|
|
|
@ -77,9 +77,7 @@ Start by creating an array of classifiers. You will add progressively to this ar
|
|
|
|
|
2. Train your model using the Linear SVC and print out a report:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
n_classifiers = len(classifiers)
|
|
|
|
|
|
|
|
|
|
for index, (name, classifier) in enumerate(classifiers.items()):
|
|
|
|
|
for name, classifier in classifiers.items():
|
|
|
|
|
classifier.fit(X_train, np.ravel(y_train))
|
|
|
|
|
|
|
|
|
|
y_pred = classifier.predict(X_test)
|
|
|
|
|