZuvSCI0wBtJkiip0rFkQz7r95QSE6bipXsHERns6+qQBUEQzolISF1IRa2eF/61BbtD4oXpg+iZGNTqcfuO1PDet3tRyGW89uBQEqP8OjhSQRCE8ycSUhehMzbz9IcbMZptvPnocOLC1Wc8vqxGx8tzt9NstfPWYyOICVN1UKSCIAgXRsyy6wIcDol35u+hrtHMy/cNPmsyAogOVTHr4WHI5TJenbedJr2lAyIVBEG4cCIhdQHLNxVwIK+WByem0z0u8Jw/LzLEl1fuG0yjzsI78/dgtzvaMUpBEISLIxJSJ1dSpeU/P+YypFc41w2JO+/PT4kJ4LFbe5OZX8dXq3LaIUJBEIS2IdYhdWKSJDF3aRae7goeu7UPMpnsgs4zdmAs+WWNLN9UQEqMP6P6RbdxpIIgCBdP9JA6sa2ZFWTm1zF1XBr+Ko+LOtd9N/UiLT6QTxYdpLLO0EYRCoIgtB2RkDops8XGl8uzSYz047qh8Rd9PqVCzjNT+iOXwbvf7sFqE8+TBEHoXERC6qR+WH+UuiYzD01KRyG/sKG6PwsN9OaJ2/tytLSR737ObZNzCoIgtBWRkDqhukYTSzfkc2W/aHoktL749UIN7x3JtUPiWPxbPvuO1LTpuQVBEC6GSEid0PdrjiBJElPHpbXL+e+/uRex4So+WLAPjc7cLtcQBEE4XyIhdTIVtXrW7CrhuqHxhAV6t8s1PN2VPDd1AEaTlQ8X7MfhEMU6BEFwPZGQOpnvfjmMm1LO7WO7tet14iLU3H9zL/YdqWHZxoJ2vZYgCMK5EAmpEzlW0cSm/eXcNDKRAHX772l03dB4hqZH8J8fc8gr0bT79QRBEM5EJKRO5LufD+PjqWTSlckdcj2ZTMYTt/chQO3Je9/uxWi2dsh1BUEQWiMSUieRX9rIzkNVTLgyGV9v9w67rsrbnWem9Ke6wcCnizMRxd8FQXAVkZA6ie9+OYyvlxs3jUzs8Gv3TAzijmu7s2FfGSs3F3b49QVBEEAkpE7hSHEDe3KrmTQ6GW9PN5fEcPvYbgxNj+CLFdnsyK50SQyCIFzeRELqBP77yxHUPu5cPzzBZTHI5TKevrMfKTH+vPvtXjHJQRCEDicSkovlHKtn35EabnFh7+gET3clL907GH+VBzPn7SC/rNGl8QiCcHkRCcnF/vvLYfx9PRg/zHW9oz8KUHny94eG4emh4KVPt3K4qMHVIQmCcJkQCcmFsgvqOHi0jlvGpODp0Xm2pooI9uGtx0ag9vXg5bnb2CmeKQmC0AFEQnKh//5yhACVB+OGxbs6lFOEBnjz1mMjiAr15e9f7eKL5dliywpBENqVSEgukplfS1ZBHbeN7YaHm8LV4bQqUO3JO4+P5IbhCSzfVMCzczZxqLDe1WEJgnCJkkliJWSHkySJZ+dspq7RxOcvXIV7J01If7Qts4K5S7No0JoZ3DOc26/qRkqM/wVvqy4IgvBnIiG5wJaD5bz9nz08eXsfrh4c5+pwzpm52caKTYUsWn8Uk8VGbLiKMf1j6NMthPhIvzbbSFAQhMuTSEgdzGqz8+g76/F0V/Lh01d2yUZcb7Ky5UA563aXcLjYuV7J21NJcrQ/EcE+RAb74K/ywNfLHV9vN3y83HBTyFEo5CjkMhRyGXK5DIVCjgxnj9EhnfhbQjrxsePk1xyShMNx/I8kYf/Dxw7H8WOOvyaTg4ebAg93Je5ucnw83VB5uyPvgv/fgnC5EAmpgy3bWMCXK7J57cGh9EsNdXU4F61WY+LQsXqyC+ooqtRSUWtAZ2x2dVitUshl+Pm646/yJDTAi6gQX6JDfYkKUREXoXL5OjBBuNyJhNSBdMZmHnxzLd1iA3jtwaGuDqfdGExWtIZmdMZm9CYrBqMVm8OB3X6iV+PA7pCw2Z0/enKZs/K4XAYyuez3j//wt0wGcpmzZyWXy37/+KS/nRUnZDIZkiTRbHVgabZjsdrQG6006i006ixodBaqGwxU1hlOiiE2XE232ABS4wLISA4mPMjHlf+NgnDZ6TyLXy4D36zOwWixcc+NPV0dSrvy8XIO00XQuRt0u91BtcZIWY2e/NJGjhRr2JZZwa87iwHneqx+qaH07RZCenKw6EEJQjsTPaQOcqiwnhmfbGHilcnce4knpK5MkiTKavQcyKtlf14NWfl1mJvtKOQyeiQEMSAtlAFpYcSEqcQMQ0FoYyIhdQCrzc5f/7kBS7OdT54d06mqMghnZrXZOVykYd+RGvbkVlNUqQUgNNCbAd1DGdgjnPTk4E67lkwQuhKRkDrA92uO8N3Ph3n1/iEMSAtzdTjCRajVmNh7uJo9udUcOFqLpdmOu1JORkoIA9LCGJgWRmigt6vDFIQuSSSkdnakuIHnP97CsIxInrtrgKvDEdpQs9VOdkE9ew5Xsyenmsp6AwAxYSoGpIXRKymI7nGBqH06bgdgQejKREJqR3pjM3/95wYAPnr6yg7dmlzoWJIkUV6rZ09uDXtyqzhUWN8ygy8qxJfUuAASIv2Ij1ARF6EmQOXp4ogFofMRCamdSJLErK92sfdwNW8/PpJusQGuDknoQOZmG/mljRwu1nC4qIEjxRoa9ZaW9/183YkLVxMV6kt0iC9Rob5EhfgSEuDdJRdLC0JbEAmpnSxaf5RvVudw3029mDAqydXhCJ1Ao85CcZWW4kotRZVaSqp0lNXoMJhtLce4KeVEBPsQFeJ78p9QXzH0J1zyREJqB5v2l/Hut3sZ2SeKZ6f2F9ODhdOSJIkmfTPltXrKavRU1OpbPq6qN2B3/P7rqfJ2JyrEp6U3dSJRRQb74KYUs/yErk8kpDa2LbOCd+bvoXt8IK8/OLRLVPIWOie73UF1g5GyWmeiKqtxJquKWj0N2t+H/+QyCAnwJiZMRWKUH4mRfiREqQkP9BG1+4QuRSSkNrRudwlzFh4gJcaf1x4cKlb2C+3GaLZSXqunvNZA+fFEVVKlpbRGj+N4r8rLQ0F8hB8JkWoSo/xIiPQjLkIt1kwJnZZISG3Abncw/6dcFv+WT++UYP529yCRjASXaLbaKanSUVjRxLHyJo5Vaiksb8JkcT6nkssgKlRFYqQfiVFqEiKdicpf5eHiyAVBJKSLVl6r56Pv95Nb1MC1Q+J4aGIGbkqxEa/QeTgcEjUaI4XlTccTlZbCiibqGk0txwSqPUiI9CMxyo/4CDVRIb5EhvjiJaqKCB1IJKQLpNGZWbqhgJWbC/F0V/DQpAyu7Bft6rAE4ZxpDc0cq2jiWEUTheVNHKvQUlqtO2kiRaDa83hy8iEy2JeoEB8iQ3wJD/IRN15CmxMJ6Tw4HBJHSzX8tL2IjfvKsTscjBkQw7TxPQhUi4WOQtdntdmPz/YzUFF3YhKFgfJaPVrD7/tcyWQQpPYkJMCbsEBvQgK8CA3wJjTQm9AAL0ICvMWzKuG8iYR0Bna7g5JqHQVlTeQcq2dPbjUanQVPdwVXDYzlhpGJRIX4ujpMQegQOmPz8Wnpzr2kajTG439M1DWaWiZTnOCv8iBA5UGAyvP3j9WeBKg88Fd54Ofrga+XGz6ebni4K8TyCEEkpD/LzK/lf2vyqNEYqdWYWoYvvD2V9EsNZVDPcAb2CMfXS0xaEIQT7HYH9VozNQ3OBFV7PFE5N0Q0o9E5N0e02R2tfr5cLsPH0w0fL6VzPy1PN7w8lLgp5bi7KY7/keOuPP7x8deVSjlymQzF8c0ZnR/Lj2/k2MqmjieSnszZy3N+KIPfX25JjCpvN2LD1e38Pyf8kXhi+Sc6oxWrzUG32ABG9okiNlxNcrQfEcG+oqSLIJyGQiF3DtkFnL7SuSRJGEzWluTUqLdgNFsxmKzOnYVNVoxmW8vHOqORZquDZpsdq9WBxWrHarO31AjsCF++eLWo3t6BRA9JEIQuxe6QsFrtWKx2bHYHDgc4JAmHQ8IhSdjtDhyS85nvidccDqlltEOSJFoaPQlO/EuSnP92vizh6+VOcox/h399l7MumZBsNhtVVVWuDkMQBOGChYeHo1SKQao/6pL/G1VVVYwdO9bVYQiCIFywdevWER0tlor80WXdQ6qqqmLKlCl89913hIeHt0FkHasrx9+VY4euHX9Xjh26dvx/jL1Pnz6ih/QnXfJ/Q6lUtumdRXh4eJe+U+nK8Xfl2KFrx9+VY4euHb8YrmudWGotCIIgdAoiIQmCIAidgkhIgiAIQqegmDlz5kxXB+FKHh4eDB48GA+Prll+vyvH35Vjh64df1eOHbp2/F059vbWJWfZCYIgCJceMWQnCIIgdArtnpD0ej033HADZWVlpz3m+eefZ8mSJe0diiAIgtCJtWtCOnjwIHfccQdFRUWtvl9dXc3DDz/Mzz//fF7ntdlslJWVYbPZ2iBKQRCEzulya+vadWXWwoULefXVV3nuuedafX/lypWMHTsWf//TFzDUarVotdqTXjux2lmU3hAE4VIh2rp2TkizZs064/v3338/AHv37j3tMd988w0ff/xxm8YlCILQ2Yi2rguUDpo+fToTJ0486bUTdw2CIAiXCtHWdYGEpFarUavFro2CIFzaRFsnpn0LgiAInUSH95AeeOABnnzySdLT0zv60oLQ5VmtVsrKyjCbza4ORTgHnp6eREdH4+bm5upQuoQOSUjr169v+XjevHmnvP/WW291RBiC0OWVlZWhUqmIj49HJpO5OhzhDCRJor6+nrKyMhISElwdTpcghuwEoQsxm80EBQWJZNQFyGQygoKCRG/2PIiEJAhdjEhGXYf4Xp0fkZAEQRCETkEkJEG4zGVmZvLKK68AkJWVxZNPPnnOx7fFcYJwgkhIgnCZy8/Pp7q6GoD09HRmz559zse3xXGCcEKnXxgrCMKFcTgcvPnmmxw8eBCDwYAkSfz973/nhx9+oLGxkdLSUnr37s22bdvQ6XS88MILTJgwgTfeeINVq1axZ88e3nrrLRwOBwAPPfQQGRkZzJ49u+X4f/zjH61eu7Ky8pTj/ve//zF//nzkcjnBwcG8/PLLJCQkMGPGDGQyGQUFBTQ0NDB8+HBeeumlM06VttvtvPPOO6xfvx6VSkVGRgYFBQXMnz8fnU7HrFmzyMvLw2q1MnToUJ577jmUSiXp6ek8+OCDbN26lZqaGqZNm8bdd9/NkiVLWLRoESaTCV9fX+bPn88PP/zAggULcDgc+Pv78/LLL5OUlNQu3yvhOKkLKi0tlbp16yaVlpa6OhRB6FA5OTnnfOy+ffukJ554QrLb7ZIkSdLcuXOlhx56SHr++eel6dOntxy3ePFi6cEHH5QkSZJ27NghXX/99ZIkSdK0adOkVatWSZIkSbm5udLMmTNPOf5M/njctm3bpKuuukqqr69veW/cuHGSw+GQnn/+eWnChAmSXq+XLBaLNGXKFGn+/PlnPPeCBQukKVOmSGazWbJYLNK9994rTZ06VZIkSZoxY4b0n//8R5IkSbLZbNIzzzwjff7555IkSVK3bt1azp2VlSX16tVLMpvN0uLFi6WBAwdKOp1OkiRJ2rlzp3TnnXdKRqNRkiRJ2rx5szRu3Lizfs2tOZ/v2Z9dbm2d6CEJwiWqb9+++Pn58f3331NaWsrOnTvx8fHB39+f/v37n/Xzx40bx+uvv8769esZNmwYTz/99AXHsnnzZsaPH09gYCAAkyZNYtasWS37pE2cOBEfHx8Abr75ZtatW8fUqVNPe76NGzdy8803t2wD/pe//IX58+cDsGHDBrKysli0aBHAKdOux44dC0DPnj1pbm7GaDQCkJqaiq+vb8s5iouLmTx5csvnNTU10djYeMbdCYSLIxKSIFyiNmzYwKxZs7jnnnsYO3YsiYmJrFixAgBvb++zfv7kyZMZPXo0W7duZfPmzXz88cctn3++JElq9bUT+/woFIqTXpfLz/x4W6k8uen64/EOh4OPPvqoZXhNq9WeNP36RBI78dqJ2P74f+JwOLj55pt59tlnW/5dU1ODn5/fWb5S4WKISQ2CcInaunUro0eP5s477yQ9PZ21a9dit9tPOU6hULS6AdzkyZPJzc1l0qRJvPHGG2i1Wpqamk57/JnOO2LECH788UcaGhoAWLx4Mf7+/sTFxQHw008/0dzcjMViYenSpYwePfqM5x41ahQrVqygubkZm83G0qVLW94bMWIEX3/9NZIk0dzczCOPPMK333571nj/aPjw4axevZqamhoAFixYwPTp08/rHML5EwlJEC5RkydPZvfu3dx444385S9/ISYmhrKyspZJCif07duXwsJCHnvssZNef+aZZ5g9ezYTJkxg2rRpPP7440RHR5/2+D/743HDhw/n7rvvZvr06Vx//fUsW7aMuXPntvRsPD09ufPOO7nxxhsZMGAAt9xyyxnPPWnSJDIyMpgwYQKTJ0/Gzc0NLy8vAF588UWMRiM33ngjN954I926dWvZe+1cjRw5kgceeIB7772XG2+8kVWrVvHxxx+Lha7tTCa11pfu5MrKyhg7duxls4uiIJyQm5tLWlqaq8NoUzNmzCAlJYX77rvvnD9ny5Yt1NfXc/PNNwPw97//HQ8Pj5Yhts7kYr5nl1tbJ54hCYJwQQoLC3nqqadafS8hIYEPP/zwos5/5513YjAYWn3vX//6F19++SVffvkldrud7t27M3PmzIu6nuB6IiEJgnBBEhMTWb58+UWf53TV/v/73/+e8fO++uqri752V2F3SOiMzai83V0dSrsSz5AEQRA6uY37ynj0nfVnP7CLEwlJEAShk9MaLDTqLK4Oo92JhCQIgtDJyY/P7nM4utwctPMiEpIgCEInJ1ccT0hdb1L0eREJSRAEoZNTHF+vZRc9JEEQhPMze/Zsxo4d2yYz4ebMmcOcOXPaIKozKysrY8yYMef1OWPGjKGsrIwlS5YwY8aMdors9yE7u91xliO7NjHtWxCENrd8+XK++OILEhISXB3KJUEhP56QLvEekkhIgtBFrd9TwppdJe1y7qsHxTJmQOwZj7HZbMycOZOjR49SV1dHQkICH3/8MW+++SbV1dU89thjvP/++9xzzz307NmTuro6Fi1axJdffsmKFStQKBQMHz6cZ5999qTiqgBffPEFCxcuJCAgALVaTUZGBgDffvsty5cvx2QyIZPJ+PDDD0lKSmLMmDHcdNNNbNmyBZPJxNtvv02vXr3Izc3llVdewWw24+fnx3vvvUd4eDiff/45P/30E3a7nREjRrRUeDCbzTz11FMcPXoUtVrNJ598QkBAwGmv21EUihM9pEs7IYkhO0EQLsj+/ftxc3Pjf//7H2vWrMFisbBx40Zef/11QkND+fzzz0lLS0Oj0fDggw+yfPlytm3bxvr161myZAlLly6luLiY77///qTzZmVlsXjxYpYuXcpXX31FVVUVAHq9nrVr1zJ//nxWrVrFVVddddLiWX9/fxYtWsTkyZOZO3cu4KzH9+ijj7Jy5UrGjx/PN998w6ZNm8jOzmbRokUsW7aM6urqlirmDQ0N3HPPPaxatYrg4GB+/PHHs163I7QM2TnEkJ0gCJ3QmAFn78W0p4EDB+Lv7893331HYWEhRUVFLXsL/Vnv3r0B2LFjB9dffz2enp4A3HLLLSxbtowpU6a0HLtr1y5GjRrVsj/Sddddh8PhwNfXl/fff5/Vq1dTVFTE5s2bT6oRN3LkSABSUlL49ddfaWhooLa2tqVy+J133gnA22+/TWZmJpMmTQKcvaLIyEj69+9PaGhoS28sOTkZjUZz1ut2hJYhu0u8hyQSkiAIF2TdunXMnj2badOmMWnSJDQaTav7HgEtCejPlcaBU7aykMlkJx2nVCppbm6msrKSu+66i6lTp3LFFVcQHBxMbm5uy3F/3ufoz1ugWywWampqsNvtTJ8+nXvuuQdw7pekUCjQaDQn7bMkk8mQJOms1+0Ibm7OIU2L9dTtQy4lYshOEIQLsn37dsaNG8ctt9xCcHAwu3fvbnW/pT8aMmQIq1evxmw2Y7PZWLx4MUOGDDnpmKFDh7JhwwZ0Oh0Wi4U1a9YAzqG8uLg47r77bnr37s2mTZvOeD2VSkV4eDhbt24FnBMtPvroI4YMGcLy5csxGAzYbDYee+wxfvnll9Oe53yv2x68PJwJyWQ5+z5UXVm795D0ej2TJ0/ms88+O6V8em5uLi+99BJ6vZ4BAwbw2muvnbITpCAIndNtt93GM888w88//4y7uzt9+vRp2ZL8dEaPHk1ubi633HILNpuNkSNHnrJVeVpaGtOnT+fWW29FrVYTGRkJODfNW7BgAePHj8fd3Z2MjAyOHj16xuu9++67zJw5k3feeYeAgADeeecdQkNDOXz4MLfffjt2u52RI0cyceJEysvLWz3HhVy3rXm6O9tFk/nSTkhI7ejAgQPSDTfcIPXs2VMqLS095f3rr79e2r9/vyRJkvTCCy9I33333Tmdt7S0VOrWrVur5xSES1lOTo6rQxDO08V8z060dVt3H5JueHqZtC2zog0j63zadchu4cKFvPrqq4SGhp7yXnl5OWazmT59+gDOHSB//vnn9gxHEAShS/L0ON5DslhdHEn7atfxsVmzZp32vZqaGkJCQlr+HRISQnV19SnHabVatFrtSa+dmAYqCIJwqThTW+fj5ZygoTOKhNQupFZm47S2X/0333zDxx9/3BEhCUKXIElSq78rQufTWjt3Omdq67w9lLgp5dQ3mdsqtE7JZQkpLCyMurq6ln/X1ta2OrQ3ffp0Jk6ceNJrVVVVJ61bEITLhaenJ/X19QQFBYmk1MlJkkR9fX3LlPezOVNbJ5PJCPLzpL7J1B6hdhouS0hRUVF4eHiwd+9e+vfvz7Jly7jiiitOOU6tVqNWq10QoSB0PtHR0ZSVlVFbW+vqUIRz4Onpecrs4tM5W1sX5Oclekht7YEHHuDJJ58kPT2d9957j5deegmDwUCPHj2YNm1aR4cjCF2Km5ubKFh6mQoN8CIzv+7sB3ZhHZKQ1q//fS/4efPmtXzcvXt3Fi1a1BEhCIIgdGlx4Wp+21uG3tiMr7e7q8NpF6JSgyAIQhcQF+Ecziuu0rk4kvYjEpIgCEIXEBfuTEhFldqzHNl1iYR0CbHZHRhMVpr0Fpr0FoxmK45LfEMvQbhcBPt7ovZxJ69E4+pQ2o0oHNfFWG12CsqbKCxvoqRKR2WdgeoGIw1ac6uFF2Uy8PVyI0DtSWiAN+FB3kSHqoiPUJMQqcbb062VqwiC0NnIZDJ6JQWRVVB3ya5FEwmpC6iqN7Aju5LdOdXkFjVgtTlL83t7KokM9iE+Qk2/7qGofdzxdFeiVMiQJLDaHJgsNrQGCw1aMzUNJg4V1mGyOCsVy2TOYYBeiUFkpISQnhyMr1fXTVCSJNGos1CtMVKrMdGgNdOkt6A1NGOy2Gi22lu2gFYq5LgrFXh7KVH7uBOo9iTE34vwIB/Cg7xxUyrOcjVB6HgZScFsy6ykqt5IRLCPq8NpcyIhdVJ6YzO/7S1j/Z4S8suaAIgLVzF+WAI9EgJJjvEnxN/rvO+SJEmivsnMsYomjpY2klvUwJrdJazaegy5XEZqbACDe4YzND2CyBDf9vjS2oTRbKWgrImC8kaOVWgprtJSXqPH3HzytgAKuQyVtztenkrclXKUSjmSBHa7A4vVjsFkQ29q5o8L6uVyGVEhPiRF+ZMS60+vxGDiI9TI5ZfeHanQtfRPC4OlWew8VMmEUcmuDqfNiYTUyVTVG1i6IZ/1e0oxN9tJjvbj3ht7MjQ9gvCgi78jkslkBPt7EezvxcAe4YCzJ3W4uIEDebXsyanm69U5fL06h/gINUPTIxieEUlsuMplQwSSJFFWoye3qIHDRQ0cKdFQWq1rSSKBag9iw9VcPTiOiCAfwoK8CfH3IsjPC5W321njttsdNOot1DSYqGowUFajp7hSS2Z+HRv2ObdTUHm706dbCP1SQxnYIww/X4/2/rIF4RThQT4kRvqxLVMkJKEd1TeZ+O8vR1i7uwS5TMaoflHcOCKRpGj/dr+2m1JOelIw6UnB3DUujRqNkW2ZlezIruT7NUdY8OsRokN9GdE7imEZEcRHqNs1OdkdEiVVWnIK68kqrCe7oI4mfTMAKm83usUGMCIjkpTYAJKj/fFXXVxyUCjkBPk5E1haQuBJ79VojBwqrOdAXi37j9Sw+UA5chmkJwczsk8UQ9MjUftcmmtChM5pWEYE3/58mOoGI2GB3q4Op03JpPOp/tdJlJWVMXbsWNatW3fOZTk6K6vNzpIN+fyw7ih2u4NxwxK4ZXQyQX5erg4NAI3OzPasSjYfKOdQYT2SBCEBXgzqEc6AtDB6Jgbh5XFx9zVmi42jpY3kFNWTe8zZCzIc34gs2N+L9KQgeiYG0yMhkOhQX5f21ArKmtieXcmWA+VU1BlQyGUMSAtjzIAYBvYIx00pJq4Kbae1tq5GY+SBWWu4dWw37hqX5uII25boIbnQkeIGPvrfAUqrdQzLiOCeG3q2ybBcWwpQeTJ+WALjhyXQqLOw81AVu3OqWLu7hNVbj6GQy0iIVJMSE0B8pJqoYF9CAr3w9/XA012JXC5DkiQszXa0xubjkyuMlNcaKK3WUVTZRHmNniCoBeoAACAASURBVBOz02PCfBnRJ4qeiUH0SAgiNOD8n5O1F5lMRnKMP8kx/ky9rjsF5U1s3FfGxn1l7DxUhcrbnVF9oxg7MJakaL9OE7dwaQkN8KZf9zDW7CzmjmtSUSounZsgkZBcwO6Q+GFdHgt+PUKQnyev3j+EAWlhrg7rrPxVHlw7JI5rh8TRbLVzqLCerII6jhRr2LS/jJ+2nzrtXC6XnXYtVFigN3HhaoZnRJEaF0C32IAuM/wlk8lIjvYnOdqfu6/vwf68WtbtLuGXncWs2nqM+Ag1o/tHM7JPNCEBnaO3K1w6rh+ewGtf7GDD3jKuGhTr6nDajEhIHaxJb+H97/ayP6+WK/tF8/CkjJbNt7oSdzcFfVND6Zvq3DJEkiTqGs1U1OmpbzLRqHNOtXZIEjIZeLorUXm7E6D2aFkP5el+afz4KRRyBqSFMSAtDL2xmc0Hylm3u5SvVuXw1aoc0uIDGdEnkqG9IkVyEtpE/+6hJEb68cO6PEYPiEFxicwAvTRahC6ipErLG//eSX2Tmcdv68M1g2MveFhHkiRqNSZKqnVU1xto0FnQG5ux2hxIknOigrenEn+VJyEBXkSF+BIV4ttuzzhkMhkhAV6XfYPr6+3OuGEJjBuWQEWdns37y9lysIJ5y7KZtyyb+Ag1fVND6Z0STI+Ei3/+JlyeZDIZt1/djbe+2c2m/WWM7h/j6pDahPht6CA5x+p5/cuduCnl/OPR4aTGBZ79k/6kqt7ArpwqMo/Wcbi4oWXmGTiHxnw8lbi7KZABVrsDg8mGze5oOUapkBEfoSY1LpD05GB6JwdfslWDO4PIYF/+cnUqf7k6ldJqHbtzqth7uIaVmwtYuiEfuVxG4vHnbwlRfiREqIkNV4nqGcI5GdorgqRoP/7zYy5D0yMuiRGHrv8VdAH7j9Tw9692EeLvyWsPDjuvqZpGs5WN+8tZu6uYvJJGAMKDvBmQFkZqbACx4Woig33w8/U4ZeGmJEkYTFaqG4yU1+opLHcuhl13fEKCXC6jZ0IQwzMiGNY7kgDVue1sKZy/mDAVMWEqJo1OwWyxkVPUQPZJz9+KWo4N9vciNkxFdJgv0aEqokJ8iA5VEaDyEBMlhBZyuYwHbk5nxidbWLqhgDuuSXV1SBdNJKR2djCvlr//eyeRIb688dCwc14z06S3sHRDPj9uK8JksREXruKeG3owJD2CyOBzq6Agk8nw9XbH19udpGh/rujrnDZqszs4WtLInsPVbM+q5LOlWXy+LIveKSFcNSiWoekRXbp0jiRJmCw2jGYbzTY7DoeEXCbD3U2Bt6cSLw+lSxt2Tw8l/VJD6feH52/VDUaKK7UUV+kordZRWqPj0I56LH+oPOHjqSQ2XE1ilB/J0X6kxrl2Grzgej0TgxjeO5JF648yqm9Up66uci7EOqR2lFei4cVPtxIW6M2sR4af0+p+i9XO0g35LPntKOZmOyN6R3HTyERS4wLareEprtSy6UA5v+0tpVZjQuXtztiBMVw3NJ6oTvoDbrM7KK3WUVyppaxGT0WdgZoGI3VNJpr0Fmz20/9YKxWylmKzkcE+xIarjjfy/p1quMzhkKhrMlFeo6esRk9pjY6iCi1FldqWQroqb3d6JQXRt1sIA9LCL/tneJeac2nr6ptMPPbOeuIj/XjzkeFdusSVSEjtpLLOwDOzN+HloeTdJ0YSoD77cNjBvFo+XnSAqnojQ9MjuGtcGjFhqg6I1snhkDhwtJZfdxSzI7sSu0Oib7cQxg9PYGBaGAoXrneo0RjJPeYsG3SkuIHCcm3L8zG5XEZogBfhgT4E+XsSoPJE5e2O9/FnaifWQjUfr13XUmxW42zsG/UW53lkkBDlR+9kZ4mgHolBnXKhq8MhUV6r53BRAznHGsjMr6VGYwIgLT6QK/tHc0WfKPF88BJwrm3dmp3FzF54gIcmpnPDiMQOjLBtiYTUDgwmK8/O2USjzsK7T15x1l6GxWrn3yuy+XFbEVEhPjx6a28ykkPO65p2uwOjxYbN5kAul+Hhrrioh5warZlfdxbz0/Yi6pvMBPl5cvWgOK4eFEtoB5QrqdEYycqvIzO/juyCupYG18NdQUqMc/1PUrQ/CRFqIi9y9mCT3kJ+WSOHizRkF9ZxuEiDze7A21PJgLQwRvSOon/3UNzdOucw5olaf9uzKtm0v4ziKh3uSjmjB8Qw8crkTtvLFc7uXNs6SZKY+cUOsvPreO+vV5AQ6deBUbYdkZDamCRJzPpqF3tyq3njoWGkJwef8fiqegNvfr2LYxVaJoxKYuq4NDzO0vBV1Rs4eLSOI8UNlFTpqGownDTj7gQPdwUh/s4p3wmRfnSPDyAtPvC8hqXsdge7cqr5eXsR+/NqAEhPCuaKvtEMTY9ok4WskiRRo3FujZFdUE9mfh3VDUYA1D7OIakTlRsSItTt3lMzWWxkHq1lV041O7Ir0Rqa8fFUMiwjkjEDYuiZGNRpn9tIkkRBeRM/by/itz2l2OwOrugbzdRxaZdc3bPLwfm0dRqdmb++vwFvTzc+eGpUl1xSIBJSG1vyWz5frTrEAzf34qYrks547KHCemZ9tQtJkvh/U/qfsVpDTYORdXtK2XygnNJqHeAsNJoQ6UdEsA9Bak+8vdxwU8pxOJwP9Rv1Fmo1JkqrdVTUOsvzKOQyeiQEMahnOCN6RxLsf+7PHKobjKzfXcJv+8qorDMgl8tIiw+kd0oIPRICSYryO+swkSRJNGjNlFTpnLP+yho5UtRAXZMZcG4m2CspiPRkZ7HXuHDXbvtgtzs4eLSOjfvL2JZZgbnZTkSQD2MHxjB6QAyhAZ23kdfozCzfWMDKzYU4JLhldDK3jk25JKYHXy7Ot63LzK/lpc+2MbJPFM9M6d9pb5xORySkNpRXouG5OZsZ3CucGdMGnvGHYXtWJe9+u4fQAG9euW/waWfH5JVo+GFdHjsPVQHQIyGIYekR9E0NPa8ZViaLjbxiDQeO1rI7p4riKh0ymbO3c92QeIakR5zzsNeJu/BtmRXsza3hWGVTy1YQASpnJQY/Xw883RXIZDKsdjsGkxWNzkJNg/GkPYtCA71JjQ2gR0IgPRODXJ6AzsRssbEtq4K1u0rJKqhDJoM+KSGMHRjL4F7hnbahr2s08c3qHDbsKyMy2Ien7uxH9wtYByd0vAtp6xauzWP+T7lMG5/GbWO7tXOEbUskpDZittj46z83YLU7mP30lWfsKWzeX857/91LSrQ/r9w/pNVhr4paPV+vzmF7ViW+Xm6MH57AtUPi2uyOvKJWz8Z9ZazdU0pNg5EAlQfjhzuLqJ7vMJze2ExeSSOFFU1U1OqpbXTOdLM025Fw7s7q46kkQO1JsL8XEUHOmW0JkX5dpnbdn1XVG1i3u5R1e0qo1Zjw8lAwpFcEV/SNpndKSKecDHEwr5bZC/dT12RmyrXduXVMSqdN/oLThbR1kiTx3nd72XygnL/dPYghvSLaOcq2IxJSG5m3LIsVmwuZ9ciwM05I2JZZwdvz95AWH8ir9w85ZZzXZnewaP1RFq7NQ6mQc8voZG4cmXhOz30kSUKSnFuTn2vPye6Q2H+khlVbCtl7uAYPdwXXDYln4pVJnWYLjM7M4ZDILqxj475ytmZWYDBZ8fFU0j8tjIFpYfTpFnrR+zW1JaPZyic/HGTTgXIG9gjj/93Zv0vWUrxcXGhbZ7HaeeGTLZRU65j18LALqgzjCiIhtYG8Eg3PzN7EuKHxPHJL79Mel5lfy6uf7yAp2o83Hhp2SjKqqjfw7rd7yCtpZGSfKO6/uReBrUwXN1tsHDpWT25RA8fKtVTW66lvMmM8voeQs4yQGyH+XkSG+JAQ6UdqbADdEwLPOGGiuFLL4t+OsnF/OQq5jGuHxHHrmBSRmM6R1WZnf14t2zIr2JNb3TLRJD5CTa+kIFLjAukW4094kI9LeyaSJPHj1mPMW55NZIgvM+8f0iEzJ4XzdzFtnUZn5vk5W9Cbmnn78ZEduoTkQomEdJHsDon/99FGNFoz/3pu7GnvNkurdTw7exOBfl68/fgIVH8a0tuTW8173+0F4PHbejOid9TJ17E72J1bzdpdJew/UkPz8endUSG+RIf6EuzvhbenEoVcjtVmR2e0UtfonNBwYsaau1JORkoII3pHMiwj8rSzcKrqDfyw7ijrdpcgl8u4bmg8t45JaTU5uorDIVGjMVJSraOqzkBto4mGJjNaYzMmsw2rzYFDklAqZHi4K/H1ciNQ7Sw0GxnsS2y4isgQ33arkuxwSOSXNXIgr5as/Dpyixtaqi54eSiJP163LiZMRUyoiqjj38OOrNqcmV/Lm1/twsNdwesPDiMuQt1h1xbOzcW2dVX1Bp6bsxmFXMbbj4/s9Dce7ZqQVq5cyaefforVauXuu+9mypQpJ72/ceNG3nvvPQC6devG66+/jo/P2Teo60wJ6cdtx/h0cSbPTR3AyL5RrR6jN1l5+sONmMw23v/rFaf8UKzaUsi8ZVnER/jxwt0DT9qkz2qz8/P2YpZtzKdGYyJQ7eFcF5MWRo/4QDzPYWqn3tjM4WIN+4/UsD27klqNCU93BaP6RXPDiETiT9MQVdUbWLg2j3V7Slt6TLeMTjmvmXltpb7JRG5RA4eLNBwt1XCsogmT5ffJEe5uCoLUnqh9nAti3ZQKZDLnDYO52YbO0EyD1oLO+Pv0+BNrmnokBNE7JZi0+PZbCGu3Oyiu0pFf1khheRNFlVpKqnQnxaNUyIkI9iEqxIeYMBVx4WriI9VEh6raLVEVV2p55fNtWG0OXn9wGMkx/u1yHeHCtEVbd6yiiRf+tRVfLzfefHR4p54Z2m4Jqbq6mjvuuIMlS5bg7u7O5MmT+ec//0lycjIAWq2Wa6+9lvnz55OcnMy8efOorq7mpZdeOuu5O0tC0pusPPSPtcSGq3jzkeGtPrf547qkNx8dTo+EoJPeW/DrERb8eoTBPcN5Zkr/lgQjSRI7siv5YsUhahqM9EgIZMKoJAb1CEehkGOx2skr0XCsvInKOgMNuuNDdpKzcVb7uBMa6E1suIqUGP+WH0JJksgtamDtrhI27iuj2eZgYI8wJl+dSrfYgFa/zso6Az+sy2P9nlJkMriyXwwTRiW16x11k95C5tE6DuY7exgVdQbA2ctLivYnKdqP+Ag/YsNURIb4oPZxP6fnZkazlYo6A8WVWudi2GINheVNOBwSXh7OPZ6G9IpgUI/wdn+2IkkSWkMzpdU6ymv1VNQaKK91lgmqqjdgP76xoYe7guRof3oknJhi37aJs6rewIufbsVgtvH3h0RS6kzaqq3LK9HwytxtqHzcefOREZ22xFS7JaSlS5eye/du3nzzTQA++eQTJEni8ccfByAzM5PXXnuNxYsXA5Cfn8/999/Phg0bznruzpKQvl51iCUb8vng/0aRFN36L/GKTQXMW57d6rqkb3/O5X9r8hg7MIYnbu/bchfcpLfw8Q8H2JFdRVy4ivtu6kXf1FDMzTa2ZVawaX85mfl1WG3O0jnenkqC/Dzx9nRDhvOBZpPeQoPW0nKtExXCR/SOokdCIDKZDK2hmR+3HWPFpgJ0RiuDe4Yz/foepx1rrmkwsmRDPmt2ldBstdMrKYhrBse1Sel7k8VGzrF6Mo/WceBoLYXlTS1fW8/EINKTgumZGERilF+bb9lsNFvJyq9jd241u3OqaNBaUCrk9EsNZVS/KAb17Pgp3Vabo6VCe35ZI7lFDX9InEoGpoUxqn80/VND22ShcHWDkb99uhWjycqbjw7vsiv9LzVt2dbllWh4ee421D7uvPHQsJNGYjqLdktIc+fOxWg08tRTTwHwww8/kJmZyRtvvAE4e0jjxo3jyy+/pHv37syZM4e5c+eSnZ190nm0Wi1arfak16qqqpgyZYpLE5JGa+b+N9cyLD2C/zelf6vHlFbr+Os/N9C3Wygv3TvopDv4ZRvz+XLFIa4eFMvjt/Vpech9qLCet/+zG53Ryl3junPTFUkYTFaWbSzgp23HMJhthAZ6M7RXBBkpwaRE++PpoUSjNWO02JDhfEbhr/JAoZBTUqUlt6iBg3l1HMhzPnuKCPJh3LB4rhkch4+XG0azlZWbC1n8Wz4Wq53rhydw5zWpp526rjU0s+Z4WaHqBiMe7oqW6tU9EgKJDlWd8aG93e6gst5AYXkTeSWNHC5qIL+sEbtDQqmQ0z0+gD4pIfROCSElxr9Da+g5HBJ5pRq2HKhgy8Fy6pvMeHkoGJoeyZX9oslICXHZ7pxGs5Xsgnp25VSxLbMSnbGZQLUn44fFM354winPJc9XVb2BGZ9swW6XePvxEV2+cnRX0xFtXV6JhpnztqNUyHntwaGd7saj3RLSZ599hslkOikhZWVl8frrr7ccs2XLFj766CMcDge33347b731Fvv37z/pPHPmzOHjjz9u9RquTEifL8ti9dZjfPr8mFa3g7A7JJ6bs4nKOiOfPDf6pL2GtmZW8NY3uxmWEcFzdw1saeB+3VnMvxYdJCzQmxnTBxIdqmL5pgIWrs3D3GxjWEYkNwxPwM/Xg9051WQV1FFY3nhST+iP/FUeJEb60T0+kH6pIUSHqth5qIpfdhSRc6wBH08lN45MYuKVSXh7utGkt/Ddz4f5ZUcRKh937r2xJ6P7x5x2KMzhkDhUWM+Wg+XsyqmmrtFZb87dTUFksA8BKg+8Pd1QyGVY7Q50xmbqm8zUakwthVHdlXKSY/xbekFpCYGdZoHpia9vw74yth4sx2C2OZ/h9YliVN9oUmL8XbYS3mZ3sPt4Sad9R2rw8lAycVQSE69MPqfniqdTWq1jxidb8HRX8M4TI8UMyw7UUW1dSZWWVz/fjsli4+X7htAzMejsn9RB2nXIbs+ePcyaNQs4dcjObrdz7NixlmdKhw4d4oUXXmDFihUnnacz9pA0WjP3z1rDqH7RPPmXvq0ec6IH9OzU/i37EAEUljfx7JzNJEaqmfXIcNzdFEiSxPdr8vjvL4fplxrKc3cNoEZj5J//3UdRpZZBPcKZcl13CssbWb31GPllzuGs6FBfUmL8iQlTEeTnnGUnSc7hrwatmfIaPflljRRXaZEkCAnwYnT/GK4dHIfW2MzCtXlsz6pE5e3O1HHduXZIPAq5jMLyJv61+CBHijVkJAfz2K29z3q3LEknKlBrKK7SUllnQKMzY7LYsNsl3JRyfL3dCVB5EBboTUyYc8uHmDBVmw/BtYdmq53dOdX8treUvYdrsNkdhAV6M6J3JEN6RdAtNsBlU7mPVTSx4NcjbM+qJNjfi4cnpjP4IhZD5pc28rdPtxAS4M1bj506I1RoHx3Z1tVojLwydzu1GiPPTxvIoJ7hbXbui9HukxoWLVqEl5cXkydP5o033iAjIwMAh8PBlVdeyQ8//EBoaCjPPPMMKSkpPPzww2c9t6ufIX2zOofFvx3lsxljW+0d1TeZePitdfRKCuaV+wa33EUbTFae+mAjzTY7H/zfKALUnkiSxHc/H+Z/a/MYMyCGJ27vw9pdJXy+LAtfLzcevSUDvcnKd78coa7RRGy4imsGxzE849zr0DXpLew9XMOm/WXsP+IskDqyTzR/uboblmY7X606RGZ+HUnRfjx+Wx+So/1xOCR+2VHEN6tzaLY5mHx1KpNGJ3eJ5NHe9MZmdmRXsvlABQeP1mJ3SPj7etA3NYS+qaH0TglxyRT5Q4X1fLYkk6JKLWMGxPDQxPQL3t/p4NFaZs7bQUqMP288POysBX+F9tGebV2T3sLML3ZQWN7Ew5MyGDc0vk3PfyHafdr33LlzsVqt3HrrrTzwwAM88MADPPnkk6Snp7Nhwwbef/99mpubGTp0KC+++CJubmf/BXJlQjKardz7xq/06RbKjOkDWz3m/f/uZevBCv713JiWB4eSJPHet3vZklnBP/4w227x+qN8vTqHawbH8fCkDP69MptVW47RLzWUyVd3498rD3G4WEO3WH+mXJdG324hFzVMVKMxsnJzIT9vL6LZaueaIfFMvS6VzPx65i3LosnQzK1