From c1945983ef5c0c21c4a8d03abb49b69bc47a57b1 Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Thu, 29 Jul 2021 09:15:48 +0800 Subject: [PATCH 01/12] Simplified Chinese Translation v1 --- .../translations/README.zh-cn.md | 245 ++++++++++++++++++ 1 file changed, 245 insertions(+) create mode 100644 4-Classification/2-Classifiers-1/translations/README.zh-cn.md diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md new file mode 100644 index 00000000..00327c92 --- /dev/null +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -0,0 +1,245 @@ +# 菜品分类器1 + +在本节中,将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。 + +You will use this dataset with a variety of classifiers to _predict a given national cuisine based on a group of ingredients_. While doing so, you'll learn more about some of the ways that algorithms can be leveraged for classification tasks. +你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调节分类任务算法的方法。 + +## [课前测试](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) +# 准备工作 + +假设你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 文件来进行接下来的四节课程。 + +## 练习 - 预测某国的菜品 + +1. 在本节课的 _notebook.ipynb_ 文件中,导入Pandas的同时载入相应的数据文件: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../../data/cleaned_cuisine.csv") + cuisines_df.head() + ``` + + 数据如下所示: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. 现在,再多导入一些库: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. 接下来需要将数据分训练模型所需的X和y两个dataframe。首先可将`cuisine`列的数据单独保存为标签(label)的dataframe。 + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + 输出看上去会是这样: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. 调用`drop()`函数将 `Unnamed: 0`和 `cuisine`列删除,并将余下的数据作为可以用于训练的特证(feature): + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + 你的特证(feature)数据看上去将会是这样: + + | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | + | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | --- | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + +现在,你已经准备好可以开始训练你的模型了! + +## 选则你的分类器 + +你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想使用的算法来完成这项任务。 + +Scikit_learn将分类任务归在了监督学习目录中,在这个目录中你将会找到很多方法来进行分类。乍一看上去,有点[琳琅满目](https://scikit-learn.org/stable/supervised_learning.html)。下面这些方法都包含了分类技术: + +- 线性模型(Linear Models) +- 支持向量机(Support Vector Machines) +- 随机梯度下降(Stochastic Gradient Descent) +- 最近邻(Nearest Neighbors) +- 高斯过程(Gaussian Processes) +- 决策树(Decision Trees) +- 集成方法(投票分类器)(Ensemble methods(voting classifier)) +- 多类别多输出算法(多类别多标签分类,多类别多输出分类)(Multiclass and multioutput algorithms (multiclass and multilabel classification, multiclass-multioutput classification)) + +> 你也可以使用[神经网络来分类数据](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification), 但这对于本课程来说有点超纲了。 + +### 如何选择分类器? + +那么,你应该选择哪一个分类器呢?一般来说,可以选择多个方法并对比他们运行后的结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的[比较](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),并且对比较的结果进行了可视化的展示: + +![各分类器比较](../images/comparison.png) +> 图表来源于Scikit-learn的官方文档 + +> AutoML通过在云端运行这些比较非常完美地解决的这个问题,使得你能够根据你的数据选择最佳的算法。试试[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)。 + +### 一种更好的方法 + +不过,比起无脑地猜测,根据这份可以下载的[机器学习作弊表]中的方法是一个更好的选择。在表中我们可以发现对于这个多类型的分类任务,可以有一些选择: + +A better way than wildly guessing, however, is to follow the ideas on this downloadable [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa). Here, we discover that, for our multiclass problem, we have some choices: + +![多类型问题作弊表](../images/cheatsheet.png) +> 微软算法作弊表中关于多类型分类任务可选算法的部分 + +✅ 下载这份作弊表,打印出来,挂在你的墙上吧! + +### 推导过程 + +Let's see if we can reason our way through different approaches given the constraints we have:让我们看看根据我们所有的限制条件推导下各中方法的可行性: + +- **神经网络(Neural Network)太过复杂了**。我们的数据很清晰但数据量比较小,此外我们是通过notebook在本地进行训练,神经网络对于这个任务来说过于复杂了。 +- **二分类法(two-class classifier)不可行**。我们不能使用二分类法,所以这就排除了一对多(one-vs-all)算法。 +- **决策树以及逻辑回归可行**. 决策树也许有用,或者也可以使用逻辑回归来处理多类型数据。 +- **多类型增强决策数可以解决不同的问题**. 多类型增强决策树最适合非参数化的任务,即任务目标是建立一个排序,这对我们的任务并没有作用。 + +### 使用Scikit-learn + +我们将使用Scikit-learn来分析我们的数据。然而,在Scikit-learn中有很多种方法来使用逻辑回归。可以看一看逻辑回归算法可以[传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 + +当我们需要Scikit-learn进行逻辑回归运算时,`multi_class` 以及 `solver`是最重要的两个参数,我们需要特别说明一下哎。 `multi_class` 的值决定了特定的行为。`solver`的值是我们需要使用的算法。并不是所有的solvers都可以匹配`multi_class`的值的。 + +According to the docs, in the multiclass case, the training algorithm根据文档,在多类型问题种,训练的算法: + +- **使用“一对其余”(OvR)策略(scheme)**, 如果`multi_class`被设置为`ovr` +- **使用交叉熵损失(cross entropy loss)**, 如果`multi_class`被设置为`multinomial` (目前,`multinomial`只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等 solver)。 + +> 🎓 其中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。 因为逻辑回归事实上是设计用于支持二分类任务的,这些scheme将使其可以更好的支持多类型分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 “solver”被定义为是"用于解决优化问题的算法"。[来源](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Scikit-learn提供了以下这个表格来解释solver是如何应对的不同的数据结构所带来的不同的挑战的: + +![solvers](../images/solvers.png) + +## 练习 - 分割数据 + +因为你刚刚在上一节课中学习了逻辑回归,因此我们可以聚焦于此,来演练一下如何进行第一个模型的训练。通过调用`train_test_split()`可以把你的数据分割成训练集和测试集: + + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## 练习 - 应用逻辑回归 + +因为我们正在进行多类型分类的案例,你需要决定选用什么 _scheme_ 以及使用什么 _solver_ 。使用带有multiclass设置的LogisticRegression,并将solver设置为**liblinear**来进行模型训练。 + +1. 创建逻辑回归,并将multi_class设置为`ovr`,同时将solver设置为 `liblinear`: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ 也可以试试其他solver比如`lbfgs`, 它通常可以作为默认的设置 + + > 注意, 使用Pandas的[`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 函数可以在需要的时候将你的数据进行降维 + + 准确率高达了**80%**! + +1. 你也可以通过查看一行数据(比如第50行)来观察到模型运行的情况: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + 运行后的输出如下: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ 试试不同的行号来检查一下结果吧 + +1. 让我们再深入研究一下,你可以检查一下这回预测的准确率: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + 运行后的输出如下———这是一道印度菜的可能性最大,是最合理的猜测: + + | | 0 | | | | | | | | | | | | | | | | | | | | | + | -------: | -------: | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | + | indian | 0.715851 | | | | | | | | | | | | | | | | | | | | | + | chinese | 0.229475 | | | | | | | | | | | | | | | | | | | | | + | japanese | 0.029763 | | | | | | | | | | | | | | | | | | | | | + | korean | 0.017277 | | | | | | | | | | | | | | | | | | | | | + | thai | 0.007634 | | | | | | | | | | | | | | | | | | | | | + + ✅ 你能解释下为什么模型会如此确定这是一道印度菜么? + +1. 就和你在回归的课程中所做的一样,通过输出分类的报告,我们可以得到更多的细节: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | precision | recall | f1-score | support | | | | | | | | | | | | | | | | | | | + | ------------ | ------ | -------- | ------- | ---- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | | | | | | | | | | | | | | | | | | + | indian | 0.91 | 0.93 | 0.92 | 254 | | | | | | | | | | | | | | | | | | + | japanese | 0.70 | 0.75 | 0.72 | 220 | | | | | | | | | | | | | | | | | | + | korean | 0.86 | 0.76 | 0.81 | 242 | | | | | | | | | | | | | | | | | | + | thai | 0.79 | 0.85 | 0.82 | 254 | | | | | | | | | | | | | | | | | | + | accuracy | 0.80 | 1199 | | | | | | | | | | | | | | | | | | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | | | | | | | | | | | | | | | | | | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | | | | | | | | | | | | | | | | | | + +## 挑战 + +在本课程中,你使用了清洗后的数据建立了一个机器学习的模型,能够根据一系列的配料来预测菜品来自于哪个国家。请再花点时间阅读一下Scikit-learn所提供的可以用来分类数据的其他选择。同时也可以深入研究一下“solver”的概念并尝试一下理解其背后的原理。 + +## [课后小测](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/) +## 回顾与自学 + +[这个课程](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)将对逻辑回归背后的数学原理进行更加深入的讲解 + +## 作业 + +[学习solver](assignment.md) From ab83692b57b7d9dfec46088388755f697577b165 Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Thu, 29 Jul 2021 09:21:57 +0800 Subject: [PATCH 02/12] Update README.zh-cn.md --- 4-Classification/2-Classifiers-1/translations/README.zh-cn.md | 1 - 1 file changed, 1 deletion(-) diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md index 00327c92..3386412b 100644 --- a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -2,7 +2,6 @@ 在本节中,将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。 -You will use this dataset with a variety of classifiers to _predict a given national cuisine based on a group of ingredients_. While doing so, you'll learn more about some of the ways that algorithms can be leveraged for classification tasks. 你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调节分类任务算法的方法。 ## [课前测试](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) From 12c49120a22e386446a57e9f3d80f0224c0e2079 Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Thu, 29 Jul 2021 09:54:53 +0800 Subject: [PATCH 03/12] Correct Typo --- .../translations/README.zh-cn.md | 64 +++++++++---------- 1 file changed, 31 insertions(+), 33 deletions(-) diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md index 3386412b..2174423a 100644 --- a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -1,17 +1,17 @@ # 菜品分类器1 -在本节中,将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。 +本节课程将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。 -你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调节分类任务算法的方法。 +你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调试分类任务算法的方法。 ## [课前测试](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) # 准备工作 -假设你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 文件来进行接下来的四节课程。 +假设你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 这份文件来进行接下来的四节课程。 ## 练习 - 预测某国的菜品 -1. 在本节课的 _notebook.ipynb_ 文件中,导入Pandas的同时载入相应的数据文件: +1. 在本节课的 _notebook.ipynb_ 文件中,导入Pandas,并读取相应的数据文件: ```python import pandas as pd @@ -41,14 +41,14 @@ import numpy as np ``` -1. 接下来需要将数据分训练模型所需的X和y两个dataframe。首先可将`cuisine`列的数据单独保存为标签(label)的dataframe。 +1. 接下来需要将数据分为训练模型所需的X(译者注:代表特征数据)和y(译者注:代表标签数据)两个dataframe。首先可将`cuisine`列的数据单独保存为的一个dataframe作为标签(label)。 ```python cuisines_label_df = cuisines_df['cuisine'] cuisines_label_df.head() ``` - 输出看上去会是这样: + 输出如下: ```output 0 indian @@ -59,7 +59,7 @@ Name: cuisine, dtype: object ``` -1. 调用`drop()`函数将 `Unnamed: 0`和 `cuisine`列删除,并将余下的数据作为可以用于训练的特证(feature): +1. 调用`drop()`函数将 `Unnamed: 0`和 `cuisine`列删除,并将余下的数据作为可以用于训练的特证(feature)数据: ```python cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) @@ -80,9 +80,9 @@ ## 选则你的分类器 -你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想使用的算法来完成这项任务。 +你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想要使用的算法来完成这项任务。 -Scikit_learn将分类任务归在了监督学习目录中,在这个目录中你将会找到很多方法来进行分类。乍一看上去,有点[琳琅满目](https://scikit-learn.org/stable/supervised_learning.html)。下面这些方法都包含了分类技术: +Scikit_learn将分类任务归在了监督学习类别中,在这个类别中你将可以找到很多可以用来分类的方法。乍一看上去,有点[琳琅满目](https://scikit-learn.org/stable/supervised_learning.html)。以下这些方法都包含了分类技术: - 线性模型(Linear Models) - 支持向量机(Support Vector Machines) @@ -97,45 +97,43 @@ Scikit_learn将分类任务归在了监督学习目录中,在这个目录中 ### 如何选择分类器? -那么,你应该选择哪一个分类器呢?一般来说,可以选择多个方法并对比他们运行后的结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的[比较](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),并且对比较的结果进行了可视化的展示: +那么,你应该选择哪一个分类器呢?一般来说,可以多选择几个并对比他们运行后的结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的效果[对比](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),并且将比较的结果进行了可视化的展示: ![各分类器比较](../images/comparison.png) > 图表来源于Scikit-learn的官方文档 -> AutoML通过在云端运行这些比较非常完美地解决的这个问题,使得你能够根据你的数据选择最佳的算法。试试[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)。 +> AutoML通过在云端运行这些对比非常完美地解决的选择算法的这个问题,使得你能够根据你的数据特性选择最佳的算法。试试点击[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)了解更多。 -### 一种更好的方法 +### 一种更好的方法来选择分类器 -不过,比起无脑地猜测,根据这份可以下载的[机器学习作弊表]中的方法是一个更好的选择。在表中我们可以发现对于这个多类型的分类任务,可以有一些选择: - -A better way than wildly guessing, however, is to follow the ideas on this downloadable [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa). Here, we discover that, for our multiclass problem, we have some choices: +不过,比起无脑地猜测,你可以下载这份[机器学习作弊表(cheatsheet)](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa),对各算法进行对比,这是一个选择算法更有效的办法。在表中我们可以发现对于本课程中涉及的多类型的分类任务,可以有以下这些选择: ![多类型问题作弊表](../images/cheatsheet.png) > 微软算法作弊表中关于多类型分类任务可选算法的部分 ✅ 下载这份作弊表,打印出来,挂在你的墙上吧! -### 推导过程 +### 选择的过程 -Let's see if we can reason our way through different approaches given the constraints we have:让我们看看根据我们所有的限制条件推导下各中方法的可行性: +让我们看看根据我们所有的限制条件依次判断下各种方法的可行性: - **神经网络(Neural Network)太过复杂了**。我们的数据很清晰但数据量比较小,此外我们是通过notebook在本地进行训练,神经网络对于这个任务来说过于复杂了。 - **二分类法(two-class classifier)不可行**。我们不能使用二分类法,所以这就排除了一对多(one-vs-all)算法。 -- **决策树以及逻辑回归可行**. 决策树也许有用,或者也可以使用逻辑回归来处理多类型数据。 -- **多类型增强决策数可以解决不同的问题**. 多类型增强决策树最适合非参数化的任务,即任务目标是建立一个排序,这对我们的任务并没有作用。 +- **决策树以及逻辑回归可行**。决策树应该是有用的,此外也可以使用逻辑回归来处理多类型数据。 +- **多类型增强决策树是用于解决其他问题的**. 多类型增强决策树最适合非参数化的任务,即任务目标是建立一个排序,这对我们当前的任务并没有作用。 ### 使用Scikit-learn -我们将使用Scikit-learn来分析我们的数据。然而,在Scikit-learn中有很多种方法来使用逻辑回归。可以看一看逻辑回归算法可以[传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 +我们将会使用Scikit-learn来对我们的数据进行分析。然而,在Scikit-learn中使用逻辑回归也有很很多方法。可以看一看逻辑回归算法需要[传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 -当我们需要Scikit-learn进行逻辑回归运算时,`multi_class` 以及 `solver`是最重要的两个参数,我们需要特别说明一下哎。 `multi_class` 的值决定了特定的行为。`solver`的值是我们需要使用的算法。并不是所有的solvers都可以匹配`multi_class`的值的。 +当我们需要Scikit-learn进行逻辑回归运算时,`multi_class` 以及 `solver`是最重要的两个参数,因此我们需要特别说明一下。 `multi_class` 的值是分类任务要求的某一种特定的行为。`solver`的值是我们需要使用的算法。并不是所有的solvers都可以匹配`multi_class`的值的。 -According to the docs, in the multiclass case, the training algorithm根据文档,在多类型问题种,训练的算法: +根据文档,在多类型问题中,训练的算法应: -- **使用“一对其余”(OvR)策略(scheme)**, 如果`multi_class`被设置为`ovr` -- **使用交叉熵损失(cross entropy loss)**, 如果`multi_class`被设置为`multinomial` (目前,`multinomial`只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等 solver)。 +- **使用“一对其余”(OvR)策略(scheme)**, 当`multi_class`被设置为`ovr`时 +- **使用交叉熵损失(cross entropy loss)**, 当`multi_class`被设置为`multinomial` (目前,`multinomial`只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等 solver)时。 -> 🎓 其中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。 因为逻辑回归事实上是设计用于支持二分类任务的,这些scheme将使其可以更好的支持多类型分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) +> 🎓 其中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。 因为逻辑回归本来是设计来用于进行二分类任务的,这两个scheme都可以使得逻辑回归能更好的支持多类型分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) > 🎓 “solver”被定义为是"用于解决优化问题的算法"。[来源](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). @@ -145,7 +143,7 @@ Scikit-learn提供了以下这个表格来解释solver是如何应对的不同 ## 练习 - 分割数据 -因为你刚刚在上一节课中学习了逻辑回归,因此我们可以聚焦于此,来演练一下如何进行第一个模型的训练。通过调用`train_test_split()`可以把你的数据分割成训练集和测试集: +你刚刚在上一节课中学习了逻辑回归,因此我们可以聚焦于此,来演练一下如何进行第一个模型的训练。首先,需要通过调用`train_test_split()`可以把你的数据分割成训练集和测试集: ```python @@ -154,7 +152,7 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine ## 练习 - 应用逻辑回归 -因为我们正在进行多类型分类的案例,你需要决定选用什么 _scheme_ 以及使用什么 _solver_ 。使用带有multiclass设置的LogisticRegression,并将solver设置为**liblinear**来进行模型训练。 +接着,你需要决定选用什么 _scheme_ 以及 _solver_ 来进行我们这个多类型分类的案例。这里我们使用LogisticRegression方法,并设置相应的multi_class参数,同时将solver设置为**liblinear**来进行模型训练。 1. 创建逻辑回归,并将multi_class设置为`ovr`,同时将solver设置为 `liblinear`: @@ -166,13 +164,13 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine print ("Accuracy is {}".format(accuracy)) ``` - ✅ 也可以试试其他solver比如`lbfgs`, 它通常可以作为默认的设置 + ✅ 也可以试试其他solver比如`lbfgs`, 这通常是默认的设置 > 注意, 使用Pandas的[`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 函数可以在需要的时候将你的数据进行降维 - 准确率高达了**80%**! + 计算结果准确率高达了**80%**! -1. 你也可以通过查看一行数据(比如第50行)来观察到模型运行的情况: +1. 你也可以通过查看某一行数据(比如第50行)来观察到模型运行的情况: ```python print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') @@ -186,9 +184,9 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine cuisine: indian ``` - ✅ 试试不同的行号来检查一下结果吧 + ✅ 试试不同的行索引来检查一下结果吧 -1. 让我们再深入研究一下,你可以检查一下这回预测的准确率: +1. 让我们再深入研究一下,你可以检查一下本次预测的准确率: ```python test= X_test.iloc[50].values.reshape(-1, 1).T @@ -200,7 +198,7 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine topPrediction.head() ``` - 运行后的输出如下———这是一道印度菜的可能性最大,是最合理的猜测: + 运行后的输出如下———可以发现这是一道印度菜的可能性最大,是最合理的猜测: | | 0 | | | | | | | | | | | | | | | | | | | | | | -------: | -------: | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | From 83f8a7980b5edfe05c15333e21c7273ccd650b54 Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Fri, 30 Jul 2021 10:46:50 +0800 Subject: [PATCH 04/12] Standardize some terms as other translation file --- .../2-Classifiers-1/translations/README.zh-cn.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md index 2174423a..ac5d80ba 100644 --- a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -4,10 +4,10 @@ 你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调试分类任务算法的方法。 -## [课前测试](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) +## [课前测验](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) # 准备工作 -假设你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 这份文件来进行接下来的四节课程。 +假如你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 这份文件来进行接下来的四节课程。 ## 练习 - 预测某国的菜品 @@ -59,14 +59,14 @@ Name: cuisine, dtype: object ``` -1. 调用`drop()`函数将 `Unnamed: 0`和 `cuisine`列删除,并将余下的数据作为可以用于训练的特证(feature)数据: +1. 调用`drop()`方法将 `Unnamed: 0`和 `cuisine`列删除,并将余下的数据作为可以用于训练的特证(feature)数据: ```python cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) cuisines_feature_df.head() ``` - 你的特证(feature)数据看上去将会是这样: + 你的特征集看上去将会是这样: | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | --- | @@ -78,7 +78,7 @@ 现在,你已经准备好可以开始训练你的模型了! -## 选则你的分类器 +## 选择你的分类器 你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想要使用的算法来完成这项任务。 @@ -232,7 +232,7 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine 在本课程中,你使用了清洗后的数据建立了一个机器学习的模型,能够根据一系列的配料来预测菜品来自于哪个国家。请再花点时间阅读一下Scikit-learn所提供的可以用来分类数据的其他选择。同时也可以深入研究一下“solver”的概念并尝试一下理解其背后的原理。 -## [课后小测](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/) +## [课后测验](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/) ## 回顾与自学 [这个课程](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)将对逻辑回归背后的数学原理进行更加深入的讲解 From 41f429311328e339710f8e09a43b3f66338d4506 Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Fri, 30 Jul 2021 11:32:43 +0800 Subject: [PATCH 05/12] optimize translation, more fluent --- .../translations/README.zh-cn.md | 64 +++++++++---------- 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md index ac5d80ba..36273b91 100644 --- a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -82,7 +82,7 @@ 你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想要使用的算法来完成这项任务。 -Scikit_learn将分类任务归在了监督学习类别中,在这个类别中你将可以找到很多可以用来分类的方法。乍一看上去,有点[琳琅满目](https://scikit-learn.org/stable/supervised_learning.html)。以下这些方法都包含了分类技术: +Scikit_learn将分类任务归在了监督学习类别中,在这个类别中你可以找到很多可以用来分类的方法。乍一看上去,有点[琳琅满目](https://scikit-learn.org/stable/supervised_learning.html)。以下这些算法都可以用于分类: - 线性模型(Linear Models) - 支持向量机(Support Vector Machines) @@ -97,64 +97,64 @@ Scikit_learn将分类任务归在了监督学习类别中,在这个类别中 ### 如何选择分类器? -那么,你应该选择哪一个分类器呢?一般来说,可以多选择几个并对比他们运行后的结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的效果[对比](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),并且将比较的结果进行了可视化的展示: +那么,你应该如何从中选择分类器呢?一般来说,可以选择多个分类器并对比他们的运行结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的[对比](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),并且将结果进行了可视化的展示: ![各分类器比较](../images/comparison.png) > 图表来源于Scikit-learn的官方文档 -> AutoML通过在云端运行这些对比非常完美地解决的选择算法的这个问题,使得你能够根据你的数据特性选择最佳的算法。试试点击[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)了解更多。 +> AutoML通过在云端运行这些算法并进行了对比,非常巧妙地解决的算法选择的问题,能帮助你根据数据集的特点来选择最佳的算法。试试点击[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)了解更多。 -### 一种更好的方法来选择分类器 +### 另外一种效果更佳的分类器选择方法 -不过,比起无脑地猜测,你可以下载这份[机器学习作弊表(cheatsheet)](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa),对各算法进行对比,这是一个选择算法更有效的办法。在表中我们可以发现对于本课程中涉及的多类型的分类任务,可以有以下这些选择: +比起无脑地猜测,你可以下载这份[机器学习小抄(cheatsheet)](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa)。这里面将各算法进行了比较,能更有效地帮助我们选择算法。根据这份小抄,我们可以找到要完成本课程中涉及的多类型的分类任务,可以有以下这些选择: ![多类型问题作弊表](../images/cheatsheet.png) -> 微软算法作弊表中关于多类型分类任务可选算法的部分 +> 微软算法小抄中部分关于多类型分类任务可选算法 -✅ 下载这份作弊表,打印出来,挂在你的墙上吧! +✅ 下载这份小抄,并打印出来,挂在你的墙上吧! -### 选择的过程 +### 选择的流程 -让我们看看根据我们所有的限制条件依次判断下各种方法的可行性: +让我们根据所有限制条件依次对各种算法的可行性进行判断: -- **神经网络(Neural Network)太过复杂了**。我们的数据很清晰但数据量比较小,此外我们是通过notebook在本地进行训练,神经网络对于这个任务来说过于复杂了。 -- **二分类法(two-class classifier)不可行**。我们不能使用二分类法,所以这就排除了一对多(one-vs-all)算法。 -- **决策树以及逻辑回归可行**。决策树应该是有用的,此外也可以使用逻辑回归来处理多类型数据。 -- **多类型增强决策树是用于解决其他问题的**. 多类型增强决策树最适合非参数化的任务,即任务目标是建立一个排序,这对我们当前的任务并没有作用。 +- **神经网络(Neural Network)太过复杂了**。我们的数据很清晰但数据量比较小,此外我们是通过notebook在本地进行训练的,神经网络对于这个任务来说过于复杂了。 +- **二分类法(two-class classifier)是不可行的**。我们不能使用二分类法,所以这就排除了一对多(one-vs-all)算法。 +- **可以选择决策树以及逻辑回归算法**。决策树应该是可行的,此外也可以使用逻辑回归来处理多类型数据。 +- **多类型增强决策树是用于解决其他问题的**. 多类型增强决策树最适合的是非参数化的任务,即任务目标是建立一个排序,这对我们当前的任务并没有作用。 ### 使用Scikit-learn -我们将会使用Scikit-learn来对我们的数据进行分析。然而,在Scikit-learn中使用逻辑回归也有很很多方法。可以看一看逻辑回归算法需要[传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 +我们将会使用Scikit-learn来对我们的数据进行分析。然而在Scikit-learn中使用逻辑回归也有很多方法。可以先了解一下逻辑回归算法需要[传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 -当我们需要Scikit-learn进行逻辑回归运算时,`multi_class` 以及 `solver`是最重要的两个参数,因此我们需要特别说明一下。 `multi_class` 的值是分类任务要求的某一种特定的行为。`solver`的值是我们需要使用的算法。并不是所有的solvers都可以匹配`multi_class`的值的。 +当我们需要Scikit-learn进行逻辑回归运算时,`multi_class` 以及 `solver`是最重要的两个参数,因此我们需要特别说明一下。 `multi_class` 是分类方式选择参数,而`solver`优化算法选择参数。值得注意的是,并不是所有的solvers都可以与`multi_class`参数进行匹配的。 -根据文档,在多类型问题中,训练的算法应: +根据官方文档,在多类型分类问题中: -- **使用“一对其余”(OvR)策略(scheme)**, 当`multi_class`被设置为`ovr`时 -- **使用交叉熵损失(cross entropy loss)**, 当`multi_class`被设置为`multinomial` (目前,`multinomial`只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等 solver)时。 +- 当`multi_class`被设置为`ovr`时,将使用 **“一对其余”(OvR)策略(scheme)**。 +- 当`multi_class`被设置为`multinomial`时,则使用的是**交叉熵损失(cross entropy loss)** 作为损失函数。(注意,目前`multinomial`只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等solver作为损失函数的优化方法) -> 🎓 其中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。 因为逻辑回归本来是设计来用于进行二分类任务的,这两个scheme都可以使得逻辑回归能更好的支持多类型分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) +> 🎓 在本课程的任务中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。因为逻辑回归本来是设计来用于进行二分类任务的,这两个scheme参数的选择都可以使得逻辑回归很好的完成多类型分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) > 🎓 “solver”被定义为是"用于解决优化问题的算法"。[来源](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). -Scikit-learn提供了以下这个表格来解释solver是如何应对的不同的数据结构所带来的不同的挑战的: +Scikit-learn提供了以下这个表格来解释各种solver是如何应对的不同的数据结构所带来的不同的挑战的: ![solvers](../images/solvers.png) ## 练习 - 分割数据 -你刚刚在上一节课中学习了逻辑回归,因此我们可以聚焦于此,来演练一下如何进行第一个模型的训练。首先,需要通过调用`train_test_split()`可以把你的数据分割成训练集和测试集: +因为你刚刚在上一节课中学习了逻辑回归,我们这里就通过逻辑回归算法,来演练一下如何进行你的第一个机器学习模型的训练。首先,需要通过调用`train_test_split()`方法可以把你的数据分割成训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) ``` -## 练习 - 应用逻辑回归 +## 练习 - 调用逻辑回归算法 -接着,你需要决定选用什么 _scheme_ 以及 _solver_ 来进行我们这个多类型分类的案例。这里我们使用LogisticRegression方法,并设置相应的multi_class参数,同时将solver设置为**liblinear**来进行模型训练。 +接下来,你需要决定选用什么 _scheme_ 以及 _solver_ 来进行我们这个多类型分类的案例。在这里我们使用LogisticRegression方法,并设置相应的multi_class参数,同时将solver设置为**liblinear**来进行模型训练。 -1. 创建逻辑回归,并将multi_class设置为`ovr`,同时将solver设置为 `liblinear`: +1. 创建一个逻辑回归模型,并将multi_class设置为`ovr`,同时将solver设置为 `liblinear`: ```python lr = LogisticRegression(multi_class='ovr',solver='liblinear') @@ -164,13 +164,13 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine print ("Accuracy is {}".format(accuracy)) ``` - ✅ 也可以试试其他solver比如`lbfgs`, 这通常是默认的设置 + ✅ 也可以试试其他solver比如`lbfgs`, 这也是默认参数 - > 注意, 使用Pandas的[`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 函数可以在需要的时候将你的数据进行降维 + > 注意, 使用Pandas的[`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 方法可以在需要的时候将你的数据进行降维 - 计算结果准确率高达了**80%**! + 运算之后,可以看到准确率高达了**80%**! -1. 你也可以通过查看某一行数据(比如第50行)来观察到模型运行的情况: +1. 你也可以通过查看某一行数据(比如第50行)来观测到模型运行的情况: ```python print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') @@ -184,9 +184,9 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine cuisine: indian ``` - ✅ 试试不同的行索引来检查一下结果吧 + ✅ 试试不同的行索引来检查一下计算的结果吧 -1. 让我们再深入研究一下,你可以检查一下本次预测的准确率: +1. 我们可以再进行一部深入的研究,检查一下本轮预测结果的准确率: ```python test= X_test.iloc[50].values.reshape(-1, 1).T @@ -210,7 +210,7 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine ✅ 你能解释下为什么模型会如此确定这是一道印度菜么? -1. 就和你在回归的课程中所做的一样,通过输出分类的报告,我们可以得到更多的细节: +1. 和你在之前的回归的课程中所做的一样,我们也可以通过输出分类的报告得到关于模型的更多的细节: ```python y_pred = model.predict(X_test) @@ -230,7 +230,7 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine ## 挑战 -在本课程中,你使用了清洗后的数据建立了一个机器学习的模型,能够根据一系列的配料来预测菜品来自于哪个国家。请再花点时间阅读一下Scikit-learn所提供的可以用来分类数据的其他选择。同时也可以深入研究一下“solver”的概念并尝试一下理解其背后的原理。 +在本课程中,你使用了清洗后的数据建立了一个机器学习的模型,这个模型能够根据输入的一系列的配料来预测菜品来自于哪个国家。请再花点时间阅读一下Scikit-learn所提供的关于可以用来分类数据的其他方法的资料。此外,你也可以深入研究一下“solver”的概念并尝试一下理解其背后的原理。 ## [课后测验](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/) ## 回顾与自学 From 102bf8a09151923a8d38a2dc631f9958ffc5c9db Mon Sep 17 00:00:00 2001 From: XiaojianTang <85986768+XiaojianTang@users.noreply.github.com> Date: Mon, 2 Aug 2021 11:39:28 +0800 Subject: [PATCH 06/12] Update README.zh-cn.md Update Introdcution Translation Link and Tabels Format Correction --- .../translations/README.zh-cn.md | 40 +++++++++---------- 1 file changed, 20 insertions(+), 20 deletions(-) diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md index 36273b91..83aa4fc4 100644 --- a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md +++ b/4-Classification/2-Classifiers-1/translations/README.zh-cn.md @@ -2,12 +2,12 @@ 本节课程将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。 -你将使用这份数据集,并通过多种分类器 _在给出了各种配料后预测这是那一个国家的菜品_。在此过程中,你将学到更多能够用来调试分类任务算法的方法。 +你将使用此数据集和各种分类器,_根据一组配料预测这是哪一国家的美食_。在此过程中,你将学到更多用来权衡分类任务算法的方法 ## [课前测验](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/) # 准备工作 -假如你已经完成了[课程1](../1-Introduction/README.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 这份文件来进行接下来的四节课程。 +假如你已经完成了[课程1](../../1-Introduction/translations/README.zh-cn.md), 确保在根目录的`/data`文件夹中有 _cleaned_cuisines.csv_ 这份文件来进行接下来的四节课程。 ## 练习 - 预测某国的菜品 @@ -68,7 +68,7 @@ 你的特征集看上去将会是这样: - | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | + | | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | --- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | @@ -200,13 +200,13 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine 运行后的输出如下———可以发现这是一道印度菜的可能性最大,是最合理的猜测: - | | 0 | | | | | | | | | | | | | | | | | | | | | - | -------: | -------: | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | - | indian | 0.715851 | | | | | | | | | | | | | | | | | | | | | - | chinese | 0.229475 | | | | | | | | | | | | | | | | | | | | | - | japanese | 0.029763 | | | | | | | | | | | | | | | | | | | | | - | korean | 0.017277 | | | | | | | | | | | | | | | | | | | | | - | thai | 0.007634 | | | | | | | | | | | | | | | | | | | | | + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | ✅ 你能解释下为什么模型会如此确定这是一道印度菜么? @@ -217,16 +217,16 @@ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisine print(classification_report(y_test,y_pred)) ``` - | precision | recall | f1-score | support | | | | | | | | | | | | | | | | | | | - | ------------ | ------ | -------- | ------- | ---- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | - | chinese | 0.73 | 0.71 | 0.72 | 229 | | | | | | | | | | | | | | | | | | - | indian | 0.91 | 0.93 | 0.92 | 254 | | | | | | | | | | | | | | | | | | - | japanese | 0.70 | 0.75 | 0.72 | 220 | | | | | | | | | | | | | | | | | | - | korean | 0.86 | 0.76 | 0.81 | 242 | | | | | | | | | | | | | | | | | | - | thai | 0.79 | 0.85 | 0.82 | 254 | | | | | | | | | | | | | | | | | | - | accuracy | 0.80 | 1199 | | | | | | | | | | | | | | | | | | | | - | macro avg | 0.80 | 0.80 | 0.80 | 1199 | | | | | | | | | | | | | | | | | | - | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | | | | | | | | | | | | | | | | | | + | precision | recall | f1-score | support | | + | ------------ | ------ | -------- | ------- | ---- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | ## 挑战 From 0c4db64fc84becc69073f40c72f8065817ac788a Mon Sep 17 00:00:00 2001 From: Ravindranath Sawane <65583665+ravindranath-sawane@users.noreply.github.com> Date: Tue, 3 Aug 2021 09:32:29 +0530 Subject: [PATCH 07/12] New Scatterplot adding according to new code Changes made in the code for new Scatterplot please check --- 2-Regression/1-Tools/images/scatterplot.png | Bin 289640 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 2-Regression/1-Tools/images/scatterplot.png diff --git a/2-Regression/1-Tools/images/scatterplot.png b/2-Regression/1-Tools/images/scatterplot.png deleted file mode 100644 index ba9f1610c7d17168ecdd058c04fd2b97f3a29caa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 289640 zcmeEubzGEPw>Bc^FsLvzsC0v*ph&~eNVha1A)$aUw2Xj*ptOKeBHbZKH=>{*-3`*+ z{q4c$ectDMM}5EZ{eAfTM#h;t_PzGnYhCMF*Cs$kN#-(?0*Zlwaam3lu7-heK?4H= z>o(*9_{2MnJ0AlB+F&IqsUjySNv+~w|G>(|90Nl(ATsKrM)((!r?aPBk`i*5oj6r; zQ5+1uBw}tKVPRqtI5afO{gG1GeaIIO<`*0$TH+on6Vi56NicCj*ZgLPL?Uy2{qli9vn=bu_%}<4XI=+(rvjd=1xdc)k3~ zY*xhvhChrak}DDH72bbbs1wTjHGB{LHUBo9eu-9C^p|Lp5`?pXm373|w%LOF>yG=O z+`O?jP*>tjIT6W?&_FKKM*$0N%y^?EeR+k2jTqQo) zD9UBC-{NQ=vgl=!|H0X^5thRsj~lta*?Dx|S{bi@|QL#fs{=TTzkzCWe- ze&L`NONaUt>*6?6$OjLCK|@W@=)>^z{GRNnY5t{btVJ;qW~`w)I~6EvEzKjMSd28W z^SANzYBe7bI{COKl5RbtS%U^4@r5l1f!Q+0SCFl~# zl8DXq67r#!*Bf6=Ji5&nE6{eC6lpe9_-Mbhs&uMUp>(K}W|*n+n&CzJz}=?iDZjn# zJ<}uZBdH_XBgdoL;-SW}k7#`HOMS1^^Vge55KfSoptzJYXekIsP@#=PlXpyU3SJ}p z`ei(rn3&R-X4y#@nL_TdY16u>t-Kk2I&4AUcVF5xj3hKUIVYJe`9Y^-ryx&^4Sa{b zIlSoey)Qk}t#CTL4+3xp2v9Kkv{p$(*^!-fzx}YD4q=|4| zNWV~&Dw(uy;%Rbxfk)IFkuJ|KPa{7se=p({i-ESAc%5nxvj`CfL$CwNA%;g*N_9I! zk@b1Gk6W~x-yL{EXOI=U9yBM!8QCj$RWp^jUHz4oVXl6vhj^J0c8Y0oy_%f*K&pfM zOm$0?fSx0nBf^otJtNN1y-h~*vZk_TytR*Y+=6fqr?nFwRk23#b?eL4!95)d4;D-o zTDy0%j8v&Q60J(DAKirBRI(E4^yT|@vw=_BlCpE@`?apl-iiA4&tVQmWKJaOX6@1wpC&Al&wQ+`seHu9`Iu6)YvlbfpB;`YK8 z$ltM_}tI@$@0DGvkqJ{O|#dJ zb05EaoPaaX*g)Tv+&P`g(%b#zW{*>XRTR0+1N%?6*mx_*r^+`Ni z>^*^9AM7tklTce#Gj8JyQ}X*|qlI-F#gRUml|5IooU>MYcY3XQpXa#SGV`C~U$lK= zGdlQYz`>@~W_2)h*<-o4pKq`##zG|cmi=iZrF-Tv=HbhooSm_2*RD5SDZbM1>cT6W zS2M5hVl9>4Dcy_B6)=mfitW3d;BvAwIUY9S&@!W}joYWuXO_$P<7)ftH&G$)?|0i@ zE<1nE8H-zqANQ)Q8k6jMwyZk8-mN|szNkC1A8XPgYjVw^a;I>Iz&&pJ;IorSt|`C! z`^w`=+)6=DW)W496cJ^QZI5uzhaNJ=OUGJ!e1~R7=Z{_XM2)QqZf9HfT0S+a&3sxS zre+K`wi@rEE~0*{(uIi-uSLe;9w0A2^Q*f|L+wjk$UFTw{juePIZl)Q{O|dN`4$uW z6KoAbbm=e!x>r&jsI3>nBm-B?2^d~lztln*5*b`S=Kds@%A6|N%j>^zHWcZE<}w zAr6r{)vR7N@7n7}aG#S5aJCpZc^9lt&IIOhsv3orOxLUVr7WeS5pv;h<1`ag7fSX= zE)~GFOkF3LpMM!>aBbS2UYWeIIgF61oRzbalak{M8wqn^#M>0!YdV6RQ&(X{gij`@ zg>G>3(QnHx!1WaM4DN^s(;UZ!&?*v_m|I$~x6hHp1a3$j$8f|{@X9p#OtRw8>#|#Y zO`>_J`n(%{@XU#NNVtOiu&Z#+JS~dt1}VqtXYSU4*iE6nTf1q*bHuU4Ic!g~bMFb{ zzbIH3x3+vTxzNjZ@NlE|QqJ~0cc<%*4Hn9c`tId%>YaK?e)Ufk%Bd`NeI~khtP;+d zz}e=V-|@t(iE)duF178O^V?m!6T{jYrK*+&I{JH0a4lM2QrUX3?>{zu*xB1=du3?H zzS)k{uBN8Jths|WC22URE)LhZcQt91wSU`dw{xT~aF$qmiDo5qWu6m<)oS=*zRTfg zUdmCYySbtHlbJU&Z(BuIrdBGd#vHwE{j{V^nxf7l&kJ8XzS65rp-DnjPuU`}we)Cf zVkaTiD>GLuk2U+i8IDLkwcP6{v2I>iFniNn(o@UV`DS7&@Rdv4nn;JvLsj>DrIg$? z`r9nR`x~>q39AWEp&qxvd8cLa2HqKq3=7HO2GrwO<4tpR^!Fa-qF^AsMQj`;wOeUl@809t39pD zK|2b4!?|%aD-OrQm(#9ZzIENM*QMVj_PFPyuPE+H-1f(7_I%C)E__egSE~_2Q_ii| zR|U0K3s*)fNj>roy}FO%F9uR>?LKlh6jF5G`=Pq?etopqGrAht{319o!BQmS=-bxE za$`Fb#RLbu5E# zV}-9#vs10rlhv<1c#nIxgxB21;0KMqs2dNIi!qtu6Up?+&9^Zz1g>CMlVUXbbscX- zh;`XNWx+fRNONCdd5kfx!i&L;xGC{EHV*B(8+zlCjn++>k{s+)+Ea|! zRJ`ufSC~Wq)xI#-k$Z6WE(R-j55d4XM}dJ2-kk$4k#kr7elLBF8RPuf=a?86&#f@9 z{yIhp{6_zTfEW6lpTEzC`D0uJ|04h|L?Y(Dj=rFgc>Z7Sv2KI!FvQg*<>bI`bu$NZ zb2~>%dnW@gga!Bj=aH;w&qSI)CgM}JI6Z+VcN4J?tu5`k2z_n&kk{VC`_w!SA|;A-oc!jkK-l> z7p(}Cnwnb3;r@d=YH;blP6z)JrnPi(dUS`A)5XPw!-bc_-ob*CTR=d7lZ%Iwhvx=3 z;)bKEos$XThMgnb&x`!)I&gDGGY6|jPFD7I)adJ)nA$&a5~ig^-{|k3pW`$~SpEA> zc8-5N7I;8T^f#Q`99*1#UmKh%g#Pr7iWS1#Mh9+X3v34NA;Qhi!zFZf!hief-?#jE zs-~m4gQUGJIMYew-&X(Yx#vH=`s-97PV}??!xldcefBA^ zvk4Tce_W$qhfRh*sZKa_RnPj*M&k_-17cBC%Ge*S-$BNdeb zyx-5@+2DP2A<=+b8R*RdId4F0N#-r#}4b$-22v3NJ6Lita zf7qMN;(grbEo}e!&o-d;S!V>xI52VJJ=Jl#(EfDz_C3QIFVC{Y+=@?!S6x>Byo{o6 zosH1dg~I5M%PpE8_>38SdgXTSy_w~YWAW-#48j9eX>t5%vj_Bl@}j3$uN1*548n@6 zSgo!Yc5D}xIg$3>WX|{^tNP&2LEZQfxG9wN*)Hvv_#gdc;>-^iD+ApTf1KYs9OiW9 z^h=|G9vA;KLa zIu+bC}Gs|6J+k?g1t22JvP1wJV|h0t#VOn z7wilt(s%{8Sf?8LXm7NCwAtQDYUH7M+-Kx%@JirEw8K(CvsQb_-9K3K^{ZN!F;DG$ z`_E`Y(sb^)Gc8e%!o$$)t(# z51~&%27_kit$p=8xoHbFss8t(nbs&gTMP6u_U|qGbo>&gZs@f?6YsgzAv5Dks5D1D z`Qp!`#V~C-IX-lE{t;vGy7*z=&Qek!2gP99*+l0!zC65Iv(dsfQ_xJw28N4p1=npA zT&+}Bx-*{~Pm|mKhj}xehft@ga@V7KmVP`^FgYdcjN2cLKCVt7ksYe zGC~CAxUjH>4pa#+L>#dsoni5`0s&wIj6U%Z~>Dyw<2*ekI8wC1p)hV3oCZD#vO zg^T_EQc*jU^8IJGptk469eSr1W8D@qW8iY&vZFwK!M??&6 z&CKh2nM}uh`EQUdsw5hyA1Gtw_k4@?`1q=mgT<<5MB9p;k@xYUQF{jG(el`dZQ1e8 z(8KO8hpRP4rVxIoQZfl#q%5uSK@&`5DZ8kRbvEAJu6-^M#SYU$*bd=a?ZuK|!V-3Y zSv7*)qSIgRZMKWn;J@)}#(#wHhC(Osij9^nu9&&^J? zADlDBm$?t$O!eg3tug&BPnyhZ-J%C*&v797cRX}FP?Nhs+<{%^N2KRy<-K{!Tit8d z#rq?a6vAs?xh`FNYs{nQ`-CaH?!$Z~`XK^oMWXZ_kI|x4#@o<3$Shyq0l1CnL(LEV6&!v*loW zvDLt3q{rRuP-ivx`9LWchkNi>85QwySuBNxxUJDS$W`zCC~w{B)8o}X4PAIK{RZ}9 zzsUtM+KU}@wouOQ$`j}HCQ|LX^Bw2w&WmHyFi6YiF44t9BH&$X15S@bn52{Cy(RMl zET1tQJWD4_(pq~yn0Ku#jbbxU(!gbquWbNpBbx?%0#58F(C8o$!a`d(8*K zv5g(sK750(f<-o=>|P=6?&-gg)MK1{4k_MBk2WF z9<})UFcWm)3_UdLG*X@JHS^i_fiQdTWY+s6?Whl+7n6h`ku~?4U3c@=*Ejek&x@ZA zJ+EAz1NR$u9mD0U%%><;yP|0scfbJQ<)&5R>I|KLnd^o6YnXCY@0q&Jr$lAK3LKh< zwYP#km>lk|ihjl~;euZha$S)vaBjGKOGDB(AcSCya+RxuSi@huXE)-vm@WS&l6bx> ze0n@~Y9NK@8;Ewp7)S0y!IjeYHlvkg=ro5P8Fs(`_lD!w5t@gYZXy<I_Vpxc8r)te)=BYIq%VCA>;blsL!_7CA__fTvgP3_cX5 zbDJ4_n0KR3-|_A?JPW@E3ClnRClV;vxg@FQ)|?zH$jM2=FLm&c)wkroMYiPQ9G?6h z3;mEmBlekm;UBZ2r>>klQ}OOA_{qkA+|Xl5B7~HO_7ZA7E9F^AP2{nuudeyM2k)Pi5dt>B`%Ro)9SZivD&l@l zMskOIK@mn&-basJH^1F-|74LeCrr8i>We6)G2o({@rcDCv zpMq($-JS}Hj|1SSW}7nb_#$>>6XU|+?{Onp&|mZY-TSE7yE|zm!DB;if1uqMohcz4(VKqakv z)gG?m5DI5?6>@%)F{9rC!rCKHjx(oUD``Fg;Kq?NvX|3)zZJR06}8h0#y{gec4$Zw zHkI>nG*eoSVF@&{J z#CgyvjhNO5rC1l%Q5}A} zVI6*(eif}JEMIMY@7?tIPG<$dm7yW8qbaJWC?l`3!QPyExbq)=be=4=pJaQS9**Uy z(&km|=(!$m_u*1L#;$v|TgS{?V>3`l;X|N&Q@&&!aup_t569;v@Raxf#h!Cn9_-;w zGDcjNc9L&|(W)ajlZ+3B0y(R73=tE4$Y#X#b~+vgO74p$*y<|tOmnBdU-F6~f5pv> zn$yFYRVi8gIG#QYZSQSuZ%wbg2CCi&1KT?saALKmG})B^%6r^_5GivVZ$CY1f9MOv zyi|`vD{r0g0mho(bzqhE06JfRx^30vy6z1RfoI@nNVw%gI1r;1F5yu<4&O-M-CH9X!joZt zMp%EXr6JMdF3}zeRy1C^A*&o0TJ}M7KU|chW>c_6UEPA_4Yh-D@}B%<;v*2bHL)Xz zqGc5KCj&WKfNu&|n+q5eSSu_iuHWTAXFQu;pLHGFlu>ir+qP}YkR8=}8=N`FuTqC;-n(iq4=?xvsH zy>^N=PEW>81(zI$E}pF6o#qd_&c^YLkc5)uc!HS7;E#G5-ATbx$!r+hj8dbyLnqzX zk`iU8XWR6GSQDWO6~|U(;5QQYn@WCgi5AB>eL1h@q+Cj;DM|=W`NP*6ABQ`6)e;B( zT;cp&+#io8No$x<=lYes54tw&Pj~E}d)gh=u7ZpdHDp(j1I5p9L2`xJ3Y|9Nt6L&y z1?EC>U`@#Wr_9fomiq>aAG%8)WJ6f@O8lX!tk05<j55gKyUPop9cFOW< zMtd0R<@OWc;!xHbH$MJ;Jzq-r%MAx4u!%c8Y22tKK5Q%Fv*N1_Vs3dLk~B~%t{|b| z@w^yF%NM2;pDAC=T_n$Qor%lw;Cdzi{q3<~F>zQI@=S3>{D;Jfq1%Z@`S# zuE`{6%2qWUwxtyW=iDanLDiVQy=iHCIQKr-njW`lKEQI~wwfrmeM{c!*F%5sKjokP zS7q}K*#g3~o>q>Y=Au_}h#=)VOm6IR4ArL%FgQNp8rgNH-IbA<9&Mu>Ft(|ew_a~A z_GwR5A%bR&D_=*LcI(&CP3k**VGx$2p0@`HMc;L2zyg<263g0%&;+$*LWcb2L4icC zEZr`b3A5zQ7JjRqLH`gqvO3JN&sY_pn@Z*6{(*ZLx|um z^b~%0wjYZK6TDAc>ttR1KzdeSfYBpHaZP9@F=3oerZ(;I!o}l)t5@k}$eI>e?gule zrPK&-e&s#OF%?UN@ighw7fh~o1u(_;pOO@vh!$I}LD-j151WWagQi>;GSXT=z%>wV zE;4EGA1%mRz+!v*Taa@OhyD6r5tIK#r_5HOSBw6`^pLO@ZVYfoYGZ2TI9)n?>9hMs z!F-q1(M}3g3KT2Z6D8VoxIQ((49IQiPqbx&x9cuab<5(v=pj5;KLyScGe)sOC~|1@ z8u7L8pQWox=-s#^?k5}7r6ia`u_~}6-TiH6dC2|KEG*_(NMnH`JO8g}BQ6%K=&X02 z*rlzVjsR7H>nMcCj%zpZVRcmaf~@Bskk^5<4qyIsY9=Qs%2FwG1xI##4m3YhRRnC> z577x~RBAp=^mx7!ilaiBA?>tn>T*6W#J0^9pDXbS)oMFCtO`kra zLgEGc5xV+*uYtJn$vxMgqQn9M(~l^d`y`_nFw2`;eXtP!_*(LC5}9y3?)o3#Y7oJ> zA68)nSjra&t=m6|fco=JRKunzOm2+~*EB=&>eOjWmx-YT3(1#P1nRp|m;^c=Xr7Wa z{b-s=G-I3ZM<>GySZkwQUMHIgq(Qxz2USc*56)|zQk_gtxk*g}C}Y&yxBlklf;YVs zY5XU@d4REVRB7PO_>o9zpU2#-nHWN(ZQf4^8#NJ75zVL_F{Ov}NE$AwST7Ut(Mm1^+2 zDH}{}+0xlbrmzi@wcl)EoNMaWAuhZpD`m62 zepT!%GpDu`yZgOO*DuRlmmhkB8ng(yvVyK!(&e1xDzW)zT=g#oJ1%h(oMi5*g}?(Y;X#JPVvYz7#Ck z8pe^B{(E7jD~Jj0`G=C= zJ^X3+GK%p&RbBYY>Eb@aEa{P9_ShL$x$U+i0)G`G6Sn6)g-~MpjS+qDdiV5 zHDQbord6Fi{n2`W)PRhBKyBEgFA%nz=z4zAVl=v=n8Y^4X&N&NSQ$>2mmHx08Y+*o01w;z97Ht!}JoVOg*2Y zNn;VF4=&4Uum$${Nu{7u^#%t2&kY41>tW5XsZF_kzdZt&|CFqTyvL~*=gujy2Fcs> z)n9OKwahSMJO6!Vl9tJs@PJ21rWC==yWBqzh|9S5i@0v%y2J>YzICPg@yZm!`jskl z9jkpRIXIZR?>?Hn=b}O{INEfs4CU!Y(_$1YgkJY@2KejO^7af!|5@LC#KHn8pVHl=WD+;q(^}mP-yx=UQu$;g7&I2;N&n13^6IVLoA)na{j!QN z*2h7YQN@PPZO4qa5-&JA3yV}aAl5;#aIyXp zCCm?(4#tGgqWbWXcFW_6guI7@WJX@S)E!bi!)9kKR%*5UZ`e=vH)e#Vie8tqq_guq z7FGU5*h-ps#CDHSU&mhE4$uS~TKV6;+yKqCTQ8sDEjtAw&@#pf8aaPZag zPuj(XKQB&|t))C7BNde3-mlcDNtD34ltr<}e(79FPO!uW`I^Kq*$9Ld6ZNn$ynanr zVT4HI^_$XP@y@ks1k|>IEJNHs#6RCeq6o}P*c}yODi#u=?sQl4%r@w&3I#q0kPj$$ z6eU%WRW4PG;E6cv9ejNbdixMu*3Es|*+YE}X zqhJWb@ZCm2;m%%_iOr!;O&qkBDQTX0L?!RjnqswEY><)42<2H_U2TV66k&@;Me8J) z4)(2A>xi)VeL;npR2Y4*61CSEg0eQyE*}1(8_Na7`pmom8a`2^hKP3*_3|X2Cu825 z+GP|E?7ZEN?~P7Ksf3S6$qgdRz)+omv+zi~7Y?*@J3VMk-p5 zcgKvDeJ)ZmLs)H>NA|n#3Jg=K$bkA$8g_tYKnFoj*ATaxYNhzZ06cr`yPvF2rqSNV z_n>_{!|Z*|tMV7(s9N>RLzlCf8f8D;JS3T- z^S}dX9Bjk@WRjw)3sr)orV4q&YK!nM8tuj>SSS@59zW(tNvU-F93D$a#dojd0TH2r zQlyc`_6CeB-T|!I5JWm2kbM9$=$&bvdPJ=8Y0BM!^A}~B4%s9x;)S$E zk|KZTw)(-tbd}gq3Rc|16^}@))R?mx?&j`ksIW73WazQ=F!wLgK8a6lys-P32iPw5 z=4h%6)OdTN*)BfcNb#$*EjUcEDoR4@jn?pVKqaLNqRU;tc?rzP?70C0wEQ%HZWL8; z1291F>X)itu-3*VScdM)#f5-&K}K(UrVEZhgB%a=+%ur{m`!P7{@p+NtZWnn81dod z$h&X(i5nyC*_EYa8&o)d4_?~_a~SbczEQ{_O8Go1k%w|D+@0mWm)o`Vkh2~x=zeAI zbgL^z0{y{j(9TI7Y^L(o-&q;CH+CC)Vanq0=0a*R{xM5htQwl|JR=dk2h5`)uiBNq z%QmX1J^*?2+m5pc2e`*L_1U~!d;&S;r2yGfddmF~=P!r|vMWBIMU+>$HyJ2w#xWh| zGRgu-A-ioVuRRlSpn5A24u~cQj&=aqFlw_+FwafROZ655x#-PylFz*_f%=zj0LRyo)G%=`@ee_F$9I-MpEK90S}R*eRT##~rk%S)E)j_4plUtN z=I(1+&E7BrZDL{}Jn@+97asBo>I3-J?2w&BaOqtC=t8sRSMh)qi?FZWPi4yfTJk<8 z8r>?7#N{YW)PLMWEKDacQ;*A;?LAuny5avH4+h#LNgiu;7kgw^{Ynb~%MlMtk?=X_ zCCDI1Kt=2kDhm~;-15WR>X#xl(9p^=H0aINRp+QV+5pfZNh`mo?M_xK;9?sDZjWh# zHKlVlcZ5S_&HJ?g2<;C!j{RayMZc`A_B?D!OYqV|Y1E}>)WaF15Ax9Di%KkjaEKtw z$X=AJz{%beZU=M!d|HAb?ss+H_&Gu>;!Y2S9@1?Md{wUaz`1{80igJq=M-@X0A^-~ zS&B;kA_l*g7+=h*;V|;t)@&C6uFsl8oeX+?S9@eHO5Y$BYFgM`9rF&MNsR>zqOc%n zd|R)(cDmBU1y?3dA1qBq1sqDI+7=bbz`b3Q&5*dxm4=ZPZr_c+Nb=o}0*1XO#Q=7d_ot zdl+>bDW9fkx1zXy08L2#T_*t3K;yG*`wNF7lf%qNLFN-o_%ainP_;Yi zy}uwI^h`ou?gMnF0K(C$Nd6^nG%l=G=Pc}zXI&AzAqc|Wjj<2SzX*Fj%^w7Gi$Kou zcs@(LI0595?I-T}zeu8IPEkvCMv9O>v%BM2k)FuoIaVg~TVY`k|Jj8*R^F+XyMPNH zG`aWx_QIck&fP$pz&AnAP5U-h-HZ;Rzf>Lt(Vkscbty`{Mj2dq3>)jW!mS{(vtwb4 zVJlZa5MH|YyAeFak`6p`QOj-F-Bd7|0=i${9sMcUjkEahzK3q)t-P3c)2rX!U)K1; zS;!313U;z*1!ECJ{sKb$9F$K72&te~swdo8m4O~CZeY~Jlgk8(ZY>2vi9PCwyli|&Q>qG zmeGbMNhm0DY3sLg{sH2o!!VFv05BaWIs+h}34j(i3Xi?GVe`=xX9$!*Y-w@MdIF$l zpLG`f0mK~UZ6x_GEIP^0z+<}2FlGS*@=SJG#WDGRXMSUP9CU{eXdIbl02`mPv))V< zbp{zvPY!!T_Qs#pI}#Mv^J9Ji!2A1VYZNCZTHPf8Qh(<9DY{`gNNy3Uibmw2Le4J# zyt2@l7&OSDJ#MW^OC@HFv%ldVa@6!t78E0dc@JnIKcZ>f9yB0Fr~cQThdbBrL+Eo1 z9@Sybgeh=jl$bWXZ~*#1O_Lckc8o`zRjq#q@c;OP5EWd%4+aJ8qNkPrR#QH$zq|kn zjZB(cH0l;?O4&q^) zzmo@735cZt#FcC+ZMBSauA@to!G)>yHYNLp$mq?o2N&vKb z0Q6|#^mw}w_`!%Qqq^vD_lYR3Sbx`Zday29r!(D?WL7wu%e%2`&xT^6jiLxFqx zL;61cV`IT>RxEsV<~s>*SdtG0tK41q>=a?z_`0Uu+V38DK7_wfk(mMBm?d2m!P_oW zWC1|~@9Yj%L?cO(27)pkx&2={8|)Eh*-GN@Ro+#Q4PzUY7^lKGV ztbb1*Js0_z2^rrrDFew=x?(@+!o)waWB2EXZpAuvgclI^_TX#cYv8M(WaZ)_2l7++ zq4DXU+(cu1bD$0CQNPE)r@00%`X3rjat<{biqC{klB#aW^Qq9N^~G zPcN^w`d_}faCrh>bo8GS7E+r;nAm>=_#p$W z10%_z+LQD+|Mv=__Q^OiA5U?dcLbikxOqg)_1%A%*O&$?J#J&I0dF@*Vhf1tvLv7< zphhwLJVd$m2Cbi_&Wr`xpdOTpxGY+Egl31V3l5$cj(h(jmeOZa2-hc1P~&9@Z+(|U3(3(c>I?~}DRk&r$T0&>7>IjmfIV zxMsJyxQf6|zgZS&n5Kfl_4>@tkUb~R@yz%zRWST}p-}s{o&nhyi>UQ^1#!SDvM?W# z|6@WF{X=vJxTNB!Qy9LzIp$6?r769 zZ%`jTmf8JItRcNy@wokLl*Z*a`ACt;FEUh~8Xw2N0^9&|5ru%i=0{?i!V~BT(28s} zwDzkQEnIlJa-d!toH|wn&i8G?h&b#IH)oCso~^ z1sjQUOKb+zE}Nhu*8gBs)ajKVEzgX&j4cmMW-%fHm&URBxpU<8K4H`Tla&#OmQB0*^HDI+YFWDxLId<0P?mf!WG5#jK47= z)*dKn?aF3e7rJi#um*@@|0i?%x9g=wpXCE0m(vbmC+x_MW4mGAvuTUwz=SYozX|4^ zIPAS=ABh%HTc9OEXwjE~(0nbvI_POZSh&?Z&gcP->b*%MTIJV+7NJRWL&NLk?)iR{ zGbVsMdWF`Z0T@Bplb*2w=nO5`Mp3&+7R#2J41*U(^EUzMhH#$MtuEzNau_Sv-obfm z6k#@yZz4&|J-ZRV?C5aPJUje~$${EXU`uRdg zR`+KUI5{iVB=|m62JF>`E8&?W6%V|6yP3s@rO=i`hHL?n5CdBvr_n5pT^2s1YPZLT zA3Fz6gop>oDqN0MG^I;=G%BNLQe&EY+$umhb{cbHgjocWtw~lc9N9suDqYvTWEP?z zp=Cd&4|s<}_DX*SAY+QNMXqR8L$zjY$Tl}1tzn|Z=AVz&LuP1oKgZhi!UuqtcIkKkPi7;=9Fv}tV6CmSQ#sWpsg84l8=O*z~tqahss5WmvItIn|J-{EzTr(Ht!lLwzhktLR+5pmWtXE>xo;-bw2MmNl z^HHc{TVc-8%o?Lks;*lwnl7q!{bzsoFpqwc9%C!SCo}0FSPLu|`3U~S4y0q@%c@=V z`@$L&xvifyHH3;N%g(gd?&ih$y6{A+-HiQBt(qCbXr3hcX}aMsCY07Y5>+f>p;=PG z+Je}7Fs5}FlOrXKB9GiPI&(v|^fhlr{{pZAE2RCteIlSCHo0i_w&w(fTsvZ4iF6h21aU{M}Hjcz~o39HCvnui2TA!!;KE?@Xs^vk>`EW8% z?hZr50mCu(g@O_z+N~6$A9|AB$wsC-t@Dd!lm)<9eFh-;cG*{7X__5In>{e>a4Rt@ zsv0X5$xZC^Y#zxB%4K8sq?7W!i}@U|84k>>Cw~Ej{4K0#lkmFZ5Ht@wbuphpQpSWv%dLqO(&iMpb=k$M5AgL0U#iB@SXR*17+ zS_momF!`H;ErHPN_e@RRjLo%VUWxCuh}g|#*~=aNcVsh^>-Y~NzgRP7hHJ5ep0l-P z@WQjqc36b=-Ta{I579E+EO^UPsNo8Fms7?VavL9_m*eb3$fc6I)$93q$+1B@Wlux^h0I9>+lBlaGAD?asIK7mss1 zkCScK(g8x2H;PZ60xi4rysl?wJf{ygW9@xbsSgRBI|J4>MTPO2JBXlwQD^L9{VP#& z8Dwn!x&l;Yh1+i)=4LoA7x!tc()a48AH=FM)h2VyY6NNMDq_jxizNr?gvw1QLM+sx z1I860Qv&w*tXyr^LFb7GVNJwMer<|R#yYkY<}_JmCB0=5^vV-#YO2B>xY zw9&Lj;{ovj=|HsDpQ*G|ht766#D4uhp77)N*1iKqkUgLu(hsK9YU|~ke;W`lKQ^r| zmk_kN8f6%`@p2AbV<=Lcqg7}ABE@C56g`GwfvK#GsO0FK@CPKL3oXV1qu^t1Zf2!p zBB5^-tY)XhZWw0>h|3>KC#9`;?_V3yMjr6FJ&X}EuYV|VgHT=3M)lh5Psv&fsUuEZ zcb^Eh$F(0G>f;1aoNEi!LhOOE(mFFKnS*vR@BmNuNpNkLhTgiIZiF6wGGo#OtVx_| zQFB;$Q-Gy-a`fGFV=CR5gzo!$-H3Ny1Vb^|N~|eb8n!Wxqoy&HZPkS2Vk7jl9c%D+ zDG#JN!`CU^Vo5w*R6MwUzyu4Q58qN~OWXQ_^4OX^dDt~^z|dj1^`#dqc2NsK@4_0; z!V<>fwsX*WUslh-Swu`!?U(g$xPBgf@@_Jz>kayKsPyW>&x4X<(YR1a_GY z+~WF)V3u$~c+3GTHwW#rp8f|(FTRW@uI(smecMfpNifD1gLe<9aPZ6R}<8#{8}6vytnfA^9jA_dMLT^%46Bl4x>*x~5ljXRp@HO|FK50JQ%*DJg1w|>imEj9n8 zF)}19orovPd9l&WzZ5ywIjFyD5s{Dv;z3%k3i%Ajow!3l>Bfy!$owpS-pgQ!&rCe0 z;=mK$QsMI@R>NzGK6+!z^Q7dxX<_6|IJXv#J-Tm*R%mizM-DI_?A<01i&fOSA;eNU zNP(|N4YusG3ABYLADg~K<#sdHg)3#Dg! z7I{iz5x1GcX&5syG+_yHONdt;{AF0B&h*>YDY<Lg}>obUh^Nc{EmL%trF`p}W(ZhwU+aUak zj+$o^P&q1!>&*L`7(jbFUw(UV=`jNmH-1)GLS2Og${PMXlxdj^c*FA5ZNyJ+(8r-p z7Xma6y7ow?G-1ekUKED-Ze~UsD3?i=QDaxJToOM50yJntNbGFW$x(;5C{mim+AA`q zUBMcPQE78+cCE*H zP7N?6S%yjD)Yy%b$E!->6nqAzz@Guy9Z}G!GE64%y!<$H^L$`5**SklKU>3R>-s|N z*OQGpX9wqUON=_1=HG7$Cot|_MOy&`gDXCl%*z$jZ~b5~5UwC^cXn~j=ryp;RQ>>+ z#2tcZ(7ths(Ww}Gl;UJQnYr3q<%BEup!4a3>nQzA^y-kCYbJEL1Z5@MjdT(!XvB|AgYDgX-35Tb3-`y&rXgJWt@Mwy z#y^HP2Pl5QdfX=17P{kMf{Y3nCp&GXEnOSlzqyl=WB!>xya(pCCd6c$i-fjYj9D#R zom9RgZrR{}xkv3*C^N~>G=Z2I?C*H{=;A#ElX>u9e2G;wr;@35^uFKn&xoE)C zd3+ouo43`9@T>l^98L*JNUk_6+SEr|@b^ateHXJ^s}JsB;(ipVWTf<=H+% z?32qHc*>nYZ1%*{mq@5r$?e;YA-e6$9*dE5r8sPGQ10jomz8IFz@ncA!7T55q~3ci zwR?hA)fp`$g;doK<{^)A#MV%-NQstQGO&v-_MJ0+{7u7o`}HN;TdSLU?Ge>~>FN5SxK+?gA*BMxJCk^(BL8_6|%WPz4oI zXTW;OFk&j`$pBqzp?S(ZF8(Pd^C}eR_Q{`?ji1UqMT>(xa8~~6dnD4;vYNspbO5gw zP~e<$AmPIu5J@DxXFg(ZQI#e6m{z_i!U&gPagm&UWny2>VoV-ia1lA zz$~HaGbRc@JvrNDdJx6DUEUu-50u~nLaHpFrKVVilCQ(pMF<_==+F}oIZ)O+F!ea8 z#vdEwgze5pL0B?oQxXgD3#-wc)!Gia5D1Zw)O1E@XJk$m=r?wHsN!Ld0D(m(oIzl9xn^8?A|6Ak4?2xd)S>N zCN#r+WE#6EC--_&1e0}Ea7gjN5aV-VJrxcZ$Qa50M+k>nGRPxU!o)>Q+V>yU~$&ca9NQ;)`mQ>hME&) z`?lZ7Yp*`~5k*@A6liA(Ni;!%eJ6UCgPdOtqGP{#!)b5b6Q zNT`F&wh=lslAj(JEo6M`{whSG!3@YTP%M2$Mo{PZl$2Q42P{BbfKcf_{{g=PuqF$1Qk+0CqsmF%2I#9dx|8eHxra0X(X{P($B&AkO5t3NXRd^0-a$* zcHWu9R38(X)MG7|D4%F_$?SZKw$BB;G~1mS%MjH7(vwjF5ARl#kAQYyF5lnP zZ{MU_W(e;IxIn$Ey};1KmVPZ@bWiv-kx}x#d}dysp?eOLZ4VG@HHMFm-}_aG^t zz=;1&CAS|b3tY}mWt$Hj{`@5qUy7K#jW9sb7MwuBSJb*vV%SHDEk2bmg;%+;CZAvI zeeta#bS032m23#?vbjvG=1r5XBFNwz#;5V)Tj?n_TCZ~2rMiF09cAFG+qe9>nmeRW zZd?TvqF1DvYW`~PypG4n@Y0bw0@~2spvXpD^B@aMe$y6xEn=Y0x0u`l`s=v?v{)p! za-#)ZaYlf@te~Z?qI&cvAGYgi}= zD>`+2S(HQoO+Iy|(_%wr8V589x-;s|YYL^651QQCv>o9}z1n;&e`O~H>;Z&g&ld!8 zau{HpoSP~O{~n~mEn!Y@u-ty&`75aAj8l|iIg-bC=DV*OLw;-je@j*)F7QIBPb%> zCDI+jdxLvF&$HfleQSL`wtKJr$9wMUyw5m}^EfVZHN!`bZeMa#B_h9Qk8~_g2Ki>3 zqMCt)4gUh@3ma5Z{)gw3HA&jS#LYloOZBZ(i-)TwaTD0y*zw^XdaKE?0Kh7jx_8lB zZBFS}Kw&*Pu;_A~{)e=y)YB7$g&$B+6i%xyUwMlS1*?*DQPWS~y`jOO#oK1z<#W=! z#iNR(+lbGt8>7uuLS&3Z)=y)LZ}va4Ou6!-l$Zxlzx8!R3;!skTBVI=6v)+Q&*8e5 zu23?Wb(X+%RagG~%HMbvWNVq{E)F$NX0*+F5N4vxM59e$UUlz-f*Q1j1X%Dx=S~j; z8$TB;&LvNEX#fIbk&N~*uJ89oKiEI4X_~MjT#{7yK57ITh^eksGZHq4hGuBWJo)zK z-cVtB2k@cCgJPyEFIE%FH3pg~bOy7Q?}r^IHagqqP8B%9_P^16yQrX&qf-f47wd__ z{`rRi_+ubeK|=7;yk`axUJBGIgMKq~bK2jon?H@@IL>c0dS;nU59~A!4!y_#Hs*C3 zSWg2pWpoi-;QWbu zC;%ktLgv8c3D;z(%E4NjYD$7yG);|DT!mOw5O zSc~#V#3svd84O<^*aV##xn8Wp8R8;Wzg{;c@cxCF8Fp9RQr5D*BoqB-sKPJ_NhV}c z6!O{}M6qFm49RQ_V~I~EN>$u9gs5JlL`bx_knUdT`S3V|VBQ2$wOC<= zmv1h7KsesPDqKv+2ZfxOTB)UtO$DA@)}* zW!Q<5E6+)!@ctsZ6a@Jj7DUdvl<*Yn(c-HM4b?LJxnFT(RXFtH{L!JBj-Wv&f~$Cd z3+ZR>P8U$=!CXN+U@|3D%~RRccVB*HNy}bpft#UgSxP#48!v`nXyZ((MpMY z!p=FH-oHN!lcS3fo&}`ON>HSk3_OWH|BEPa6-NEhTgJcS9a{*&HXIE|4;uKkj4BLrCIYXBM*u(c7W zzxNvP3*HIX2CP01kVke>7+iZ&vaP6OAAPK>_pFL)3mCU3n45+#6ju+_>VciizH;Ba zVuqZACcARMqcLqv8Gjg87y|S3DF1wbuF@!#@)ESV2uk3Gqu;QG3Cy>+k0^dh)JWOx zpc4K;^z}y%Rj!5wh`sa?|1}!zZRzopXCo}1qQ(0mV-xoG_=y1U+A3sTyVaHBNK64B zs)&-GPj~e}Tzso?g(O?Xy2tF*5ofq)ye=~q+^=3W>WVK@7?UWc$1aiGX;#xAY&qOhj9dpPi83Tl%~lZpiM|>o+!DdsmmRe&QZD+w`6c^--UZ`XI?H&C%WMn$jRh zFE_ae$?~&2h)l-z6$6^cU&h-zm!m1rX)S{U%9Nj$V_^4%1|qDHLkcwlDQ4cShak9& z&z<-_^aCKD;jD^MftCOuxa+c5ZwJ4m3)hjo>r?wFFJ39R6CnMNY$&!&(B;m(H3_%k z!Ya#XsPw_OtEdp07I(PjlZ{Ziopx99Pog~0&CbnCxIYf-RrM^3qiCse0I?|3^Rl;i zD9a`SEcCu0yb5o@3Fj)4%>?x%pwl%Ef(n6uZT?i{XA*!tFl-H8TjcPQy)$e~`}CMk z+Z}9=x<}m+|D!M(&>M0VWd&rV+*JT%M|3){=T6_ICJ_{UncYI5)q^l{vX-7JF&sWb zffdx1mTjz8(5I=!Z8F>BiPntpa{+PQ-kYDq0vp2UF}h9`CEq&^Ka=4JL+t$6ByNzj zzZas8Wm}SD7UZ}UsOCajdlV^|0^&W)6SUFM?5+Km&5L68r+yP-t(M3@8pa#t0hzMO zXa`&6T>aP_LNXUe{kH3pvzE9`DB+mpv6%j}C~we|qsTA*hxb9!NyhWsmnW|QN3*gY z>aCXJsw2R705ksewpvuj<@L0$hoIrQGx?qg^2emDYxyfLbL7F8@)nK8t@8cjXZZ&* z->r|uFO!CZh`&RfmhDT{mu3?pkINNQYNd;5la@9-m_>COUX1W9Y(_0fB2$LvuGvo{ z+14%>KN|=a{`l}MDI57_S5A;Tr0YWg6D+0RuooQq}Rs>h%39pmXT9ovdi&{5&CMKJVOH?rM6if87 zsWU`DEUpE%=%2s1(Mo6zlI85`xJt!z7~2S`$FhGkhN>{T#=K<`5!wO}Y}rRe;U^xK zlQOG+J(Uu|4mlT#KAfdL7w~O^ToGI}^H+%4Qg7r8wm<7?10ydC)?#kp_Z#GPWG%Zq zMHpsy5fgsr{W&WcDB?@1AN6AtApc1ebZ$>h`ClgaaEvE_nR<0eIlodi|0luXZ#By`O5!>vG?TjQ((ITUjW^96j;(XEIOn-(-- zvBVan*a}k8*)!((h)(tS&;z{(b5d1pR9eBZ=3^2!IvBPY=eQuR7?&`*sgEeaxe+)IL-y0XXinOhnC*G7men~Q26JPsq*=GO>Sa1)f(66N9e5dxeG5dRn>(^O$ z+4RvvEr)wtpphPznO>FlCXBilE z0v(&Dn3hiS4F<@wn#tl12d(46!1cVpq_96d0SJM9-EsSM6Y}g(&4=2%cCm@7gIw%~s{moRMnw6c>Ju$-3?JZ4buz&svRdQ$<^59f%8fFicYHZfS>+b znINWdC&U*>V4IrBG{DSxy%n(APIL8EKI*g{oCRwNxIpHrZgXT>8vW`L1h6VmxBu0Q znT-+)RDKC^k18ZsXA3Lot}E~L=|CAcmnYhYuzwht1l-DM08PV#^6dAT4S7cmK%eK< z8I<)~Ub^y-AFP4tNZu_ztY;+l2~UxxX$|tyr@i_f67Tic`{rv@)|_usv;q{y##OtO zU+_==-3DUy?x48aFe6thkoU|of*yDN5Dr@yu~uDCadFd8@O@m{ME0{z&`eWtSrBzC zp6LmF{ucHJ=AP~oK|HILnq%>{Ynjys_J1flVyIm@;1$&YWPvi1Z$)9I+9mPHLS(-w z9vt!_ue76Erh85M&1eR$;+Cv5!>uVsNCZmm&K(-UvFU#lA#EJ79uh&H1pX8Q>aUJf zuYc*q3ubLPj!|pyQeO30`cZVF(x#WSpsjGvVGu{i%bW06c zZxE=$ZS6=Az?3QP1#I}vHga|heyQq*oa5%uuj00gNsWHf*Ju~M3fK(jwi5=X)4p92 z?zI=UEC}5cv|WQ_4NzWN$YvUI$RQY?(sEjUlot&`28yAnf2B-Uq9a(Vo#ZIZ5z<*% zKGO;T{$?f7tk7;A0^+tCT@iv;3;5l8uZCB&R>hW7&(vc&=woU`(U8p0%ILU@e$EA0 zsMEulQPNf)rhl`>oO2hF#g=aT?<%){J9t`p<^qu>>ezxDFz|M?xyU@L8^-Nzps$;a zTMO3voUGOA$*Gy2*r0oHZc{#!r^Io-FTJoBqYI}m6Q4Hk{ zYwmkR{-|9Ng?SZsu0nudm_|J;Olz|RD_1zAX`?y@9dL&Z4e!MWsiIbJfRR@Hpg2=Q_UpR{=sU!Z2M;&_zzkS8`+T_m zejrjBN}8z8qwP4pe7~Rf>rWwFSmJoB->PUjUG{?;_D)DbCu(2tkM_T zA)<7=M`i{F@?Z}_VzSD-TObV`l46thBq2SqBY-S64P7%0Ha?7kWW|qHAyaXdcNyj! z#h*1(3zCe(-&65P_c0cp|4EGp3>o!vYn@ zng28aMbMVC=t`z8LP2RuR_`t!`r#Sj%E;~nh7frHJIkox*;ETP5mD2$Yqy06B}{>R zmoT2v?6&$ENc2f$hOJ#~07)A#Us-4}zdo4G6pg&z8+BI)(C?l;bZpvtNXj@iwREab z>k~p09gZ-6B_BE-3V%0UKdi38Kj>LGJ@9vdA&}}Wp1H&esJGd~Xe2{CN{1xHlMBQh z#xtSuM^;q30U>=w{Fx(J&Xri!!F!4OQRj+kt>ya8+0uYwrr{G>LvzNNka}z!bOG0W z&uqiHWufeS^$5f3*KG;n<|+w=w0>~|HUY$^$f&9MqOud(HV*BqhsXk@w4d+Y^mvqL zn)2Nk{i*{ZAtcbLzt`?cA7xQ;Isv2x@p%wd(Tpk4O)nnKdphrYt+9rxtb+R>)aWt<YRIel1U}agc|(_qs6#2U^mu5_cw6K z)U!{N%LqtdBnqDVgU{mMlg6@5=nv9Gph9Bq# z+Lj)l3wzwvAqk)eAQ{VNfhR1yD=vE%lASfD z|M-jn3judYhM&8{h!h&+x1nfga|N6;3Te9Jqns(D1FYqRsay;Q6OpIs*f~itVl{vU zkEAY$wH87yk@x~uFekht1D`h{fGc|bhU9nIVcQas-*=@xADF?B0xEXpNxv&%}0151-9Pm!RE$(&E zXZ45WFcK6=8)+;&pJIaY)yZ3p1K|tA#?!iG#(@m7`RzD3>@3L?tdkHEIlPrY9j2%W z)eZ^+!_>lP!!_fRW5!FWyH@Y#5yfV^e7h$;q+^snXQA1{n$*B^_m(C`^Z7Wpr4=GW7@gIQE0zzskZW5{XN`MmcA+I{+=he~rD^U*XO11yRwyGAjw` z?_eU;)sISO@KD<|SDO~ms(eW2Eq%$9BPy=%9GPra_K4mM~OM` zeUMEjg&D9vZ4jp4x>GA_D4tXp0Lld^q?b5Id5BLLHq;N(16p;ZRtojBe!J-A9cjod z-$lPOuM1_Gv0wT=19#{z)^P-@()`s|_E&w!&87u&6|_&8VkHtlG`T2<$Oj9M_=WLu zxk5G3EJ?sM@ij~o?vo1Rhl{lolW5vsHBOd(pKjIai~*YmG&;*2ze%rX>Y55^A{ZHP ztU`%+WFqwX`{L4908>&l39d7&(7Y`>I^Uq@%e}N2;WUTyAI%z!s{7Y)coL$<6bZU+ zvvL336Arq2-j=HNLy)W6iYZbfE#ETAe+$@IwZ?WsI4npqdmEy{g<@`hw=y35Dq)c7 zC@0fT2+5NHIG6=M@lf6+wnTLxq(8Xe9JNEE>k{MCpI>H$v^;%2^Aoi$sSxkwb>6bap} zm6LlQu}^Yf0FW9q1YxWbPT3L6AeJyVBp1Z2l~1Ds@Smml8{t4QkA$WGg6H2~J*fg|GO7{H2o1MN_Zu9{$JDdu`8yZXg3q&r;&7 zbR{XZ)xIl7Eg_O=GrcRvIp-hyE74r-q-UKIu884q$!|(G{~8w8Mp6diEh%ai!C%?F+Fc62aP{(f&e?Z9!z&w+3B z>M$@c0IF+`0?!U^hYE}0#vc0rs!l-oUDnEMfz}xcXq8;;1a!Q{gYjL?MaC-OH#+LB zS+u!!p)&eX?5s&lh=<}atjg@*#*2Q+1d+)(bK1}i5_U9`&)mdVXpcZwDz>5$ui+0 zt?!1WwOPqzE}_X<0pkjVRHyc@H&W? z2s;lbk3ZYe+wIrV-CmK17qQ!62ujs=cut{HH#75R>D%1LS<{ugD)2plu|xs-8?W}=!>3pYxdtiN*`U1eUoNJ^d7x_;G_|j7 z-EfDiM#>Z;GB(z7E^RFM`6+ulNe;1J-IR^*E6XsoTao$SVwODqDpb;B{MQF{R&!aC zG+BZ{Nqp0dH?Ms@R6j36krp)y1f{NT|1h4q@m(1>r7Jb-ls{D$It$7g=iTOluP6{? zhTYnlV0+)F%Uqb)HU-aTeFG>bc9R)*EiQ;@lTfo3)pp^uM-Oy^u6`g^ecbYjMuF_R zOW>D#V&a5FQUTU44li^F+vHV!Aw3DyhWQoVx=%WnLJ-W*5Ns!wyerz9L~NEGu^18> zc7q-C-ZQ*a^d$8=H3&i0aWbaL-}F6rp-J;wYUP)AZ^?dcjXcJSbspb&GHzEnSZM70 zz4`jaht{;#XIH<2WW%`73)A(z@BgD0^QSN);Nw|NFF^kO zXFLQ9(w2tasV7-M8JJb)=?--4;OtRebK)UWd10J~-#?N)3<~5OZEp`POoV9BZH8?% zwmYi(deu$c>{e)&{n|f^_Dy^^w^7fb&JxL)I%R{d{jn?zIq1P;{zJ_iQL+9a1QW?| z%Brn|d>?8scXPk>N_nMobQuCuBlCasRUr$&iDjrQcO5_O^7VFqXyGtsMq9#WaIZ1Nj|?43N=VR2P}9Ptv{nr2P>=|U=JOAyg4rBz;4Dk$tZVWxpnQIS&z{nMB z7z#Q|D0g?|&2?3AAAKLa6sPHsmI3328$tx6mLS+f(qmDWhEkneG@vtjxka75;TP-g z-Y1?We5q|VvF?q=%e+bGz@Q(ToMbpIVU-sQG zEojEZE!l+vy!ppnB8r{|^->DJf*x_|Eu{Y>bv#ECophHc+Xt{-VSIqwDp>>3 zRp9^?_mPrZvdItsnC1SmuO~JW_>7mT^8gbiD_9%~*_=Ju!Mad=`NhqC0z@xhI7yqU zRv3ud?WwqMNd>=tp9bbuJ_7uliQZJeEUrx%o?YGe5KkGEC@gBHWctB*u8aE}Yl+j` zqf0LI5+a7SSg~=bSw_Jj8i+5PT&+S|H?xMB`-Lk<7!q6P$!GN3EczPURxh*$6QwDQ z@1&pC9c*tl-*8adHoXGe_R(yYEAxM87S}-2mw(yFoT zD?UtjuItO6OE((-0yc_P!T~~fDIJ(ATt!w1x<;2v+O^}M9yQ7xDE5w+HRaj;v>^_X z;O{2ryiLEL6bMR{uG%B6lAMgrB5*yiJnIgAmsnEKPhbKP?GpSvb|I}CB6pok*}`#F zTQ;=*d{GcU`y4{Xtytp>Z?Tf;dI$B^z0pba;dPun^2$%ZU^;X7IiG`iii)Q4XnCj7 zQD=5j&5=UkCR3;Zvbg+xH14{=@fDt#LeutqQ07fR_0K;AG(P_h1T1kbd13!8=v}Km z!1!Z8xa)CLQ`*;#DsALkGys_zv%77nZ9g6$u>_nM$3@KYT?#6IrMEeS7tWGe^JwQz z7y%m8<3WwP=j!*#BUllnbUhCJHeZZ{Syj*z$yEZ`Pz-8a8ecun&^nXhHHT!P$2g1) zwcj{9hHt$JYNdP}emHYT$#m^XUB>tqcJuL2XTR>*rg3+nqOWgk#k3ugyuwZ{ni?|^ z5Nj00BT9IIp7^tM`5e~w&r++OP9zzN`?<5e3@%J@xYg1UT}ahI#Z6^KmKTm(`9Z2P zSLq<}wQAi(zmp~if~JK%q|mn65 z3a8feVpFiXO0-hs6Ho#8Z#{8@xCpnIfG1Fbp1@rOs=+i$rJU_%clPdYj?X&;_8jN) zYt7&9K_3}<0iyv<78xGAFcZV_aeRj@nBl;qNGi}e$Kc`pU@z&vU9XxrenQK$)Z?e2 zqY6NOs8s_fQ}@=XUvIpT1h{PaYPZyK?q_kWJDOwpo3jbQZgT$IZ#3;bJ}lRXZeDWx zO*-~r0N6Pg+*7`I!AgWQS3hE+UPS^o%TzL05MG%mscUm}9aJ!Ig13DU6QBI)Hf*eC znn=CG0~AE_QK= z(z-S=amD|8hKLLv#Kr4kW)m24r_Oz8j0*IHcJ$bh|4qOUzj+=b# z`^n{jUam&$fxq7K`u3kcUu=OZRHOz!! z8@sG!J!YcYf(l6{oOi@oKih>(zWpe^$!F>7( zN-oLFkB1BQ26B$@DP>_s3rQb=hrLE?oR~OFFe-(1@So?A7mqBT4Wjn{q|ibDW^Rgy z@XZq|2bLdO?ln@~mcRJ?U*;nfqtc1rip&K?ZEyiXyPi zM&(JZ$EZ$8;e8zJ+?=xT+awn@5t9m~^?C$OvmYv#t9;RK6f_;JuHJ9ssx=9$TlYm3 zH@H{wdgqz*gi;A|#HYYCFWz5WJt%5yug-6Z52@Z$SHo|3gW5wY*GK)gBHZNpEf7^3 z6&vMt$NBbK&jKOGxwNs_hdL3~VaFX!Vj*0MbUsaH7mjJrgvg?(Bt`(LRoZvwL%v$|Yn! zV75RW6oJLsnQj86x6Ln!oD@@D7Y3eI`J zFvn#6!p=Lh8Nvte7BpfGCa`3WodsQ41ZLb?Pr&nv&OR8U3aQ5#YT8;rwKG|6Kb(zkuKK+5*ItWy#;QjuCHGRa zlV39skQWc#vWIFB{sySk>%cgLKIiKx-SY5|dt-2&3oGrRSl`{eU>!*b35j*wvqqTH z6VPUEDi52-eQbG;EE+SkQ&CI7J0E_m)mgX69Hg1!u|^tBCn$#LqhjXy*c=nwt>Gfs z1Y9qpnvcKnTp)IGufhB`6V3|}tq-nm$-T1?nqTnuIm%=RsuC@K?drd6Vz5mLZE`6c zlA^`A&;}6))e^@Z`4th#x6_0td{_^|7`^d$!?`29s&VYjLcy8i5=czLPiz1cX|`LE zPtRlj62S}D`Pd*ZPrUt`=iddiXz0X-zpdKgw28KhX^wB2a(lv0-r3X}Be zASs9w+jaEadG$z?UWkJbSNn0V^Z{Xg!fMQobV^jGYD{WY1_vs*``-8#(+*aZIC)2* z?mr~eDx38WyF8r&J_Rw&8@pV*4 z4N`quGFX3P4>Ix3v6ZnCfT*l`oS2!!njd;-jhnze&ZP^H;*tzvDs^Wy@w!TvKX`Kn zPMIRrN}8Fy&+BALslM!Jj_hmCRJO@=O0(U+5qzZLXMkD=q2%^ZPSZ18DS~Q#UrHr# zJNcZuquz_%tVsZ8^PpVesDPf7?m@Nvm}mMCCx-@)xiMi!#%K*WVm85KmAx3&XN z_`I;9rfW}{rC6-X8b5Y?E7$-8B#%1Nad6?B+7&5{j~j;^eM+w;kSpgs@y z_!R%&vxfAQ0=d06uN2i*|a!Vnn$yC4M(dW2T73nrz=C_~afNLs7?RVnp zZH5WvKFd`r5$qs?^q+A3{d-q~TfBJ`(#TwA*o&|k9NRf@m5(h3dV>?NobX@s33u4) zb)Nh1GS_CA^B67N38!sSHA(7m%4Rf4szrF{o=l(se>X?uC>jr+@+E8PcpOw_t2xBZA8ty!GLZrsS1#BE%sY&q$oagK%kXN*4tA3~ zC&5S^s{33@;ozSmD-LdPbnKnW#Imb}2(LUP{9<5L(qxj*3pYUJ_XGxD(rdiA&Nz;m zzL~HIS(Q++)V~~-)cUUI^lA)oq!}{evZc^_j=cY!->h{134i$s(-nV8Zt*0|t-Ck1 z{rBTurM^Js_ZL$%-Ccr87;=`yQMknZ#6?!mZ-~5aCsj4kjJvs`TKCoLLzPA3Voh6T zCO+$^^o|G2ENEl)3Chc0<^zjt7ltbW1NEE@=b*I+@&%O4baMn(uuaUJ7L?u5Hx)qO5;O2yf(ob zEFNd14xU$0{o4r`@e@+8f=xK)D&6z1>VMK-Z9-(QEVi(f41+AHMrcV!_z^0*d?2X2 zf)n5o(6KZ}s7}VPrWS+ZAhOT?ngOW7sTZ1C#?DE@6nv~`jy!O?# z$m3_t^^HM%Oq}5>O=fTfmS^%VvA>WC{r-MvI5V-Pq-?v)hX~Qpea(`~N5HO^?g~wv!`a)*@Z^ zaOS&yQI9+YZ4_9p;p3z|&f+!tU9~!9X-%4tp2Qlnm${IFIW0%VLz=g&55=>=?V&NU za2tEaLn9m$Dw_{dl*d{cbz79pqyxd`v_F}4ptxtOx|okCV%3>lF~i9Sre+VE8tl6aXY!DFjZuvhNf))j7>*@g@u@)JFe+4Agr#W4bFxp zBp@1z|7t{BwE!KuV#}<%!>UHrJLi#wu6xL_0@LnP701OR!VXY4OSaiNF1TJFpAtQ(V3CfMrytXgh;O1}Kk1&B+^F9-fIwgZ&g;5HDk>Ux%99|} z+vgrDKv@p9^Q-+&Sw>H9D2xYUmQ^$zTf;O9GlO|0%$Gk48|`W-bvV(ldGJP>+eB&x znJ?h0d5PIxe&v>^%-H$k=>mt=A>Kxlz=OAvRstw_464*ojgD8a@M%tw@JUVm%o#)alv9*!3 zzdl(5neTZML69;E(;E+?i@?S4>3*3vmLJqtR_au9z<*hl(TZV&{3Ddj zUi2L2hq32%yWc3hagv=in~$`-QPqQ)gcrWT1%UcINk7i<+h&Ig9J%otG6-4k2b#vkyLmJnXqGBVeB)Vm;~9FMBc@4pd0TjGhms4yyptb7UX zh)J%jD7>Iq$8Q(3+n~qJdmoPIuVG7|TO+x2Px(ixH!%~A{j*;nIf8N;3(=RZny8qsl2e#r0a|_YaMoO=ja*W@ zNzc{NXo-(;41kyId;(R-K<+<1+GUcIZ4r(k5(MK=Rl{Y$yn?jW@yh#6uVMrxLd+2n z*1{&(j$FD(Q&^SW#)NNG7Tv|rqo20p4N4Yo)|hXy7~a{-DBNMm`@u z=X=7Z6<`VdXHa54s?oT73@ftaLK%)14Op+g(>0=8T?k<+u!l z9bo-Gh3Eh1}?W34vPOypwrvnu%&QeExHf3$Os3t3H5v! zBiAk_hzVCwyhYad!;-0k@~T}LwIXP2&$rQJ2!n0<@(S&nG^5`DhGG#fSqALsq<&CD z6D`=zG_}bUEIfv5Ubc_SR;85NLa!OQb#0-nHv9~Ir*VzObnK+9U|DHQ_ChJj>queT zN)$oRy%D-OEto)I+Cx3YMyM~6(Dmt9FVv4|O}t7ap}*ZNMDU6~qX4*A6fDU+`-FUJ zB$OSgg`L-zRG^S0K3`y9TFM2Q???qKu(0+|DVPF*=6*?Xgs9?N4G?kPo>J8R6Z|WK#=lCKG`!CU{&gvn}+`bwUTiSND#-|}u z(etts=S9|8zh$!AV`lDjzr?Yf7zgp?xPUniApd^nW#j~z{>at&^lpN5%++sxG6b5c z>Ka(Q!>Fx9{aw_1&8}R^y&!oS%4AlZSy8oz=tS#Qq_{B)+KX+N27i)r+ZzpBKHKy~ zzX$VkZ?wtO3ON9xk(5pl`2%1KV|x^OE`B?pZCy0MC{{R>S?7Q+?LcT}NQ-Ub(ITYI zkTA6(a2I%a?DN%?yo<0IJi_c+<~+M-l57JV)aY%S=uY0ydt`Qp%+wN?0&>l(czCD z4DcP;Bw}gIKL$N7ppSSM(ee=r0A3qgfI%dmVHkJj4%p+aHbrvxErXIrUY0id0oL=W zOLFVfhGFkk_2bwUUx6I6DY!+zw7eZO(MJBRgnS0y6&`M;)c0nTTBr%*`*t`ty}=dQXtFI2 zC2+kK;&rSNO2#WcY7798B&dPmgiYth8tb2J7mCBn&&4HfL+f8$&xo85!cFx!IYm6! zIZ@zwpKz+CX?61K78z}>(rbV1m;f6O9m3rz;cQs2+xW% z+*#(h(3T9}?2g;yL&42&J<5o_c1teaqZGB;;fgdxp^eRiz?uUFj|`Y})jh;ctPk<& zB8UJ*@^}*b_-jUzk@~gvJHZ^rAKxnfJ6@0xge3{O@n^!Zia|>ZvFVXfiv3&IdUh?; zyG?2ORZm)a^>2|MaB3}wuZ>9@6P#C#5gyu@ml(U~#m^EBEH`J8Ve@(&&w)%S@E0mA z@!M@wMFFLg4S%Yg_7XM%a71>HK9>VqoskPdd9{ip>zXPmNYLV)umyWb%yEWg|5LAe zQiwSG12Ar%guD>k1g_Mz?{KaCssqk>2Sh_gb}Tnkhw?aPh9#U5EVPkX$w(WIio+YO zY~gmjVV^kzPCexk*{JgaZpEDpTYKz67Xq4~XarGCI)i7fCf*^6!TJet$eSwKdELAG z0*k|5JhbYed|BIDSISqfwe0L=jMet;z7u@ z&I=1_wId z!I|Rmu-rBZXY+@L`?bwY$BW|49uE(ZL7(mc_tHYIT4TWmJxLVY$dE;Eb*N4pR|UFo zb5pkPDoJ(t0oG-miYd>J;|g3(o{e3&ojG!(f5l} zYl&9CQ%=C5sx!DUo0PY`d(KApvUqyqC>W{S0}Sa-`Hmzh;yKN`3_vod^8{_)4QG|>Ds|pM zfy*Kfr!b7)qaei(+MmPfnzpU0)V6)`k>(rThY1ptcJ1Uv)IRgv7bQ-cKmF z+a;fgIy6TXp70X?S~;D3(qC{wjSr0YTsedBPDJ2MRH~C{^Vf!BgSi-L?U=G2GC1HiV>uY;7mA?9@Rd8HwG> zQium40k-TVDBa+S1Ue#R8fEFXuR<2?E%P^Z0WYhJnIJ4~gz8a#tKoKD)N)#THkSQC z&MWeg%VP8kbk{9&sLH$&{f%tkMr5xxkJ_K{p0?wuj>L{B zN=QR>SLTVgAi~Q;I!O1foB}wUGEK`}oqv0d%a5w;IziMaQ~|P0f5MiVIu%$*swz*x zTWwF767l%Ah7z}V5$4_|D!eBVCh}n0+uMUTN517J|M4iEXGd@gLw_ryKc#;`g&A>y z0*?|6fZ}cG`@4meyb4IWKSZH9Q^53d(`GXvQYYzUPG&|w)6RPhSSwvj3iiUc?Vw2db?h>=(}0C5Cd9sg^s*0EPV(21SRDx8JtLnNK@ zvmT1ELh`pbaO*L4HSf0{>C^b0+bTtpky!p6DpYb6sQj{wc^ZW5^< zj3q%w5lSk}wlmQ}q~z2HWpsbih$Yd?_E7mGCE=%2slkE*P=+`Vr2y3G&a%3ZMF5=j zTfEZ7|H=LrlpYl zNHC`|5UWlXL%`7a*;MT=u%W8keAxMPZ$Qy@&5L-!UKMWao$?1$``Zwcw8b<$L`*qY#EhBW#P^iLkZ7-0- zhlM#kqPS~F#kLps?MQ~>)!J!nMT~ANYgMg`sq}Kz9T?v6R9iDt9u?OUzrAt((Qr!$ z`fKB3qv4<5*0z9slBlywH;Z&@C{!X>)V#wQL>U0dSwJ7HyXzHicw3ixl(1^U_U=mJ zA5H*3&t({n-`4Xx+`R}xspk__|3EYUp+oI!4^3xhu5}Wia>$lc09$~L>`OG} zi1@XHDiS|W?xWG!kV&cV-Hc7v@E(65Do!QpO!hWUdB3xx+cE$*iI%7^CTSzYZ)-%r zf>JAtMPzdU{^hJo{71dkyfSpV$jbD%He;0U?T}AoOaEm$eecTgi#$W>qChZzJG1!T z0`cF6b8-f;s-F#4jGu3S^&-w{M zDD2pe>Br&J&8^H_)xz<5sRg8L3Yvnm*Jm4mz6}5D$dprk!6`4DuVgvcTaFpac~10R zS-_opzdlFY4pKpCp3Q4GEGWkF$lLJelfi;x-hO&r-jGG>A1Rw1qymh+D^H~Q!Y|Gj zR@dPC|MAS76o*;oJAN_f#q$QJ*4Y#N-{&(dXXbmc?YSB!CS~t1?*TA1Yt{#KzOIzA zwbZ_SM(4Lh7g>lSBuxNf==Dt|`ZoBZyV&Ka)5kT(zpEZ@5BoK#OYraNp{0{S1R<%P z_=t#wmhQ}?yWpg3afyyTwly%6&lhISk;xA|)FwPiNe0g)->yF-?7#S6fES$0vIpqY zf&aE9v+*nYe?q|N3pmYHGh<%cHcpz@aAF?;0=%%AnKLQQv8epG=A&2529@q;@ALDh zI&E-HGo}FT>(>!#z{~N%-J^~d!&vDhetdv&)0&3q- zoNW9=r3ikaTltiEd*@Om>0oC3D)*Kz=nr~Lqy(;6I_Deh5x9$-bhbekZXJPBpUY{x zzhG;6GCEs|qWXhbZxjz^r5=o=i-UWe{d_k-7yhNm` z9IxNo(x34U5DAasG81L=r9EOfw-j9rczASwUJKl2+aGW7%9xaLq4_jb)Eu>=aMY*g z&}-AsdF7GFT&_o6Poz+!lc^HWL0;@|@DtGa1HdRHH{AfvGm7e>_y)aj+xhoE{?i<_ zTt~5X5K{(&-dgR+#Nxs54}agndpU9vv}GV2QGVkS`>h~K3$}p&!`D|vH5vbX3nGkA z*r*{$jP6oGM~xbxpduyRNP|j;Fr-FHmxLI!AR&`>j1~}(5JVcOk<#}y{rf-n{k(Wy zcn;^t4rjmXcYW&X z+OTcU=gy9bX(f%k-h^FtLnswdMW!W~)g+h&AJ>&AnU!5?X!GLE72>d<5$rf?WKhvS z_zpt4smq;cOr7LdqEk=!su^RZ_^LYuFTK6D`NH&J(Xlz*pEP5lXa39MP6+U=XhTMB z|DQ7APmv@|_3T_cHH}yLQqB~exCN(4Qd($TwABZN*_=?Z#CVw1=kvU?l{}G9lf!7+ zMIf!BK+7>;E;iT#aD9yePw<^FNW=iM?LN{Y^47vR_+!kLeiTyweBCYBACO@lxNsfn z4F!WEr1Q5FncPLqcy}v;J{SWEZDFR9)s`o*9i^%lc7x?7FA19QBVXVmTWbBbT1Qr& zk&VKN7?ZfBc_-(i&Vh6!4?GMYl*sQ-ItBLwRbC+N0rCI+HZ5ix7WA_5WH9uLlm)8& zYCF0QruvzZ&y8JJ`=D0~oBXy}zv!pTywH_unccE+DTkG$d3+VHHkz$K3as zhCioMjvAYOD{t))F%F{ZcW!TR84Qaty~a{Xdbe>Dl~^f*uKUVc}LJh~M^utPW`6ylX6xez_|wVPqj#%&Kh*{Zhm830Kj; zZSoPXq30^PmkySjj~kmOp=H3z^Gi4l{4Yz@PxoCZI<@^<4x7=h7J?;GQ)mzQOE=<` zZr)sn#6kfaD1u`PpxKDz^5Hd=cFC0@E^uL9A&O8wa%%?xjQ6Cb1#nHWCf`3DOgH+J zba;i6jXvQ^>Z0sRDcT0nnen&z4<1fSk-UYeYhv^RfCA}R(w2#&FN9b%T{KVqL{tGd z8}wUST5QkmAivER!^)Y#-!iyd(|pZW8;Cg>Ee;?4S8)9EE^4WVa9sDj<)G%z5eTC? z#236w6vR76+SM@Ts!v}r-ndAjg<4YSVFX+F+;OG&M!ShtF{79`Knk;7m~7yuF`+l|FTe1)meO-2@^WJafZJO?()#PsSB-jTaQW*ftrl(B6759{OZ+9CiOsEe_-m_q!mmAzn8!H&96*6CDh3oBPB7 z@r)Z|P~#3q?5fZRdOl${UjFs|{YmL$NAwx+K8(|bNQdkzStX7;teaTX$KAb2`lyJ) zjlS(6j^f;Cv35`mJ^p8QL*UNR6AarKl?t}r0TuY~c+~{|mH3F${_jo0-e4YhY2?j^ zU4&gPe!$Xp{h8zG1BQYv*W=CMrS=AUdZsIm*5#%V+gBG0xQoW1+ZTIAwthFf@_2m~ zzvlPJvkHp0K)4w>SN+02~z))jxxyhUn96Y~FofMmTec;=iTU zBu!)@+76A>KI!Pxfp3={)kqd9x7iq`^t#*ad2cgxM5fY+)m^JRC!Ee482PQdR{;a7 z-FXVSML+vCNtWMBZ!z1ULAL2^ufmP%@McnV*j)uLTGNYXADJIf%Jkd@3$ukEV37#^ zzJsv#n;sirF&<=vf6%WCDL5VAXZR*j4edk7}yRQ{YF>eu-nT)#w zrqMxJhg?^q2u63#^9Kz`6Fl*AS%v89>XU7hz!)EXFG0|n!jPm@Lgrl#Wd$UOh5vEK z5-7R#m8;4fx}xqMpF1&?{W(d=(A&fJNL;D@g!ifR{w5v9)%t*U7uVUfcLBw#dTtE9buOidZAU0{Ff?i{ztp@ zMljxu6RwZl{RFh{Q~a7;FK%2p_4oSQ6fExU%Y7Vz2>5?BlpFbX42&Ty*}umH@Upux zUv428o<~E4v+q$|u6Z!iWvVD?6CIUDGI(qeP=6uaKN9#14@s}!&Q!a@rX2UrV3bH` zTCJS2JdE26f)BEYG*Dm6bSnT0kTvf;f7z##k=3ii?LT%o^i5KhRVr6rT929`_hg3_ zzMdncbU&WGnFat8Cjt?7C=U5q0cqAN*Q`Ic1NVaM{C8&wur$FJ?4`U&a#SC)?>d+XSziSz5a}y_f{3fh>zN43{iJ); zDS-}ebFKfC`Y}otW|!i$!P^UNXN!OociHiYXWJtgARX(o3{$-bmbJRB(j;XiWs@S) z7c%;1oRAK-0L31V_Xz?g1Lvj@K$>{z;HIFvr*VGhy)y&#Er=Jb%bjROlD=D3xmo2} zo{nS9TF*8Kah^7XsP6K}=fpZYS5rXtx zd6mZC3oHX-Y`d}3rg6OZJucao`-n{8ck606qnRO&?kbc214;?i!+~>?B_$2B7kH#J zrq7k}N+%+0u$ukeN#2a{`OmI%m>y~q*5;kq>M_GJ2lhaC=H*l&3@HnIX*0Qw6 zrzy>g5CMaxD8JBuMP5HWkzj1uJo@ASjLgDIW4a>IjkLCJFR%U8g%JVtKsf4Qso_b)5^?U(4v*=OvRH7|H=M%U8Y9 z*XLS+<&{m~X%DBP;&nigl)F=D-bs6Y1KS_R@WGK5n>U0A8NS>4>Kq1WnDmMo` zDG;UTIXt;@f6NVaFH;p-o3Okqb%j^%3dRnW>rJElVdQ-K{u?&cHyz6S2O@JV4eCGh z6TD(`2S$AP9GlTZojhsc42wHXr|u*_GeWhMO1CVA`&G_mVhY^Sm50=KZ?g&{_VDOw zYk=Yh_ZW5PGJA_aqO?FO>iPnoUKcsV5AX(U$gaF#B)^S_V^=weS5zv(#UkSQecq~1 zF4ie~jt#E>^@=gapE~Ws>X)$vE6q11X{l>Z{^`Rh(C(5rc2r%}O=nlnE3INT4SBwPv$gQ06HyP0=S!Qv)xiICuZ-sLuE&#Dh7LW_rIRmrMX=v`;}~P_GsJ#6cUSTt;}+95<=W2{x#BO)9h9dfcTQJf*fz_t zsZCdPc8+GqzE{vE{~9c;^C z+JJEP%|UMAU%0bJUATB3t#cj!W#cg9WYwVAI7wmY7M22A3l*|@Y2^_4EY%XtAwbH{ z(R8+2arWqmm_BNF=44SiZF5^LFnw?vE%HI(K1n$@G1eN(n}bm&&-=V%&7;VaZ?7zM z5x@3Ie2KnGM!vf;kf8;pOIU+7LfDTT>5FTiR6+uHz(vRTH*=W=b{=xuPZAW43Kb@x zy-a;kzEtugc8jtLcXsYmeb|bTR;~n`F8gGSS*efZSjm3;wLxtzN(;typekunt($@v;j7#~1Noot@-@}jj zRFG$KlNin2m+!gK_l5R9M0}V#KS)eU3?rd3NR_4^#p_MvG9r5MVcRD$?a%29a?HX^ zub?>~&(F~_^TPE2gWX`}XtYj>bPDRZX;X=zQ}p`+tF#Ag2~e&mN^%XD*|i$SzFsIrZ?)l$CsRCusc~sx|wP zMDXg{q|-u|x!f( zfrzZ{w(UoH9FA0dH8d2;Y!#bhvb>p0X+L5|D8E+;ayY0u6E$M~`P8>PLxN*iNux;K zaOI4Au~XmPkmUaAR+dIe0>5NxE54v|ik=tR8`U(T{HAxT`IkqiaG5Zoi2eT8I`S0s z47Z8isT+7YzCj&XIbJyQ4QKczj!~SUcA)Bf=GwD_N?>6U zHrkNI>W)fnVvX-&PviN}`b@9&v?N+LNQHm^o68YaJOXf<=b*eod?=qrMi)&{WVtq0 z*U-j2f-*y5w53%3(B{SlkrU!l1~B?rGsa#&yoBf|e5mq9RHfTz>fx?C(hNtJD-cOP z+hhz(3S_SRsW-FBmmXJmskU6Sm(%N~|9R%~uZ$1`R6(@c9XpDVbVU^HdMJ-r@lfzD z8Eg%-3(7ZA=4x+alU_jXd8rCgXhjQLMf+>)Xig4dl6HCi0mSf#2I zSIfq-xAI{vdUWaAg~LdE30&pA^bx}KpKm>P(s(1xOJYf9ClkkRh)DP%E=GB(8W3;N zbrvLwonMB=7cN{tT0QlJK@-b{;@ORyl}o=U#M4+PoF5LPaV?Ag;M6lQ?`O(ybczBi zkWgG}=XVL}!7sB6drxwES&E_Wl*i8Bu|!eFAvF37+mi2|y`xuKmK6=}m;s?1W)_Zg z{5QldSE;uvO~06bm5?5kr8`)+6x3Ie#H)$9=TpMYNN$xF5h~Sd6;iVl(C=lgo7WjC zb)DhLl`9N`ag*!btk#zD&7;&nrqvAR<;LAOg<0MCYA{R|H|!=U`UU$0?&xTyiAd}B zWDUHKVbvYO3ZF%!qQsP5ptT-)zWm}@z-|mXJMbmJzjtE73?Wk4wIfxwktw+Jeukem zJf;a^iE2HQA1-}7zYS3PfH8U2)Op3)hcw-W_qT^>|Ix(UH$Y<9MuvD`RVF@p&l;w9B9fK)l`t7r}yf`y7K}WeW&;v z#%%E4!ubr>2IQfSih@|W2s_zIlRLVqeC}3BN zQ6$WDVM>sSh3iY=o9(}B+%>F)N^jibCSP(ybwlOrx_nNUJ641A<`zsm?AFJ!uVp?a!f{E4%1@YD)GHV4;ZlDD6u|UTT zYTq*meN5<#z|Wvth2f1aU&_P=eAO^3*u6gmC2U;OW$Gu;DQV6rDRV!9>scP z+4AV2$;{Ly`h931y~NK_dz2Nk)KM~YAFrQ2lQLf&z?W;zxMNq?GHwlT9GPNX!yBP> zzz)Y5J9)b9_}7q%hws1Z#K(|s(uPm-C?G;rIPYTV8gTB5%mjD_a?>kHrmm%$VO41A{1it{`529ALEu15w)h@9n>JfDZC|3xuBrz2E*@ z|EkTj=nL(o?jlHfV>18mxzJpm1qB%o4YAMV2&Y(_j;1Orp0LMY(XExA4&7K_RX4XeIvcr4V5$=53 zK9cS#ue?tl_YC>%0IA{w)vxMY)k^OwNTceno(5iIa85K#HwR_N4P!_0wL%w@QciLlURY8-B%;bU(@R>DAVyr$@;2>TlzpTX` zXUE5be%@tkiN=c6|JuVwvbc=M-Q#YH6q*71S_s{(l{hc$5e>q}*s@A6g2&vhMAwf7 z^0kU(wx--YgH-|LOFHGNJ$$72i;*)tMbr}AwrJ63k1i3?Uq3=E;?wTH90n$WyM4gyHN4VRt*14@Tv(0GAN|BGt|os$eyTzn57pVgRX|gj*2D)3(RXS z(ixi%4#0o`m<`yPF;Ob{Q6xj|1Muk)7q?0@|K)s%=R=5eTzsfZK5ea_-xR5uf_cPI zLFX&iHvjQ+q2kV2ZE3{RcSytC1TL@&rHEXp3ezv^)J?|@EkdQS6c%zkLzq2OefQ(> z1NK%MAb5vCGdlts{s#Fc{f6JGCz)6HE85x#%1#2kX9K0F@ZS(GNn?@S7ww+ugS5A? z;JQ_wzs6SsWr0yS68xHANcugO_VK&TW1BH8PZV2Zdb-aY1WUM$<8aKa77nFJKCw($ zjaTFBshAS!GxK%(IRz^nMOV!xnvcJ4inO)(j4l+$%YPJhBeQnEEI42X0{J5>`Qs^A z!d}Cv49e=s*ahu2srN~KeowSi&&%GVU5%hmpJ#m;XJ}uP!EMGqI4O9Z2;UA&BT1kv-FKHfzxggU*37~gewMvl9|~F$XYjl-qRweyCdR8qc^s}6wY8shiC=C& z@JJJ5?`RX{?uvco?ndIM#=FKb^jT615%#KrC9w9FFctkUlM;$u9lKixZn*b&0pJ34 zEfg-Do?^l6n})BY3NmBA*p-Z&9#ri82qj}JnJudxP3jpS(S#fNR3*@EYj)mz?WzZK zPFH~;)Sm8&VSOkejD*Gx-T!a6RsxABb{T{q58ck!n}wf{K8F?+c+2HLSsc_N8O?kw z_X^og9XRfP)dJ*tTV3EqS6u!p7!g6-;_3zOS-Q##*Pp5F3k3|qgMhEC) z{H4@ZaPhWyuc28=N}gox5mWp1D6+`?*(yi{{b>^TVRMmWp32g}qVH!oo13bND*SFz z9?T4mCmlCC91yhaKm4p)9?#{RyCd`Ky&OYAjMwpD^TH}SJD2H^u&~joHp%uqjo_%X z6ptwFd@zpO!@>F8YjZWXgPumyK;#uas<*0N!R&3mE9KWa-{qY;fABl_KEh5hb~OXC zjp}#%zHZog$TACNs{8GsV7^H&2U{8;WTuE4M%2YH_Nmwx1QH|1!A9EiD;Jm7b zqh~v-5BH$2n2N~@ttZm-7xxDlwx?8}VN6+e4Nq!DpDJBALkF6@m?Hw*qA!?Toe*88 zzvrB0&1!ER7{XzcH4La)OzC_c{-7V{FVMgr5TOSQkhdU6g;y!QW`psiXFBy<`8B(RAeN-8 z(EU%ROWVK}Q6b-^`6GZ!-pRdqbH3jwZGB&oA?disa4WcHL@A_hXv!@-Oxc)M@0w2W zZpQ9-uh-F=ppL`wDVmEy=2S6Ux0357sI-z3&0aB6gtg9 z|0Rib4gRk zW!p&2%w7PCSifVQws0zQokMApN`(u~H0k7YT$=hz5{3_7#W-Y4j@_+Bq^V_dX*||nff?9^E;#qsG`G{t?QqxW3{!u@O1gtnwX6~x zoiwEIx?%0hI{&qNiE7f9zWL)}7`wQg%N@MJK**G&gYCYj1R!S@*V?|PG8vTW(td-w zc>d_;gO&Of>RsR6sP+9}Gp}REfz*<)kVDUnh+KP6n`n{w5&8@vG3Mw*a&J15fH>7M*w;B>p^oHjs92S0B(0gC%5TxD{L0SCo5rPKK0ls)z$J!~v7|lC z`u3d5z8e}BV?Z%L7w>Q}mq6PWA^&rhB5!}~RYnlbQta`O>A&{=l;v8;W+y^Xj@T}ZmK50>F*oPPZ4f#MnL!|+au zb~&L0UGYdW29ejYu9c|o=mp<|`>$o23->dY=$~M(?NGGE$ai6^TobckUYef8EKjbq zwRRnH&oEkD$}d>+i@&*A-=uTQp|`l7d=4<{dO_^>ri?k;8=UsA%q5AOk3RVA^o`&W zKk#TKa07&#oi~&-z+lA5ce`suGwuZqANk4?*3NY|ATGK~{VlzuBRlF8Uv6Lh&&=&IumVQ|B=$tZwy_Ktelob~dopRWAEr*Oe1gU9w(-=q#Tny|~`$spNBP-=1 z%{wRp5S6`4+43vL7U_QbvRb_x`wu4#H^L&ibINV^1MV*!7RT050tb4k-vt-o}T{K$#B75p>>t|!6JA7+wW(Xdw%aUqTw43R4?`dn=z<0xzl5>@_jhgE>HU>0&F zcsw*;WUD=>l~3+Qo6D_2d|0Js)jL~9;_LY$qFZAie-e;+0^BwNt=QA!QnD6S7O$+lN z2ioTjYId2u<2rf zILr~)Z0XubLs+4m&}JgJAGPMh^HF&u;MXJ2BjfP7~BDs4vb`Sa)h*Y|StlwRo|M`d}#!1+DY&ni{1u-D2hc%Aij_6L0 zV}PlqJy38|D)4cRW^H#w4L^)sD*3<~S6mnV>u0#csIqg%)2svx&fzpg4&g5EguNlFLBd}t=-%_3KwuYt}L zo)d=rs?b$H1RTNPcd%I#Gx8IiWu&w*-XDDyxd~NL{>VN!lq;@ST;^cLD{0iW)fEW^ zTsgjRl^o>IFS;~0)(u+DK!ZJ%R8ZoY=@m7J;@*Sd9B@{x>xKC21EjgkFJels+bY3l zjfu_{`?b;1B(d&;Y4#ZdMuAx>mI3iH)2bGfJwA^}dhGK8pSIp#R-SWY)12T2szDtN z<6A9~r=vF-7;RiV*0=2&*i_nWQw!aJ-J{e}4NVCNNU5c{Z#A`Ye`=|y9YYyvPkd=b zezSKi2(<8-lG|^qsRW$j&S|}BjD*;bR|y0COdJng5#YxyVd_1 zUFnNNq-P-lsur2-Mw)L< z?~@PEvkLAz%E}T?sK|%SOTQd;ok(E6SHpHuB47{2?lvrn*CHJ*{?f*`_(@sEnz3;j86IF;ncqO~eJ9|6}(%Tp_<=*@+}Y@h`05 z=L_tV$|o@61RZd_tO4m!w)dj&P3xAY?!4FmUq-{lfb2Y3cPu0yL(Ls1zFuACb$MLm z+};e|e3ZjAW1H8wl6QWxq?MaLe>y}ql{Z9IvjP-RRUz8hlLP0%(v;6y+2W2@g%1Io zXSJ+u^ziOH^03cs)Ca{!?g$Cx&f5&V3Q;ZiO#`!b>0XWE)fWU%=i%;jSE*2wDr%;7 z_d(evfV%}8^8^qWn7jD=vnEV0pI} zM1y_F&tbbU9|M8#dx6sf5un=ngQf3BdTq4)8gc@*t|3XiP7+(IzX$a1@XnmkD-AjUZ5Qiwz^t^Z& zynjdWMF%aH8Ff>9m8qO%Nw4E-MvsZs;`{3Qau>jZ4c-^*{z5rA;PjWdLX7fs)|>E>T80R);7}n5FyZMScjD%WlMCFjuEdo%()txJVa8yPH$X*Bb+KXJg9E zaFwcSRe&grkNA&`$OH0})AgpYgI=vSCNs6`DfIuLm&#BOsXfGgHiFlvLl?jzUWWXn zn$K~iM^Dk?h0lo0pl?uNN689@$+sOU=6}-M3QmPq#NC_;3cf`=!NJOZJ^qEPP|{6h zi8XrghI zyY2t(tu!&wb6%1zOwuI9*1X6|+NZpkmP3!WKraEBF%38QimIecpo>si4J7L6QUuw)F>K zcubx$e51TJkrEbas3A{bJp>(gT{5kah6t-%ZEsFF0ITpRODL7IYYa5D*yW}ruz?`N zoDk96Ws{4s^EqCW9O1t8>BF!^iQ_gIzp-B*nNu+hz0dI56uH>@J$M>L8h>wYTo5Tw zktSxR#$&NzdG2((tZcDCN6wn#uz9iS=BIcIWydPq8eG1-i z-t(!d|1cD`1Bm73?{MJKO?%RsYW9Vq7>1l=)P*HJem6{b&!dg_crv}oajqZMVoK?j z>Qkq(>38Rk7g3M$pRs$-uRytNQ}FKv9|2^&sPSyuRD!v8c&Yh6MnSzks3QUD^2!ZI zODcpFpx&l3L>r)AROcrTMlmXbAcF6i@}O6Mf426a;m-t~PeR!$=wCAWh*ND;0K3*! z0eb*Lz{|%;D<@G#&Hkw7xoR4CuAovHQ9lS74JNo>c{;*@l2Pkg#;B(!NdjpX8GbnL z>~R-$ejlVbT1sS~(U}&E)X7!f4y2iroz|$KK`xmN0T{&K zlx-+=g_*Y@ve$QTV!$xcAa{TGDHF9zbMj07y}HXv62;GFFV*oNv3}uIhO?>c_vr3Z zSLt+kH|HdcGUsfIQUk_9N7q>ImQ?vz-e8a{z2wm*$&HFWVj-rA+MZl-FVyiB_+AD8 zNP+}{FhGEL$-GZj3t-&uW0B|owNa`DThwIQnvL`UN;X!MCTf;nmePT=*d?B>q>>YU z&A6YG2t~0;s^*({ce?wO#%$LS9lbODDiCZp!B_>8J){oW3gecQG)35|t^I!TJb*HD zKAe43e|#Xn{HNu-fwxOfc7{}rMqfg{Ms9yHF?q;^mrMzgL5@We@-Jjn(q&_bQ`_CF54c!~Q7$2XHFAGm`Ea># z1SIaQwbraP_??ColmHsCd0dxRy_Tx>=64>tTpH0=7L{_mX&$>&`jF!jAmIksN~%AO z{*sgT*1!7)*mCRb*W>+G|Md?2M9-jJU|tlFpfA~1rZpy3rV^_)TV0(EV$wD!Wg+(t zJ%!K_%bjDjGp;t3bUqsjVKTC?pHuSQ60lqnAvHCZEGavilUeHEdcXZ~d&Ya=b|`0{ zssN=>t20>3ayYaVwrToXO@-49#{r?QUstBoDB-0_6R6E0`=d%&^MwnF7c^9q^uFlT zoUmbCv7!YQY~Ap*x0HLp6tE>TF?Z~mcpbO29!B59o@!&~#%p0amJyv$Zg}kL)H#k8 ze<#;r)CDbn*!gg3jf--^piN^htLo|m*IbC&8x}NFi-~&s?b@8-x2BD(qhJsn7ll$T zx-(O$y!=Cg>EV?I*xFdSl$7kfubW?D?~w3rw+jz{d42me?7S~&(?LRJotvPwDbx}n zUsW#pg3KiJspX=7kYi<~pDL;hY(q2_qAOXu~$7_?@?sTN2uR zr0M{dqZm3?W)aVB2(_p_`b64M?IhuX2iEC|61WGZ;uM|f^*vyw`l4wr=ub#azZSN}DfEMtNt`zeFWV~xNYJVK+y#wvrfZ|{ zJ-=TaaNFNmtaO;An$2PnpxTz#y5}_?ji(il3$=V)iO%)V)7d_>U~>Bu*tsopx{j$6 zpLr$hSX5Z6opn_jqgNx?cah)Aa(7?W&Mbx@NrFRQ>BO9g8ZPv`U4pg7x95yq?BkcD z9hGTXRzBPdt{1O6AB$nng{uMqUaaX?@5?LU7iQBLm{_KhkU=WRlLXGbjS1Lzex%czy2%m8Q#s>@aiXYwDuv#JO6IwJ{8gPhiw<=uUXR#kUj6f z1vpa0*+?~YB2xwsAA65K1o@Fbq2>Yj&*8}YE=!lk6P&MH9I?BEaV*&8@4-0*7(Gyk z(bcPF7nkH&fo{j&EU3-w!LWsi4Z2=0Y@VV?oR73Hw9`|Ivs=45JPDY%EeVW-JzSJv zRj6*w5jXqx21E^ieiT{tqG|Kv*QExXKxVBD^0~&7yIpBX0nA%esqUziCJSHsi5u%o zeU#kuUxkrVLKRNp}PO1TZGb3Eg9S%~WSqW#D(|yh8ba|D9#5&gUyIHO;6*$I+jRe^PIEUy_<=b-CDC3wEVyGA zYOAekyibudyAK6qa0HX=wA52T@bzT%!~-fy@J?FHc)`*cU^N5Xe%T1 zdPYPBo_iVK&{d9%CE&Nngr1U~Y){R&R`LDIQYeM zzcrnAEHs$;N>Ge+bfqatR1%<^K3`CcLcjIqxUYSS5r^i#l73&QE zYoPY_B;`Ly35aln@GZ;#>1Ls9p;(yMwf0TNd<*Tks&u=ew8$on6`h#nveTN&h3+c% zcIS0w#g(jBQkTNmFTGziI~EXM9iHGljBy}Ada@68crc|!-BcEDuR5XOGGo9STiWDm zJPX`=FJ@-Jf(g@tC8g3kf?-0D;5$90RMl4EH6Q8e|4{G-qcOS_U4F% zOets4lK(0?>i0ond}jpGJi*tqB=2nZb&Qw@miC#Q_S7pe35lVH8Mh@xbI584^igF;I*=K6Kzf^GUkD2hmTOt z9!4B%BE_y~Awo0Mx|Stk*8Es>3&$43w+!|?r5|hCa!0Swvx%l;egnhjPG)c4 zP2VFa2dIe838b*qKIs{gnvWy<`qK|{ZUabQ4mv8r)EtYhY6T_h+4hf%o4a~v+C{E{n= zLU=cAASs>s?(pHZ^F(7a0sX*(K}?WX8jT#*;YCC-8t2yD=yn6QJo2dMl`)7uld-$} z68I-r90iJ{i;6R#K-j9BJ_M!sZ<>|?unjOS`>VQB{o(glZM?TJ>+kmjsGw?Q{U-k8 zDrWSBcCoORx@?0~oz*B4^6@qq=M;WU_D|OsBC5XGqvOQ|rY$1L5WYfuna34pt#agq@6ysV4*%P(N;hXYFrP5P*6(N$F*p0;g2` zvUKjLYghWs&J$ljG~+$hpNF$+bq*Y@PldM&67b*Z9j^Fe?g63!L=ZqorV+&GJ)fI_ zVe}EjGK_%e5ztGvSpLl~hUd%PX(-_NYY{g^2>->8?sK*n;+AE!(75YLHDWSqR!}=3 z8+gr7&=pHg_?@4{!=ThZ26Gld=kv)rfK2{qMGX~|8BRv5eC%wau=deT;u2BUoD%4b z(Z)3`7tWb8UX{Y7n2o!~LXPkyd?9Goi}{)|xY0>BI}F)-<*yfg~Sz}$?d+jBs5Y1gAy-0+&@ zgD`L4scT5EGBGCZkXRyo3TaT$7(Nb@1mW>qH4I86YI-mG54&WH`41vd?oB;2Tq2nN z{`KXt;Xm#mQx+u9h%yXyRDsBVVv;OnV!IFS3pC17rh$}(Pv4l*R#}q9Zck2_37`@J zX3S#Ge{FJU^akG`{_NirBleP665P>kc`4rtqvGQNz`f2WrJTC9wW=1H83L3xOw)=- z%&J<66b35L+AMxV?H2e}^`0upr>-%_zsNAzdB`zX)8MyV)nPqw5~+ARiX>L7kwawi zQpTDPhPN+Vmg=2cI%5ZtI0XGeChY=;Ez`a z&~-L&MBEZ?B%N{0>gIfn#?;kh<^?TtW8VCD<)!pTgaH{JaVOw|1MtkOpS*B=40!yF z2LW3`rG75Q0|qe=+T$qRTtl;5(S5XE4dK!dK47lGPO6fbC?1t{?%3g_d+?IUQkUT@ z20Zx4wM~~#hq64?iBMe;wB{GNE3IZMLPq5EUEzwL zHAxjiJa?cX!rz4zrgr+KK+b*;>*&Akwn0ZK6pAA7c7d25dSR$z7bTNlXFG+(wmtj6 zuJd&P$rK;V?2=^~{V;!W+!98n3Gm>pV_RL?I92&A-(&L$`o?e9{#=cxo2sYblIj4S zouNFz_8%xgQZ0mth945z5xrL09dAH!k9$7)qs#lNS#~UR8-i^Yfl9GYOvb+yca3H{ zyw5*3zE4M@V(<`Q4|SQBT2+X_6u?V(&C12RA;rY8@+XyzE2U9v8F0<%Nq{3jElWghkjk? ztuzIQTnl?tF2^zECsunqd4Pc(!7LK%6m^g!HKt=HyXyR5NoY~Y%SMIG2Vj~SP{X%c z3ie|EhB!wW#bUll+6LVO?ye}MwA)@m2I_oSR?{n8f@t;y=>~PVf&)nDhmW4LY@UBWRKa zZ_nt`Bu00l3^etOca`I8^81eF22C``V_ z{dy_qg{;_-j6HJ_T1tJD5q=D6Gm8AN8FbJX1G@NEC?&&B%yEB>H$MR3H@IEcLCek6 zQ|}V%KlaE+xMI)bVEn|NSB`O#QyGO%q7CQ4E9R3^)78mMsx|GtdJ;tUk^l3Zuz&;L zMf(33X0=p-Eq>c_#o_2%9Ma+7nv{KVr!Z~VcVdu!%Q&BRTOE}qbcj1T~CMreFkk_JT-^HGdsJR7*Ggg_*eU!U)@rN!90v# z?W=B|4eT?%1=}l}uILyL^o=mggBn3k*?fq%99u_*d=l3lC}lJF{Fr&R%#*>kQF!ru zm}gMdYyx}k7-2M!XP>tUTxJngA{#RB6R|y`9W^E=TPX=*M|3z*9Y6^+?MZLygnQWI zCvi#OK6m)V@((vX!;v?2C@H1VdNndC0@C~*%V!}uG2$mT39H-^145G`r&DqPfIcy|(cu}|Dn;x@FkEM#(BgBS z#V@$$b9GMg$&j=DUy*u6Nj_6Z9T+mN_YHhHT7E z`{fynxB2;Y7mz!a=lU*Yj1VSbBg)irH9Z5O$FR?vqw*77-j0l!`4a1pvfFkVjVfbe z4PKIaWYH~AG>YkbfDwRK9Nqbj*est0<#@Q_Yz6|m{)ilqoij4kRp(H~LwxV5cyL>H zfAh(hzvZiobN^~mbAzPg<5j;b-L8PFL#L*?^u~bTZ&S8GIZMI^8NEh>IgL+UkIsNd z>-0xcJO1lRfT<49(>-w+H!~m{-j5@8_NA}~V{Cv}ABMRPjpEdw?QCHP{5s+)kyN`0P!d)HT?`7U z6o+=S>IMJG=BvT*Sw}bD#?~k-p6z*Gr%r2Nzg@dj-uv+JcB<`J_f*PZPax;Pi)G)9 zd!qRgoYQ{bdf&f=+>YNVtBD7Bikw4H?jH}BAI~{k685VB;J%AmF&GGrG5BPn7lX0# zLZxlrfAmlatcRyoz2L}T*Jt%#tKwE@@ow758R3kFd)DQxEUEs`(%171)FaQ!SBizM#>;YrpK0XOKa`E$5TsHR^>pNXSD+Ddw0OO)3tROmWo;Y+7ki zQxcw{pD(Dj|0?L2iL<##m{lO&0Xs%&0KeuXo49Nsa2*mvrv$xejC{;tqLQZ+0@gh& z1zbw6N%o5$G$z#YMtB_AjI&e{gsIXAe%U5e#DFIYY7HV2ezIp?fz58@F`^M9ag?Z! z`kc(2xkLfZ@to>^D#9WZad8{g&g6?nD7{k&aJ!mkt1aBl>>(_(0}!BP6=ohvcrTp& zWO@Qz&@@T6L5AJlom5}vEEcJALOON#`YX6v+&>cxSO9Dv+~;<`{waS{EtD=eCY@X$ zSn&hcS2H%YZI%h(=K+w;1&p-q&Q{!d4P# zUm=AR8E6I1UQ86>c4)dB6)0~!suz?2OxI}(=(sf=KxSv8bML)S= zP9k!VsP0;J;BNXm(%HtVmgHkU&$+T*542rec=KyMWxM5KNlJ}Q`=L))ibQdgczgvm zpo&L7?kIMBGx1YKodeea+`G#ub?Jc@ql8QheXk{4SHfO(063^pRJYXXX)_40s30t# zX)uxt(kUP9%e55vSwoO1(YFr*JEy9qrVi%s`DFsnjc}&7!HREimle6pgXUtTT_3L7 zFU*vG?s=CIYIMWlLG{#y#MilgkH(ZApA$kh4Uw84>t+0-%4owTu!?4lAF4ITOx3x0 z{9@Zw3(j_LO9*%Ad>AvimV7D#>i|rI&4LaW=*JnU=~2k7=X(|ENvN8>oQa6Rq5X07 zW4oqeCY}#rDbtS0HCoq)xQ`tQukwq!EAH!#U3un{S16`n zWEDUJ;&o?J0HKC*Kv!ZCoZtEpG}p02oVVhJ&WmwnTkT2aO}ZKK!zX%Of!qfSD()Mc z-kFU)6*klFsi{+@I30G9WFI~3wa)0F5v%PB;;4(iITi$LerefL{8MuO8cePje*hew z-Q|g%KUJ%VGD)ckfFO6J{jueKA`xa{GuE^3naM)*7({o>2NK1t+#q1p!}_EN5rx3`7GiiHGv87`f9cEoX*Gxg*xnMk5fmQ43= zL{P-%*H8;%3?`ndxjUvIJ>L|?Lb->ft}7S%-f~gi;TsZhES$giQ==$nZH&-ruh67_ z0;*>#j3ug5udyr7ikYiBTX}(M6e~oqUItnc_cKGt051v{ePZ+i^8SaZ z?~bSXi~lbvSBQJy0%Zt7;A#9sHc`2h}t0f+EVITpk;dcFB9k1IFo zNYzybNfT$BP@Sh*u>TYil=P5lF4t}btegO99`&T;$^!S)9U*tleXv6voqvjQ0Iu!s zurIbDIs3q(?|NrlJ9;ZKg#O_UW2^_mMz-YAVcF^C^a6KkJfhY+ZW+BTbD z3D_2>%J(&Sd=(4w<;*4gB49NX2jIV!m^ou3f#W28>SpAQiAsPcGXWn(fcg$?Ed@QB z)kFHs%Mq`f8lyT*WIBT;Je@&Xy$>ryGS}g%x1;`ICR{PA+l|tx_IM^>O4@N#pt09Y zAO6;6CM$+JscI$mhtgMFfNpq{07&3J{oEo9_7syd^*JWb=md&(JiuP3ZpQoR{VV45 z@80Aqc8k1mthaP_!_7B=R10)_LiIT?_PQy3G7v?PJ;&QP?fVa~f)wKKR6@0$T$TJ+ zHlB6vUx zd6w09@Y#t65qCJJ6MvZbOzYoq%82nXD=*d`J>}v^T>-Y@ymJ_yp!VTe44Q;ib3d}~ zk6$iwch(%6`g!g)IBE_uz; z^j$;tdlv`sJ7i%uJ*TO*mEGiRV!jGyuC&jVew#JR6uP&|0RDq#{TmGmzvjXGP7E4F z^m+9dBWntfQ{o4&-!FxDrbn-&Qp(FCDJ=3JFFHTY@9|1FU6G>ye6&^f#V%OV zGavc3|EX$QG^KBcI3K0U>53b+-c=QGpms&R*NTO!@hfRS!4;7WAJn{h2PzxT-{jU21z(h=e%!@sqTl2mp$BCW zKjo4AHl{^SKC!i~OTxOFMIw(c8_jG&x$yueYHU|P#Yx-^xsC=c|A-4(4l3#Yi~*^fxQO0# z>A&_gFaAwb_|%OK((P7SCk*BBr3ZMd)eiMdpUChRDlS_DdMK^E?1DZ2?=G zO@X%OGg*=en*tt59?PCxXF=c7w|JB{ub#`xd;dm5sWS~q`m4Wz?iIjP^mw`Hsxw)9 zwF3ED!9I#NKi}w|!y6^JY2m>*ZoT@6Ia(s*3S#+`59Yk;Ys0@oEw(JqA1y<3 z^q(p+#gK4h5OuLNH3>K042w0mXk*l)+J8Qm)|B1cX~&iO%=W3~P(D7Qm8uXis0cVZ zTBDixp~|RAoeH&yU_Wc-C;hzgkIus|Kd;hVpPK;00m>|Z4EWjSS4qRXViYVl)q0AX z1dmkxu?9UavTb0;iu)p#NVip^QI*@cdr{I z-w)4CfzkAqso&|br|9kQy{RW#-}r>oqyfdHt1THI%YBVEJBkJxq9r_|d;c1ubht&# z0O6T(=I0lONzwewTs@4gu?b^T)9Y=53NLSby0EiAaPyZ|zm-_xX}G%hdcYB~^@+%H zN0^klin&sxBbsgnhvpIk3$)Pp`n1qPp&A9vyZo-o1|=Zf+nMuTas}ImG7JhSY)qi{ zNOvq#i%%l%euW9FIEX>-YH1Lp+mz}#xckK-jYvnc>vlFGm92-p#$kXJEMG%DGof(G z&<$1qdP}TOlB`=USyI7Mu}n7VY_wU-=`8!s^t6n(^*_y}maV|*xlb8%*VWv4B(wo8 zQXxjGc3yd9uNHULv#^35t7GH%Dr8$sbourb5i8hdaT zgnTvMC6f-cPFmAw1|T`rn6!J~X|{AIPLOR4z+YkMm6>VuOwEsd-ZjsLhA;-yShd_~n;<}1CpIGE6vw|25`{0v;@6JaCpH@)Pc*;^PL(i+P=d8iKMx=b+{3PC(Sl8CX2N;_wByy3>0C zfOB(40cHz?A)tY7;Ln3^hpktOd}~&?u>e zvLlcno4+C9*Qz_)?V<(abWM>!=fw7~I>3{HCWmwqzxmtz^GYo-ba8+A8P)dlEmDAc zrJ&z6Zu=tCk(5%I@J?;?Jwi{*!#!15v3}4}H+o40D;O1pEHjYx9c)_AK4qx4TSQI- zOWlL{4a30l_Ou6EKFg0%DhD)+Kj(s`nO@My+tPHbSb6DU8zp|IwO(!-tc!G zO*@w<;9Zs$G{A**tndsRSi52~T7*hWnkX$v(%j^E5Y}%7_SAz)JcT^vq6rfSX@v`& z{WiFxiOfmF0~k{9?DuRizDY`26R}PW$4i4EgmDx21AP_yAKc#}o#9#)^v_CnHeZN&S(vfe&Nhj*4HxHfqwH(kORr4_CQXw|yg43MK3Wv- z+G)MibehfP;>j#mium~$7-0R<1&984VJe%l&HNN(tAH^5=voe2P0w~r(MhucX1bM z9Yat_D*Sx;_IP5=re|-sKHD=o-V272#lQubPk3i1|MP3#&&+ST;2tN7Crc4DC)6DYEK6k?@eg=!6L4W0U+76||Dk?xR5U%(h`z=(uqJJ9V?`aqrP?Q5453BteOdSSt@!t;vtk zx)`1$=XZ`oag*(?)h+Xi>$#d8Uyj$3@~IR<)&6E$dta8*5>f^4UKf}kj(g%}X7MREerQZLhRf%aC>1DEr7r%+ zkBRp?r@=`6;W|iRUIZpa(=etv35eWk6(FJ|f3e1fz}dbWd+=?hhDGI1+?Zix0w!}} z1z@_~Kem5>QU$WVKc}@qILqLh7IgrF;(K*d1HN?j{fvu>6sFv7fyvFh9q*IjKP6ry zp`-v!KnoXv-21tCPrlmQ=r79dNNJHb?GVk)mlbjB%9kP~+xl%Y>vlW2KDo5~4bY}; zd%v(!yKnfXYDEbcsFV8YFKdevc)&B{n4G;pLYaf8&Og(Lb2U805BTqH$^FC=xjxD7 zB*MWu;Oulp>5ez`3ELc)W5TCaAoA7%sx?pPXcF!w6-FbfH{Z^9aNIeY1#y-a?}XA% z!q2sAc&M5u_#v!y38f-UEIE>Pp1QzCb}0wbJ#W09pQ|$UgHoU1as&D!B_=fj_;7{U z7(f4;jxPsn+0-d|nm6WK&|F}t?TRk1H(@y-9q>k?4#bpo;&l*4*>|1zAm6R)s$whj zT|XRAY#ly;z1nob_%@uJlPj@r>|sf@gfayve_fm<$=|rCE3qn{%%Iu+Xp5TySSRQD zZC$@B<5IWj%xtmUW18_;-JVHoY(9k&pg`p!H*_Yy(|szT^O2Tk*Iks`pw8INm7){a zuzPr5c*1LiA$m%!zp?;Ow!0|I9&9%gmz?nWQt>tMM#wOgN&?4N-hxtPU4Q9u3)3Ny zt<3t@)T6r~|Bcjz)u5*O;^^1Wcq&81jVfqlnKISEeqY-gpOV{h6a>c_57FoyvPvZ&o`%Ix@>=!or1 zOzT6d00nId1&RByi=ttEp0b!Qzxx?3j0=69-*>A^WWBMELKUCq@?^;sSjQ0bRosri z(oD(?{zl##s5g+@e7d&f0GQNGEN8R+qBlVN2`^Cey*1a8X-(vs_@yfuZr0>2rwOLX zgbJxyhukjfN(a>)j2J(jY|pi9t8#f#n-c*?_Sio_Kn4_nZgk&A#QNXLm`pXMQhN}8 z3dvHi9SQ_Nu_}`RTmWk>DXux~QM;|QU8BpUqC=`Vc?P7O0aUVC{n^ORgTops%W-T$ zZK|PU)}4ksGULRQGp}38eJK(24-cO?nsi#67Gt=iQeZ3#1Ok5nDWsGWK3_`WqyM{s zTvWI}YL3Y|u)}3OrESA!+D=%C;ts`~JlJCJ343JUVv43gv|VfbIiVhP5uquwVggmO zk01A)PVV-V>fyGQ8K=m=tiDK>y`OuuQ({)~v~L!KRy7Jz?{uEiUR`q-h(T%p&xxB6 z6$i5_^J4gD5NAxh0Pkf*8RFIG=(5_|N2(G}vIH--pS$>o5II8q*gShn$t{VN1|}@X z5PA18qZKeiZ+Qsdh$#^P=CWA^IfD~fYJf#J^5UGVh&rf=cxH2lF4Z*_VsEs&Ogv=1 z!}suD?U~Ecp%5%%)MFc&4d%og9*u~spKjJV?aJ5993l3+ANXwl_~=_Ppyjt4_hizJ z$>CGkvwIU#_OxR!5-Ny%+wOa)BeH#!Lwd%S9yz;}+>g;6N}j-e85Y*~T>2QDOuF&H zr)<<7I-CH|+?Dij{5;pd1!Vyw`jm4LvP>%Qk7A0NWXC!rT-8fn%=#Ixr;=-IdjF)Y z*v@izWMFuN1dw#bMYMw+_j6`l%l}km4LRBP)T|ZPK3xchwT=ztg6(iC@c^G)8Lw@z zAIf&O=X=a_J)t({fvHlp{Bjxp2X+h%%oW>jfwL|=A!9>=4z;4bMG#>fwyg5XkLh9H z`!rQ7!*36{ifwjkwEv*BbnNWDx4e%f%c#ucPBL<1)sLw*Z-v%E>`V1J9j8^7dp+(8jU8HHL%L`>`!5gwnI)fAyE=Wh>oF}eh%vx`IXj-jkGJjru9}&u%=?<7fxbMIT zf*IYAij-F5J3o*mG&_kw5`Q$7-hRncM+D|<@&O+|j{f@WQ1Pv(#e@>=4!i1P|A_7c zGr}$Uka|)vjnZx+xIuels)FeA*47}%kp@RNw@|!)a1Zs|z2ICbj*QQ6aWU48gS1P& zj=}6>Emv(x-CIM-@&zdjO0=cxF9eSBz#>-cB-VJ@WF0T(d^{?)zQ`F6zMgpb zHd+*8CZXIq|FHbg_?AG?Z&99p5}xq2_OF;sg<-k7N!_Orzy%H6(n8+Nz$J`WJxX0vIr?o=xfYzhIbn-x1f(0XM?YsV` za$LcDswnf`Ww+=s_1p-Ni#^^$Hyo-q2Nt*669JX~V@l47Ua=$*hHv_pcK)zs9RbP} zf7wT%Cob}xnur?3NMj{tY0{?Lt{IR)3BVan+~nZ+V6Cb`?PRyU(f;UX8DjWrh&$s% z`-$3QPQ(Oz4f@%r2;R-5*a=Yqe1Y4ByBDYE7Vj;d+`Nwm>pr?9d;mSc{JHq;V;yfT zR*Omf#=YK_`IK3cRo6Qyu9+xx*@7vby-i!Xt*N;Dbi{6Q@gYw8u(vxc~MlLGA*Ff&QVpXd7(&N3-@#*3BLD8X|@C`-6TdX2f7t{ z;w3AAap@`BU-&SO99>~$x+8+CBw-Ov>z*u-EMIaN?B9`-lIVOYiDqcjIHi-L)-eg0 zEw2r)WH2|eLZWvfey}P`GtYP|dvG_+gBOloqUO4ra`E3)=&oH~kvq6QU$9zXKVdvV zk=D4}Twuh;XY4$<@iT1OfW2iUP`+$|+e;F5QpuYrFf$0txxKamb~-qKiBc(fo25mb zAqWn*0Ke&MN>X~vVR7SNd1)2sK+5jVjSv`mqdq*_(l?K32pV}~>qasEB;zx2ltD(~ zY|7}+#!Z)v+72qfrx77|@_nJETDAQPVkz!4ldXIafGZQI^!rj&=k9JSmxowE+_x&3 z<~;8;lzCgjC;(xSczkB|{2fPK0*RSTY@&n~=dNB*rcpTVzMI->kDo`ry6b|B?PS&< zVp0Gv?azt7%r!BmM{GYY$f&iHK5F<^!nkkD!|;K%V`j{clOhaXQrp9$`V-#svFgka z4S*Bz^JV$mi}l)!RG&>Ztl>&oCw{D%qQ9qwOZ`>P*dDSV!678jV57IrNA4KW;@FVbOP>FH#S^( zC5oG^qQ2Jd>D09t!HOf2wYBpzKgtvrb?K7yXXO}YEXsy%_K>FJ@HAp?yP<4^72|SY z&K(6h5{|4{{UP$OW@KH4mC$zFz#?T2Lx(-Ub_jK zef{yOuxnGKmO%q|Mfo1tJuq|;yokRcyo6ry!mf%Nt4g{LEo*!Y-KzbQH=h5Rwc-1j zv~L2e_1kwZ|CL%2-ZfwS6CSVi+I{0S--HXbH}4wIl|S@n-+|abiT|58=vuXlcok3y zslTwTgvjfoXRt`1#!##^w}FqHglepTZmD*=D?jwBD^tmF|82mE>xa6Yej~ z&Gs4f+XsL`j*4Ccviwc`d3Fd7)Ka=H*LOE+F?TG#5D8$N;7UJy#F>khsZkG z5UNakf5zIm&=t1jJA&0X1eM3(OJ*@j+22aT_+^uavmd8uQYz5!y>^KswQ$|*QH$^? z>1f$2xXsGeTZ@u3FDB)WxjySaoOK(=l#u?Y#$HjiP{a%rX#s;zy zh_}rGP#N@TC*L734oPG^2KF;X`}V3Yo#4N#!5cu{Oyj>7a0B}L5kToP|8>;VxbEU) z?QuGHs9B}bFz6~>+1*Imb(q3hJ5FoyHs@33HLyq6EFZV(%RYf!rJYD_ZF zR|Qs^%6AezTXEEBb@oborZZ?jL5U#9b7tLMf+U>LvRPeQO4ZqSeq2VEEh56b`s3gB zWlwmr%m!^E&PT&~3F&_X?HMaz)dH1jJ6*nv;ISq>kV=;=gO2!T0sKO124bfQ<$H z65e8ynsVgv?}U737~y&70g65et)T3a3Yj}AaB!r_R_r2IMnD6}V zXET)y*LXjL*(|fL{7k==d-J?Xax$R%8<08K_``uqZ^;Fx)?a0_RZ_#O*>vZVw^0G7TL1tHOwy*wXmbbJ|cow?6W^Eq#i<#Lh(46vC76Df_YMZ;2 zrPU=;;lF*vA&O({FGI>{tX_b56y3D4EIffL*7N~e0MQLnG_p?MkLXxVgOnj*+T%6y zZl4H~;IyUiynZD{J?{JKi~;&IaRjxsV39h}52PtN)~yW}+yvGA?N5$9Y_~>zOZrRJ0ux=s9Jpel$}( zd6hu{Mst#gA{5G~dKv0b+o14Zi|Sm3*;n<|2|4}N33+BNWHaGqUsd+3v`DdiLa2u8 zgwkaH1n&l%R&|0{_9EjsVq{7~ z!t8PSZC!=P_z5jnZpM0NwD3Vv4t?5ct$V#1b26LFve|Eq!s24gMXl~oL71}acP#1e zza$eyPL|%Pjky^{TeaQx2Zq#Uio`&X`^W%Vm_w{KOYTeKp4kJh@2dol@m?8;E`YkS zZ1U!Tec-poK;SG!#gIoqOsvhW1t#oo9#1e>>sa4lVqI+0D4=2|io~`5V(Q^LKf~l{ zw_NGh!>GF=I)k)=x+`kYqRZExmNK{zu{{I2XZEPmQ(AvT^T%Krkw&1$9mnuw|8$)2 z!y8e*9-dY~UrCMVwW}H3JV3yfj@o%i8?KO7Hff+nYl|@8_hg2%T4VBgG`|M9hxS%K z;0~Hm3FV_HgL+Vd<7g_~Z|~|cw$5IKS7$$Pzy69Dh_8A8l&8gLl`;Q!zi*&PsP%h` z%+?#)+QBIP$k*aDIPT6-8*$h^m>!T9Jg{<}2nw#RRGEK%P==_`p=F605jihhPwBOYs+y#13wQ#(zh` zv~M5^K5SIkW;cE8T9>m03MBzYM(CgvrHY7+7LM+RgoLa3y0;I4=mM>GnXf6__@7r^C0wE9m^LZ?SQ4i?}RmJ?SxZg2bVm>FoDP+nS*^&53Dza?C8avQ5H1*wpMz#P` z(|ZtlJDI@3%?`Gww6A1T>lV64Q z0}1Zj^#kF{aq<}+H-Z4vD86iDykQp9i`y-`-?W)HZer_k-^gHK&~o@6NbK#HEP1}m z$%e+0Vi!l*dr`g#emquammq8P0k%K2K#}vTQTWho+5<7``%`}kgt_XR0WwiYQo66b zA9expXU*LaV-l_&s=#Kigcr-DOnE_YiqTW%}hxQ$@JK zeSZN!g6J~w!`SPzSN8DVIpEDLC%~;}DExY-50sWbQ;KU&IMV=h-{EJaZ2xSRg+hi1MrWmBzWae7e;r4d!%bB}MCcHCmP>d%pd~ zZ|0hyfEl&&c|p(fj0UirMcL_}SI6o(!y88S?J$D-#pMdK@BznG&GZ+84A{s;v5;8GZj2AqR$4-bYoX!O}X+bar6z zb)W%CNfpBMEomdG$2Ki0?Q?tDqTQTtxheeaKqzCarJF>Ac38^8jnsRO3CG4=64IWn zU6v59)*)s9pi+mO!X(j;4@WE6QJN?4Al|h>Am&AU7lHD771V7v5j>{)h*6`?Uz(4- z|6<^ZVtaltSIu}iQ{bf$e=DGhd;DWYEU&=~=7*<0F(&O*m6zT_()w$GcL_=zlKsUk zX2zlI;Kb9`50W-LGG4#(mlypf{jCdbCDVw=9cZy%Koo_24ReUwN<8f9-MqEw(!#d5}((ny^KAG$%!^>$@=GfnpSY%^%A^(UFa6S6(3|SRNn=)CTwoqVl$xDv*g%P6Ha~W+~QM zg_)v+s#!m8*=UZ6=~4;9Xg(n;&E7cov=9!$+hNjLO4xmM-)WH3G3wrp|F{5te?v}< z5viNt3H-k5d*%SSOohyYN#MU+#`o{dboKgdf3_3`N9K-wkG39AQKYjH(>Ub9EW+Z4 zT925|g%l^_!A|5}B@ra2=dFHQf~&NFJt}szQn8=>MMP|S%G=GsuWdE256z(F{6JQ>KngC{}+rzaQ?ME0hUg zHUb_qaMD(Q>jgRww`M)ZTc{;jbCrttp@5vNFWMWBZ*&0=GFq4Ds@@g2U^jFAU4+H` z=D^!9*(OX=JH#^Z(3E1LLYq&*CX~dQV)>Y!Mtt54{K#UIfH?Y!W)<>!8C$Sm5TMN% zJ2Vu+qDN&Jt)dJm*H61?!Cl(nA_QH&BH#~0?p>KRkeVvu0&wmvZszR9tE{B+9oNuU zlT3PuBuGUq@j{q0<63G&&^D>9mRFJ>)9p4EPs2llQ59a4)ekd$?VCFp98_KM`k0e@E zPT-yIzMR#X5?m5u;=tRIsQp3f&NQ-Q_9IDzGSCIYcqG&v~v0s3uUxieP3Hd;QFeao+a5ePogRZ1LV()N~PgVp^MviF+y7A8tk zjpO)|oFzSVeT!xPN-DgD7?d4Vv(VV*&Qb-_H|GcT7F^s0_|Gd7FF2n-~IY`I<%#-#iJ?Q5LH4s3JVXaY4Mid zozuBj>uftk86yO%O%47ZZBiK_xXTme#LVJU}HmL)`oG%(}Zub6}@S+aUtP%dxBIdi^F0lo%qvgvKThszX=5ed9M3#{FDTY99H3rDVWO zO+h@Z$zz-iQdlV8!{V;MfJu2dL7uVmrot=X+8@#Qf4NGmg%y875tmftZ2hJbv9>kV z`Sz~>T4?=zZM_Fi5_v{t_p+!w-WmN0mXOIZP;Ogm+SIy3G*_z_6&J%Tn+T|hM?V8W z=$XN@A?k)~ddNJ6C+p^fnN4G5l$o*Gtc*|K1=aM5f*G;}1{Fgs3|SLPNA+Gh6wL_k<&S7>c9Y$s~Tj1mh^_x+ZejiCyXIT8qo z8eqaeNi6mE7o3;e(s4Z4(r5WLmNs;(`mKriS@7P;*lRL%%t3oddv9-Vh35^I7TOiD z)?!7k&Mh9kIKw3 zc}Vv!9v>P^phs!sp;u|-z1|;FXI#iGwCH>hebfhY1n>BN*8oIZnYY8vkKN*)5y#Oq zIB-vp&#($l6~*>`8toUtFCjmO=2KGW;g2FITI`hPv2}-hiHF#w>#vT{(i#-50w<)FfP`bq#h5&)Tav)@bDtn!7(QHVE-XQ$mlkp?k% zp?nQpt(l{Y^?Xhb>FK}xS>pHlu8!j54S`^WgK-2c5bDUF-v|FWG}r zz=kZCJed2Dp8cKRb!ZNC8p^t~I@i;c`Om}ow_ql;&BSsHJIs85(R{wck`ZCym;mkR zLJb5MsGs)6XvyED^-2IaECBx{^; z7`0nxx4f>ui!C6%VYm?ELyu35HK&EmSPRPR`;Eqyu`@SLZ?`6bn56r{LWyooYMY-m z5%3jZt8pJMh-xgoH}4HCzPF&3!24O=@}#E41Xl$@Y@7l&NjVK2+hX1qw~Jkw>Qc#U&EwvQ zSCSO#7QizD?B>K{a>A@a>(~cYW86z6*e87dy=YPTYjgx4vts9;qQHw#DqXAqV*{QA zP?R^lh{*g3&{b!*;X_(*#L?D9WzL#q{gFEA&;Ev_;%ywQKaKc%LBc5%r~ug)sC0*7S)V%^lRg(B#O3 zQ>P8QR&tV7Bdi-PV}{g7b!Ojm3ID`%N8RPy?8ACOkXZvIjGXc&f?Y&Q0;q`4SM)xR z1#XEz`+YiY0lW_#nh{P{8w2x6w&_VieWNu1Sg#?BE$%p|Z1$kq$2w@54rt+d^8S`Ge&6!kK(QqrTpX&PK2-!KN=Puo0`k2Rd{Efw#088nNDHBT(j z$Qy4*Cfuzw8 z!dbjr&g0(G=H}s$)<6Ps^Ad$;O_tQ^D8@T=Xq%W(sdZjJlCP(GHioS-l`5SO?|5J$tb+`*c3FWn(!vz+fC^ z{9hJM0W}}3b(Y<+6N>2&Gf%bbCQ9lf=ohm%>ljmH(y;ulFKP;w$44xmDi`qof{w@O zI~dmy{pygrof%+&pD8deendex$%wiuz~V}Wy32>}7Tyh;5`5shF8rgb!>0JHm*!C%HGQ(Sp;O^SxUFORfqaQ8YfH3&MWwzEa3{r`X>by* z&`+2@j31Zg&3U5_-*R;aoyAHA(J8g_0mx<1hj-r0kYej&Ylwm5e*yYKm|?nG6pA^Q zV4wfJ*f0^?1klw^_yn^hEt8Eb#T&j-*a{&iQmR8t-~$ny9Y+Z1{rP{q{}R-ks#jZ` zNgkObk6QgGDM{RbbMIH>FR%0ahXH|J#?Wt zxv%EbA!N?meck94vjQ1Vj$2EI3;$(jd{V9{hQ2THKcny&lnDRV604gv~kX_;JOB)A3BX>bHc0`S9aaqn^fazYkjmvt=tQ zM%gjC=4?AB8Iy3>KnsrNbeYtn*|XFkuT41zR(EqS0!MTwd)Hq$RRm|fX1qW-&Sl6u zOV0W;!nb|tQE?T*NZrnK4YBvv@p(?qhG^L}G;FouK4lgC9g9-b_bkts{Lq?#AS|@W z4kl*U-ues6F92aZ?)@31*Aie5mVQwv9ceSn;Lb4Agl48oaFcNbd6VyW14JUyAoAHY zIy+2$8oD>iy?3ppN!ruGj=0K-r`;Z<>drHyQBcG*cKNRs^a7!BqN?yAQpbACl(yWW z^vqMyD)b4~^6I;;j5_cOCe{6eY-V-q3cuOvSlCP7vxoJcq^Hfwb>>!oenNBU7pn(o z<42BL!;UcOm2+wp9hzXy_IS2*q~)Ll@e;*esMDL%NwmJ1?`udpWQjV-p_(r~km{(- zje6_W9+6v4dz!~g&6O-o{_)-Vgpl>W04x7JV*@;=nim0r2oK{RItah{Ens z=-M~!vYMbj3?K?#d;B9yybYCvs0q2>IgJ0BYiNWN4(6Z;;t?IL+x^0@NI(6w~tPdB=Ub%1d;~J7S12_x-k$TQzs7om)js%O0d?Zlfk>4^X-n2fMTv{ZFxMOL=pK?XJd) z@I(AU`(b&MJd<80H!OxT^qp&PD%=y$nB)|$>*f_kCA6()wI<}E2xUV74jf5(fDx%m zRRi4hw3LjVi92V(qeh z*4syvXUxn9oNyvF3IJ5%bUvYM6Tdvti-8lem;Bt^sPRwBJ1svjai@VqDD2_DMO0b) zEyWS^?CX0j9A6$$)R64_!art_eY7DO^lIm=+aoKnE?d&4@Uz#otXFFw2ESD-*kl41#+YZBDBQ5a z@Il2SI!>@T^Hsl?Np?T0lI ze^aS}*sMtBRY7btORCCDUX2hqN6uZ0MpndEtXKpll>dDnPwOGZQNM7A~j4*ZGT-m4Tu0kyg`6{MZyM>$hO>?MHwpj7N$53dyoSx<2ULsM#A| zs2=KMmlk}79!oSpT|_(5>L6C^MatP0Wc@}9$YWAHaQF9^YAgmr#$?L-m7}6*1{g&J z=!3@i$7wqv)YnHkh-RrFAtD!;g#?!&G16P*vk^DP{@O~&LQ&s!W}~n*;Ek1JWG?7H zVRA8gC-KlvL>-t#r-zaufli>s7hG5${~g*-3oI`JB&(>FuUI2nfIWHsF!4x{FtMW= zo4Wkr-+R@s{tRA^f3RN>a%KGiZre+lkW@+1Hvg}uw%Exjk`X}GqI>na?F+a*5pd~I zQz@-%qF&C(F6Yd<^0}W=FZGd`3_2vd6(nX-ZGu6=(NeWzjk2BHFnnOZK*trsreNu* zvZRtE(|My>UEPc|EP1&{D(E8Mx)ypVhO@LbQa(~`xNLOm`Ikp&ubmxR%1WO1I;DyB z{`_3n_LbLCfeeTCPiT#gh`@76zh-~2@A%h2Oa7HP8MPYoOBTWtihBA`JH>mVl3)lI z^W6oKj+aAI9#SdyKU8d4Xy1j+30lb(Fv!9~``aPGAEQ|bc~y2_{8<0d9jIxgOzmfK ztEZIJ-*++c(WXHfDO2j6r5!*!VPJu!ZjRtTTp=ufYu4DiLlgOF2G!}pI6gZB#DV4e z{urI4_5tPvz@Yy^{6qYF;-l{iQM0{WT|1Y`x|1Y>(P}MTpUQ0Gw`!$XCbgW2OhIvU z_R_^EFW$9enW5=jP^6^gB4H~IbKdBc@OPiyeqht+Ch|TqmOo{Q9Ba~SKukJ8B~b+| z*~}(k&VWhz)I2~3kx^%q=C+CN^|Ir9abg(Ji3HeZ*_fp3c~IfrxV_5c$su=rl#sEJi?&6yfI;)W$Rz^iUxdm)zbfUzefVC~8N7Hs!=_A{6)7b9L4J3frZay_ zJlMiVN0x^Z-eRe<6ri%FESp8Lcy||-uZrTx&I{!#oGbX3KGH_L{pv7MEkx@eGFDaw zX)9$^D$ncmkzUKPtDG(J{~U%es`A$)V?5N)>8!pd6?rggFCjncm}TM?3B0AJ;c-qlo&`6>*KBZSb39)6riCKUtej;jjdTgU z01NCSb+mdfQ5Fv33!sx-1%0)w;@`0FxBxR^AtI>5eu45oH$uPB!LpGBSNoAFBwQI^ zZ|AB$4E&QpdI2Pa__wCaX0MLpJ0l5ydW5B8hnND>ef0vWIDApN1vAzZ5P6*P0&7pL z?wNt5V{Q;?{z85Dz9@va^}`TvtNEffZlNUv5h-)_V4m~g9>Ma*^u1oHWbqr^-M2Ao z_+9oGMS&obtPR~{V-n6#vO9iRJ+A5dF7YO207pTvUjW@iFfiUl5>V&UvCXUArx0b?yn@q6@fNa9 zsdoZ$MHQpb3_`MbdgkbN!(`UG%3-#h)MLv6cmWrV*M$-u{O!50yWxZvaV9X}@BJo5 zyM1(O>2@@Rwm+@`bA+jue)%H!8UHguhl@P>*j8%f!ud6VcjpH7uk79?^3!uZ>^$WU zewsH_Qd7g(KSCI-xg)hK4UJSJJQb;1bI(;>3*^1G;Y|z>6+T;PYV0!!w z*hhNhWsU0hHb<@%(=Cw%1Zx%)tm=d>lVP?dbz2@pZ95lAzZr+c^&)R|Ttr^Gf+Z#r zODwLSRYZpk)|xc)0W3Jest6`3A5bP}^%2I?#4ZuuZ^dY4XZ6dTax`T-qhd`^N`XXW zi5S1^d6CEGB$J_D?^Kyd5Lo}^1QlW`f+1eLye4Q!LT8!6v;beW#SNM++#5xQR~YNi zeE`*i?4sS%Cbda8t=jo$U%P58HYB2N0hN-ZC=idaMj>a(Xy^Zm{cI)@$ZdQ$@&mIT z<+Gt+V9H<4p!edVPNwyHUGK*)0y|$8@NLDA2q{T&$*a0%_rpCr5%B^%!@PeK#%bQu z#5Co|qApw=|8vH9y=|GNn5I%#=Qo!&xgW2&ijC;W?j&C0pMqJJOHCDB z<1Ohh^3g9<9}(JFSV-vc;H%!f#P>C!a71I1icH9K?z-?>^2 zhL*ss&*bmQO7-w82}5#~NH~jo#0T*VLF*p(YNR%Ddexv|gZ3#8D>JM4V&mzPRfo5$rSn$G%Io0Lj_r+6n*;n`Qh@eesTy0{z68N-6NlKW!N{Hw~&Nbv! zmz0a+60j|3N;W{7i7kIkYTe`I{LW?&*nz%p$-9Ovn#&D+3Oyo4_<jRwB6aZhBQ0b z$`J59m#6UgO`}0U7RuWyfXzUrNs_lI8ZX;TJ++nP33Rz@2)E|Y&_IQsQy>bl_}hf- z{%#S&v-k}|!h!KUg*$y3zON~Q`DeeUSh~Z){ZE8prpBk(_qI z0IUi%WcjTeyo{S%79xVpA|^^=?k&@F89NYpAAHj%F9-Nt3rne{+1=m?B0d&Tr3~Zs zrhc}5!-a>kdx`Mhm0gc4ax3n2G~sl90a(7ZLSJca;~Qk8-nKu)fmydd&i-$H%Mx}Y zE&(0`mQa{a31WnVCrt%czU|J4Qn7h-=aamn(sw33n#H4rj@hV$v+clph%yRLdHtWbeKrpaZ`n91ReyQP zFtr#bC7HnC4p3_(=MX9}wY6`hvZD*a94e{PlV>%)!X1VUly-KYPSFQ5)!aicA?s4# zd*8qCB5kFA$gKJ@bZ7kjSx9L-j+4iTz{)aykIUPRJoXXOr&NS3$l=%&>Ap!&jC3D5 zUU^{g(T&zz#k=jO`71XN#e^2leXk;e5%o<43(LBebh2G`^YVC5X9GM>&h+%ht1Ym0 zv@Ap~+I6S1z>yU!CcjU-I11b)!>0xOv#5LSahH7W+)LQh$v`h5H7`VkUKjdJ= zTOzp`v=6}QS;}GXKmWhk8LxUBeW9&O{@0HHiTq<2J zSs#chJJqUO9?<&A6UyhrA}d$)8`ADmr_W$UtR#{bh9Z=I4@g%aY-L{ST`W$0tQrf& znq`$F_aAd#9RgUAKqiq*P@zE7LY@xG_-f;5!}V6O-rzFU({!CNdl~RS_qN*9%tsQ7%do6})0ux2KRFLIcUNFkEo0YrP37wR#N)23=+ z`IW5KP*6aRx8}%XE8)Q1l`DTmoop*#KYFfz#ddDXZ|_MN1H@qLeAbR!p%L%cW9seU z*43A)cz|(YCANWuuW`qF(Yl?2*wSx*cCP01-HuH%A}6~3jx%X)RJcJ^X9>0O_yfz2 zoADf-CW%dau@8sfSv$0Rf`g>+&;0R<{UWiA;AV{Jz(!Col_LW!haZkDB%RBZI^hKD9KVzDDnJM6X zt+#-Wng8X<{2&8lb+P<2iVvGUCGP611mL4GnHg_(gr^AKsdaR8qAh!ZOBl)Ny( zQW^H;IkH8G%2lUL-f`7njjF16!k%YEg?@?VMBwUe%zS{^|9weDu4ou7_FH`4c-+(X zyDNUw%ZBD!^YJjD$)2#Z%y99ce;0noZ(9JImI#)ikl{3mI0*!mccvjt=9>{cp&o!nk@bQoidl6QrLF2RnKx}fuO zJ|`Q_fyvhcl$7qYw}PYh))!BN^?8?H^H4Z9YtRHvha^au$k+7n0IN)K;@%>1c|Hi) zOSTm;@2n_}KFiO%jh}yB_DguS9-^yUbESHnP1Xe<8fC@aMdBx` zdAoL8WKcjuG)2oqP^a);-~R$MNpk?uI6q(llz89$i@B;xLPK2d{?Baq8w|hWR_1l9Kd*MBeFV&Pe4Lh$O z&uMJAJp>#`&7O$1;UQln{Jn(tGPbz_LvPhB4zVhVgX*YAS1CxZt$80@1^f_-dy2)R z!q7WtDZ{)h@+LtSq8tCPn**mh+*1p$8jRD^oln7cP{`wNC;t}w2!8jAu!uvA;y=tq z8^a56zCsAhmk`o~*vP|zg`@%qu-^IVCL;1Ex8*EA!?Yn}LJ3d{k1-P2Eh{Kedw)o4 z6R8*59JMgXLU>FVLFDT9@0XnuhKB*3UE&XkcI}O*H!is*q@eci;BVsS*pUIXVZ8@C zd)&_F)mnA@Z0CkIT88GQ0N|LLqr*woRr#VpeKWU(NO2sMn0iZ=9~vU`CG!czFXCs3 zugp$MinAYg0N(OTtDrq*74G|@kk7x_i7=w?hIHIQhJej#?57OG?2{^E5M~0$ab(X_ zCfV8n3gu8m4hR6jCyQIw>My)j^ zTPUF?^iyc2Mb`mleLB@t{t=CV;Ko3wYwWS5@G9KhMeeM&-*v6y51)oRDIaYER*+POZpd3j0*ofMM25~40`_$}xx_pH6tM@SCH&Iv&c(>0Qe$=( zGM^<|N>H4TJpru*qYD==c!WgJl7t~Jqzk$;b{mHLokl_L5ofScxKQVxO6mVbzHrRn z_=LSUY%rIfq#dq_Yg6x?O^MjV4QNzp^nalq(Q$^qYUrTDM7AMjzZ>ecwzBdAV_}1| zaH6eWyM&woTk&#no=D;_^Y2i_;TFd7UN=c@ncceCdaf(iee%2O(Dj1Sl>R;96d6RQ zV!PAyi>tvSwM&N69Gg&XmA~UG0D%?60NT@KgGSjMN#_%R=M!wD3DpvKQ0t~Oiuh(` zN(ug@Cvzv`B$}^ATKfDjYbfKe3evPpVS0Qg)LslqDX6a81P&}Q(t!b=Voq^Fg>%%- z8!m#*Kbe8cHha|Y?9W88J7?bI3oW2id4_icI-u^=U=!u->TW75&PfKncs9(DL`(dW znZE#nn9p<27huBiD9|30iskoF<`VVZBoh`jcx^%SL6awm|K30pm6w-%)o~czV@|pN zINK8AC+L%SZl$CQc0q$)gCYA50I(d*@cg5ABNu98yBpR5@M7MpYlqFycziHjJjl6E z>d4LGtb&5jUffAW5C6Wu`0@NyBSAaN-WU@@lvHh_?S7Kg=l|YZQBX7;dpK$5V$!~r zIn8pe+pp2W2tAq7ny}s-KsK74lOp_&Twc3s$lbn=IQBgFDI;R?61lC3eTz+@M~|Iv z&x#{`bX5frQm8jVmcni2*y3PQMvw?n}CB`hq2ep{a<)t^|S2ffmiJjUxpXF zghd?C8hyYFECJS~8WI*c%_^>&=kKXe!Zyfmq!05{_J7FM!>p~C7_GzBTQtquq=!QA*=pO)HwNvr%V0ocGN@gHyMjx#~Xx* zA73W=R;*HMz1FgWS>JN{x*^s9G+fFDP9uTU{P`Q|@_~lEr_z;zVW+mtt$!$2a#;&l zfRUre-Lw}TCMSbKX@Kv zdum9?1hnmH&OnAp9Qi2@5uL~frV)pP%!JyS_FKqg2Kj6f zRFt_;P{F^A9?6b49?XnwjvI`>_LBs`7cK6gB6zHs-3;>nIdl|%Rus;8)>S}{+ST0sMF%eHP zN)b?lCg8Ttc@lD>1F*iY8WzCPxO?p#Yxf^6#*{f_k?1Uesc{n6#uY}E_uQZXOB|-@ zH9knTInN)CU)T4_0qe_LtQ2NFjSKE|Q(-|2^|v%sRTtNQT$a$!)Xq(O9f_oxkAfr- zD!4m>x6Y@LpvzxVMLoQln}Ap0LmI=L7}I> z#;#y(z)iUFt%PG|FMChJufhk_%V4mXBL|6F(?Fn(+G!Ylfbf!HGK02+H{pj|ysFCK zlkmd;p`sm8O>Q}#;h3zC zxVbrq4CpC@p{C*|#Vr;n+kE$BK1aRGuDdnoL<@bzS#NXR0#7 zO7#)?k>YHGbS!T9$?A?o9&_{6BYQ*dT66!xi@+cX`lTesp8Lnm7C#gdGP5Ve<*6TZ z-Fp_mvRGUxn33-g4IQst-h=rXvmVNsu6kl|48~LkHW2kwde~3pyY}sk+O0 zu5%Ud9)JJ|eY93);?*Te^WF4(O&w7XNi^hRnF=3N)fF{&5WoLX+(WQ zmiYDZWIf{nM6#~fTj8Wbks$`SsdvBE*3I4Lvx-$vjVdqB3Gmq&)74b}1Q?qV0QjGm z3Sbj=tPNXP#F-)C9mx5^c7yB|7OThsJi-im1cTbD;t6N+r|5^U<0^M9_P}ja4D5U3A{=i(Q3U5*Z*VQE>~|gZyE`o1q{BT?P(_v9f-w?1sO~}v z|9|<4EhZk~g-DY)d%FP}p~QkTsKT}!YfF{b{W3a7GER-pQz1HmX!yy{D9n&SyMNwJ zM6aqL{#BCO|97_gQFJ{uf~D<* zY2wa|E3T|`UN72A6*O7X`py zf)#Qp0v$r*jUHfmQpQpspu?bqzFQ%DwrX!UXt45!S#5609BV&QsY?9R{<`=#ke_;_ zFQr$LV5&7ew9UzR0?SLQBfzV>|Doh~Kqtzq*Z%en%&Em&TbSEDfBTVkYY8YtdpTS8 zKh&BTD6MhtXY^#aS+iJVrLIziZP(MYf`OTstOUT1>lafKIZ?-_R0>n#Kcd-h?uz}O z_SHkz0@IUX6@mVmm=uhnsEO?1{iy4*Rulu5$D#)tm_X(-j1kUXoUQk+Q7!VxR%LxS zB_&qBvp^A*z>M4B8Yt8t_+74M*v9&BJz(P7mNPlV77(Ep8dkD1fO*OVzmFX)%5V~& zFWX2({1e<+0-)`1G-%~wTo;8d5|{|?2>o9?9D^w_M7WT4W-KvBOL3w*YI7+BrqNYUtBEC-vcwfVoL6+{J`wkflI>XYRhK;j$8+`WG)^b0h+k-!pAt z=_;;cD;LRY;x%14c0oQEHKu3#P&2%O&u6M@=5kth?Yhl145A@;*}qs_Cm#=3Eje;I zOw)8}6-4ok9VtIqjJ15Lgi9&4n83fRcDzExS;Z_gr$2|d%KtK4a-3#Ffc(!xeU|(x z|D(7m_L$O=fTczm1px8}+X-Yd;I9!+VJaCEonW;%tW`>T&v6i`7@SCToNfqgg z-A)M7n+KL?A%K4CvSB52g?Weo7Gi^~6XFE3=0*a2(w}D#Fe>~W-iYT&EHy)CR^1vX z1*HoBLI61c7%U!G82*mIDF=A?@(41VN63BzZKP*MyWkkm=&?J#zuEn`z4?7XQ6TmYC6ni=vZ0lSK%* zXIkWs1T0sT-cm?K+;{BMni8Ej5wbU)7ewQWbS&X~R;SKP5--PV+iC&PAaV>`qK(`t za{lwjS8=I0?gb5-vb3f^?`koz>bMhafvQENShmb}%;dK$M%scCEA1Bg^?MJ~%EPgW zXe$Z1zg`EWcvH8xU|riGIoz~{!K#(N26BZ&XUrj%V#0jLu))T%>p=5hWe5t<*!6Iyi-wH2InnL!J%<1d zn&R=__Gny?y5i?pYJiCm&GS8_O`3s(f`{}D)s)7B8tdW*BsfX9s>Yxamw&`_owwiW zFt(>~rc&Gx6zrC&@Us*GX7eW+HEr?phEmP!5f=1L69qrbrbk2~_6ZrSt}9&y%uaQ@ zXsKvAkf}YVMg4{?n13)X15CjF{l*twtFR5*vr0mYbk)SYe&z_*YQzw&4O_-I`xkM1 z5&((6afARH^_D%{ODO~d^Xi6YGoHjV13BKCZa^lWBo0>`^5*E+S6b3fF@RrTCQHC8)6bZ2aad)+7|Q8PDrUOjGcc%MfV~(!BP!@- zjZ15>(9IA6*0y!EB36Cn*)L2ev6)pyjp3iOOsOcn+K5JuxgD&1>(NU0m1_L9Y=Qx0 z8p4m!Y5*X8D(x1V*QpwT*;&t^AvJhxN$jgB;|AT$3%Ao5P%laI7Z?tm}!9Bvl zcLz)AtyJXlm&BR+wXSADj9lc8f$&($T0#MwH?N$qMFwYMi@3nN_203uG!#LBBr zHB-1%9G`wJq%ePRR%JJJ`F60SA|n)nm0vAY5Ru%#HIjqoH7fjkP7prf{k%#0tUP;1 zKyh1(vnttGFY6hGn2VM+M07})S6|6U3Nwj0q zolL-v%g2Y!pxVg`S<8on%7lI?Qe|)%C*(Cf{!`y75fKBv7%ICzrBRnm!M=BSP}89w zNg(Q3E8k-B<%k}zWlMnvTt{F6%>Da9qS1NICjm^vGNlAq&#MiCX3GPyOOUI?Zt|wj z=aC`3_o~Kr-$f%`o~H%7tPT@G#Z|UCvTVYRxLt8=#N-K!-ZRZ^ zjNBl#+>jF$ayp6if|ItZD+N86r<4OK0A{_xpN`*)tww>}_ou%;QbL3TNfO68wsahT zSOHtj1krAH8EvB%0VCFFh>^@2fB}U?D1`dxRhO;Kcv>n%dlRw+DD!>j$N+TV-~eK` zI9^mqVg5Oh4oj#CT5`+Fvo=I;M;uI<^wF)D)AJBO{VrSqHrrnT5eCRlK^P~L1wBe{ zR^KNohA8|I<+kdTIboJl2`9Dm=_bw<{U%!mHt05gps>wIm>1O@3?tvFCYo;|T2uYV zbMV?z4bp16Aht}Bfk--)vn{LK3i$mfWHuTA|3VgrBkt&eopFD~9{3 z<`9r01eTouGoB&bgweUCh28wK?c&Ep=<)A^8c8+_PSZoqW`HBal9$Tdq=Wx>O|R$- zIPFuZl|=2z1*6s9{4Dk3xx&dCv=hU#AM|A+iRDw-6T}Co^?g?A!c}141{iC=A~br_a|1E3r~O*zdOd1Xg?!j7bqnEFkn+5!*R=mBP-J zNg>TvOkc5_w3CvK6JkUIu%U(5L14AtXM>y0I5>^S0ZUs2wV^)NQ)6A&njC|!XD`PR zEMy$whG(rPJka=;>mnl^DByE~qk8nig24e!LA<(r6#e!1(nr*?`l6>OT$|2kHJ6QK zz71ch2`r>UQ{X4Ap4OchN%weOHr2f8o&C8SoCj-lqV4655+&1|NBrE(I)#;z$9s9R zt!D>op~VwpOL!U}-YFaC?BdeDG3XmY;VmEo2ecQxTe}|Yo&Y_N?x*WXPUsVk?w! z_w+BSeRhB=>f5Vdd(ZxTeX5sW@b4M4wU#mp@5I~i3|@2w_<2um#zB_7#uaLa2zV=jQ-A5%MUYnfe;(6-&qP&A1Hajy1A$8A&A?a+25F zi4y|WL|n3G`}C&3aL(`7Z-W!a<=T#-!UVEs@XPa!waIJ$7g97H*$AVrl`~rrzb1Dp_!So^^d@To&DGC zA@pvc4Qmq7mBCsLQC?EE>f56ad}_s_M8KP(%JCrw_7>rc(QZehYdz(#Ju?}k+;0-{arO;4vLdRM)EFq$4A$=QGRUp`h2I}$yt*9NXfUYwf<<#3YMfQfTQ*L>E3 zZ#>(97nEWw#|Jxo_cs~>$>v>$w4D)MQj~f7(*-3{GNuy+_+~uoSqV9SezVq?WpDA) z_`;)@xZZB3(0kLx^>m{#$cU}XM||8b za)mLd_i8&6Sw&uk+$3I(dZlaaRKgnm{*2YFKyR#46aHF{{Bd?bl)T6djUWKjw5OSOv5Im})Gfvm^+}ntc#a>@ORL4y|ftU_D!MzkfWHx0*EOy2=VQ>SCAVoy(?_?ZUdFZV89uKh%ViQo@7(#! zz&BHWpF*j_hAs~J9%7E;q01)g6c-a6?{;O89d#78v9U#hcvMeR$X(T)zG|GIBph;2 z`Cab<0Cf}30vIXhArm$L1J<6@QNM%V%&R=Mk#S0D|Fi(Emw1xs`e>^<9SnTx2NL4< z%_k0jFHp2Bl{C;-74?`99`CX@StfoPQEPVou&l6a==pV5cTwSn;qGo9k0v_bRo+V^ zPULli!>rSJti8*2i_Yqy0nS_v)}w)!hxK~!4~kK5;WhgVh4dU-Nt)$I?;Q=9*Zo|d zCbW0`>Af0>)7=hdqHY5Pdk1XP+gls7MQXx+og`h+;mjm~_9TFRzvNzX7Dh)T5l^L4 zod3S7f*Cz#Rj`=128uTPrkljwo575uR{Om3@@}df(FwxY8hPF(EIYj4S4d7auD0nZ z0cUNpge3hijB#NEi&H<5IXhrB#SEdcVq+l zUHtvzTO{)>K-n@#`ConlyyD=iQ>?NXGHwF`UZFuP%l(q8bP3Htd-CE&exCTPd?ijP zz;nFkB^3WAOkTJQC7rM$w{R3Lw|l8|^Mpa^)n9NKBgRP;I=v*miorW*zs{XKz^`-k zq$-|mBuAV@4jaalxAhLi7-hjpW?I^^wU;8h^lI(YDQmx266j6qoL?>}UuksP1RF_#1Bd_lmoN5^_ugBu>$3FU$Qzdk@q z&OU*)nnJCBo~-EYZ>7wu_*WwV^zw6D9}EwH=S#l#zW_Ucm6Fs}*V=Gh7hK7xHrzrHhJ#fCPQK=F0|LM~YCh#Y;(7~(NO-rH^}g2e zZfa}OkC{Vy!P8+%VD!}%jNl2D$DE^dsmMs8K9XP zsBv<6F{i2C-femr32rDXu(18mO;VuJG047^49J_x8~9c4ha_rFxGrJneDae~Stdn9 zG_i`S+Cn}NFgB^!nlR73)dkO$>i#SN{9T%K{fZ>CmTP4Kuk{Xr4H0I&iVJSTzJ+mO z^60oAUvXOe-vz=Y_qoiWvF38WSV|pvDyNjG&FFS9;2aW`~qolJX5S|9YCq>&xJWPBciRuM(6&8>oIDjx0N)LD{ zAF+|G_vrEx{m)l`aIEH#Oynp+D*q>n5 zu~sfhw(pjEw=FGGCD%)9)msS_Otb86LjC}b?sJdS9I$FU%czz}EHlIiULU`fcwO{e zzj=S95sFpwPJV(; zqYVkWq_R+VrHOQ!U8^>;vV^Jdz}3!JE*GAt8nH8lJT$B5`PH(pHGb|KeK zDIZ29!7{E<<`xf!D9sf4$6|my@WA^ssr3!l3V~nwgX|aw!jDe3dI9O`AG>PDhimHr zy06dPp;D91P%N!RXBUT;23EZf)(n~JHFH}%C4d>eqOauoNDj7f{f|hnOzaq!Z~_>j zz^=2f0El?t0K?~l@~zN)72ERaNUt3ItIjI$kQI(s*H~}e%pSEX8X_wvaG?BOE=nEs z+4N#JwFif3mK9BxAR$wo+XinpI66AEj1Vt?-@?^TEkb4 zWg_m6^e0xp6oWx$6tAXES!}qV?;oI~xo&KMA;FW(~e1C0R9RC<*Q13K?k(=%Wq z`~FO;H3RTSc&Sm@fZ}Il^mt@Po_pH^K)_NceoK&vpm3bkq{A3s@60`C0 zCslKVpZ!#@f>|M#ZSG3VO*f_!Gn-MxtcRHFjw;?<8@;|;=Q(SO7w$XbPXgJFhoIUQ zI;d4scEzzA)eD`&zB$tLUCpI$yHY9_CE}UvUr*(VT=*hrHlHne!-$npuHAr9NOItD z>I@AlU0`l=JU5~qJLvWZ5i;a&$MfoavAG3A03b$Fds*akumE9hiP&Xd>i-;-e$d%Y zT%b`CAgvjtZ{lq|iU#|j{9oEe9Q6bfv8@+}8O+}!(8N74?F~9Yi-zq^TE?lHt4&CG zkzLxnv8jpM{#hAL#2@o2^`(A0g=ZwW986^dnK=WDyleN)-Y3!Rb@Q%@74>}~I65c~ zl&F>8y;S0tth=PNykH^6sTR z?6MZr(5eBMzgTa*cq|v`;{PDUjPt_Ru0a=GQ~=h)Gldm^VPgqw_>vzvKxA?L2o`J% zYm!z`p9Y!>&Xa2n#P#J#bbWG^r}fXX1PG7bTBLd5rKE%Zbp0=_{rMUMihI7)o00<7 zw?MoiXAE7n5BPF(HlEz7|KS&oMYPX_Hy}`ozs*$~sN`0}Xhp&kj)3I{0(ZFHW(d7z zgAL%U`Gr&DA*_herWc*D^tj}l@nHqOinqPo#=qnx)WTBtpb>fKc7Y||X>UnV9%rHy zPbU#gV3BX5=+*+4Sn;O%(6(sPM27h){<&RJB^T}KrG#lob4^CkP@TiE|O zQ@Mm@&jWrHrZQhCfC6}S6UraNEo;N3pZ?q|xM3-nFFqjfvxg<-H|lDX3}{7_ z`Y$+~^%3w$-6hQ z)sHrhn2j$_*f*qcPE+cnYvPSqHXakI8xP*W=qB;jUgOKcOwiF#^}y$3Kbx(}KFnJe zDiLRI401?+BA$n72Xl9T!o0sZ-X~=8j#GG(EIWo#2}2z0ip;m{O1KY|Nd2Gdv^e;> z!7-RM-s;ARPKQX0{L$FTzsUm)(aq2UbfYMd+|Bb&bJRyy=tiRsV*6f#)+D^fT`{x)B9*=NpvwbST@TO6V2M!=LsSC19iN zY!|-U7A zy>0PNqoPPE%n2AcEofK?Cw$}B-T;1N&#`a*W(%aVPPHEv|NsSs@-Fm>f1~k z`b7dIKHG(kyrPl;gfCSA^$>ZcoI_4P31Gx(-*&!smv6`ug#&vFR#N~ZxvW{sZR1>; zG{<|$F>#?ChXhPM$EKH#|7*KcM_<21OQ-JkLmzY$FGvZi z1je!wCC;$6xK|P|-BBCum|MnGb4#0i%E2M(d~;?x$qwJV8Hn33e+L|oE>96!%;yr~ zs_}G~FM|joKobC=9(Y!)lm?r~>0#7}(?&dWgdsgIU`Rrh5-SB>e56Lq?Ea+if5#}3 z7C1O14Ff<);3>}0DO>lx!!T9Bj0gDXcbt@f4}a$=oD84Cdn!bF1ND|o8@nPtWu4*X z@ST0iP7q9ZFYV?e))`@ZViGm^aCQk!@H52qHKeshAkmB%765@*lokUPJi8HRv~EQo z<7W0oPHTH@+x5v8a7vH{nuzpB?HsbuwF+y$KV$AK;yRi2>##eJ$E)H=pdt8o#tG2S zJ-OgB=wJ$1J5xZWY}i{U-}r|s*~+UrP{P9F&Obj>`0F}k0IT=A1JsJt1rn>3T=ASN zGGw$Y8Y{mV30MLD)LF*vB)6h>D^4YS4P~9_>u5USUH%RifkYOd8)!jTlC1dk)MLGr zsE=igTs@vMJgu8giprg*@_)-Dh#_!Ys8H5x2JRQ2Z}Woqjjg}$kuV!3#j7syJL2F@ z7uhu=Hk0WsSvE`NHb-$C00>eoE5Ob&^wQ`~7vY^>1!aL>TlAl7q$Epr9#BlK7^NDY z^9_GhR*BO~NV_OyE?jBe@$9$f(TN zz=xUU>Dq5Tg;8etWHoq{>{5ra!(6H^1R&CfHBhh6Mk$pjIzV-7A#8r#A2WXUV7eL$8p=`~cCI|#D(}Bs%^rOFoCUgw8 zL0i~7bNWihZnF~lTfh)Kk(_ z>fuNnJ{NvZqR=1QUBNdN8+lC=(CQ=4s1-aNlQOB?1GqN&c+35zp8RO!F=_gk*hL@c zH#m_qY2z*Dclu+_r0LI;y{?8>yPWt3+gW-x+~d1k(MN3EU*HxayI$gF+ie_#C+oZ& z-qAxjE5jb~C@Pr(+X;|nr3ci4kqY+CRto8>7C<;l-E+Rs&@Z4u|6u2*NwU7y6I)`B z!_7&$GFcI|C&H2&^O;?B!$W{VE<;oposaG4)NRP*(sP2h<`zpaNRHd-I&ALD-k0a{ zAqzk5-F?(HNJ7`o5D^~HFQIFtEb&U7g!{J4?tn8l85%YtCf3-q?EU7W#2TR?))t9e z4qvh-@rGFgBl39#kFXNFdmA4|S7Mr0*lObgnWDqY=pU9mUXAQ+a$6lBC2 z9HBZ=Wps5fGmd8`^EOC0=h&YUt5%To@Uz9yf_P^k)xQV z2fS}OEaN1E>_XS74S<$hbA;_DpM$jm!XOC5_V8pH$pJl-^j9=|mZ09`X=`4Lr(2Vf z$wSa zD411WANPSzmh~tHfY_B7y4iQttp6Df;ss=AAwmJ;!$v5@9_#c>%ewl!UCQDovw4S29HJB-z?YR;7edU*^J8XI;G5Qy^?Cwv>si z_Tf}v~5beOr$DA~!O7u~F>bHyRVDlK=2)jU?_r=ffbr=@!q-OstBpCkA*ov;?p zQ2ao{%|=%Iky`-Ph`ZA2$#xu}nZx;;h1GZjBGOA%oTf$>cMG@jlyrmAJbWU1$LtN| z&yYx>*~o1-;VAj+Saf>Hk7@-ZoQc^Id|yd|$WD#*H@&9>UT7&hrK6#WCXY}3yN+7i zeTwV0#k^jF`Ie|5iNn4ZG^s+gQh^_Qrjo{4x*Y{0{dl~-jh}-?mxOWL%z&lecbtMA zu4c|XceKNId?`-x1Log);WD^IKVdUpHOpe7Mu4XgSUPtvV6E)I0#(wFu1V=LsXq-} zBQ4>HRNTxmd0@4*Kc%N0CCy~WkUxO{onBI^UT;D$fjOL5C-pI6D^KaP@RgsW6;6zv zYxJ;b`zb_k?N54mO2f+7HFyTyF$HqU>wb{XiqlMis1!yGn?Im$gTY!;#6*UJrnU-vM@!F z36SOHCz({fq#cPnPg<#6C8IY9+f{J=1xE|}MhIM-w;%uX|MFgG<}8>oLL}IJDtflO zfNSyFXM*O2Rg}q)t$ycEw~{2y*!#BQLNINjpXB501nt-#_PDwHz;(E(I^hz3 z%D)mQk>xvnutr}i1EgETAkuS(lg0fWN@82Nk`P^Y9a@X{HP=|o^+X0DT-Iz!3QcBHREre=bp+=x5Ku{fYzrW1&4A)3c zs+Pm!yS(5==#9k@3njVs;RobBd8nOmla{G}Krf)h`?HDR8qso2H`l#x*>8)V665em z^4C?Ss)70PH)|Z(EQhzsZ`g_k&k*J4t8N$my+;AS>l=u6Yv*az#p> zK`#~?6>+MC4FcLWmV6e=&43PPJ_r8kQBTDc*YBZc~$ydIzK$Q?hmc8^uWzQwg0`!=T|Nb4BQ%IS%} z1bA`kh{(PEJujn`Oq;&Loo(s2yt7|HZ`(+Q^mn6&5#&#@1AVxUfBJPv${7a`?j9}1 zX`Tq;A&2v}x4nC`0aJw)?*-f`7**%7cewB{Mxl-(Dd5Hj%^ zq2uv@`U)^Y)5*3Qh_QTi!5x5GYPx#UL5_WoOU#8|59!rF?JU_6$hR znqu7DaaCR^?#(W`+$&*KM)!NE`C6=w-Oa+IHp+Oaq)OtVZykEBd~56D%jK+8)r zY)|WpM*()6Q5A-`M@ZEj9aqzpPwtvS5?f|uyYXSzap9m+Jl#xvw-!13`u&?HF(aVB zw5`F)DKWZxzf@7a36_{8c>zR-NFj=)OPejp$%2N+y?OjQCOZ$z5_u^QHQ1~xO7Sh? ziJ-)ICK3W{rAe~{hakQl1)ueaeBVFfZIT&2Pc5_7-+h=(|CKK3l{4m%^KKLmkXO!q zpzTI)yD{lcu*Q+izSg)AwCa+>KhB^OKFzW}d8xA%ow^ybw{Ph$n$4b0yxP`}qclh` zz8uz%RpTu)H{)y~ojF#h0cl*-en<87(!<-szcFIPUP^kvTD9a?>6#e5oe5(;BfUzE zI9q5A2t$4<546%1^qfe4@#A04=5;e39nl`s-_K249zH2WkG%{Vi2Z4=cljPB#S}%2 z<L!jkO@8N) z@%?yRO`$f*m_RgK_-VzrGU#T?AClv)sz(83M7WG{@mU)Xr0wC5je^MRH|Il6N2>Io zv^Ru^5`iELPj}T5sI0_U%{ppBT8$=!bF9mlBjICKETN?37iLh3kynlVpa%n_PUh`f zO}XarAM?y>DMD)RgMFoS>H&OdC*N!(pFats=O)vK*-hDQ5l8Tx49)==QgAP52qo6( z4LSVU6fa`l>is3NVxmba^`YEGUVxWAEL(1(@Y`fH2gCq@v6udO^C`KU@w2{%zSn!u0^N0-?-#R{K-lZ8%v~qG>Jxs92l4vFHO7Was$>&oV}eqCTRfGM z|IB+5+W)3HNu=|Ef-FKFQ7P7-!g(X)hU`Z&|KXyeHXb!ubJQhqE zG^Y~kh$ZM43}E146epP+gntR`0L!RUR5^<~>K^s!?gOe^B2E0)HsjinVZtW&85>MH zUCoFYverEUit)4C_=%<3kZUI-6mO4AGSY|Bxr-oqh%_FHBC zCBMo{6_pg(!_>kuRU_{j;j$v}_i3@qw8NB<%+1vM&tw^9vvpwJ@9oK7~p5gs3 z&jr_gPEh~bm5*>B=h7Kk-^g{_q59)pt_^^O&hea9P85S>VkZv11$YZ;ov2-yO0`TK zpQELsGr2K9*mU&Bx?$X=9xoXIPk~szccZ8`M8US6!Z<65M&vcLySP6ia(J)~42*Q$ zgwS{L*Ue0dU5kEdslZIjiB}YtAaFK*&$n%KgS+uX>|V3~;2gu7fokUR{sldU=RqKlL)bhMuk#806pw6hwWM!MiPf?)C)!0aWA z<%1Mm;p%A*Ul1@0M2r~sJf3HrtDm#!x{okoaEq1$4g|^s6#$MC==?|@M!EIpeOx8) z;Y$S~3Y&0W7y}Fb2Y8G6|~=H^wT{dc&$Q` z2dtNPx2MTv#v`4)h4;W-&ddK?Z}n5@>m0IgHf3r;rfrJfthGH1mme8syPmZ^{8sY2 zu({|IA)V_;)cmW+I7U$0?P9m}e{~)@zn#A>KH6%NFUBIEKfjbDjpneTY%aR0e1)fi zYqF4h+i?H$FCzFI&tV49cW!mk0Q>|SIz-E7g`Y$W;AtWvCi51~pJ(&~HzZ?khVk)I zQB(Znf5Z#NIqU#sSD5CTJO~xo#A-{LSv1O~bm^iUb9YX+r|x2#<@b#GA)!H$)97&L z=A8*XhfL#L&n|)APmBG;_4vsfq|#+=J0BjCL#OnRcN@Ic3#Olz`R&bF(EbUgKQr4I zRpn8CY?|cEjC@m0Gp@8z4T0pDCy4X!4?LJ_`Uqe)$kC3+1xw|^D&}%=UMjmW2nUL; z(0soYlN^sBS)^#J4Ys}BpW9JCCbi4bG-MSk1}m) z2~S>+0vq>sNnJEV$jKBC80W)tq1LHWuEr-S@N$}D&j!YO;vs!o^ ziyF&nhR_=^XL%WExO2!7^WemksxQ*;iNt?uyU$~iZ^F^Jnu)>E`#(S}nZQr(3?J>C}Frue=bYTpSs*=)$ z@Oa9Ggb zzobPO3kAQZOA=ug4P7VT!fp6|zDXB%*k#1PX|zm1^(9dxbhf6_U*P`bsk3=M*`KK5 z$cyEdZ0G8x$r%eD&tr0_oIt(sz!6}e`@W@UXy=cJimPeo#aqqCV$p}|ymt=H1HO9L zI3`GnENi(sEOs(Sc?!k)$Ije3WT5($SUKb`qSoWD#Zs^V=ZQC@Jk0y%o7CY^lp`Mo zj#DUL35z5!6Z-m@;c)B#airw$=REbaqT4@iww!J|{76HN*x}+hr?mor8Ny%BRDAq1 z^@Qd4Y{mJ*>3PT+eiZiJM^^m0!dJ2#mx3j~eqoC+u6TUwBZ+-4T(0~qt%Pr-*N^S~ zZxZiDKQ7UnI1Q!p_ZLd7BmcT4=>3tr-XF<<{5erBAb%6#LJe(hO}*@?AkBY-i}n3} z|Nq0)TgFAzweQ~s%791=H8e9cC@tMFbc%usBPk##C0&9;4={9tv_S|WIfTRj(jlXO zAT8Yv&9l+#zW&$md85A35AMC!TIV{?9buGkDd_{S51;9L&sk^{pHd>OT(Rgib*ivZ##wk_5s0~Gcs?I z)V1!kr_we~Z?Y`P;>74l=Wg401bRE%x~s3T&@C{pPf|U>OBuFH z_kPZ1{&ZL0%g(@=dhcZ7sw1 z7dxzbDaZNasd8O6*;!71xkmx2!V2yUTd>B$g5pdm*vvPe$m%?y4oTb})2ZQ}tKqiT zir-a%;t&mc_utOg?mWy*U|u_NFox-ymvw6Ts>$(9(JX5ce3um4(_ zZ2nl9Qt)>gs3=F6(^_laWkJ+_t(jUIu`*{;j$~JBr7D^ilN2CxFTEAURu8o8E~wTy zOo1}Z2q3t4`Io<&o0wmTTP;tvD$pxS_*-4eVsQgOl(DVk5{r)J?K+Yr+x$85>b8Eu z$sES7CU2tZ%*3Kvyf$4iW#zx4>hxB}mv+a$_RDIOJ51!OMG_VX*-{LEuCK?LOZ_^c zoA;JP>I;$eXvASuL0Z`q+ll5~a+)r;)%y(Mcd-%_!@yBfclH23nBICop2f&EG&Nyu zP`-_j2-xitFFua*4c=ndR2yIYTBaIp*g+0jV`w+Ji-@S_yK2kaO62luZC6+% z-yn?NZ)V~EHO>$3nRExa`>WkqFe7Fj?-#?sJX8FBYGnsIc!13q-pby&>eGK`nf_B^ zspM0hqN3HZiKGIScM~#6@0TTUgG>LJATC_wVEHt?Crsxw;`fx7aQkG->ZG*L`y-jM zkyTn#%|gMeCfkVeu5{;N4uA)E|4rG`BX*cXhE^TQ%9)&(|upJ}v>M@7aHVDYllBgwydXTOMN4zpt(GH*B0~7*E@L#~9hvm$fb9<2a&p{r ze{vz+c5W8`!PBmXFX12#{0-NHKP>t!OSiQ%r^+`tF9Alj#LnZ~fI8Y2GLmBx_E?H_ zL45H2*vT8?CMm}XHwI`J#qNop@*(tww%a4bn%)PFf3?{BK2*MabpQM07Ak3irAi2m!EA|!CLgkkY9v8H?S6Sw7+s@iV6JvF-Hf% zL*!<`#a5meJ|Of$2-a>Mf3PU3O!`V;empXawWNbvofe+mRpe=fKtCG!YDb`ZEvRP7 z$KlJ}cs~x3$mPwdGx?g5B{-U$AugVg2-O5&T~U$@7em3XcWh+nFUm7`FUqD&kGpbS zpW^7f+Z#s0uZ;s1C4H018OD%zKbAmOoi=VWu{HS4p9$)2h7ul)TKf%TTE={@!naP{ zNjv9_B`qKhdZlxdIUOc;2Q`!K$A3!BPr$r<*S^6jRR@SJZUR62a&i(;N!1nshcgul z*7qC>6YHgWDGqMr9Ls=j5}v}x229dzj zB-!{W!^GQZbq05VDrNkY2TDE02|&5P5RGrGIC842rOgNI&H|*1a3wATJ>HFb^x?n2ohH?Qx;}E6OHSyB7lZmhTEL zE23#ZaW(BSpUqQ$^z2Q>3%wdUUmt}(WVekt@3cf|_FsQU^1#Xf!^k*ryDS7~RWd;o zy!%-1p=AM~<?<8R(5?_Goo1hI)l!4|FCb1!reZ%;T#WOy_ljZpIn}o8($7eFT8t2218vFFz@@ zLxQ}>VTlqR=fY2Fr>&cVRY1A3hz7CjI|R!LkJMO0VJnT@v-EB(cC*YVe4A|7>EQj+ zXg_|dxK+AN3WwauuwRpe>GkrRfK43!p z@T+)o>s&$dn*^@`!C>=<_5_Y}W3B(Fcmc~$#Glcx<46B}PZr9{WI&VIReOuS%ibeC z23DnN89D+^68@$Fw|Yv#KG!C%tnOhu>|x7^s6ANs$P@Yf&Hc+I__685KPkZg`qq8x zu?9iKJIC=snyc?N#rQ$*lQKE5sEREFdFU-khTcagB&u38?GYrYlibi_o6GpB<-%t| zmds;H|1&~Rs+#cTNxdarB1R34x$Fg+pBi3F-ai)cF%zt{)fFmdZSPmsXpR(HikSyn z$vG+^1Q%m#1?Ss1;NG2}a5O1~)v`;kjC4wNIdDkr^OsMdM&XO!;Ux^9f&92|_x^wm z_u5W&|Djs63|q`sHuv0EO@ej&v9|y|NLTu1cg=?Ed^W2uunjWLH7e`?3#ZYA#Z{o{ zo_oLlYjHDF!j1*Sls_=i#+QR0alZIoTRpM2xf$@di|U9)^Er2&J6eF66mySv#Misj z@0T)*z~L6*?C!b#?qFV-dz$pZOU`>a^0lBJ_q0Zy+G?5A*b>i$m_RWGlkxSc3G-f~ zgy))pd4EUEe;dwof4iNXPO|=sW58|5#$hl!L!dfA)S?MXut#!joG?F}aJ|a{1AN%sC6M8JNIygU@7Tr6`F4^RjJb|bUNB#_{^ zT8uvrQ)xK`@#swq2_#Zmpo{0?D4uOZq+IIzm6>(ENX;BGryH0}i(2zINkH#|j=P`& zcq93uDU1>L3FUWD9}U*ma8q*LEyy*}&)4}|wK+(*)<3#M9;dDLe4^)ycOa+;Ca~#> zt=;VJF`31WoZACtbO=Rmxz{_o8+P$h?6@v5P?Ec;q5QskN$Fz1Aolfkfc35JQ^9Q1 zl;TF8No)e^89ArSaXiBfAz8%7xwe?J)dSN*`8<_eBK*xm13SxIZKSR6W@1)6gZv;k z9&|O7q;RPraEp~L|y4#?WCv?C7;_5A-f_emGLmsnxPP(YATb4cRHH!&(={v{F znN}mH(RCuEo#@LguPUm1qTX6-426^PDe*vwCk4i1&e40AOOx{1kezpf^D~ zvllOaP9u9zKek)m~F!e981_A~5HzHQM{ReeFNxOHSIy+&dB&Ixu zHsdLKzQvfjG|suRJbC81X-e-^6LR>iJ0f7O}*WUZCx}njn@BY)@G&TA=EzYZ6cQY#o3>W+B z8UEYMuRDf0FY*D|Q4hYyY54y9UDst1@Ius3*h`R85T>$GzglKrBd!AxzK}Ho2hgSN zr(7a!3_^MkLKumQ+l^OjR#pT-Fg+s0l1Z<8rk;k7A#jDVDOrRqlMci_`Ys9|2K5)# zrOO9hZ8SSY?TF@|=stVESr+C})3Xf>bRal3)LLEakPJPfgl+uMM&a%c0er-E){~dE zs2D+$CB)E1jww`VSXz!u^;{Fgv!2cRn%uDJeCA5RPm$SKNJOH{lbF7Wt;iPV=Ppcj zx4M)0j{rlSHYocx$-#y1bT)n5{LsMNYB zzHJ|cS7!Qp8;|Vw51;a2GIiLo9K!CK3h0R4O}3~@E+7_ePnFcHpo=n?m!!Y8{J^m@ z(m8EfcL6T+;>Ln1Ik!ZKfzoTQn=_Ug4|SdmyC46@t_CQe-~GLAz7=aZ+is-rDn=P* zDcd+X^0&Q5#ah~{wU0g7+Sy|2epNld{Hfi%`=wx{DFIkUEhi;;{<(hLR%h^%vS)Hyc`U5&-GcYXUs^opBVgUvsnCL+FeWxRk&g{ zJhOc@4j$Yw!Hu}pFTHBReoZ;G;F(%%ssw2Txu4}=m;s2pys&R+*X={sC)I{xsKK5= zdt?}(khm6+EW{2iLR~(R?>i>2j{rr%%eJ0=#fM9wgqM!Ue4nqVwT;V$&&y8VnM#-> zEMM|*6Zkb5hFNl(xHab19l?QOGvvTA$e!cl9zl)Bq2Y1T*XtT%;?miIf=hqiUf6xn zKj1mEOWfJ&Dw;W8J&}yy#@vthV)kyexX}rD`{X|U84pW(Aki-GpzXhAmgts3wLkk4 zzdx5m)Fr?#NVEB++bn_5{`!akm`vun(e+o7Av3JkDbrD*cd>V^|C9v4`EBwcTBX4o zhPYa_CB%b8waKX3m2noe(G&!4h`8O0_d_UV=aDNp1HDfcY?9*S_1VV;=b}&_? z(7}#4J&h#_z5*D5Zp0!-23P<8*kXS@3lA=CgTVgadW@;U0k@38#{Ih;bfREA=^1~B zHszxXie2vOBaMTonPJjd9h-vc}D3kQcW-@KKA4hr9(MrLE5Lf&9 z@O-sGeP}_r+%HWvSeuX&IlC%y`%yO7bt%hJw_&(*)7qLA{Kbi~;fEQHo1|KfQYgTN zOLE<_(`;6q2}d#0f%dyu7G{tVmwiC;$|+?I`f?2rbbC?T+jdc>Bh`nBNUeVAWGEF$ zh{bMk!=Q%nShfPQly#{2`fI169L`R4>`l18|L{?8?Z5+C6NX>0+w6H1+{?bpVG|8U zQKxth}=5azS02ToS*Mp{($W8F3XgRdp@X zY!NlxzOlRZJVx#pjt*mWP(;B4sCf>eyUe$qTq>qB>YVk2EU;nUy5JkEyy;DS+ik5{ z3QwP_o6&3R9DY&Jj<5NAhohp7TzTh?%39Ip#jHtyAj{8e&!N20Lp9GGi?8Bv>$h0S zLi1J~w}Dv7uj9!SQ%ucjqK-#w96(!7b^ds_5$!BvS)>{9*$ zJ`S{jpPM1M@j4=+<;$+oK~{OMY!!BNbFNAZ)ln1&R-K=vT_`@pmPH4{+!_KO zW^9JUJFKL-7O?9@vhN@}iK7)XyadKq`<3elzn=WxO|h@irPkcexcNpsqg~Y30xKme?D*9tCy!(Hj_IQKvaih z=!+rMj*uM6bueiapT7lz5K&1|&OUf)9!F+%i!PxuKOH*g-t}F93qx+%u@8p(!6%Ud zd&gD>ilLsl9ZIiR@6J1@_g^oFaZ>_GZvamcGPbbd11Ju-yn!}@@pU|8N;yx3<#$T2 z0C9Y;DOhow2#Oz6Cet~r-)KHRYYVUm+<<@}WW(}Ios=Bo4s|s{b)Hpc3(WB0P5AHv zB;{){)fG^ZP}O_J2XqV~a*NrfOoDSPV5An|pryIb!oU> z%8@60#@>)Ln(uR(D?58~(hJPJyaf%RL^U~x+!IsPoIgUD|9PZ6{yxq1>JMkXtu9Pf z73K|sT;4CIqVywX=6({cwJ8dLd1JhRd}&vSwWGVyEgEd*YTi4EgW=Q~Z3!QdHJUrD ztYVCO*r+a_oSI`9$wWpr0d`Woe(*Wh2`y}nHU29kNnfe%zP0B32c%{fRXeegEhg06 zaH(LkP4!6j*-8W8J+&US=~XRjM{6b2g(%8NO8(NrdF;)vf)P72VJz9eJt%<9nV;f= z0Vk64w%Yx0?e>pz_^C%eY|ZC#t*=;h(5!J@$zDH%{$QMl0Nx2v?kvXp+F=kV0yGnH zDT38#<6REvTSHQNJ{U*4CMDdmM4-qahqT7kdrW}hmg3UGfDbt0XGm0=44|KL&RTN%S z{uu(yqeK8&Ldc{hKjp*loKs>Y8w|V?L^IQrN4MOG7E@=oCat(JwGYCFwB&l1pm5IQ zZ$D1&@B13VUT3k-lUptTCg4XuGA8r+1|*IGx1GCW;o%&5DUyVB0F1%lk5d>)(3 zc7x*fC}Q3zP&xd(O_L@nkoOHQPdBfgW(6(ZCY41qa!a$TJWGmZhp#~EMWbjwtM3%kgi~>2YdKBoDDK-j;*Z7vb=WDGReuF-@RhnH=3lpmnmzpl& z)NE<`W&gYXdg_o|LEJYQX=Bj*rQE>wQmY1@S@leq^cGgm*B6mYL)(?bw1_GQg&xL zjH}VaFZcC0k77Ex1%!e}#^{%(ekFR9H)6Rl2anNPq?XiEO7>#pnetsI1v0^764?vL zmg5HzMdY3TF=zjWL*mp%yK|JGUx%*QA55}LWSo1-b|1pN{zO}y<$AYdNE}~o062!j z!i1a;$e))4;p?JXo=^-fsVR$FN#s9rO%iOsVD02KW^co!{N)}>l%lz+&NW<3-jG2-)YzwI0Qz$N5%}YFCXajCX>l!kI=;pI~8<^N+KkMPm=H|QlKV(5WDx_3% zuxObX4fQgf&j@EijclsU-7mC}BNW4{8}%fu3?Voo#iBvnsGgd%m?M`w@sEFTCKp%1 z-I%}HdAyh(w0v6G2y@pC;287Imri{&B#EB2r-Yi=5xwmg<@E5MkX>`@j8b;~_f72)jnXAS^b|qvKW3br*Iha~e{axNQ`% z2XPkLJS{3C&V@auRV-oMOhTJ=W?7Au3%HRoDP03#4{re*1V7uAF&Du3Q_jnt_aR)% z`*fehu7K_8|5yM50eks1H08}_9^J7HYoxisMu&F$eHl029TUch0BjKTg#7#mW^VV8 z>-5(y$K#g;?o(B`rsn{RSDGjWCsQy_GKwJR|M5aD9zxXLhhVxV7QnxXLw>2lJY#6E zgO{W{4)BgFyG?Iet?S39^{v-_L=5kp z0}X(YIwRd>_U=Cz7zj4{=FU5Epiy#?ZyP@6<*%akn_my`bGJ*dcB&$|v{Is?E(vg{ zXtoA$%+o3hkWu?Q7urm9@}i+Y=&4g70MNF3S9u)>f4D>)1T5V~`r<(2L&JcYVW3!h zzF_zua*lq{p_FTqmW&#~{g_wr-Q-RX%`l$|@qKG^_)2pd6}yHyWqsbxZR9@e4u>|h z9>Xj^X@PlOrWMX=qD>u6<*H!a)n;lK2prbHbNEL`Ao9;HdkFWT6Zk-s)Z>NoTt#sM za8vQ()N#>@37K5~sZv3C)LWu%u%!*2;kTUTH)>!{aR-lc9WDAuH7z7Rx<8B^ZFE^P zW(fND@};xTwn;umu38CssB0^$oF-~~2sNQ`knP8T8S^R{#76Mb(q4YX?p^Oye4#I( zBr1MJ!9F=@*`)DHY@O&qii}y+Ry?qRd%`a%Edb`jyWK3tM};W?k236%XT3Duu=B_& z6`I8G#D0+ve9civ7U%jxxKI~C!2#7KX9ss1OOVhw)QCUlioi6hwP zdwIL`wYN%W4soOVLx5r{DH-KM1^@8Rf*8bG9mH%)Lz{kiRfKpID!+rT&JkUGq7At@ zjhdFjUF^vEapJ%ye?uV6PugC~%^~LyehkauUv=1dv8@Zh#?%(iRC1<4nOX#ZYWNh^ za$erGS$N@tZSa~2Y1ZDEjnXnx_V#{rizuOxM(;)hm=0&(39zl9>S#1f{703^q)VqI zKxNVD)9P?V8_{NC^dp@FhW&XkhT7C|v-%hPfq$wCU?c+(F-edLOUOaMc}+1`B~@E z|EfS!ZGy9{FnMhRkE=U{!Z5OC)Cv2lq7ESw}MR?BvUAwOB&iX@?2Y zl*X^xY%neF{>Os|`x|dho6GdLRthMGW}Yv{@c|g26OgEoN%QINi3B^A9S+boWkm+$ zE!cwKqlkp%(jlNJ*iHg%x>?zPqt}2No^;qcGiPh1;J={X+Emci3%?8Bp2k#JujCMP zwT~x^!+4g0=#y8W^>f9^o*{R@^{NeXy7*7QU@s*o?vS}Cot-SHdgtFNgo%t{Qx_Z% zTpc!J*fiA;-ydJy@;9Icw-#XGl#+(X^+@TYe4$H>f7YeslFor8B7l;YcDISS@cs@9s2)l~js|vdU(=(2t*xUA# zxs?kZPZ+hYQJ`uwmfATWZv)n^DWSeN06^b%K|-aQZ~AabIS z%84#3oGb~}R}A-Cv(kz)XAXNn@t8}1ikTZ~l(ztX%VD+uqwshA!t2dEUwetwmUFK!BT0h^M7Qk&B5=e6%6Wr} znaF6W4Xrob41AAiVIhlYm2!B~jfTNb^5r1V^1YtYq^=;tA!9CqgkM9-g}*zDavlPZ zY5CLTlXL)s+l3xi6Y);j5`?M)j)rZ+h%jOSYQrC{Faz*#6hMPLq3LCS2b;>5E^*1PXA5^He6RkXKlHFt`)?#H3!>J01%dL~;N*k>?y5sUA8 zbPP$mzLKRJ-X*`i1B8UcGjP!JyaE!M|IgqI0FD3M@n1dC2%K#P{=Co*mEV=`S_LQ> zRa*#xI3-_s=}=$~oGY^k$z+=Sq2~v^x!$iR61Y^an={}d#+gK#`Cr$o;g-Xv~ zKALH$N5IAk@Ji|$Y`9!MqaJ@z^f|S}>LX%y&+8HL<>!AGqQJNM4P-56pvBDBssRW1 zBJcSupS4DD)YaSVf`a7^>*eru13HrR^ULErJ!S2?>WSgx=CXLxH8J-GPs7yX?6QlA z%zjvH1EUO@^2X}XuSrEapNC7wo;RFJ_n-F|$Kq2ui3Ac|WwPgc9wTmTVBCz!`L<;u zXf@rxQ+v<;U+Hpm%h1Imj|cNIzm8y9uL}FM_97N>-s`hl$tDzU7CKj^3}xM6s@fuN zlAcxcn>5&zkY15>leuzMV)_nUY-Y3p$n`#w;m0oXd7h_BPM`!W@YE6nf75lY@f%Si>h;DHo3+?BUV zyw`@Pt~frIoij6RYoE6X6L9y#%}xe3E+TiGlk zQK#4$7j2q;u2#XPr0Q3mj@tq?7VXW;tEm;661vkG=R`cYo8%6t68pUyr)>UV)lYUF z9-;U9G*U*jruDMR$hpF)I-B2FlQ);G!WC9wVng~sP<#G8)S*>Da8)I-keqM zY0jhtt8AyyYjUppvlCmY#!%%D#RY2vFv|_5x`QQKL|3M5K$lF4x09d8v_q4~*dw+l z{Z_OPTx7A(wAqO??#@4)I|+NB*HBl0jO;MrbP2GP;!Ioh>4V-wTg<7H;{%k2o$@G>tBoJ9QeL} z{^kjJty}+VZgqdh9POSyhlzdRj#BBSM~PiGQF|a?T3&pT(7#@#6=-;(SNY%>*=6NjyR=6uan{uRS|$R37nGjbqHYvKWu{3l1I$&r4Pylo z;8omE!@QL8-_!7)n-pDsDW71nWz>D%VQHI{_Y3;27Ryeb`s*Ag{d4Vtn==DlXH!cc zYdD-$M1~t+crYYj4i__`E($E-yf)iJG`Z+(JB&wIPMu8&La2ltq_GAr!bh_gv?q4; ztIY#$9Ju%okC^MbZ`Vv#*6xozq6JLh6YL(fg5PX#OZE70CLA=xu6?i;WUaus`ttz0 z6U`-_{n~DTW)TKj;Uoz~rGGago zT2b@>5b1r&zQZO#Gi94N0ud-Lu{p_hP`u+z zP-TiUWZwrU!?{7Jn`28My`E{iy@U_=Dk;|POxqv?mu#APe1;Y~{#P1Cw|J|yU=9GJ zLb+p&7>CTk&sXn%DXsNR@GgG;s4r(kd3rq=qgEan_H~5!dDS(28fB7aPR1?M;h{4k zG7s`7XQ8;>+ECF5FXw8zSsf+cA9!DKE)X@@a=@!aiaBYu?lzCAP2!oLH3esYJSxWM zM2&+ek{mw&2EN`Vlo)c&e1)PfmEzU)Qf7~b@b^m^wC)$~bc2gfO@5jy*ym(e3Mg#? z?dNam*ey8{?Bcc7!4;Y7BcQntVV2iNevvPK&w6f3x~x;4Fg2mz)tFr-yZ`zt+b*h3 zshg2f*=YqLJNDUyA*jY>sei-sslc*$)g9CsupE%>!(oh%9;4P{f_T;=s);yG;Vhcd zx%({AUbu-LMHItl_;)yy8W(M6N2Z#`jixn6)~5QMqY?KvD-g~=t1eUQN>Ok+Gv`|# ztAV*$NU`;@DMF`pdBB+qiUT)f8MEG)i)Chg0Dl8B!{cSxb|s>aDwE zD3)l9LGWjdy(2&^ab@8w8rb;R%uTBsCfkIBn0F?%Bv{CL)f4AG3BzOO-fp}2{d9NK z=IpY47()(xE z+-Gy6(}7+DRn*UTPt_g`dt%S>rwh)JD8}PhF-j|nQvYcG&Z6i&K-OT@FoAtSiWC1$ zz5m4veN?FX_Hoy}C8;qdtk1Fl9ocB?(5-z<(j*t{Z}3LaK-=Sl=oav0cFjBI>1@g4 z+x1?tqoWcUIw_PD;B^4SJ;g@Ur<$;$o4~4x1?0c!KIK~`Zk(bsZam^Q5v$8^dGhmePmm$x995Lh;Vc_tVXK}eFN znnvi++CponW@ef&Xw#ZJMDub^S7W}n_R-M`CsvjgHdWuSK5Vwcb*TKyP}uX12nz5I$lh4Ava z^_uk9^`n@&2j?!CeXwQa@zm~x zn?CA(nKW+_5l{hKcgel(F(ND~kDnm~rzm%o#CX$LgaxeoSG{MtYD)F~x!Xuw1#WPz z5k%BvV_o5KM&13Y%rFp11983;ch_tL;U7U?_xtiDDSr=kSf)7rr(2_jw=j@OG!xCe z_UB2p)N04271oN_a9fK|XFAWXg5*sAy5YUdZS}NUKY_;ADH$RsinD>O#?-* z6!k19D)AwLp26zExCry$*i);<%A)ZXKaP&+gW6cP6vazz!&JR9Z!3Ea#YMUr=L)81 zEXf8_iPy)^YWJWqe1~OiCmVfsk`B;k`0)LjrY(Y&{(pkc?Wkm`I6g6PfajBQq>j_0Xfp9a-a zZei`3mwi9Fg}St~3e28dVA?ojY{yoQ0lUxbE;8WW-_aw`EW=S8_!9^@CaAECOED`V zfeFPk){HPMVgQWbtG_+s-^wo)B@UT>xr8;E{g$~Bz0~CjZd(qRw!g)A?eL`$z^kAD zN2KU5tcsfn6Amr%?hAHqC9=!7AO#F<(+wt1;1JSGTH$NC!Fw)0>OAO$tOJCX2IZVi z)Jif(Wj@$X9vzd$zU6?+ zctJ};X=Hh1^{M;bm*cX%KbwZ>cViUr7-#al(}2Hys+I>ADGd*c$J(Y`AI%U=L&?gD z??L(@dFm*`xe6R44H6eVcPlS%-Ole~;M^*BC!Wc}l9N+BdXjv$RaaH2^Lw3L&0?)G zXD2E+#vaaJpwsT;s>6wTDo2@5f0g0tc$Vi>9r3h{XRnD~C(ve+J(&jNjC?L;0by?_ zt;VaPIvjl8I5I4pon4$!KQGhOIi^5oDk$PJgpzE->RM8DS(5d)UuTBdz#qd63$AXr z_>Jg@>sVr_j~qs>@w8qtuaV7~6ijm>U!B9`W@CMQzwT_B^IDT0A62wj6OZ}ywqkQDe%KQ@s~%d9bSx&g zXnz>fr=7d}>{K*{u=8z-T+X(_sbTr3PTQIcn{r+wMopGJlblGX*2bXY zo1l+}px}3Ra0Ml$JynHBd{9dnm8DRU#IY!yRjqKa(4|GcaTuzz8{oc+*yB1)d0pjl3joyV@x(2kJB$s3!c#V@IiLX8+;GY08xE&d0E?&tj+t1Gj7rcDl zTWrDC4jnTKqPyvExibf^!THWrW?@+M8Ady+b;uJJ1`9@+lMEKn)e4_97F0&nA!~M& z+^ZMernZyDdb>%Ikzz%@-?$c`QoD(Vy%qHf{y9SU7j?BDJ8`8nxYvBqv^AyLk?x+N z-7gW%BT`rXQ}}UZ(~zg*73dg$27l|NcL~m=RnbCLjgHzH{=i2ay6>~Ca-StHV9e-k z!V&a>+&-bedKa=z@iIkYdo_Vo4|CtleE4ezZFhuHISZThB2Bx7YaY8mBzG%RkCE-3 z(ucv0j|eEn^x|)-wD_e+e#V$L^~l%;d~3)2q?2-MMeJsMvikqO1r8(8QJGsKzNeee zw9htPA-?NE<7IQB()-S*+qy2jZrH2MSz}1W7Tw|SAHDzQRj}qz z>D4Ud1O{whJQp22ICyOqth35sjRql_J-q6#QoC6Oq18&ZK z*Uxi%MYVEMQx-OwS>e~1`JKzKuqc%0gjO~ZZGM*XDAHFzDIkq3q%BS70Cq@`+oT;U zqrWx+n{z?De+y_xKingbk&fL}T5RYgdhx~O;{Nl1FMYF@Fm3nS_5XG7M6WE}1iI?{ zLbV)DB-Oh{X^msKE{}(VLQOkyS?~j7Pg7G0B%e5Py=hBfRj|2jgWnmuu2e)Pn z+Fm|UtMpphb0M++5RQ^A+#Nr<^H!@YtUAg^RGl^K?+^BY?-D zU`gOI8xvgt9kbsBwSABbucmw5bEv2w4VfT_?>k{wmsm%Rg_cOd!oz^xO!lLynmrbO z!oxQM1@*fsZ$=XZ<9Mqkxz%Z`iD!VZ6|2I^kWD-}4Dp`F8m6{VVF5Ej^A;4vMW}Cc z1JlFSfLC?*R(1uTSHgey-WWsWiCOD*oe0v>?Ea7t_=ZV6jG^(*`*%3$JoR^Kpj`9d zdKiSAae_#O{*>-I*6WSjsznwwxVnv_A$eWh!s}zptPR*=5)!hc?$P(nqOXlTRBGHC zWl!)H)|-M;8vMqz%m^3sDQ7S5dTl_?CC6ehzm-0Cr**=FoVif2pEUuz8F>2b`~&@s z{7ySoYs{+$$fbXx1b!>G92^4qCZ5|_n|`*#pd|9Ky`$QX)1GGQjV_ow8^X!LnepX; zr>nj(b;ieKZB6{fnpib<;ww_wkr?WbV?%MvljvN(=1nppmMlp&`p=e=93UDut(0AW z4~CXZ6(lF}q;;YkcNmZQbaN;)UOA-NWX!fiZ#Zmm4DqPvVMw*Nat@S4drT{XzpD#H zguUia3zX6s#~G{pl^gV(NU_X5)dSaT78u9F1O8x0t^i>1BbQ#m*E#5F@OLQ3-dC2OZ%0O2m zJMCR9hO;THjlM}>OElM%{7=6o>aX{NvEF9MLOSXe^gecy4Rxj@$zDP`hg3})__olk zAmo!0UYN!7c?kN<@|*M7#{szpFt$`Cb)>(i%(@`btgtnV1DTqN_n_R>b}3^LT2(d4 zL{hn}FR ze+En?Z02jHK$2CX*U@q@*Rxv@pCzo;k0jMjry(+tC-{6}axdmupycX)^j*QVFNO z6RF&Z5~l3@8y^G_BpwthNJ5(ivUO35cAt&9B~CI*dJS`&jYqy9rj(%qel^uN7t}9?x4hjoDBxqQ;HEpmC{1H$$5Z2TWrymbu04Fl*C>#CTRUl zE&{EL5~eBHLv)fzSXD$N2Zae_Fs^pl3c#fd_*%Y^T_)>573s^&<(?D%QFe6KHd%gbFt>`eabU~c5q&V>xpHnpS8Z!;hVQ0m^Kv|#Ty(a0z^9NqoU zvCjwGcQTVFAIR|bIWQj)1vdhFTFc_Kf^e0FDzUcrJg`u|F^LCDTg=g0=HG#v=vcU1 zfzGnXvi#za4(+}evx?)xZWFYN#fDRn?%S08C@Ix(XEEBD9`691M_=!!%$h*T$8q;o z&sDu|ZTP%KDk!Fdh@MEX#@znI)@1ekt^dP?PqlA!bhXTmYdGUO_VjV3)+U>fv+gYVU^b*whH5~DwC%iR%ui5-2(t^FtbuJgRVY;=>%@cAD=x*bK2R#KQ~N&e zOr^9TVVrTM9Ht);XU~9){18Y-`HP&l%%5Q{*e68aKmdR(x;*@{Ai;Ga9)0i=!?X?| z0-I^!$3dUo>>nFGr8l7xkc#+#xLO|IxP@l<%z_HfQb!W2$=U>r zS==l4Zcdc!LO$F46<7CUD0xv=F!y4V->@c($_t-uN?;(QB{ry-*h;uEC@8J}>TbZa%b+jOCS~8QGs)bCX!PTiB(Ld3 z$S&A$JX87o^rY}&wX@?@g;t&P&UF2>s4b6yfg+@x16A(KY+SGjsBTs^L#QgNtLUgR z;FF5jR;A8#Md+~SaA5CY2LDQ?(B)iUE2pCr8}b}mO+r6@`>6BF^qyHGWZL#y3}K`! zT*<3rLgj$JJlgPW6-}IG{wLzqdp%1#YY4EA8(J|FG;%LygO5osfjuvU_S#!R-$sD2 zcHq}9X^H$PnKA*GtUKW?ZckbjhPMHG_>(@bHG%V=?fc%J>3Q9*G)8AyxRuup{4-7j z0(Sq>)62%;GA1ImL+sL09GAwNk*x{@D(IUer{V$VsuXc8C3m5KEP`CvJnd$pj?WwR zd7KLoH6$imHim8c_XBZDlgU;IlN<6@72PdL=97Q-u~TyMTQ|2`!oQ?G#XJ!$!gXey zHmyG0jEG=Tl5;7E+ z3p#=t8FKlD*8oBmbCpYR!TJ%2Rvr|udrr8k{CE%v&T*dHf*Ta2haFGUu8$cPtekx@kzuFfsH z1mqZei_uK?`c@MqJd+CSRiy8@JV`6t)7#*r^l>n4`*w#`d(Nt&I*Dgo>vj{y4mS%o zRe-SU;Nie(3v;D6ptkfr{&LLDm!~pawSqNMtNTjt-sxcp5RSm%Kmn8)%iOI!D(V7~ zhIW#M4HZ9p3#ludn!~ zWJ!Npe{+1SCsm$9(#TKu;HKr!(m9$JXiJO*?!G?1;8)&jwP~oJ#sbF8gE;_6GU9Mr z{6}E)9=f&izMTKUquv2jL()V*c<+pzO4E2vn0w#fmr{oJ(L!g)qcWa~ zHyAr_QEWz6Y}(x=T77%&*p~2094EmEVM7tk)jDq_ZJq;5LxLZ4OuPATf39O}!4*ax z|0+hD_)5DAh~i;wxzD5t)wKBX_#>n2Cs8{ah^L)yQJtj7PVOETbB!;6rEwGI_d6g& zD8OmhbLwzv9>B#e+|BW6b`|B{eQzD(EE}VYU6Lq24m??#T-^i&YC6!Lhcc@wyRVi` zTy&jfYEZjb-cFgDy*E68PR@nV`(F(kPRm(-GqP+Q{6zg?)u0 z6~HTekDRWG&@-FoJ5l$qq=F_7-iIet`H8U`bWyuobAR&yX2BC6JYM`lFc4}*hE)or z$aeDBP$TEVj(1s*M<{Y*p;ou_TDpuK7|NM`QCKY%-5{gR=5bYEo#?x>80B^E33JA7 z!y@Od*5VtlH(Q2^B~@Wx7+=%`mbnuHjDz!!9=RcxN1jxUeN)Mh)Gi%%@*8^yJH@7V zOL3frHmz4rknSd_9g)Ol0e3GQb~>_>oGuAwMw*lg1j=TmP*=2kp#o9!ZD)GH5K4Z9 zBi*0I9z5d>lh;(IMs`m)3DA71u^XnoTtkAn;iroyK(KSBkhxZWi`8x~3O33&Y}yKGRXV@Ozke^(fF zek8#vqixurG`?uvLYXadZ3LcNdE^RXi-oOIpBHqIN1A{QhgwqP;H}@9Uvo~2ZA=@_ z)jc-``u^{&onwbB)ym0C_rh+qI+7lp*`CVKfIVMGSx;MCpvSI9xiRkbIqS3#ce+G_ zXubF0a+~9kO{S^jY83Gn60$JlO-z45xK0%Jd#5IajA(_ZZ40;33;~cd>Z^s*!*F?P zDcuRx(qUPj=4~huMR=Y6!%Pl#U-!R1|JwM8ojkA5j=?sHjGr21tQJ)5UV4pR)GzmPQ{UO|cJ7shnk##pn zyL-r)Y5y0L7PXSpo_e){UGoNe02%o)cN=Q~88*8iS*X5-GUwzByxElg>>jvdJ$LU) z{}q>g_>O8dGl`+F4#+~oBXHt0z*TH+ebnAlcL(H)-Q98ow}M0(W%sI{!`1;EFr>u@ zL}tEigZ;ku1#_H3jQ(eXx<n7;iKgRh5 z2SZ(|3Cvhz-;+}oP*d{pneb-G#a?5RtOtkPnI<2Q_+d_7{ZlZH?s_b;ZUuZVFdLF<@F6p z?sEbaK5q^ud@Shq>wO!#M6!1=3Tf6IdT+%qL0n} z5OH1kp#XxnLLp~{Td%(VfwGZ}xUPTY9>u#*{qM@5Sq`x%^y4!xP+q5Hb1R^bXwYSJ z|6#yF`yS`UjD3Q%Dn)abgCvIGHCC2pv}EY^-&$SO5yAL)zJecqQ4HWVKkDl&$I9&N z3X?14R+8OQP=u_LSCR_>ra$c!v6ex(l)MEXb2D;FSEvrh38d2?w#SJZ?<2>;nc;^x zdRHpG6uWHjZFzGKoonU)loZWi!&UAJ*?d2xHs;MI1h(X9ff=eF1iPd-UK9_<_NCy= zW>QSY`d>YGnCW(;=gOZE#=a3xIChU|9Jm65Yd}%7Qo)pY!&@fqx$QA8!yOkukK|fD z=Dq#$hHl9#c;7{yUTY$vqNqkXeJ1^dj^fJv-*zQ8>ltQm`Qvf;$E-Ns;lI-E4Yi#W zorx(K(MS9giE!ZBMrlI@4(1Z5#t6fdMEz%8ZRgWSq&J-rR4$)4-oLj>6wre*%}c+1 zbgO$_e%~bV+~MY;9pVzCc|4S4N|K0-39tXf0$Yrw1qaSknYYm`G@j8M#ctGtY7+Ar zf#z@;!Izvq-;UP`%Wq+#Blst-Tj9ev7g4Uk2w(cZg6;6yDaeK4zr>;sVt~H=ejaZ< z2_B<}&YnqO<1KHSZ$jk9x$47#F0m1R=z?^Q{$Bi+v4uAaU_TDXUYH9gyC^$5e{M#; zeJ1rq#waG@k|&Wv3UiUH8X7D4c@6&jvFkNBMv&eXuslr^l%k7swFI*nB|W+@f|^rF zkT!}fI6F0e7Ui%(H%9h#sp_m0|3AJ)KZOxnfl^`fRD1$=={)Z1AZ@>_Nn-SY#r*Fin(#M<0wWk!_yfofCS~ zNrfF-taZrj-sOKW$06mgy~r7>h}IpURbD~pvr>J++t$%}Qg#XGDJo2(i;K%Zy8Zg8 zOt4l-waJCg4{MbVYAUU<_hScv%Dl#oTQ$L#w+f<4DuxeIvVwFi6y%Z!!lGSFU^;`k zB6c+FCS#XvHclOz4)$O;%QU0j@ql`p9&+}U6m>M4bX(cD3!fIau}oUIIa^YMkCDZX zJfe`c9V0)oDy(-OV+~_YyZ?8*-I}k()s-SleYmH3to;`V2ygWkz&pI3qsYfaM?xK8 z#>1RJTgA_nK{Sj%^LoAIbMw3~8*qu=YW}Sm{FkV?1Wk~Lk@YXtVLvf5yCX|LD@5}o zpB^8pE<6EC!|J-@Wwq12qRr;)^awnBN`;3pWgMljZ}JIH8neh>+jZ_}WPu_>{rQ{5 z-lHb>7ah#iDRYOys8? z=lp04h{;Z)PACnVA9e*8P!_FxiPZqEq=?|TPf}3&KAw(G2~YGrxQ9NyWO>+!^~R#t z&w%|o>|Nzzub*R=gX5$i&@#IpVy~-500AW%enb@RA)X-ik~pWS9aP(ibCK=m(EiNE zqO_l$PNqKIO^Ud((ElL9XkKgkH(MS(`39j<4`&zbYLZl< zpuAajN?7gp~8a$f4G;)k383A zuWn@p@*HN;c+${r9>N~ZZ31?Y&8o4xy=qobk&l2LPN699ULON*HSG6Wg-i4bt&8w5 zK}(~zEgsjs-pxC9Nv^s4WEr!)#;4dz zjEP-1W^W_*>@j$)vja@szf@sv~4SWSJ>1|32#s9rx)U*1sS9K{R*CAJ`#&|*++E3K-V(1--p1lGMy(xuDCS)LdFIe>sero`tc;k z{g=pmE({-ZC{ebhLqnzfXg~ieON)jr4Z8v%jLBFTnR-5W5Zrzh91zU8Qicc7N`i)S z-qb9t=JU%xIt5yRvk>{9<|IIkKKmrSMRcJ3_Hyw_$==UF8{5&UD_5t1fW*cwzQjiQ zwZ_-!Y1`304x1?Xb~}q3Sl!PU03*<1w%@SQlHj>M-BQmx>ae|qIri(s1Zgbx2DQ2d zUHZ3P^OG&;gY<8KM=Ci90W-aLw=&7|A!&E7tS`QFAGBv*NlFFyzKgtLzDL(jU~av} zJ8a1q!?fT;{F?1G`@-E%36JktjDr%%vFz~p+D9fCW)rBNJSOZN-HgPn!`Df$>IMZ~ z?l+j4tC-P&@(8uCc6hh!s##R18_cPwc!pew*d+5kffo6&B%LLUdO~QKDiRsyQ5cs? zlLYPkIxaGnK`Ye}095IGT7+Wv(bYnuTa#_bYa@0|GWTKfT}mF}^~R;{4l~5Tpu^Uu z1V9dQn6ec{{`ZvjTfW=Ps~H=-JLYX|r z{n%?}6iFTPfpz7o0Ft^7b^U5o@!BpBcFjU*P$3?RO+i`F#mgipM{IXn_Qqk%=Uvc` zRAFD|Vann!I<{kkm>D3`sU6}`GWqT(+JdAhrC9Bd0z;C z+eCAz-5T5s{xo%5q_Vh)WXMf8?AQWdGc3dF?mq)61hp?E7M?iPu1X>?nkBce4Bw1p zC!o~)$FjE#Rsslw%1}Q!%ob;VlOTY6*7dil{PopfC@Vg0C(s>;5H~_QsU*w2=Z=*n z|C@k@RE8$a4iRVlm_~36W9Wf=4DZ7ZLO0CBJfC;{UE$dHg+nYfY5|CYf=As~LEXDF zhtSdcJTjN68_FQ^?MnaBu+Nff1i71UJ8Q#9CphF@ey?6$6a=OvC`-@0`O!lgg|$41 zbkwowUX*eKB=g~Fl_|ZArP8q=)IC&t6TxE$@P|R^oy74qk;IV@{c0(re5*C zh8{p$=+})E%avOQZGjo=+0PQO8*pw+x_xL1_LNXw+*AQj)p{9$%L~|_Hbq3As>jN^ z+b8hTjEKZ+JJs>0p2nQz?^~5{I*KNrc^EcNpB}|x?`XrG@-lsyal6py{rg%rP)pz% z(hT=4jXgc4fi-2DViHhGxl#!4*z?xE3e==u_wsy_XwTfNB~(F%Xlp9njw(9T$b4q6 zROaf>8ZX;DS(mTMxIDJ~gQrO9oUs zkyv8zF!#P29vXM$Pn=gMZb#Q^9%8(>I}@2nL z98r4|Gua1Owku?WtXUn8EJD81_o>zFu~3o){_r3K3gyWXjll)rPevf}mDpyAbZM21 z4j~~Oasw!ZX@TftKH_l(8JRlYkd44RbzWw=lDH0>2&p$V@rGdq3e>h?t*EKc*K>Bc zzOQv{)?01_A;dz_sxg^ZhelI z43v-n568bK&|frvDb^vgT9ux3E)#1SNDZn>Rh5+Yvm1+=o{g|KYb{k? zd`)7>170j*OK8VWru4{P6SG%q7Ahgix3{H<0w#}|TQq$NTX=j0Ase-KVwvboM<^mF z_+U_(6QXN6lk8qBE2W%AFdI69-`ANt`=UrGkC~`U+7}7K*%Aj&xMDE}1y^>+M7gr- zo0n(*<&En?^=~CTet}N66swSoNf2stK)a_aFxDzw^pHpnBa6qJgC?J7E95K_7W+j3 zkN&w&2t$+$&7fsQ{~CuJK0e)1VdDxW|`ms&PfAAcb?;8lk`KDbx;{ zszeA`2xO<5o5rUAlWsc5jJg(2qajOaW;NJJRXCnAXM?o2jdOk)e&qQwE~bzF4;*>UTJe?0K6Thb@a9J{2UjKT=ohOl}0(0{W4w$k>})(VK3HO+m= zQlYMzm_7Lyi%Bj=nFL%kPaz5^_-QxEXGSl57{|me_fEd@J&YZ3v^(f)blP7I=ue>P z9M86R;RB3X7aPTSFL}hr5wSK-cgR#YQCKLm5=6z~Y87}q}?&CgMTG5P}tBunYo2_LeqLivghWM^n~OeyaU zn|F^|tOvC`HA2j~2YLVo5(SN;p4K;RdriIEawR|CWD=^DQ$JiWb zcH_vE3lKMsL*6xBhq;y}HDCuKkuh4IZy~&g%K~->p1&tyj@WQe9dBeJt3U@SZf4nq zX>;14D5VDdoV{k=hWN+_Vc0l#wBXdIR5k38Nt*VE>9w=PbRjJ&q=F=RxY_uUgc2*E zs%6gBvR6z{Q$=EzGuk^x3QKD~83n2N(RO#rC^=Ac%H21ZIwKUnRZO zk2Md=qyL*XYc;ldV04K5?Mxibu4kf`yTAV{gO_Fyt$^Nd7d^=RY{6Jc1G%w158d*aZB8BPtR4hKknfgt^4KP@( z3Emw;`>7jY@^UfU%kaH(BPs6pt_-|nYB+=2)a$W|j#!I$+l z7ZWqoM|Js?BsEC>i+2mwBN7hy3nwfvJ7+FDuEv5I^JnsZ`aDk<(za)+rd$jxxAS{P zi?-(8o|iAGbStUil~b|CZ0j^dm-+HOt}>KnTqD-*f@ zH35r0OJaaNlA9t9$={6l_k3;5jLgCa`2-m-Asu)BnvZGGcmC3!o&c`9Mbb$EDWe?d zK`$4AXKlQ@3;W3bu_bAjZrwo?541P#NEmjH@y5HZ2?q&&J0@ak{@A_sF-{2azVLqy zF2=n?eWo&tElvdYLdP)9K8)Y7c&* z=IsQJ#@%=ImjE(!0;DkQdNZ%BR3lNj%t?0)(u~rk8iI$~M#LEz`6W4i_D37Z>S_?U)mGH^)-l*Zd8UJ{`_ejGyv=7V zikT^qtoonK`VTk{^;@#-oi4fk>Txu)Khgf#{sd?*9C+;hc@u~y!0zV<69}_6%G>6( z^%~#wGWKq3K4_wmDKZvSD@~0X zD<@mYnic_vyRv6))V(OVP|yL%YAT^rcvWePc2G)menSFnQPYBlm=q)Ld6rKpown5b zFb$jzd#a3Qyg@RQP@fVyfGUb^;(Yp_WAxj}p9cG+L*Vt09(tyrTxt?+g7GZJwQIp__~n1B>cMO6>U^ff+B##^?eE?x9;FCX+$O|as-g4kzON2 zL%U%5^|f&shwXws!h@&uJCNLqsS-A-@zWR}0l`)E=wj&a3}Y^O3s5Ws9WggVqYmW~ zp|YPi8E}n_tp{V0x{+=rhf0!#U!-1+Jo?n*P-TF797YzcVGO>7D}E2ZBHUv4)v_OC zvA9vn^jF0}F~Xz2m|FHD0OQEuuB&v{ZXW=nBEm@Dj;6FVijM;bzW<;W0CyY0KO8?L zRYb5Cpj8PF2Arcor~bfqKGD;BuactweuaXEYWKE*> z)=CoDymeL5BQ?x`EU*zoryvK$;4smHA+E;WJsdytEdyE0L-BkwxI-rZKW=GglJd~o zBr3K#D%e89R}su8fV&I)-2_b2EzFX|{ZXBGMLx%h{*RW~21k{NhxD^l%+jDL;UBV`3OyH>}USi~YmO^5qfK z;wmA9rffoSXFGrKfBtZnra#^OosXYyPDO!Bq_w*KMGtU%&jC=2WVG;^FpSep_SmWU zI{BNZI9x+W38%XA1A}5?ft~5Tr`lkjEKVyKS^yf`)J7{Df&;ZLp<~^>LcF0)lddv;>xM zcLYw}F1P_f3G@9AKTc~C`}u{URJ1i7aQv~5@Z zG~?T)zj>3aMBaHySrYz1x-d-VsOe+Q8I2TUuLkBfg<`s=zkvaY#di6Q!2VYwywl=! zTtFvH1(lGKEY(RiO=O!8XhUsj5wL?&8)YZAg`|iI6(Ye+kZ+YOs$nQLF*l{haE(M4 z8UR6({JnA3;|uEI%6&|-~T(U0gthJ}H*p&~+}@uNjM!xfHJ zc)Ajx@|gr3eoz8*mbmbguuG{ASKd9MN|YtOW=F+MhW%Xox-_X9I(Z`9v&9F7!7Gv= zI?cK3P4Otwdl2I5ESZ$%2Da5P;O6Gw{iY1&%Xy%rq-FO~l}uz+lX@po5!GbPL9b}tBc zpEb0?*Cs$U@x|RcuQwUK7fF{gydV^90KMu~a1;=)t~Cu^b`DslOa@&~1EzkDF<=!n zyTC1%J45b4a*9blN^?V*qDVTx@uCVS#)rM6H)u;%XwhU7{j!nT$;W7g*BMTy+dJk= zSMxM6CI<3=l-)Q!B6$`^HG$>0RAxq0chJ{Twzw2o-08O;L2L0egR4_y6Kxh3scXe9 z`Dyr(8*ApenD&5~tx#83eG6dp%Dg1h^@j}lpJU0z?_ayKzU^kS9Pm^ge44j|4$NlC zAUd6#fa8H4G!+i5;UzmR1qE6)1f6`%eeMxIH_pX#{SPP8LY6!Q5GWLbL9G4jY@I~1 zkz5OxcIyN9DPBr_wS)0UhKvV13dz7%6rpr=vs^*d#5v6I>`%Thkc>M4!-KiXg50-6 zINx{fA8ruYb?##NO6ke8^xPNNvyb}j35GD}9~T(8kL0_>a+pReDH5@`|d z;E%414n7;gI3mM>jJ$Gm0<&o>69Ztv4`_Re-B6oBpfcSyH$R{G8wmNY4f!YLvH}x0 zN&nn4pIs9LNvErRqsHriu7>fm_O|l_pJ3&riW^1 z29OEig?m3l5FY~uy((dYV}K1ZmgM_{MnG6KtS9rc2%$Sc9;)AXXLsr!4e{@!_nQ&g z?;0>rt64QU0e~=@`75hcrcjqNf^T`iYJs!`0OFXjR(q>x4O6cxIDI?enR4gyzemcI z@d@dh6=ciaoaElNyy5EEO}%(8rL+HI?QS%&zF+wlP=*jz6oeuDD+{0;CK5Lni*gUY@;jZ@(*rEfTj7YCoTqv z$m^PbX~K`;7U$8xRmRKZ>RE_b*O0YZnYo{Anod~n^pQgTp#+7j8cEa^v`t!w-74Av z$BN~~*(5RV2 z8$RkyO-2y4F)ONeHHKtB3`K=LjyhDJ2u~j}V25d--MhGQf^SfYNL^H}+ui6Z@S7*K zbC2ov^klvx(7eqKqU5cz|D_AceGB;4LaN;~IV=YjQs~OJs$~w$q%lil<}#1AfMFE< zl#Wu83cL~4yB_ef#_sQ8o7_OJBp|Rk9UTvGaowDhh^roNNAs=wIIX^g+`~ob8~k9{ z4FpOTOo`$>KbQWjIx3QoQxx58?xydZd3uJ~QfhghLO}aDl+AL|e!XZBqMzuJBUd&2 zs8|ldtQ0T*sC)KwmWyaunZJFu+QDVimyMrb4u-D5sw@PYr(3*}%X~&l2^w~XJ&i<- z_J;J)_`jGCT^ad*l~@|NVQw5p_Q~9%<++$Nv6P^c%_!3(7qplvp%7lm?C>V-_< zAX3sz{D5)uFbVJl1HHy~a@JKoLfy+%lA1vqGcHV}&UaVJj_%KOAZU%;+Q&tw#e?$S zQQQ{u=0S+73AcC#cCYUpde|sVe4kLqk>Utme-bg3=W#)QBA^UwQThJR4bdMFDuJ3t zkfyF%mW7{WJ@ZMYQw`fw3QEZ$)T3cCNw>X0=B}s;w+HP#90hOz>bP(fdQLlJ&SBaD zzUmgK1C9w>_W}k$t6fcH9WMG{3Z#NS9`Vn`c$E21k}3A=CssQ^g68~n|K|^C$~(RB zVH>}sv0`rzqN9%AEc7Z{T%{kp3VGx!o>cql`8R^0D?XCH#DK2=5%@TE(`RPrbug^QW%Tu2#w4-*G#-vCCW#sR10 zrf;omY_@r&Ry@&qb_x)8&>MVSf&O4~vHq_w?*Y|HGc|4jD-(&cEXrX#pyQxAf=91o z8wPS?fH?ML5cS+DkmN$+!|x!4*tV&VE^zZIz; z^mI5S+Z-IGG;`06-F?@3RQYnESIks}7$UpOJwea8{hNXP|1Z*U3SoFX>{F1#TRcMM z-Ua{;?+0pGi3~Ix^VV5QdE@skU{LZCyQpzX8B2xrYB!3Qj3ZL4+na-1v8Z*;mbSK` zOS){SLMwq^;;B!6UPMz!JAGPx-J{3$TII%jF9;}>0IvrCe;g_p`hUI#&&2>GYZYA`FPt&D$9AN)p*ybQPW+;o_6tI)9F`P~r_< z@{GYk9jB-JYRZLTndko~m{p2LUKkmvtp_-Sqi>vyEqrj{c508MU1V;yIeG$y3=Rx( zFyI4#LP^u{ga30I(fpIn#PW{}1sdFn`+Ki3*=fGG-$LNJK3NXoWSO`Nx#Wj@3k|-q zPIR2J(vu*Tl#u+wZqfr#_!c-1wf8K$7rKyw3yBR*(x%gKbIHf2%T@<8Mxd2k5t zn$NiGx;k?A!oC(Tn$+Dre&IFpq_)${#3kqB$dA|#U4A6m$MwzidGPJ|MlL!HI)|y8 zY_1JNe4?wc#U!y9#uy(Y>u=htnpiPLa-&AmfRnuf~rgI@8@Aobbn~D zz`A8)LM*HH2-*G8*!EB3ZGpAR zkMC;0T~luX)q>#D*cNrC0EXL)r09%er%n09pW&vXsc;`k_l#z_M3YInxS^3zxCp-scyi;{z^2P_H7AQMljT zqC6X8C7kES!5r{ja2s+fimWSZ&YtDg2oQYj3+!mJ=K3IK-737)W)>%GYuaz<*%U~h z$lUUm*f`UVg2M@4Rw;FcDCR7m7G6EIVmaJZ+4o#+ZCitJW?HZt9p-R^8+UCaM;Iw< zD~uTu{g5puS(q)SInJ>nFQ2u0xgpXu&DLrNW6j-!68F=QXc&PmBcQA5htg1A-TWpP^DSWM+Fo+tZA$tWhG7H~^I zq-(g!#>Cqov0Icc!%zrqO^CXS;5xbs6Z`HM9n}3-KIK+k)Ys51tn4}FzxxU7wleN( z^hA3zK#J14jtmO?12g#d+QE`~hm}gI!}(=u7rumlC(O0vY5_kl=!G7^uU*qy!xI0M zs>#*^l`TxSAAY4fAsgPuK9A?JIkEkYGoV6p$zDGel<3BSGzK=V_ZV2EUtWp#d3qOO z3D8uhG+~02&kT9O3g|ha*myn_^WVW2e}Y49L8!Rn&4I~i%g28tg5e!J0=zOoJj@&2 z_cCW#CUL}&h`%gwFeZ{G zjC((7ErE2XejD*jT8hb0P3wJ>nt7Cwq(sMGOfU@A5?5bV55m+=D73FmxS2t>vg;S; zn58BEsI{dNC;WUuFnwg!mD8qz4~_y(#YVZ$ekXR9p|^7c!F|2~{FkBi_Fu`WT8=N1 zOMwE6F`!Q&TxjQ)O^qFA#3Yn!@95Jb*knEHz(%s93Nv$CM$A>6g-?7;>`y8@de8W2 zW;L0K&Dz;n7o6b^%~#lER0=1Hs)-q)(h`v6@w*8pGsy_lxVu3h4>N*v_Rxks#S~u7 zQTIU#U=o%2E;=@-J^`b4f%?y~|7E;hiO? zZTt{dnr8k8KDh5%H0lj%PmE%_=7=|#4?eOxygs~%Ja@cE_9D3><(IFi*1)BotGh&2 z@oc^A@cO{?X<2&^_xzJtqh}5m0%Y}?Qwrcf2wQk+8?5NyeWg7c4DqYQVNLl*$zeGz z+ljKLrbTzs+MzlRe0t_1cgT~8fF7@>ck7qIn&`gr08kYhic!!L7D7r$}Jg3-TpAtb8jDeeRe&A<=C zuu5)-LI@GMkwjy$F6-_I6Jp8UNuEm&Ir_e1&C+j7Gq}Y0Ft>DfrIdz-Z3l9NYAT%b zTr1{N&g}a;y9W=OpQ~^2t|drhqF$(sY?5>EM)+bVZSlYv9tT@?r~O`_5@AMXn9D0F zTlJzL%owyiZ3)7LGrIu20Rgz;!sY=uwNd_|ce&Hh3-jqBMHz5rJ}EByXi&5aIIa`) zsDRp{d4Wu6oKX<9P{TwNmz2eFgh_0`?km@I)|A1LZv5iLi`&`aMmoEcIoLbH(&pi2 z$~D)rAIroOrilI6eLC{HZ#nrQuCWmgr7uu)=d&Wj7`XRy z1zj!9<}BeOG=V4MiW)eXV?Zu-exreIwd*B~ubFEBtxzbc->KE}h0a$_@5Dmg8EkF0lOeC>c6%I>5 zWi*lN#@3r{-HY43UdrvBt(~ljx>3Rg^@m4c2Kn<<(X1{4ri43#L>e+>kv@J!ZuQlB z-a_0iUwjO>+%rB0*@&K;V-oG#FV&s*?Op$gi~roB_=)b^GNb)u$-Y*$Q^0A(#frQ) z;X){n_^fvJ**wqtsh;HFKf72#b?@A8sjj;oKwo~-5KI$2`65kpL|Kzg2ClJpKc=yx zsyza0lbd6)hPo(TCrlC07jnaQhHQNiKANok+Zlckg;XDAgJh-{`CbnPOkK&BpHm-u zC=NXT8ShRJmEk)qGA};54r0sfgJ?#+$^;y`SBEV%+1FuSO8~UV9`h;=$a>o(0R9i7 zQ|?lm1W3#dfT0%EGe^=~AqIlCMIbs(s5z&~{^kSSrqcP&AGg{u9wt#52B-ebfl5OL z8Ks2Jq=zjBT>xpGyY@@5ah9X7WT#vJn*ugwTT20FUbjjrtd8(J>C`ICF%>gQkiK)~ zFng1xK+L4hO01SMF(h_9`}PWdGzc|hs>Xm_!%;7ijiFyJq!|s8yg62YFFLmenk(Ql zqmmy0=w}NoiY}<7lztyq@*pT>h_m?xL_dK8^qshMTl6Qf$Gs5XiRfe935_N;QM2gl z^?f1srkw{lkK~P5vQ+3CwmyHYz=llE9K%d;r6JPijX-(EwHRW}2JMH-zkHb_+R^rH zdk^PoejiU}4|h95WubG({->#?f2TLo?J2_4z`v`yrkwerDSprJWPJ@7<#c9h5Da-O0)q_S*s!xX!E|Xk z8!;jsH`7C{`8Z?-0q`-m)jI4a(Oh|~S^L=}0fB6SXvn$y*{fgb{`)1jCXb))C1suK zrCh(8Ii^*)nNV)mt4DAmn)K4uZ)$U|-4YLL!