jUph8dSpuSjkNWjOfL81ia2YF8RFqnri9z2ln412O9CYre3Kr2ZNTzb4jNS3TuCOCfUiLDyQ1LoCUGH/iwtUdsn2F1eZg4do8Fq49QkSwDy/eM/iCF0RuOVjOO/P3MKhHOC9MH+jS/bAuV+3d1hnNVt6Zv4e9h2u4aWQi997Uy2XPSEEsjD1vKzYXMG9ZNu//9YpWG+ajpRqe/nATt41NYdr4Hi2vb9hXxvvf7WXquO785apUADbtL+Pdb/cyonckT93Rjw8W7GPLwQomjEoiJkzF3KVZeLjJuf/mXic9yzmx/82BvFqOlmqoqDVQrzVjabajVMjw8XIjNNCbhAg13eMDSU8KPmUKc5Pewv/W5rF66zF8PJXcf3MvBqaF8eXKQ6zbXUpipB/PTO3f0pjtyK7k08WZNOrMjB+WwF3j0zrV7qqSJKEzWjGYrFiszm3LFXIZnh5KVN5uHbJtucMhUVjeRGZ+HTnHK2loDc4EJZfLiA71JS789wWxsWEqIoJ92qXXmVVQxzv/2YPVZmfG9IH06RZ6QedZtaWQuUuzuHZIHI/d2rvLVY/u6jqirbPbHfx71SFWbCpkQFoYz07t77LfbZGQzoMkSTzy9np8vd1478krWj3m5bnbKCxvYt7frmr5pjbqLDz6znoiQ3x4+7ERKBRy8ssaeX7OZlJiA5j5wBA+/H4/Ww9WMP36NOqbzKzacozeKcE8dUe/lgfLRrOVX3eW8OvO4pYtKALVHsSGqQn088TTXYHd4VzbUl3vrGJgsztQKuT07x7KNUPiGNA97KRnHcWVWj5ZdJDcogYG9wznidv7cLiogdkLD9BstfPILb0ZMyAGcA45fvtTLqu3HcPf14O7b+jJlf2iO/TZiSRJVNQZyCtxrh8qqdZRWWugttF4xm3LPdwVhAV6ExXiTArJ0X6kxgW2a505SZKobjBSUNZEQXkjRZVaiqt01ByvnAHO7dQjQ3yJj1CTGOncRj0ltm22Uq/RGHnjy52U1eh4ZuoAhmdEXtB55v+Uy8K1eUy+OpUp13W/6LiEc9eRbd1P24v4bEkmMaG+vHzfEJfsnyUS0nk4eNS518j/Te7L2IGxp7yfXVDHC//ayn039WLCqN/XHH2wYB+b9pfx0dNXEhuuxmCy8td/bsDukPjnX69gwZoj/LStiOnXp5Ff1sTWgxXcfEUS99zQA4VCjtXmYOXmQn5Yl4feZCU1NoDRA2IYkBZ2xh8aq83O4SINu3Kq2LS/jAathagQX+64JpWRfaJaEondIbFycwHfrM5F7ePOjGkDCQ304t1v93KosJ5xQ+N5YEIv3JTOIaejpRo+W5JJXkkjKTH+3HNDz7NuRHgxquoNHMir5eDRWrIL6lu2HHdTylvK7oQGeBGg9kTl7YaHuxK5TIbd4cBssaE1WKnXmqiuN1JWo6eyzrk3FDgnhvROcW5Znp4c3CGbmpktNkprdJRW6ymt1lFcpaWoUkvt8V1xZTJIiPAjIyWYAWlh9EoMuuDhMr2xmde+2EFeiYZn7xpwSkmqcyFJEnMWHmDNrpIuv0V2V9PRbd2BvBre+s8elAoZL949mLSEji3KKhLSeXhn/h72H6nh61evbfUh78ufbaOoSssXL17d8v7hogaenbOZW8ekMP165xDee9/uZfPBct5+bAR5JRrmLc9m4qgkqhqMbM+q5N4bezLxSufsw7wSDR8s2EdZjZ7+3UO589ruF/QMx2Z3sC2zgoVr8yiu0pEaG8Cjt/YmMer3dQiF5U289c1uajRGHpqYzjWD45j/Uy6Lf8snJcafv909qGUihcMh8dveUub/lEt9k5n0pGBuHZNC39SLe8YFzkSaU9jA7txq9uRWUV7rrNIQ5OdJRrJzgWz3uECiQ30vqKE2N9soLG8i51gD2QV1ZBfWHx/ulJOREszQXhEM7hV+0lT9jqAzNnO01Lku61BhPTnHGrDZHai83bmibxTXDom7oHUjJouNmfO2c6RYw9/uGcSgHuc/o8pud/CPb3azK6eKZ6acPHNUaD+uaOvKanS8/uVOajUmnvxLH0b3j+mQ64JISOdMb7IybebPXDs4jocmZZzyfn5ZI099sJHp1/fg1jEpgPPO8tk5m6nVGPlsxlV4eSjZnlXBm1/v5s5ru5ORHMyLn26lf/dQ/FWe/LqzuKWigyRJrNxcyJcrDxGo8uCx2/qccUfZc3UikXy9OgedoZnJ16Ry29huLQ8y9SYr73+3lz251dw4MpH7burFrkNVfLBgHx5uCp6fNoBeSb/3hixWOz9vL2LJb/k0aM1EBvswZmAMw9Ijz3kDQbtDorhSS2Z+3fFeUB3mZjtuSjnpycH0Tw097w0Jz8cfE+DOQ5VU1RuRyX7fDHHYecxobEsmi40DeTVsOVDB9uxKrDYHvVOCmXx16knfg3NhNFt58bNtlFQ5tyPoHn/+d74Wq51XP9/O4aIGXr5vMP27X/zPo3Bmrrr51hqaeeub3WQV1HHrmBTuGpfWIUPzIiGdozU7i5m98ADvPTmy1b1F3v9uLzsPVfHVy9e0TCDYkV3JrK928cTtfbhmcBxGs5VH3l6Pn6+zdMf/fbARN4Wca4bE8c3qnJaJEHaHxNwlmfy0vYjBPcP5vzv64dvGddW0hmbmLs1k0/5yeqcE8+zUAfj5Op+n2B0SX608xPJNBQw9XomipsHIrK92UVVv4KFWpohabQ42Hyjn153FHCqsByDY34vUuADiwlQEHl8nBWBpdpY2qm5wPucqLG/CZHFunRER7EOfbiEMSAsjIyn4ohZ5XghJkiiq1LI9q5LtWZUUVTrXhaTGBTAsPYIhvSJcUsFAZ2zm1x3FrNhcQIPWwuCe4TwwIf28xvkbdRae+3gzRrOV9/866oKeERhMVv726VbKa/W88eCwDh/Sudy4jrXriQAAIABJREFUcgKX1eZg7tJMftlRzOCe4Tx9Z792n+wgEtI5evHTrdQ1mvhsxthT7tI1OjP3vvEr44Yl8OCEdMDZsP3fBxsxWWx8+twYFAo5/155iGUb83n3iZH8uK2IDfvKePSWDP61OJOBaWH87e5BSMCH3+9jw94ybhmdzLTxPVq9Mymt1rHzUBU5x+opq9bToDNjtTnw8nDWtYuPUJOeFMygnuFnXBOzZmcxny7JJFDtyav3DzlpivCKTQV8sSKbnolBvHzvYBwSvPetc4rodUPjeXBCeqtFPusaTezKqSIzv46Cskaq6o2nHAOg8nYnOtSXxCg/uscF0DMxuNMVfSyv1bP1YAXbsiooOL4gOSbMl0E9whnYI5zUuIAOXZtlsdpZcbx6hwQ8cHM61wyOPeeeY1mNjmdmbybE34t3nxh5QQm/UWfh+Y8302Ro5q3HRpy2Wrxw8Vy95lKSJFZtOcYXy7P+P3vnHR5Vmfbhe1qSSe+9N9IDIaH3pqIgqNgVe1m77lrWZVfXT13buvbKKoqyoiAdpdeETnrvvfdkkqnfH5MZCJmEmWSiqLmvi+uCzJwzZ8jM+5z3Kb8f/p72rLpr8qhaWIwFJCNo6ejhjhd/ZsWCcG69PHLA4z/sK2DN9mw+fHqefkE/mV3LP1cf57EbJrBgkj+1TV08+No+5iT4MjvBh1WfpLB8TghH02sQAO8+NQeppZiPN6azI7m0X3u4Do1Gw/GsWjbsKyC3rAXQFuWDvB1wcbBCIhYi61FS3yKjsLKV5vYehAJIjPTk2nmh/ZTGzye/vIWXVh9Hpdbw4n1TCPM7V6M6eKaSf687Q6ivAy/epzUV/HpHNhv2FxIZ6MyzK5MuOgSqUKr1qg0AlhIRDraWv0gDgTmpb+7mWFYNxzNrySpuQtUndBob4kp8mCuxoa4EeNr/IqmNhhYZ73x3hrSCRuYk+PLI9eONnnM6k1vPC5+nMGu8L0/dkjCsNGhdczdPv3cYjUbD64/MvCSFOn8P/NoBSceZvHpe/+okYrGQv94xadC1ZKSMBSQj+PlYGe9/n8q7T80ZUFTWaDTc/6+9ONtb8a+HZuh//vxHR6lu6OSz5xciFgm1M0apVXz07Dxe+OwYSqWG2FAX9pwo57WHZxIR6MzmQ0V8vjmTa+aEcueS6H6vU1HXwYcb0sgsasLD2ZqrZgQxc7zPoFpjGo2G8roODp6p5OdjZbR3yZkc7ck9V8cYXDxqGrv42yfJdHbLeen+af0aJ45l1vDaVycJ8nbgn/dNxdbagsNnq3hn/VlsrMT85dZEk2sav3W6ZArSCho4k1dPekEjNU3axgsbqYRxAU5E+DsR5q8ditWlQs2NWq3h+335rN2ZS2SgM3+/Z4rRqd3v9uSxdmcuD6+I57IpgcN6/bLadp59/wh2Nha8/vDMS8qq/ffCpRKQQLu7fmn1cepbunnouvEsmDSw03ikiF544YUXzH7WUaa9vZ2vvvqKlStXYm8/+umC73bn0atQsXJx1IC7ydzSFn48UMjNiyL0HWtlte18sS2bFQvCiQlxpbapi/fXp3LljGA6uxXsPVnBdfPD2LC/kKWzQlg0JYCckmbe+OY0k6M9eXjF+H6vs+9UOS/99wSd3XLuWRrD4zdOICrIZch8rkAgwNHWkvgwN66cFoTUUsy+UxX8lFKKi4PVgMBqZ23B1FgvjqRWs+t4GZOiPPQLqa+7Vndu6+ESzuY3MDPeh1A/RyZFe3Iso4Yth4oQCYVEBDoj/IMMTlpIRPh52DEp2pMlM4NZkORPiK8DVhZiKuo6OJpezYEzlWw8UMjeUxXklDZT39yNoq9rTtdCPxIEAgExwa74e9qx7UgxZ/PqmTnex6idUlSgC7mlzfyUUsq0OO9hBU1HW0tigl3YdrSE1IIGZk/wHTWDwz8qv/RaNxT2NpbMnehLQXkrmw8V9X3+XMzaaDQWkC6CQqnigx/SmB7nbVCA8MeDhZRUt/HYjRP0i8x3u/Iorm7nqZsTsLIQ89WOHEqq23nylgT+s+4sgV52VNR1olZreO6OJJQqDX/7JBkbKwkv3jsVSwvteXQ6d59vySI62IWX7p9GXJibySkhsVhIdLALcyb6klvWwpbDxXR0yZkwzr1fALGRSpgU7cm+UxUcPFPJzPE++qDn46at9Ww9VExGYSMzx/vg5ihlfpIftU3dbD1STEZRI3GhA1Uh/gjYSCUEeTswOdqTxdODuHpWCAnj3PH31KZwCypaOZpWzb5TFWzYX0Byeg0VdR2oVGpcHKQjWsj9Pe0J8XFg65FiskqamZ3gg0g49PkEAgHjw93Ydbyc9MIGFkzyH1aq0dVRSpC3PVsOFlFc3a6db/uD3JT8ElxKAQm0N2KzJvjQ0CJjy+Fimtt7mBjhbrY09VhAugiZhU3sOlHOTZeNw+eC7iq1WsMH36cSHeyiH5RVKFW8ve4sk6I8mZfkT2e3nLf/d5Y5Cb70KlQcTq3isikB7D9dyb3LYokIdObL7Vmczatn1d2T+73Gmu3ZfL+vgEWTA3j6tkRspCNTXbaRSpib6EePXMmWw8VU1HUwOcarn3aVrbUF8WFu7EguIbWgkbkT/fRFex83W/w97dhyqIjcshZmjPdBailmWpwXHs7W7DlRxo7kEiwlWofTX0rBQeeeeyKrloNnK9l9vJztySVsP1LMzpRS9pwo40hqNadz6ygob6GuuRu1WoO9jcVFF+7hIhFrlSEig1yYEe/D1bNCuHJ6EHFhrni52NApU3Ass5b9pyv58UAReWUtoNHg7Ta82SofN1u8XGzYfKiI5vYeJkV7XvTOVWopxsvVhi2HixEJhcQOM+3q42aLo60lmw8VI+tVkhAxPJmiMQZyqQUk0MpgTYnxRKlSs+VwMSXV7UyN9TLLd+m3VVX+FUgtaEAkFBj8shZWttLY1sNti89J/Z/KqadTptAHqH2nKuiVq1g8PYjXvz5FmJ8DKRm1eLvaMD/Rj9KadrYdLubyqYH9CoU6w7zLpwbyp2vjzLYtFgkF3L00BhcHKau3ZIIA/nJrYr+gFOzjwJ9vmcjLX57gow1pPHbDBP3rT4vz5vE+3b1/rTnJ83dOQiwSMj/Jn9gQVz74IY3PNmey+0Q5K6+MYmKEu9lnh1QqNXnlLZzN06o3FFS06GWDrCxEuDpKcbC1xNHOCqFAgFKlpqtHQW15F8np1frnikVCQn0diAlxJS7Ulahgl1FVtXawtWRihId+fkehVJNd0sTJ7DqSM6p569s6Pt+SyVUzglkyI9jknebsBF8q6jr4bk8+MSGuesmnoZgW582s8T6s35PHjHjvYQuxXjEtiIr6TjYfKiLE1+EXHaYc45dHIBBw++IonO2t+OTHDF758iTPrUwasYDwWEC6CJlFjYT5ORrsCDuRVavvYtORnF6NnbWEuDBtANt9opxQP0da2nuoaezi+vlhrN9bwKPXj0ckEvLltiysrSTcdsW57r3skiY+35LJ5GhPHrjGfMHofJbNDkGt1vDFtixcHDK59+rYfo9PjvHi+gXhfLc7n+ggFxZODtA/NneiHz1yFR/+kMaba0/zl9u0Ac3d2ZoX7p1CSkYN/92axYufa+0Lls8JZUqM54jqJt09ClLzGzieVcuJrFo6ZQqEAgjxdeTqWSFEBDoT6uuIi4PVkP9fKrWGhpZuiqrayC9rIae0mR8PFPLDvgIsJCISxrkxLc6bSVGeo556lIiFxPc54961JJqMwkY2HSrim59y2XKomLuXRjMvcXCDREPcdFkEmcVNfLwxjdgQ49ro71kWw+m8ej7akM7LD04b9uft7iXRlFS38f73aQT7OBDgeWnc0Y8xelw1IxixSMgHP6Txypcn+Osdk0YUlMYC0hAolCoKK9tYMtOwdtfZ/HrC/Z2wt7Hoe76aE9m1TI/zRiwSUlLdRmlNOw9cE8eu42U42lpSUt2Oo61lXz2nmdO59dy+OFJvgtbdo1VKcHeS8uTNCReVgu/ollNc1UZTWw8CAbg7WRPkbW/UANs1c0NpapOx5VAxwd4OA/T5bloUQU5JM59syiAi0Lnf3fMVUwPplatYvSUTy+/O8tgNExAKBQgEAqbFeZMU5cmek+X8eKCQ178+hZ21BVNiPEmM9CA62OWiRfTuHgUFFa1kFzeRVthIbmkzKrUGW6mEpCgPkqI8mRDuNqjN+mCIhAI8XWzwdLHRi43KepVkFTdxOqeOlMwajmXWIhYJGB/uzuwJPkyJ9Rp1F1uhUEB8uBvx4W4UVrby2aYM/vO/sxzPquXxGycYPZAoEgp4/MYJPPTGfj7dlM7zd06+6DFOdlasXBzJhxvSOZpePSy9OwCRSMjTtybyyFv7eeub07z12CyzNG+McWlz+dRABAJ4//s0Xv/6FM/dMWnYFhZjAWkISqrbUarUjDOgHdfdo6CwopXr5ofrf5ZV3Eh3j5IpfW6dR9OqEQpgfJgrn2/OYH6SP7uPl3HtvDAkYhEb9hVgZy3pJ1a5blceDa0yXnto5qCLkEaj4WR2HZsPFZFZ1KgXCtWhW0yXzQohLsx1yDveu5ZEU1Ldzkcb0xkX4ISv+7mgIxIKePLmBB558wD/XneGNx6Z2W8IdNnsEGS9Sr79ORcLiYgHr4nT140kYiFXTA1k0eQA0vIb2HuqnKPp1ew+UQ6As70VXq42ONpZYtXXxNHTq6K1T8FBZ4cuEGhTiMtmhzAxwoOoIGez+/JILcUkRnqQGOnBvctiyS9v4Wh6Ncnp2jSa1FLM9Dhv5kz0JTbEddRrY6G+jrz6pxlsOljEmh3ZPP9xMi/cM8XoTjhPFxtuXBjOVztyyChsNEr4dtGUQHYkaw0ZJ0d7DbvJwsneikevn8BL/z3OD3sLuOmyMXXwPwKXTQlErlDz6aYMvtyWxd1LY4Z1nrGANAS5Zc2AVjZm4GMtqDX086M/k9egFejsWwCOZ9USFexCZnEzyj4bb7UGFkzyp765m+NZtVw3L0yfDqys72DL4WIWTQ4YVJKlqU3G2+u0A5HuztasmB9OTIgL7k7WqDUaapu6SSto4NDZSv72STKJkR48vCJ+0HklkUjIU7f0BZ1vz/DGo7P63d24OEh5aEU8/1pzku/3FnDTov7DujcuDEeuUPHDvgKAAfUukVBAQoQ7CRHuKJRqCipa9Dbndc3dlNW00yNXIRBo6z/2NpbEhLjg32dxPs7fyeRd0EgQCgVEBDoTEejMnVdFk1XcpA+me06W4+Viw2VTApif5D+qczdCoYBr5obi627La1+d5KXVx3n1oelG7ziunhXCjuRSvt6Zw+uPzLzo80VCASuvjOLFz4+x63gZV04PGva1T4r21Nal9hYwN9FvbGj2D8KSmcFUN3ay6WAR3q42XDHN9M/QWEAagsKKVpzsLA0Ka2YXN2kXr/OCVUZhAxGBTlhZimlokVFa086dV0VzLLMGD2drckqaCfd3xNvVlm9+ygW0210d63blYSEWGlSDAK3twz8+PYZcqeLBa+NYNDlggGyNr7sdiZEe3HZFJDuSS/h6Rw6PvnWAVXdPJsKABh9og86D18Tx+tpTbD1c3M86A2B6nDezJmgL31NjvfpJxWiLm9rr/WFfASqVmodWjDe4ZZeIhUQFuYzalLe5EQoFxIZqFRgeuEbJscxafkop5cvt2Xy9M4dJ0Z5cMyd0WEKlxjIp2pOnbpnIq2tOsnpLFg8YEPY1hIVExLVzQ/nkxwyyS5qM+j+fGOFORIATG/YXcNmUgZ8tU7hraTTHs2v5akcOT9+WOOzzjPHb4p6lMdQ2dfNpX5rfVHX6sSm2ISipbu9nz3A+eeUtBHqeq9XIepUUV7cT3ffFT82vByA2xIX0ggZiQ1wpqmpjWqw3Go2GA2cqiA9zw91JqwtV29TFkdQqrpweZPDOu6iylVUfJ2NtJeY/T8xm8bSgIRcMC4mIZbND+c+Tc7CxkvC3j5PJKGwc9PkzxnuTGOnBtz/n0NzeM+Dx+5bFYiOV8N76s6guyBHqgtKNC8ex+0Q5b649hVyhGvS1fotYWYiZk+DLvx6awYdPz+PqWSFkFDbyl/cO85d3D3E0vZrREj2ZFufN0pnB7Eguoaiy1ejjFiT5Y20lZmdKqVHPFwgErJgfTkOLjJSMmuFdbB8uDlKWzAjmSFoV1Q2dIzrXGL8dRCIhT9yUgK21Bf/+9gwKpdqk48cC0iCoVGoq6zsNdgppNBqKKlsJ9XPU/yy/vAW1WqO/W84oasTR1pJOmQK5Uq0fdp0U7UlRVRu1Td3MHH+ueLz9aAkCgcBgA0VHt5yXvzyB1ErCKw9O71fnuRh+Hna89sgM3J2kvPzFcb3T7IUIBALuXRaDQqlm7c6cAY872Fpyz9Wx5Je3sjO5xODxt1wewZ1XRXMkrZoXPz9GZ7fc6Ov8LeHnYcedS6L576pF3LsshtbOXv615iTPfXiU4qq2UXnNmy6LwMZKwvq9+UYfY2UpZtYEX5LTa+iRK406JjHSA08Xa3Ymlw7zSs+xdGYwIqGA7QY+L2P8frG3seCRFeMprWnnu915Jh07FpAGoa6lG6VKja/7QKuBprYeOroVBHufC1b55VqxU50GXG5pC5FBzmSVNCEUQGObDFdHKb7utpzIqkUggMl9yg8qlZr9pyuYFO1psNbzwfdptLT38NzKpGEp7TrZWfGPe6YiEYt45csT9A6ye/F2tWXxtCD2niw3GLhmT/BhQrgbX+3IpqlNZvAc18wN5ambE8guaeLJdw4NGgB/D0gtxSydGcLHzy7g4RXjqajr4Im3D7DpYKHZX8tWKmF+kj/HM2tp7zI+0M+I80auUJGW32DU84VCAQuS/MkoauxntT4cnOytSIry5OCZygG76jF+30yK9mTWBB9+PFhEi4GMy2CMBaRBqG3UfhkNed/oFln/83ZPJdXtuDtbY29jQWe3nJqmLsL8HMktbSbQ2568shZiQrS6T6n5DYT6nhPdTC9spK1TztyJA8UT0woaOJpezY2Lxg3LKVaHh7M1T92SQGV9p8EdkI7rF4RjIRHxv10D72wEAgF/ui4epUrD55szBz3HnIl+vPzgdLp7FDz1zkEOp1YN+7p/C4iEAi6bEsAnz85nSqwXq7dovaTMzdRYL1RqDTklTUYfExXsgoVYSEaR8cfodu4nsmtNvsYB54r3oa1TTkHfDdsYfxxuuSwCpVLFhv3G36CNBaRBqGvWqjcbMjGr6suJe7ud6x4qq20nsC9AlVRrTd2CvB0oqGjFz92O1o5eIgKc6ZEryS9vIT7MTX/sscwarCxEAxw4NRoNX+/Iwc1JyvLZoSN+T+PD3bliaiBbDhVRUm04teRga8lVM4I5nFalf5/n4+liw/ULwjmSVs2pnLpBXysqyIW3H59DgKc9r399ine/O0t3j2LE7+FSxtbagqdvTSQhwp21O3NQKM1bRwvq25FX1htfk5GIhYT4OlJoQu3J280WL1cbzuYZt6saivhw7ec8o2jw+uUYv0+83WyZM9GPncklRqfvxwLSIDS0yhAJBTgZ8PqpberGQiLS+wCp1BqqG7rw89DupnQuo7bWErp7lEj7nFLD/BwprGhFpdYQdV5b95m8euJC3QZMOGcWNZFX3sKK+eEjluTQcfviSGykEtZszx70OUtnBSMRCfnxgOE7m2vnhuLjZssnP6YPmv4DcHOS8sqfZrBifhh7TpbzyJv7OZtXP+L3cCkjEgmZk+BLj1xl9nqS1FKMQIDeV8pYfN1tqTIhiAHEBLuQU9o84kYNexsL3J2tKe27SRvjj8WV04OQK9UcyzRutz0WkAahsVWGs4OVwfbl+pZuPJyl+nmbplYZSpUaL1dtQKqs78BGKqGtoxcApVKNUAABXvb6O1VdQ0RDi4zapm7iwwYOL+4+UYaNldgoTTJjsbW24Jq5YZzOrSevb87qQpzsrJib6Mf+UxW0dfYOeFwiFvHgtXHUNnUbTO31f66Q2xdH8frDM5GIRfz90xTeXHvaYCff74WMwkYkYuGwdeEGo7tHiUaDyZJGzvZWtHf1ojahjhPobU9Ht5zWjoG/f1PxcLKmodVwzXGM3zdhfo64O0k5ml5t1PPHAtIgNLX14DrIMGl9SzduTudSeXUt2nqTh7P2+dWNXXi72lDdqE37tXcr8HCxwVIioqS6HWd7S5zstLurvHJtULhwEFauUHEss4Zpcd5mF/y8cnoQtlIJmw4OXue4elYIcqWan4+VGXw8PsyN+Ul+/HigkLKai9/9RgQ68+5Tc7hx4TiOplfzwL/2smFfgdnTWr8224+WsPtEOZdNDjBa7sdYdDsub1fTBk0tLUSoNaBUGd+C69U3zFrfMrLGBgA7Gwldv/N07RiGEQgETI31JjW/wagW8LGANAjN7T042RuexL8wWOlkbnQdcvXN3Xg4W1PX3I2NVEJji0y/iFTWd/S7cy6uakMsEvQbNgVtuk7Wq2Jan96aOZFailk4OYDkjJpBO2D8POwYH+bGzpTSQTuk7rwqGmsrCe+tTzWqi8pCIuKWyyP44Om5xIS48OX2bB56fT/JozjD80vRq1Dx0YY0Pt6YTlKUB/dcPTzplKFITq9GLBKY7M6r7FsITNEX0zXcmNLRNxhCgQCV6rf9+x1j+IT5OaJUqamsv3jH7VhAGoS2TrlB7TCVWkN7Z2+/YNXSrk1rONtbodFoaGzrwdVRSkOLDDdHKXUt3frmiJrGLn1qD6CspgNvN9sBkjCpBQ1IxEKjdMiGw6LJ/qjVGvafrhj0OZdPDaSxVcaZXMPNCw62lty3PJa88ha2Hja+q8zb1Za/3z2FF++bikQi5NW+GR5Thj4vJTKLGnnyPwfZkVzKstkhPLcyyex6ey0dPew5Wc6sCb4mp+xaOnuxs5aYdE26oWtTdlWDIetVIrUcE1n9o6ITFzCmpjqqAWnr1q0sXryYhQsX8s033wx4PCsri2uvvZalS5dy//33095+aRQ+1WoNnTK5XsX7fDq75ag14GBzLiC1dvZiIRZibSWmu0eJXKHC2d6K5nYZTnaWdMkUuDpKkfUq6ehW9Ovcq27sHGD8B9q5pmAfh1Hz5/F1t2OcvxMHzw7ekj05xhNHO8tB03agnU2aFOXJ1ztzTZ45ShjnzrtPzuFP18VTWd/BE/85yPvfpxqsW12KNLf38Pa6Mzz34VFkvUr+cc8U7l4aY3aFa41Gw2ebMlGq1Fw3L8zk4yvqOvB2HfgZGwqd0oY53ktTW4/B5qAx/hjotAyNqSOOWkCqq6vj7bff5ttvv2Xz5s189913FBb279p6+eWXefTRR9myZQtBQUGsXr16tC7HJGS92uKxrYE7UV0Kw8763GNtnb3Y21ggEAho69Iupg62FrR1ybHqE051srPUF/J13XkajUaf3jsfjUZDaXXboLJF5mJ6vDfFVW3UDTIAKRYJmZ/ox8mcOlo6DKf2BAIBD62Ix1Ii4u11Z1CZeEctEmlVwT9+dgFLZ4aw50Q5D762j70nyy/ZNJ5coeK73Xnc9+oeDp2tZMX8MD58eh6JkR4XP3gY/HigiMOpVdy4cJzJjRIKpYrCilbCzlMVMQbdTYGhmzJTUKk11DR16WtSY/zxkIiFSC1FdBjR+j1qASk5OZkpU6bg6OiItbU1l112GT/99FO/56jVarq6tIV/mUyGldXAu6j29nYqKyv7/amtHfnA3lB092jbaqWWAwOSrjh7ftqkS6bQK1J3dmsft7W2oL1LjkWfjL+9jaW+Y8mxLxXY1ScrdKE6Q1unnK4epUGVCHMyqU8p4tQQA5DzEv1QqzUcGmIn5WxvxZ+ui6OgopV1JkqF6LCVSrjn6hjeeXIOvu62/Od/Z3nx82MmTXmPNhqNhqNp1Tz4+j7W/pTLxAh3Pnx6Prcvjho1v6Sth4v5YlsW0+O9WXGe1YmxpBU00iNXMcFEW/GaJl2jjunKIOdTWd9Br1w16jdXvwd+jbXul8LW2kK/Ng7FqKl919fX4+Z2bvjT3d2d9PT0fs959tlnufPOO3nllVeQSqWsX79+wHnWrFnD+++/P1qXaRBZr/Y/ztqAS2xP3wzI+R1Usl4l1n2zRrrhTyuJiF65Sp+3t5FK6JJpH7Oz0R7b1rfbcrTtfxfa0Nq3GDiNbDG4GN6uNrg7SUktaODKGYZNCP097Qn1dWDfqQqunhVi8DkAM+J9OJlYx/d78okPczNo+W4MAV72/OuhGWw/WsKX27J4+M39PHXzRBJMXFDNTXVDJx9tSCe1oIFAL3v+74Fp/YabzY1CqebLbVlsOVzMlBhPnrwpYVg+THtOlGNnbcGEcNOutaS6DSc7S6M9mAYjs08h4nybljEM82usdb8UxroQj1pAMpRuOf+ienp6eP7551mzZg1xcXF88cUXPPPMM3z66af9jlm5ciXLly/v97Pa2lpuueWW0blwQK7Qpp0sJAM3kLrHzq/t9MiV2Eot+v7e18bc91Z171lqKaahr4VWF8x008sX+v209O2kRjvvLhBo7RVOZNWh0WgG/dDMTfTjs02ZVNR1DJkyeuCaOHJKm3lz7WneeXLOsP2ChEKtyGx8mCtvrD3NC5+ncPviKK6dGzoqdu5DoVJr2HywiG9+ykEiFvLA8lgunxY0bEdMYyitaeftdWcormpj6cxg7loaM6zXq6zvICWjmmWzQ02qBWk0GjKLmwz6gJnKqZw6PF2sR7zT+iPwa6x1vxRqlRqhEd/dUUvZeXh40Nh4Ti6kvr4ed/dzd7n5+flYWloSF6f1d7nhhhs4ceLEgPPY29vj6+vb74+np+doXTYAcuXgBd1zj537r5Mr1Pp/K/oClqAvIul+BxYSoV7VQBfMdMFL55iqQ5/2M7GbajhEBrrQ0S2npm9myhAz430QChgybQfaoPvs7Ul0dst569vTIxbU9Pe0541HZjIj3oc127P5aEP6LyrS2drRyz8+TeaLbVkhYu3tAAAgAElEQVRMGOfOh8/M58oZwaMWjLpkClZvyeTxfx+gqU3GX++YxL3LYof9emu2ZyORiFg+xzTZqcr6Tuqbuxk/wh1gd4+CtIIGJkV7/uI3Er9Ffo217pdCoVIb5UI8agFp2rRppKSk0NzcjEwmY9euXcyaNUv/eEBAALW1tRQXFwOwd+9eYmNjR+tyTEI3MyEWD/wS6WY6xOf95ypVav2/FRcU9QX0nUskPHdsXxpPNyh24S9KH7gsRr9VNtRXm9svqhy8JdPJ3oqoYBejpq2DfRy4b3ksqfkNfPPT4CKuxmJlKeYvt07kunlh7Ewp5Z3/nflFglJ5bTtP/OcgOSXNPHL9eJ6/c5K+GcXcyBUqNh8q4r5X97D5UBHzk/z54C/zmBrrNexzHk2r5lhmLTcsCDd5p6r7PU+OGf7rA6Rk1KBQqpkZ73PxJ4/xu0Wl1tDRZbhr+UJGLWXn4eHBE088we23345CoeC6664jLi6Oe++9l0cffZTY2FheffVVHn/8cTQaDS4uLrzyyiujdTkmoVLrBgkHxmt1Xyry/LtWlVqj/7e671j0Dwv051LpjhUJ+p3rwtqATuLF0OubG39PO4QCKKtrZyaDLxxTY734bFMmlfUdF/VjWjQ5gIKKVr7fW0CYn9OIFlbQphZXXhmFlaWItTtzsbQQD7BKNydlte08/9FRhAIBrz0yk1Bf0zrUjEWhVLHreDnf782nqa2H+DBX7rgqesSvV9PYxXvrzxLm52jy7kit1rDnRDmxIa4GnZJNYfeJcrxcbcyS+hvjt4t+VMaIeuSoWpgvWbKEJUuW9PvZZ599pv/77NmzmT179mhewrDQlb8MrXeDdSILGHpx1HDuQP35Bzmn7nXVv0Dbs0Qswt3ZmpqGwVN2AFNjvPlsUybHMmu5bt7QAUkgEHDfsliKq9p4e91pfNxm9bPqGC43LBhHT6+KH/YV4O4kHVbX2cXo6Jbzz9XHEQkFvPqnGQbtR0bKhYEoMtCZJ29OIC505E0SbZ29vPh5CgKBgGduTzLZhvxUbh11zd16W/rhUlHXQVZxEyuvjBpL1/3B0Y0QONhefIc0ptRgBgSca+LQffnOfQW1P1erNfodj34HNsg0vK5V/JeyAXd3sr6oZpmbk5Rgb4chLSfOx0Ii4vk7J2FpIeb/vjhBp8w8Wma3L45k1ngfvt6ZY/S1mMKnmzJobpPx/J2TzR6MVGoNe06Ucd+re/l4YzruTta8dP9UXnt4htmC0QufpdDQIuNvd002uZFAo9Hww94CXB2lI5as2pFcglgkYOEk/xGdZ4zfPrr5S51+51CMBSQD6G7oDG1QdOm183cvIpFAX9fQy7PoztH3F6VKrQ80igs69Xrl/QOPrgtPNw812jjaWdLWefGhtYQId3JLm432NXJxkPLs7Uk0tHTz5tpTJqlND4ZAIOCRG8YT4GnPv789M6hz7XAoqW7jwOlKls8JHZEZoiHSChp47K39vPNdKk52lvzzPm0gGh/ubpYdREOLjOc+PEpZbQfPrkwaVpv1mbx6ckqbuW5emMk7q/Pp7lGw92QFM8b7jLhtfIzfPrqZNk8jhqPHApIB9EHHwAIq1u1yzhOLFIuE+l2ORPdF1j+s/YtcodY3KeiaFvSzSxf42+iKf7+UhI6tVGLUDiY21BWVWkNumfHun9HBLty3LJbTufWsu4hVhbFYWYh5dmUScqWKd/531myKDjtTSrGQiLhmrunyPIPR3iXn7XVn+NvHyfTIVTx7exJvPTaLCePME4gAsoqbePI/B2lqk/HivVNJijK9M0ulUvPF1iw8nK1ZNDlgRNez63g5sl4lS2canm0b449FTWMXErEQF4exHdKwuDC1dj66zrvz02wWYpE+vaYLOrolUtP3NO3wrG7no2vr7q/uoMO57xdnzrv/obCQiIyygYgIcEIogJwSwz5Kg3H51EAWJPnzv915Zkuz+bjZcveSaM7mN/DTEFp7pnAyu47ESHeztdtnFTfx6Fv7OXimkhsWhvPh0/OYHu9ttkCkUmtYvyefv350FGsrMW8+OmvYYrzbjpZQVtvB3UujjWrPHeqath0pJjLQmTC/sWaGMaC2qQtPF2ujBrvHApIB9DNFBvw7dLNJ5zulWlqIBswUKZUqxOel8mS9Sv1Cp9uN6Ip8F+6E3BytEQqgdhCNOXOjHmIo9nysrST4e9qTX2H8Dgm0abYHro0j0Mu8abbLpwYSF+rKl9uyRmz41ylT0NgqY5yZUnW7j5fx/EdHsZCIeOuxWdx6eaTZXH9Bqxzx3AdH+HpnDtNivfj347OHbQhY29TF2p05JEZ6MGWErd4nsmqoa+7m6tmDq3qM8ceist54cd+xgGQAXUCSGwhIuoBzft1HainW20rrdkGyXhW2Ugv9TqqzW35eKk5br7GQiLCVSgYs0BKxEA9nGypNtJ0eLr1yldEzT0He9pQbYch3IZYSEU/flkivQsW761PNkmYTCAQ8dF08coWaL7ZljehcrX3isc6DmDKawtbDxby7PpX4MDfefnw2IWZsG1co1Xy/N5+H39yvnZW6KYGnb0s02ZJCh0qt4d/fnkEoFPCgGVrpNx8qxt1JypTo38dA5xgjo1ehoqq+k0Bv47psxwKSAXTNBoa63HTq3bLz6j5a24n+6gqdMgW21hK91FBbl1w/oNh6nnK2q6PUoCy7v6cdpdUX9w8xB+1d8n7q5UPh425LY1sPPXLTGy78POy466oozuTWs+/U4D5MpuDtZsvyOSEcOF1J7iCW7MagH4YWjWxBTsmo5tNNGUyJ8eRvd00edqAwRGZRI4+/fYCvdmh3Mx8+M595iX4jCiLrfs4lp7SZB66Jw32E2okl1W1kFTdx1Yxgs/tBjfHbpKymHbUGgr2NE9cd+9QYQBd0enoHLroXiqgC2Flb0NFXB9Ltgtq7tAZ/XT1yxCIBLe09WFtJkFqKaGo7F5A8XawNyvaE+ztR1dBlFsfOi1Hf0o2bo3GLkc4pd7gpsiumBREZ6MzqLVlmawVfMT8cJztLVm/OHPbOS9r3e+0awTXVN3fz9rozhPs78pdbE0dUizmf1o5e/v3taZ778Cg9vUpW3T2Zv94xcuWIE9m1fLcnnwVJ/syd6Dfi69yZXIqFWMiCsVbvMfoo6bupDhoLSMNHl5aT9Q7cIdlY9a8DgTYIyXqVKJTa1JeFRERbZy+Odpa0dsj7zPq0C7ibk3U//yEfN1tqm7oGzCLp2nYzixoZTVQqNRW1Hfh7Gld/0O0Au2XDa0kXCgXcvzyWjm45G/cXDOscFyK1FHPL5RHklrVwPGt4cv3O9lYIhYJBvaGM4dNNGag18PRtSWapF2k0Gn4+VsoDr+3lcGoV1y8I54On5zFpGF10F1JS3caba08R4uvAA9fGjfh8sl4lB85UMmO8D3bWI/NQGuP3Q0FFKzZWYqNn4sYCkgGsLMQIBee8j87H1toCgQA6us4LSH2zFm2dcgQCAc72lrS09+Jib0VTm6xfWs7T2YbapnM7In9Pe5QqDVUN/etF4wKckFqKOZNXPxpvUU9pTTtypZoQI/1qdJp9I7G2DvF1ZEa8N9uPlhg903QxFiT54+1qwzc/5Q5r3kksEuLtakN5rWmutzpySpo5nlXLjQvHmUXZur65m1WfJPP+92kEedvz7lNzue2KSLP4LtU2dfHCZynYWElYdddks7gSH02rRtarHHHL+Bi/LzKLGokMcjHaOmUsIBlAKBRgbSXR20Ocj0gowFYq0TvDwjk/o9a+bjkXBymNbTLcnKT0yLV25ro7b283G2oau/Tdd4P5zYtFQhIi3DmeVTuqYqK6gGdsu7DCgLjscFg+J5TuHuWQFuqmIBIJuWnROEpr2jmWWTOsc4T4OFJQ0TqstN/mQ0XYWUu4anrQsF77fA6nVvHIW/vJL2/hT9fF88qD04fdQXchja0yVn2SjFyh5oV7pw4whxwuB85U4OViQ1SQs1nON8Zvn+b2HqoaukzyRhsLSINgN4TDoTYVdy4g6XL5Lfq0nJSGlnPW5DZSCY2tMuQKFf4edsiVaur6dkl+7rZYWYjINzBsOiPem9aOXjIKG8z63s7nSFo14f6ORi9MF7reDpcwP0e8XW1IMUJB3FhmTvDFy9WG7/cVDCuoRAY60dzeQ32LaW3pnTIFx7NqmTvRT19/HA4qtYbPNmfw+ten8POw470/z+OKqYFmm1uqa+7muQ+P0NYp58X7phLgNXJ9QdCOLWQUNjJzgs+Ybt0YerL6zBljQoxXDTEqIC1fvpzvv/8emeyXGdS8FLC3tRi0ocDJzqqftbZuMW/sa1bwcLamsVWGa1+jgIVYhEYDVQ2d+kWgtK91WiQSMi7AiaySpgGvMynKEztrC3Ykl5rtfZ1PfnkLxVVtJhW0qxo6sRALcRqm+Z4OgUBAwjh3csuazSIpBNrd6/I5oRRWtJJt4vAuQGSQ9ouTY+B3MRRnc+tRqtTMHD98m4VehYpXvzzBlkPFLJkZzL8emmFWU7uymnaeff8wHd0KXrp/qlmlkU5m16LWwLQRqrqP8fvibH491lZio8sBYGRAWrVqFadOnWLhwoX885//pKDAPMXoSxlHW0t9Cu5CXB2l+uADWr8gkVCgd4T1drVBrQGRUKuLp+qrt5TVdhDoZY9QKKCwslV/fGyIK6U17QMGZC0kIi6fGsDxzBqqG8w/k/TDvgKklmLmJRofkPLKWgjydjBLW6+/lz2yXlW/rsORMneiL3bWErYdKTb52AAve2ysxGSZGMzSChuwkUoIG+Yir1CqePm/xzmRXct9y2K5b1nsiLTkBlxfQQPPvH8YtUbDq3+azrgA86bVTuXU4+JgpU8/jzGGSq3hRHYtiZEeJq0VRj0zISGB1157jR07dhASEsKDDz7IzTffzM6dO4d9wZc6jnaWtHQYXihdHLQ7JL2gqlCAm5OU2j4RQZ8+leiGFhmezja0dPQiFgkorW7DQiIi0MuegvJzAWl8uBsaDaTmD0zNLZkRjFgkZN1u8+jA6cguaSIlo4blc0L1w7wXo71LTl5ZM+PDR65MDWCrHyI2T2MDaBtS5kz041hmLR0GaoBDIRIKGBfoTLaJO6Tc0mYiApyG5eyq7htMPZvfwCMrxrPEjPpvGo2G7UdL+PunKbg4SnnjkVlGt9+a8hrphY3Eh7mNpevG0JNb2kxbp9xk5Q+jQ1d7ezubN29m/fr12NnZccUVV7B582aefvppky/2t4CTnRXtXXL97uZ8XB2lqNSafgOuXi421DRqdzE+fQZ2lX0TymW17fh72lPU17gQEeBEXnmz/tyhfk442FpwwkDLspO9FUtnaQc/s4pNWygHQ65Q8f73abg6SllmgsTLkbQq1BpGbLino1OmDRjmHB4FmJPgi1Kl5nim6S3gEf5OVNR1GN391yNXUlHXQajf8NQYvt+bz5G0au68KoqFZuxQ61WoePe7VD7emE7COHfeeGQm7mZMAeqobuyio1tOVJDp6uJj/H7Zf7oCSwsREyPcTTrOqID01FNPMX/+fNLT03nhhRf48ccfue2223j//fc5cODAcK73ksfJ3hKNBoNpO91Ee33zuZqaj5stVQ1daDQabKUSXBysKKttJ8THgerGLoK87SmoaEWt1hAT7IqsV6VP24mEAiZHe3Eyp9agAsINC8Jxc5Ly/vepBod1TUGj0fDRhnQq6jp46Lp4pEYW4dV9opnB3g5mS80UVbUhtRTjaIRPiimE+Tni4mDF6VzThVxD/RzRaKCk2jh5pPLaDpMm0c8nq7iJb3/OZU6Cr8nOrkNR29TF0+8dZs/Jcm5cOI5Vd002ehdsKoUV2s9wuP/ouOqO8dujR67k0Nkqpsd5m/y5MyoghYWF8fPPP/PGG28wYcIE/c/FYjHr1q0z7Wp/I7jY6xS3B6btdMXmmvPmifw87ZD1Kmls1T4/0Muekup2vY6Zo60lXTIFlfUdxIVp2yBTC86l6GYn+CDrVRm8q7eyFPPY9ROoaujkne9GZrfww74C9pws54YF4SRGehh93OHUKirqOrl2XqhZUjM9ciXHMmtIiHAfVqprKAQCAdFBLibZZOjQtVdfOBc2GLrmFGO1unT0KrTWGe7O1mbRkNNxLLOGx/99gLrmbv5+92RuuTzC6BmQ4VBW245IKLiorf0YfxyOpFYh61WyIMl0xQ6jAtKpU6dwdu5fCL3++usBCAn5far6ujj2dc4Z0JnzdNGqcVc3nlu0Ajx13XPatFyIryPldR0E9Ckg6OpNWcVNONhaEurrwOmcc0OvMcGuuDtJ2X3CsJVCfLgbKxdHcSStms83Z5rcmabRaFi3K4+vduQwe4IvN10WYfSxPb1KvtyeTbCPA9Pjh99Jdj7bj5TQ1ik3y9yOIXzdbWlqkxlUbB8KXceksY0WZTXtWFqI8HS+uPnY+Xy/N5+api4eXjHeLLsXlUrN6i2ZvPzFCbxcbfjPE7OH5YtkKjWNXbg7W5tNJmmM3zYajYYfDxYR6GVvUru3jiHzNY8++iglJSVUVFSwZMkS/c+VSiVC4e/7A6hPyxmYSZGIRXg421B1nhp3YF87d0l1O0lRnoT5OaJWa2holeHjZktFXQeuDlakFTZyxbQgkqI8+W53Hq0dWokhoVDAoskBrP0pl8r6DoN3nNfMDaW5vYcth4tp65Tz0ArjUm7tXXI++CGV5PQa5k705bEbJpi0K/liWxZNbTL+fMtEs+xmiipb+ebnXCZFeRJjwtCcKUitxGg02p2IKYulRCzEykJkdA2pqKpN3zlpLPXN3WzcX8jsCb7Eh428QaSlvYfXvj5FVnETi6cFcs/VMXqblNGmoVWGm6N5hmvH+O1zOree8toOnrhpwrB2/UOuZk8//TRVVVWsWrWKVatW6X8uEokICzOfq+aliJ21Vgi1rnmg8CloUzsVdedkZmykEtydrSmu1jUuaHeUOSXNxIS4cDi1iikxXpzM1iovTI31Yt2uPI5l1nD51EAALpsSyHd78vnxQBGPXD9+wGsKBALuuToGe1sLvvkpl/zyFm5bHMn0OG+DC6KsV8mu42V8tzuf7h4Fd14VzfI5ISZ9UFIyatiRXMrVs0KGZYt9IVUNnfxz9XHsbSx49IaB79FctHfJEQrO6RKagkAgMGoHqlKpKa5qZX6iaamJb37ORQCsvDLK5Gu7kMKKVv7vi+N0dCt48uYEs4ikmkJLRy9RgWPqDGNod0ff/pyLq6OUmeN9h3WOIQOSr68vvr6+/Pzzz3+4lk6BQICXi61BJW6AAC87TufWoVCq9Hejob4OFPU1KjjaWeLjZkN2STNzEnz5+VgZXq7WdHQrKChvYVyAEz5uNhxOrdIHJEc7SxZO8mfX8TJuXDgON6eBd54CgYAbFowjOsiFDzek8frXp3B1sCI62JUwf0csxELauuQUVbaSmt9Aj1xFXKgr91wdY3LLb0VdB//53xnC/BxZeWWkSccaIq+smZe/OIFao+HlB6bjMEK1h6HIKGwkxNfR5HkelUrdz913KIqr25D1qogwYUEuq21n/+kKls0ONfj7NYWUjGre/OYMDrYWvPnoTLO3dBtDZ7ccO5sxMdUxtKovBRWtPHbDhGGncIcMSDfddBPr1q0jISGhX0DS9DmMnjlzZlgv+lvBy81mgMacjiAvB1RqDeW1HfrGhTA/J5LTa2jv0prxRQW5kJJRwyPXxyMQQK9CjVAo4HhWLRGBzsye4Mu63Xk0tMj0i9O1c8PYdbyM/+3OM7hL0hET4sp7f55HSkY1B89UklHUyMGzlfrHPZytmTvRj3lJfvrdmim0dPTwwufHsJCIeHZl0ohSQGq1hh3JJazekomLg5S/3z0Zf0/zyNYYIqOokdyyFu5eGm3ysbpGFQ/niwcL3dyYKbbh3/yUi5WFmOvmjSzDsP1oCZ/8mE64nxN/u2uy3mvrl0St1tDdo9Rbsozxx0WuUPHVjmwCveyZa8Kg/YUM+Ul65513ANi2bduwX+C3jK+bLSkZNf12QTqCfM7VjHQBSWd/nVfWTFKUJ7Ghruw+UU5jWw+hvo5kFDYSE6wNUrcvjmRuoh/f7spjz8lyblo0DgB3Z2sWTw9i2+FirpweNGSLtUgoYEa8DzPifdBoNNq5KbUGa0vxiDTVOrrl/P2TFFo7enn1T9NHZNxW09jFe+tTyShqJDHSgydvThhVe4L6lm7eXHsaNyepfudpCjl9Kg3GuLwez6ol2MfBaF+iospWUjJquHHhOL1v1nD4fm8+X+3IYVKUJ3+5baJZFMCHQ2+fgaX0V3r9MS4d1u/Jp7apm5funzqiOvOQn6TU1NQhD/bxMU/H1aWKn4cdarWGqoYufdOCDi9XWywtRHoDKoAwf0dEQgHZJdqApCtYp+Y3kBTpwbrdedy+OIo127P1MkLjw93YdbyM6+eH6SU2blo4jgOnK/l4Yzr/emiGUQVzgUBglhRYR7ecf3yaQmV9J3+/e/KwNc965Eo27i9kw/5CxCIBD6+IZ9HkgFFN/eaXt/Da16folSv518Mzh7VQH02vxs1JOuD3fSE1jV3klbVw+2LjU5lf78zBVioxaRj5QtbtytPPLj124wSzSgyZSq9cG5Ash1GnG+P3Q2lNOz/sK2DuRF/Gh5s2CHshQ35jv/7660EfEwgELFq0aEQvfqmjM60rr20fsECJhAKCvOz7adJZWYgJ9XPUm+o521sR6GXPmdx67rk6hm935SEWCRAK4NDZSgK9olg8LZBXvjzJ8axapsV5A1rPpTuviuad786y7WgxS2f+Mq31rR29/OPTFMrrOnjujiQmjDP9w6VWaziUWsWabVk0tvUwc7wPdy2JxnUUO7E6ZQo27i9g4/5CnB2s+Of90y4aUAxRUdfB6dx6blo07qKB86eUUoRCgdE6gBlFjZzOrefOq6KGrUzxw74Cvv05l3mJfjxqYqfkaKAb4v61dmhj/PoolGre+e4sNlIJdy+NGfH5hh2QjGHr1q189NFHKBQK7rjjDm655Rb9Yzk5OTz77LP6fzc3N+Pg4HBJpQd93GwRCqCizvCQZKifI7tPlKNSqfW7m5hgFzYfKqJHrsTKQszECHc2HSzC3UmKh7M1qfkNxIe5cfBMJbdeHsmkKE/cna3ZfKhIH5AA5if5cSStijXbcxgf5jaqNRfQzlS98Okxmtp7WHX3ZBKGEYzSCxtYvSWL4qo2gn0c+POtiWbpzBuMpjYZ246UsP1oCbJeJXMn+nLf8ji9q60paDQaPt+cidRSxOJpQ89GdXTL2ZlSyrRYL6NsO9RqDau3ZOLqYMWVM4anVbczuYQ127OZNcHnkghGoO3iBIxW+xjj98fanTkUVrTy1zuSzJKhGfKT9PLLL/P888/zwAMPGHz8448/HvTYuro63n77bTZu3IiFhQU33ngjkydPJjRUK5ESGRnJ5s2bAZDJZKxYsYIXXnhhmG9jdLCQiPBwsaG8zrCMTLi/E9uOlFBe16HvcIoJcWXD/kLySluID3cjMdKDDfsLSStoZEa8N5sOFnH/NbF8+EM6WcVNxIa6cvWsYD7blElOSTORfQZnAoGAR2+YwGNvHeCVL0/y78dnjZr8S0ZRI69+eRKBAF55cJrJatDlte18sS2bUzl1uDpKefLmBGZP8B0VhYDuHq330P5TFaT1KV1Mi/Pm+gXhI+oy2360hDN59dy7LOaiDQIb9hUg61Vy/YJwo86963gZRZVt/PmWicNyZz2aVs1HG9NJivLgiZsSLolgBNAl085qDecGYIzfPmdy69l4oJArpgUyNdb74gcYwZABaerUqQBcdtllJp84OTmZKVOm4OjoqD/HTz/9xMMPPzzguZ988glJSUkkJiYOeKy9vZ329v4BobbWdNHM4RLgaUdZjWFb68i+dt/c0mb9YhgV5IxQKCCtsIH4cDciA52xlUo4kV3LkhnBbNhfiFoN1lZidp8oIzbUlUWTAvjfrnzW783nH/dM0Z/f2d6Kp29P5G8fJ/PG2tM8f+cks9YMNBoNO5JL+WxTBp4uNvz97sl49ymVG0NbZy/f/pzLT8fKkFqIWHllFEtmBpvFEvt8Wjt6OZVTy4nsOk7n1iNXqHB3knLd/HAWJPnj5WqaSsKFpGRU89nmTCZFeXLV9KF3MOW17Ww+VMT8JD+jAmBLRw9rtmcTE+LCrAmm11yzipt485vTRAQ48/Rtib9qzehCdDqPv0aH3++RX3utM4Xapi7e/OY0AZ52ZknV6RgyIM2bNw/QGvS1tLSQmpqKWCwmPj4ee/uhU0j19fW4uZ2bQnd3dyc9PX3A89rb21m/fj1bt241eJ41a9bw/vvvX/SNjBYBXvacyKqlV6EasNB6OFvjaGdJTmkzV/SleaytJIzzd9LfvYtEQhKjPDiZXcsjK+LxdrUhOb2aWRN82XeqgvuWK/SF7q935pBf3tKvkSA2xJUHr4njgx/SePe7szx2o3nukLt7FHzwQxqHzlaRGOnBU7dMNPpOV6VSsyO5lG9+ykEmV3HF1EBuWjTObHNFarWGoqpWzuTVczK7jvzyFjQacHWwYuEkf2ZN8CEiwHnEOzCNRsPPx8r4aGM6Yb6OPHVLwpDnVCjV/HvdGaytJNxx5cVbynVCtr0KFX+6Nt7kho6y2nZe+u9xPJytWXX35EuuVlPfrLVbGc364B+JX3utM5aeXiWvfKmdJ/zrnZPMegNq1Cf8wIEDPPPMM4SFhaFWqykvL+ftt98mKSlp0GMMCYAa+kJu3bqVBQsW4OJiuNawcuVKli9f3u9ntbW1/epRo0mQlwNqjVaz7MKOM4FAQESA0wARzwnhbqzbnaefR5oa46W1jyhpZnaCL//bncc1c0L5KaWU/acqWDIzmKtmBLHpYBHf/JTLi/dN7Xe+y6cG0tbVy9qduShVGp64KWFE2mFpBQ28uz6VxlYZt14RwYp54UYv7jklzdk7kroAACAASURBVHy4IY3SmnbGh7tx37JYvSDpSGhslXE2r56z+Q2k5jfovYzC/By5aVEESVEehPg4mK1Lr7Wjl09+TOdIWjUJEe48e3vSRWshn23KoKiyjb/ekWTUrmDX8XJSMmq486ook/+PGlpkvPBpChZiIf+8b+qotsoPl8r6ThxsLcxuH/JH5dde64xBrdbwn+/OUlbTzj/umYq3q/EZFWMwKiC98847rF27Vi8XlJWVxapVq9i4ceOgx3h4eHDq1Cn9v+vr63F3H1go37NnD/fff/+g57G3t7/obmw00c0BlVS3GWyBHhfgzLHMWto6e/U7hPHh7ny7K4/0wgZmxPuQMM4dC4mIYxk1LJkVzLpdeZTWtBPq58jOlFKumhGEtZWE6+aF8sW2bDIKGwcMW96wYBwSkZAvtmXT2CrjmdsTjSqon09rRy9rtmez52Q53q42vPbQDKNVBrp7FKzZns3OlFJc7K14bmUSU2O9hh0gumQKMooaSctvIK2wQd844mRnSVKUBxPGuRMf5oqTma0pOmUKth8t5scDRfTKVdx2RSTXzgu76K5z08FCdqaUcu3cUKPy5cVVbXy6KYPx4W4sm22atUR7l5x/fJZCd6+Sfz00Y1R8jMxBQUUrIT5jthPm4tde64zhy+3ZHE2r5q4l0SSY6HVkDEYFJIFA0E+7Ljo6+qIWCNOmTeO9996jubkZqVTKrl27eOmll/o9R6PRkJWV1c/S4lLDw9kaayux3lzvQiICdMOwLUyK1qorh/k7IrUUk5qvDUhWlmISxrmRklnDvctiiQhwYt/pCq6eFcJ761PJLG4iNsSVK2cEs/VICf/dlsVbj84asGu5Zm4Ybo7WvLv+LI+8uZ87ropmfpL/RRfTts5eth4uZsvhIhRKNdfODeWmyyKM3mqfzavn3fWpNLXJWDIjmFuviDS5s0qlUpNf3srZ/HpS8xvIK29BrdZgaSEiOtiFBUkBTBjnRqCXvdlnlVQqNdmlzRw6W8WB0xX0yFVMivJk5ZWRRnUvbj9awuotWUyL8+K2xRfXn2vt6OX/vjiOvbWEJ28eOg14Id09Cv75+TFqm7p48d6pv4ockDG0dfZSWtPOjPHmKWaPcemz7UgxPx4o5KrpQSOapRuKIVeV1lbtjE1MTAyrV6/mxhtvRCgUsnHjRqZMmTLUoXh4ePDEE09w++23o1AouO6664iLi+Pee+/l0UcfJTY2lubmZiQSCZaWl25RVCgUEOTtQMkgASnM36lvGLZJH5DEIiFxoa79LMmnxnpzLLOWgooW5iX68eGGdHzdbbGVSthxtITYEFcsJSJuuyKCt9ed5VBqFXMSBgoUzpzgQ6C3PR/8kMZ761PZsK+Ay6YEkhjpjo+7HSKhAI1GQ3N7D9klzRzLqCElswaFUs30eG9uvTzCaO+aHrmSL7dls/1oCT5utrz+yEyTZIg6uuWcyqnjRFYtZ/Mb6JIpEAgg1NeR6+aFMSHcjXEBzma1LtApVpTXdlBQ0Up2SROZRY109SixkIiYEe/N0pnBRikxaDQa/rcrj2935TEpypM/35J40eAv61Xy4upjtHXKee2hGSbt8HrkSv65+jgFla08tzLJJEmiX5pjfb5dEyOM99Qa47dLSkYNn27KYHK0J/csix21AfchA9KUKVMQCAT63dAbb7yhf0wgEPDMM88MefIlS5b0s60A+Oyzz/R/d3Fx4ejRoyZf9C9NoJc9+05V6DX8zsdSIiLU15Gc0uZ+Px8f7sbxrFpqGrvwcrVhUrQnIqGA5PQaVswP49NNmRxNq2bBJH+2Hi6mqU2Gi4OU2Ql+bDlczJfbspgS7WlQAsjPw45XHpxOSkYNGw8U8MW2LL7YlgWAvY0FPXIV8j5ZF3sbCxZO8ueqGcEm1TFKqtt4Y+1pKuo6WDormNsXRxm1o2rr7CU5o4ajaVVkFDWhVmtwsrNkaowXCRHuxIe5DVs2p1ehoqW9h9bOXlo7tH9aOnppae+hqa2HxlYZdc1ddPWcc9X1crFhWpw3EyM8SIhwN3pn192j4P3v0zicWsX8JD8eXjH+oh1uPXIl//ff4xRXtfH8nZNMsjXv6VXy0n+Pk13SxJ9vmciUGPPYxI8GGo2G3SfK8HGzIcRM7sFjXLrkljXz5tpThPs58edbzWNBMxhDfjtzc3NH7YV/SwT0ucE2tMgM5vMjg5zZfrQEhVKtv9sfH66TDarHyzUIW6mEuFBXUjJruOOqKJKiPDh0topX/zSdzYeK+PlYGTdfFoFIKOC+ZbE88/4RfthXwK1XGJamEQoFTI/3Znq8N3XN3WQUNlDfIqOtsxcLiQg3Jynj/J0I9XXUD+0aw/+zd97hUZVpH75nJr33HtJJSEhCKEnoICCgICKoIFgRxcYuu5bVtet+y+raVtS1sIqCBQUFVJDeA4QEEkIaIb33PjOZcr4/hkQCCUwgk0ziua/Lazcz55x5EpL3ecvz/H7tlWef/HQGG0tTXn1o7FUVGzRageTMCnYeLyAxvQKNVsDb1YYFU4OJH+5JsI+DXttWTa1tlFY1U1bTSkVtC1V1cqrq5VTXy6lpUHT0vVyKnbUZTnYWuDhYMizACU8Xa3zdbAn0tr+mkuTMglre+TqZ8poW7r05nAVTr+6Sq1Cq+cfnJzhzvpo/LxpJbA/M8VrkKl7733Ey8mpYtXgkk2KuTbq/rzibW0NWQR0r5htupixiHJRWN/Pa2uM421v2SaWnXk9va2vjwIEDtLTolJA1Gg2FhYWsWrXKoMEZC34XZGgKyhu7TEihfo78dOA8+WUNhPjqzpS8XW1wcbAk5Vx1R0l4fKQnH21KpaiiiamjfEk4U0Z5bSsjQ9347Vg+d0wfiolMSniArmdl8/4cbhjje9VKFncnK9xj/a77+1Qo1XzwQwr7k4uJGerKX+4adcUBvVWhYufxQrYdzqWythUHW3PmTgzkhtG+VzwLalWoyCttJL+0gfzyJgrLGymubKaxpa3TdfY2Zrg6WOLpbE1kkAtOdhY42prjaGeBg405Drbm2NuY99qWX4tcxfodGfx6JA9nB0tef2Q8kXoYCDa2tPHq2mOcK6zjz4ti9JYTggtyTZ8mUFDWyF+XjDL6ZKTVCnzxczpOduZMi+25RbXIwKGhWcnLnxwD4OXl8Qa1i2lHr4S0atUqioqKqKqqIjw8nJSUFGJjYw0dm9Hwuz15Y5e20EMvJKHswvqOhCSRSIgKduFkRkXHVl9chAcfbUrl+Nlybp0chI2lKQeSi7l5fACvrj3OsbQyJlywCH9gbgSJ6RV8/OMZXn4w3uAz0bLqFv7vixMUlDeydFYYt0/rvhRcrlSz7ZDugLNZriIi0JkH5kQQN9zjsm0trVagqLKJ9NwaMgvqyCqoo6TqdykmG0tThnjYMjbSEx83GzydrfF0scbNyarP+m4UbWp2JOSzcXc2zXIVN48L4O6bhumljFFS1cyrnx2jql7O3+6NZWyk/lttJVXNvPxpArWNSp5/II7Rw4z/PGbroVyyCutYtTjG6PqiRHoPpUrD6/87Tk2DnH88Or5HDfPXg16/URkZGezcuZOXX36Z+++/H0EQeOWVVwwdm9FgbWmKi70FhRVdKza4OlpiZ23WYc7XzvBAZ/aeLKKoookhHnY421sS7GNPYnoFt08byvhoLw4kF7NiQRSujpZsP5rfkZCc7S1ZMiuMz7akcTS1jPHRhqtmOpVVyRtf6Ur0X35wbLflnFqtwJ7EQr7cnkF9k5Ix4e7cOX3oZVJD7cUMJzMqSD1X/XtHv405oX6OTBnlQ5C3PQFe9jjbW/Tbtk9do4Idxwr49Wge9U1KRgx15b6bw/UqeAA4mVHBvzckYSKT8PqKcYQH6K/bl5Jdxb++SkQqlVyTXFN/kFVQy7pf0omL8OhzZ1qRvkOrFXj3m2SyCut45p4x1+Sndq3olZDc3NwwMTHB39+f7OxsZs+ejVwuN3RsRsUQDzsKy7tOSBKJhGAfh07K3wARQboB6mxebUd58ehhHmzcrWuanRTjzW/HCjiVVcnMeD/Wb8+kpKoZ7wuzkTnjA9iXVMTHP6YSHeKCTS83RwqCwLZDuazddhZfNxuefyAOD+euZXgKyhpZ8/1pMgvqCPNz5O/3xXbqYVK0qTmaWsr+pGJScqrRagUcbMwZMdSV6BAXIgJd8HC26vczh1aFiqSMSg6cKiYxowKtVmBUmBu3TxuqtxCsRqPlm11ZbNydjb+nHc/dF9vtz+1SBEFg66Fc/rftLN6uNry4rPufuTFRWtXMa/87jouDBU/cMaLf/x1FDMf6HRkcTinl/jnhjI/q27J+vRKSlZUV27ZtIywsjI0bNxIYGNhREv5HwdfdlrRcXdVYV1tZQT72bN5X1cnMz9PZGgdbc9Lzaph9wSxu1DA3vt2VRUp2FeOivXCwNedISinLb43k69+y2HW8gPvm6GRpZDIpj98+gr++e4Avfknn8du7d5DtKSq1lo9/TOW3YwXED/dg1eKRXW5RabUCP+7PYf2OTKwsTFi1OIapo3w7BqSy6ha2Hc5lT2IhrQo17k5W3DYlmLGR+hczGJKm1jZyiurJLKgj7Xw16Xk1qDUCTnbm3DopiBvj/TomAPpQXtPC218nk5Ffyw2jfXlkQZTeW1etChX/2XiaIymlV/yZGxsFZY28+MlRBAFeXj62T84SRPqH3ScK+H7POWbG+zF/Ss8aunsDvf6SXnzxRTZu3MhTTz3FDz/8wNKlS/nLX/5i6NiMCh83G9pUGqrru660C/DSWZoXlDcRfGHLRyKRMMzfiaz836WFQnwcsLY05fS5KibGeBM/3JP9SUWsWjyS0WHu7D1ZxN2zh3VUxgX7ODBvcjA/7s9hbKRnr/R9NLW2sXpdIqk51dw+LYSls4Z1mTgampW8tSGJU9lVjI305LGF0R2DUVl1C1/vzORgcjHSC861s8b6Ex7gdM2zZ0EQULZpkLepaVNpUak1qDUCGo0WrSAgCKAVBLRa3X8ajYBKo9Xdo1TRLFfR0NxGbaOCyrpWSquaqW3UbRdKJDoZqFsmBhEb4UGYv1OPyle1WoHfjuXz+c9nkUgk/PWukUzpwbbVuaI63vwqiYq6Vu69OZzbpgT3e7LWh8T0ct76OhlzUxn/9+i4HiVvkYFFRl4tH/yQwoihrqy4LapfVsF6JSR/f3+efvppGhsbeffddw0dk1Hi4axLQuW1LV0mpHZDuIKyxo6EBDqLioQzZR26djKZlOGBzqTm6Jpm4yI82JGQT2pONdPG+HIiXddEevEB99JZYZzMKGfNxtP858mp16VrVlzZxGtrj1NZJ2fV4pHdVoTlljTw+ufHqW9S8tjCaGbG69xeWxUqvtmZxc+Hc5FKpdwyKYj5U4L1svFuaFZSWNFESWUz5TW6su6aRgX1TUoaW9poUajQaq+sAHI1ZFIJjnYWuDpYEhPqxhB3WwK87AkZ4njNNglFFU18uCmFtPM1RIe4sPKOGL3lfDRagZ/257B+RwYOthb83yPjDeoR1Vu0qTR8/Vsmm/blEOhlz3P3x+JupBJGItdPXaOC1V+ewNXBimfuGdNvqvJ6JaTc3FyeeOIJGhsb+eGHH7jvvvtYs2YNQUF942RqDLg76fb5K2u7PjvzcrHGRCah6JLCh2CfC1p4JQ1EX+hNigx24fjZcqrr5UQFu2BhJuNEejnL50Via2XKvqSiTgnJzFTGqsUjefr9Q7z37Sn+fn/sNc1ekjMreeOrRExMpPzjke4P4U9mVPCvLxOxsTTljccndjR4JmdW8v7GU9Q0KpgR68eSWWHdJiKNViCnqI4z52vIzK/lXFE9tY2KjvdNZBJcHCxxtrfE38sOO2szbK3MsDI3wcLcBHNTKSYmMkxlUqRSkEmlSCS6VadUKkEmkSCTSTA1kWJuZoKFmQwbKzOsLUx6bWbXqlCxcXc2Ww6ex8LMhMdvH8GNcUP0fn55TQvvfnuKs7k1jIvy5InbR/T6OaAhSM2p4qNNqRRXNjMz3o/lt0b2uqWIiPGg0Wj511cnaZareXn52H71t9IrIb3++us899xzvPnmm7i7u7N06VJefPFFNmzYYOj4jAYXB0skEqiqa+3yfZlMioezNaXVLZ1eb9ciyy39PSGFXzDhS8+rYVKMD9EhriRlVPDIbVFMiPZmz8kiFEp1J5WGEF9H7p8Twadb0ti0L4eFN4SgL4IgsGlfDl/+mo6fhx0vPBDX7Qz/QHIxb3+TjL+nHS8ui8PZ3hKVWsu6X9LZcvA8vu42vHHPxC5FWTUaLafPVXH4dCnHz5Z3KHZ7uVgTFexCoLc9fh52+LjZ4OxgaTRGc5ei0WjZnVjI+h2Z1DcpmT5mCPfeHK53k61WK7DjWD6fbzuLVCrp6E0y9kKA/LJGvvo1gxPp5bg7WfHK8u4rLkUGDxv3nONsbg2rFsf0u3aiXgmpvr6e8ePHd0gHLVmyhI0bNxo0MGPD1ESKg405VfXdVxd6ulhTdklCsrcxx9HWnPyy3423ArzsMTOVkVVQx6QYH2JC3TpkhibFeLM9IZ/E9AomXmLoNndiIJkFdaz7JR1XB0smd6F1dykNzUre/fYUJzMqmDjCm5V3jOhSjghgT2Ih7313ivAAZ15cFoeVhSkNzUr+8fkJMvJrmTM+gPvnRmB2yWy5oVnJ9oR8th/No7ZRibWFCWPCPRg9zJ3oENcBY+Cm1QocSS1lww5dteMwfydeeCCuS5X37iivaeH9jadJzalmRIgrT9w5AjdH493qEgSBjPxafjpwnoQzZVhZmHD37GHMmxwkror+AGQX1vHtriwmx/hww+j+b3TWu7NNqVR2zPCqqqrQarUGC8pYcba3oOaibadL8XC25kxO9WWad0M8bDtt5ZnIpAT72HOuSFep2C4zlJJTzcw4PxxtzTmUUnJZQpJIJKxaHENto4K3v06iVanuqN67FEEQOHCqhM+2nKFFrmbF/EhuGh/Q7Sz94Kli/vPdKaKDXfn7A7FYmJlQWtXMS58mUNug4Kmll6sItMhVfL8nm1+O5KFo0zAy1I2H5/sxJty9o9JwIKDRaDl0uoSNe85RVNGEr7stz90XS/xwD71XNRqtwC+Hc/lyewZSiaTTuZsx0qpQcfBUCTuO5XO+uAEbS1PunDGUeZOCjNJ7SaT3aVNpePvrZJzsLFixIKq/wwH0TEh33XUXy5Yto6amhrfeeotffvmFBx980NCxGR1OdpZUdrNlB+DmaIWiTUNjS1un0lhfN1v2XCLOGuLryPaEfDRaAS8Xa5zsLDiTU83ssf5MGOHNjoR8WhWqy8qCTU1kvPRgPG98dZIPf0ghKaOCxTeGEnjBvE6uVHPibDlbD50nu7CeYF8HXl8R01F00RVJmRW8/XUy4YHOHcmooLyR5/97FK1W4P8eHd+pcVMQBPYnF7N2a5qun2qED7dPD+lQtBgotMhV7Drxu/TREA9bnlwyigkjvHu0nVhQ1sj7G0+TVVjH6GHuPLIgyihXRSq1hlPZVRxILuZYWjltKg3+nnY8siCKG0b5drtyFhmcbN6fQ0lVM6881L/nRhej12/gwoUL8fPzY//+/ajVal577TXGjx9v6NiMDkc7c7IL67p9381RZ5hXXS/vlJC8XG2QK9XUNSk7igACve1pU2koqdSpOEQGuZCaU4UgCIyP8mLboVxOZlR0qW1maW7C8/fHsnl/Dht3Z3P8rM4KwOXCCk4QwM3Jij/dOYKpo6/sl5RTXM/qdYkdZ0sWZiYUVzbx/EdHkUrh/x6b0EklvLGljf98d4rjZ8sJ9XPk5eVjO1UVGjuCIJBTXM9vxwrYn1yMsk1DeIATD80bzphwjx6VYrepNHy/5xw/7M3G0tyUv941kskjfYxqVaRQqjmVXUnCmTJOnC2nRaHG1sqUaaN9mR47hBBfB6OKV6RvKK9p4fvd2UyI9mLkVcST+xK9ElJzczPJyck89dRTlJSU8MUXXxATE4OVlfHNAg2JvY05jS3KbptjXRx0CammQUHQRXnEy1VXoVdW3dKRkAK8dKuJvNJGhnjYERHkzIFTxZRVtxDm74SDjTkJZ8q6FduUyaTcPm0oN8b5ceJsOWU1LdQ0KPBwtiYi0InhgS5XHVxrGuS8tvY4ttZmvLQ8HisLU2oa5LzwcQICAv94ZEIn76TzxfW8/vkJ6puULLtlOHMnBhptYcKllNe06Az6kospqmjCzFTG5BhvbhofcE0JNe18NWu+T6Gkqpkpo3x48JbhRtMwWlHbysn0chIzKkjNqUal1mJjaUp8pCcTor0ZMdS138p6RYyDL35ORyqVsOyW4f0dSif0SkjPPvssPj66gdHOTqfi/MILL/DWW28ZNDhjw97aDK2gayztavBxttclm+qGzoUPni6/J6T2HhSfC2Z6+WWNTAYiLqq883K1IW64BweSi1G0qa+oBGBvY86MuJ4rfSva1Lz++QnkShVvPDEJJzsL5Eo1r352nBa5itWPdU5GHaXgVma88cSEDhFZY0Wt0ZJdWEdyViUnzpaTV6orKhnm78SjC6OZNMIb62vYpmiW66zcdyTk6yrRHhrb7zNMhVJNWm4Np7IqSc6qpLhSJ17r6WLN7HH+xIZ7EBHoLCYhEUDXY3gktZQ7ZwztmEQbC3olpPz8fN5//30AbG1tee6557jlllsMGpgxYnchCV16RtSOg60FUgnUNnQufHB1sEIq0c1c2zE1keLjZtNRfefjZoutlSlnc2uZHuvHxBE6nbukjMpeF1YVBIEPfkjhfHE9f78vFn9PO7RagXe+SSa/rIEXH4wn8CLjtYQzZbzxVSJDPOx46cF4vZpg+xJBEKiql1NQ1tghE5SRX4tcqUYqgTB/Jx6YG8H4KC+9G1q7+oyEM2V8/GMq9U1Kbp0cxJKZYf1y7qLVCuSVNnA6u4pT2ZWcza1FrdFiZiJleJALs8b6MyrMTW9nYJE/Fht2ZGJtacqtk/teGuhq6PXXpFaraW5uxsZGJxvS0tLS4SL7R8LuQvVRe3/NpcikEuxtzDs1gIIu+TjZX14Q4edp1+E0K5VKCA9wJj2vBoDhQS442ppz4FRxryekLQdz2Z9UzNJZYcRdcCbdtO8cCWfKWHbL8E7yREmZupVRsK8Drywf2+NVhUqtoaCsiYLyRsqqW6htVNDY0oZcqUat0SIIuu/d1ESKuakMCzMTLMx1/2tuJsPMRIpMJkUq0VWyqdVaWpVqmlrbqG9SUlUvp6K2FWWbziFXItHpDk4Zqevv6g1R2tpGBR9tSuFYWjmBXva88EB8j9xge4P6JiXJWZUkZVZwOruqwzvKz8OWORMCiAl1IyLQWSzVFrkiheWNnEgvZ8msMKMpZLgYvRLSrbfeyu23386sWbOQSCTs2rWL2267zdCxGR02Vrp/wObWrp1LARztLKhrUl72upujZacVEujkhg6eKqFFrsLa0pTwACeOny2nrkmBo60FE0d48+vRfJpb23qtwz81p4rPfz7L2EhPbp82FIAz56tZvz2DSSO8mTcpsOPac0V1/HNdIn6edj1KRjUNcg6dLiExvYLM/Fra1LoWAakEHGzNsbM2x9LcBFMTnfqCRisgV6ipb1J2aNkp29Qo2jR0Ne8xN5NhY2mKg605ns7WxAx1w8vVGj8POwK87HpNsFQQBHafKGTttrOoVBruuzmceZOD+mTrq7344nhaOUmZFeQUNwA6C4+RYW7EDHUjOsQFZ3vj2nIRMW62Hc7DzETabbtIf6NXQnr44YcJDg4mISEBExMTnnzySSZPnmzo2IwOO2tdUrjU2fRinOwsLlshga7q7WxuTafX2kux88saiQh0ZvgFd9LUc9VMHunD1NG+bD2Uy96kIm6ZeP0yTRW1raxedxIvF2v+vCgGqVRCQ7OSf69PwtPFmsduj+6ouKppkPP6/45jb2POy8vj9UpGWQW1bNqXw/G0MrSC7vubPS6AMH9HArzscXey6tFgLgiCblWk0YIAEqnkgpSQ4QspKmtbWfP9aU5lVxER6MwTd4wwuLCoIAhkFdZxJKWUI6mlVNXJkUog1M+JpbPCGBXmTqC3/YAQZRUxPprlKvaeLGLySB+jKcC5FL03wCdOnMjo0aM7turq6+txcBg45b69QfsqpVne/QrJwcac3JLLrTncnaw4mFyMSq3tsNzukBUqaSAi0JkgHwdsLE05nV3F5JE+BPs4EOrnyM+H8rh5/PVVtLUqVPzj8+NotVqef0CnwiAIAu99d4rGljZeenBSx8pCpdbyz3WJyJVq3nhoHI62Vz4zqqxt5bOtaSScKcPG0pT5U4K5Mc7vul0mJRIJJjJJnx7GC4LAzuOFrN16BkGAFbdFMXusv0GTQF2Tgt0nCtl1opCy6hZMZBJiQt2468YwYiM8OiZCIiLXw5GUUtpUGmYZ6eoI9ExI69at46233kKl0g3E7Q2eGRkZBg3O2LAyN0EqgeZuzpBA16tU39x2WWm4p7M1WkGnhdc+UDvbW2BvY8b5CwlMJpUwYqgryVm/257PnxzM6i8TOZpaysQR3l1+5tXQaLS8uT6JgvImXloW3zHT//VIHonpFSyfN7xTEcO6X9LJKqjjmXtGX7GhVjd4F7B2axpaQadKfsukICwHaINlTYOc/3x3muSsSqKCXVh5Z4xBFa7zShvYtDeHI6klqDUCEYHO3Dl9KHHDPY1yf19kYLM/uQhvV2tC+vj8syfoNXJ89dVXfPPNN0RERBg6HqNGKpVgbWnabVED6LbstFqBhhZlp5VFuytoaXVLR0KSSCSE+Dp2SAgBjAl353BKKTnF9YT4OhIf6YmPmw1fbc8gLsLjMh25q6HVCrz//WlOZlTw6IKoDrHM/LJG1m47y6gwN+ZO/P3c6GRGBVsOnmfO+IAOO/WuaFNp+OCHFPaeLOqxJYMxcjilhA9/SKFNrWXF/Ehmjwsw2KqooLyRDTsyhoI5ZwAAIABJREFUSThThqW5CbPHBTB7rH+nBmQRkd6ksq6VtPM1LJkVZtSN0HolJFdX1z98MmrHxsrsikUN7SXRNQ2KTgnJx02XhIormztZS4T6OZKUWUGzXIWNpSljwj2QSSUcPl1KiK8jMqmEh26N5MVPEvh2Vxb33BSud6warcBHm1LYk1jEXTeGMntcAKDrQXpz/UmsLU3586KRHb+gdU0K3vv2FP6edtw/t/t/7xa5itc/P07a+RoW3xjKohmhA/ZcQ6FU8/GPZ9idWEiIrwN/uWukwcqlWxUqNuzI5OfDuViYm7D4xlBumRg4ICwpRAY2h06VADC5m0Z7Y0GvhDR+/Hi+/vprpk2bhrn574dhf7QzJABbK1Mar7BCam80q66Xd1IAsLcxx87a7DK/pPAAJwQBMvJqGBPuga2VGaOHubMvqYi7bxqGiUxKTKgb08b4smnvOUKHOHaUal8JuVLNe9+e4khqKbdPC2HRjaEd733y4xmKKpp4efnYDiVuQRB4f+NpWhQqXn9kXLcrsRa5ihc+PkpuSQN/XTKKKXoojhsreaUNrF6XSFlNC3dMH8riG0MNdl51NreGf29IoqZBzqyx/iydNUw8GxLpM46fLSfIx76jSd9Y0SshffLJJ7S1tfHqq692vPZHPEMCsLO+vM/oYtpFNbsSYfXzsCO/rKHTa6F+TpiZSDmdXcWYcA8Aboz34/jZchLOlHWcGz08P4rC8iZWf3mSJ5eOYnxU971J2YV1vPttMiWVzSy7JaJTA9zuEwXsOlHI7dNCOikM7DxeQGJ6BQ/OG96tSKqiTc0rnx0jt6SB5+6LJTbCo9sYjBlBEPjtWAGf/nQGGytT/rFiPJHBLgb7vJ8P5/LpljTcnax44/GuvaRERAxFQ7OSrIJa7pwRevWL+xm9ElJqauo1PXzbtm189NFHqFQq7rvvPpYsWdLp/dzcXF566SUaGhpwdXXl7bffxt6+fw2iroauiq6h2/ftbcywMJNRXnN5QgrwtmNHQgEajRbZhZm4uamMyGCXjmQgkUgYHeaOp4s1m/fnMCHaC4lEgqW5Ca88NJaXP01g9bpEJkR7MX9KMEE+DsikElRqDel5texIyOdwSilOdua8+vA4okNcOz4/s6CWD35IJTrEhSUzwzpeL61u5rMtaUSHuDB3QuClYQO67b+3v04ms6CWp+8ePWCTUZtKw0ebUtmdWEjMUFf+ctcog/o1fbMzi69/yyQ23IO/3DXymuSKRESuh+SsSrQCnY4KjBW9ElJbWxsHDhygpUVnPqfRaCgsLGTVqlXd3lNRUcE777zD5s2bMTMzY9GiRcTFxREcrJutC4LAI488wt///ncmTZrEv//9bz755BOeeuqpXvi2DIeuiq57gVWJRIKXqw0lVc2XvRfi48BWVS6FFU2dnBnjhnvy4Q8p5Jc1EuCl6zO5Y1oI7313moOnSjqM+GytzFj92ES+253F1oPnOZxSqovJ1pymVhVqjRZrS1MW3hDC7dNCOjWIllY384//ncDFwYKn7x7TkRA1Gi1vf52MTCblz4tGdnsW9NWv6SScKWP5vOFXLHYwZqrr5bz++XHOFzewaEYoi2807NnXL4dz+fq3TG4Y7cvKO2MGjBCtyOAiMb0CB1vzAaHKr1dCWrVqFUVFRVRVVREeHk5KSgqxsbFXvOfo0aPEx8d3nDPNnDmTHTt28PjjjwNw9uxZrKysmDRpEgArVqygsbGx2+cZC872lmi1AvXNym413XzcbMi8IAl0Me1bNel5tZ0S0rhITz7enMqB5OKO16eOHsIvR/JYuzWNUcPcO8qATU2kLJ01jPmTgzl+toyy6lbqmhTYWJoS6udITKjbZWKsNQ1yXvokAY1W4MVl8Z3OLr7dlU1WQR1PLR3VrdDioVMlbNqXw+yx/twy6fobdPuD9Lwa/rkuEWWbhhceiDP4Ci+nuJ7PtqYxJtxdTEYi/YZaoyU5q5JxkZ4DovBIr4SUkZHBzp07efnll7n//vsRBIFXXnnlivdUVlbi6vr7dpGbm1unrb/CwkJcXFx45plnSE9PZ+jQobzwwguXPaexsfGyRFVeXq5P2AbB9YLnUVVda7cJ6VJJoHbcnaxwsdcZ8d08PqDjdXsbc0YPc2dPYhFLZoVhaiJDJpXw2MIRPPmfg7y1IYnnH4jrNKhZW5rqZTlcXtPC8/89SmNLG6+vGNeptPhMTjUbd2dxw2jfbm0uiiqaeG/jKYb5O7H81sirfp4xsj+piP9sPI2LgyWvrxhncCNBQRBYuzUNGyszVi0eKSYjEb0wxFiXkV9Li1w1ILbrQM+E5ObmhomJCf7+/mRnZzN79mzkcvkV7+lKfPXi+ne1Ws2JEydYv349kZGRvPvuu6xevZrVq1d3umfdunWsWbNGnzD7hPZGyfKa1k4uqhdzsQLDxYflEomEEUPdSEgr63SOBDBnQgDHz5azL6mYGy/YSQT7OvDQ/Eg+2pTKx5tTWXFbVI9mOWdyqln9ZSJarcDrK8YxdMjvlhE1DXLeWH8STxcbVtzWtX2xXKnmn+sSsTCT8cw9ozsUJgYKWq3ANzuz+HZXFsODnHn23tg+qWw7V1RP2vkalt86XLQDF9EbQ4x1iekVmMh0DfcDAb0SkpWVFdu2bSMsLIyNGzcSGBhIff3l8jgX4+7uzsmTJzu+rqysxM3t96ouV1dX/Pz8iIzUzbrnzJnDypUrL3vOvffey/z58zu9Vl5eflmBRF9xcYNrd7Tv1Z4rqr+semt0uDu7EwtJz6vt9F50iCvBPvZ8vyebG0b7dpQfzx7rT2VtK5v25dDQouTx20dcdZBTKNV8szOLnw7k4OVqw/MPxHXSYVOpNaxel4hCqeb1h8d1qawgCAL/3ZxKcWUTrz40dsCJeCpVGt779hSHTpcwfcwQHrs9us8kiE6klyOVwA2jfPvk80QGB4YY6xLTyxke5NJrgsOGRq+/0BdffJHMzEwmTJiATCbj7rvvZtmyZVe8Z9y4cSQkJFBbW4tcLmfnzp0d50UAMTEx1NbWkpmZCcDevXu7bL61s7PDx8en038eHv1X4WVuKsPNyYriyqZur3GwNcfD2YrMgsvPkUaGumFmKuNQSkmn1yUSCUtmDaO8ppWfD+d2ev2+OREsuyWCY2nlPPqvvWw9eL5LgdeaBjnf78lm+f/tZvP+HKbH+vHWnyZ1SkaCIPCf706TWVDHnxbF4NeNNNCexEL2nizizumhjBhqPBbH+lDTIOfZDw5zOKWE+24OZ+WdI/pUD6+0qgUPZ2ux4VWkR/T2WFde00JxZTNjBsh2HVxlhXT33Xd32ma75557EASB0NBQtm/fzuLFi7u9193dnVWrVnHPPfegUqlYuHAhUVFRLF++nJUrVxIZGckHH3zA888/j1wux8PDgzfeeKP3vjMD4udhS0HZlQswwgOcOZlRcVk1nqW5CXERHhw+XcryecMxNfm9AXX0MHdGD3Nnw45M4od7dqzGAG6dHEx0iCsf/3iGT7ek8emWNAK87HC2t0Sj0VJe20rZhVVbdIgLf58Ve1m/iyAIrPslnf3JxSydHdZttVxBeSMfbT5DVLBLp4bagUBmQS3//OIErQo1z90XS7weTcS9jbJN02OJJxGR3iYxvQLQ7coMFK6YkJYuXQrArl27aG5uZsGCBchkMrZs2YKd3dUPhufOncvcuXM7vfbpp592/P/o6Gh++OGHa4m7X/H3tCM5sxKVWtMpoVxMdIgLe08WkVvacFm55fTYIRw6XULCmbLLigkeWRDF42/u498bkvjno+M7PT/Ay57Vj02goLyRw6dLyS6qo7ZRgYlMgr+nHTPj/Bgb6dmlyrYg6M5TNu3L4aZx/txxwQvpUuRKNf/6MhErCxOeXDJqwBzIa7UCWw+d54uf03FxsOTfK8d1u/ozNM4OFpzNre62NUBEpC9IyqzAy8UaLxfD2qb0JldMSDNnzgRg7dq1fPvtt0ilum2PKVOmcOeddxo+OiMlwNMejVagsLyJoG5q+2MubHOdzKi4LCGNCHHF08WarQdzmTjCu9Mq1M3Rij/dGcPqLxNZ830Kf7oz5rJBzc/DDr9Z+g+2Wq3A/7adZcvB80wb48vD86O6FFgUBIEPf0ihuLKZ1x4eh6ORWZV3R0lVM2u+P03a+RrGRnqy8o4R/bpdNszfie1H88kurBNVGUT6BaVKw5mcamYasdVEV+i1sV5XV4dS+bsLaktLCw0N3asVDHaCfHVVdBerdF+Ko50FoX6OHEsru+w9qVTCrZODyCqsIzWn+rL3x0d7sWRWGHtPFrHm+9NotNduF98uhLrl4HnmTgxk5R2XJ7h2fj2az/7kYu6aGdZJ4cFYqWtUsHZrGo+/uZe8kgaeuGMEz947pt/PbmLDPTA3k7E9Ib9f4xD545J2vpo2tZZRYQPr/FevKrs5c+Zwxx13MGPGDARBYMeOHdxxxx2Gjs1o8XS2xs7ajIz82iuaXY2L9OTzn9Mpr2npdB4EMH3MEDbuzmb99gyigl0uW7HcOX0oGo3At7uyqKqX8+SSUT12eUzNqeK9b09R06BgxfxIbhof0K30fHpeDZ9tOcPoYe7dbufpQ5tKQ0ZeLWfzaiiqaKKuSYlcqUYqASsLU+xtzHFxsMTT2QovFxu8XG1wcbDQWxK/feZ3ILmYI6mlaDRabhg9hLtvGtZtX1hfY21pysw4P345ksedM4YOqC0TkcFBUmYlZibSDhfqgYJeCelPf/oTERERHDt2DIC//e1vf0gL83YkEgnhAU6XWZJfyoQR3nz+czr7kopZfElxgJmpjMU3hrHm+9McOl1y2VmSruouDBcHSz7+MZVH/rWXe24axrQxQ67aD5Rf1si3O7M4klqKl4s1qx+bcMWto6o6Of9cl4iroxV/vat7+aArUV7Two/7cziQXEyLQpeA3J2scXGwxNneAkHQ2S+cL67nWFoZKrW2415zMxmezta4OVrh7GCBg405luYmyGQStFqBZrmK6no5RRVN5JU2olJrsbYwYUbsEOZNCrpuZ1pDsOCGEHadKGDtlrO8sCyuv8MR+YORlFFBZLAL5gOsuEZva8/p06czffp0Q8YyoIgKduVYWnmXq5923BytiAp2YXdiIXdOH3rZQD89dgjbEy7IA4W5dym8OTPejzA/Rz7clMIHP6Tw9W+ZTIzxJmaoG96uNthamaJUaaiobSWroI6EM2Vk5NdiYSbjrhtDmT81+DIpoYuRK9W89r9jtKk0/GPFuB5vdzXLVazfnsH2hHxkUgnjo7yYGONNZJBLt86xWq1ATYOC0qpmSqqbKalqpry6lcq6VjLya2i6xG9KItH5THm52DBnQiDRIS4MDzLuPzYnOwsWzQjj85/PciytrF+q/UT+mJRVt1Ba3cKcboSSjZmB6TVtBLR3Pp/KrmL22O49RmbF+/PG+pMkZ1VeJt+hkweK5sn3DvLJT2dYtXhkl8/w87Rj9WMTOJVdxc+Hc9l+NJ+tB3O7vNbf0457bw5nZrzfVRto1Rotq79MpKCskRcfjGdIDyV1UrKrePubJOqblMwa68+dM0L12jaTSiW4Olri6mhJdBcd5BqNFqVKg1ojIJPqlM4HYrXaLZMC2ZdUxMebU4kOcR2w1u4iA4ukTF2596hhA+v8CMSEdM34uNng4mDJqaxKZl/hHCk+0hNHW3O2Hc7tUk8qxNeR26cP5btd2YwMdetQ9r4UiUTCyFA3Roa6IVeqyS1poLKulYbmNsxNpTg7WBLkba+3ooJWK7Dm+9MkZ1by+O3RjArTv1dBEAS+33OO9Tsy8HGz4YVl8b2qJCyTSbHqw0ZWQ2Eik/LYwmieXnOIr3/LZNktw/s7JJE/ACczBl65dztiQrpGJBIJYy44u7apum+ENDWRcvOEANZvzySvtKGTync7i2eEknqumve/P42Pm023peTtWJqbEBHoTATO1xS7IAh8tjVNZ20+M4yZ8f5636vRaHn/+9PsSSxicowPj98ejYU48++WMH8npo8Zws+Hc7lpXIDRO3aKDGxUag1nztdwY9zVhZeNkYE/De1H4oZ7oGjTcDq76orX3TwuAEtzE77bnd3l+zKZlGfvHYOtlRmv/e84lbWXm/v1Fjol6rNsO5TLvElBLJqhf0WdWqPljfUn2ZNYxOIbQ/nrkpFiMtKDpbOHIZVI+H5P1//+IiK9xbmietpUGqKCjb9toyvEhHQdRAW7YmNpepku3aXYWJkxd2IgR1JKySvtun/L0c6Clx6MR9Gm4e//PUJ1/ZXV1K8FjVbgo02pbDl4nlsmBrLslgi9y601WoG3NiRxNLWMB+cN566ZYXrf+0fHyc6CGXF+7Esqor5JefUbRESukbTzusrf8ICB2ZAtJqTrwNRESvxwT06cLUel1lzx2lsnB2FtYcJX2zO6vcbf045XHxpLQ3MbT685RFFF9wKuPUVxQRJoe0I+C6YGd9il60O78vfhlFLunxPBvAFq0tefzB7nj1ojcOj0lScvIiLXQ9r5avw8bHvcs2gsiAnpOpkwwotWhZqTGZVXvM7WyowFN4SQmF7BmS7UGdoZOsSR/3t0PCq1lqfeP0Ri+vWbEZbXtPC3Dw9zLK2MZbcM5745+q+MADbvy2FHQj4LbwjhtqnB1x3PHxE/Dzt83W175d9TRKQr1BotGfm1A64Z9mLEhHSdjAhxxcHGnH1JRVe99pZJQbg6WvLZ1rQrygEF+zjw5hMTcXe04tW1x/lsSxpK1ZVXYF0hCAL7k4v589v7Ka9u4fkH4rh1cs9WNyczKlj3azoTR3hz9+xhPY5B5Heig11Iz69Fex1SUCIi3ZFb0oCiTUNE4LUVOxkDYkK6TmQyKZNH+pCYXt6lR9HFmJvKuO/mcHJLGth1vOCK13o4W/PGyoncNM6fLQfP8+i/9nDoVIneg1l+WSMvfZLAWxuS8HGz5d2/TCE2vGfeKhW1rfx7QxL+nnasvHPEgOwFMib8vexQtmmorDNc0YrIH5ecYp22Zqif41WuNF7EEqle4IbRvmw5eJ7DKSXcNC7gitdOHOHNr0fz+fLXDMZFeV3RUtvcVMYjC6KZEO3NJz+d4Y31J/H+zZoZsX7ERnjg42bTaeutVaHiVFYVuxMLScqswMrClIdu1WnY9dRGQqPR8taGJARB4Nl7Y6+o9iCiHy4Ouh6xukZlt+oeIiLXSm5JA7ZWprg6DCx354sRR5leIMDLDj8PW/YmFl01IUkkElbcFsWf3trH+u0ZPLow+qrPjwx24d1VkzmSWsrWQ7l8+Ws6X/ySjp21GW6OlpjIpDS2tFFe04JWAEdbc+6YPpR5k4KuqtbQHZv355CRX8tf7xop9s70ElbmOmkouVLdz5GIDEbOl+j6HAdy9auYkHoBiUTCtDFD+N+2sxRVNOHrbnvF6/097ZgzIZBth3OZETeEEN+rL7FlMimTYnyYFONDdb2cxPRyzhXVU9OoQKsVcLa3ZFKMD9EhLgzzd0J2HUoHJVXNfP1bFuOjvLpVjhDpOVpBt906gMcLESNFo9FSUNbIzeOvPCE2dsSE1EtMGeXDF7+ksy+piHtuCr/q9XfNDOPg6RI+3nyGN56Y2KPzGRcHS2aPC2D29QTcDYIg8N9NqZibSnl4fuSAnm0ZGy0KnWhsVyK6IiLXQ1W9HJVae9XJsLEjFjX0Eo62FowIceXAqRIE4eqFB9aWptw/J4Kswjr2nrx6hV5fkZhRwelzVSydPWzAOMYOFGoaFAA42A7MHhER46W8pgUAD2erfo7k+hATUi8yKcabytpWsgrr9Lp+ykgfQv0c+Wp7OgojOFfQagW++jUDLxfrKxoPilwbpVXNmJpI9RbAFRHRl/IaXeXmQC+WERNSLxI33BMTmZTDp0v1ul4qlfDA3AhqG5VsOXjewNFdncT0cvLLGll0Yygmg0Bt29jIK23Az8O2xxWPIiJXo7ymBRPZwJ/siKNOL2JjacqIoa4cSyvTa9sOIDzAmbgID348cJ5muerqNxiQnw/n4epoyaQR3v0ax2BEoxXILqzXq4BFRKSn1DUpcbQzH/CTHTEh9TJjwt2pqG2lpKpZ73sW3RhKi1zFbwn5BovralTUtnL6XBUz4/2uq0JPpGvySxuQK9UDVvRSxLipb1YOWP26ixFHnl6m3Uk25Vz3enWXEuzjQGSQCz8fybuipJAhOXiqGICpI3375fMHO+0WJVEhA9MWQMS4aWhWYn+FJvuBgpiQehlPZ2uc7CxIz6vp0X03jfenul5O6rkreysZisT0CoJ97HFzGthVOsZKYkYFAV52elm8i4j0lIbmNnGFJHI5EomEMH9HzhXW9+i+2HAPLM1lHD1TZqDIukehVJNVWEdMqFuff/YfgfomJRl5NcRG9ExLUEREXxRKNVaDwCzToAlp27Zt3HTTTcyYMYMNGzZc9v6aNWuYOnUq8+bNY968eV1eMxAJ9LanrKaFVoX+RQpmpjKiQ1xJzrqyjYUhOFdUj1YrEB4wcFWCjZmEtDK0AoyP8urvUEQGKW0qDWamsv4O47oxWEqtqKjgnXfeYfPmzZiZmbFo0SLi4uIIDv7dTyctLY23336bmJgYQ4XRL/i66bqlS6qae1RVFR7gzLG0cuqaFDja9t3WTruLbZC3fZ995h+Jg6eK8Xa1wd/Trr9DERmECIJAm1o7KBKSwVZIR48eJT4+HgcHB6ysrJg5cyY7duzodE1aWhqffvopc+fO5dVXX0WpHBz2zu3NaZV1PbMhD/TSJYTC8t5zitWH4spmbCxNRWUGA1BZ20ra+RqmjPIRZZhEDEKbWguAmenAP4Ex2AqpsrISV9ffK4rc3NxITU3t+LqlpYVhw4bxzDPP4O3tzd/+9jc+/PBDVq1a1ek5jY2NNDY2dnqtvNy4XTcd7XSHi3WNih7d53FBVbuitm/9cspqWkRFbwOx54Is1NRRYvWiyJW51rGu7YJ5p/kgWCEZLCF11Rh68QzR2tqaTz/9tOPrBx54gOeee+6yhLRu3TrWrFljqDANQrvlQ08bXds1zhqa+3alWFXXir+nuF3X22i0ArtPFDAixBV3sXpR5Cpc61jXnpAGw5adwRKSu7s7J0+e7Pi6srISN7ffq7hKS0s5evQoCxcuBHQJzMTk8nDuvfde5s+f3+m18vJylixZYqDIrx8TmRQTmbTH+nRmJlKkElC09dyu/FoRBIHqBgWjh4kVYL3NqaxKKuvk3Dcnor9DERkAXOtY16YSt+yuyrhx43j//fepra3F0tKSnTt38tprr3W8b2FhwZtvvklcXBw+Pj5s2LCBGTNmXPYcOzs77OwG3mGwmakU1YW9XX2RSCRIpVI0mp7ddz20KNQo2zQ424vnR73NL0fycLA1J364Z3+HIjIAuNaxbjCtkAyWUt3d3Vm1ahX33HMPt956K3PmzCEqKorly5dz5swZnJycePXVV3nkkUeYNWsWgiBw//33GyqcPkcqkaC9BtUFrSD0yBvpeqmu1xVeuAxwUUZjo7S6maTMCmbF+2NqMvBnriLGi3IQJSSDdlLNnTuXuXPndnrt4nOjmTNnMnPmTEOG0G8IgKSHiUWjFdBqhT79xaqs0xVQuDqJCak32XowF5lUyk3j/Ps7FJFBjnIQFTWIUzcDodVqkfawzFfZpjtzMjPpu1+ssmqdsZfnAPdRMSYampXsOlHI5JHeYim9iMFpP6u2FJUaRLpDpRYwkfUwIbXPdMz6LiG19yDZDQJhRmNh66FcVGoNC6aG9HcoIn8AFErduCEmJJEuEQQBtUaLSQ/PDpRtfb/0zi2pJ8DLXmza7CWaWtvYdiiXcVFe+Lrb9nc4In8AWi+skCzMxIQk0gXtFhI9PcxWX6iu66tDcKVKQ25JAyG+Dn3yeX8ENu09h6JNzeIZof0disgfBEVb+5adeIYk0gXtiUUm7dmPt70qr68WK5l5tag1AsODRFHV3qCqTs62Q7lMjvHBT9StE+kjWi804FuIW3YiXdGeWHpa1NDu1NpXJn0n0ssxkUmJDHLpk88b7Hz5azoCcPfsYf0disgfiLomJbZWppgMAqfngZ9SjZiernTaDyV7qvBwLWi0AodTShgV5mbwmZVGo6WspoWG5jYEQcDa0hR3JyusLEwN+rl9yZnz1exPLubO6UNFk0ORPqWuSTFoqjnFhGQA2ldGPW2MtbXSDdD1TYbXsktML6e2UckNow0j+qloU7M/qZgjKaWk59V0KBJfjJeLNZHBLsQP92TEUNcBO8NTtKl5f+Np3J2sWDhNrKwT6VvqGpU49aFdjSERE5IBaK+uU/dQAsjURIaTnTkVdYZX+/7pwHlc7C2I62UX0zaVhq2Hctm09xzNchXertbMGudPoJc9jrYWyKQSmuRtlFa1kF1Yx8FTJfx2rAAHG3NmxA3h5vEBOA8w1Yivfs2grLqF1x8eNygqnUQGFtUNcqJDXK9+4QBA/OsxAB3iqtcgkjrE3Y78ssarX3gdnM6u5GxuDctvHd5xbtUbZOTV8u63yZRWtzAm3J0FU0MID3C6Ykm5Sq0hObOSXScK2bT3HD/uz2HamCHcMX0obo7Gv/V1Ir2crYdymTMhgOihg2NQEBk4KJRqahoUeA0S+xgxIRkIG0vTHttPAIT6OfL93nO0yFVYW/b+GYtGo+XTLWm4OVkxK96/V54pCAKb9+Xw5a/puDhY8spDYxkZ6nb1G9GtCuOGexI33JPymhY278th14lC9p4sYs6EQO6YPhQbA/wceoPSqmbe/jqZQC977hcVvUX6gbIandKKl6tNP0fSOwzMTfsBgJ2NGfVNPTPoA4gJdUOrFUjKrDBAVLBxzzkKy5tYPm94r2jmKVUa/vXVSb74JZ1xUV68/+RUvZPRpXg4W/Powmg+fnYak2K8+elADg//czc7EvL7rPJQXxqalbzy2TGkEgnP3jdmUAhbigw8SqqaAfAWE5LsS4OHAAAZgElEQVTIlXCxt+xQ0u4Jw/ydcHGwZOfxgl6PKe18Nd/uymLKSJ9esURobm3jhf8e5UhKKffPCefpu0f3SuWcm6MVf140knf+PBlfd1s++CGFJ987QFZB7XU/uzdobm3jpU8TqK6X88IDcR2W9SIifU1ReRMSCYNmy05MSAbCw9mK0uqWLp1zr4RUKmHuhABSzlWTnlfTa/GUVjXzz3WJeDpbseK2qOt+Xl2Tgmc/PMK5onqeuWc0t00N6XX5oSAfB/756HieXDKK2kYFT/7nEO9vPN3njroXU9eo4O8fHaWgrIln74tlWIBTv8UiIpJVWMcQd9tB0RQLYkIyGEPcbWlVqKmu7/m23U3jAnCyM+e/m1NRqa/fPbasuoW///coggAvLou/7rOp2kYFz314hLKaFl5cFseEaO/rjrE7JBIJk0f68NEz07h1chB7Egt5ePUefj6c26dGhgC5JQ08+Z+DlFQ388IDcYwe5t6nny8icjGCIJBdWMfQIY79HUqvISYkAxF0QR/uXFFdj++1MDfh0QXR5JU28tGm1B6vsi4mM7+Wp9ccQtmm5rWHx1734WfdhWRUXS/nleVjibnG86KeYmVhyrJbhvOfv04hyNuej388wxNv7edEevl1/Xz0QasV+PlwLk/95yAarcDqRycwMqxvvm8Rke4oq26hqVVFqN/gSUiDY51nhAR522NmKiMtt4ZxUV49vj9uuCd3Th/Kd7uzMTGR8tCtkT1qHFVrtPx04Dzrt2fg4mDJS4+Mv2716fomJX//71FqGuS8vHwsEYF9r4E3xMOO11eM41haGZ//nM5ra48zzN+JxTeGMmKoa69vG54vrufTLWmcza1hZJgbqxaNxMHWvFc/Q0TkWsgq1E12B9MKSUxIBsLUREZEgBOnsiqv+RlLZoWh1mjZtC+H3OIGViyIItjnysrcGq3A8bQy1u/IpKiiibGRnqy8YwQ2Vtfnd9TU2sYLHx+loraVl5fH90syakcikTA20osx4R7sPF7Axt3ZvPhJAoHe9sydEMCEEd7X3aCaU1zPpr3nOJJaio2lGSvvGMH02CGiTYeI0ZBdUIeFmYwhHoNHyFdMSAZkdLg7n/6URnFlEz5uPV+dSCQS7psTQZC3A//9MZVV7xwgKtiF8dFehPk54epoiUwqoaG5jaKKJs6cr+ZwSinV9XK8XKx54YE4xoS7X/cg2iJX8eInCRRXNvPisjijEWM1kUm5aVwAM2KHsC+pmJ8O5PDed6f55KczxEV4EhvhQVSwC/Y2V1/RCIJAcWUziekVHDpdTE5xA5bmJiy8IYTbpoYYbS+UyB+XrMI6gn0dkEkHzyRJTEgGZHyUF59tSWN/UjFLr0MBemKMNzGhrvx2rIDtCfl8tCm1y+tMZBJiQt1YdksEYyO9euUXVa5U88pnx8graeC5+2P77MyoJ5iayLgxzo8ZsUM4m1vDvqRiEs6Usj+5GNCVxPp52uHuZIWdtZnOkVfQGZvVNSooq24ht7SBhuY2AIJ87Hno1kimjvYVE5GIUdKm0pBX2sC8SUH9HUqvIiYkA+Jsb8nIUDd2nShg0Y2h1yUeamNlxoIbQrhtajCl1S3klTZQXa9AEARsrUzxdLEh2NehV91mFUo1r649RlZhHU/fPZrY8N7VvettJBIJw4NcGB7kwqMLo8kuqCMtt5qc4noKyppIyqykTdW5atHa0hQPZyvGDPMgzN+JmKGuolq3iNGTW9qAWiMMqoIGEBOSwZkzIZBXPjvGgeRipo0Zct3Pk0gkeLvaGLwzW6FU89r/jpOeW8Nf7hrF+GsozOhPZFIJwwKcOvUJCYJAm1qLQqlGIpFgaW7SZ+68IiK9SVbB4CtoALHs2+CMCnMjwMuOjbuze6z+3V+0KlS8svYYaeerWbV4JJNH+vR3SL2CRCLB3FSGvY05dtZmYjISGbBkF9ThYm8x4JTxr4b4F2lgJBIJS2cPo7S6hV+P5PV3OFelWa7ipU8SSM+r5S93jWLKKMP4JYmIiFw7WYV1DB1k23UgJqQ+Ycwwd0aGurF+RwaVfeB1dK3UNSp49oPD5BTX88zdowfNykhEZDDR0KykoraV0EG2XQdiQuoTJBIJjy6MRhDgvW9PGZ1yNUBRRRNPvn/oghxQ/DU184qIiBiewdgQ245BE9K2bdu46aabmDFjBhs2bOj2uv3793PDDTcYMpR+x93JiofnR5GaU82GHRn9HU4nUrKrePr9Q7S1afi/R8YbZWm3iIiIjpyieiQSnfjwYMNgVXYVFRW88847bN68GTMzMxYtWkRcXBzBwcGdrquuruZf//qXocIwKqbHDiGzoJbv95zD3cmamfF+/RqPIAhsOXiez39Ox9fNhudFKwUREaMnp7geHzcbLAeJwvfFGGyFdPToUeLj43FwcMDKyoqZM2eyY8eOy657/vnnefzxxw0VhtGx4rYoRoW58cEPp9mTWNhvcTQ0K/nH5ydYu/UscREevPHERDEZiYgMAM4X1w/K1REYcIVUWVmJq6trx9dubm6kpnZWGPjyyy8JDw8nOjq62+c0NjbS2NjY6bXy8vLeDbYPMZFJ+du9Y/jH/07w7renqG1UsPCG3vcSuhLH0sr48IcUmlpVPDhvOLdMDBQ12kRE+hl9xrraRgW1jUpCxITUM7qyBLh40MvOzmbnzp188cUXV0ww69atY82aNQaJsb+wMDPhxQfjePebU3z5awbniup7RQD1alTWtbJ2axpHU8sI8LLjlYfGEuBlb9DPFBER0Q99xrqc4npgcJ4fgQETkru7OydPnuz4urKyEje33w/Ld+zYQVVVFQsWLEClUlFZWcldd93F119/3ek59957L/Pnz+/0Wnl5OUuWLDFU6H2CqYmMJ5eOItjXgXW/pPPoG3tZPi+SCSO8en21Ut+kZPP+HH4+nHuhLyqM26aEiI2hIiJGhD5jXUGZbgUV4DV4FL4vxmAJady4cbz//vvU1tZiaWnJzp07ee211zreX7lyJStXrgSguLiYe+6557JkBGBnZ4ed3eD84UskEuZPCSY6xJX3vjvFG+tPsuWQI3dMH8roMHek1ymOWlDeyK9H8tidWIRKrWHqKF+WzArDzVHUahMRMTb0GeuKK5txsrPAymJwiv4adIW0atUq7rnnHlQqFQsXLiQqKorly5ezcuVKIiMjDfXRA45Ab3ve/vNkdp8o5NtdWby29jgezlZMHeXL2EhP/Dzs9EpOWq1AQXkjJzMqOJJayvniBkxNpEyO8WHBDcHXZIEhIiJiPJRUNuPjZlgdy/5EIhja/9kAFBcXM23aNPbs2YOPz+BSE1BrtBxOKWXX8QLOnK9GEMDWypRgHwe83WxwsbfE2tIUiUSCVqulqVVFdb2ckqpmcksaaJarAAjxdWDKSB8mj/TRyw9IRETE+Lh4rPP29mbx878yeaQPjyzovhBsIDP4CtkHOCYyKVNG+jBlpA91TQqSMipJz6shr7SBPYmFyJU6+wSJBNqnEjr7CWvGR3sRHuBEVLArLg6DS3RRROSPTn2TkhaFelDvdIgJyYhxtLVgeuwQpsf+blvRqlAhV6rRaARkMgm2VmaY9aIHkoiIiHFSWt0CYHDrmf5ETEgDDCsL00F7oCkiItI91fVyAFwdB+/uh1j3KyIiIjIAqGnQJSRne4t+jsRwiAlJREREZABQ3aDAysJkUO+QiAlJREREZABQXS8fdA6xlyImJBEREZEBQE2DfFBv14GYkEREREQGBE0tKuysDat32d+ICUlERERkANDU2oatgQWY+xsxIYmIiIgYOYIg0KJQYWM1eAsaQExIIiIiIkaP/P/bu/egqMoGDODPCguKqIRysSzn85KO5WUMVLwxRAjLuuONRgTCsryWEk4m2k3TJjQLnWFGrczpDyoBUQfyDuINhtJy8EajM4pKrqCojCyyt/f7g9xP4pL6tZz3LM9vxhl3l919zsvxPPueXd+tt0EIwLsTZ0hERKSg2vsNa1R24QyJiIiUdN9sBQB08nTtxXVYSEREkjNb7ADg8utWspCIiCRnsTas8u/JQiIiIiVZHDMk1z5ku/bWERG5ALOVp+yIiEgCZgtP2RERkQQevIfEGRIRESnKLgQAwK2DRuEkzsVCIiKS3F99BI2GhURERAqyN3ymAS7eRywkIiLZCZ6yIyIiGdh5yo6IiGTwYIbk4n3EQiIikt5fhdTBxRuJhUREJLm/PtMADd9DenK5ubmIjo5GREQEMjIymtx+4MABGAwG6PV6pKSkwGw2OzMOEZEqCccMSeEgTua0Qrpx4wbS0tLwww8/YNeuXdi2bRsuXrzouN1kMuHTTz/F1q1b8fPPP6O+vh47duxwVhwiItWyO95Dcu1Gctq3PRUVFWHUqFHw8fEBAERGRmLv3r145513AABeXl4oKCiAVquFyWTCrVu30LVr1yaPU1NTg5qamkbXGY1GZ8UmIlJEa8e6//0/JBbSE6msrISfn5/jsr+/P0pLSxv9jFarxeHDh/H+++/D398fY8eObfI433//PdLT050Vk4hICq0e69rJKTunFdKDc54Pa67dQ0NDUVJSgq+++gorVqzAl19+2ej2mTNnYsqUKY2uMxqNiI+P/3cDExEpqLVjnV0IaDScIT2xgIAAnDhxwnG5srIS/v7+jst37tzBmTNnHLMig8GA5OTkJo/TtWvXZk/lERG5ktaOdUK4fhkBTvxQw+jRo1FcXIzq6mrU1dVh//79GD9+vON2IQSWLFmCP//8EwCwZ88eDB8+3FlxiIhUK7C7F/7ztOu/MHfqDCk5ORmJiYmwWCyIiYnBkCFDMHv2bCxatAiDBw/GqlWrMHfuXGg0GvTr1w8rV650VhwiItUKGfw0XtX1UjqG02lEc2/2SO7atWsIDw9Hfn4+evVy/V8SEbVP7e1Yx5UaiIhICiwkIiKSAguJiIikwEIiIiIpsJCIiEgKLCQiIpICC4mIiKTAQiIiIimwkIiISAosJCIikgILiYiIpMBCIiIiKbCQiIhICiwkIiKSAguJiIikwEIiIiIpsJCIiEgKLCQiIpKCu9IBnoTNZgMAGI1GhZMQET2ZwMBAuLur8hDsNKocjaqqKgBAfHy8wkmIiJ5Mfn4+evXqpXQMqWiEEELpEI/r/v37OHPmDPz8/ODm5vbEj2M0GhEfH4+MjAwEBgb+iwnbhprzqzk7oO78as4OqDv/w9mHDRv2jzMkq9UKo9HYbmZTqtzCjh07Iigo6F97vMDAQFW/UlFzfjVnB9SdX83ZAXXnf9SCcXd3V+02Pgl+qIGIiKTAQiIiIimwkIiISApuK1asWKF0CCV5enpi5MiR8PT0VDrKE1FzfjVnB9SdX83ZAXXnV3N2Z1Plp+yIiMj18JQdERFJgYVERERSaJeFdPLkSUybNg2TJk3CzJkzUVFRAQCoqanBnDlzoNPpEB8f71gRQka5ubmIjo5GREQEMjIylI7zj9LT06HX66HX67F27VoAQFFREQwGAyZMmIC0tDSFEz6aNWvWICUlBQBw/vx5TJs2DZGRkfjggw9gtVoVTte8goICTJ06FVFRUVi9ejUAdY39rl27HPvOmjVrAMg/9vfu3cPEiRNx7do1AC2Pt+zb0eZEOxQWFibOnz8vhBAiKytLzJs3TwghxMqVK8XmzZuFEELs2LFDJCUlKZaxNUajUYSFhYnbt2+L2tpaYTAYxIULF5SO1aLjx4+L6dOni/r6emE2m0ViYqLIzc0VoaGh4sqVK8JisYhZs2aJwsJCpaO2qqioSIwcOVIsXbpUCCGEXq8Xv//+uxBCiGXLlomMjAwl4zXrypUrYuzYseL69evCbDaLGTNmiMLCQtWMvclkEsHBweLWrVvCYrGImJgYcfz4canH/tSpU2LixInihRdeEFevXhV1dXUtjrfM26GEdjdDMpvNSEpKwsCBAwEAAwYMwPXr1wEAhYWFMBgMAICJEyfiyJEjsFgsimVtSVFREUaNGgUfHx94eXkhMjISe/fuVTpWi/z8/JCSkgIPDw9otVr07dsXly9fRu/evfHss8/C3d0dBoNB6m24c+cO0tLSMG/ePABARUUF7t+/j2HDhgEApk6dKmX+AwcOIDo6GoGBgdBqtUhLS0OnTp1UM/Y2mw12ux11dXWwWq2wWq1wd3eXeuwzMzPxySefwN/fHwBQWlra7HirZR9qS6pcOuj/4eHhgUmTJgEA7HY70tPT8corrwAAKisr4efnB6BhyQ5vb29UV1cjICBAsbzNeTgnAPj7+6O0tFTBRK3r37+/4++XL1/G7t278dprrzXZhhs3bigR75F8/PHHSE5Odrx4+fvvwM/PT8r85eXl0Gq1ePPNN1FVVYWwsDD0799fNWPv7e2NpKQk6HQ6dOzYESNGjIBWq5V67D/77LNGl5v793rjxg3V7ENtyaVnSHv27MH48eMb/Xn99dcBNMyU3nvvPVitVsydO7fFx+jQQb4hEs18Ul+j0SiQ5PFcuHABs2bNwtKlS/Hcc881uV3WbcjKykLPnj0REhLiuE4tvwObzYbi4mJ88cUXyMzMxOnTpx3vazxMxuwAUFZWhu3bt+PQoUM4duwYOnTogOPHjzf5OVnzAy3vK2rZh9qSS8+QdDoddDpdk+tra2sxf/58+Pj4YOPGjdBqtQAaXrncvHkTgYGBsFqtuHfvHnx8fNo69j8KCAjAiRMnHJcrKysdpwdkdfLkSSxatAjLly+HXq/HL7/8gps3bzpul3kbdu/ejaqqKkyaNAl3796FyWSCRqNplL+qqkrK/D169EBISAh8fX0BAOHh4di7d2+jVfJlHvtjx44hJCQE3bt3B9BwWmvLli2qGPsHAgICmt3X/3697NvRFuR7+d8GlixZgt69e2PDhg3w8PBwXB8aGoqdO3cCaDgIBQUFOcpKJqNHj0ZxcTGqq6tRV1eH/fv3Y/z48UrHatH169fx9ttvY926ddDr9QCAoUOH4tKlSygvL4fNZkNeXp6027B161bk5eVh165dWLRoEV5++WV8/vnn8PT0xMmTJwEAO3fulDJ/WFgYjh07hpqaGthsNhw9ehRRUVGqGfuBAweiqKgIJpMJQggUFBRgxIgRqhj7B1ra15955hlVbUdbcOkZUnPOnTuH/Px89OvXD5MnTwbQMDP65ptvkJSUhJSUFOj1enTp0gXr1q1TOG3zAgICkJycjMTERFgsFsTExGDIkCFKx2rRli1bUF9fj9TUVMd1sbGxSE1NxcKFC1FfX4/Q0FBERUUpmPLxrVu3Dh9++CFqa2sxaNAgJCYmKh2piaFDh+Ktt95CXFwcLBYLxowZgxkzZqBPnz6qGPuxY8fi3LlzmDp1KrRaLQYPHow5c+YgIiJC+rF/wNPTs8V9XQ37UFvi0kFERCSFdnnKjoiI5MNCIiIiKbCQiIhICiwkIiKSAguJiIikwEIiakFKSgq2bNnyWPfJz893rKhdWFiIDRs2OCMakUtqd/8PiciZwsPDER4eDgA4ffo07t69q3AiIvVgIZHqlJSUYO3atQgICMDVq1fRsWNHpKamwt/fHytXrkRZWRk0Gg3GjRuHxYsXw93dHYMGDcLMmTNRUlICk8mExYsXY8KECcjJycG+ffuwefNmAGhy+YHs7Gxs27YNFosFd+/exezZsxEXF4ecnBxkZ2ejrq4O3t7emDJlCvbt24cFCxbgp59+gs1mQ5cuXVBaWoqoqChMnz4dALBx40bcvn0by5cvb/PxI5IVC4lU6dy5c1i2bBmCgoLw448/YsmSJejfvz98fHyQm5sLi8WC+fPn47vvvsOcOXNgs9nQrVs35OTkoKysDAkJCQgKCnqk56qtrUVWVha+/vprPPXUUzh16hTeeOMNxMXFAQAuXryIgoICeHt7IycnB0DDCgmxsbG4ffs2kpOTcfDgQWzatAnTp0+H3W5HVlYWvv32W6eND5Ea8T0kUqWBAwc6CmXatGk4f/488vLykJCQAI1GAw8PD8TGxuLIkSOO+yQkJDju+/zzz+PXX399pOfq3LkzNm3ahMOHD2P9+vXYtGkTTCaT4/YBAwbA29u71ccICwvDzZs3UVZWhqNHj6JXr17o06fP4242kUtjIZEqPbxaNdCwxP/fV8Gy2+2NvhL64fvY7Xa4ubk1+RqA5r6Q0Wg0YvLkyaioqMBLL72Ed999t9HtXl5ej5Q3NjYW2dnZ2L59O2JjY//xPkTtDQuJVKmsrAxlZWUAgG3btmH48OHQ6XTIyMiAEAJmsxmZmZkYPXq04z4PVnI/e/YsLl26hODgYPj6+uLChQuor6+H1WrFoUOHmjzXmTNn4OvriwULFmDcuHGOn7HZbK1mdHNza1SIr776Kg4ePIizZ88iIiLi/x4DIlfD95BIlXr06IH169ejoqICvr6+WLt2LTp37ozVq1fDYDDAYrFg3Lhxjq8cB4DffvsNmZmZsNvtSEtLQ7du3TBmzBgEBwdDp9PBz88PI0eOxB9//NHoucaMGYPs7GxERUWhU6dOGDJkCHx9fVFeXt5qxpCQECxcuBBarRYfffQRunfvjhdffBF9+/aV8mtNiJTG1b5JdUpKSrBq1Srk5eU98n0GDBiA4uJixxfVKaG6uhoxMTHIyMhAz549FctBJCuesiNqA5mZmYiOjkZiYiLLiKgFnCEREZEUOEMiIiIpsJCIiEgKLCQiIpICC4mIiKTAQiIiIimwkIiISAr/Bdlc8wcnadzTAAAAAElFTkSuQmCC\n"
},
"metadata": {}
@@ -315,29 +311,34 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 28,
"metadata": {},
"outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.\n"
+ ]
+ },
{
"output_type": "execute_result",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
- "execution_count": 27
+ "execution_count": 28
},
{
"output_type": "display_data",
"data": {
"text/plain": "",
- "image/svg+xml": "\n\n\n