^;w-R%|esQBR*)&%LoP>?i#k4M+I9 zIAId$T7M!X?Fj!)SpMwOq8$OZx(pv9Mo*BK+-{?qW0{ZUqXHKjRfflX72cL{teT~m zHkYF6ku*^Ki*MaPaVmHkeIxvLmiU_PPe9>)>RtW@gs94^d1kr1a&`g&Zh*?Qmj~^^ zUO@3ib!+)cb{kx^U4J#Va6eK$6qv-iU%QKF4?0%Z*w7{8d1Wj4KDL<4@M5F2uBAl# zrazg03q&e3otZ)>lbwCFoj3!W7*7c#$eAt}g0lOn(qq05Y4Jwzl>lcO=9(ZJCu|*- zw!nlG1RFGx>7qEV7l7gA&tFG!J`-X0`MzlsY1{g?t404Da(CNnTvl)Pw6gwn?V^%? zV?IQ>P2b_ySI(yI?#V6?!tj@!FYXplUu9m37kHe_S2m0~6duZuY<{%xIOnmD-H5I% zaheQYxh3*C*L3gpBZF480O_-~Qn!z00MD&?{4Xi}qpQ8$vdrT66wqu&;F38`u=b(7 zhJm#F;u83~Gg{d5&%=8T{r&LXh`ws5I|rii&gZjPVM|O%sf>2lI;P}Y&(u2*4v~1vk{y>kM$Z$sp36Q0ZcF26gs|6FU`yV)vtt(-T$bEv z^PmsHc{l_$hC0(We2bt@E?9VqX>R$GIp{oiph=S`kX%hgq3&=kf(ZD*}!K zi%uXOe6u7!sz2bKW`w0gvR#=NJPpWwT7NzeT-%aj7G-fnW3vpRvEvmhbw zhskMZz7YG^AfUc3t3h8Jsj=hr7^KftB&uRe0;wa8n)%`rs?<$vf@$APEX4;lV2G}V zGZ+3c)(Rqg_kTAY_V1+mS<~x5FO@CF3sT^jOxm7#8(@VLUMVeboxe^#=V4fQe_tq; zJPOQ5K+n@IFIOv2UMkSZxM6%H83+PX!_6f5hss80#p+m0l)GIg>YqVB099=9vIMyy z*r*Yyb*fN6hX26T2-Q{*f+v_S9UQggjLXw})&is&nh@^ds~Q1@&DoLzysd96uRq=N znx#)a31PIrF}3gAdk=R+v|y~6^hL7TaF)ujM5X7KpIi<^d*{j!<}0ZTA_nstxH0fn z8JUEO7RTw#ekufKJdO;2T&@wNDh0UiJKxo0dtiJxK`oq+_#Fmj4U$(_6-nJ5kA2$y zKk|g#mw&1mU9ded4&V+yNJw|RJ_RhW(grgo#~2=y4)d0Nlx)N<4-92GE`^8B9Up97oK4n2K6j~o*h_dlDrVHO{? zoc)>0m)Up0H)>r{<9?B)C;l1sd}1qeEE8ECkRId+<%ZBf82vl-Q^dl~na{C82M0V% zkh`rHOVzwNU>!)>p(!i0u6wE;lJA4~)dYJbr$903Y5=S?HAB~*+PGX&ILWBQFP%Tm z*tBk}B>i?;L0n7mf8PnM0j10VcPznaMeS#datcQU?}5ak-oQ1VgJC-5jk&-`9B0|IQb*6Cj`}=ZE0tTdFL9 zLwXLtEFhAeZQn5E1@rC{m^VY3bPJu)oJqBPADlLK4``!gMEh@h?gM5ulAmFLXjgkb zBN!i$;-h4WvIk%@>BH6*49DC^eUDi|xG|IxShey|F9YfPJAo^=|ttufBO^UdNXAq`9cc#oaTUtTNR7HXx9J5^=2} zLxDwsq1sR&`T3y&0|gclvVVn~2OfuU!ou0C)~%GUdj&H@gv;~k{;%s-#oa$K>H+e@ z<%h7pYTm_6aD_~W|75`Ui6wIwMa0acEsX`P$lzBu8Xrv|ILk`t?7pwbN*|s`15I4> zBX$*2obheob0~52E7N9vMX!S^aD9GGe0JyAMb?;->10VY0%d%WIa~J+j^j_Eg#+_A zILW2qCf@Vi;n|{d?p3vA-{?G9(yA4;;jD&1gywg#?9jgmg#;K8o5db})To6@@EjH< zaaig{g~5C@dF=V5AD{vtW3phdlIxFq<$^Q6>RVN`l2paA6_})K?8mjHikbH7mDu{b zKCpOH=&IvKanykNbF^I8%3kA7R{0J>okVnXq#)rgnC8FzLcH&qZ`3ls(04eJ6}I-_ z8Pp{OghqQ$=9rn9wO>~Tt|IU*cTI8F05R!mIqfBzuA9;zLhI41qSkcK^HA2aAtluIN*U(A^c+J$m!o9=}%aH69pVU zJtdx+7bDp%i(hwvt>)`-+58pGij7w_|t7dnvImm*6 z+l?tFAzv_Hcpwz5EaT0U)fp%=kVzObs1K(a9GGrxZJkH^(F`Pf5l_G?2F_*-421z~ z8XvPWGm`yyYZ~O%@%s_cFu_>*d%w~0$P62xsvGUr9z=0RwsU$`xRL8B?=0;6xpT|W z&yAHpy_3)0*q2_dvaD1k`r)sJ=LE#h%E5=2sham#)q=e?Q)}nX+XMt=X_)J}BRTT5 z-k*F)`C0Ci+mx=h@XA@L9(lZJOSn|HsO9((~2 zsK}JH++6G?H`q0bTVRr5^x0y!3Wa*tIR{@Z*0vHpwg3^z!ZXJtm+AE&b5wG5LZ$eT z=^)`2P%2t?Q;VjyLJAP6|9WPSaSmAfXdTIz-yI1B5by7C6e3GIXZLvxu=Iw>d3r9V(ms5sJs7`en^+)r4Q+sn(3vB) zuPaE^hI2TwEbG{-K3SYC;U1Y+wQFM85?U*@=s&sWGE{s_0kxRyJJGIFy6As~-6!^* zHTCA`W+sxL`!+qH@c*nmO7z-04Ni;KnD1|Fo_;I0<~4|@q*=Rh1DxB-G(vkt4qEtp zJEM~acrYV~D%M#wovFuP$-CJesU--nK7@ZK084cz*elz^(Nd=~v_CwPVb5jkfl%uz z?rk9#Ohh*nmnWRQpg~px#|hkWwO8jF^q@@KLd4?kTA>DoEce*J82i00-F9L-MFslz z-EhHezo!JTvc0kIc!6MvUX3p8ZE10a!P`s{hp+H&bn^#t*`g2M4gfHI5t7Pd-F-ag zF%#d-O2}p{&9($H*fwvOjnhf3F~G`&Q3lFj$EWHOBDX$Zse3 zJ?EgTwj=S)4BPy1I9EV1P4lN%J>+^JxzMuwBLCXVLx;eYKvB(iErDNy6)YjreTM2_ zox-8$K!jBAMts$6*HeZssoG&X4ZuL0feP-2J)(#nuf2jm`@I5(>q`K3+5WvGrQjm7 z?SkqW`u)vKae24S9jQTAn+Y2_5Wx zVC;Pr36{WBZrqfqc}%Bp|6D#_o`7edHU8`2RbqvFGzZb~#0v(5kh;eF;^G^b`^%T5 zvxG>BWp`o>-Rmsy-3ftEC9R;N#iZkyIg-vOW?hPcjNHB>x7OIW$65v98Zpj>)RNw2M9U#lgiBT7lJj%BjaY69d7kc+6NByYnBH*)bFM?m~oQ0wa$j z!5VT$o$DqA)c=JF-rp z==_tT%&v}rX%-Sp$km9s*b^OIcr(j2b6-)g`xa=5SL^cgSGFOo#Dm)kg_QR6KtYti z@-P2N_FH82b?eN-(7{dXl~VjmITRun6~WmW8tFE`c+2_bGKTBs8BU7xlz-oi4uYk} zMt4vh1$?Fl{+^y7fEjFbY#8lk!u(nP~BXhq@$<_)8 z3U@(t3%iIDt0^6v1~&S{?RE+SMo2 zO(q*ol0R2C@08S8U8DsG4<}Zuo0bUd1pjY4e}?8yjrmfsDTW#-o{-76wj*~4fZQ*-Pc{v$_BqT8*!qff;p=kt@=A5*R}4>ukgrZ@=%-U*B*+&K43Pq zZeb6|w==J%^-NoT$XE32Mwx?~e99Jkd0u(CJn4PW-Sf#hme&NV3#su@Yfy*0>}Dv2 zT^)Ae;msTYMPRil_&Vdo5Y=<^fXYV0>C`nd_+TZQ9W#=Jq*Tzr@eX6@t^e6t3~lPQ z!?AN43K308fORy!af=!o#OI%uMQP#C{3s|*uQ9ybvne{c&@0-%D7})G&2HC|xkX@K z1}5&_vfO!j?R`29z3vt__QWcfBpfr>^^Vpo+#*$>2F6#8DjAjdv6wC zSt%9S`THK{i&p4C#K`G$A}sHG3ebo!W zEZeyg&EV_6q#Nr;^~*)MXQ*m;cPfyBRKx~8{(l&I>#!=jwR@BXL4`$kEV@IwW6|9W zQqoc)9U|bOQ&PISQ5q2zNG<75M7q2CJiPDzuHWA8`JH{f|Gd1s6z4PNJ;xmPxW~Y5 z{RjQ>?}uS7WH9!bchG_iZE&vq;EUxaZhg$-#QCpOel8i2#*8KUQKWxe<$2`7iPi(C z0KRq3Do%{wClnJG^<7W=SOtIYoI)d1WA%!dTF<}2#;Ew z%pJg5M3>$87l#ygaWdL@MII@_kij|XHscyM>L?q)mmZXG?EI;HZx}KtG6gqh-z|s>)b{)Kq3L0k_TFsy zknw`DFlf52!{{X8o*VcOOpedH*i|PL$88Kx?lxX{{_ws*b_;RE71?Yv)~}Qh#k-=> z1=gR+$;a{_aO8KA`0=&S`B+nj#N7(EkwnbWtoj(!7L~e=B2`1p-b{bs-^qXf!)?C| zz_F7mLj8D_9ZdcFn1 zMAggs+h0$R4&&W*ljT6L`#x0iyrzUZdY6R8Xu_fd^a>*A0HtV(I;CF@)Ev~EqF5X6 zO49~4F6fpm9E&r6xg^2fEAWk4@x4pbVmuMDcYs~_|L__nKNnrGx@RbgdHg2)IRc=z z_gtI(afFD>9h;NGO{Zr0TFb26d0Jc}v^w5Mn3_erbKmid^_-Cw3>MClKpGq^t2tN| zlmuH3U#+PEdb>*e-lcJ;T++dDe|EEv_v zaA$Dcx_INmb{ECCjpKXDN%$^iX67G=DD$yZ4IoOG%0itP*fr--+i-RL8Hfemy*yfJ z5ZV7?)vV9>_$qCKBGiA%rO~4A+mv~JQuaMT$Kp0^;uqgI3knyfmr(xufv>bzfJd*n z`Z?hJuS%zkLe`6O4BQQPW=gI@1o5SF@NYglwk~z z3<-W>5Na8=OrTHu%Sgy@+R=D!ca-gbe6Myi4i7&#@&azVi4A7+=&_AHh}#|Z+wkCF z97dl}Xj65>kUp9D?(qB5sA%j5Zdn<+2hy#dMC0vt;HX?_Ok|a|BpzIf5joU`PDeIL2zwjZ^RZ6mX-{vZC7}-^t~~I**Fn?SjZn)9{k_ zN@CJfdjEROjyD`=F8Gro6`L&N1MQ0>>z1z={rxa=Us8-=fd$@ld2oOe<1?3~VH^d{iCKPU{kX36IaSe3o-{0DFJ6y?_Z z=BS^_oIJGug&<1Kx5N8R3H_0WuQPe3IuA#SIZ}f19r#+mfhG?HQ1m`M|9Edo>l%pT zYQ)cI>r>*`5B&(3_haL^z54c)BtQc$T}i*u#>=Tz$N)yY`lMaaOISF>z^}H#IlFZPUG~eY|2KGsDdKM?EVLK15Qc=_(DhbnVt(uv)I})dM{gzy@0H0$wB0oLX#GqdUX1bN>Y!+DSH( zwbry}V&z)>+kEnauUZ_yn^~Vvl85}M(yibh6BVMfa3(r)n=$oL<;!|hh@^{obupA5 zFMXiOzAmX@RQn`Y6gNHie!Bne_oCJPbKp^&A1Mx-{Ped6Qhi_b*AVqkt5e!!^B3M$PXX<9P z=3=e*zcIv3B(eib@gk5rDS&Zf-i_w=hb;zWHC;Ypt|Wm*Uf&8 zzS$6@*Ki1@fY{3l`M0@O6^bBmBpr2WDQ2N>z&1~BK#OtpAi(tVxCY|@LrcBn-$Z- zA%$E>maKobuY zheJu#&ci1^5J+>ZGDxw7U>|IVW^d4K)BpC9V_UiqS3@LJ7o-mDi{5D!Al|U{^bf@! zW3C=qfSR>$$SOoo9TBBVzmY!W>6s?Z3&9yBk2UxD)Ecxwh&aZ?H$tdqxLJH^)?_^? zEX?X=Nm*xU|1z7ikEnv)>bL@pE4kV9#PhY5Z%eggqqa(+68l#yzni_8SHN`Eo2fwG z;@z$7odfi-OU?;W-yex9d#aHPmEBRJ zhC#0pBg&v}&jf}6QZR=-nyb^i!DWjqs+8w^?5upmDC7PJW=;hRZRDtDmyTEc$34sS zwA35{flyizBBk^4#ou@CNLrc5^bn!WTc_@uooWgsT17bw1yh`SL@6LzJZ+*`;bshy z7R|5#ZR98$lQQ^TW=$DUBg<Gg2Oq}l6{U)e3O z5=fM7`v)!FS`$tA$Q#9SbQQVf-|@5~56otVI3Ii;WhH8FmwOAQygVhuKkb9;DI+#2 z_;)Z8w3MXGtRsa+Z#DGGZMg{Tatzw@D3eGd;er*{*BJvfbX{`jjKM+ zK<)^F3m{z{-|frd2K0yWgExq8t6(N(=B5KK6&DkLzgOy_VjjWzPpJkn@Iu~xQ2RK& zqLZ>F8bfhh1`yi9KxamXg5|DF?oSVOu(g^mXUXM*j*uPB50y#GI(iU-Xg<4jm-cma z1Vg?SZaR3G#=h9wdcKtp1y_nrQ^3E|%OC8uj2DJ03Vubt=B4bA>U}^VC7a_x5kw4j z66M=9YUNy>*(^fz7)&>xAr+t)nJ;7>hHJGDu z#f4}UKYfm^evnwm(sip^@0a+0$e!v)pi7QIH-S|7MLM+-!97AvB+IYtTnk4z8Q5$@X z!pg*b+He))&*3UctsIQ?5%dau_-PxUqp~=pC`b_s)`8pPGkZCeh>Lrg&Uka0Zub$Y zNon`6LvS!X=6ijzP*V$0Cu z)Vd1)OzT(#?l!`RY9Oj9H}pnd!8BRgA&70}4(G1fp&?e*ztNnjFuRrNRtnr*o)gq* zRudk{Ys3v=Ifp`UDf`3`hoHNnQel!H5rt3nT{~3VeQ9{(<6W1!NA)SB8>bWEiT4p| zTcj)%;9oWW-T?Y@`?ubC!=?F*k%AQ1sL!A2O4L1?pipZUp1AX*Gm?hpuHWqnDdf$1 zYZ3Z@k!T{ePebGtt_p5n4=v08 z7D0;4@d%iO$HgxzHL--L z8pED3kn(6GW4_2)l2M2#1?w91rc8#Vnaw^p5g>uI{h2M5w(}0RiGs$>JlF zDfb|4N}tt)vbgKi&gyZA8a^1n4}4H0) z0TyuZSU|JYwh}Ay%FoYFBwQhA0Vo7CIPR2Ed&2qOH_tdw$f%Hn#e3&A#nx@b;cc#q zz*W18QYXx;h)ypy`ItW^%U_7rPn;0)22+ogGRJ>oD#!!Jj3lbzita!x60JId>96>W zd9-aZrs2;0XNu`ZD~2c^A18=N``vD%FQmSt*Fc9p)!(~QJjCVp;OS^NGT488PFmsF zUw3n%2nZbx2@3U)b}B=sTgno^G5RVfO6*xlKAn!Orh)x6^N_qBlq|}Nt5Z}|+P)wo zhi#6^*GIT@>i4_cU1XWk+Ya^$$bEP^^_>)Na-t6!7CrZ$WrGkWC#cI0$DhBJNfM8d z{0b!)^6ak^t7tw74w1neF99(Xs;^A>&DRLwg0sPEOkxT4YP$j%S4JXh46ESK< zH3i@LhnDN#SJ?)OMTGy)ohR8lK1i@+$fbLR;O}|fjE&XFw*xS~TNc}2^s6RMk34s( zK67l7Qg?GCG1`rgCGxBgO2lR{(XI$!zDEazD=cc_;}_NIBLzK0WNV6@_;W-PGecgz z{~H$xq&g{0vQzMtw%+;hl+6dBtGUsc{NzwOQOI-|Fh;v?O`-63~w5^Q6Iv7Wfc6`>)u?*uN{q!*m zV_6`=(DeNGd!n>B`zQ>*}4;W;gL8QFznzN$yOqWL3vqpv+`K)Dzg)4I?QnHb)Zo4M7yUXx5xAE`mJ~iKu zdUd{t5<=xrLQPL^eLgHgGOMojGp^)&%|g+6=f&1JL_{;kGDS6y7b-FO$|C??=ngD z&M4DQ5t%hs6M_I?2&0SYu}I7MN`kV{ZAL&?!@e4{)_co9YbKbHywZ;r8ndz?yh51c z7A3Lk6%r-qDvfJq^pwAbA=v1J$_OXr(wwsgj;nIq`5Aaf$3S9=QvOVO}ly73y-FTwV&hM#*J3+I4%q8Uq}DvDn>RdI9*YZVjLaK1tR6p%|mEFz^&Fl4N2Pwkk| z_JkIu(ci`K{V0>^eGZ~4hzWu22rp{(9-HVaP029_`dgT_IcQVaG-^KO4uBNn=vW4( ze2vKMiBb^S4nKr{CCulMl67F&0Uwwti6nX2nskBXT3w)tT5BM1m4Ik{0NFe`!6-y0 zK{zVnRzbLDF(^@F72(pz*F~?dyI#%~SROdO_s~V%ky#L_)l+ng4vV{C}QEgk@J1 zpZCew3HVxDD$w4ByGUB8H6ya15^S30W%zl+u`p!TPVwqvqj_fhaa1l(ES2W)m%iw= z@)cY1#A=0WaAB>Etkrxzp$<>Q^tZS%Mm`Fbu*F}6$ChtGG+&lEslH%1Bhn_LFY8p& zFTHA9UuN! zh{dTV%TL>cZOrLA;BtYO$NlR7{l}KqG=rsFFTNFFgZO%f&yFSd!e5-WQb8VO;ukZ} zmBu&eXa(cFn=t3oK4rgabcqg_+z?IKpg@BMs{QALQkeYT6H2#iyOjP&z@`*ORD8$> z-iV_wkT8n=5|sdgXEjP1s%55o|2I##3BWuvM}ctzDnNh-PA2*p8KS_n0CChf9u`jS z&hPl3l}nO-5aUcmbAlvIB`^{xCtCLMT{(#RV!Lp%k=gR9 zP@gpnng~9j#RQ-1;1_}68%B61KDWod_Uh5p-!?i< z#9>~$B?ASg>On=PN)M+~a0t;31N?u}YmvvQ{?Y&&DV?@G%E#UJsBho+dCtL28!QWkJ{FagY>$vs?aXub>bA z(<^%%0)LD6S1Fte^XYV3tV8`6Lsp-)%jM1wQB){e)6R+@#7KyGV?!DTAy#}E8oC(f zJ?Pc`=n2cC)eQbxcU*`P?8M}an@=ot@uzE>>K6jbAPb>8@?+I5o{Q%{``xNz z=rVRPT{?X;6 zvkvSg30NytL`dyL%*Dr@Uu4(&!j1<1+kvHJdH3k~6yMcq*Q&&R&O&^nXK^(!Sn4oX z%C1mWFbH~+F<1_xzN%dFI=*nZ11z}7#4RHqF0aXR4(?7!U@nzj%fe^+%d#!eA(4SG z(g|HQxXwL0@<6>D;%SD>-27AMsq(kb^M&nx%0(;cM|P?|>{q@R7}k&hCrV9R89O#C zj)5r*27jny6A>{kQo_5mHL;SPVN%_KN+blzgEi62;4KqgEAdf~z4oWcShy7p>qx^V zV!5~JA87cmzBRTJ)r2KuNqL#pwL6ghdNZM#R2ERX|BPdZxeHb&5_$Aqf8Ty(`CfIf zW-`-WYVCFef5H?+$zSzdtAN_H0!=Q&fTrHN{c;VQw!v_gx)@{M_1p(5U^|uV*_%k7 zuM~Llh5O)Yi1m>-#j?4<(ddLn;ccWT)VcdE35r6=ec;lNmIK-iwY}%M$>L+%A?9?q zaB*?57?&wxfbzj8zr>7?idnMurM@xGSHPeMWYFUZvgHEfe+{uki71>{zGFw^?7?#3 zqz;MTT8>G*i1QK6`D#qoe{n$q8(5?#5xC_Qx_Ksf{Y*Rg8;WQ!u1`NNdMc*qd5w%U)*;aenT{yHJ=eNaJ1#5pGYn7x(vgi@$p~` zlh8gp3`aT{wNx;v+%b9C*dD{@YM^$0y}%Sq zy$DMhz)-uBj+ZqM+60=~KI${$b#&}lL6zgjtN21)PatVVs3dLpCGZa7uIsL4v_I5a(*w7+iwnJT4bW^0q5t;*JYI$#J(@`KXAwJ(r`IC~JK;%?(W zo(&wWU9dZj3x(<0N?WUWmgPt&YQFXGPIKK?#@XX@(jaAki;?)o`HG#-Xq* zvZcvWU4eT%BuKsaLco1o@C12jGb1Ft)~i+zai!>5?l-; z_#j$znmD?1wXxB+L6Beb{@jx@XZxfL%5zk4u0ayNQ#%GdAL-|!ToL1Uqy&O%%5gK$Rw2rfk(XK~ttu3Hju z7kpO}TezYGBq!SM{WTM4#9LbFnkc7kL@;NpaF_8vEg34G0mR$zs|P9sgog(YkMp4a zahBa(h{$x3P2fL7-YzM4Q4ssHbkhVfccF{29!DiPr*EUF@x}y4mLe6T^CxPN`S*4^ zUx16Jm+nCV9FJm7*Ry%xtldR!l>o4PpOHw5rMUwPT*SgF&gs?PqyF|@iP@U7%`uJi z>%2SvSpujTJz4?Yq!^2c<5PJ5rk|)4;U$1t7>@664&c}7fC%;!7`OIi{%bn(ZXU2l z2!hW)0HV>wVt~c*BD{(Vx?NGe3VJwrP<`~iDc*jc3Pkb*`CN~ucJc-sMVWs(V+171 zTam2QX~0zPpy800Fe%pU0br_e`k05HE^&8y`e>f`_#!+7>>oS{7r&RNIl0SQr4N?G zmQo!*98o>gRZ<;`>r;WZ{{T}v;zN)B=$2R4&B7_*rW|nHFLBR31V~f`7EAozbZJ$S z+||VeI9+ebO9;!FdyMc+2mnqKMYlIV%)#juJSZ@Q(|-x;Bw&P5_-hcrS7){SN;V(l zUL)*KysFFM`62hPm2+>O^7x;h0Io@~AycmfKF6-DMlr0?9xA<+vhs5_-6>nssm|?N zowK04pra^z-=jYJ>-&q6tuUhEEnA7q;&MXeG7g`WLhp(#6{@QN>D!u2HT}DExXJ_| zKA8YA^#B!m$(H%Ojr{#pjzDJ^tynme&oKI*FDu*w!^ z3NW~Ctf+2vm`f$Oi1xU~3mCHB(vR((MgIbI*F=N8AC@)q+iUusCP_v#Y&sywu)CoJ zgF@?;S%Kd88^Fj3?w+^4W`4J=zu^-l^zc1qmk z2&fw1Yx9RQb55k$cO+S{Fu)1$fC%^I zJ=JZl-f{D0B#V7J zx8u+K?S@3o216sykY)Vlof+ebY~%gt7kpsQ(`b>H=UL12TAO*)#lg?NzftaApX`$f z7H^(b)FzM$*+OvI{yRPOYwf2-{FDYUol(as!TSv~Ce*^>cZz5r1hi*Ap8r94v-}mQ zmcAV|m>3ak_mZs#B@JJyxYr7G=N_1Ie2vytb&67mOfO6kgNktcNOrDIb?9By|@1hCEA$A(rS%97k|LQXh`yF61?; zZmc-!$C7^^)}1%Cn3Nr#!~8kfYLI;m<90#)D#oUuJvfY}Jw89U&m~~TSQ$=vmAs<( zdB*-r7Y@Cy(+hho)jCn65~Nrnt%YNiFVv>D&8>g7OG=JQ4K{m{Hx4`~yMFTO;#HpW z=o%YtI%G_#t4~!Ewtg8r?le$vdondjm~*3QJ>e%9xza?CZ3-%^I@*uxa~Qjy>9-y( z07i{|z4#3(WQ*xm?dlm)4w~G0Nyz0Axb{)MSl>LrbDGfakSS6>;aJg}sAG}UCOT3t zoF>`+Zc#8u>Qnk>h&W)Fw0n_wcLSW4zrV%b#|O{h??B-^-4p*sJ;1!J?N)tzf>yKA z0bOrGFBG!`ggAZdAld#S_;t6e-uv-j3zfzCSom(JZD^DZKPeF435 z%q7AYQ8LtlQWM&peJ7OFBy|3A>@gwzHv_!6$^OB96~TxGvDzC@;gZ1eOwdD{I$Q=J z3))gitatIrF}YGO_W5jtKca6du>7JPgY3R+B0lHPtP3Qb;yvHM9u6p6Q(8_|qj zn?|2!!Usj!)=aZNA9?AtKl};wQ{<5dv!MPPj>I1pnZHc=vbMs>2;J|_w41({U7t{l z+2ENmAE|tmcaY{4dd7@}+{oJdq^gT%%NTZ~CcZ~+l=D6`S}h1Sfb{xfl9Aq{e5K^k zQOx(T1wQsbI{`9#vrfBjK1WW++^?BjB+g~oPQ1YhOLn`re7ZCF?-ePR-Ibs1FEc#b z0*0Kr5{x21 z%LaNW>goDT?;TPf^pfZY;x@^bf)p=*V-mC{&y%i#j|;gr)STbRd=CB*t}c4it2HbS z3tTj)-?MIy+{7EvhFwL~_1aoNKRYkVJ-8m43!n?fluN;5A!m%im+#Zo=b ztY*rm%l|%)9H#RkQa9;wX`L1WIZboW*I{jMN8b!d1ksbw-AL`jq=o;}!@ZjfnbpNJZSsDfbE(36EW zX=ZFk(E^yZtgF_{WHodx#-bwZ&>DhQGk<8(j3rCpswz~4zFRqZNzZl2!Wx1s7?x~M zMa3NC#V&z#J&G5HkrC~-^X_8qfsRxPNz&s^VgJM1z>CBau>L1T6oeQq40}nx@QD;r z+X37)g=9mBQ1NX%`=INofrZE#$ha=`2mf4~oG~g+_+_CFcFfzPgGK?YL#8L1U|xN` zB1~hiI%-4kp~X$XGT2{#yxg_~Ljr z7=zgeBhP78IZ8ed=r^eWjhUa7KG<&nILXxS7RGt-yl}n-^J`2B6{?*C<%$~OG2+^t z1TI4bwf^>Ksmwqr?Qw)YTw6L@KjMcgC^#t4DhNL`Vn@)n@nqHiI8b14^DAH>y>+jy ztaKH#miJ5R?HIEJjeByA`zUwz&yy3CJjC!h{qSkZh6|PZxIOn@_H{FEi;V4`o3k?_ z@aNG^+SS2*7W#J`25(x{ta%?&IIIYY2 z`8VaF|Lg7q)-NW*AC{f}sAl#^_q*E6Vy9`WU+eZS zUBVw_Uai0YSMlR;7utwGha6Q97ZyU{asqyg^@O=>XuMK@hCrcr3c@TsYk0rzHyWW& zL7chz7=&~&qBYRn6)9taPXs-UF}ot{Z1L_Z zd@dg!(VFu%vQcoq;*p^;b4i|0Q1WhqG!-s`{}=_W7O!r`ufUtpdnN#9e-xO}@wAlB z;A$E0zk_od{z-SB#sH#LNG7vY&i@UH|(>bs7~nqvKxGd#wvE6v?J|G@v$h=a$WvC!X2=Sa)-6vHXaiXxi;OBe{3#w-u9anp^F4UEa`Np z_HNYLj1eMw?6C}`X;sP%hi`Icv5J~&(-jFJ%6xI@CL|Y+x}vud2Z7?Ufz+B9J%wO= z-JgcgSC(+6oDDypoBYcCyk!p=oS4GLlJy#kyq}V#0v^4q9;8Tn)_)asrz70-KkuM_ zVeDrB#s;Fx=SsiZ?lJ>NdjT~Pf~XY^x!Q9H5~)E!XTf9rwlW2hwmg-r>lwp51ksIR zy1ryMst=sp`lxSa2xI(=grAp4kUNmv5xlgs?{hkyfG$a`Md^R|b?ed0GbDSSNgK9jJoIYW;ChZ!KQBA-w2bLa?`8^3O` zVU`Z@G%}!GBLd)u8G9FwzJ2O7gPF$)CEqm%rRUbS`DtLiG`0MvwHyr60&iEs06SJ~ zA58Xk{ljs{L@9<7(f57Z-!~-+@hs(ryPjZDGiU9lWC!6Fik99qP=YSz{=%Zmr`!c3 zatC+MuTz2gRM#EF*(u0*2_>qkW9${{h(V>=**6J_@Ky`@F4Omm-XrbNQ)7Yo`k%;H z+wyN@Os{+9zwipMU~X&oDZ~%})m=4oV1ms~5ywHCHxX?V&L8iX1_=D{A;GEgS!TXl zMLrWVz0C5ZC@68iVPY}CLei+ze`!{c*bd(K6Kaey@2nPpm=v#Kgdc!}MY!LA=-H%p zQYZTvCCLk17NNIYM#cz-=$l=DUVS6&>``}8**3asz-zOXv|8ZB+C?tZta!E1>vGaY zKI7Yu1jIc^xiKi%Q8I=h!jJC`)bX@zo^H|CD9U1wIBpc)4AUrj7rD}b^Op!N3^HGF zp2i65<1o|c#xoSGCh9%|wvSpgYNvV3=A$%a|EO6Q9x1SDvFLg&Nt$N~9K_)mQiGCz zyc%9u{Jl1K1Xq<}5MXU8AXWY-PyH-Pd~#>ws6#XoN`f?*<{ux`HRGR^MEh+#1ynn= zxb^htZwN0<>?q7w^r9z#0`}JTYAw|ko8UJyPzNLliIrV4f^iHNnBz2-(vjk+6^hkL z`jI43N*>7s+8g)TRy)S&xF4W^#e_{J__Sjfc5eWO0BGCC_e|&Frb{Tu)*2i0apmzRS zsq-O5;vCna<^C6q4O0d=_ov z@RvFrptFKc`p=Fqx59v;y>orLQ9>$D2!4|a2eH4A9WvgJv&>13K2ne>f8&7l z2@MPI#2`zmEnH`Ayh?SgShs4tE5KncaJp$>L*phIO0%wh^|U@NQb^?h$Rv%rxcU#s zM4t2a5?wl&n_ndo9$H>L$^iSYALrt?Mnw)j?SEN`-ID$w)>^n1yAtIz>I}yR+}TNR z5srdn6B^=3hnZEqZB`OQ!2rSZ3o zWIiZL7=mW1GX`%T0rvo5?RWokQP6mW_bHO6SFe|-ex&**z%<4-Q2FHL950PlJROK^ zWQRv_FHS6pRe|W%Z-B^*1xiSY_+F(YzsE<`#aBJR-}ny`8`o&ta7TS9YMnHj^>=?( z-=7yYPX~X6@tbqIJPx71a(<`q&x6(QuY*O#cNHxbmim=JM@>C%J~+_iNtso^Ueip9 zWtg?z>I4mCz1DaVCWzaCbA^V;&U)}Kvd|x}sp4?mJvqr{X%wS-E;46e675d&$qt@= z$7Pp|p2+~u3b3{d9ei|zMaGqUVkVrW7Khr1ytGt*@Lbxa^5QtNxNdKNRtNUwY+m)R zqm>I5n-;7+9Kx&?Kxn$bf38r+IcO{1KrN3$2gSd6slVE5 zcp@#8d?;#2KoypSm)*49=!?|1?X5w@m%QvWoxlh94&fq|0Yn&V%wQe=X0lqLz zcPC)Xrxr>yWWo5G-!kdLZUd5z)3NvBthFe$?5WwlJxVV~=0R(yPz-ydE!c|?&K9Du z{l=HAR;jd9W*f$oDIRkz)A$jGWzORRkkzS;bwEzVh3i8~(lNQ(Uw?L!tUUO{UdcN* zOb`u{=uNU`a%8<4Pu;WzZ|B5Rji)Z4>m^zao#fJZxo_FvlR-3C%v^}B8oIA^$uZB> zJrvsiL@L+yM-MYDB@lI?z?Z4EF^n{T!qaTN$G<0N{Y_9`@u#XpW^?A-%7s|xSpdNt zJ(tVC@!&YYvsO|dIN|k39+=f{nYkM_gxL-?j1K?|M2}2gJG}?-$!7qQ|3|U5{r0!p zHowC$i65qTYI1fnr>Hae$Y$-mck zgDpdmLFYTQcs&YE?wJ#K$QXZm1~o`qctXnj0@Q$TY;w`p(ArlB7-TJSorhtZdPxFRBY8-wCNa)JjId|8^qs*_FawfMf0!uUF8J}_rgs`e%73) zH#>3)Ts1D(tz2oAOmz<2?vwy&!dijAbf5muJDH}1hxDe6QNcGq>X=Sa?69PGya2SD z)@EY<+VYLxETw1F=FWeVe?ielHuE5fZ)rhveE@NA0Meyx{89k;&H7ATwS8N?g@-@r z5@~Bd5KV@dZe`+a0K0Z^$L0sSL;M?hQu32@=^iJY2f*Cp?eswMBcYo@=F;xQKy|y% zg(oS!aM~X1)(hfcUiLv&fz-57NkZCPS3wL%t$84MA`X+ZZ-S<#k}Vqtz`hN(hLpzd z=JAAhZhtR+GD}p0ZZuHiwwU!hIq-40UApMHSv3;TG>ooPaVk)@5(y6845Hz%)=*81 z(q8jJSX@&K)&jD)h~5x1$Gjnqog zY1BG$aRh#4s~5aH#jSJn3E;&oe?x?X+`VET4zBRo!~h_=aW>>d~=pFaCB&x?2!nu~Y}^6U>3i7-BR zQ2SYjkjq19-^d?lu+|~BLxzxX-EL=-bez{@vp4VHOgbY(Z$9!+EX=lPJD_Pe>Lku^s|f6!=DyxEklUWa+;4NIWgxn!Qu zO}qoR;XIx9DSH(5^+8J=0uOI?(R^*4=$<~ATy5drIP9nnSb3|Pk5oTv-bSyAZ?B5e z!U#g29MjQ7+D7+B3i0=#x+NcNQUi<6KDKVL&JGG46b#xzrI9yfz4rZ&8uAlH5-k^!Dj#LFFv*{qJqOics{S_J$| zxwy9N~gj+9N-wZ}UzHn$E;|Jk1vUMbBs}+4mK0p4H{=72k~qN;EHhBX*qrIJ)gG zYYv=$YCRm5b$bxJeUbYu-HBL(E!76+ZgLCO0+#gjM<5~S-?`&Ir;pqG@#1$DllQuo z%j4V2bN9tG`NCOo@cnU8|9!O8z|&w@vHjB)8qVRFyNg8$EG<+fpIOEBvrtS#JvtNv zy#ORO{{xYX53#n`@iNHr$c+QY#JC@_*7Mu}f%7OJSb#t-jCX$7d=%et7)Pb?q5 z3G+)K4KxG9T#Q=G+`4gHjD+A92vMN41Z*a}XBgODFw>q;-676pen$<+A7-wZSh2DR9yQIfVlVpFtt}h&0HM;$b8Rl0(0* z?<}>o(EF(uDzfLQQ#tG?79kKC-6C75dK@}Tu|UoP(M-Db1onI zOc<%VCDL)fwE1EHpwXfl8&J=mDT^~-=hg=#*@`=-t|JOHTUZ^=2Ckj8*moVnG8$d3 z1z~$rSD51vbG~!^xm@uKcAn8{+7DtA3eU-GK`b=k_Ey^KoCEY`Z2z6`F?0VZvv!Kl zQhS*oPnk{`c)8@W;#|>;7tZWEQG!U07fk0YbNzwR*UtCwE4r-^rnHSo)e}3!Zo1t# z-RkaR9JWSyFlhn85uSMH+eO0#C1kqF?Pvo;;Sizh2T?i;1q5M`X>vSW5$KdQdN&*m=2La;d<=vQ_3NHWpz9=Mw^uR3d?f-b{rpn9(6)+ zoMc3|16=XqOIaCw>WGlP@NV4f7Pmam{G1x4~){{IU*7>i&ahUQFFO`*ouN%pfCR+)LIrdPLB%{rj)5X6jYZQS;c=%A5bZ z2V(z)B+1XJYg%APE&$AdNi*&^h5`xm)Oztx5y8L8Zi|_N<$w&`cowtOIAPTIfpWE% zE%9ogw-`8}mq?emIN@jz=(lWxUC9S;ogaZgl!?N)iHL@M&Aa`@D2haFq+bxl3!IV9 zqt8({dz)@mm3N z2-~CK?dOtl;wqAX5*GoaK~dDohQ-h4iR2B(F;XUfZhFGgg^8-f!MzA|`ZKSn%POFR z_0OcA9@Qy@Z>CJ}={J3HV68NayvY>El`ouJforvo!=B6m$zFvRS#XJ?2<&p_PIG4u znqxqa;3tcDZ#8}F*-!QR#ogEXkyj=!ClJ2q{pg2@CoRg6EzaTugwQrg!r~gOPL!Pm z_6*3duOutaeI|>CAVb&w`YpVR5%6%0t*klrs+CI(x~)X1~Dbcm(s1ycy*p+`Ox3D zdN|$qjLOm#ZkYYED{A-mnA85BvAik zC2muKmX(wx@k*oC<(q7&N;jjD$wf~V4EK=9LOJ}hA@_$L%JlX*MYT7}VM7|`(t)}S zzXWyhGB4zoTxE7Yg8gS=1G_qdN>&%JW$!tOzTX`DKXkoiSd`(`HatUzNJ)3Ml!UZH zcQ*`52uO)Y3^^)DcXvp4BQS)DFm#DDDBa!p-R!-e=i7U~@B4H3GsnR-*Sgj^*BQ2& zoKWcgE!}rHQ;a1AB4?%R1%v-N4Y-t-yEN~v#MjYBRYh0Y2!Oc-F?42^+nR-&Hv9hc|cl4(*d}r06VeHxK8s@ z7k0TDV^LH@;G`0*WIUfBB_mR8IljUo#e4K#xInRxdZO^8Y#0<%ovgyl-xtfZlyDso z@$+f+#Q5l$3i-Jz2mu0zA{H})1La-``e==GQvYdqk%r+9_G9#~dt=&Zu%psb8N%^V zi*Qj21ug7$(+MuUXXsTGcv(9(StlovU2piuxv7>eTRY44$Af3jylW3l9q2?S*p4eq z9C#CutqBG1goGK4b+Wds`UJe^6PMHpEB0*kMJoJ{gu^CBU$pH*3P)C-2?ZaP&Q{qP zd1XfYZSl&XH}fhTIW?+N#H~ttljasu(pZrdg|IhXbSiMX9^I(=sV15(*CO|XQpSIrRcd7F;4EB(i-9s1POPVW0 zw1lIz_tS5D<>wrZ)gL~v4!sVLtkiBCm?gRu$d0lVxztR^GYYn|>lp4ckcmL7GXj?2 z)CuRU$1!j*32#Q3szCj`3eG4@RfLg&6ID9KN?+*-@DI}?N<+s67h|+2G=jYWKNtr= zikq9`;bBTbw3IL}jNUf7XB8ijfMLY^`~9}_p@&$vfnlNFOsD1J-?(#b9=v9ox$R$l zOt1-&maztoiq}x3wQxf7C9^grAt$ot!E~JTeqW@(TOO!bK*E|mr|tI=#%Dua%I>-o zhCFDl-*H*;(w4rt&s*bWT&QJC;s1oPzZdGkA*_!vS%D7UpQE@17@nCU>FzH)DpJKDk1Ds=Y20AA$Zs69sIlIUvRD;X1&nvc-<1N&X{f4z zD|2p{TZ32h@V6ZG>xm@7$80>X->!R%*)Xbf0yokQrm|zQ;p}GB6VW~7`IOt3O51+X zzwi4y&wy=z-*Xndqj#W<)41xZu|L-c?h@ytGOoJr{ae=cfy;M8c8hEkfT>-ZZ^V*k zmu)Leo%i64^j1dtQ1d&y;RFY{=nm;hUt-Q4o6Aq;lQ?@1AyY|3+5X;-L*wN!>hQb%(jM$~8kciY zS^iPKCqwt6lrGmqI-Wc5FA}=OI_>Cx3;zp%EBmN1c;BtP|{S?_D!%#fZm^1M4dk9r=_CH{t6 z^OWC4d3#n^y^n7N@H>3*gsIn#`Oj)xNzj|1iyY-bs%JHSZ-5}02}Mm^_fZmI7h6pd z>o6-3b$#^GM`S*E$SR!SCv#fz{OM24WJ-Ot^27XeNqvg2PJc47=kf9>)1jy0oTyWv zAtP_=T^Yt1f!s0%1G}s@WvB1Q*Y}n+8_~VQ9ex-ee5lvF&26gr!*t3^nVPqo_GM(2 z+*G46@p|t+klcFop>zPtEjeHGJ}jTy{h|pETUL?b;TjLAmgroZNHm6RK9)(S=7&aL z!JXBjqGu)4kH#?2-VSC6dP_iQwK8I)Pre@MEVx>stgV>5H*i*rei?10Y#Bb@jG@I? z>m7OMt(fQnSuN&n%iK0=EW{2SGfr34G$) zIN$Le{$8q)C*bVH@Z+Dx@Dho;Mv?@E-3AhH`b=wv>?&x@h!#XrVlw#)#u@Icx74ux zc}rbIWWo*4TeP`xxmqg{X_l2KE_c&C(;M zCXTHi8PLHNJ|II==9!d3JNU76o!uN3j_#&U|U32Xc#^R+Z& zac!<%suSks?=8`BOjc@U#sf)yg_#I=kg5W5zQK}U8?XDg|!a+mtA$eDbJQbe6zvKg*2X~&^B(UHx1 z@$I^tP$^?+yBC8#&zq-pOqUWJmqh_f^T+F3i@RJW>x}dM9dm-cD-vD4Ya-8lqR(tw zry>pRBha^SoXSI*aK?UJ#EPk;AHNryCH*HPVkEAy81HQ@G5yTG$x5=mh$K$j$%tk><+%07XW}q8X!mJ{Xp*D%2RDnevFU_RNSgGB^Ndh!9Y*|CS znA#J2Xa8!8hA0U1ZLG1L7p1cr=UFWoNLG?sz70JB{1b~$B2TKUBU7Ua{UpIN^6d;ey=$s{Q!+Xyu%%o-;xzjr!+5n@B$s6xHqOUo!j@{x@++{ z;QkUa8Lb7|$PIqo7Nzw98aRjb?XOfKIJU`K{5w^rS5PN?H=#Acm6I`lOsV=}&H4VGJqG$*dN*Ja=^lmh$PiyQt1lr~r7vzl(;T7K%-Mh9egvedYiEIs zXXdPg81xtsYNfpcmH|&bT2r`MI&j6X|8yE`3G=*LaA7Q)oZ7#Kcpu8t(BU{mC!`H= z3o-tz-(04%Kw{D%OwW&6TZ$Hw6;|4WntX)Wx}&^=jj0*w(u*D$I2G*`lXX$!ePFbv zM9C61h;T3NiM&lZ+PrRiYhgvDFi>!3*D-7N1Hkdf!rnXn*fRU?cIzTLS8c@?jH>$0=Vg!L$&RXt+m3A+g+DrG(374WLONB!B*?*&f<+4 zelP~eyE6gaEmKxLbP8GX&qshze&|`E3}6HX8Rf=G3~`M{dES8@9W^T;EDb`lF8?sy zjRyiZ+V@AlJ@1yO1kSH}ud)%T;Wt{8DGUX)(aD;A`uL$|ie+Vo3b};QAOo4Feoy{v zd1YrVR-&I+gu1!N*LcUrXg?eA8_&O2Ev9?P1z|~V9&ZgYnAsO1*+59}E= z#{4YB{qv00TdCc^wcMlZ`^#)q2)Z32?VVE^PlMsIPQ8?2Yb2;z@jANEN_JNxeZVNF z>(IE1e0`44>J@OU9@GxZJYO4PvpXC^(yb^oSHW; z-F)}5&j$JgnWq6krbs+nNHmb9j!-4wY&h^wdRJI7aS=ZJZqI46rJ?rto@D*JSqoYU zMUw``)&%{bbddui%)!*9P2>>b6N+#2a`$Q$Tc@zo+@H{NSJ~^=rtWNGGUu!1FyVIM zTFvXolq%)|p7ne6lc~>bToF!FH!c5#GXZs(`=Ks-<3H6ZfsRK@f%T)fumSp9m{;uj zVC)F
{=>Y7Clq=Xe6GLfi6{)%-&A2iiJMLvea4ftMct>3VSW|R{vngu@S%z|$R zYAYlBc_RpWOk*iro=_5yf{nn{$Ch4ZtIMfkE0eCq0r!&=Q1}zVUFFOOkUoqYG-Bt( zDML}=kAbCo4tj;{SyX{U?Wn5M?$=FPV;DXh-WD{EJ# zdsae_Bwv0#58>K9Pdg(*>BQxcJ?_@(8Fz6(?Nl`l)j;yn;#p6~{ybeqhd6vfo@+zy z6xYwoeDu3K;C9O-!-Q6ezR1TWK97uO$GYziHDZUGb%(GLwc&qyS(LMV~w*6DuP{~L(ri#IM0{1QFqBLd8^N`E| zfso-O#&|-1SEc{FT?#;rtH{^D!sQJB=i22YBxaxiMz^n-)u?fixG9(kkF-er28AZo zy0+9QMOm7&msNlQoV<$fVZN(iuIXpUtN8Mf64gF08WTNFm&FzvUjm4E!|U}=Hyk*n zOvG=47#;>QP|ZUr29?V2S`OpTa&CoO5w>lPgIjcl?K(L-xvuqhNKNcJCIJ#_)(3J6 zok@GYi$V@3=3z#()eCB@V15d&F)4d^UT?Ip3hp@BlC;=4^>vR&b7K&gqTenn%J?)| zi$AJMTt48X#6YwCdCa>=kG+iS#+a7~3`-WcXr!Jxoeb4}V`j{E4psMYBdXbzc9Awf zeFf`d(gOxE@l{Fp07Cyoj#mG=KD(M4UlQZUYw=et1e{3X?C9E{Hy)!_6HbGHp+RRM z#A!Xf?0}w%#iu~e(ERrFqc4SK>EkKE&}2Sf*_4?Z6pEV)iFfZs*gQFAIOSi6=zhGL zF(uM_pE=Zs{@|t9jA!dRdY_MH>x?KtA0tzom6gwqs4hCS`fp@%2F14bU&jd=XhlWJ z)>`uL8iLsA$JqhL*8X-Z63{yk8RegJ5(KjotpTC2m3L+dd3yRDdPEmkdra~NC{>K zy&Ok!=SvfAh0{9WBOfc#%u=w`zp$2${6meMI4X;tYl)y4-WOXIT5;P;h_88z_J`Oy` z)=c26Wh5hAnnA{!sPg+%$?bpenVNJmJU4^Bz$F}0rL7UbkqS48e_=?H+Gdg$D_{jl znd03HnmGxwJN}-aP>X2>gufqBx320M`V~Dk&LMg+klueN+Njjc828W=Kd80jfjVpD z_yZVgy3e=*dT2bkudQxtrAq%FrT3vFZaNy%Fl}(KVV4O$TZ+oB_7>n`k9~YSE&CIe z$+eDt=9N19`2d+XfrdpszI6}h&(V_rdrbjqF|P3kZytwpKfvUN7yV)-1rCDOMSf zHJ&ex(K(B$P)y-2eQK7uhykkFi*`cK{isxfAK~wt2y{#I+GDJ-5)i|n5Zh~R)|_+5 zm34W<8g?~RZe9g3{p%sT&beVBfzOP3fi~e?sw}rCBfhiP(+R+fsZ@MoUf=F89!O4g z-2vFOK)|)TpUWEHJHYHmv%uv&ldw_qo_lkWVdw5T3k<6$^`UKEIt7XL^rG|P8(_|WT!+@_DuG>7xojepSRtD ztbdmM_ubl04pVMTN&dWP>ne4dzV!qP0dXiWY~AmSJaCYMYD3@RA5ud-f=az-26CAQHn#;Mma{4Lv<#Fvw-^xZ$KMYxb+|H^H}466{dR~ zzr_yy>_Us{CdQ}^C_{;J@jDg~Qi_AbX~7^*91acJZDmgrdC~AT9VJ&ncWK<+04T@w zTPa%3RkYR<9qioN$#lVh-gf0q=f6h-y0su{D(l4N0a1V~9utkg2)PXw%XGp$proGV zvxEVCs_Bf=iCB0(ZxrprHS}V5|Ht~ijWd*(e zO|P~FO70TN$d(w${r&f(Q5o*C#Ge>!5|$DUXd^WEB)lm{26o<;#8;{dD$8EjBb_~8 z9tMwwpG`iJyBvWmorEcAF|wWdiwxR~GYd*f497%$!K^aY9}m9VwvSKOfOJIp0hSv+ z$tfmZcAKKzHK$`50qNnJ{9C$xg0yqe5$6Q=NwgXHlO82pD8)3{M>fkV-{ERX4V`OZ z4UWGIu_&E8A=iDkfhSY@lHiI+8vCM|YL7jby;Zcs%FWTXPFCvKoJ_CRw~;>H1h<1Zv zSqq_f?rFLLuWA^6qB}5QoFkvCDCM`zrRrff>&)-PiT2WR@-1;573_GH!mTya70c=M z1X$(v&z~CvR4rJ$Vnr5{0rPRu;P%7O&^Px8M=+~X{ceXH6znQg)hS)Eo~lauxn9}a z#!5Z+IZbH-n127OsQed`m<8B2ywkuY$v(c*om_&!v6HJ9icG` z-v@GdsCHl$6?$`WVt4(bhnP4iA33UiEQdiE>iy|YIU1cJVRevxzMyt6=*YN4V;faO zy$t#(D;yKcG6)T>nO(kDr3&61lk##pM22)(Fd2abK0H zp;_+zm7HYqZ66Xik#w81N}lM1DpJ_VCL^a8gI|kMk|rsGBu~LbNd?;q)^Y3`QXx+x zN4{u2Y*!+D(y3}+_g=Ez;GYfaK6Tkiw{c#D3Gx?abSM&wgU(Dl0;^x87pU}SeKYn(dlp(3Rr>Avb>aU_nhFT15K>Ugn>$0?K?K# zdvJs1R3dy__jV5n`Jf$-Vio}wq{4^=U22un&lQCr=tKTydH?otvUXEE4}sEJuj~F^H%e+xv60U7_IG_1+16uWSx}P{nf?8iu4ll-bVd8u-K( zuvwVnJ}Z@hfa!}mAe#>x!+{_=l5P@{>{yp8l2F8T4kkN24R zm8ve=gr-%y71M07$kvJ%K31Yv5xqg0)^z>r%$sFm=Vwmjuqs{+@w3aR&lCHe6No{7-gG`FzmVCYm3m0DM6GR6)7=ZpJqdu@NQ+qjfrcd zR`c~(r^n69;i*^h<{ORGIeOI7l5##LC zC)sR?J(|4X$6yWAm7cezS27EDomF1X1DT6Hm|VHvx;|t4)^@CydpbSc8Ys*f(JP5n zpb%&PDMowZXXGesg zR{*D6LrIU;%*qs~PN^c1=P$G3#XcErO6mzW9P~;<>C(?s9qO#IGY(mR3|tMG!a>c` z=UasQlR$@Z`uyP?%#QRsdKE(qFjnL*Yk2y$TaT!(F6w(EFo|p&qe-c-%8D};vTw$A z#U20iofLhFo1*(*8hm`6;VI^(`LzPQ?Bvx__50F<5|v=L^_)z;bq5YK8I1F#XVE3jcAbB>AftQH;%Rp6KuYnWWv7?% zhg4l>yOzGuIrS}7-i5pgscQZaMQ>C}Nz&Oe5|R+ZbCPJ--jvaAt+Cw9Bx8T3ELoU1 zX%zioAl0^b*gqbfmO;B`c~wMxtIrF6O%W-QkK;G4F5=`JDs>lV+KKQ4`q1)r(Oska zl)EX~rKN&B3D0S3 zkTO(}^rrvKzoh-CUxapQ?{*1e|?S4{KM0UYq^=Y=gQdk4fDh zX7(~e3teu2;{`=cCwxv*r;r2ucLz`l#xG~ar% z4*fq}_Xcwu#7n6$9N$|A{yP8T`)zwrl=M22q@sqPBuJ}U8jzYa4T_AvISz;}(oUg! zOS%iO{+Hk=6}rninHkWuFMB12+H&Fw-i^RT>@BV4&^?+e3iy4#d4AdoUMcq;YBxIC z6I#K+`_nJT_{=~VPq;x*{;aIpFz6b0ny_v5IHP{}$oCoKCzM?7qVR!{yxo-kE&@a6 z^^Q&wfnmClSzFF5$6liuU%@qB7W-HmiKq>)I4Pp?Dlq);{R>sE*vgv z=OocHKJ%lncaCE>M4>oE7MKcu6bq&=xY2c(>EM5f!E+IT-L<4+ZVG(%;B^wBaOf|`pswuqn<*}I>jgy6uz6=Fa*17AeY&Xsu9s zJ(Q;kF4xWY%f4l+4iN(w%M$ugDAf1c7K*^2x&(d^W@)nYaNH9r$VY8AJ4?M zV5vnVM|tO)6J7rL>lJ5w6XUJs5NsuB;3C+O>nDOTI|G4`j}EO%@ZUCu;auKR?qw9zE-gr=jrL??cFFMMzmsW!XV{wuFk}v`veCyt_K>q?iILZ8Qgk0kxi$e|d}XR0;Z>Qef8_5iK=gBB zDsx|q9|c#jhaIiF{*53rE|0Q0WbZ5RiTCVc zJ{sn4-JCdTP%$g!wGJcD2qrvoIF$mNf%ZuX)s_0B^`GC>beBjcHLcI8!fxFe=614c zr)1^*)7qho-44uFTaOPqyfbfaqNQbGLW~qw%C_|8jlD8Pf+CX?hxNF&$)U2 zE00q!2KB51=4D~~2BughFK)3*ncurBE5BOrqQ^xR2KPGA_NT&ruJ3`N$2}muS2CYR zfr_~2ETo)n_RHcbg+z41I$vYHQ@(oI`L=EY;YUY)R+EUBk?*ai`?J17QilI!bg)?i z?7-B4BX$Sa;mOGaXq_NlC+KTNP#9vxXZoG`pBZ)-><~q^oD>yB0kIPqh(kd1l@yN0 zP-}rt5;&+dv$Dzwlwq7%5UHZ%+O(w_^iiGRqd`)vMC1g@H_wN`cqjrLBz1+AXEDx; z62XX_TkL}6n%OS&hpd{N87=dUKr7!uO`5VAd45F-qS#GwVmse}9XVb}cJhxzoxzmw zZs}j(1WDu&$|6XZx$(1o{(Vs>7@}_x(clFj@cAHCOXRvW(T#qVg zKu5f7cxLN#H-^KR+{3|?|5e+g$oKl;CXZ_B4iUQqZ;CB&_O#sDkO>p$r&~cVH8kvy zDc>(=fYCA&I}L$}xk0etBE@!X3uR}jL9}1h{8-fT=C(<_l+64gtbV=COy|5l*e;wO z^kYT}k54#&p7iyB$@cqpZumvNsBC)KcKA5&c9m}Mgq6GIt(v)k#pzG0j&kStlm1QA zCL81P_(mn4$pe)1GbIOJtMro$*kcpQ9ul|f8cA>buW$c;=Qe&HbB?>KR+*Fxs7zMF$babvDEGpioAr+>rp}S~BJ> z+9OoTuXM1o65_ni7y=o>5P6Dd_+RJC32%BtwEnL?_!%RYT+ah#E$lH-)1_?A&`Aw4VLu5Gh<{f-~V!0{1!4Sq>h zlurhuHS!KZ|XD-ac*bbfVt2`3LTuciStdK( zI!G-?F4e)XCh&gC<^7h;R?v~`=YmWVhHP}2`r+6D26aL%tLz*LqhvF#U5NPK7ccjo z@E48Y2b!Jw0jjDG5&R{lRsrP}XSY)>y+w}|%lfyB>syk%6i{L}NrP4!@@h9h^WV4z>EE40lK zh~#Emvf=LCHvoSxj|)G8FiFUF;nX7}MrHVUUl?;>CV-xpM5^yM2CE3?H*vK2LP%GF zIK;Aj{)%l`H_X=!OSL|kBs-_h{b_{=`9#XPT(6L@%CE2(2TzyaH0nc?`}ua$aav5(%y%6PFB;q9zWJ(l~jEM ztw%9kM!ljazYM0MsPtEOTp1OexWXYS4rlICIo(s7?@~8Eq-PPagc%R}lSgaN(an z4~)yTligetnduBI*T=-m2(^-=)Qu=!c_|U)vsu?{f-(WH#TO$E51>Wo2@>x}%3wgLhdUVO~v5VIAkUQTNJFu1cc)pm4hF{6^S|t`In6>m;8T~U?+ZQ^a76WZ7nw_ z#01YZuAQ*i^3=PtbOWS)#SOb9|Cj=DI*mr?5Ot%;1ke%Bt_am0mn<)*1EWyqSP-qG-nYr!RcFm!wU7x0=|&m3~)wGRtzWd;Exg zcTsgG@*vto|1OphuQH?IW?kyMr1XC0bhz&BR}raOU?8iGRI)0myLA?!Eo%uAdty?UQ7GO(}juuE4 z4fp%5Nlbq6Kl@)zX~wgE!5VCB8R;u1es=M*x1VnWUJc2K{((TxHbJuXX#Thxlq`Q8 z^Md#Q9=Pe7)lDaozUAMS?J;6t za2@e{jL=Q`Qtq=i@Il8D1ZNPH{b=_^Mt13XCs~ddR~wQuHq&gYy(oYg)`MH25dnRJ z)OXjvW?Rz)YGt|!ePFf+Q?^H(JgB?ci?O(AMrMn>@*nJW3HrN7@Z zW5a!PHcl()Hp5tP8?j)zhpz1hq(pHmZ?oz>HqcGzcXnsCQA*#AxSf4N!yl~8TEbSs zv=!Wv_t^d4t}@UtC;XE>-Q4aJuH{;b7(u2JD6&ZhXa$%FmQCe-ApL@MD)hPKNT+aY zCg8INbq~$WDJ^A z4(ti#gOV_~B`sxbJty_~GNLcBZ{)HUqVUY>4DVUjhEx z9oQ!7nTgbG>nG!v%)%?DO;+<0uYXPcve>0}PoiDlyLz@OW2&Bxo@A?0Zr&Fij$5z3 zoL`@PwsCGBKZ8D!^)<^!C1rl+Rq^2anGW;_&qFMAbBgT{DGiD!zw~wvKdK68JrUqz zcG6wO-a*hcZ?aV0zi~eY|MlkL2~5xblKmNa#7Mj=$jb$Lbr=xmz^LSvI>I`R{evV@ z>yXh6V5$%D3bW2GtEQ2af}-k^a{?Q4f)3*5@LeSse=6+D`J)ws^g)=sdYyPzqR^Z) zEoC12`F{*y!gcT(ykJueg?IYa}dk4$GZMdPcSa>w5$BC<}P6t>j~WDW8evQ}|g)b{b3vU4dN zNzsiQ#N`-w%6OxqC383Q`2aZ97q|C!I#L(#oZaNp>=C@b2|+}lnFM@sMm~t%D954%^}+sw&Duk|X50a&?2d03;B;;FI>GNc z_Gsu++5j0N?6cSQ80!u=-;Hhyd9kx50ed}D_j%*XpgjQA0FUjZ_zTOC&FzzlBdfN= z^~{(SRR9)EVMRc&~UR$X{hfNLr38C zQUL^{4RiexgsU0?Hettw6Kj3M$XoHZ>l#!lrq>757%u7$iiH)Eu5eR>$T6AdFB&fO z!F}54h^mKqJ3|{6bRaN9?ob}Hx@wm(I*IbWcILU*ORf6DexsLaUm}GV=IvkNzhv`y z2gWAk=;ko_$_m#W;&oB$yIk!#91{Y0gANF8WWM08<`NwSNO0J9SR@~S)Xy(59$_Hy|pWwBk^`>nm{ers8Q3dQ1!sJgK^d#D->pMBM~XfD-@#1EQPmo zzQ=>dQk-Wxhu>E`J0DvTNmY6u)&3|80x_%A_V^s>1Z&mIJcDvhpDehqv`wXkpmrg* z{Gx~78eNJ2#0u{5GuVTftJ`a^6{wo^qnH5k*gg4Vn_(N_a39 zNIVc{q=&o~hx0YU&41Z&D03T)dRPd)yez~`z*lHopxP=t5>2lgVYp3%f(|1xm$i$` z)t%pl#IT1XVZ{}Eo-4TUAJ?N+fW>RL598jJXtwDt?`3b*NhjaAP0vo<86<}K$u5*$ z`;~S7ZF-|GZZ0BrTN%PmH8#89UBfRq8)^9}P#_GnQ0^a%$<>Oo0ST-4=+d{Z zB%-w|K&QH7L!?YoGo>s|_2Nxg6(OlgTLEFZec7gI!$iHY-*F(*C5SH_N z9(yi)V9gt-mfLZhxj(=>GW~RZS0YmYDARXbxoNtJf%@v3QE^aBM#iq=n&AR{C$4|`zqwlj^fyoFb0#4S>%i;y|tpwpwu^pCW2`vj! z8?<95{-|}#ZhDxGTuAxaDY8*I8Gc8KcjGf=Pt=9@!nhnFDF{L7hmVj7@aHmDUQ)~_ zN(LiW>IQ$tx|x)~AIJW}J0`z0n>}^If4=ZsU|mJ>G++yJx9OqL zGLo@KlUE-_^jieno=*3hWnnISRqE%rns@g*6>>M6mwQv#hBDMJS#NwxUv=rIG7(spR?w=n&35hADS zo8z1RNrZVk{!bzyOQ#G}NzGrdq@XT4G&vd3NiU?Z^i74Hmxgd13roIL0lIgrBW>^+ z^a8~5he)g6{eyXInS*A0;1W?1?#qOIyPh^3@Ir4{gG1#y;E`PRv$Oz2RDXQ!loj5% znJ;Nls~N7ZrPCR8m=(>r2pH}ew^WTklx`7Ravvf{XcN}=AJ%qHmUCRWi8}E&6k}+* zld(GSd*j}!f_4unu@W;Dam;B2o{Kp73TUj|L@8#h+>m0@Yj-=)-y0H}#r`@F-@c(U zk2XCQN<8m@;GkxTWHue%MEloc9XEIn-QMBX@s__Qz0`kE_{6h1Vc2&KA3f@}1uMxS z*}ty)BAbNo+5{VZ*1(x+jyN63jUc`~B2*SwzfDWf*p9+$clec<%e*7%V;YVWS1Jn^mV%o~}b z{&_tliIaZ%L{sE0N$$;;tsDi4VIT5c?SOJgM*Xp;e!uMjg+h(h?LpUmq~~kLKoIZ|y&4-vuk&YW9u48^l_xU*kf{Nvyv_$e}NR zi>3P}W3BCp96)YOwI6JHS!;h@pv@a?1J~fJwmc;Q{AZQ{&r2q!px+l*vHG#mo2*&E% zs1j9=e1ye=5@LPGy?l&@cr5>OCnb|-V2^TzWQu&d^D1MB5Vri@PKcF=vf&eHE!hp7 zImQLsC$yXw;YdZPqjW|!e-pP55fy)f^YgkEw%jRy=+R=s*yV2O0MrmqU(=n47&iUyLrs#PITj>qI$R+ zRfvw1qBw%C?`*6Id5igNW7}g>r1j>0rVy$(bu(3NJ^h+caW&I?5q0};2KSRwh+kx$ z%U=Bg3MqEJvt0D4>?K9;>1qkv_E3w7BEqwjs)Vh+UBa)$_df|6!S??mp(TKJm%pkd3dCueJR|88mn{^SA{({gSUq!Plq?Ro!6Wzv~+Dk>x+X)bW2WljyKGec5__3s9Dla9X~fLUgBw!8&VF zYiN0L?9K0eu#!@uSArMzar#8Uu-z+N1u%2-(@EzU7Xj>|pw+kcU7XL+R4bKRUqjdI zcpaewfZtWtt0%m=%|#PFlBM^OngAEdX184f*f6}!;(p1E#g88nPxr&67ZWQ&m^B9O z4{r!u&jZ7y1pP<+)7{ohmW3kJpL?Ec31zq;J|8QXVUkN1irGYd5NBxXV<_xC3rBzT z(JNOOFTSp;&SpGlL8$BZ0yA#OE03Yc?|)6?5lkTo-U+o6kdDhWO|G4(WAt`OL)s!< zJ@(=3LFPV7sly)F-=CsU(ZjyYzB`*DO6+bS18jj|&AW}WNtTcKSmC=5Evw|+#d4iL zU{t>Doj1q0ypJD;9~)P@vWoT<&x`AkJ>cc0TnBG%Q2!enF%#swK$ACK)O=n)?>?N{ zrcy5)+o-}6UkBn6+vW4Fnr!~%_q9?=lNpz@D;%coKQ{-gm^;AnK5Pn-mA81}?ql+PIh z$%qQ_UJd0U-q>Y}WEAxZ6V1gd^{xjnD?hJ$TJYQCSBlg`O8baV*JMh-Va<1UslzT} zLD)Zxh2Y=k-cv*Q<*z3!R zMjfeDgOdev4Z29^em-6}xwAYAU^p^VBO0-hGg#Qh86K^M@Ee`;Jg10V{p&#qshI|a z7fX(DW`g^S&xm@Y6bNsFJZ6A*2yt9OSHgCdqcX2$xFVv?QT2-$_ckH6UC^d+Q|RjA zfAP479x?gBlIgV4#Jcn9f-t#m3EUw*B&kP0gF{F7Vm7=BO%x4_hgx}VbCnQJ36J*) z8X?0Yqb^kqpw<1Wp_Ya!VmXJ_5)$pprNJ)({6rhhol#@m2p*{Q=slqFQkbq^@af0##p z2tP1?_M)2JFi*sfQG-872+EATxatPW;>iEaHqi3X~spYq6zL<_Y04bKeOdUyn6hdpu4R3--I5uRrc0W=S*cn6P`+yYCjcJOa>~ zgD0-j{=rfBvtp9-xe^f^C|1$zsm9X)>hO@p8;%gv#EnmAiPU0*?v4`uD!2%P5 z`4mMEePj_!VHS`lvbcX3e7I#yh{w6tazxBwdz4JB48v3&kE$A4KGZx9yoQ{OAndqj zya1ra7T*Y#;{>0zo1Agz%V0jHI_CKMhNyO}Fx@##HW3_CkyHe16{3KNXkun_>UGcA zR@-0t-B-R(otXA9W-vR=l!~;u^OqtkdB%{F^}TIp6brUy;a|JSIxc>~V##?DYWze` zNS?X!X8tw><>vY4XB}8ll5Ixrf7%{yyygYK=SnX&n(OynD*yLq+EPH=Ib|EY*LFEj zgqIbtnn8GZVILk5o_l36x10KvylY2p;YKZr53@4}+5K%lGWTztAvfbiBgjnD9BtR^ zYZE_L%1H?^T}?<9=@8%h71-yREMw8}kFh#~8W(F*KfD@u!~&~|*eCx74Vbh8L#yZlf%xOP?@>}mNT#|6 zqfx)DPSGoxHtiUmEGJEx?t5q#FV0PATaI38h22Q@W(3yX*Xh{qDWr z_kYfH&iNqD2fVy^c-DH>y4St#TfLZ4a=lDJqU3)`-vDaF_5^pD>q@t^(a-Y7tFXq} z9|^ogm9^yi-%2WW>(@C})I!RiA{E`HEoe(84VB2a@~vB~PwiC5Xq#7=Z=WVEs}0s& z-es5A#H0bN@0jsj^S=}mqs<>022uG=5Lq*=&wguK)2iLF0 z{4NHG`hp{H>66P&mEHyn=_utq9$q#%!tfVH426#OTQL;w*F!&9)8vd~ckC|?xf^ws z&A&fFh(28c4A4OW-?u5-NG8Q@gPV?eubm6YJ(p^hZb4rA*3?h>hUUR_#5>Ms3G=vr);SfELLgloW2y`dGFl?I+j&~Y5VM{J_-r98U*?O17G*OrY{P;7 z=xZ77!Ku~Pro-4$Cbd43RX60?CuO!|6>@0gOupAarohxRcHtMAh~R|ksIlL2El`-P z^)FiDu%<=m>KOX1RnTV1ZAzW`$pTgXvMTC1$F?-UK50VORJEI_|PS!Z2%)UImIo%xxe#;7g z{}pV8mO7~$f1VecMnJuswI|^$@$M|icl%+F(CMUsU6DKXo2#z}Sn1v$l4!mrxi9!W zhk~9a;UUi>#BvD4NJ_oix^*mCJT+`?fPwjaLByoLYK2Tr{801k1yVit??&KJ%|Y04 zjvp@XbzbcNG^so$FU4V1iDA`IoecoZGArd$z_Q7^=Y#dm1l-1tY1{%V!-SKhF>kE2 zQPA)~>Ll&@uW?K&3bx1ult6+DTYDc#`A)Igo1Nk~3gwZst(lV~1C2j#dF1Lt0MDjl z-Qa$V$P5MA|79Bx=lmr_&9UYNjreuBx==0ShTYTHLAVYxNx(jbg~C49Qk z^{0&KSFBw0%ZyT4l3`tcNh$5AV?sc$`mdFrzphv>V*Q*(nMF-iATl2T>L;@pCcO}&NuUPW&3C{C2pb*@Dm2o6@5i}FfaHeuil`yp6?F0H?c(#8??H(_6k2ww z7KDQLMO3qOS*D^NCfeq+Nq}PIu)WwA7tI*|I1i&x#SC&b+Tv&nRHLDU&#>A9m5oP`J&X-U_01;;9`adKX z?$HCF4DP!eTNnC@=ytv?UVghz_#a@vEf4%q4&uY|K`Ha0N|$1;PUVSTkA-cAL;KVg zeJU(|zBV9eWYntC;D`uhsEKC)U$QpYqG{$0CX z@%wL)_j&}&8fvknkbl3hlD!WXiJO!ZBD8^$p$;#pm-`iqtzqi4IEg z?1?uIh*GMA$5|%f51mE_IU3JW(&TU_!z+iHUwaW9>T6wi)Lensh?so`RZfNwUVqo{A_z-!HP(ruSe3ejF zIaWDSIcA#GJ83*IXYFNsk_uYo`l05$6O%Pp+W~<;4Jb{43I|@HZzP^39+?}|t5mYL zQHQ>hI?wxKe>S(UXZ3J3sy4Eg<8)(FO0w!Wvo6hSeRS+)MxR3=Wj-0K=KmPP|7V8R zTBPf~i>%p<)^$&6%3W+pmE&tr{zs24+RPi1{)2-)<%MR}+d>C?rK@j)MEyswvPA*r z_c$X|Q3e~BTuA~uxPI*uI@_b)Cw4)d=t=z&LbnI`EjvtEANu(eB$5qgHZY7HP`LPR zr{C2j5cwy(3pJ!-DapTAXlGE2$(gsX?(V z1o24&y%VS8_<={3Q4yr|QV~#a8iizrC9idbGc;Thd>j1faanH9YuZJZ`4V1J)G>n- z+vX}jHLa5q!c!tfrq=X?>DdFqW-i9QOv{(n3o#EqG;^nWU>!d3a;@QV0S2c_=}}wA zkErau0_(`~q6sPizWCVKy|BYej~dcStPsS1Zil0FT^C8ce2%%)Tm3E7q-dXx zaN=YqB$6Gq0n<`rFf=+eH1ufv<8rplfBVK?1>W;(x7W`%?e?&M^3?%V%d-eD^Ct90 ze)Zr2JP0P#gYrlNzLUx#l|x4S1%};kB9YOwlWNxo&$SFyVA&(j`&J|+u@>tw8Fgqk zxp(5;bSU+PLMzp>w!b{lfs9AxCENl$nzQZ~L(eu@Jr05s6(hYgeO!FJ^xT5UIm^ux zX`*l?ASTXvpoiFC$22u*U+|f}IEaEO=$mdO%E^VtmxnfEEw7SKN4wLZo=-)JD#6Yw zF;_>0(07fYM=En}FVy-q>~&0*lS4bD*Fv~M3|)^o#w8@j>^=a;#5qo?0Z7^Xc$YRzDPPx zl0i3Lr02YPNKLn)%e&>mrz%$^)P1C(A zbSz3uA(XmVvna84+gwSl5Jdt%y)bW9lRO$0x9&>U$?2*=GA>+5!T8p8XIYB|8eE48XX>fA+0)O3sYcThj|AOj?~>si}=# z$?rp(sE^>$f%t%1hA-wRXHL*pF1 ze=?Vy_??%FrVfYA2j#uPbOT05#?VKJ8L8Zp?xl?k=^4ys!j_+3aIF4(LYDmfQWaR( zB`a;(7lTIB5T?|8aZais?0-vf4%|wkkAcEa3{tis;yJJeF40tVl0bm5;NGv6zF>d0v^+^1s zJ?yfx9YbTcV74B=wt$B$9U6~$TP8c`i1Z?iJ}lS3_&sRbcg=J%5%tgUhzx7Ly)zW9 z_e$A8y2zJG54{rYZ5}IBq8S*{IHs;lrc^eBTcVs2dH0R=%{Ubp4)`l}yN#vV0DrUV zE=NYyyl>>lapbE7sS|N>XAqEMA<1f=vu@>|q^V03uO1i@qT;p%*!@AM|eQneji!7_8TZHX0*eHWi%7FRB#nvi@X>R}n_=svc# zGqoN`-5n3>?etOyt%?hQXNk~Ty@bs;I%0@dgk*iIotg_3rtJf z#Tve(MA3HUPbl9R@~=xoh(R!@mBt+iQ9lBzA~BuAmK6w->KRcZ{;#L(Pr{mcb;m@% z8P3zJsI3*Vr`5b?IfQV|_fKHbcgKoQ64nuGqZ9=ubxKNBIpsk($6dDgQ@-g6$OW)_ z@e+vBRR^%WL%qOt{|MfS``3uO`SpLosD)S1#uBhYXuDaNTLi*Lof0L2DpQh%RYLkO zE2jU$g;04G_c%*8o^S7Y;}N-uDsuo1pOWONS!y6|7~TkK470~Tq|b*yN$I_l*Q%DS zB5tX}u@B>@ZW~EtyA;8dckoqbLWmH%-iuNoGnKY`;t@#O5I=H zhwLi_lFvJFQOhRVkA4aF%9M)#HxZknoMHp-60p-dcrdm;PYsOJx3Q{k)$ebVtJi}l zs`Q3GXA8Q%#|%&W4wclM3dyCHvX>yKbl}n>3wr($rP668Qrgul#rdab^sZOQ7OCrj zzQ-s(u|%>!kKp@Hj$hMdF2+9OuA7ejHEqsb-cE!vjHwTEpS>xOhgfAgO3R*G`8QFi z=4j^%1HhlgF9WXeAC-IhPPzS4-pqXy9UUDXH-F`8{KCEspaI?xdol7OF5kclj)9rJ z&wXm{Y`2t&NvL~V15=o+Ta$ZMqo-gtQVt>0EUCi+awRNM7E(q5&GNO;4v`j$L(`>p zN6Q_S>JkTh%oXYStBk6JTA}j$_xL|Yl0tc3Ve^x{xCwNZ@Unr|p9ZiBxL+O<%iI91 zXi6x{)qKFM5BzrmIVQ5nN7BukQh7%9Q?^4o_R}Hu%^`NLFqhlrFE>)2CyefL3meDr zs(+5B?vk$D(;NAB>F~5kA3enK5hD@dz+%{|=ad5s&gDuQeqid*U4#s}bNf0x^P`9# z(jL|!5{H!5?P_+-IkLiBQIY)>(^*+LvU_jIn<3SFAz&K)sa><-37kS=39s*&9K;!GAwII#A#|1Q*8pCtJQ$#&=mQYegN{o1w7y0)-7e zEL+zc#o@D;A~tCkrIZ_CKZsDD8m@@3K!Lf!{f%>^q{|fJSd15IuhgK-K*(LbI`la4 zR40UpLVd(!nq~3WdAmv|_YS>HqL^GMNI~&UKy`Sn0LMae$LaI%AwoRG<|x0Sv1>U9zR4aOE2^~ zxhQqp>|Jn5(QI%CCUDbu)VNC-QDtb_B1tBQh=^qL=wx^CzkDu!~_^!C= z8D&#`L?E!My9UhIU&DPg(?nm@@z^Lpt)C)Mzf5&I*zOgae%+|c_rA%#s_O4+!z%^4 z_YIUH+>^*D4dFVFPmcxsRXBuoc|P`IMmXyA{UqPWpIein+gY4{ehg|gfra@hOM*}@ zd&=Et;XI;wPp<5l^do5fb**n%|JDL%xRp8nA~ZTLlV%1FFIxz~G>Eb|fq0GHWlHCT z%+sD6O_WUf{py&k8Q7xALMum^QX+c4Zg^BV=p^WqHD#8srwTu{gJwiu(_!_F`m5Bd zL{M*UNXAH74lyH-@`==boFYTP3>Q!ga2DtOoOf})9KLQ(oyw%426@z9+P@WKPl;Mx z%oyS`Wyb6lD!>5hU-5kX*VSl#E!y1B4y+E(e|qRMsU`WAM^trmTtV!kSeoT=K(#RH zuxy>M)H$mm7vJ+UMv0xO-Ba$rFBC26eX`+`TE6Kz{*D?;dGy9!bb|OH#$gvS)l<20 zPL6KH9p9CHu-^HKJ=VcDmPIoM!KaLii-P4P!17+6LYf)>t5FkvQ83d6XC`Z=&7}n` z9de0KxO+S%_f1Z?KI9n{2u1}>zkX}YY@0cRlDNbxhH7ImH4^Xhq1*M?>M4gfPSl?y zYn>H1FbVd9e~sxkJylM3&ZJU%N`is6{wjx8A^t|B`6WkG_*$^yi*c+BD|za{r~Rf0 z7vj36+ERxXrslyHa7-r3pZW9I_je%E|J815#})V@*H`ZP+pJLF6)x4&#r7yU(p?!h zoihI@r^|!5(8<{-#lVSpB3gnym9Wj5p4V5!bq)W-nH224z>^OPj#_uoIpoyA2-8Ck?k@?h2-%zEkg3_5;+o5So9xFel5~ehD8@k_{1<*ARHGH(ZInJWi?Aibfd| zsG-t!%1J>9*2}X>gY`l4@3lqbzr0N}s8?!yyDKq{JzYEcp92c>at&UQPDjNOzopN5 zx_Ht_M196OJ{cT4YZtom6h_UL_Y3?Be8yD&w)WrL^NRAD8pvtaH9zD@Aj^u*8X!RZ z7LNatTIWm%cQ9g0@#W{9m)B3{{Esk!f>?m}G7bK22IK@H>jt0LOjK*H1dgRVal<$? zD6+!X3>=d~BLX8)W2{fTmUn%2;Nu%G@9@dd`KyQjgCKc2=$DDmZv>LDpv*l<7WVV7 z8{@8_+vB+b1$UyWk|u)%KT7Ge4SRBx0wPW`A6|-jnSw&UPFVc%tI$Y0A1&v-2EQ2h z+z^36Yz9zN1hoY(%no%}+$r@}geDdfg~kdz-)*I0_T%VMg3rfWrX4r!apZ?btczw& zF8P#}qO&7O6S&MgRUDn$dC%FUD3yG%Wg$dT@pbn{@!=Qvoz}NNKc~iYOA9He%XGuE zWRAsWMFJ_@txX8W>y&hF3k!?B+J@_}OUcdCe~O(gKOjTzq?hYZmcQjhJZc!e@OO?t zr-lFCBxW0uE7(N|frwB7*J&S(U4)Ue9=njpta(Uko5AEfWa2S16W;P4x;pclQ{nbW zwo|Zo%d#)1P=r#pqk8q$pJvUw}+S<-y` zxZd{iZXH{E9ei~~7)TUs{emZbg@1||HQqw*`ofEtLA{XzB40rj_+`6)r*6u3&jegg zw~ql-ec%$i|^w)3rUH;vC6dHz9`9wt$=TK&Qoey}Rtc zRWldTjL3cb{os_pOhASsK#<4vO}mrizkdpn5^&j4u-BT|)PccLY;sq9)tp!m0p`PR zVe0R$Wo=DYkk0zsHsCByasi}Sts=gg!}DcnoAuUE2e-{!rxn1(g~sF$br;S$!86E) z9XgId6M@U93E|@?v)nzd%nm(#6sf7IUKx{g>d19(r60)}G6I7-*!gLmLUHRsgAppI zxbsx?(og{l9Gjs`av|^G5gn=jE3GxDK0u@mDFJV0Pqa1;Ebg(DRA0xooI<5&Qx93fS#e&)E}nd464FY@|W^i z#2RtLdg%B%=f9T>{`$MdA!b3^6;5?Oo!YoqPfI%iBnEk0PpBUXV!7~~(HfM_=1x7p zikg0$z-cldi(n<+OJkpWsud=f89Vv6jOK0ps|GkAnUknC0mui7WTiyLd4SIFl_s^th~hi&{YKPu_c!m5@6r(cgveLHfL`s=4goED%4_n56bfti(2XRT+iF}#xr)%M_!N$JGrE?WDEEEl_NYlo{Abf7L{68iYXQ&*0faEj8zyqffs*lOZwee3m zOU#2Z8!P|}+eQHi%?gcQ&bgC+%6k06!L(-#EmR#zc+LR(AY8U9#`MhUf59rozrd=} z4y7~`4Dk8Ipr=s7^ada zE6PtyTM8FO6j;QNEiqLh7jt+3@7zjB(5l$_dGSEq+!+CB8*x0NUmOuUfR$s-U&_bA zCAV$ZZ#v3j$Z)&rlEiV=MrXlKbY>6Q*}WE_^Qcw1ca7=MYl8PVn|ClwMgcWUW-h4l zSPRQ1{vdK7Pbh09YGBex;u}5NHdq7-F9eOH>{oJq=H zZfE`pbOn^zBmsb*CUdc&;Q7)u_s>qjnL!e`w;}$jG7WIc#^&(zxIXAyXM2|vzIXRe zhyX`5$qaPGz^r(tY&2~~0{HQ#BtBgI>Ldh?4^l{!A5~9Dx_Jgwt$Jdw!vK@U)FIHf zr`6#}`Fz=c^p=j3qLKUa1>sTqzJ7O@f{U>9C2_yG)%I0^@6(Y?kDP4KlnU`AM?L-? zmJW@8GPLP(OgZ)C8|O_Xl*RJ*1PwAyiIUGgi3RSn1@0>?MnWY3m67SY7qY-M77ahM zhk^mO{x;zg3Q)rU1UH<~-e7bx6LqP#WH!Ktzegv0H087`{6D{N-g!{9>VY&tgR<7( z>7@ttgy5IYKs8*=`UTiWIv_QftNS~h{RVCa!l369sojnH3?jBIy?%Y>Lc)Lb05Ff< zgqN_%N(fArYC_TlizFIV z0;POOkw1COHOr>$tXRlQ18HvI(){0do>vD{z1QPTAZPKs%UxqvTXo~RxkicSu7cLx zY%ulbAQxGa?-=nbo>s88%SCj~-b?DKz426R{w(Kqe z|G~+#1_01LEGX&ExZToa^`#AZiS>vTPo$_TJc^jUUQ?C1#d*;`!}Gk=467p;w6|)X z$_Q=?o`Bw}VbVvoGtS&y39kly;_bG+mTKp~K4qr*at0}YdfW|P`8xKT1uqg%w@Ftn zl>LK~e$xe2!`tm91ruxKpfwIVe(T>{Stf+%E4U7+fG_&(uK#ao&lF~a@pJo43LOe2 zhQ2-Jn~aB;J`^r0im-$s^ob=qTAeDFdEFD&L+5!^R={YF>9D09$dPt`XyJifIw#Bv z&J-yg;%R(##=CVwl&Vf5MN0eH^|Ek!ljOqzK3Y)pzBpHD-0Q=6h8;-5>tB8cwHIq< zwX1P{@E>hgD=?QTs-8(>v7ltWNL~D-m7Gw}iT}H@UY_*k2tU*v@guPs#N^eyw83F~ zbKzpZF=x-?tWHKG48SV>lkQH@9;VVEp#9_td5Ee#X(Jbh{}k)t(dxaCAHrRvaE9%7BMpcD&GhbCgjOj>XX9&@444)? zO~~D)7T^NWTq0gYLABFzUH6iI&y#oRuaN3aeP}*?MWZ}^{CUH;SP%(l^Dn52P(r=- zzwUYiWs1C$lR}Y|OJ6!v{>)=V@nWy1xr7x2bzd&VYSjsGEj%^nPcu0lT|XA)Q^u5< z=}!0Iid0Ue5{suglwwnGO&MU%tO~j;cs;{wM3pWOO1x;}^C~@X!ZyT(&!I1HZB>%O zHg}sk5$Vc_kf3!Fc#N!bbybop0Af#k1?c4DO8*NK=CfLrOOOs|g?=^~T$$@seVfCYJP)E99^%Uac+oY1KMUiE1e-+na0^#mV7N$+h z&#`X^aI}B-ayuTD;EV*kFvC_8V-|$?mv=sx!~nHK#~K~cs=i%;mZj-oG15<3<`PinYYJLQWYAERqm7vU9h8C30U5<&n>1+nw$w5{bFb zY=e}|$kcTkW~7Fs8BP(y0$sMDQgq*nqSs)ZaUaQ0l=$;QKfS5tUVfg4AX z18)I7==xTYd2+2QPp9~gS_QjMJ660%&Q*VD2Y5--?WG2qWg=VrM^`VBs>rdMe-h|( zM85~{bY{Vm3mzgUkP*Q44!D;1z6H7#C>>n2#;3-}cD%KxHoe^iY|zJa zX6la?SUlU1S~$yUJC{3;wts{vE~a29QIj%Ueii25=(U=TxNUnS$%!@ZFk?9i>`Q-- zDfQG=a)Dp4;^kKkrFryhEuxKe^fJf}WLHQ?PpS4)bHv&h6_6C5iIg~5j`{3=8+OGp z47l3}vQXh~8;mcvjPtf*5M75+zKJQHB373QV0Bj7p0y_l*jHT4#xWRm@H~PfnRZYa zx;bo(I2;=Dlxi`CC;@lCUi5)8WbuOC#ixy^jSw>IVXoSCj*$L&QIUhjPf19g~OPN!%cXBL5FlLsiX`gqMX;05(gLyYW2{PR15xzwq z+iklLEA~1m(%)wM!K}w$8^?G;F%C(WqT_vj^xmD$Sf_PA zLP4IgNS@iee%mmZz=9a?3*22F$%yKrhrUfQ;MvP18)ip`vpQ($@*vJ#TvAKTu)WH> z^AGOWou4vy6i1L-c7RuD%qf32fP1%YVOQZ1?H}U$a_xWii&j(dbV~r9@R;0Vl z53{IDo@x&}8b^tj;26qGnXh3ryifXZ&%@dZ2%HJDDs{y`5?LIq9#b`G zSCZ6))DBC=4uhz3Mem1P-%2STmg9XPLNDnM3>DM+uqp=;A??w| z>L!eDq?9;xZ=Cr~NfG3fO|I$`)ov~xwG+Wl;f}Q#OmiTX?wp$tJU$fgP1g)#hZFe4 zW`=oPm^Naaaa8iHe4*7u7Wv`C3S2=u!pCd2Yu~TfNXypHEe(3@Cu;EdXcM=FftUUy z^4HG4?GoDk_17o`PZcME_alY@NX;MqZXLwt!!A8@Bl(LUt0E~uB&3Yd-wa+|{8V(t zG{*Q(kNh&E4U*%R__f=3c~*6yZ0sroJ!+&EO_Y}2y+wHV>h*}@y6WKWu4xCle+XkK zmD)JV_FgRb=n0_lY8{_`6g0TfGyU^s_2~|KzY_Pb1{yNn!F<6ZXCHErFtOffrP&Fl zu~`mH78K8~EW*-Vc=oI0-8c)hdaN7~^%rYN6+gM_TsGPgcpSPNq&=EU`RyeT(lR;x zyVVAGS>%~^_h*jzoX%f0722{u!3i^U8muLSwbqhyv}*c2fWPzYQZ(@;F{&uDzm{K@ z_{w%&D@=JC9+}|a7Shz1<~tO~-Q;G1USF@m-D4iYhGK1npJ@Z6n>@aJdfJ_@h-1oQJCj-x!651bHNio5wF6~-~HM)E>LU5 z^k)ewpT6fkaXx+e5Cgyr$+mFJ=xpd#E8VwrxrsSp?=Kj!nj=d`NQKfP$pyq z#Ty1`?a;p4bk&AzugC?0OpKqH!20s`BmyafAd@6LdElC3C4RVG^xSW?iM!m*yEhf7 zIfcDl=W`;Bswd*|G3A~E_Ai$jRM5hsr;puJ&!wONahn~^`jk#$rr%oW5WpF6&VaQH zBpwnAMepcQUADKIk)VueM$7kqpM zna*^a@rV4zzlZ?9I*JJL(NW)s}b63;FQg&R>j#RBl+_CeJ$Uh0-Tcbb zYxU8xD{SaUo$C?XRlVBdk>Dj0Gq-jN+S5I^_kBLf(?L?XdhP z)R=RV&co9za@~`F6|l`mKC;0K4;Eh<^))SHRO+Hy)Zi9E8(T{EKqtv;oOpy9qo{a1 zRbdj3s)LOuy&(E@Cr%lV$=8nWY7w=*UJQit^u%W4AD%UN=A#GcGR@*a+a}gUJ=`n8 zYRXrF-Y;xQ4f-7;vFlmOPL}u{EE%%?FtMde+9~KiakYOamA}2(q=4K(71jVBgt}DZ%-% z9kTv2CB6TXE9rduwsAl(Xf#T!1>FY74V96O&sudpI>?Vw)zw7Of0#5w4Q%<1->R!* z?{-NKdsK7yX+-#1_UQcPqT9vssJN0#;0AT}-SOzyve}fA z=CFWqr(;NR$UdVn{O{u9Z%!CqUAp}IKW@FbyL zQ~P-yMBmJO6R@-uM8o1wWn;hQI1fWPbyzbQpER`$RHF=)jO_jMW5z1UudG^z@&hp# zvNzhNYv+-C#$6i%ym`yXYsE|ROi9|XfUqIr;IJHLR49MSm|z>NGJ5}H>^CgbgV>b5VS{Q2iVW#7!S1iK+R3v1 zyo4X4EraTe87H`r8FzKm%H^(_WWT)>`Do)+-7{+)3Xbzfh_e00&Q&)GrJZ=(vV}f# zT_|m^#x@q|l%i0N;tP!e-}qgLs5Un=G~dCF^`oDx@F3-*Kq$u3{Iq4e6X1MRw}wp8 z@Yc2vvOrR?w5d+|+>k30iOih>-4&i^dO5d%jJlHx0PN*Cz@_)g;=!LnsEbyAFv!?cipuV=kB>W3cfc@;bgvC&RlioQXI2g;9O9G>Y z>wXd8Z9lWDN^qoinBqi{@QnaunO)<3ih$ubu>?xT6_>r8)9mEZcN_WE=Gnl6QSQc& z@`W?K&I89kLjT3++x-h;n+s39U1>yI=0=ejS|L4PKv$LIjN{MI!H)lGn&nSF0%M#h zao20;0xb6UKbz`(tZ+@3=n>i8G%FdcJEiG(Ug^7!lYBl{JD7rj9gn`3?N z&tQcUgNl!b><(MWJT#kHh2suaSy?5sAr^4r0`D=08XY`;g1f>_OuOgUi~R$E%cphZ zz$92Q7L(y(=T8IO22U|!bqjDC%m=pjb-vE7tK&Z0B0A)!s&>tY1d4uroup+7lB&yr zemkN-EG2Ql8kquUcisb`QV1M4~7&j2qSbOAxesKU*xTSVElgu z#9N<%Rv3Wf7V@_7>$pJ3Y^M@T(0hsJ9ZlMQfeo2r(P{*3hMCM#;7dC%_Xa;C3 zYKR>szwM}3KYDsBdhM}=vY4*_r0T4bz8klp>ZIc#+a)e_t?D?s0mPG$$s)77zpqE{pWON>=Hrt=-*Su5Fe zxveA`FZ%C_*>pUwWN$ThZhDC~elk0L9{WwF9<%yBXL!fakXme+(- zVPe+pO^v7F9HJ#2A~ZCCwXEg-o%u^9d|~L#b8o88z=oRd%}bE&{u1-HBaycmP3^L? zNvNpXQIE_yd<)^`Rs5mi)aaSA!fuQciIs(gY~-6<`Thm^_+iA5Czv~A0@coLOn--< z^aa9g?RZEOqaRuo`Qu-d>_1=`q4$aC{d{NKTG=6(=CN4A#dK=-JYtD0q?SHy*<jiGJyU=XyosHabLjvLl4-0j*bru~OwW{5|f4I;z3tW$+L9_MK z0fooB#!Js)nGCe7SMM)m6F>ux%aC|uVfl3c|3H`QVrJnsH=yi}4kP6*;ePv-J+f?0vZ;aXci7FE`=>mKED)<0)!HtQ z2Dy=}fyhm+yI;WJiQA_W^N=W7rg)uE^}gb}fVg0mS*77Vr~^^SrQ(l|u5bZDG&OLs zb+@{)=}7Zup^A~Cpu`qC*?{i9*LxL|0R6XjQyGO9){G?cf(vQ{o_^tF~xe!sxSf6`T9JmpXp% zQmqM==av}~psTwX%>DkYbf^U?FgOpAauaYq?F5J{Pr+=s7#**wY$Qvb}K+MW*z5Vnmy&%3J%&{0lU zfc|yJ!;f#Z=N3hxbdQuMT09RpmNalhvWk@|1yfaq0aWfRIYEa77j@IG49IxEL9W3L z;|0!U?T!emoS&CY!|gnA#GWc0AlTKbJmTtifcmZW8W${&PQy|4=GIMUE9lO-3&HWL z{GRs@@c&O!RYZnl@tj+nrWTX`Q^a&23suOzN36ZGe03H&oon=t{bxybHy{_V_%;vn zuT1#8L(K5uzd2Db84QGQ?X!GRW-0J*uh*O6OgirH5}S$EJ%g2NDnpKRwR(Ux^?oQ_ zqpN)5~^G*41F$>xK8993rfh^)E{C z^Vwr5Y`%Q2#d#qnk9)c2Ig#7cuS3fPqo3y!P=dhpn$17MtJ^pO9Wpuc9(GD~t)u`u5!m5(oN`o;aN&)EVxP!>L@1-UFr3~4z%2c3;BiDGr(JKm=>o9sX zAO}9d5Mc}*=|?UpX--)nqR)#RRS8?B|GgQnJJ z+fA)oSWgn)k1+1_dzqGXj5SQDidX*fn`gnB>ztJZ7c8w z;svtnQhX78dX1)s@lDsxr;U*k{`k+4+WTcu@^P?`z>B<(6-i0CKIJJ|cI!5OeHn$m zX^TI3BEtFJHQLMtDdfmm|p`FSwO$syOf2<9kj$qiNG|Tc3 zZC8%w_nCEC4z(jYtJQUHgulxL?T<*`Vrib&_30fs@f&y+?)4F3TJmTd#t)5y7earf zJLjES`OLE8t1*w0FIYdzKqLnvqKKE{Y5(uxJ^TxRSbP8+ck-$C_GB2T=n|6v@2!r1 zlP6B%;YLxgV*=3qjcnYUbyFK<75P%Xp{7h+?KS##y|mrl61`gL*^ngwb<*o1IrQUr z$MW%}LjOY4{q|;XrQz`9MX7CIL;gxfkM@UAfPg;HpA|@T+=Wf($le1qr3)3_FR}tt zmdQNM7nvkcDH^e8f`4SDJdAtD1y`gJ?RpIF_iYYZOO+`p6=M-wdapwQo@a2?cABWB zH>iHbCq^5RbPe7>ZXn4l7Yd7tFz$k$V8Xc~6>@-5d=dn5=2>H9pWs}}RI^;>Wi5Jg zw%~b3{GRbbriju&o^ngpmR-XR%vcyVEYtDDM^Q?i^74y$iN*=z<O%qX zV1;s!567&6c=G{~UNw(FdXw2L1{y$z@ zL1h>8Z9b%sQuJ4VByQcA0dajB4i8JqE{zG{S)nb zi}4}{Q1W`+{W+FrwNyN7mcKVMJheo7scNDOpB3iTZcdp>>=0f!+LFRvZ%l063E~g4 zTNWZEI`|FDau(+fR7yBqwJMVq6UhCJA8Fu-P=!*=N6Em1Pa?C(F3Ei(9Ku?*{P%0q zOKUd^jD&FY`ummvz(S7_69YH>hf_hDs1dE5OQDcqiP({%)Gn6PqMxE0ppU=i2LCvY zcNCKlEWI|by0GqkWczC&FH2EP%cflkv*!Nk84Z9tIsAk7-&ZV%Rkiz4(4~={QtHPr z=^xf#QX3dJyObwJJL$Gr9wn5+>V|<@Seb1fWH>P?w1{bAQ2U2s&JQcE!67B!4svH| zXq3GpA1?|lX6VFDg(VW8bmvL4H0{6acKtZ@hjI9jPo&XFFe})uNXJ7rSA9i7!!#=> zWfraGctkk1vyJve3Ett3wXPB$@@^UcQ0yfERKGChq<8Laz&=epbOPAS)(`3IB4`+s zB6u0<_+@`G;OsHRbAS1|PRfp3o%jgq#LR$9OmVC6<48TerD|ZiPuDrqZ~)3Lnn0yI z1zD4EKO#Q8xIe^wU{>qF@;Qh-^&m`L<9h-vcv;-;BBO__v$>&pSbkbl+6lf?7+OY!Qs2 zsi)~4p1B}4G4{4F{@>KKVUiw#E~R;#+@b9A1fGyY&;3tieb7=ATfefn`Eczk{v9C0 zr|vulW3l3VS(lo+iBmc~O*9pW!Ax&(D&02(5bw6u_N$q1PppvVgDANh-W<-GTt<(a zh`(vaW4!TWy)N$fwa`Rz~-stj7*v^kX+Mbn?I}4sSOOZ8i9rAqg@;R z&d^0C$DzYcI`)q`*A~H!1TSMD0!kzC1~OX}R-1 z)6u^m`G(5p3Om1>Y!I_%IY5s?W{qS7nL+&AsG zk@&@b$7=Q=D2hh6Q6ct6{08p1>$7h4HTtQB1G4~OvG>A~nS<80xN@->c@*(__nEJ} z5DRj~*Ec$Hw74Y;)F1FuT%?Y3gC7!gCt?lqP7?z~`u|ohTuA?Yg8d!kh<-1~t8G_` zf_}H*YfZ-ah$!v>cF)S?PZ`!tH>b`d9KgDIBGK}- zUCK2uG&PBw2&hUBFa(P!1mIdKVc0D3kAZmwIzi$87h`W37xlZg{emDZ-91Ai-5o=N zbR*qJ2}n26-AGGIODc_sbfc7Xr!XL0`!~AQb3beS@4Y|!g&*gQsMlO^#&Ld+G5eYp z>oJ>DAQk*NqP*Y&OO9a@yZ`yk^d3;D1DdLHvb3c_df+XpiVZTlab=;_h&+)%)rI^# zVzWfWQ3<=qRL5opCKSUN`t*9jjbpBM&rk#tGGxCU#kOvX~$@o;|x>zrC zBTV%3m$~exrQgSev=x)|y{ZMUz;yLzGt`RU$mmzSEI$(Ui7Fdj2#s?Wb1kX%1VCS0 zyC*R|8l48xJqjPx2ArRswP#_!ffWPDHI&BS!oO8VFC8Rn;}xSptjIrMWL6Sx1f+%{ zB)^o5f4cVTqK)JGgKC}4Hm4(If46<7(^x^_ibZzP^CA}=Bg*2)mW9xvfX8V6hb8J0 zAVnFuRtmkO8NfIbF;3q`nlewV?nExfF@L+QEr_OyW3S$8$aTzx>|N<)8y))n1shkt zegt+a&g__>xLxQrBOrKAXo<(2)j6A9EFN9^|Be;^q=GuK-A?*QdOfQ&meEE{;8qIFcu?}_tg4vrr%?FWT5V4u@L1{;lUb9~l# zJ~nN_Gwc_leIf|9ePZJhmP17eVnTrI(gGRsq4&1eu$ji>GtDNW1=mp%@N9KWFB7{q z;N{Wxka14QW^epyS5vPY;jXh~!xi?2o{-$WJO{ba%r;et^C;-GSIKNEY*WUKNFUy{ z5+8WEpK7d$O3?^%+t_WQsdBCxHrfL^sveuEK^w~@%};h;>N1PAf!^JJ?p$Cx^1rJV z&uO}MU-7eBa69rJ-C9MdVt5rRdQ4k;24YN3l5&z7l6dw}oOoPD-#Xc_J4PIR-XJQU zvhqYZ5nD^s5SgtSj$Cz-Y~!0EJ^+DJ zeIb6or)r}S7NOne@P^m4B-w?EbrB5Sg5l}E39K9!vICI{Ij+^A{k~mobNN@l@7V{p zOA%s$G#|+j4I5H-xv}e9LKG4jg|p%{ zsA9jig3=?c#~%J-!ApTyFw1jVCoBRD0{l`X2vzKRjqx5(5L8}HN7zy_LscXz93rmf z_l0lnVL4&wUA)S#_q&PcfE7=8)lVJ`5GD2`jY3T)=2NqtjkmfeM`kh)xS?o{V`p>G z)a<`K-MXed&jjq%8qWdh-N>E`>$*A@p|P1=0w2gfkr`@G=MCyYs8;?WKpKqejE@*U zk-6b1RP(=-IK=<BsoqM}DJI29Joot`XgS{V<@+)|Y+y*soK&+hoR?wIz`dEG-SSB=y@s%B=BEq6=r8SPPlKf5`d;J_VK z;qxnJ`bq}~N)%*=e}MG!wealPr(M4P4ie(JcmB35#uK6gwkCkjTN8mHG%Il7dHl?5 z-vL&Yp#A31yNN6)gYdggZI$^hDg~$;WC%$V&5gOAV6~Sww@07G7k;g<5y`?SfQyON z!T^PtAg1zG4&T9g+mOI#c_CHdPConb7WLhmYaKQ#lWL0Znk4!}S#AS;eS+5ymygEM zV}a>7oTm}s_2ug3&X+g2Q^%v0!;kkXE3f!3AlS^Y8A*wZsCI89>bQUEfgm=VrwhC) z&NdOv#lMp$X*6M>R3`aI{Oh(J5=~uJyTISDNf&^FE!9A+Lo5Z1T_MN8P4zBNtPuno zN+eE4K6ML{%-7)xx4W(#5$vUpBgPoSF5G&5`=;QSJKsB>)-Syi+8jGayvhs4ATs>T zZ~lz<*3oftr%Gxch$L{7HVk?ztynmeeb-6eUIhyt@ve|*=q?Fj3-drJ1|>`L+{Z6* z`~SDROYUz8J}@<}oA9AsDj>Jp#NWAXWP)~9dJ`y6H>^cKBj(nsLbc`xKSk)7eKg09 z=12u<3HM4ZKxpIXx`5}-a^+p}efvQF)wFw(2|CVH401F%BMv!yEg_#qR+WKQ>0F|* zVPBPZ89o)?Foh?z&O-Tjwov&O!Te;69TnmW9QFG#VTFl@4YoJ#=4Bz%2< zpr8zB+m8U?KW&^}es}ZhY;gZaGFHX#_m;?`ISc(%0o)Q|a2M}yF;qRE+ydMpUD`S~#M#6@ z2P(qU8N+S*7?+VT#*&2fwp4A+rm3DT;&_a$H(G;B!2KhwhlQFh#?!*bEN>jUjaydf zBbCSBKmi?e?wO)GRsq0u`LNmzo;AJ=Y{GjGkG{ITuX;S_3J^cWR&}E6GiMnia!fJWpd`AF_B-G)mfK|#9J%bW=M}Hgn=vGQFinwotWFMZ6Itd>ZCPU zjxGdce+uQ0{|PF^H`7|DD)jkx6LFDG&p6#QyjV8G3;nmvw`tf@N95dazeFuIdQ6M( z_o;av;D(^7r=A!<9KL+HNeS=;0EKJ3#@Sw)`<^!{HqVB9ERTSn`pOF6Gh*{3draATOkIWd(7_L1anb1d}@)ECb@W)axIU!g& zqxZDO9Y;_-`SmjAX<4e#o3SK_u=S4+38t6(8bj#@1@mJH(5E{%EX%<3af5u|+0yYt zM`XVE*eT%eR=04s0%TZiUr2aSlgISHeY$<2P*Vr$7sMV=%rOBEK|1Hva^eIrebpxMWyMw5{0@iAR3T<}R zT89hDwzxh&dM45*=y)J>3T<@123bUT7`7$l)==55S|H?u@N}~lAWUKa1jZVDHIip zY?$|^o1WNlTs>weT5ZZEYXJ_+b_;Lh#loEPd6nc%f?m`o{h6XF$;pF>@q2Pr|6l(I zljel~_R5ZBHS_Jpu}v8j1jr0v4ahe@mt+)VLo5y`aEPSf3Ql2BpQ_mPCJU?s&~7h| zWDP7P9B=e%l?3sJs}~g$xZe5Sxsqx2tse6MO?nQs+MF;Ac{t=Fwf;rWF>}$QR`_H& zMj5&h(+dE%D8_(7sO}^`PiFJQnOb*unCEW`Q2i~a)P!f zNptB|nAKy8MkUf^tXl+^C3XaaNuu+Kd#34avGR;wFDh=>+!uBh4f*sXubIQfeE+*a z*=}M=(ONHa;+7FJiSeW5$=SQOrmQRE6<61xLVut*i1pw_M+kw`M zrO@=Ge6_)9i?u{Gl%JtqcvQRzC}?7|S9`N9r2HRpq<=MhJ{tX9!ZwSN1Yrr_v!KMs zggsr}g8D#l7Pjd7cxvfHP!YAPETp98c05#ZUff1wYsr%c)TQGHBBK@qlj4LBM-fh; z7vPehroD91-+TeR&e@= zy{7Fo5Xx|#;-tv<|E1**l)qnN{#7CKleRYV!Rp<7;@^@SM8V;!)##>r(n6y$Yc67=;_xF6J90Zo$Xrcc7?@6w8)x}LmTCgPQvXvq_?wNTg#Qscy(%$?G z9ZI^&oM}zUO$~Sqpj>859!b!+xGM*%vpzM$P0H!aVX}_eL1RzXR-A|Is2Ky;2N}a` zS-?-+2uOZ8nL2Wq#<+)=9T&!INP?t1X!)g+mC&7kM?A58QBj?@IR!cY@Kc)|E5wh5 zCnUT~5wT!B2WRE0K<*ir7{g)08B|fB@E7fYwcf*ILI4lhyRchG{Xo-d8!8y+Z+y&0 zA+Ci%?SBLEV|F?>I-zAvcKo!|oJx7{Q?e=HpC#uM z7+(aCB^E;iEN_6KLeh2lOml(9q4?Pd_cUxsSM>I?`YS| zUiDYiSjd3Ni>D^iJ^v6Fw_n|J}vpF3P^GI}J&Vl)*5hdy# zxOgEa~TNIY-WT%IvZn?UHBBE znvKV*biB`x!Z&Mw_4eAZHkB&v%mS2V;e+{fTSRd7X_sxj3Heu?a&APLTX0u-@u`#a z0DIu|a3-ReJm$4r#8o6=*6xBLij-H4@b}(ygP2vuff&Ks;B0}RMqkR2^U=?*gpWPx+rZ!S6o!p> z^8UAyFr=H!-&=DTaQV{j0<>IixX!icm9!!nu`X}+iEfjznRv`1(_ezkJs*M59YN@e zf^RG0(P2aiE-DSwsu~IDL^3GsYi+wBZu18)8)LM`lYWOg&b*tnPL!R|`^$e9r zu)@0chY61#HW3|07fzP3&b?@H5+j0pp?5>q#K|~}V=~`s0Z_+v`)R2_;PI4r?4(md53vtN3@jv3?9BJ5# zft8jb@N2en9N1m=s*M-VEad|p?=LgVU!a!t1}URA^?n?oChE{GgA~&iaMD~56Au1* zARFdg4|h#@AEqYsD$E9Towh|qHckK}kKcc{r@GT?UsSc=Y$-qg+onD={Z`txHd4(5 zWKigqWAQ^!J5)Z(xXDQPUZm)C5B?+yUN-8Y-^2ic1#bvYKbFSk!f1tx6~wh+Qx0HW zQ$a#cn9cAh`B3eLT?-Xal!zpWXa7}OvXB64CCZ60W_h8*Mj)Ws8P6Pn_`Lp3olhU@PZF#D8}JJ zEJ?WJFsn)PE(hOPZOv_s`AeruBu zJhPtEn|aLYyK+4SN_CMU6v*+{=r~!}SWu>#nLs?XDdZ#!A2m1w+Fum9#^0k!w}Dk2 zp|w^H3FUD08&h~rBe;7vIF9Q$D<7a$v zsYV1SHU0taH#kA8v_o(I*pAO6y%qVeu%6odbS&4Co{y zTKgM%m>k?F9yR6joy$bLjwTh=9l_{T_!!x-@KMx{)b(0XXS)k6<)TPqLK8+yM=@3Iv~^`1>CKvaDLf4F*kC(>$V7&7gj zmPku5%=_Vv5vlU}mY-;W9&|CY0X-DRe1!AKuztt{4aDo4a2RGw2063wuvgJ13)*E7 zHt%9;buZaTk&;AT9MBiw;gEX494L<+Cm! z$(||$Z2Hsp*n+C^$-{0R)M~XrGK#E?vjTTsq5z%Z@Y_xt>)KW%)H(+hN&pqtpi91t z6YW1Soj+Ww*KQ*YmXlnDMk`VhNDr}oTI5;+ZtdynPs>8S6%OuW0bMwH{D|180Lm29 z(Hi=DL#Tt|$*K80R{}OYj`v&I;taVkdgTv>7+(Tv|D!zv3$j$ee;c&8{r3x(EvRWt zk5Mz7!5*C4oifC2VY=X+K%)?e zXx@-VppTf{KjVyUX)$6ipWy{5|LLvj^^w?KQ9kXcnJF}SBgu0>40V4mE;`0zT=en< ztYKf}T?1fn;z^(UWtaL~%-h&hi`7i-`$~SGb;fpNgB7)=Gr4W7)lJIW?>^jzFD?Hg z&l1S{o18+)=jGaUfvG1b)$3>3<5%g1gs1u(ehdm7&{9e%ekn@HSa}WdHGoh!iV!4Q zb%GXY)7`pRK|F{j{_U#E$Gz#)lciY0d!$!!{viW(_p%4!+oiEl#&%O(coQ7%A|L#=Ascd{vR0RT$B24q#bV{a z`SHko@M=V_0}vyO55v0vou0#U-HU6|U;xQDc>@Fft75M}k%}lRjFXSXs)?IPK9SUU z69;q=8+k`2ZnL6APJev4_FZzL*e?x+|=-0W$KWzW3EP{4?EeY1eb_GI(D|c z;rB<6G_WShOHr)U`lE4x&OCp$BYmpCrAng%gmrpe#aD(hbD8e*kGgC)y8lYe%q_3Y7FW6d)&BX}x8xw__$+pI7hQgYI zt*K0kW2i{i9hq_|I`_WL80k-qvi=)! zdpMe$`ZPdbwlY48!vxYwq_G*#W5*q1D9-Rf!OM^G4{R`Q>S!8l^YCFW=JU;1+cli> z9t5Pw)b|)O<3DuoAMUT(UAVT_)F0m`Przm<8rn^w?7YM{Kg;w%o2VRz1i9Jn6V$E; zRRg$S9ntBH1aYzB#&MTwvf!eSAVK_uR9iQP9A}K#crt~wm~(aj=qqnV>RpK4OXJKI z?gZSuE>1>=i}%Ze65U=K6lwPGM|lK$8SM@tdYf?3#Lj~*GH2n6Y)&Z`mpqNej^Uq3)Es`vX|)$Ya7UC_DKC54} z_IjFm04#F*++o3UN^3|S-zoZUxryQk9AQ`QM_0ZlS*{h65hTHr9OD zXRI(;(_pyMqC>$3T~rM~L(roBs_5b{OoQ((lXfi=f=!=1oI;ybJKE&tgul$XUx~}? zAS|K^J}m*X1AK*N(s`-v9^PSB-~r+r#!@=dRoIY!DGVKz&cEX4rUDTseRHI!1Np!b z@a_J7SR!L-#6$c{4Tk1Q4>1L#P~^ObBY?#+twQ6{<0hbaKd+MG!Yhvoieix5Hg`45 zq`{a+-J=T(YkjRGf@mA=(2qWh@BjVv!No7uCw-HFY4!|tGc?Lxiudh?l0`}Wea5tT z8Z{)elp0VlPbXvn^vkPQ?~}Luq&$H!%Yb-KO2vQoTtBM(-5Nr1{Z7L+C|+tui6)}t zq`^;$z+^n0Gi+iXy?e`s@eSh*4pPg%XFpjUU}IM@h>6U= zO~|-aBatKRRrNV3VK(~uT{{7flt(1a+1n%^KmhaHbR+}(NhWrMXV0}BM`C+01()-} zi@EP*lI;6f^Y+r>yt-5#IT#^1M<~@ z7o1pC&n~an8(-7YEM#!jrkRis=cks{%Aa<8=^{K^UshWDBD{thk586u$p_wQHzGf< z>n`T(`pGSD1mw4R2pxZ>(G-~()iqXdyFL(%?G_%Ji_xH$Q-STff%xZA@ zX7z3qmwJxwguNT<@lU(A_PJatPv%x7@UfIEq^-&ruQu4^Ukk%s(>8CBik(17tG{Lm z>sUrwSdbS!*l5k1@woxCV#?zpXCo~89`rBY(#%}GWz;XTn=NuqjZq8b`~{Rtl+1Ww z;~U6`fOa)x#SST+M7n}H zW9ve1PVd&m(muSrl$+oG88_@zInh_*o-MDT>Qzo$gbLsML-6+ge{R-4MVnP>SR*ME zmzlD$pM%wd7c2$|pqA*1pa@0CxPzI>H_Y*Fulccnlup&QKqCl&$rU~mHiz6ZcE@o?#9gXJ!nyp=Z+pGorRNOc{Qbfv5EN+}UAM>_s8_yV>^i7PR0|W~ z`eE#?Y|uT0I?P%-nPw|RmC!PZQ3FR|>-qYq2Kn32@^UeI#F2`pX5dE!*J5gU7SBim zaH_6MUuFq->pSML8|r?_hkze^RU13iO9QE8`2jvRuxiU}m{(n1!~kYpXa3PA*@PbA zotw>8Y3{xy0O!)Ms8b^y+Xn<98$m(7ah))u zijo*zO`tjjIIO^5@Sp4J4nxY~DSn_9#*O)jki>!OEpgfX3!d3ht`V8EZdY`1A~Leh zD-z8N!r)SJTvvINQtua^M;i})PgVDpt8KEdgQ$lN%Xq`{RoPiGF#)y=&atnartQw@ zNBUlwH|qj&w|QULfPCSCePSh04e%jY4~EbvB~yjf?1`i>MdJ40JuSyA-`Z~<544st zEWft0$(eHof1_dlYvqv0BBBv_2Ly#lZ}iLI?QhKN`M9>q%kr{hM9n(eiHa5i_*V=l z3ymnE*0XRVKjbifDu}y*kGcdBf_`}TY=TSBg5<7;?Mq>1=J1d*cxV~nlr=OB3Hc0x$R#R)Ir(HrBC&ytu? zXR*}a<#8KZ|M{zt0m9tgj7bcv2qU2KbZGLv>+wByn)Yh$an%o5l9@nz;nz&fkf zMINs(K5?F$&*4Y&nGn-U6%tp%n+5xEx{Oc3Kc{quC%rX>l}N5}KA{66ZZps``4onH zKUbgiCw-=x4jAH8l`1n$Hyr) zc3PMJtCb8)G{I1MTzJe#PfowQ#T#v-#oDA?{*lB)`C4QVyN#^h+@^SGC^YF=UGT^2 z56zhj(h?Z(ly|w@SSQ|}sp8BrEZSugnR`_fu>h`zqbE5RBUqolp0SX1Ln`lhEw^4j zluOB62g~FCEMQp&{_Myik-Z)w}S!pd~!u!v(OldLWttbLHg(^Cc>}>srXb zFzVU@4z%mFtcS>ScCGg9WS^MLpVCS{4t#bMOlnfn4hW#nwiyfFI>s03vi=&aKG6SJ z{nKVFM}G)V*0$~I!q^4>x#2`%a82OoqToP*@l#hO5n;Y#0kX5?4`(l0hzr)wK$fA!6RQQqZbFrXcQSZP%n zXK9vIpN!b%Yx~Wb0X}7z=+_U+9nx?~A#flla}rfa&aCw~o{+R+eEI7`O=w#aAL|=d zG9_pHojLSu|M~gn7~fk&m{5`p2w!#R*@C(@IT_kD$q(K|o)|OK0W7;~#kty1P!}Zi zn3r#6PaXT{v{V|KapoBC#+es>D#^wWdTAHx_wPI-m&SBM!_|5cR>St|`jxkIFVOL- zu7&yXh=&W-mCmCCFc11adw={REN1}1a>0U7wDD)s5thk3r(dPi5hroLv_8)vPtDf# z3Yu-P%xIXt&haJF7~aY~>DwV0N+wU+z7Y3GpcVxD85Y=!^$^uJuOg4p;Wuvm>GK3S zvm-}y5c~EA@)DUQkwxvY)dX#OZ*MOU00+>~%0t#rx#)JrA}ps z1dlOo^ul5d2NpU(HEg=x$8THd>NX$|&66se-eCon88wAHk{{-#QpG#1k_nW-zG0KL zwlQ_1q{lZB*vx}%GBoQO^YXU+zF=HT(WI4ZH*`-)bm9o#fo#80gu#t!q5#9z1UGlC_&MdGN4%Z+@{Su zZRFSm$w87iYC!7dCl+@~zldpLTh*+4P;&smKH(7t=6^01VpKZ=A}9F!jeTt{o}dPx zWyW3idZaM}gVbF|j2j!$BTqkPzfyjQl7O#*fjc%02@W$X@UHznrFAe4>@DBP_#zL? z*)W)wB*~2oF>&#=yz8;t9D80I>QkwNN4_4)S7{Z zzq~+&$`6;A=Z@ds8z=3yTzamIKEH=aKPi0=>+~rB8(H_D!k_;Nh1{8gQS01R>$n;(T~ukmjx{^-El4f^h#D^o^}E7{m1FQO1Lj2bH9UQ_}zJ z7A4Jq(puwbT@N0eB^u;u@YL2B3P&NpYFBEIjH8cqo5flVM%*hr{60W0YwGwo&#(08P7&)Zbo@&nWJjzia=d@x06|;|l zD6yf@cls!4Rs55_(4(2^MYjk5ofV=7G)~yDf4Tio9Fn6336n%}`GPI$Rkisg z^5WrV8UblJZU;dDV6<8XC6+Yq?Iy6uc*HA}k!KfF6DyZS#jIHHjPMI;z-l{9!54P~z>vi;52`F8ve@m(Q@s!NGM#6BypT2+NWg zz)eO9edt`GR-1OAS9=xxgB;jm`l0(3OhOSyxSh`t(Q^|`aL4fqy5?4-ilvW>SqE@6 zc}Sx|s1*j-3?gg1GA2$74Fm6aBJK+LBkqLCK^@IKOEiLreVUQjX4RjH$fl0ICRcnjmGQn(@Yij05KN=nEf| z3;+pc6Mq0&G@OnUa?a-@Cp`onT40S&#<4#(CjjDvJ&?Cu{i`}mtD{0-?6xBE;=djQ zz$*xF@?k9KLHVl39UTGgMHp3kOK!#yvmC8<{i8OZiI&MLh}r?SVwi0mxP&PQ+9J2O z6;$vRg7CRmdY*r~1Pj?7S#$&a5-gv=FbFr{5>Opeg647xOfG~G+t7^GeQ zJX7|G-{b9y$@Z6Z{}7HSj>a&{0x4q4(Pk&%eiud*{N;BzWT^FP-LiC6zVP6Ulb>&>NP|;Cf^H8tM+&#pNMi87 z9|Ic{0@QMUx9OS{EomYnO-qQ^M|AJSxOReqQ(!3B925R*=y~nP!gcaEqI$5Q0t&|h z+d43XS@YBDlk{!-B7Khw>gZMuh9@c>eHHO3gQMp%@V4ozq`bJ0yKXzdy@oKP{wI!e#(O z30dJvM@`y*zFHTJOvs1~IxOtStlCuGK3;0@me8!LT~2^KHTT*L)R}{v1W94bm+Llo zbwu&afNq6QIT5ag6(_$%PvIRA67PB|wblkOkLEY}UJ9jmgHur3+^<2Frn4vkU19a6 z?_HF10gevM1xmW%t?j$7>>-B9at`?6ie9o*L{)5jeSakDbD~dXNUrO_zn~4jHXnR1 zZA|>8ZgSmYnq^@<1-B3E3-^Kl>myX+U}Lr0_4%7kegG$8Z!3QIJI+QFR~j>;M9lq{ z01)-nxcKAUZy1JQp@!Eo(vO~JJp_K_EAHskR>6o%BXWc8^SU0!9?!v_r`-rxBZYAa zKF%kApogt5{wMA8Qj*oab>H6%#nAzRnDcnfq{8pL%V|SLjIo(H*&et>o7Ih0aMNS0 zf0Md(aBz7D>Z1?~gCPAbp%|l&*r>rD@>-IFio)vft5wXudo1eB^(gqCS8dqg*5dWb zD}O0DkxzPKT<_gVPOQV0VOTHlRJo#s+dD*JO&Kzq%#}iilCloj0UTAv7@+N!H1UIi z)1Ps4&rM06nSAq|}Gg?<)+ z6t$b%1^++*XFDeR*oEa|i261+?v`iQ?Gj);SMv<#xXr2WgI#;LL!l$bKojdMe>TPd zR=~+y{kG2QXYzfg-#-56tc$a=-$tw6{8ZY%^3ykyYI5VUjN-3gDk1^y*!l7t;y)?U zjWC&6P@XcAb7>^*83vXtL%_+*UWmecCCcXI2^dn9N2dK z{Oobu>3%=>@5llcn#9vT$s1mxIa{UwRVRSZ%e1OB-+fs*7ut#mOf=mPEUMKie&DE@ z{}Qg{4fw%rC&DTGRylh(nZV!3By%xC01sfkx;>KVU6zH+FP)k@(TLm% z&5=)Z;jb}rvVc-RTMME-nqH3puC1cSiv-5>1%r*AY3pm2y*mC4o09Y^UnBX#f8dNE zg?o1|jz?wkH5#)cLWKH)Ua?W*TYNw1^v*%HsviGZgS<-2vZ-PEnL4(n$l({~dMJ@% zuFuQ>p11m|jk~J*1g)r4f6q)ZnfO#!`j;)=xzrs^P=tNvf7(0c;ZZV`+7`FE8wcRe zavX1w6J?FXK7L7y-!VKnCv|vRdreyOB=)W2>o90!rBCe8a|G8&h6!h5Jk%fZHloe+ zc(M#uCW%8Re|Q`QlH@ zqcL6~A$yNT-i55(Te-)CgJ$3N|54w};Q`|6@@IWbZfBNa`p5c!eb!tA3E z;LDLiB#ciA&nDUMbsC;?Uu? z%WmL$qaCyJW|_{)In&)Gm$!c$b?iGQNVy{0O4@i+t^oB`n9R}AExU^5OWJa5^=t_1 zs05CoMSD2Yli60u2wIdr47~n=UO2p|s4wDzwVRXXhpKs4KI9o6EgarbEZT118siA3 z)V6GAorydnah0XHbD=I{;~^Yzar@~-^U*zjRW>eN++joz>8GKT8%0?8!Si4jKIG4Q z6=zy?*>np{bQa&=onOZg*vB-NB+K#E~e^->MaM%IxJmodL#|KCXCUjgsyslQqd?-5@((hf!ui6frP4CHD~mlC&l z%K^ZquYEBtJ%S0#)EnDvdi?8Ck`%pBk5Z7v0N_|BLbij=uMq1{rtR@!GB(pfAmwp< zIrsCt4!&K{3Np6Z>sK!)I+yN$sKd)xBWfjz=aG;gKDAU^TW9+-UJ=8bv|p7FHcZ;h(gU?Zdsgy`jJSKXwfA= zW5esULTk=$JCa|;Q@y={ektr~qk+`hvkxJmWbU zD<}3ZIx;2Fec;<~%KWTWpHrg@gW=_{pBHLH9#0@NWFnRobQ+9sH$NK)!Z-aHIXlmD zu~liVOZrajsDknY)XNfd%Y)xp5yIZhW5I!&EmKRD0rz_@9;rAC8@Z}n*A)44gOG~q zTccd5$o5z%e%l)NmSvKnD5p1Z6Ihkh)-~1o`mvE*Vo^8OIQ80>7;cV(cV+WFpVqTp z-Y44Y-z*TXW~{&EGP$$PWiPb;?S7}ekmzA+lL44!uX^bP)k>zzVedx0D2}>aWIiw$ zQ~f44DgWazm!OA#&ll&=PbOoy0Z!cT*jdDLvoq;fXJ@u@#iL8Zzj>#?C--6mKTx@? z>u~Bn{HCj5e&)fo?x9208UY=g*fTJ`8d%#FOIQ2>n!o_w1cp2fskJMGZs!_mhPxYe;V+_6HG}eqBX)ahCYDk)t-9M ztr_zux+)D9!+Wle$Na;ftby`959#YnE%7%OxM=U;Lr1*|{A)`mIaT2Z;Gb8ib*+Vy zu_v!#_P2}jcRr`OX^DD)6UIfDt2)VeAzin3H*mul6`9sThuF`&7ko!eCJ%~@kR`xClZ6bp6Q(x-^} z6l3Y|tZ|b5A8X+Ho)}ilYOn0;{QM6k0Z#B!K?FsIyc-v@Avf9*xM+Ga#_eRIVqHhAymrwN|AqC4N`pPCx6dpuK! zGT6vi^j+c6QN#`yYWzJ$31f8wP^C= z49hPC^1iHB7F{kcJXrpRbA5{4A6a##EL$Qy|M%Zp(jRi@A>ZB_%BLw~GwZvwS2VnG z;Dv_2Dwf>|Wny}YS7X8{<6(W#M>W3GJQ2dN3XY8NO1w}buM3$#_=vo* zOXhU-N&RtFvf}P%VjxBT_2LPFZXEJS$=#9jj;v4qR_WPqy^+se2h}AQRi0q|3pW*E ze-9p)Mra7NDpFo6>w{c{UZV=qilELsyUcc5aF-Ln-l(89n@Ph?uVYP&RJJgo=7b9| zvXk&Q+!wy1Ydd`gPsz+tZLI6|B(b^`OJdCzt|Ub-M|^^=8U4eUHAzwVv_>qVWzjtP zRfv4SHJ?P>kAcwY#6?=W3YEfKwz5&sDMY?S^2|V^qOPRQ#!0SLSY-g8nrM}4?|c0X znShQJuTXCjlfQC|z>o;1&D3lr`*!lURp$g$a3a0+p3%sl~T_uBO>VV-$7VI1b5V zX&@2ad)uyuW=MBDiI9;mkAK(O?QkLeLC?zM2pvD($ga|*(s6Wpj#oncP!R!(t@%io zK>|e`TM`p4VZ`c&Hl){2-%p3@APdWMk+K2XUn~O=Ja(3<>%}=X?ADnb*^-O z=JN$&Drp3x14H$lzzTNPj+!%>E}J|!jV9K!(CxNX*h@7J=yK@*4(9D% zne8mPKS9?hmTtbIx{4nk#Q5?0#hu6H>>%;;rJ+CH<;0&mcw4_)bmnYayz2_qVT!ul zhT+m&W{o_RZ>U{fUYhn7ycw#UL|6X6!vFr#G-Dujw*`l}n;lC)pR-wW$>tTjhK}ho zQ+wdL-hG?%u8G1(TnOE3wc7kgYX?5ytRqzjC$JxYrjJvx1+RYg`VhqLy5w#`ZaL(M z9OOS-?A#7bhYv9khnqfV23S9}#8?Y43VlsxjT#W$7hVkO5mc2gB^!dYNP%9nE*|c9^A-B zW766;eFbMm9oB|JNPXpy6c&m1Nq#U)-};#F zvEd?6HA?a7Alz6XAM~p$6m$!tf)xH}36bDd-S;aGkQZfI;WCMRD`XNIf!=$p%MeoC zTz&wYtnM}aZa=S+YU#c z$e&!3 zs~8q(qu*>VKyHT%9;9P)HnrNZxf3zGxw>b=uepli=`Hx0G) zW^r|^4MH-M_(-VF1joHwyo(%uL_n8XXmr-;*&{(xNVIa57eQvC;dQ6y44TQ~bpFGe zm$8~2BTe&qIWJ$C?BZDt0f?zCuhn4WQvcQ}NX=8u^v+To+j;RXhII=qH=uL(k}*7Y zx3A=N<5}JoX|2%2mU_k0s@wa3E>>Vw1<)hS<-e2XzaM+lmF(?vhMLtx`KjI|+#VPr z*vR&?<;o@xPiru0kHNF z3N{uJK;UC(^Tr(zP8{@`aOUBObMC3a)GEJkHf;as+_IK)=oA)P)^EL-*= zMvdfZXl~Yw$@olIo*-+46)t?vO}l|zgF1kT&)D;Y7;8_zLIgaqib1Tlqx*vkyMvl8 zNu>=h7a1-Nx-rdu4TXN%iv}5^ObqhzAxklXrHaj}7f3^v1a6(4i${&+7r;oc+w}Q# z(|D5>TJBu(QQWr{y5GcF`86MS!Q$ojz!tIn^L~~sJ^58Dw52Qe;RXM!8!7>< z916~YlcdV!{8c=1>wtPO>Fa>Oud_JJO~~W26p5@pLluxL zIF_IcICS$LW#if{b3z)H@@?4HQ*d`(d~i;us+#vV2hQZ7eQ^lwpUtp~`Q!a%YADLH z4hvjIsR?Q*+}tRAIZJO-v(Wj#GDMDwn4PXKbzPtKuXfZ)xMSxiK}m7L7$=7x*^b#) zaN6qY8fDyN7&P85X!{$X%D+gFHj)kmI8}K%t2T5G3UIMk*3Hx?BI@e!cDCT?Cns25 zWpTrsW@Yms3+?ge^m%r;Z;p7eTvGHU2k^SLbPhX zbX`VOSdu7R8VN2rS7z18pKV!Rz!#UcFS;&p%;Y}575>33XDd;8;Gx4m9V9f#ocX+F z*a#NCY?uZ67!8~UQ=tq(+GgWd3P;a!YY>9GLu_{r8jvG)TVUVi#ZH6Uqb*ebd|o4K z?0o))>5|W{8KvmT9_o-MLM=D<~XImFI?1XjWZH%2h- zm7`3^b{cI;2a#jxioKOD5DfxhF@I&~x&@pr`IDHZl7Z<^)+d{lSay^{^Hu0$oDD3Ke+qVxKCaA=v~W$c&WQu<~n zFtd(>+Iv!yua=Yj!lIis7plo@qVZEg-nwpneHkz2Ek}Bn#WGPK*m|K%H_H6V=M14( zSjqo+q`UaJNgmR}VLJGDvh69mrTYb5e|DhjvcTud<7v)Hiw;#4Ydu34gOBWe8_Hk1 zA)5x@U%CBCIP*Z7glUjRCF=L8q{68oe+CnppTTq@ux(Qhq@(gcLmAozCA354Ox|8J{2mo9TB=T z33qwiiWOdBg5s8?Ey;FtXXNgKkQQMiK@l7vc1ycuE~YI|>YevG0Xt6PQVZ|Y$z)4} z^*}L5YGm~64@*|+`3u0~`elz%pkpMS+5RrYsf_8u&=0-9KTj5G^9@=rLb*_9ELQK& z@b%K$&AB&N9{nLpOZwsZbzpwkME+u5-{4nQov@Cj3z!n;Zf?l!3nP3hXuCWAmZdE( zhE!Y9>zc?*n$DNHNVb3D3?~u1qI~MaYr-1o!)uWos(o2XiONin-0z0G-3OGxkHgdk zg35CYrCZa>!d`7|Xa?^mciiAJD4r7S%(D7%687|a;mX3<>qsW8xIDPvdj2zxX?1l&+%9!$HijWsf>7!BDkl3fZ#9?H zDzJ|0dS-ekYxci2EtbAm@a)#D10khehZrq)=^LqDU4sLO3I{f0&r|m2?a?)PggKvH zXhe$VJnn9a+xiVGx;d1-(HIEkEt7;|&s1)lT@;jLh6u3qp%7VUpkpqL)1ruvS5{fkW~?U&zqip;#)xP-_u51Z!>X}oR zw~8}8-DCM!=Bu~N{bV7Q-IUrq59IUBzpvEYt<#i&>cI<4dE|csiz)BgfNoP|`>mh6 zYiJ<$fNj=LCsHiwY@{S}_1GWrSF1uy?H0Fu-%OM>D-|E1hIw>!7U*^HpkMi?UKe$- z;;GKb{l@zDii?KX+YO#EtGOH1`L=z{w_EwlJpYeU_LsOO&Rz6RH?HV`a42h0<#7|Y z)DT~GK8jJbK=JdhIv$2Z6_7*EXU1*OEjv;29#=tnwfa!* zerAF;Ql!eq=%8S6h5TKMLP6c;Thwk`ATrDD+7M{lnNx5!NrH5=r%bf<6O9aa)z9~u zTx?DE2|Z&3ZxO}3j@RuikNu&atGVoOq<~L_G)3nHd8(t6&#E54^lCT{Iv%e5je|XI z!Z}qh5@g-kyh}t8!q{JbZW<_aP5XRF1t*V_SLc2} zn-JcthYxuc7JD}j!g`f$*y(v$<0omwmfrnih>{Ey`ht#*h2ztXgjWLP=w?O18(|Az zh(k6^)*Xa6BC!yZw;OQD?OLOgWedZQ#J6t0iQ2t=%SDo>bITljtycV}k_EkvV0szF z%yIEB$e{OTaXZ8kDPU#V6l`qvh~a}LVStIRECrkydbcFTPe^K6K{8p*k8-8De2Jrv-|`&!g$*7{+U|weaig2DL&JAJ zntfQRc9?JtZaUv?^nP)>{6rLu3Sc-9%PRUWR~XPxJH&n-&SH4K7y_Dvb%{H7=-*aX z&WY4Rb%y(Lsle4<$j^O>Z^;uV<{fmJ%L(%`^&2gYdymH_TTtol^Kwg=?4%LC}wC>ckI%!$dP zplDe+T>9_B8~UBC_oE{z96oox$P#&Hs433xFKL}1R+A!_S-0uuY+0bJ1BX;NI1x1% z+?(_cu0ACR=McHZC7v!1g}zA$kXx*z%3;2x$Pl5w0@;wIlQxt-c6z~!7Z4~EWT2)q zta{1Lp6UM9k>$?*^LVL^2gb8rI?=Ch0Q4l_!ab7o45!Y|bMh!VZSJEu`t<3OL;M^5 zV{epD&EK8X!*%L~E{do8y>p()cE~f(qteM#`ZcL~#wf*rh6-}RHYJL6i$sB*f?Zs5 ziBWS*(WE2$A{g#ZicPdF_o3`?-|QvRQ&bSBG*2yzfNwT!iEB7w8^5MpH~3E7c*5Ww z(DWqBeVo(;|G6Gz(M)i^{$;{Nj&8Fhc{U2|tbZvT!hNM@{ zbvkPpJ^i@xQ!8oK-`J^ZGwXVrz{|L@9~b003TfFc!OdPt(~5CX|Qhv)3JXJlb& z25yi$kLAM%7MpgKUYZtR*PffYy~^~s^PX&XN&>5!-@~d^QHG=TR;HsYdguDk^IYmO zzkJNB{P|}OjcDmeN34aC9R*w`Pctv60VcIdpF{EKG4JBfE)=LYHI9v3sav|8SG7>R zK2+l8D6Od3V|4s^ddbnGB)y7#yiE&Wj`6(m>aP-Wi`uA}+BomeapVeTR`Ocj!;ey< zW1A^Wj*pwESu~!D+cJDpmOStsP)%WV);*t@h7Z=>vABcKkhlj6|1+&o*jMZJSFQSc zW^xWmwgh_Y0j~Fp98yKKrJ+>*#F8;==d7aVFco;JQ(Wo?GBOUZoxSMB5hnQiF8MM6 z>5o;A2)6q#FInvu`w-;-x9(nEwpfM}Nv9zu6_6wgf^oEWH;)#Jo+W{&a_K(Y#9!0Kq&2@88=&2!!oqIx?q2OOP5!2?R$jS;sbMD2 z*oq-X%{iK*-u*D=LcJ?i-?%qfa(gv`cal1UW-4+HqbwZmE#;1)_K3xbu8ts(A+xBw zmH4n-Km*>Y`U%@9k$fqSlxK@Vt}HAE|Eb`FLEzneh&}vZYD>>{VqoT%#sqy1`Jd>O z%}uY)>-F8WL){l;`omGVQOAuMG=wxa6T2$XvQ4DqEh{y7g-@!Nv*kQ~Zuil!*MkXz zi7#8s&qxH1%N2Y1J=qtZFr?FAm0>(%yekU?WnJSiM4oIT+^s858d~Rp@su$f=d{~2 z!ZaptNiEuH7?8wV%}TormrP8acA9cZG4IXq{qByvD}Io%g7K0AfX3QWXMdNd!N=1{ z`@GVayZIX#jz6w~|Hp8|IdP+Z(U$MH9o$X+Bn-bT3Q9-Hh)-jqjt!#qU=`1ay(VLG zsR|LTncu4bQRb5IGU3Bq+N(X@cz@@IzQ z_M9VO98B=A!BIGdvei=$xL7|_T@2qjfxNAHRB&**WblgrcV$=bedI4kT;HgMixH4s zRFD=7*a#mm=Vr~bc_tShDUE81IhNUHW9wZ|E|Ahz>imc*TbI8xl{E28pN5;#pLB$vlsWVwFXgy$ta8b@izMHdd5i!NN&^P1Ree~@JIq62TPPrI0 z=PD-|)?Hxs!<0A4s^fayb%H!MTYjT(m7XT^;;>AiOkKKqeeqRaZR~YHGQs^PhzhA5 zFK06b;GUG?O$WPfHGx0?sjFg;0z=UxAS^lt%3e=i-o-ps`q^qXsuj{k`;4#&uFba%dy>^d+did>9<70*0jI)xHH%9E)6n%D|W?A#B6l zOwOW-4rIJhU*4m{qj$OEYYDh;1U`_#r9H=RBJ~a5IFQKxK12qE={h zc-chDXa9;?2!`w&u3+~y_N_OpZ5^M{^! zs-;|Etlh<4Vr#YU?n7#a)TG|tU@BSSHoT#bxpsob((3QxPw#OHHn7uQ9#OE3Q`djtC3Y`NrX=>6YX@BcPq5t5$3x{rE@nES5v}Eft{W@JfIZ)Z& zZM@<4iZvBY6afIjy%lQbLV%w6aPCyZ_W6I%G5>;ff5(#Z7|8#AHXSFL)8nY0$fQ3b zJHg-w(mj6oo{ZdJ4?^GoClX@sk}CvumQI~Tm&s(+m>E(%c_Hk+ZwG2dv0qhhzXh8f(DNj_pfFng41hi3~~0MI&zChh5!fUBTa(@ zCAgVUWfT#6q;|_n1I;n%d-9?%wOlq4cj7>o3&76IM$MzDTtZ3Z73tAMaOAD!D8~eq zM{VT8^Nqyely0ATY9p1ta7Mqxr8S1jj@6EOaaToczET9`=HI0RWXxrQWaW!C1iI|nxO|fr0o;a3os&4##liL{e0;gGk$L;;nqn{0}%C9*I1c8vDO>`gLzWW9A zSN&juK0jH^yd+`c!0)#z5{vcgDVL{CT^hd%W+#@Jy6#)ChuZTLCG zWp9pJtbhM{KR1;AhKcCH1sj^G!hk;GI?J+VhvBf~l{J$=-{PfwxX080u^LuWE@bp7 z?~{-gVh@$2Q}9|IHQx}_+WtPh8`g}KV4m6ENJIjgA=(UQ_1Ls6hE2< zrw?ReY>?lWiTtj0&n)vMFf)lI%HmP^SLYLhabg}JaMT7NiNMDzHdgDosJoHo+=5Be zFA)$+<ejpWTV5;kS0rPc;QKQfB8$M72Qa%O27CRET2M`)V!_FbR9A$(;A@WeZK z4D`e7^k*g(BmC^Fj$6Q6|55MvILe!^w>o*1^J=J;rTz1!@5O^p8hhiz0b&_}7I3vmN>h6!G8 zu7QR8H$SCMt;1EKm=rvb`7}0`udNv^?p_~RT+{Lr%`=e99LnIX1swU}*KuDyNM`D( zd-mWWnpc|cV0)J}cWYL)WZrjaRr#<7=WIW%KdpmJ9NbcPWb>aQv2AY=f7P{l1ocv&qphz}(s{y|X zDx~D1e^Su1s@1-x`PCBzdC(~e#KLl_a~&W>_NI~gw|HK*=WUPv9xn*^*AqEbZJzD~ zr=s1@$NhXDfeAiK+RCPf?WEh1@&w_gJrEqUUj=Ju=+BRLp^;_Uq8pu0RanrC6AR7P4TIMX72@S~X_!1&hBNOYO#&Y%9xvu)tj%05_ryXvn`KG!Qbx;D{ zX3X#A6KVRKjV|j{mdoK&>70Y!_i@@sg98zlHK)D2GIYy57I;xrlt5vR>gTloN0mk59#m)4beDh8QF#T_*_ zEhWupj$I!#d2is+Bj0%Df&pWZnx^@kzwwy(5y;MiEPx2-UNr4(pXk!a-h9rceTZ(z zc62xzy?|w_+*PTd<&(~8t)Jw(dbfMLfDn^T=U*|5a?HXoun{;{$^k^Y+5b{G)tCS( zr;f#$?!jjGDM@2}h%Yd$N*FJEdVE%!Y#e{&n7tpi^xn6Trnk)r?|nnc*R$KXyP>fi z`xI|OwOE$ueAKS>Ra4J6F?%51t`HjLN9QwQ0r^ms*B-#%fa^*`NAbdW&4;tOHeBm$ z#LCf8wRlqZw=i`P7^`hGuu|9({0mDDtK>ut7t0^jCS0`exry?n>?`CSY0nwL3QkKc zVQBXzI1B<&+&#*G;Da3?xGW$z+YAu(Fe-ij_?@4330*vv-qnQZsbh6jmwRgIS_;QTKy+TQjXSWqu<5 zQlPZ47$I9rW5~?|wrjWbOj%A>MP8PdT%jxmFY)3mdjPO<`^;+G&Jgj5>AKW;BmOTy z2F6rPLeoz(;rK&!lGUYb7K8Z*+J9q4lyCP{um-5AT@||C4nRcgZ$oK%l+wsZzhe;B=p|4d~Kbr!H=oR*9N5p9|duZ*iObVW+7 zk1y7K*{we3)E2Kv^7IHcFqNPQA|K`?!;Tq@gji$w&-#_s6@kFEs4{;(p?h2sI;@_AtvoovE)lDhlMgNkS zB_q9s7LEz37`FdX18=Bl=}yh%GrzTUjdjh(6LG79QIFpLLSQ*ES?=JBv|o#)b7EyP z@?NB+4+q>?hY7LoDi2CwJXh!LkbG}t25s(g25r|O=t$5L8aH`lPe%YJ+XpWt8=vJx z7)9S+2UyjTE`>dvvM>A93#&8UcOrJNqPF$P&b~8WRb(plLF5g?r5_KXi4&De1OXJ~udeV!U=^ zlK|4uxsGl5yOU!XD^to{{(LJ{OVz}oB#^=k9%FDechVx-b0gKiwO}zZaM?0=MfX9t zDmT=UC+VL8&WW{)nEA3a&JIOEML+lt0zdnZONS7?(p6e(g2vwSZu#M;J~8Qk5_ zv*&2?#c+Pm^|a;8Ac`d@`O;abeNPW>=XZv~{N~@69q}mO>(s@J2;93dxLu^DLfnz6 zml_w{_v|Jf&b&#p%bSg8w-`n11=aZ6{no`?z~p6t4smUtqP*HZk=^Kikq~8P2#E#1O7HD-Yyfb;Xj8~(@bh{$20r}V9o59LjvXMzppDx8R`WF=AgsjC_TTe%C3+0n!#~;tx6`>PuBv^%UPBEmY;K8s6dYyXAt1aRb< zggpwsU}P^StR`vvne3NOU~z9TQ^MHQ`Jy3w5^OaUAp4=~{^4SN8a1ogh|WdAqbR8M z3iV(KHiueg^`Y+@^XU1O{azUo(xW)%#;fyd3D9PFd}VbC;`*fgF-ecks?G2B5qs4} zc|uicy5g+#?_nEXafF76K@mt|SxcybtQqh9PqCZ^jw9n`8=Pd8pgcQv$B{?PfH83l zPj@u(@&(RUA9{7!Y!H8q%FA?@CI=JbVyAWO{Nq+#i|XNW$)n|)KI8n}rK01+47nS3 zQ1C&&C_fXR?or(VHd1amy$gs<{u4CJLq}0#U)GnL_atUJ#B-yh<6@X|7)*^NT*jbq zp@-j?sMM*!u9x>r!9(%TBCW2?y;>G|)EAN%`vRVRUv$hf^W%LQQ;UrZt-*kn(ckuW z+c;rB7Um&u`4^!FdB>|9PYk-S=TDNeFKqUJ>{~u2Am16uv`nKAYJN%M|`U6wMNcsqKg!!6? zsSSXR0&zB|>-!aPU>8$T?j|5LlaQh3J5krSy(r6&Sz^;*!H1R3d#!^;T-k#IQrz6d zUAb+lN+PdNovV<>Dz+zAKA?$fG33QH<9YqkrA%DJB7Z#IuT9RN@3$v3O9=8kBKw?2 zRWDog0E4*5NU9u#b|!Kd77STddRhP`nfd|l&T;8@HbP#6)$sUzY&@l{k4!F<2 zsGW33>>?809v_R2}e(mLZ-g>7&w5d$_L&fT&JsTY^G z<*a6$a#SII<8+8`N$cQpue(hOSD+yh{8CYpQFj(r62! zKW;@RUV-o3`i9M--6_{hBxv=<^9`RatUnJFq-EN!9PuU*+aeXW!&vNULDdjTa7`jM zC=&G59LwHTUrH8xffOuhbN^=|7a*|GzhnbuM`rI^#-YB&VbS8UQkEK#1+gEHOH@Nx z$NErQm6s}V#X|<}dY`v#P0^z4ej8-G1~{ALhi?zwn2bz-9vzvuG}`XnIQyEE&Pfq= zFdE&Vc*|KMWo~tH2-d1pLs~7EftF%Z*SzY4Kf=yGC_SLlJ;zI=okh-z#~fpnpMpKV z9&tdnURw!$TYcvV_~np9Lmwxh?>%|)EwVdg1Cg-EIJhr()@+(?9~Ql-9k|3%roobS zCg)Yu2rR5=3d_84Y}ivO9yAzi)(G?|^BL}L@=vf1Y!q3QE?@->?sM&W{s+Kpo2vbb z0L_>kM#K(&0mh+mF&6n;<)0t+EWgZf0t@;4YyRbGXYgl|KS2r0T%Y%1TnZ`>BzK;(+FQtac8;oL6 zBfqe53w*&n1wF$7fpy09-y2h9q<;PD5*zbq8IY=bO2MY4LM5(!OO<=^KDgrpRv?1~ zAQCYNnUi%po8Wy9D@HaK10I6v4tk}K0X0jg!FG9#_3ZA}aqziB5OH1=!9(7Vd^s_~ zaI?)f_}od2Nmu2^c(4uD{r&EjkuQ2K_M7{PE)R8AbUUdRXcv@|0n#@}E%|1<{xLmt zGM~?F<}RpDDGU11f%|aFlVzJN&Qj12wxR<2ZR&WcE3Kyo(N->vItZ25MiM;n{m=(@qu8;BWPFM@E15z?WFBWNHIwmpxCb%nt zO!55i_os6+5Ue7hKbRtTLZ1p2m+4(x^M|)Wah^S-CVuQMc>tWMzB-T_JLH8iyB;!l z>JK$7KGbmk&JptdhCy9#S5`A0QieruD&>v9%wQU#X#`y4XpZYxj++E`fEG0#4e`o)uC7AaLLt`g6J?&DBJ;LUKAo3tsm8tk z1Wx+-qNL{0aNCY}c>)^OZv7NLHSa^7qAu)xwF>yFVEx*B6X@%M2kTr4g?&;=|DeBa zHg2l_etd)RKoU;(4J7}|3p_IplVii@BLM!#Bi@Pud||gPSJGp^clkTb$zwWzKw8>$ z@q2mL2Ui6~J1v^9NkJ)UlY}u9b!{5iP|HfvM5Y*RJkn-b20{K>O3M)=5>w#%0Y3%m z++9M@^@f@O(mYpp>qG86A)K`|$_L0?G~cPS=wc1~Fw4l>eFWmlFO+TeoeWtbSy7G&pnM}?JIMyL$1 zJVB^TlN;Awau_hNYG?Ux6gi_{_fUK_b^UyuY6jY)GN)fjIJC&#T4gh6^8!<{vU7;I z1rX3K>qEvJr6#AvYGhA#SK2PCy`DoHDdMW|IHHic2%@Js7A?kPp_Yy@BklqiD8~3q z4A(z~z4&jy*8n9_t6&%8yfAyQ?5lqJ`PB9m2rXh!nPahXos4YI9XvP}t zG`D+76eJebTkz%plnEaE5u}aFQPr&6+x7;}()a1o8EV`b#I26nAvAwjk>o7*1z4Bp zs|4kkxFGy4l9y!QY9b%;;?;jq_C!ysS%qm0QzOksgoa0g$2Ham6QuM?n_lNeZLwFi z6Q)m%e>aC91hjR+aYzHghGm~Ypf8qGUsCJ-yR9I{^l^<5t$bhJZX+oS92VEZE2m^ zBPx_6R%8rec2^_EpSuCfE49z;olO5szogO*xpdS(M!dyQ^SuabptB(E8VE}Hhlo}A zDeyHwkw&{ubeZ1#FUbZjbF<`f#*R3mW;oAHl4{NK0g@`2h2Wts25*y*|6jA^K< zdU7KfD5 z{>Jgsu|#^!e?7fOvaPCOx7b<4`tyY%j=g7K#|@!DWzE1?Fb%Yf=VWi;)3O}pgPE^ zGUj7T*}E)eldw=Iix>@j=;zO$*e&P?aHWp3>*(fql?8;&M(wy!?i)AeGIQL!^vZ(u zJ^Z$90>e$}lH<`eQ1K6huTp^EytI+r-bHl^R8?7~N@^l+chZLDcy(H|-=~(S!fG$) zjgvHLBcR(Zcwy$Hp*FT)YO;>FEVEc|0$6ikW2=5Z3jV)uMN2$D*a7&O5P#3L5Pwbx zY7Z7kyofxWdEgCg1w37-Z(NJ9k$1cpG<)|HW1$*w)KIQA{53q0+nk|cDX(jBom<@Y zuD=B-8IPyBN|L?t3vx60?{~ZI@4*Y9YGYklH~&_h7(L@S03EV*DL*`!Fa{Yfa)9OJ z%A+U13SiK>7kikRaGNyua|17(pQRX$tNm4AOJuQw#=;aRXsvJ1gl}Sv)<1#%oDeMH zWhA`5r|e&fzqlGNu`@|6`&*6%{BiuMPQ%NCcGq_F+BpT zmj=HWuUGq3FP{CgmfJcDx2!9n6R~o=rUB3VC)-~``n77~()GQ0w=DKI&)r3_eZU!WBedqjXSnS6rceDx3CxlEO$ zy*>#CY_(&V_s(1ia29C=CvjJj)V0dOK>s^*OF_$zfMX~3L{{(R8VPT~2MRJ49{D>0 zHOy{|lje$faD&IJ?8s9Cef1)$<{icm12pFm&F#FgI{ZZz=UDTT^x8O334%VII_PrK zVm^M(%`-3VSm%BIxY$~*Od=UfGLq5)Y~v6XeP}U)JFG*1^Mw#eGsFkV(32g|;DOT9 z;zi!3{j3JJe>tycFbrC_@O}}T&QWF;mGPcTFp|>w!%@#nlJ)P&=7?U?nBxZe1k;n3 z?z--GjtX9#P$=B{HNvRW0{EQ|{@?!UWIPf?F~RGFHx0mwKL`aQz|oc`$?)1MvEZY| zns{^ACV*Q}KZ6NVDw|YhhgsRW0E~F7+~~)Bd{pI7kf1<(htab1dZp{uAyaPHX)L9M z{+Ase7@)Y>PQAJkCj_0q14+qn`2m9;kwhlhX2@ayPN#yw!xoiWIW65J^n$4FglWJ_ zv$))`Kv(sE=1sPTjS&+)wEuPU75kaERr=iwaE3Z$~|8X^Hf zn?dugewX70=F zk-b;2u=Mx^PT`HEPx7Bn$Hwa(52|`7=>V1H{a)VbpwAPI!%eR@Jd+%$)@radF{r8d6IsDH@{sDuWaP@Xqum43h-v=xKr^V((LE1AMB*?Vl-;WqVHyup%st zPSV?oO3(F`Gi>rj<9xf-+|C7L)zTa7NO0+m(k^K-c;(sQiZur_MG25^;$1ugya56a zHQSu{&tZ$pPjm*e1g4mk3TtaDI!T(}H97IO zPGvg~IsvO)kjYhUj8qg`$<^4GOx->}06v}{b@_ENmM^%rr$dZ-Zr%rVj-QGz&u&W* z%->3d*g=H#-sr>0c#ad~KmL>48ls;30%+=itMuSQF~YqL2dO_L6K;?cQGTM;IQd1# z|0~o!RF*7G9+&BY4)x8^2K}ZTXl;Z0`S3~dRI#~XpVIp158H%4;!}l1pID|GE7DDg za`4q!#XZ(82iX`P@f!LFc1zvzQcJb+@>?pOOXNH=a0{3vaA^XrCs9HbUSLZ~Q)9v6 zMQ5&{%1WqwXK^JR_?W#4L|WETrXr!QYo;2+UK`(in~V|0Ee{%AL3vM{>8=vH5i}~u zA4aN)$#4`m>$V(ya@AOWk;J3kbT@m}_301s!KwS68N_GFbsHqBZ#@+$8>6t$!z!=G zcS{|U56V{WX=uS*6IH+#ql4(S7Szo$`{={&hMdu~JuwFa`t_KlaF45UxnuPS7IXxg zOt~fv7d9tmwAuZX)I7k!2eIO00ut*_QzB0#M?8=3DXGhy_?JZ<5(|ArvcP22*+ONOhP!G70~Sl~cXIcAPv( z>~8KF1;g+(b9ih=m~}n|M~EXYb`8mM90CQsK?)d$6Q>+%Wu~rllgkP$z#XH)q zh$ZSvOr@JkX=W<|F5R!LFI|vL%}B2;X4!b}GOuf#;BUL|8nN}y_Fa9xDiTL_sez(T zFd3RJ%6Vbc{acKAtle#eEb1wye1>jyN4{j=!Eo z8($VRt)-mm0WHsLY5mlRzwUWIx*GB6A7X6xs=u%Z#)7>`=d&?j=-3M4Qd!c+(H0UK zCW3ku<)730F4skx($Ox|og!Sw{H#L!b9G4BtWCn5D=i+3C~D!8Ra*TB#}Bo&3{56_ zHx!8!_Zdqb_;FE* zh}Lh#u9U}OM{z}gMz1a@+Zh5Vu?fBlTG zwW!shOXOanp|DI!W#XVs?TZ)jWSFt}A3h^4{`~n@B15MZfTVyw2~hvykU1-C764H6 zhdPjsI2mCe&;ARqt3GGzz#_5Sd*d`#z;`#2&_8pnyY$OVMf2;17C~Oq1qbKtH^zK|`iHJ|JkE(XBt* z0RcFzJ`%4^AS)$Uhrfe3M^cA2)zFk~b2Ek51X{eqJW)nHUj!o(so#pSs8sC*t_+F- zqlR-5&J+wnWcjwPJP9|z!4syQJF4V4D`|I~2O>Ou?RkU&TTwVCA6WQosW zdY2ark~zS`%>TI;;vCX{!*FxxiO3Y6)7ag7&c8(leb59q+bHWcS`bxy7ps^xeg3Kb zbzbkJ{8N}Ayu6Rk&~&c{w3COE3q~AUR?r7>10klvky>ZI$gj)Ed$NwMDW28|DZH;T z7#6bP>dUY6q(wnLelu|}h27E;Sog5E(hs5{S@9Z|s-Wto2WNp~S!I(;KPKSbgV0B% zo`?k>no4B;+{H?Eyk>h2tvf-01ktNU4j?{pUX`N+@yaUUx|6fn==uIhkky1pp<~R_ zPw&%aG;vq&sS1NfpfgJ?t+lZRFt=n_ytush{c}`_{ypTPq-uViYKrBKKD<5RELkk9 zO=W&~i{>+&6UGiyZWT70_SIwE5d;ex@Xp6wkO2bD43CJp3fMqCttkr(dW5(-xVpulU| zT~&tVOA;Cj47!nw&g1vu{FO5|U|zWm5^Q4t3 zkjGL1{nm#(QpVc?`KmOMrz@9Z1%h4Z7#!5&neSB0+11kJyj~iOPhA=var}LHj!0z# zt#OXi+$JhrU8D6>2YIZP$ElvND{9!Zc2(?)UdpQ%)i&)$h$WvbWeEA?l5xJ3**K5w zhi#ra*7mQr9^RRLxAbz5PDA~nqix1SikGH1@-^a0jXhj`h& z5y`;P<~5_`*0lsO@!B;>Q<^Szz)IMv8!&kmkTql&LAaQ-TpevH!@DOq8v&9IR|}&_ zL5n{LB7oFx7l2HAS_p1@Ex$d?i8=wDAdTp|36Qr=Y2CznRqdB5EF-T=nXK=D>}TjpDk;8w>+I>dE^C?p zW`N(7XCPzNrK}dtW~3Ez@DDF+bdycxKkI$r9@QZpo?Nyu{Xp zd2Bw0IqKLvIJ-<|zNEEMS897;x5^@{Uv+Mjna=KfWW!Xuo?8k*-`YFj1GH~z^E2Ovb;LLzDC)1@3N}vG zy!c|WW4+B1=0A{e?HtreH_ubNo%zRVm#m59!QY5*e?sw9#}qZFN|l6k@8!3XT_C!M zJ8b^th%pzI1#R1rRVmthBg8C$Dj0x-gKLdc*7M_E&<%cA3VFeOm2lc}vXbJ7)%s

EzXy>!L5Bk+Gt<`1`#N2lyj65KQ|CEXUTQpFCUwk2hE*9-TW{U^Xb}_IIyaVoAyF zB#nm&lZus$e#n1yI{r}m9UBa14PsN;_OWRZECG?l&Q(To9aA@~e@y34eUedwwXply zOxh6)3WU8pBq3!(;p9f-Jy(-Hv}Xe^NIiL13&$HqE=*>b)3D^tJ2H@RJqT3|kcUB$ zH45{qr|8f}V9A0z=oI{qvETiV@$q?!ldmtQ?6PM$xIMDy0*(SOMGOUKY7@EwoiR2% z$>w=-O9B;rRplelp@XP~kSn9QlqF&uO+U43>ORxAZGV87_>NL!umc+&J#8DWac}i* zm>FE1$-R8Ml?w3bGUer?mChIBcNnTaH609`=3Zv+$+1SpS+~8fEF~6ZJFaI577h9> z3RL>|mpC^vv7Unc670(7vC2ZLt2GamrPo7NiAnub z3x~Q>E4y7`I`%?Ya&}aV-`eJI6KR~YQxc*BAIh$`-cGXN-e3-n)bjIMGmHp!hId^I zk}|YkTaOr;y6**ZCk*n1d3W$r#fgvnoL{;>nO-=N-;ln(IM8MCWg`qA zJp#!F+)1XRr*lMe5wH#Gp-C5wu6&M0wGNeMyE;yPt=?}Pua=i;LkBzi>ulM?uAkrw z38G|$5vhLgYUR#~#^w8TU3*Ve2bHi$FO~k{?b~khO3(DJQlLFcx(?D%TbToytCSV> z63u47iT`8x!@YvJT>vKNwu;TmcyUP#NbUAWnS|oXbtiW94;`qqm05n+$K1dB`W6uP z7tfq00b6%FZ~C9GZrfD#-&|v}HUct0+dvIXHh63uMj&Kk*)e@H)soBQ#@>B64ZECZ zL-CV`^<{*rpw_uOwrkrYv^fyWRbxO7>j3EVDnN4U9uUKD<(1k zT=fVeoQ3G}Nh`{-2ffk{Q?0kb@dC*$G)2t4!I*j3ZnKz@>%O8YI`T>jDj&W^C9QRNTpV}IXpK-g+ z0qGWBetSf2T%>S9WGuxZUh_gJUQ>Nne;WCyXldxQ)LG!C`OON+Nq{gY5gRIhZ1ZR& zfZNLy(mTZgVQf13X~K!ZGQSk2l%<36S<+`VX8M&4CgN?;=57dQU^c{P(^4DmA1@`x zsxG^BR-Cmn0c2&B;B!Xh*gIit3j$3+Q^n($>m|#O3G)Ew{h|wQxg^8v-ig7zf)#_n zBES5sOW{RBLtP0byw4dwMWCuly{MlPBf*Vb1$?jm_``dmEK@*fu~U~S_0-<^(j!dK}lV(N#y!29Y5?c3`Ua|p;I%5ax- zx_8tTTVS6W;^^v_N07wspFq1qY+&9Z{AY%YrHa<_KnJm|&K!5Bj-cD00N=Z|Eycdb z1~auvE&D7zJ@rWjQe=HPU+zd?9b$G>5r?Q6VHz0yA9B!lNe~w30J$kgJM`;UnlCA? zjc2Dm@)X-mBcS5(6p7omM4O^z-uN|{({{CtASG`7X`fmH=V_xs|U5 z4by{VAg{0m254oA#|1&MkFOc9BC)Mm7co>ew@8ykXnDn?HIPH`*>w-S<9AQs5Itz8 zpd&+~^HC5~WI+a{voX-z8?1^<6J1f8$T?oYXRSI<{IrT~ar*?&BLS9M68odc)3@CG2oUIwBqY&1m26RtvDA zeX0arnww=*HqktxwzF}^CjWG<5JUY>1)x2l(;P5A1AXb4_IT^VX^3687TsW+?(_1! zQnB?)BhS5qYztCMUfXCf)RO1c{fWtn@DN_tA2Qbm5mtj6>t4N(ek$Wzgq8}Fq(S>(-6L3L!(cgG^Byrk=TUm&kWsUJS0F4T4i zQA3Cz z(Yw(F(Mu4WAfop!F&I61ji@0+?$n^ zMP&~KuU`>4huT}0SzYDY+o-yL3U3b-lr{0!!j%2aN3vc!$YVAu2VawzV*MCK*LOCg z?-XS1&z$>Dl4T6OD2?j>n8$Q}vzV@1nn?7C{S*KC)|olmJ2X~zU|ow!He;Am%}JJ{ zy}T#%;0!PTTit)-3I%^ko!70i*IO+TEw zI$o)I1<7uHk$0U%B7bKb9CMKpT-pSg$B`(0z1*6R17&-C>4&$s@k#cmzQYmc{s@EC z%|-=<7uLEaedRZZ^dm=7l;SsWBmx zCLzspd`NYtzA7Av;2%hsZ=4%pH$v*P{O(?=iy0W_evxU@yXh`ZYUcrihLl|Kcx?Np zn2ZNhTMS*~UWSf+xms9KdUzb?j0??Gtj>H}-RU4H8;WODBp%g8r0SaoKvS7B(`Ub1 zfl;Tbv8Ulc1bK2q^jtl9U~inm%#O=UbguC|-#t@z{nWDc2-J7r>W^4siNy^r>DXLl z&@=lK+ba1K4enb3LD7HI9c$`rh~2=zAc9>Tp_R3MVF@qva!^T$EjayfwCYzAMhTq#T+5IpY$PoFNw=->xd{Omnc?Ik;32iu-g*I#Favm*JgZL$rso`#Nv6m*I6J><`-g3?Mo_ioqR%-RP4Ga zyfyuv%k)5q1@#o_v=l0S`TGfe)Hib9K7e#I2=HH$ThxhN+{>#%wx6n}&K0)w`jj{q z%qq2)HN0EW&ly-nCk^{%i2pHaIovtOTf49x+kesc=XA;%vwTkCIO8@*No-&3Z#ebu zsf*@s3S@a+PLJMXjvSPei6&SVzwYZYrV z63a#yVFly1&ej`#btAXcP=u^WmFTLl$Iu9SiQDh$nPo>w$8z8B>P$D1@P(B$huK?~ zIP1((Ec#2zWXD4TNM{*cL`ms01h8bRQ|7_Y@Cfc3d>9Y}&t=#%z-m19#Cjnw6uhk^ zv?irDBC6P+!f+i3hdI~Q_~(pCr2LJlnLJwT{10hf&fIC-pP3eawVjlM;+(<#)SA4V zwbK^Ct>4$%kq0e~MA@SaAk zb(RROJEGA*btX3G-;uQ<ec8QZjpbGO5`Gz#2F2Rvd3y+_rnkTPE%*du?}=Q63Kl z9OMSiFwH(=<@A6~I7~Ba8-Fivxli0|{zlAPb!fasasL$1i5(n@-))o2MSz&VWI<|@ z5L|P|&3dyR4xsT@)Grm8--~Y2)v5YO43+52mAv>4wlyoR3jJkdKTIbCm_E&X+L~l>ttrgG6u13qaQk%v zWru4(*wy{>h}M2?xZlg!rg?9@*r$uS7fal)T~0lP70gxpS&*d>Cx~E*aU0kmK(Fis zR5U6tcO}y=Ubm)*6)q~yoQ)v5>qi8${*3oEDb9GWyNJ~q2%k4sT41#lpO2iDo{q+R z-77+yT#{#nKqw-Kuk+~q@7rJgJB@hL)8ezm(*1s5cCgCv?qt&g*onr$p^`Tk?Xr%q z#nCQ$FONS@{9f}9`?@Y{hm2T&Fzkuoder?s>)J=55UEJ;fu}CATISOuo93KO(}VJb z>Gg{|*<_Tc2!7WaNk+X()#ws2oIee3CaCzQWGu4x0zp<#-8u$`4*6JwnbyR z&Hc-l{s9RCb32(l=kW&%t`cJAbAkd~*vZUDva*Z2`r!;1PR_d-e@ZTm4qw}=dRsFX-ZgzzMQndyw`7P5 z@fm-M!Oq&CR{H!_4ukq$9rNip5$6&uOpRO4*p()17ivQo={9G~$? z;wGPyNfQQQq+sHiPW05jl8k>Pq?eh%yP?uu*PVFkP=97|9C-J^4Kq^FW?%)(hv&ky ztl3&`9Sefqh?ixHxXihUf8@2*m)^hh1BqFm}p{0P(nVH;}u`Uu%Pr|j!M2x`L^U*IPT)qZiM#R2KgQ(%R78sC2S z@V!m8L64EdrjHx{7A4wv5-a9nFWO&Zs~}jj{$M~@{NM=G_vDSJgzz&64IpPO&*WCY z$-r7~_r%`Qk^D1A%c41(vo$P=o{;6zRtgTV{zWA9(Yu@WrGQgLm7V^oGQJitziJ^^10^gx~2EpxW+1A_MR@K zwXr&ibq#9ygNQ)jT$vVE@tdXJx^>@MuU-|Ol2D@At8ergE7BhT(JXCgiFEjDd07Yw zz2$zlHhFymoz-9K^_|;mIKS)X&VSX`ytPMYKwj3n?G%94V=F^cV-;iiKeZcOoXw05 z3UM(D?X1>TPw9SC$ZsS`e@W>;>34sNAnW%KFSk7>@kWBUtQ4PZ8`OJEwjoTQam!e zEGpOWeRWiTw*Gh449GVB*3$*r5j{Kp(eh{JaY@Ek=9ALPs{ZHZ0s0Z}EaeczfVRBn zNng#C`rhbWAJ+~>CiE+v4Y-#kAIqJs@DE0g4z9{R@=NpIDHDdU9}9pAZ^X|d;ZChF zZit;79r24bQ0CAP<=J6=RKi?@n=*)SUSx=EU1IQ2gw0$W3QH*D_7shI7N`?jWP@=D zfmcS9cmRmIazv~r(JoxdN4Li0N_37h{_<=vRi9u&>xKLM(82y}P3 z%y`|w|6($hW#s@T`QkG7dfB*?%DiWE3TWwFFcOq7sk#J#-y#Y@)`6jV%tD=4fX{U1 z5Z1AF^`fUeNk=*M3RVc#>QjcV7lz~{fjK*j-~`a&P+CR&mD(^@b+l8-v#7wyZJ^X7 z2vdV*I2C~t&M_Z9Mcj{>eaO}_-Gx*S`&p&wU2V8xVuwwm+Kx*bBjVMX-TL5Tl9889 zOlK?Qb5C*OCSY!qB9A#fwWP+i%vo$v))>ZF!Fv01Wbt#-tFoNIz^h>gEDRK<8diY7 zARu}JcvzA#lEsTpYEZxK#nqH=ok6h>5S>Xijnb{8l22PRwzTl~)}T~OWHDH(qh1!G zl%xKsJ&FPMXNKHx@(_?`wW_+Pvz{RWJ;(lyu=s}wuF6eH0LILgA}4u&EL2JrHXRIH zFtRT@;Iv&${n&{bZQF@T_E;a*>ZKvz)I(Xl`nwW$9~aT>qitQu zPM7I~CAecqVyu|G0-SThn|YhYEb2oQ&*yZz=-8=n(*6*+{bFTXk8QG~(d^zx8$NH0 zk`8Eal(1821!OU4LdWTISlg{v=NrKxzV^d8_!VKi^VC0#xAI#`+mG#X?$NM@J^JE! zezV@B4%qL?QqGU|yS*S8fc{va6YY(kb*p>ctl zn5M&i*s!&vo8f+7z)+ar*sQDze(HSp#H2O%t+UF&$l0>Uk-~YfY{|b<3;!SnmE8xd+*3#`+n1g8zGW7Bn?W zE%8%b?4X#<@Gba5b;&MOad0u~FpUr!#6)g0M>kz;|PC& zII$wHbE{=l&~ZW%|9;t?TIUCOJj88Jz^$9S7LfVLMpdrSOXfD6E<|YLhFTNB#M{z9 zr-94x=Q(55Ce>V0PZ0hmjdO-K#_S~B2%NqXjnha73Dy=S>jAZ^S;={zYin8mik&>n zSqSm=0i>u3bUArH+y6*do)QX2_>SU#u{tL1_G7q;hB5H)TdQ}HIw3;PpRCiy{@9IY zB8e9Fvm+j)L0GD|%`?+3styiPHqGA4(=4+2YTB1Y<+7Xy0utRe!D}0)sIvsWY+pcf z@sH>5FO9Nvk-sbVZt7~Q><*yJINLD3<_jpkzW?%<4hQG}h0J1w_EMp@cfpLV}B{t|$TQ_ND!7&iT7>bW|{&e1_Vtc;)R z-i8=EEuJ<$(?Ohh14AsLmv_dgnqTW;i<9Xa^(v9?1--cftE3O({55qN^iLfM=b4 zML}R9c5{sy*w!NcxUS}N4buzz^0ksQk65j=XisHF^W3s=&X+X-1@arB(uB}Id0V8y z1^lxjesbqyj;qS?2>{MUCtn_?HGXae_d}dxTDh$sOr7{Eqwk2{?KxIgO?7z-hd6`` zj5UVhQk8+xC-klSS+lkZyXS`-Dx7BIBj1U;IG6wh6$}p*9tAfzLogmQ)uUlYhM%dVRk*V|n#@ zE9RP#8vA;ztDmUt;sW?@DPVpx(#s1NU~mchJ@yZov8JQ8hh;d_mC zL{=-H;G6|RLd@n3{u1dtmKg9$+Z>o(U&VVMLp~&NK5j@K6R&pYjt2GXSP}l%B+m9O z!^E~AqiFXrlLgh8gZ5IZ<3r~x&#|k>jwV<`Zgn{{z}6RVP`pgo-j*mh7jH|>1|{z= z1krBn`CAyxfu8-mPT)N9cOb|`ZyLtFu!z>dTEszPC#;xge?TL``EV3Usr}0TiT1Uh2-Eo@7V)D%uQr+h zXpFV18?H58djtsM{t(m-s&>)l!Vzc0vJbTP#&W>2$C~(4MRHoyto=skrJ-nN_$|cP z;HKL>&oa6(PhstZ&#~;BYaV}Y+iftmF~kfhy69gs-VFykUmaVNE!52 zi~#RTMoYAc_z!UDp|8Z4>uN$v*ZR@nGW*MoqhR*xyX)tSW{{Me*EA4U?-zCrFan-y zo0?KHlzrr9*jfpD2fm#tZ)T}Ioi z6}WO{A0i6Y>YaP9H^S{*U+%iM9AwxqKekWcdzq!n*7QgbJ0>lm2g|GabNC?WJ`PhU z&QyS{g!I-&tPjR`Ij$C#41a$9r-Y!?M2g-*~)STc|?Iv6_YE4ztek=T0F9&#u=R z53_cbXmU=5mexL2&lKrwNeh-;x`}E}s#OmzU;C^+t|qlT?hdE)r_y-hFI)?Yh>?fC zw^O?groVjY9i5}qDt_XD!Th%z1MtfZ;viAWHO}A}_AWZt_LmBwOohEq0ETj2QK&i%Ut0 z>{h=)ftS&TqMV;#7}fYm3iQ`?&$VDsaTT}O=92rXpBkH$-3KUpXgHKf2OT_mup+lr z?CNa6wdI^SaF;+qi7H`_%-*NG=o+d=W!Cc1s57}?uG`A`Sgh-t8w22R?+i|ul=Zdq z`5eVtgEV}FNIp=eN7JpitlW=O?iNup*A-oHEZS%lVo5hZGP>?`B;`9~c(0K1#P}n# zkfNudr(v$Eujs^YR-cGq4oB{cz37ax{yv?gt>`YQ-(wiebmj!5&%PP{f=3DI*Em4~#hc1-tj^3AoL%78@i>gD4@c4KgyY zQ6Yh(R>_1-?lvRm@bj^*z&y-sodMYacE#}oYIiC1BMt`2trwD`faHNi$K|S=?K|8r zz+%eCM8fHWFHz+CgkXq_GYB+qyJ!;x0#hnh)*he)RF9eA>H+&ma(%_eAe)47UjJk(tDGo;XGpDd={D0d+eM zYSHKY2|bLw;uZ&h!F8p-x#1HXKX?8u5vXRn;C(qN;}ueaU)+}IR;cn|uN8GP)l^9K z-j&g1`)m8ApWdTxX-KuA&Y=|mNId)sxYwwd5p8vgnA~w@#7*{l+A{2Z$Z}p*k@}P*XZJPfg58{md8R^N4%<-pp95f6kBJe z!LX%ohXY*m<`X^pUwtAmAoc%P&r32&Ma+7&u|r}(fFh%<5|lgC=;|53n~Ga^>j^ex zpzi)J63>lTsz$QTzE?K)>ymu$<=6^6aFyVG{3wSOR0W0!7rh4tIhG_|LDoE94ZWj@ zU_ln--pZL^@BF9}O`zt=(b_!1-JJLbX^mkd?mYb%n5Ny0f9jeZ1IMBXd65RB); z6y?4xs*DyiT&*M*1EM;MQXeLUJxHK3>y(;fXvD3dNwL~wYBbbDZuON9)C^?^V1ZIz zw6$BIS)VSicvI%!R)^|~0Z&Z;gUY<`S2wV)7)Zop-5ZqK%aTzf1yav%3kunDp%SvMkqg+UWWmbm#_B#K3gS7 z4T}cb&}M#u<_#(GmKtH5{1l_q?0MI#CtWJv39|EPvBm@1;JiNt2iQU10zL)|RY@Cw z(gHRSxj)+Mvb_*hZLf-O!y85~pDNz^qbqq$GqOiR@nK1KSRhPZPc)y8c^^01M#d*6 zG-rf0VCL}IIjc|`^D_vOUJC6G{@k!@jCMj5f6cJ?sCEtu2qU3!U%~lDM}6M4O+c$( zG)(i=HKYEk>*7@(>!2@Po@+#A`B$KdQF{P zAkS)svMffGZOX;(B{=?0rZRRBjjk$a$r|G;+Tb3Avh(H6F?}EwUwnbRptE%}dho(t zN8;j>ucZd2Rv~Sr7V?LRsEWH>h(gLTmB=p66Tuj9R^7+ydIc8?%6fAJcy8?s$Wik|27$3* ziDuCYwdvkw!`oPhPW1@_Mdm96cKjS~gP#xFf z)5RtV?OLh~+JTmyN(RS#W313oDowC$RHr9?cyk>;ck)H*38|!vb_|#4>LI_BUVFtnZR>!q3Nil}5!KeY{EQu9=Q>Q%F|csf zO)`@eo&O+NfKijBWuewEG$P$$;m?8IzHM4ikIcF&l{oK3qglBM(|{2-m1?B)dBSGG zL{|G-F;d1);f4&3=-Xz}Xo6X9UfErn!Ff5g*bm>p4;P+`J9A!%_&!<{=^or54rm_& z78KM{!n-y&7C(AfDKD*x3cO~+mdOT_1~RDOhD$&n{QZ~4XbHRo%fe~Q1G~E|L4ZV^ z-LlZ<^mk}PjOmQmI|=D8-G1P;W3tBsXZX1!cc^64x*Lu}h_^-X%HPdrn)9oRPSA?{ zhM&xfLClNrqYGtq8Ou^Op+WCj4_GY>Lv*8wK4fh$oT)bEJHO+|8gmhSXI>i}U>9iT zBTk^wIY1v2Yg`ZlLlHfv9FB=uc(KPDfv5fDxp8G5RgPvFH*W4&MF?edz_hF6_P}wi z<`4=iC(tdcT*U10$x}0l#_(&(=V&`j^2XcoNbwD^V9zGE0d;xk(d+5STDWC*ZhNq9 z$ZE}=K^4kSOKAMDTKN*ijxaxi13LfgDuQm1GEP$Z$9rb< z<=iO+Z{k`s!pta3xyE99Ip^rl>i<3F|2gxQ-e66&qU?%h>-ChHcWqi^nqsH(!DhsF zVl7sL_StcNHRNJ!Bp3&z)C2*dHZ*$dbFG`G`c>0gkFQ|Xro1m4IAjsKF&A(AT;&ZR z7T^}jI6^l0pYy83cq>OQ_{YLqyPi6W8qLi5Ut^{?a_-W{!p!+wRZ?(sPAjcLMvF&Is7~-+^QDiejSrF5C^PHtdKxZSa@4Dg^B5vudK{kog!->Nkvu{aw*x z^rpL60-uBZ-?%;NM6UErhJKv5K=A#003#`nZ(l|8I zQHavhB$yYP*Rz;=^m>7jM|J{(B+uI=`#eZ~>-rD3w)>sOB_}V22t-o$Q{%5t{!R`^ z<_;?Sb5IG14Lj#y_H^aWN5AlDc!ZMrJnJ`k&UUXc0m-|sST z$b8b-L5g?@{S1X!vjo^(8O6yTg4za&ABt2wWqNg)AMma%oVBp8ndlKip|TTKCz!vo z@a(6k7_R<0M4h(CD&O^Luv2?y%GK%fsj#85-*K*O!)uN)4fl(Q_7V)T52f4QSh~>i zNIfWcaK$6D*Ks}Vq%E{9#C(YW+gY2R`{jU&oZ@yv;i|$`?6E3gVdzPwi}6=+Zdfm~ zcg3#!%Aol5<@lotQtin^ciM$+(OSM1%VXPJ{~%Ijs?B|>9aU<35>>MaYKNxs@r|<9 z7CS`r<7f%y3)VXOgN7+F3Q6W(U#J#jmU9CR+d$k>yreMpaZIOW)j$}-%#nCv7zJ^4 zOaC4Z?oKdvIVu`O;)6?&gUegmms4hOreL%}`a3m`?f^p}s^aVEtK6*f41;;*54fQ- zczwE{*?FWN?N|C=4z(r}h!MBhry}w*ZEV3WTqT)vdP?!g00CtJlAQvoS@Y`)z6(RH z$#KQ+*qQhxS&nx|^*Be{4obS4ADF19izUhu*lO=XZC)RESH)~mZ3?ll90E& zDx>4ck7JHMDbvVmavv>-F1?x&?09xweBS*sEIDTzk$}wF3lsFyV$yGxy*B=*0QrxX z+bH?h&6+`I4>mxtb+pvFB3Mhk?;{dPWev?LZ2UZHt0~vP8S1(astpheRbk^%N~ll%M8eJr#Z7rHr`de4KE3L{^zPy77^FKhUuEmKFL))8iqO}G>**V>Cqw<(7s{esbh|?~FcBT#mY~%6&iu8Y{^P-6TMnis*=Jatux{S&^3hX~Ot(#`@t2UCe-4BCCm z)jZo-?tR??U#)zQtbSDVJlaT%o*!Uq`Z$emv)|0+lEazBf_mVwGZhbFQ1JWxKmCAx zy3u$%h()aj=U7PIsC0V6vyb8HR>A2U;nk7Q6 ziDc&yiX$*p-pi04k3H*%&~Z%lMS)Y-A24zx?&KLpMz?%NvU8tEs=@Ee=|XLJx7}hb zYHSP+5B}*&{2we<9Q9Y6)e%K=Eo0#DEn$c=Nn&a@%Ahyk1=`dB+}qN0eRUB550BM@ z*TnS1m)s6?oou#zS9T&$QxfaT&w=^IQ#oDYWXYDB$c0Cy)*Y7+V9|3>4Df;k28k5Rg*~P-=Yvx@(Xjc?9S%6n``VbSbE2F zlEdGOvTRU}bRl*vsT@*Zc?)8~b>X~=PEU-7#zdapc=d7jiiRJw^R(WTv^d7;#0B?O zL4QU53kH3~vc6@yT zU&%k)X8nQ`^rQC`axLciFHn{1ue*}x`x^w6SVt)TPAG;I!VEs^4EEu&6q>U%Qk`~b zo0EPEHx5mf5`lkMi0w(~uuWmaC3WId%71@)$ul1thIqee_5Ff6hpxN3EciOfYHFr+ z(rti)weW_^mMd%8?-{!B#C`i@W@hxn-7w(__9DPst)Pm zsWF|c-B|d*;B7h1t3aRiE#{&D^%j<3k%;03Z*g3A=oB_P7h9sbjh>n6U*0!6wMX%; z;fQ?T)}w(kR_RSfkFhpIpP}l~zh&*@nMXhkkXP%%_Os;E?>-TF6_o{8qvFH zRM{2#fm2S2uP4o+#gnwMEK+Zh2X3yg`pR%7Ok+hh_iABapb@hs=lW7jn zQ)3YSC`$h)YrfRLWiQlJn|Si>{EQYRVO|$b#co;D>x1mp=Eh0ZyN_%mb_!>0f*qNG zi_LS|r|bl57lmcxEK;~;GuiY?@onB^19qKSFbyU@=t``igp4}*DHj~al(lQ z8#-QL75{9FH=l&H1};`&B)E{o{k@#Ik^|EL-t5+m{hYJqqnaDpY>fFCe@4f!J1B76 z5C+NuT&_%`W|Vqrw%LxN2kYe8N!-aagFJly^OyGj`(C$NZzTMZo&R*39n6+X!V{iE z5bL_J2>rs{8)QKg=27Wl)(&k?)Qyw|NgcP?MJU{;Q@Uuz_%^t zclgCM#3UHQ)?Ozo$omfS1+@zdf zUc8&wno?OIO^Q~fiB0TLDCtF66E zs`EFd41Q_VWbTauJ9@5F?t^oe{c|)C?C31uA$N&Ab7*AQd`Z#o%3x0+Kf zE?6!G!*GMWo9ZfEp7kj^^;TL`dfESW=C+dAevA_Cuj0d_8MCrrIU^vj6-DgO<=DwP>*O=JTDzx@mvHpF&*)iu z&5i!POFf#(Iqvg%WV`d!++j8S|nUli|Xg2OXPPreU>--z8z*g}SqB-i647Yyy2<5Qr?*+BaPddpu{VzNHn@|tY z(6&omZ@Z?9jk3W2Po8iKlFMcOrbNS!%B>s(r5)xULpF z$OXBX6H}Ir9Dvw;(^&ernea8DpglQxXqBJSG?Mwaog90rp7E2NS7fCaP=;}YTJz1NTs&RA4guR+H+3cNg{nI2bd7%_mBKCOvlNLvI=&e~x+-Cw{&{f2dlGMiouHzr z7@Mu)b4pt}_cPF~fH*3mP)gT?Op{NtE{pR&(Ax{bz}xI(nvci@F+WwHb&rC2R3taM z2O|S~HTx)|EySt!tf?NSNJAScj6vVHDhtAN;>TrQhdwaWQ43Q`+{8(f8AQG3=!{QU z1`h$>c7CNl?aq*08DUy1i6%qL{({*^oJWLpcpb~60Dmi6Y_kf6y|5&BIB7?ZR_A8; zdl5zE{S*UK)S~1XJeDQ?#}UmMn+Vh@0sD;|-QKJ+I(;OZQVB((P16`HDE9h(C~ktD z90~p=eS#OU4trtxFGb(a{~5xl{|;f#%#TW_;cAi=jHjjTp}fUeR!E@`moA$n$M$fD zJCxBQmlyjru@gLdQ75pXFZJ%n6tf97ZXlJ#SsfoKP_eJapXZe(9yrp7ZvPj`0fCYMrFRvGmEhV26G1e_P<;|~`z+-C*PxvrO6 zIS{|4b56VABr9~b*;ZW5Z;L{R7Uc)NUV_Qsc7fP(3nQzk@%!|V z!QEG|LZ*%2mnIWsBjF7bB(kUoSIa>zZWZ0%yt2YXCBN9h_U08H*NEsfaipdw;LQEM z(M(}>1-Y`$`7>l^J=_Ppw#gklj~GuG>Svr^;gQ!HX7TQYEmxEg`VaT5D0m4)wGl@X zW{n|;8J@>K%XtJq_8oF{>hi5|D>FEihSjWN}A0J%!1ZF=!rEwn)Ju<|M+ZLO(ZMGu9QGy6i=U4HqXSw}O#!chNQrqiKkrY#p zCLJw>sLYJ~&Xz44h-Z!13&>6wS~|QIW_;UaEMpIDJ8@31TJBgey3Z2p z!3AQ|Ln1~^El;b=6Ltw>Q}q^+uPlfI#L_m&XZxI)KAyj`Q_g4}b6ls6W~%K=5;_2Y z8+?SfI9*PthUOmjU{GEN=0l{s7sDOtX zC}_*D_N3CW0UEp*a@>2`W>qo)5FrW%vak_9o~SA|#^em`c6(D1B}NwXVq^;Mz*ywb zPlC+#r;%^0{F9PT{@;xRpp345*)Z(Tqij`KoANa^>@IF*%A%!2CnO~CBpga7)vyP) zuFNp=zgqRbBD;k6!7)xW;tFd`R+()_{jal*WTW0`MyvXInzKngc3lZ$t(?75B@BPS zB-~M*Of0@Jyx15D`id(^H?p1OcfM90W`XO8T%po&|MWD-Gj48S5kLvze7+{G1Z=tD zSdS-2-GxpX{8jmIxGV|S+es$~6T=(WgTj^HqXf@+zDiT0oA@ri)TCo{R??2^9T(AY z)r;fF(hnk8lbOU`EG7Z#V)o7qL+5$QK5)7}=W*Me9Nf3p`?dw}d7?*g=(cI;Cd%~k zM@p(bth1{3`B!CrGMa{auu}HQ*YC7kBlwg=!is^d|fxYfhR-}RTGP><{ zS$(7C4K^msrSI5~h9`M4HTQ*jR32^>kx0Lw=H2T2%7{54@?Y)9b0YuXOUzJOR_B(O zx=0{|UPN^-9PuO~Rj76j0dX3wz3>HBIc)J>S%!8e?YQ#D$^uh;+%owmVMJo2W=AxFu}j>GdFqWk@n-TS|7rtLi^(Xr-hk?;`=5Md`sF!yXTtv-Ybq0(WQPi$m!%>4f0;;xJxRXZAt09y(Mz;UrP}F2 zyrYzU1t&J^dfcno0f`6+jIk(Qz$2b;b$TXNxz!P5wtzeQh5f7)vEoTzf}_jm1XeRJ>iv@CY!!Y6 zo+?}N)Q|?oLnJJpN-r~+yIu1yWineq!U(A>(QcNs2O&WU`S3I8(*w(5D@*R2duzfc z5LjuS6f$|tMPzKjT^XgzyeLK38Tw)|HeFuGbCh}rd=^IRW2*(M6C@)m(VULa82P4?}c z8%{zxn))0wcdjYzC6?a#-M2w~aDPDjB3i6OY-B)+shoUg(wXZ{j$-1E#V}l;soBKy zi^^Rj37D~GmCN!yo(M9jkmfo5)A>eoVT3hU3!Q#CpXlp=ywz+l(?E*+NoIw*`3pa@h;m1XU;#{DeT&fz2x~_8cs%d?}MhAV2HLg z?Q4MK?6H5dc_=Q=$#9z&M6A>o!`GN>1#YpK4TeO(ulikNqu}_lZ^1fJiXy{LaW~iP z+{Ol~7b;y)x^GYj!Zk{UohL7)>fQ$MUYwzKtiq|s@3y5lX6gNa%c=@H7(c{bm6VXx zN_3VQU`&gb$x($Lj6{3*N*br;(=*F5sxT~=$*;c%PO^|x3ww~wC0u*5cOK`L<+mj8 z%@7fIxcXDtA5Ms%`H^I3Y`kirZHSfv$@4`YKmOIF9G2AVlovTnjE{p#Um0H9!))7)Ei-YDO2pwZE(MSb-+| zXcR@JJD{s`(oRwKhNxG2k2+y|EPl^Z z{PZ%r7iCBFfJZFmv&cSKSQo_oN-TmtzLZS*jb%PBc51x}_~lgzv8e#?ZOT8=$v4DaOU~oei%HY{vv(b(e zDJ2=nis2qfHx`dtYeWQ6w^A^VvbsuyF#h2(+k;U4?tZt9&O|me<+a2ZPgR!2qWsG7LF(1K8AZgT(0qYM3;@GuX7KK`{# zB|PgMv9p9qfoknH+ofmDb)!2`!A;!hl=O`yb6-QpjXrDqPcZpH_gCsGpCv6wv3_9Ju#$;m(GBS3g`t2%d?njIqTdo}@VpxXCh!9gmyUrkvE02HG=Z`*#y| z^LQTjNN{w&_J|(|ErWj5zN0=;}>Op$eLOZrHAf?l?P(kBYR1dU+fv@PSqT)DSY1ucANi==9oV z)S3&HwJ*FXpd(HVyFBtm-B1m}ly4>%rzao4CFG zxV$q5+a(w`spOEnWTK>%L(c12(i)&Uh@=)|5^pc`|IF<01lk~r7CYEuvQ7i^i7EY?yru4$ zaSiYys0+LR1M%IiUrl^Uw;1cqDf2Q7j2w&Uf~s5^D<5!h_g5Z%Y%jfH@>^sj04gx4 zQepZE+5eBP_l#()ROQG+57P>LWBLJ>oKKr7SX{l$ZDD%!Mw+s0 z%ArnECa8I^c&|-_rzlA%%&|KKqjbI730)rV4!$vOnxtfKj|1{VmPOqDwa470mF5ay zP9S`WxHn<6H&NEf{z2koiXo4awi%q0H#zd6{nBRt)kpO~r9UqT@f;Qr)o7^5V6OdX z%VQ)rX}b6PbA(z`>Bm03JPuB zJStiznnD)LS;u-#SAN>K<4kh=_4k`2r^3)Uijt+)S|h(glu5Hwez+V&(>jWP8Mu1u zB@;_+O5`wZLiG+jkR$7DX5G~P!somGaQ^GB-z*IrP*AjE>v$d25N3WF*c4&V7ypec zIYqeuq3#Gij>(`tlfvR2Ljdgy*>T>x_zih{XQ5g-7mYQRw%D0Wu~L?)2Shv6SA81- zLJZhDNs|e0v>Z9FnniBaDT}#3(b*I(fGO8At%S6`(OR?H{dM6qE&<3}isyvB|8l@$dumH6|)9|bbTG?{Np`{l7+jTrtP z=@GY3?2?*%F7v0r;m@JY;W6Wp3icM7124@t;QMUdkUzgS0tYDHQ><=O-Dwp2mZ( zM3_csWqm}?JZ1YBccV>1avPqCzEvjh3~qA{E;6N)Yu*bYZu)zs55-?!N9%qALi-ke z0rccu6q*36Mf+mqA}7Q4Phkw(JS?}$I>6`lw$={$JxE?a?a4-Mf$@+(we|H<&^}$~ zw@lz#s2to?o|5V%h6=WC%(er1Tkiq*9-AD-+)2gy5jL_VOAa?lCJC3C7?Qak#$?La zA)!N{3z$ny&@l|%6P6*-G5)*0*amIJwGxH14rPh(j#H~0s%1QRH>SPf3nr_cZ74Y! zQdTn%H4^>YRjvkiAb8>}q(FCZz_9s08|3uU^*^9^jqXepEecqW-LDJbSv5!IpK_(K!*pqKzy#qbfG`r2Q8YFqfU;^sRBSz%T77Rj5u4PjLMfQ zcl?Iw(7X_TXqK6uiuOI%!Bi18i$8S5J@U7wrM&Toyr7wa3i2M3E7;s?b`P~X z#gj{X4iG?I@ZhL`oA}Zqc-_C>qN+b{(cMNR8%G7iU4l`VLhZ!`8lTNS8NbGwL@0d#7@9TRoiQcva( z!H`qK+pxqaMmWqzvs7e$tlSijvk3S<3d!44+{tTZmi{6zP`M}09oxDOd3b>0R~TJ&3n> zmc1(LG#OZX00=FMFf`ixu@6=IxUU>ce{~JJk2n=jPM#k2_(D7Z1o*|OY%>n(@@HVi;u*GblCN9>?oh*`?uj9}7)qBb1Z^X3~oG__h zxUpML+L5t`GE`WPKmPuiQbXP9HM`13VPv74!zMpJ+ydJ8`)wxI*+fae)LEP{r4Wa<{LPrW12s4%qqyV3|Q1x{GURzp) zjHH70L$)iafvTD-#>>%GJ7djzr}tcD;<(v)A^aM~7MO7hAeW>au-7j%aG1>-fjL|v zRrZ|Y3XXTO9XA2{Y4_@gXdCN^g1)wHcr?~Wn^^c!4B1wed#vNn#Va-nnqRGwEGQ{v zH6+c=Cep7IHu7qiwmOi9|Gpna9{7|s*M?NT5ux&ZwZJ^?M3Y+yAeUrchME>NGQsJ0 zA^SH4=o$HYXH>-$_qWBy5JH&gKY_4lvdIY^u!_ov3t_X)Rskl?fz%M!1i29}BThz9 z_zzh^KYF`>5<%j)!P84i?~@L%W+5@ib}3rlpw39As`VmfCH)GhzcW z#4#RFd1xcl3UREacydwwU+awP+97g>qMNmMj8IRGUkT6I zI12cgGERYfCK`p+BFpQC%RJ8uxN_ z=#W0Qg*=~!BwU%{KFh&yZF1-hL1&SA;%-Lf`2=)GI{ za0Euez4ts1P;p1BIqvNC5AS*MSjDEpiEd=>C?e>78;42K2O;+c1RrrWRn8G09ZUCt zLx=AHG?t$u95l}iQ>x!s2uW+2$rsQX6aBpuvc}^|rn4+~kMsH=_99~Ma@FgNWyRmK zsZ^veExN~TE&3>5jIcl_Oty>>q@uSKJt==q+g#isH4)0s>PcZG4Q}gk*@kAXXm}qL zmFjEF_!n_*KdU4fCYyp)|uJo3Im=<#XX~=FU}o7U5z)9 zdDez!jL8wQ1i40LuFwqJ&pWRdr1JcXSmegj(}#DaN@gs)pj}d@a!hkx=~_>?>Q2<{ z)9b7n?_0yEK}009R$AB>tDf1q;#Xfd}#VrE+&(?5~$qV$08(ay(fq!jMH!e8nIB?Td%bmkn*2$b^yw?+q$y)Vp(R3rZ1cw5+EU6xV+40Y*#XK^N04 zUuXYIe)q-xcj@MK+uw2hvQ3z|KKxabxfWg%!EuSTxwAlXFX%vJTQ-x!({3IWR_@<< zz_0bRrpu<_y4`WCOD(H>C}L#7IU~#JEh7rabN&-h1&_QOj zV~Hre$s0zGa-^axf(1F60v$2ha>Y{SMS8b5DQg65LG+;x?!*j{8n$0}4jWPF3B;>s za;?Q0z7YiCStH}b_2*=<{gjsp%&G)k3zp-Dhe_yqFEJz-0{`lF7e!>}5M#Q?qk@>S z*}<*cn@@a$XyPCK)-U`9@hxj2pO9%JQC z+xVSBgG4Zu) ziOnd3Tfy+oIq>yO546(w<3@8~_eK+C9Mj6!2Ve`T`tvNI$DZV~b8sNiVZAM4eo$8- z?G7618iXFR$>QNi##zVPj;z*DcniwzV!~c3h(WbvP9)dpt4{Egz>|?~@dy({rFxh? z)*xmBg=qC#<>BZ5`&frPiTPra-}73U=K^)3J1^C{D|1*W%RTZu-UL72o!9+qI{F{4 zlF*~GzaQHSP63Mmr<=xVclwVXg@EH@n8e*X9F1}xH8b<$G%l%aFBg5q7skSlb3s zOdwOC8wvfia|qr$K}_wj16|YV-g!Ze1WBdtQOFb3tA)HlN{0l~taT@ezB}e#kSTPd zGoue?ks9$hJpsw{1YH8G-10fxlKOBgF%;xPl<763D*p6(J0CkQi#9Y26E}LYJg6rZ zoei8|0}l*&G@#q1sxT1n$O!R&RvG_19m35F(8-&oQX51+mS()iN@IIOSRB|F7gJI| z?~}QzWOYz{-RlS0u)Yx3{iQ>)ynz2g%>)C*q>>kTiGTQ_Os-ho@}P$8jS%|QKdsmZ z?Dvk8zo=bC+Xh;RYL@m!k{ph;>4xz&CRU2>82R&bq9}H;x$wqB^PRG9c5L6_tOMYC z5z@@p5Gk~ems&GCE}X;+16r0nHl17^kcLnZKXf#~0hicnl^fBJ9Odp(FmV>;=E5Er zq2ijUbck5lLt&n;g77)d)%sh_ z%UG;hZBwk`)_^2Jo>=<%d-Z68FWz~cYr;pf8u{uv{yL(~;oLeqfM+Ci!$eYG{k$%cb3f6)33ytM&m8!roSk-uy0SgXkAayy2!#WJeo&UUTm0M=g{izK|1ST|GrScVk(~ml0FP>X!f@lQGv8;`1EGuW&BC_XzSmW1DLBWsqngf{drm66 zxT&TkdN8iT-Lbih{OD9mRg_V)Vvv_1pIVZjZUkFIviNsFCAJpxw&;&ZlV8{-T|j<5wG-4AWO%~dX#p4~6zXF$u-kM<&)z1R*b@cso=l#z%yC3GnJL&GI^5NzW+4`s!esZ96CrEcuivI1_$$!qcp*G2X(r5gDHgOu}&61aq zXdK@v1lWUwF&vQJ{Qm+9DjURZ8TZ;o?2Zn2v76wfKx!iDC+b*cg3q_G%S5mXN5Y<` z;$G>p5LSHl%X67togcC*gi^@wg}w;B)Og+;((9#m2hd^d<~Zl^K_m${@FVaH;y zHy(Kr*HBj^=qASCI!MV533H#SZdOFTwI*uVcrqtu;ySAZvL(7t9_FP$<;mQ(j4$LJ zp66HF!=0lWQa3f+Y^Hv_BvJ2co#^KF9q*50$s@wJ63 zbG}&=Xgz{+wbnYoRP;u}uv;C9@4D5H(g#dF*|iA{M|X#^O&snfGKqGL?+ylN3mefh zZoVz$UE)VvgDM+jfC+xRljHo zvefVHhP>QxWHr3g-7#>v&1bOm0BRi3@ZMzQ~w6 z)FTNS8k8^G8ugLD^gLv?ycExL+^V&-SNURmb9IpKbebryL1EL{;SxjLQHf9EN`@*G zyf{6LDsfFd3bkAM^>vatEd6ZQGvuAT_m>mA> zQc~O#+tUl380M+iuSn~^TtntJ2|zKrq#$D{%4>|tv9mPqZ6V9Ri~cLp(d{%n6q>xX>6pOjk6&N0@e?;`aqonXtB}WosHC{zGzV_adI4Bi|*g zqYl^0fst2#xx;r8MzZJiLX1Nq5*EFn)?X{IC4YJA-cyTf*l}u%c7-jpI#6v|8Yr$! zB_$5s4VowEM{zu@4#}lwmiS+IG@M?#Qscv!cwTvfN2R~7#52<=OUYE|z0WQC-!1hW zPsW&HQAb0hyuD;)M&z+AW%;?R*veY#vDm5>mQws7q|f=TNiB+c>A#E(>3{H(Ja{Q> z+6$5ox|e@MiKx&`*IJ1meb9(>E+dD!*^Q8-nwmGeD(AGg1gY6s5T<6`%oB=11ysFb|Z$S98 z^^?|LiV2h}%0jA$j<*JvO&msJH^$*O^RaJaB_VxmHIilLL4yyD_xuvx3gkCGvg3L&_%{G<{~Z9kT^M3H=$`-&eB&U{*`*NO#lGjV|%a4 zTocV(PFH>oH7$HAK!pl5trSee2?zl7_1Q`h^copt>+UyS9&flW zb7(TtRABu`idQW5o7R`qbR`qe#m1CU`8oxbyAxO0FIJn0JnYv9%}37^^U6BknJD$z zMM45QyvWs=2C1n}9R@J9b88n<8`s_?OhiD!cGO-q;r;chm9e{**WlSM=B$S~U_@W$ zl9aNZTZILBjgEoqeu4pl3(nPs7SzUHs3Z37`$m3L&GO&e)E8Tgd&)W%Xxvt7`taqr z=_Fhna^;I14n0pshAw@9#W(ktKfFBdqD(#O@;4s!8)^c&EmZ$V0#a=l$vo6G5g3?K z{h>uT+!%0MzB_a4=$T$F$a6%&c|xLh*!ecY*WRoh@-ns{$FQ@ZI<(z-?KMkTCJ zU~f6x;1*Vl7PGS3`)t$p6 zf-8arlcy5=Rl}uv!!LqG4ZPa*jOw4@Nrsgt@pM-o_sTuTKyiE!tlxGL3~aUcU)?j{V6uVNS-0H7mg}C zLFj1&CxdW1eD}DgIV(T#^_tk!{59QnWdpoF#q0P-=@fC~ptn;3UnqCQgswxIHa^z` z%G9e5eefikS4k?N2of(kmzN(FTDc9z30LghKheh>7^+u&2=ryfbh zGX}Lb;u1rwq=*ZsF$n^7Ez~9^!gLC$dv|?0QWYzL4$&P-^1(?oM^_DS6dScUL}_$i zN=~C}?+20KJD=y>sI{n^#MPG=`K% zs=Y-kW0wU)TY{aYYrH*QZ(vWjHiSH7)7??ngaqb6BAs`XEuO|3rv*w@y|h(gjQPp< zVxC7>LuBEVQva4kPmcd#sJf?Kls6XJ?0}KXh6Z!Xi>~k$xW#ndwD!<>u~g;+7&wPC(4cOW!$Fi z?$fH+{GK8Cn2UYN<59;C2^nCbL`mxNg}mKpO~(-7tDMO^xtQd$#j&Q$dXCI>F`)^o zK;}Hm;O6ZjcFZ!mmSpopE5a>kj*a#)dW$(2q`dMQg8!%C8XC6f()c1AEgnKj(CTWq zRp;KVI5)MV??-KXxNr^`nD^mR73~jm1(ezT0=~{P#RPe5BKp-iN=z$tt5eBukL+GN z-G^H8Wm!kfy7(-vTj2lQyBsKnzDq2wb|HB8hn3YRpAyo$-wEbTA1Mu=t;}G%*5Ie^ zEvLO>es+F5Ud7VzyXpQTv_D2p7%I{~uxtGjY-Q4WDA~F@z58*^n)&Wc?Wj-tt?#F7V?~fp#fnM+cY?01x+>yg z46^0y1k(^G*52-?W%U*4E1Q_922ISU-vSvoE@ z9rDPBwWH-~BxTr#2B`KW2*Hse#G|?2VlB|Y<`m|{7b1?{tUqOP?PzLn!tk?A|ML`$ zDt-Ajei()zWQi9KXmgdtm_Vy+hloFZDl_VG)}LU$O?&o4?o)}YjO-LNKVpW;p6~VE zBT%}rZhN*sXZ};Sr3FfD5~Ve)n$-lmc8QS1yf>?|P)IGX2qexrY&R;^QBWi6dbvJ@ zjLYT`iyIyckFh<1Ws#@GZimRIpRD&emv{yC5#+ey-YcY@Zk9@V%>7Nu8sZq9v7w~q zf8rME`h!je4W#q9tvK6FruVh+Y>PlD&Ann7hSVkFu_*8OLwN$+-7lPChv$CI(!6*K zI=iY@5KbQk1E&Aoto-8=90in@0H!$firw`oF#?i9mPy0n^idi#us*t3lrCfTFan}m zEf$ues%dj%0|<{>mSNy#ny*gQ3>=S@<$M)mr~It?M2V{`)*JwM%Ri#1>SI3e)b0tvyW;Mv%GtcfsMR- zK}f}~!?yt*fy5kjl2o;V79@RH8MCf+_HXs(abdoap-{FKCfB^Dgx!uBxw0w3;H|VI z@4_c=!WZN_R^|G{Tv?)CrC7k}_8J`))Iu_j_~;V+rMqr#{fd;UlX7+oH`d-75e1`Y z8&AZJHrDhE9@5^|^K*>uo~hie09a60V*k zqf2}0c&3+$cIcxCIOsLb#7^yVceibpU=og-6N*SN3z0!?Etod=DZ#VgNY}H)gOQ?S zW`8IbsVi4SAp35fwFk^82=Pv86;mbKPm{os+>7)UJ-f#^a%`ZjJ7;x zkxMWi9T*we@_BsN*VJ6b*_Wgc}ffah>{RiIa&S!Q73k1t3 z2bqdDF`R}2ro`rgN+yWf(QE7k$1qz&mhbGlhW>7d@TcwsPWM|S*8xa2Iy--?=hzSP#p8N4;gK;8U$VZO3v})J&`_%JUtf6u>ua#HDRMi_GAMS=9&t7r^!we2DmIrIWnNjrTbL z+sm4)8*7+}xk-Pmi5lIt;=FHo$FL(cKY%B?R#>r>Umv^MSvP`PDx|KxR2&SdJ$`>; z69^o+gQb%?g3g#Mh76eQX9WZc7q(%s%&^`Fe5h_E&tuc08*#H3+=8w^az6-##{pFb< zqBh??mI_LSaTz$980(Sl7{xycq_)b&%jRNRLSmrrrIDG5Zr@`DJ^s=kfEqhp<%3>l zTO($h*#M_)EgYm)-J>1F5iE4g5{NYvJ(2uL7=t>^ z?ZtG_-RK1|#`9`A6}yT5VL`^5Aa0^lJR*yK-h$@a2#CBop{5lS|DkqYXrHx&UqDTS zejfbpphWS!iB8|x5i~F=JK>VNEnitLr_#S#ZN26DX?wP+qpRA{%qf#rl(TxXdOPJG z$mE|}2=d3Jdv#ozQEO+mK@>M4w-jBT(JidDGkAL!2R33W!78~$>lhBZJGjsDmWP}U znsq!A*Rnp+gf@7>%96ER+cEm!(QKMqhEA%JMKD_) z-(v!ho2^&1^WjZ2BSBqaLie<|rZ&%I^Y<}1!K%XVml3CBBxW<2rTIr4A`!iptNjin zE)l}OV0ITQJdumk2(Y0dCG6R6YC9IO;zF-%dZidjMR;P zux!W=o1Mb`C8H{pVXKxY*LlVB2C6M)55m6N{~Fv&n=jz$XRO~+GO~d~zR|rY?DiC! z58SU!Niu!%(~koeGCgG%9j47vc1~RXgOL2MRr{v?`<=_wvH@WxG~-NLK$;BKpW6Aj zRQKj$FGN8E@ODSyPq)oK9NJ3s>ztw|`uFMxWoyJ-A-r^>J^jeVc-Za$2(1OzQP+uM zr`L(OI6A!kC|UuYZdOO-sq?pO3?zbh_{|Y|c|QQ6x!lHZWyn42RUqgdz0T}?gkWx6 z$e}4&iA4yb^s95D(agem%d{td){1sLvZX97*j?sLHawXYC##In@U`@OQTQdbqT)nD z-db-$R!Zw@6}a5&embX_*2l5+Y)5?~vz3}IJU>I^jQ9AZYa+d-eNvP|sB4o~7kKWA zP^4DoeonM4Ap+ZIv_ka!kFLSzdu9Q@|X;Gc3fvq7-qa0`*mO$^+coZx{P zUfMh;r?3~kyWPR2mlz%Cz?s4pz9xw$%%2%@oJsgm-Mb(0B4HFIBod}t`ZzYggsl%1 z{OEty2qM&Wdk2*)|0XuoI`=L*MJ4)Cy3nf%+35YoCBpkLTT@$?6HO82)YBzSk*`w8 zX+MBi$Z5rynnmbFJ;}J__#t>`dCE1?sE{Cwx=@o{@pBu5?LeEiq@`UI$2M_k4gF%I z-f#crd6oSwO1x#z?)rG4l#oAG?b%NmMt!-f$)mP2)$^}S)NFTk^-PQ1QNn4x4 z${VR_8u>hdgrX`>*SbcJOi6H*Ed}Qr1SEebJOBuDBcHD#uv%69$D^LYeNI^-8T6^FvL#lO5=Ai zrVFzP$|>V(N|sERm4co(LG-He8S2oars+=hNYiwM*>)N7(GDXDaYRj%=?(E`VYEfqARHNTQVU5IwZOb3f?0;zT z-)sAyV!_-*=uU#6xu3wb`!%bnj%*?7&DWHLPsNu?pY+BgH_Jul)I(n<_EIwd`H+sc zjmrsiRN)yM3~`(7e4GYmx%m{~Noy&k!@$e>#^i|$iYH0#*=EdF+S}kli@?}(GeZl= z9Pwo;22&`8Z730{3x*Kb2bRt{DsNDs&e#Rh7f19(; zo=H4axp3HKHz@E0TZo9G`t4Q78!@<2$;p{Cht&2D*;j=+hHZ-BJ(l5kaV#2qtH7*Y z+S`%~)*Z=J|4x}`Qy@68?l%lU!L8DXUGi^xZh2$(B$Kb#1ucI)o)QpY^WJQaG`w-w zKm09aw%E|>N>J+%bcW!+eL<>ib?|Ir8NC9%XP^|%H z`!mI?Yszl5^-tNm$UT@YEnm5z=-@*8OM`XcEHfJVk8tbF8C2p%?io~FyIO|NQYx2#w3y&Ay9=1()emfhpi=GEc1K4{as3{vwuM7*_O{L~iIl8^+J z8wZ!Y6WAG$y)Lr}&S6WKd9C}ak}ObNq+#B`o+TX<`7Kh!u+#FZ`x%1?=Z|ZB9$(!u zy;nYJnj~IsvDh{eAZ_sM1bEq}^q5cI-Q9~$mFkQh1k}JyI0tNY>G7W0Xl{M0$$+Ld zZm1@C?>$Adw!_XY$iuNXlgM+B8z4i>3(e#sBZ)q0ZQ$C+m=oRCX3YA)=aTm=@ukJqTC+* zxnxy#eQ}>+y0_yDA|N2^(2^aSR>o2?Yc!?#c$i*$)d1Wc4O>SHZCotKS`o>FEW0rmfb7#lg75v zy6RSU;Mooxi;ow2`~*Y zw%ma)Pw@$BJuH9td5Nlm=z~l3+{{Dh#rWYJC9=61k(7-$e6zE%-VcQ zRQ;pQSJ}Uwg%zNGb>!*Xm=hWEo%c z+5CP>uQ6(gKN*BZD=mETt-1G3DX&FW&yztQ@uKxJ<&W`6zEtAQM2v^s*GM_(E&H4hgB#mu?z7I9oZ$1-C7eZFj@u z0y?dCI;j(ig4VsWmD~IO+3No|kyODIReu^C0!UNZX6k~Ad93_vE->MC0vKM5`)bdV zW`>-~mp7mR}7l|yP~a$MsZ8+T?y>9#xT*PT5VP7QL^ zz7!eiNM={nZ6@9ciRSUbq(RwR`!HkjaQ>j7s=Es=vqE79NszD0hkP9%M-oG3If8~9 zyzBN7l+_F&Ebw)iBZIZ#*zGYev53q4Zpi$l^-G+~F!M8CDW60=i;h;2eW&lr5{7HA z%rWHWbNO2mn_2VXpK2+) zWXXF3=76((L-a*(2^9(cXmF447*jIP7XEtp9X~bTtrcWwE5O!`EC&^C-BYk81167v zpVR(LdHW)mDZuZ1Yn;q}Z;N@UYQvdp<2fztDg8$qq1DdM!OMEtky`3eZ5Q1;)FvL6()E+y2ZP5Qhzi9TG(t|6D&;7}%} zaXrHX@hv$!grkFLCD>T&(lRJr4?S_Vl4Y!a9r`(+11}oP6#pZ__?zPN9qbVv{8DfQ z09UyD=&s9>JBe#FdfEWTE4oV2o*#S!oeMBSLS>%-0ny@;{uAy&NnY&rJlL9{s&fNQ6HAG~Qk=8&U36;>W z&$Y0!dptoybQE#pn~>Zphk@0^ay1D16`a?{hJ7^g$x1p#MbnXXO-$WtTWKe9J@S6m z6Oq8qV|`+-j^H^UJnCPwvd0;A0zA7LdM=O07(b_gbvS6frL5~1Ync`7}qL(c1PR389 z2DhAc;+y`&*7S~apt28m6|msEx7Tb%j{9%u3j&TasWim!HCf~p+)GI=0V|dcUxKVkqJ>{`esyvh>_pcyoH<2j$-AFNJ%RtWT{yTF9QlQ|6m*Sc;a+%5LM) zi*@^Zujz|bH-AOv{U-~+rBXQw`;K(;{3HGT)sH(sVpqH};8PtBK*=;**Cskr5(cHK z_062mvZ75I>m6BlNfqZhl|i)Bz!av#s6>cg)Ii0j@KXkPrf9C0wJoWS66wNuxpkja zSR)CP&r-WLf%&y_3Nr;L=#Mv)Rn6Q1f?0B=tFD%xgGxokeyLwyT8gV4H+S8<;L zhw6X@@CWab=~I#Vbmt|F`bv-g`$FE~{0-Ap!b*HU%tq$SBw2O8Z=nPbz}gAFn8BYF zo^2l_y5PHy;JJ8yA$9-SBuGXLq=)etVnFeXhB8Ou1uvac#M}zNHm%qui@5Va1${i! z+8Vpw-OxPa0qqlphUr{SKMY{G?v`QQ;L@*B{DGZip(4y;dDvI0LA8?xj0w}`w5W1& zE-chWqS+Y7Be6Y5R{kp`30F^8OWzEDt$gasYK-i)v-6)JEM5$Fp<-~zV{gsWGTWm# zvZU9lAvMr1!Y}+mUGGqw?HpMq<&9i_Mh>F?PE{N883u#CG+FGwHGBVnC!^4ja{O)- zkXz8Y35@9AR|0g((d8Gu6-5oVhZ}zm{|+ftpL=xR7Il91dSCwVVMagfUxc+d^G=Am zkETFUH|BeF&0Y17v%k(|-xLMU_V8^>p5YH~~qA?}T=e*5m^ zb?k>5Z^f78WIBgEtT9y-*h%w?rZ3Ih9$-$)vl}ev!=AmVd33Ltv}eD?et4pCPYfB8 zQi5Re3KDzNK=h=Y9tAHX8>VFD1ie{W25kj!y_%mVG$!?04Zii$%f72)td|{|gBJg? zW?JGoeygkz_{$WHi;MD3tpr#s)>F*!ZH>={V*fyD>YLWmni%OIgLHxV>vrK`eseee zDu5h zLb7vi}M^`v0M(ch1*@T`tUVJH@-3 zQEsSNf-)lClXOty)WCBgEY7w!J@)|pWfB^}u0g|H38XB^N>JFXfPzHT$6!6=(q!bJ zgJ8yXAhWg7`(1)=vz~JHTjh7%YssnF#%Wu-^(UqHlmN?AbP%8mo9dTZSUIrHTJzoC zruDlBaD4vio^B@OZ(8!awr^F0;bYv^Np_`uitER;g;!R&g8dqwDS^r3)h^kVo>6;g z$_~9>K*z^o5wch4 z=BGzzZ2YCn0UK>D{3-7`aIC#1>dpMqNRf`J$%oKKKu}EocHwRc@m7p(6%bmI6zG5g z+Z{yUp&MWPw{LcyAw24LYa4zxz5BD}8IvLpYOx1^$tFeC0|o?wmT?K$)bLm|t^<5y zs&M9$QVHMLv4^Mr$8Z0vT!yNh0ciRw}Rf2$v~MvQ+aM^74CQ*U<{0Ef?c?~}77XH)0LI}G#TL^OjGclefKsl3rP2BfVFC9uAGHFB&!>5?QPW6 zMI2Ju{K|^OEiq=zU;cQ?O@{PK(B9UJ&D#=~f@uu}-3e7UetLg?z1zx)h`)QEiE=OU zSK#_jQ!YIH!o6O<3M2zfo*f7x4lo6vkV3Pn2F`6ntO$`1 z4pKnxxF9{5%|z&dpx(KI^&i@(EoUQCGe`fhi&CN@x#T?uQ*E07WA!JkLnGi%rZ1c2 z)E|9IG}m|PHv6uSW+qf+Q6$4a?CrHaIe78cals1k6>+hyEQqdPg&t^&%rVI&V zgA^R74}wpCzr<`r95N4v1@d0ugoleUH0KHC3O*=~0;w85wblfNiU?MEMcQhL@4dI7 zJ3^<5X5~Q_&@fIl5qR0DYoQ5A%5$kXuPBYcdHeZmHsJrB%A#Yx7x7N4ZY|pDn%ZR4 zkOL+EvT30Wel! z*M54df2h@GoU97}o(J0aFA?xU|6>?hAK*G*=#M_F(iR|D9&h#_zQs)>uMHeqvFG&B zHOc~bC+005&K2C1875^|dIv`UI$Z{*puIdw5Dy5+F2E-$s2vR>iVt0P`6?Y~VRnq- zs4oDs75j9@iP0G_`|??%TPuJFu5!o#c#dc`4_JB?IPKTF35_ob1{rFq{!8mA_qVuc zjk^ZB4&=Q`r0?F5RoYPah%&-X^-cvI2R7T@K`Nc4K8fAf4xGKeTerUvx|4!K+avsH zY|QbSS5nx7@@=xYNJ-$s3HXwOu@!eJ_-E52ZfLN z_!hXi?uo0dyimTVArkN+#k|ZOl1o-LFxCqa>C1evRW`H!FMrE_s*wXYH2n{oBf8Q_ zSp)$$u_6QQL?#UZjF1=)+KJcF-0GzSmVpi(xUv)Lz_-1DEfhE?DzthYQ`H}#OasCJ zr+@pb+7C<{^W93*kUCb3=JTGarCLAUxPD@X@}=b+f(o7R8W>Bq$V~!VkJ|~5hl6EL zz8n}JiK)s4heYyoi&t+{C>mv73A))3w6U}|i0{6(J%5B1^>OXyE_U~))$UKu#oV|5 zAu|8x2m!du$N!Qr+7M2dFr_IrTOP-5<6#uZl%3mNK$!iO%KmhsZ{s|DwRnHKIC{5y zpEk@{oE6dAqY#@C!!u;)MO1-=?gP_;1J@2rzAbt8vEo%HY|(m#gi9Q-XRpVdthZu; zm~w8N)V{e_z@m@5H1?k<*a42|{#KcC)rEl%(D&rMSu;*tZCc<#{<9>2GOcyj?U3rK z`vf-@|0Dy9j$FgCx3s@oXE6xOju(!}LB}6? z6{W8vYgPhe2X3P>1yWU zq#^4j$e`%BK3{*nq@iLP?(wWP8OJ~{s> zEWq%^f>lBdgsn-Un-}=Gs<)=nNy^82=f2>L;f&RImeI;6;db?{zV2F2VTY%^OCx~L z=??m@sR>$_oCB~iH-IkyX5iE#?RTo|b|!szwP=_ZNbO&IZy1;)W5e7!3BR23=itFZrvvbPS4dh7a!1x6H6L^z;1#a zah&JI1WzpN% z8LfDNSvJEx4Z}T@=4(zrz@;084c8x^!I;~(V;V0Cihf){9gTsl*~lRu>)`k*pmNt-dsSdu)xZc)ZQ;V7`1reN>`wGzT=|DHeU(De(!|9 z9o_eOtCEB}pjp4x9^U?|)Sc{wp6rb#>$Z1q#;sDqn<7TgPZNmSai%o%9MQKq$2cES zb$9pAyQd|gg2$|G5eS>DUO)bJJ>*vo{Fm{`iZ6pz%pF4|b^tI&<9u}QzOUy(dzij2 zV)xO#{%5~~zbg2rS-%-Ms|b;|@~TnU?LqB_5+$?vQZ3 ze8-vVJ$D;>`3moi+*p2xoysFJ56I2?ZMn~mbL+?q>Er@kEQCwT1(A9ik`YhBE>cVD zQ9~dZJkGpVk+9p5=IWy_8RY^G7lwxFxh$)2t6Y&f(03Y5d>&m~@N+6iLcUjQ^e;G| zFR(hOO|I6K{B^k#72hHEw!t6)YK#T0+OwdK*deV78l1J?i zKPJ4i;G5Os3o^di{WYuZ@ioZ;uIPu%jBc)%Az@=y7EwLY+-S>WwznAtn=hjP9B^uD zrHSXCk1Z7Wl`B2-|BYTrIj1j1*)kAXP1hp7b*MIzIP%35fjnt4)QfR+#e^bFFQoll zX5|f{+ejo6vq;HE6W-34r!(CNTeU>u7N%DGDkBau)|Y$U%GQ1%Etxgz&`~+l29?S% zg2rd`iYG=1l}xTu?VXEm`k-+U(u*@8X@6@`crj_@Y&SPKnMBRmBc~m`0A*9vWVUkh z2mQt*TnAkIY(BzALO#0e+NMFf|L5R}n}jiE2^s=tJXi9})~OdPXI64~%wNSkqM}DL zM>;6`p3mzOpL`7*jft;|zUs1#n|imY1UeA6Gkug|_vBnWFDtwsKb$%P8o-CYqj1dd z_>y!kdNvICJuPApQU3J~*h6D)79jiWmaZyC)#9xex&5gxR-cWhu z@jayalaZB0Pr{kG^uq|ZmvgPo-_L7+_?#PHw1rlR4AYc3PZp-vmI-6YoIX*zC#_dC zTGfn$MI2aB9`cV+g>UOB!UU1D>e|RM2146tm6xFQ(3Q4WI6hB;J%jvt z>_JyTQB|4v=FV-oW=kSl!uJQ{0ekpX1Xr7J#XgJbaCONSZ1mp{VD)%Oac$l#E<2K5 z;eKuD%Z9#df^j^O@ew)_{{6=(`dZ+>AI+(3@TlY(efHGVtkUiA`51r42#x$!EVY^_ zckkWYNv(y~hcsw%H{-dNSK4<3I;3fT;vCQSeGy-;Nb zrL)*vPx&UJf4rwyJrCP8)H%i2u6uD~_f||v+P@+a3u}4!ou_{V!Nac^tQ8zfV^tf5 zG`7d~wg&dLhFZt(pu%v|iZlP$5Vkue2EUUZdGKXKIlht9tpJ3Yxjp6QxdT zm=Br9$>nco7I}rIC@UNy=@efTkNEqLK_{?2|F?GdeXL)re_uUw4L*7S=8t-aq{}R_ zi&u7yt;j}q6+GYm+-5M}EzPwf_VvgY4eK>J2h)O?CHMi8o&<~`%=k;u?*A1Q`%hke z<+mq2BD8b)pq@L6-UUZ*J_l`!P+Q!``>%n8^5&0W@Zy-ewQPy-9r40;ImjQ=8MD#* zT}I~~5iT>u*GF;vqp|*3O)if#b!N28^9}jenRU~~r%+VQ|6E9hA z#l3XMso@s*u3dXYFLJJJsRe^2p45P!WOavtNWCBnEc?Q<#X;&H*&B;n1ye{&sao=#* zFmDORk+J87o~74zE-d`}#xNrxz1zzur{SQ^%90h51L1$V@50AJBbVuZ*L5qPS2OMDN+|h3M8q4n$~wz0a>W zqH|D}IljDt>2_dq8ch z91gS~7ZH6iy3ug*eCs?P<5?5~7ozm4Tok_3N7eSQLA-%OReISQG6tKSjhPwC0B+D+ z&E9dvq3KWB|L-vdGMUJ>`E}hG4_koqft`^OFE5>L^O`@HXIbLoeKmCbhI4x-@Oj4Z zU3AkxC!Omepq1497i=e>UDTz}BW3m!c_ucbgr)-s-pyykJJ{T6KX;kY4tGgpvTwSo z*-N{lUdy6|Heo30FWkdg$PA9>n&#Mt4C!1OT1}eaU5h7dfW%wDXLzGdK%4S$_w-i$ zq|{6JzrozMOZ(lt4R!*&85%#>HZ+y|Ab=gFcX<9-zs+n6s+lgiXHSBzaCvNf;5R)A zlXGzkGbbq!pBJXIuW@EhO zfydwo=sYw!jci`%067e=UmXSb3-!#n2cGNN-=w%YB?(u{Cmd|au1il^GM%oiU%w3+D!8LNC#%9G9(b@`^Z$b)l$0gHWA!TXwkBIB?t7R~jPY}X^RKmv ziv2}Q+9jlW_FzJ9ImeId|J-~d$u&*>6xa{;+N3s-l;WhB&t>6w;ou^KD0|2#_f$!+ zxo7>zkDLq(P$Rea45Og$WZ;G~uIX%Oih1v-Q!)P1DIti;vp#VC`?IgzI2DZ7qYfkW zUx>AbkGabO@O&Gs>}S#myy}SrQ72P#1hW)xawywkxUBNJx|s3D^C7HR0r)wHioEFy zb6b!H&oaBhSQN+2h`1J5mN)*+uqM{0hex9yKlOH#R&(ra!I-i#&`WSye^4G$g`ZI! zH)8DT6N#^s-??G}hlQT)#@4Ybq>df1B1^P5ao$j zZ$6z2bChKZJ^GF@Hec680GW@+ck3{}l$ATXvUB6_>bCI4Z*`TGjX|+VknF3wY80Z~CWb zoSyZPmRBkCL=i}jn%t=YnrCkO^#DKJ!77p@{|EYyb!Fy-BTk&*i(U#o=0f>;z)bNV zN^)XzjFUNWj=YrhMP;;C&X~z2i_o|M-AYqJ2^D^Xu|G+4Zd;pn?)a zL9|R4#C)aWO)f;cXOn9xX`Z!}W&2e64-W1TdkWbpn;olHr1(EJs^Z=Z*~;G z8F$+fIT5QPwP$as(|wl_bxRo3}Ivu4xugol*tp zEsr-BHZ(d_mJo7M8*1Ouw?^;OM;_z*mUPrcCb?%0t}<}pyaS)(wb@@Z?ZMqs-BVwt z)a@LN->d(B_IjZy65AeHu`^m^*2CLy_)L8sV~k@BV5@OkqXi8ac7#C3wc9w*gtj~y zh$N1Dr{r(XX6+L>Wq_?bHT|R#K!(war$TGONN9ylc#;GzTh8M<+uo!!&qhpN9l&K3 zNO|o9ZBjin#7KgOaSyl_HLM>3P6>DGK<^)0DXP8-l2^1M$2dKr8M;U>0p=sqLUQb{n(k zxm7XQKM9;J7B5hyFCs*zStNzmg#Uf=jpD$*naWxuj^oA$ft4Tkj?%piKGGOM{&hV9 zD6ZOlkjuRrU88L?Uu1$8%YKz*l21RTBjHB!#vAvaSH|JV@|(yq3$%smyLAA3C0Va+w#g|lE7+oyeyp;bhl z;KC2!gnav6Py#BTnKpoyt^ygbiI_gzCc@}$XdP%2IFXS2(|y((-X#D z<7~&T_Fb3uu4Hyr?D8i%H@=(xV?A;uzs5lu^Z*c&|Mpw*|4Ys0UO7F!;ViKN4V{Zw zxxMaB)bIkl^-7j;?bXrp=K|UQuF1skFAQAU`O%Xf!)w$l6<$f)4=2f({b_vKSB_Vw zjQ*cgO9#dPP>u6acLW+}?=J7d!_rf#9iBk&pzgKmS4emFGD$9LU%$_r3szr`I6J*| zR-X{voXieC(}l;&=F>%{cs2T0!;mZRd&N~gm&+Z9wTXWX={?0WWgS~1=&Xb0-T_$E zrXy1$+2Iy%>Vm~ir}iv9b8ImkDBt(8Q5oi5@B>~r+15YNWx)4$X8zDf_}l3FS(pOjr{8><*Sn|lf#EoRJ1EjFnUCQ+j%KwiQ zZPfpL0Jms2t96?Fx~hHBh86$8Z~sHuYvQLgeLekpr1%g#c+C10I$u+N z2VlthnLMG0zbx~=4(zqksp)xKJ}JaoMi3=*5|Eel_XGWt6nvtmmgHhS#zEfyQkGqF zg&o7+LBXFI&Y$_WP~KZ}HS4mGwJ@u<;pX})e)#jF1SA(* z#0TTTBGrb(+QJ7b6`TJ?V%f{5B<^pq1Oe8pQR4q1=-*y$1)gs0$R;d0gAFX^^ zPtxMwO)>txvxkADg15k0gdzV%16jhO8>bs<(EpVF1T3Y9`M)3Zzl6oVyLk2YzJ_kx zQd0qked#w!``bECzc1VH8*~*=KY5~$x8~>njR1a-gFB~;^Stby$^Zq>Bntm36s&!` zzY)miJNj|avX`>(ZFSdr8NGir&4a|J4endZ8#Xoq5@>8A@DUJb8s5sU0nW!8zCg7< zrqsl?93MmLAmu8uJ&rN4zP$dAuYmUs>VYFR&z3U3z_z$>RSAGX;Pv&*gRap<`=H;b zqHTHZ6r`l$dOd$cnq1finrhX)>Q*d-m5;$cXG67h zaL;A+kelRUSmVCn^|i}IM$vkN6ni2BLJle)8ZEDA;s7^aPA>;wc!OgFhxe1xirO4o;(l^0dbH#r%Okz9O?RJi`SBrU zQzb9AXXWBF=?)t%a6OH(#^ZtDYlBW6;KmA5Zr9F+tGqV4)6MHYP2MQ>3;0xu zNF^FtmiGHAYL9Qd1*Y7dP_@1TgBTJOcc&<~|MVP~E_Tg!*HVqH*bs|>mr8^b*LVno zq$fAf;VLH7gc$Eb1R+<@LTAWIiRQKdj>5zNG5-ZQk2iB`;PEq(U@}4vm~TI(Z!}Su zYmQ%G@%Zr9-tJpw1@#BZH+@0qq$mGT&0XXjqX_W(*9cdkdtmkPpnphy4>aG%sg0^9 z>Y>q?en2e#bSohqcI*csXr#->4eNwUq`yx*LE6Xjle>!sd0EIx%p4kkgKvD))c^Y$NP;lrw=lL@3&cKClrZ{Z{*8!%faF;*P2kJ@4A3sxrzDH{` z2f^5B0`SCZl`}JSAuD#T0lkMw@?!yaZ!^o1v&C6WqZzn$aFVn$to}Nb9bn{12D#y5 zbtUpwCgnBl*@p1{>NZ@Da;l*9KNTgulgcm3djU@WurNxBZo93#DD znOe|3{?dk)2PmMsJEk-?c=JesWGlQ8H0T_%krd}h*#z;(P(d^ckt*Pa19FohsyYsV zk3Qhmm}2!tH>-=!TLVgx+~_m$AAd}wIT3QX8sgo?hXzaq?7%uio!Ph+GL4ZAh3DX0 z*X4zjOd`&2wZ+tZUFAvleG{pxnmnZiBmr2wQM@PW7TxeLrm+|pM?K-ky}bU<0Uqfu z*l6j$XMzEC78;ke5Fy(D{(EV6*KA2w(|A7nSq*ZR7JyqZt@g%1YfM{(-crS0PjSKTejWx+3OK|n=8-LPZ3 zyDvUS0j^Ve2<8ivUl(_=K8VUU2~^ zXT2BY7%{xYI=Y#a4uBK2{8w=A!A9u%l=0K1vn+LKULwj+NC`(+W5^W~rzn1g;0Tf| zbJh0h`=;&nw7gLNbaIff(@?CJjN?e5FlOwjxo^rjD)l53P?|rbA3Og91Ab7A`3J~O z3xdr%v?OwkKB{pOQVeCZ51|+9pU1nLTAFYTl3X?d>W68LQ1_2_u%ov5RhG9_?9*8b zvmy8l3GE0*l7I@ewFpR1FrzI9(6gGyKO0RZ% z4%>SIY}bPIF|Yw?4cmYbWKa20&3a+@J`fEt0(wEWYNyN#(T^NfpM7&882y}IowFcR z=mCyp|GYPte997>=DaSiFoD?zRu54h`bz>>JrhVh(1e&+bfxR#1~6{}9HN6C{bq&jnAPw25p)gJi`NwJ zn_w~2hGUrb7BO_8`=;l(@my!TxGjkU5};3L?6W;|54)I9)0czVU7M&FCqxK=rDQ|u zk9H<7u_5zS3T$TL;|<^6b4PpnXz&0v71M|ZY#}I;tdzB&H5>1$L#Y~wuG&`snk3p| zP5^Yd>#4Zw;Aglk@_pMa?v&{zrikn6@j^cjI!0Na&-s8%;pa57GT2O#^7;fq+81LR z!FT|fei88np3=p5l33d7KVob#Y<#a9LGHsNWPU#)XCEKT-j9^Q+fVs3GYrX6$6ns< zD3?-nP5*CwE9!HwC59Czh!W4Q5wr2Bx3z`+4rFH7avn$Ff1Zs()OlXDYVvPngxcO) z!;=h_zfyB~*9&}f^nD`;_rL%*9Rh?e)-P!$v7so4SKy}se5JLiYH(yyY>g^w9YES_ z@_x|+cFNmAU@HZ_9?sGH~aBd zKkD!PjsH)e0fAq9=3@j(6_|esEUie|LS|6I)06BPl=O;`udOf)9L^J$DziaDi~P3#h%u` zJE!zw`uXr-nR`|-1g&Syt6z9)4bp|c>9Sf(UaH0w|efP7q>``Y-B zrZ5z_Ins*o1@k<142ujokTaRmMcX)f=i|7?S^~)eN+x5FR7z;IT(1uAVs=I#Pj%MN zh3dDKIl9&@xD4y}#UC&_U2oKoskgdrCqEE~n_DQFf(=OrV7D%1%Zy~d!+okB-MR!{ z?(J2jSfnFBeRD7f%}>Pz4RK0TXCLI-Ct~kBk<|Z88;Ztwpk(caM5Q5df#qqqNSPh5 zLAwr6D6e4q?Su4-hR%K5?o{&q-fo_n+_4&WN874=B|-%zzmQZmyHdt@enD3`g$249 zON``57SbuPO8($F%2lv)=63uLNB;9W2WgS+-0}51(YC|SiK&GW9St=a9-d5_;lqIs zu}>BTtR+30?^*@+dF0ncp)dydGU7T}CU$|lk~9j;Z(2m{@xg98KN%8{K9*kN!AG+ry5eFscLMimIvPk0aM zJS+>O71is+=_anAkS)b2@?vi|mMIAA9Wcm_*+b01P?1yz7Zia-RV+S_HZi64 zE@2LEO57*h$7ea(T?rY--oE7dtdU?lu<(I%=2PSu<>lVWB>u$ukmM0htd+A7%F+8r zz6`cf`dwwi3<;sDVJPne!$?iNmtaykJDJ1ZeQyAsL%uIA|}UQoVy$nK&EO(edYGogH`>~E}D+Ur?O+bTgL#&uy zLR%y#iw6Hvz4fAaZuy7k{jNCQ9QT zb_|!FthhQw3HORdx`m|M3mB!>;eP393AV-R3876jw}R7WvS~BHA1h|aBgGl4;4w%u z37@8mKuD$x`HBOrWa*8*p;ERT>pATILon!xUS3ud+ormhU)Cm7{f7;-d*)#&~}l=QuGRLws=I~N}bZ&XVx zGA!8{7L4f z=ozA1RPn0$8g1aPzw2zS`{k<-!0YVmb3h5#U+D-bfgiL%b@5fiYx36Y8py(;z9v(1 zYF2z@y6`N1+Rd8jolD}-8*dw3oxaEBK1OOLN+O;`lAQS#WGVkD_(e>o;iJmOSJG?X zEeMhuYyxtvNVWOhLAFrMYY%w?l&#uJgasO5h|h8igqrLm(1@30gCL*6|h?*_|1< zpt^zL0{pp*ZI>(DCEHU0%gIvx3C{p>SMBiw(ef--S-)QK2_4u2vn2-c0m&ZcUa1jF zYNKK&qV9bqX!&3Q(9*v)8X9^)b4b~hlG5v-Tw^Qt4DE^yBjASi;tr+nj-89251N9k zbZ{jQY6|E#eRJ;(_i2PxB*uGvnZ3`ymo8b9x*raQQ=mID_NDPq zB0i=tm+1Bce7*?-N-XYT@nJ!0RV(lIm}J5H7G^Wa=R{ZpY6oD=c;k51LW)!1k^AW* z;tKF-8z3-#)5kX`KULpsHfKlEMgPG;9M6zkkvO%D*jr8IK>tA+wHneAzMv**uR2)F z9c<>-@_qDi)g@%{2h)|*i|tT){zW#N0JZU+7nD+nJxeqcPW@(cR3N`;mT$YsjR5a6>Pi zJx!cEif$XG^qE2r&Of<7(`c#OC&oIJsfF3x&yXCKUq)_b{xfQ6T$ zW9jVMK}-#`t+WITwL`lL$`$4Ay)B+k8LPH$CT0aMoNn|`w{+&96H=vsQxTw|q**sK zms%=JXn;ZpW^K&3rxqy@U?-zjr$pYNq&DkN?R#nh%WnQYX?~R+O^19%&d%Ri643LV zOMSxYq@snfd-nazH@|tuo9D!8v`aMO+vw?~0;DI&RM9MzPl=I!O&^K1pW0ysO~s4} zS)g4XYTkL4kVl@Kfo^_X4Qrno>X&+R64MBUq!O_kVwBwq?{Z*N0ee{2@_6@`WA1G= zlL?IT(A1?ADZRsCWLk@V$RlpjMJIFcDb2`>-SmQ4s3pI!c=qZwGR30*F3khS5WT*h zPoXP?ea#yYOEs11%a>!uH8d;q9jQ%h>V|kD)g?^w8D^*sD)~uJ z$tV_h4}L(OAEp?oUNTyu1yD?stYBycMi(}&sGze;Gt+-eGqSQ5-J^k#Y6=Q+EQ)xW zdAXC`PnIY2hN*Y^rmy#sd6(jhJl~ryh6G1!j#QeUqoGD!P1He2RrYXvgHmGAA#J!2Q!*uRmo2KfBv6V#}K>??7rM+7P}cYM-t>y;tb!vGGkNZ2UU znkg80DE! zl&dHmF(0>ZX=V*ny6+O8yXP}>AtE9t>IpT|=Djo2G93vrp#utLh7CJcpe~kS#NA{< z2iIW>rZBzkRtfTZW$TijpN1Lg*eaE#CgUZvKmt$ccWvE|Q zXVYme5&Mp9HKvlfqQ9#UawP=9+LD_>Caz)XG61WqlV`vZ5 z$vS9SBzW|ZA13XD5^|ACiu`_=!^D3k$TumWN3RIt6HEC4LtB3@fOAxdfa+Rdq2VtH zcx%kZT_8U#c`@E>{v1X`cswM15Ygnj)*gMOaN%46=IK{MEa4qdZ=sTu_%DcO`Fb9EG$4A(B;EugkY~Y=Mt@bH zzTZbm%CEz1O%t3##qRvc`fT@Xmd)8)s>)+cD0v>F^b3a7PSx5} zR7_|f{U|Y!CKNt-MW2|K4%i|v2yjFx0GSpEsfn3&C6#gIA&I)!pc8{9^fSz~8VxT1 zYe)x{bJ8J`9|nhdk$H-wG_MaG&Mu=^g%uBsEpoLz|zl4u=0;y-di~cLRbU^ov^5eov<`3Usvq=jW2t_Y}U$% z2Rz=P)uZA(DGye9_?sg29lMbAAqOQ***mV0ufR2vJ;rR2=-xq3=UhkWrTE?5ZYIqM z@wjH+JaHNC9S5#)+i?kLd;68rHSzob4Rh7ZyoD>1rB3tJ13@boHz;jr{n%ln$911H zr{RmDjxOpnpHWsMS$#3UYupz$b4Bgsp|%gFoqTBWhMXOK`;d9#uVp|bxA4m|H4UR< zAVTISQtJ`|`Z!tMe|`2n?LCw4O@wxYT$7z)3>l-VtXBNt46re!dWM9A7eUT%=g>&e zIMI03KR%bdBI<+`i^omMA9isU2-dbnn*m&geFZD3e2mgXE-t-fd-tREY6{#=Ic8z)^wJdokaFW^IaE(_yW(z_bG!}OFoy{ygFm*5|Hi~ z8yRbj5gBxs7&Ie{TLigZ%b!tabzJVvJK}H2lpCiyre5{{X^DwL(08uPRcUI#xX|yx zN-)Y+M((=iuk+L{T2@eh{e#zoiJf+NBJJ!XxpA`NVpwLR6JBp*CZ;*Mpq&CTFk)r~ z_A3byZb>^vLTIZ@j3{khT*x$lP~vG$&_GspxcczS;&K7_bfg# z5HM(2v)ZGl%|x41>r|8Sem-8WO@df5YYO%5p}t#|G8$i7vs6{w4f^Qn-J%F^#|*$7 z&|^D>nIF3xY~Dn$IVDTEC?-;*--RPtn5W{K&Mj`&BG-iL48H8gGVzi&zKY0|O0-y( z`+>Ny;*ckH=2LRo@gzcjrKgA>N@=FH!C25gABDMJ%Ftb@WB^>(lqW9e*J)pzkQ?7m z28IWwYiN@#4MXeA((IuYt2PPG*$z+hfm$n1t$BUN zW#bh!q#6ZWh=BSU#=|X$A}DJu0bAYJ!B5Ijmgju#-nf{jya-0bzW%clH4R6)q%Mbe zC<-G&)4&`k0Y}sLnEkwdQw4_g-U=S3!Rm>2K1!me(?o9N?fr6P0(obbP@|lAnh_d_ z&+9ZX7;lstN}!Z#YQS;uXYivLSMT_FelZ$bft~(P^KVq$>#q4KGqM>P_heoIQe+L* zhnNX#x5oGr%mtlj94)om)MZ=ciTD@;t{toyPLu|ENQWYe7OZqx+8GcyS$dI*%SZiO!U)eb(Q4{haBu4SoL*2+zCQlZ0)+kC zKAZ`;rcN(W{d5+-W%9Ixr3N0^N@7Ow!h+*!ue}9-_?Ko5|F;m9(d|bJvh30mYNC#! zuREcotUqw`@s8yq1(aL~>g=~gor@-2BP1MSKR8LiT<@``G{2;H6Y=H7vt_?+vZ%G^ zw#UGAHYpMkZz_)UyL+A|g(k%Ljj~H;>fNCWq)gT?gDl|}gVhUFI~LESUZuVPoG<=S znl3ZQN*V+whDIt9nJ&5a`LH`|ac?Ot#fzQ`%^L_2t&$Yk%aKru|%H*XR?Z%~aRR>P*cgh*BQKy0U$6VyH{=p}v*o z3dKr<6691{UChIZ$0xut%t#!92E0+C-rtqpJ#%%YHrW>o%tPdIcxDu&s)7+H52otS z&5k1XX9nZV)>8|P7<{yrfrF9n!;qWhxU4R=r#jC+<&=1ULx3os5)*CjC}Z$Q`E;Ga zE0a4zqR!ayVKGHPb+7i`kouxS-v`Uf@h6H{`23#rg+#NZhdHPkIW5AZ2ny-OpV;<^ zFAQ0GEYlxh@8TLZNKd262mREy-heEL0_3SV{8I-gw}W&tutQrnec9yzHNT%RT~U9= zj(|>nJ=$`^}kZx^iI7HB8E{KQrRV=N|IwtG|}^Tr`~sl@{^=IQBR>JWugg5 zzA6Y*n{f_ho)o*l_xg|SZq@*wcy z(f5h$DdC>&&+^Adif$%650MUd^hT_G_{X| zQ1rT{l9!cTo_%7CPdGZ}odNrf*5w+D1y*vo0MP8s7bZ3xZ zQ?x?#Q^IwXI-6#>SC=Aq?cCbhs(Q$(RzI~hec2Gb3=AtY4up^}B++Mss#BWy{V_Q) z>)lpQRsaADA<^DyhGg4V#J##otv@E#zK(!an~dnenl2qsyS%k<%4Dau1YLW4O9S(u zmCx!`xhPpbUT30IZJIy3gIwhg!wL*0_PV$)6q&TlWE7+%1Mkbaa=maPaKKOuQF{#O z^I!no!x=7%Wh9P#@z9|p<;95l_7d6;i5`3gw(r|338Pd;C~4GUJj2&fYl-ORpTH0H zdBA+A#DnXXDnzYduJ0R~9fr-?L&^fPm#+4SjWio~iU!?jr%7&S7=a<6{?g=)*MYPj zY=o>pv~%X$gMl?qn~}v~q@K$TNj_hzeP{bsh6Cp-7$d1B`^s~q8aRI5Z}d0Ti7&4g z=55cT2gLKSfg_&I=NRTrkN$g2W?txkC_&WtFh)a-#G&;~+es)8Zy)=W0f@-*emjGJ zaSHEyAln0a0ExXrd!Q@P`VczF2abmXhgVRW;^mG)8CF5pAG-On`&*DNc2E8YC^0?R zjecV>xGA~tNdRBmLDSw0weTfEsEGk+f<=7oE5AKKZ&4~6z5YX;nYTC$v#VhM9fH%t7h`_ zck+=_8;D2}N-7=vcd=C} z(e>|pA9o6+1T-{@cB^FIik~pLhqoC(={FH}yRpwZSwUo$DdmAsZzW@1`=(K9&OUJ0 zd(#ldjNM|(d#{CI`DQkKF?idaA~ozLt&X*$RyAl(O^(}BWf&1N9umbGFpRV>3qeuT6bJ_IEGXZ!5FB}fQeKNR> zBuoi^TtO}O!JJyg$)uPLa!++9Hqu0I5={JXi!1)IkH3;a5H-3MU?Ja%aH1}Px)gT@ zC3N05@(i^w9aBTTY%BKYYPN-uO6$FB`erVoaVcx|Rotqnl?bmK6}982*b6r7*0_F1}O(Lyhd*Q}5AKuG~UCf7Qw6%8WbQi{$sG3P>qiH_RN4 zUm3iethtiNWP?^Yi6(iJOPddoGCE5jh!&0IzY;7!mXT*h>Gu{@LqH{MFyRTbz+?K) z*l&WQypRW*&9*M+0EewdLX3&d!EuZ3=Rc%4L2J4I%BSV%Q<(8%1J`e%xrJU)E06c- zP~+zLddZwKQkF!Zn9zrXd`3L3UAN9T$Oz+8sxeXUuJN{@h95zlgxc890 z`*0Gl4M;G5XW;s5V`~IT(ib@i5@PU8b$TGWl~Q}znMpQD9^c;y^92Yfm@@OzSaHxS znFaXQ zh_z#b=BnX@+@emiko$01Qwll*_vtIK&HEOqcP-t61B?Dg+}r#YUy|r;J-9_0p#xHY zad1OCxa&%#9GAkMxx}fcgFCc&kDj)rUXhNmib<1Uywo~-ZsL)h1^-*c^P3?Yt6o+c z-U^wjd|J_v2gPvtqZY#Mm$|2>{#DoqvW>T|W{=}-+j71s_hEI&JJN)n43zmi4Cd&I z-I>0Wm9mrvk_wp`DZ!bE8kB-;Zv%j!Y>1UWwk&+5k>)R7(42Ch{36 zd+!7^hTUFrtxn?gcaF?NfqHi#bgh7yxZ4#utu7>oSc>cXW#oeC(wk*Nk2r~O#Ozgq zD04ymcGp9sc)mbIKGs9Z(r#mi;pg|}G)VUXmHr~FVqTUyf`mFZt z%a#_hQ206*b4qy1d3W2xHAi3D7tEs&?ec12^w7-7@$P-i*NIEpIEZd}JiOI{@Qx*{ zRVX$q%<04Z099f9axJ}*;Gr2%{3q}xCJwVpO@gcnN0;NP(lIMUsM&{G{ zZ?$g)U47sPUC7(ElvkE{9Nx$UZb#B&{>*V6N7%1em$R4N2Oc~=aZCw7RWiHv0jP+o z07bYYakpnittG`bb|fN6f;n*Xd-Ch8IF> zpYEznzq)(<{#Bbn_wQ_t{Kk!S9_f|&phw$^6(c!l>;_AH;vQp~0l@xR$?wA^c zBi8=0t7UcVQ+*LMI%9eZF{Oy;=lBF(Bzy+YA*#POeSL2S_$T3K>b-_U*QD)1i48%6 zc)t6QIqJvw@V+<0$di$>JOQ5G_?ruVaYQq8HPdtvy3yM+4exfe~WYu!S)_vFR zND{!vRY89zf~XvK)OL$AMElwZMj7Q=+Q3Ob<-I>BG3?i+Ua{9x^IRlF{^{9A9I*jY zk$zpB5gZfzQf6Ml%I0>{Hio_43Bi=Eh8&d?$xI8QwbYiu5C2j*p(>XmO&TS^3TOQ? z#Z_fy@qWN=pF@;wbzXVi>FVl5=B#GtFJqkViAG}ll-;tgOlF15OS)&7XVNx>s%8|f zdUOiGW9K%CH3QrBUl|8*$y#1j>w)CJ_d4^sNOEVZHm9cU7(Bm!EKjIKu}G}lr#kMm zs(wy;vLMZ=uV7)wJ2dUq z=aFu4vV>ee{Z|rcX|R2YQ#XqeK_o@;*lx)CIuX}k1Kqti;FE#-hf~#c(hv&GY+A*M zvbtV6&BqZ0xQQ>WzdYYuprZknW}s-xm*nN_&vcpr5NNJp#g%|um0_nxQqhzyhrh+| zvL-$IZX75F6CgL)odb6WrhYI|z(QoyuZp>U{_=Djqj;Wpwj2&cGBE31Yx?f7EtEo` z=zO0bN|ilZK#tr4Cwd0jlGQH{iAqULYtaF6TpSQbjk8=&~3pWa$%Vcd}d4;TQd2vIn^eB3ozr;OsE+< z-5<}~FGQdHgOC-X(HYbZtz;EY$8xg`oEugo=dWKVGTmZ<^3Bl}`TRP*)jNMB<>>AT zL`xLy!5ApLTv^XU5G6^>xg9c->`A9NCMlI`792yR*%=$cmhxbs3bfhK91dCv+6cmq zvHDvi^opPNVe!>!ca`o2B&s_g8~fTJ29{5JDw@%le925ugUv!fNQ+<;i>|p2S8WPw zEPgAa@x6SfI`DES_2 zQZUhvUeQWs>2{)aCqWfAZq)&IHnN+`%@b*@KZjKS^toCM>giFgp zj&7gq)SPe+)^C$6YU>G97lt%jxJG?6ci$soUGp2ds#f7_p5=Ezo|JI$0pq7{E>x>b z)of@oKh^(5GCJfru#hobggLpZ;Do>GjJw7~O;6&7pP_DVdH>~|AdV!DR0JqkF;I~`yYRZ#R0-mCla!j{$KFqD zPmx)>e)l6`$OF-Hyr0?~M2Z3h(QMH{L{S$>6TY05HH+S#YL&l0qe$BQ^1a_VntbRY zYCjbXJ#^6%=xk>0d0A-mqI%&Fp-o3A4I{k+XU{sVg9bHW706d?5fEx6zs@$@|JUBP z$1~mj{|k|nVl_<;iKem&3v&#S#FR*ca^9TMa?1HoQjIAj%b1X3v@vpsLMCA>LNuzC zIfR59ZinBs?$7V@x$ocoxj)~3zK_T6pHGj6$3vR--ur!Buj_R^PuB&fvYYNUt|cL` zXB1dQSDr`hImHzn0LYJ^5dyF!5)o(7R>|2zZ!U6K}4w`CqNYL zve!kH+a-Yowj1`85^n)GU__7MFl`nmoWZIQJDO0>)YRX$e6!@}ki(X2Gr*}?ad-Ig zbGs2cTFUN4>u&RLMxKDoxjliu!%6C<9D)U=+{?Q1<_+&5d>NG$vK+}p2z{zN>nHfS zOPL;Fj{d`23zTkV&$}|tt0o3!2P4v@M$p)hp{UJY%~*wC12-2idURECp0loM(K66C zqY;r>(@pMG&Zuc>CJB$Q&zC8qPnRk2c-k~=!9(ph+Bph7 z;cgIiyZs(@?)ZE-{E4dBDOfqOl8pfp*`y!pW4n=g?CV(zpsY-M(ah^M9<4pS3|(2} zTH1lbpki`S0|4?u{8zGVw#PTmU^YZIhko13dk`^>X%T2a?F)FYUq1>cocvRS3al`< zJuOpRNyW=&Lu2&$Es|tHzfpaX8)aW9o4Fg@H<4w?nTto?;a9Y|HU=NkZyI)PB|$QQ zY79k;>zs0x1+7ztn9|-TLl#vC{#8>5Zn6Hw{s=S`jE&*_O)U9nBQeLTq8X0FH0D~i zI0C=z+!4^6k@29}zsud}ZV#KSc`FcAa6ge{u^37ItISJ7Uti(C(hUQ7rm+?y z<~0au3-Q1av6HPVN6B)_r@iT3??S--i~lm%CSg#Q#?2$s*JOK5-tV=0%6WK`hwX5l zO`9#6jgR%125;wLMc+4|Ev!tNr3FFt-_ohwh?wtHXIA2{B)=>Tpu7-zc!Il~8Y?cM z+veV;Q?aDZ9?47l0Vg)Pxc~iV!!+`QrTMZPLgMr=#MCzVKrLXH(NRCO%x7W4T`Cd2 z0MFl~33$Ley*Z%_aW43KkQqXsH$qfiO$g>Ym{Qvd%uhWVS$SlaafF|@3`Dcb%mebIUBh=BT zQvf6wTzn7f&gobYG1WolAxpcB{rUC>m~m`|!-sr_I(`4d-UUYS;MWj8?r9MC8use{ z&~9#g^s>PjhfE!Gv+cPC(m@AV*=9x3A)}8*fL+jA8d${xaW^u^X7y#3^0g-^sPh39 zH(GZDJ==b=L5u`=9D`Re+hB3`cr3%6r11G5l%;cjd3r_q`0#9Yty!+)DR(jYo|9dC zZKl3WX|cP+o_m(|ee|uac-Rg?kYh|fJZk!UBz0Ez`%6B#Ox8wLh;HIOCE*QlH-HJ= zJ~0q+@q3!l18iPxTS6>)O)auBm^)6YxZ(i2V8I;_DV3mN%FA@2ZNht9kEVTKIpC+r zp;OfsCoB)F115NIXy!hsBE&O!A~tV`osQKJ=noZ8Ynx@_1z*}FK!us`7Q$Ob6jg=s*A<$IEhB;H7ecl(~Z zv@hC`j-g-jrek;&C6iSME>6uhBq~g#dJwERWGzoh_nc31)ncenyD5*)iD_zpH#?0r zac+SXb!t+fOLzV0L*vs-tw2$HiM`8E)T!l~o^+f}xcGeDvBLQ&0ezy@Icu=puNxEp zypX?UOUqaYot+g+OVtZop!tOj4P5q^1^;X}4O+(C&K7+gFVXoA0DvRY$ih|6ieq z@nvlw0L`g2vpKV8)60yVz@iWdTE5TCylAM$xX3P&qI6qwt^Jj6<5Gtc0W4fOQ>OQD z&&JePhNg+!$Hr{askN75-{8_RN$mz(8D40_&+po{aO)45Aj)9S1Qo&WQI>{xdv;lx zOrLewMrOeb&ukV@8aq6CnG*scZ0Mp{4hjWv)@fL)k}K_p8AT5+>+OT&j>gXRyprEo zB7eHP|BYeX#`C<2Hc-Sk3x~Kv@j}$T2gn@r2=(I~H;a_DTlGTtpG^CAd%{nbXobTf zAJq7DJls^!r4DvhNLA63<{91Rdxk?1(dV}7v9U?j*r9ooi#|tYQffd5)_bh>jY4D=CnSrB-Z&RtrN=c8tU}F7F~C# z#qS;4)`X8b#aeo^G{H83QcWYp)Pc7d-~u}UAUyCC2u8f+-}K)!YEl)Y#E(!BmA$V% z19lfm?XS57kUqf55+cSX3e?%xCZ}t{cW&6ZrW=4+2to5-`Uemc41gf)bHW5@Eg03a z2p_40#NEfc8B|gZe67B6-pG5`>oD1`xt9uE4)#598Q)uKJMl_6{5akJO*GvL_Fdc) zh8ilJ?)s%-u?C9;Y3C#0@3{LC4srZM&N`Lp#&Fp2EzH!tA^En1a3+z06Wl7S;!0A4 zqLXc_K21TPx>UqnZ*@^htAnOZAo^zP1@at|PWovEx8?4!}DA9GUxM==}-1+^z7m z2IUPq{gdKF-sVw9i#=o2qyQ+qC&8M+dikm<#C5|BqwOmAM%!J@V)m{{O}ubo{XVUU zMLVc_)og;}p;Qw~s2y`hKw-24fvG)@hJSAwe*9E#)~u)iNd&BZP+&D^B!nu4B!Q69 zlXo?CO|s>PzWQWyPQ2A%E0z<(u(LRGrd zVRb-=I%lOyn2s8buBU!`-Ryg^E2U<8&y!%u(4!gc)5r)vvtwcj$it8`g%LcfBJ=J+ zy4DHDJ80efU1#5EyIiFa+`<&H&IWX{tk2ET=4s&ww$#JZzhNL21KPS*7R(cEcOmv> ziABOwBj5q~Lv!dcPQfvD7(D>-!LzQqX`LRu`lp6J^F1D->;=$R_lt%? z!k8pSn>Dc*32N0Zk4*63T`~}S2$)B4$ehy62y-EZv5Ls9Xdbw-4M_}+{ua@s;?XvH zhghZLQT%Lwd0H*&Rg5PqoME646!~Ri)wf%%hGM3Au~9<8N8Ue9GTu6a5>pX@3OBfp z_jG)-YHo1bi*IJORa00(;*rLyUhZ+*YsZ|ce~bO$CfgrW;Qegh;zIJKE)l;60;#bN zu=}7oWjy*?xjNZ1MLYd>XJqXLPuTd~DV@wbscway7Jnrt!#?f$TV|0-m}f4wTlVfZ zkfN9kZ2I|D!HIbeY6mIkSaP=Yf0TH#?tL}bb3o&Z^2Uk*DwJF{CtOj#1nUJY8AOjA zpzX@Mp_Um)D4EojcI@?>#Wjsdfu}2_nG2T~$p8X~- zuy&ERZI9mW(uc-&u)*w5HJwKR0JboQ;_twCxA>N_ch~FtOWUiB|G;|L~*{;HNQ5-M)rsZ$93ZtcK`W+f4hU5e<>y8sOTY77PR)2E~%g?mry|337 z)MCt#RG-YK_TefJj(gd)V9<6gR|&M~{sBh*49g4FB6Z|omcc60+QsYP(b94OU^hr8 zcamoZBUX92f@9p;@wz;q^S}SgMpRxYbqu(Zp9pP$%HmF5p;OFGUOAbBqt}=VnM)?C zBJg`r>aKwa6vsxns@JIN>>*zjA*l^pp>AbLO##<(ch$aYwMPn{M5TZG+|b(2uIkiyR_OXCfYgkqB{1TtGfxV z#xN@IVIclu+L^DSVN78F|A@ogDtyX6-Zetc#oU}t;~7w@9mLi$HxOE_$9Oi-zX}j3-%%+m9>b<>NbqYQ8VTceL8) z95(bzKu}y8V)eWn{NJcni1i=frOhn9u!-5?&;cS3=@nRMR`!xBZwhR%OMCT1kbU9^ zb<}T&2G$H9`B>zsnBpg##f&FLCTY3|p)7~zg80L{>R^M&OcxM@HL^Ogx)LbluWJ5X zNjG#LluIDzPo9@aMQ;U47J_DJP6Cz`SidRZ2&f4&8qh!%P73Yr%~@EoL+sus=HJ*D zUE>a%d3k+YGHnOC?f3Lbm4W*l;3*a`jLLBR#>4(;E6r-)hj%JsuEtn4^7AWf#akvx z6(ZhJ92UPs2ADzT6r$T`d z39Geyf*s$@R0oI8Nf>hw0@P4#3FB_iQ|OG$r14u92!r15&f^cGI;k5UJX~^EgPIb# zr=J8eg-l8=x2>v2EG4#aXj1y6d9{0Ed8TZ5|qZ;LtVWuRoPOfBdupI1j&|+Z2M1k8h@4SGL z;X->0(GR$mIAL(Ii=@KcS83+%YiNho_~|de&EhF}C(rHoI3(EQ8$W>l@$G%tC}<8# zKB7|F4>Bl`!A=hZH4>W~W#x&j!qMU+ZG?zjW;(-pW1`4}`Q59g$7(%Zqs&p^VX5uw zNMhq>?Pi=aGsP%L;>#xq``QuyTh2?nr&1eQ<;$-%W?QHbEH{MyYI zF8G$}hg$~0b1H@qQ+Y!+ypP6Y3bbm_>pVyTnu|Aag~#xL;CI1L(YL)G#bENOo6rpq z5}+=Nd25sDw(+l*vgf@eUuMq(k>1f|_j`N^IgbF$O2*eSQS*Bj)6ts{Ta@#9<6r2l zzYKnzt9ha+j;cYdb^oy_>m4|jZ@+kuKO{+wdv`T5aad5FHEgv zV_)WesL#8Zt!S%`?w_6c!KH1%*+B%81LBV3H~Cr_}?k>^b32|?p$_;yPM zK@xw0(c)GL)Jw`>Ln8ON?M&nws|oa;gY1we_!5WlwaA_P+51YHNm^{p2HrV_gE(L$ zP6J5|t{lK%q)Ngz{PZys_POD6?9uceZtX^FY+W%f41B^Fh1XcFZ|^jr1K8av4g@iT zW!6&3$z$ii))+-r*3sVyqzk3Rxcv`P^`k2L;`|%l(<7&vX05FbzQS@N$|$Y;R|r?$ z*jP1}HErR@!{To0@c^1XpI`8x78-Xot&1WoU#Y8mosB}{ZlTosOz0+0$WBSu<%}DD zESMD~fmx2S^b3%%-40wKMC~#*sr|-gV_{B%5f(tDxe^Wp z@gBD!nMgWAb6ZpTxOJ!Cg42w$=IzH0ClqO>bE0)u+6@7V{X-oqAEKXL&6g0hwXZ

YTYPd*@Dr85qE2Sp147kPYqPM29M9`YtXDBKiu#`MI12e>6~m82fNOeA54o(cgqS&yKeM`_^u(WShYC zQ4uY3Hd77QN$>?!tTw1Q^0bV0=dB#`QVHYGQN?9?nNpI<%(E{aM6W-MnKsavu}J!q z62aFN<14Lyb01ajezQ1~)Oe_JRc`&>OA$!H!~8=z!8GZ~oSCA~x%)F)+jiNjc1n4{ zx|!O-ndk7M#p&7e@zX215!$J<>_oPDa!%W5O1j189EyN=87`*=jD6j`6#ee6}~a_xLb`thj1zCTMJqIo1Cyqj#e``U99)M2v^ zNzqmrvLuC=o!?TL#87({&mtKXx=qRq82$)}oZYk4jzJ>`(rU~u~`GA5h8 zS2R^cMYae+MY$|#xVgxx!4y=ImBw#c(yNn+yHs#^!WsI%jrdVV>pTTZ zAm1I;rHB#v zTgvq{+3<~hz~`#4DYpa(eVmYAXAJf{DZZr2?x|qOivyae%Hp6=A?3q$;{&TFnBQ%cyJeDtz119=BGvPrUs z0B%L7HAoSB$!o4LcY$W@&hlJZ4lu#k9W}g9D1m~hBArJ~YicU2yxh6;!{RZ>xhF?+t097YK+3exz+??^JZaY{5S4O2 zwv7g)!c0vUtGNzdcTjp9nAZ@TQVGrg`)Fo|#GDq;9D0!GOf^l;!kln?U28n^d9LP> zvd%`+ag$4y$oV3?5%#%&)#ya_Oh3s~F}i+x7P^m`z{cvR>3Y6tuX0dLybSabbO5Sz zzU5)1Ou>~4XJKOYYd_pi+-kd|lUiRizInC$QU%GZvAfZ_nX$Fjg7QtEX{@1oFT1_RQ3$9RjH>Qu zI-X*^OF%Z?*l%tL;!4g76@8i6gF2x-ty+5?g+YfAOe|IKI%WlB>2Xn;515O$5Kp={ z9EBJ_&!F5NJ%*1HSry+XZq6r_VmI#gmVA#2?!WS~nq8&ozlFl@a|Mx%y9mUtV3Ztx z?;%~6m5klU$}*-IG`dq&FF0-3tJ(0jp7?=^OlZ%LQDv4cA(ACjT0ADIMUpj3Gh(+h z9sn-GkR1jmn)H7v-*C$RhMQ>als8(BmU=zbj&XmvPs_UMa561L&{XCwp!LrDyx_a$ z3yjsk;fU4p$@uA@%1FC7sHuMkq2gRCfmyjz&*TmlwnG92(H^i133SxYZ%ZHG8aM?W zO}g@?jY|6{AgAE7OW%^3)n%`BI~e964s3%aU^s`M=<}DNG>P(ELAw>TdD94Y z(Owlwjo=(&c*QEBC!-Va^2W=R(5Q3Bll-RmcI6tL) zLf$$bzfoR=L;oDMj~%7#QG7e3H$xk--%VD~6m}9Pp)n$P71b@8c)nWa8-m3_* zx(SHO>e8Efa_3_9{r;N%H}gb)BL!@1lsiP}9xeG*c0x z4UcCYg@(_-;LbL1Cq!75oXYCvkk1^OtLmaFPXeZgsEyOz#@}uIO@mu|$UiViH@~jK zxu*)S{b|WRrG1Rp@y|d5%)6tagrgk7)L>i2$k;IKAT>{xr#$5(I(ZMJ;xxbJJm=OB z?iV7)Iy`3vG48me?Q%5wY#0O~Y{mkO=WuML?X^=f=T~{s(tZtzvC@&5oZ>0w$pPJY zeN&HF+U(RKeR`sbaIyAwrxnX@ZSjYV|HbRo@e^~WTUWy8H=@jC^vDJ;lC_K}-lsle zRt^*OES5#R=l2yHvj;B1u*r$D)A5sY;lHllC#{lH$-vQPN1spB=6o9HMV985v;>`w za#tMIS>>xN#*K`D3x)vGDX4pwfu*V|uwzcDm2^Gg26veX%HbbA$F=JXd)ntuc|P|o z39V~$;bwA$JiFor02MR&C_gdIEf8Wds(26ui(6rI^6onsiKtw7v7C&zG$?EHh z#!QnnNOVuKX1+ZM!cirv z$Xh6!Mcpuh`Z(7@n!*lqn5TX{c7HMai7xxO7?EP@G?G;brOP(xPItY~i7YJyXA-X4 zq~ToaBc=0o*@kidhZ9qrY*Gq=FYkPFJ#$eb^#dBQ|D9hRgSwKLQe*k_a$WZ^$3i?; z??|~%&p9#>3MP3W$7_Ol%^!HR!LyalPbk9CEskDPt-epU-6abeN#COkOj4ociWmal zuu__y?HgfU_x;HJP{e@wI=vGuwu?7fv+~nZcYC~%aK&WeZeYHpPcuW0c52iX76&sD zMUuz-`sdB>^5H>ivEr~01{-#nc?9W6m}JO!%J5#FLly=t7xmO>m0HI2>}DlS)Yg2R zTjy@Tu#|CaAfgHlvM1-_=v|AG{j(n0^`W%g3CL9AVL%0X8?#512M8s7AJe>Cy)pKf zAr^YY;VgYV9z5jbsYkgE+^Gw)#ozTlCx9Fd7haqd&@74>zO)uR9NFS}>xSEpytu!ImX6?}Y`X$05^q z{tMH7nRACyHg27nEh=8FzQ9R&cJY~KnhT>TSOZh~K$EjRzanj#b%Z~=iMCW!>~S>!46<;?D+$^U^K^ zTpHAAp-q0ls!vL5C5+@eutDLb?C}$j@3$V?1HeMfyZWN~3^Hu};cO6#e zU2VgnYyaikhChZQIez~=@+eHM^6w&s!MlPo{@)Ay<8AxH&HnEl{JVkk|9=b?)(Fn< z@CYQD80uU7cf$NR@9n=c`tP#f{yU@p7iP4YZkEcTZ`bC(sha;NpcG~P!&P5X?bbe| z4P5xkAt1k2o_~b{{yKvVsW&V4p92ZKpQM2{`(!v^(DU_j`X*$MFN^ah41LGz5n?$xN~!ZZHJ##{10K10w8F^J!-`G-^KC& z>sIz7z{}Joeygnf%U%7`Wwe8+)i+zZRzQmRzqzsh{QuH{;_Hoj_;BxEP9pl#ul*~7 z_@BS|@7~_A9K?9Oe= Date: Tue, 3 Aug 2021 09:32:54 +0530 Subject: [PATCH 08/12] Add files via upload --- 2-Regression/1-Tools/images/scatterplot.png | Bin 0 -> 16143 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 2-Regression/1-Tools/images/scatterplot.png diff --git a/2-Regression/1-Tools/images/scatterplot.png b/2-Regression/1-Tools/images/scatterplot.png new file mode 100644 index 0000000000000000000000000000000000000000..446529a587bcc2d9f5d2bb19aeed57cc75263404 GIT binary patch literal 16143 zcma*O2UJr**ER}-PUywZB_O>-igXYN2uO#}TLeLR6Oax{2~|Utu5>~bq)7`!K&40t zAT@x1B2ADcC4YRs@2>Cu_pbl0o3)aeb53T?IWx2O>}T(1CmI<%pr&M_Bp@K5*3pKV z5D*Z?+QBd_o$<(_I< zJ~j1mc^VA&e@x&7f9mV$^VHMr(e0qe{sC@2-csU{;*z4bpFDl)s~{oqKi9>5{9Pro zxlv;yyn#Gz^NYaN$~)9crpaxpMdm6YVQ58or|YMo7$xq{ZoI?8^JVn%vUG&?WTs{Yw2+mFW{hfA zru=03k_1kGo4Bg0fy4M&P2L-)Zk&+Y5tLYg_dJtn?vz(9^m$&X2dj zh2W!?p^L`UZ0ex!_=|W1FmdfH1MHuG5WR(*gE|)>!VRJKs^jX65!x>iwG2pR@KMr4 z<~>$T2NsKIgh6}uv%;$p1;v*~h!Mkxx-EJ7 zi>C!trkIatF*KR~%S7!AM1c^v8+?R9jM5?3ZVs1k&h#Dn=M@bP!w90xF|uYY4zOY~ zjEDb~9uv~_DiEiTQ62wL44jiV(sq41tKxO@1sC-a(X~IZY5}z;w>5l;2!8c5=E<7h6(ezi^c|m64I7e2lnL2qbDTAu5s0g))nB)+PwApO z9q2>UpgnuV-8p<8DxMM_^83=rhr}X)ClkBu;G@{6@#hnpKfz639lmUUk2=urYF!=` zyEtTD9gLpdbcB4VJkE-Y+Omt7SLJ;$+`dXnXo#f@RJ+Lxh;SfwfyP+~rkg3+3Z03d z_tDnaWs<9IT8o+=2=W6@?r~SYe)*Y%?pqMhk3-o__Lu;sb^wSXg`|ko;B>g>`+y<| zh**!%p1AD(l`@nNJmD}Lrn-_jEqm3Ss6z8v3SBU1vd~l$4(38`B zr}MMu-R&C=Tlj$;`U$q!^BLLc$y`tx?Z)i_OE3DP+6mHez{=jlva;{40NQS4+$;LR zSvBXudeJ9-+h6^Q=-24Z2%pj5E&n%P5}GL>JlkDe6aF#JPSF(0Y4QhQ3B3|8q6?!1 zViNBg_FUbO=B|Zq*-DVlS2%$fpZIf_V+OiMB%G+hdEm>ld%nTYu2q7Y^Z+MX z;1!M%qUdXSi#V+%6lcRi-brS;wzoqP2>?=ey*?K~)=3yLSgz4%f# zyDs_HaNE}OaIKqCPFZW|pfAfd-!~Us?Ky%L2lQ;VojrDf%iTM~DPbS=Ds!IuVdqaX z`GFP$y|hc)xg_Jat<2X)VbL`R^NI0=&<^~RkW$2BN zJp^1yar)yjmC*=G!?Ph_)nPZ=$f1i}>;)?aK z9ixmZO4!Ex3fq(#Z-ZS(A=LByhOhl%;f1|(U%GJ)@6^l`CC{h?c8dEc>~Gzn)L6(* zPb0f|i+XsCQ#Eau|0#p(>^atf2~_WpW7U?vWUO6a6TwZT4Me@7^&vkWpsNZFUu^$b z*JWk3ry1;+@`(==j53EksB-T_MQXwj6Q*Z>Z1c9K^u9 z$KO&JCsM{pHq0?`?IxJ|c7`>5bTatJ9=p*#WyRCKPF3MEdoA?5&M)@~OOMc|K+h*f z*8R9kak$2{oq7=t|0o0l6FGj++SA&?7f$2l*$9E zB*f3|FOkbAgexp zL)Y9nwhho$?YmgJ+9vYwnLGxRP7HJKA!MibDax+-J(LiZ2H~ForvnGMO9Yqn71#? z_>>KxQl@c00o|G!rpptbdxJ^WX?JChKwl)j(E8W~@>rr>-no*}4T9pNN zz?Fy*mi76VA10>|N7hDl=t{ybfsxJLh}Vlmm4p`A&+PmHzl;4S<DvSKaqcB zS6Lcu*;e5-hPSN!&E)!`T!HcdTyEqI>hh2E`zqDj1tBdqa$qNqvEVnRN5Dx_jEG-L zij!Y?QF%L=6Ps_Kw(V+PmT=C7F5QLX^)J7@ljG=K!YI*`{zsCW7O*aMS-w3^TUV!w z4tHVS;s&CFtnF|T@xJoDWVArciwG&5Pkv$h{f}E&;qA9_)>iZ>s&>TCaqToWB<*QB zzPTYh;ta^m_MH8k_Vk$;m4UIxr1c$-?$$G&I)q$ZvC2`+#lBaJoG(R*lhL556C&v6 zGJVDCGuV~_8Z&xnqfT=F@U-jg$lLzK5n7lM&Q0FDM%1DM{SAe`W?G6m49NUePVVH6 z8d`qfJMl-=m$QL(Z7_gSd}9RxnhWRnx{<%xlj7k*G*383+Cwz=>4qKF&1=Y{O1$+f zjH^%PBwO;<_h(Cv2@m{_5LD3`;mtqg(NyhWe(c_Im+n!8F9E8@tvy8HbnOkqis(QP zZgF*vJ$l;g#42jn6Dx^J;ecVUy05FsncHJnAC5$B&z7PB!ZW--IV(t{NYc@Nl#!B| zQi>j2f4K3INW*_2FO~APx7^7`)B@Mfjy^hBKhJbjWYci>N;(N@y1q5rb!%=(>2|#`kdc&EtRRU!yPa-s z5ZO>XEJ)o)jf?=yW&RA0E++lyFfE z!cvS&wcH*&c+fqDKc&qausv>vLX}c+8n!^5K79&t9WMyY{|9@7p=GkW?f>1uYY6CH zKmW&K^6+VJ@bu)QnyD!xCnqQVU~aJtnz6Hn!Z$OTh-o+UU>kLvQCHWKq>Tm^{cu2|9mlH>3bRN@80E3#KW25#`wI$Ylj>` zTE_Ew>qEo;?p)HCJDB?NA2ig2OC_>%Gm;KKlKNd3WL5Zq|5p>wt!6lAh+x1)g&qI? zn(%&n5BiNden0#0J(%cOOD>Ll9vfJx8VCK$&-o4pl?urc^oaU_vyb;$=y1S zLwVD75f*&EE++0;JHz!~N&!m=+&+7Hnb>})%7aun#o-or3yCfPbLZDNgvBR|2^YBY zjbb|b>g_d$xny0GqeLu3KBygqgG~}gkKS&XL#1fd z8t*rQ(N9yB)r!pG_Q`p0 zXgpk+&n*v|bMN2s*1q%quBHsaIg@^t*q?pT3Wd?b^y?NQ&XzGxL|w)Us_W|Nl58v< z5_)-gVREHhXBVY;X-|3_q+G{mPEUiF>Aie>8bZ5T(i*G@0;KtT>cY0{)1=@}l<*?a zESa0)fxq157UGtfQew6f(!0Y$nQHO`FLfqyi0@-hpk*r+UQpi0OywpGm#~-b4Q<}u zNfCrMs*v&;msM*_#y^}ri2SH?$tN1Hvb;Q2Wn4-}4~@lZmh#dGQ9YUT{o0|g&&sNq ziYgZLTdL-+lXNfL=V6|y@U79@g{7q~BrZEU`-AF)rD;0y-qe)$s9XFj8WTuh6{oXeh%n;ZP^pPzwt zKPFfvrBaw){rR@y#wJGk$#Sc!xjEyZct>n&D|KG(lUPVyTML+zFDRkkNV?#(Vuw%`zA)EF7f%M^)^kh;e%{X^4>u;}w%u z;XC|a#Bp0%3|z`Q;KswayFv=K&8wF}M?u9{;Cqr0PV49LQ( zcMerM^(&8|Z~;e#Mk(LhhwSvMW-}O&7GZkN_t?9>R_}&^#B6WgR846rg%|KCO#kf{f$4E9!Y~8K=)qP zHzbXO)8~qVZO$WX025>eVKGYTU~q<}a~fjQs>xYrA3iXTkQS9UHmtn|Q#7xQE=}`q zc>ytgElFbD5Z~g_tohb_kUoCecl|I8A$sO*wL}hemcm+N*-;;W=VFIkwmE+vq9>B> zTEZ%;cb>sGRYU*$cw`_$Dp(#~6a1zTZW}IvvTpJF4Jfo~E&u`9Ni7@-R}D=Wm!edw z`h6k+Vqz^VcfVu{(xMdfVEJZ&jJ?WwFxi)k?Fi`&=vy0D!|_^o2`U1$KzqeCXG`1& zn!o4!_g-W%JTp#A-WXJ)4}00R8n2U4aGS&TK0KynIA|8X~JI@>c-uiG?1x5UQs6tq?CkFcC8Ua}j5d7m5ng=iX)Ao4x)yUpG5$!WUjV`$)3$1^yahUY z_Z<>^^a*v)W$NQ0a_DAApG&)os{cu*8vBO_wp<==B}{9>Q0n*d$B#E{ZNa729}TW$ z``^(XW)APQ4G5^v?;R9{IrhiyEHdWkiY49!H!622WdM2eV&(^pUrwsEMmzkjwI&(n z+|EnJFTp{^LI;dTA9UowGY>m1YCyr9XO%#``Lb4q8(J48#g3G&ZKlSs&k>`zokD|D@KsJoM`K zp8Uox7Blz0Eb+=TnX?{PerOGt?hSiU}*N+ zOINb9wdDIDW4IOM@G=+6lez+m7f5Hy$EV;Xi2gG|VLLMX6Qmr1Hgc=g9^dY;uwtCvWtR3+Wrp3C(>nu#Ln%L9jqFn6_Y zrRmV`+VrejZ4*q$UwGGPmh=>a4f%+Fc9Wgctm>=zzh?JzJx|=_Hko9b1ofEGH}2~6W@@Cc zZ?n;bI(&ouaB(&MQt?RpwaT*CQ(3y|!E}&QbZ?09{4F^Ko0A!Bq0}SeJgr|q@tlD1 z3q`O8t0bQ-lXuTI3}gKVcWjb6$2$2y%l%@6C#~K zOG8J`i{^0!x+mkm4h{$4-y{Xdjf6=#69By?7~BvB4CIALPd#v(T4Lo$ zXv|wKkl()~5fk&B)QlSdDgPxlTU+p0&Y4aDlmCi7yr#tsiItrRHWsd)J^42hvlpIB z8h53T)Att?UTmZ{I7R&UI(8BbC_>zw`J)gwW)k7xLCE|ge1+m%(zh37zu#LQl!+>` zAt@B5{1tvLsZYUkTJ1Dqfx4aS3AH=`ONaHb3ft{rsn{KNg+*|ja~;0H;cOY8eUPL( zI%5*4Qxx{pp<%ZGssk{VEfZ}f8fB)HP%4-4-HMizv|6XsnOgH(|0P_kOO^MEk8!~y z-Ux*Tmhrswlt()1$6xMSzN%;93O5Rz)-T=Ww2itR+U8&Dsi454JLy~V-0h|?)!j2? z6pFhl+w$W_d@Jck`qu20Z8Qd|oRO!^zES%6ZN9%hev#kIEOmFXd|{dx0`!2L)D=Wr zZ{|J*0dD2LAfQzR4kTy<1Y`!FzAGf^zuh3#67cy^Xj`m+_ha`7UK&WpTHIhUaLVjU28%mFgS_{ zNhKw|!$<$k9J)`39M=4PmtKDCfLjRM4E@fE>x^5KP}wB`OFBSQwd3SsELP&1nDR@AUM=Go{V8D6()KY*crz`gm-gV3vvf_p+#!CYFB> zRvn4EoP5-{8i{(CV=lTdnDNJzH%AbTkm}o`k3y=g5N#2tnqi2Thif4U(Va201j%NB zv8xhjc9eoT)SD=>1ci64H^&@Q?-Ud?@&hsm@i?+GtS3=Do?cTZV>B->Z{(~8L4JLG zQoLX~mKb2DLUFlACeh2W-_XgPCSOroWuh}xoN6n4w{MSSX~(Q^Wf{R3mlN~Q3Dn5C zpHH)DgsDY-vG3^55+Z{YR-iUufmc5!OOxd>kXh5ue9dJOs#Sj=^EZ*_eYAMb%jK$r zCDZ9QvTRYmz_=Je%2!verBCoOV^7E}`kwZzW1=x2KgK4;hvXEmVU2@ztN&KMW+<-$!qbnB2g&v5!eEaH{_%-2`q$}>iIasB5 zyN#B=^Y|i0a8VDGVj^^+DK4;~f28gc5rNt+U=$-|n z76C$|FCtef+7Bd|6nvgXt!)90yA;Wv09*hQ1Z{-8fiGTNv047uVCR0EPw~Q-rX?Ji zVOftZ<3S;S8=M_l{=@I28a$T1O(B93xBbDNt4VE?r^0C<_x9>s zl5t;h_1m~!JAlpo;-wbfcvaa?v_DqxAe%7fpKMlnJ*-zbS5%cnD%8D){oy!pE10|~ww=3!l7`^@HwRHV6~1v^pTzWHImpzmtDP@ESbatYb1DBY`57!vcLsFByjf}g zpLP{y-izL)-J*Vy#U}L~>0Uql)`NfVG1LV4t|!*J34P*QlV`6Qv&*83UnP{>|q)*{VV%_GFh5h|I2NueIe>}NMfEnhNP}rF_`|z|lcH8q! z&?^gdkoc#KiU)-jRI;z))LIUct-W<>k@nf{E-DvO@)qdU<1*nkRMw}$bOCEN%7YWPMvvRyf-RfsqrPX z=5>mc;uwzUA>B~Qh4a|LZVfVqpU2cdJ-}R9&o0=t&dw%Z1PN4mf5*x|`$T zyj*9{+t(23+d5tW4HjFrw8qwrxA8ahN4PsUU`8P+>4G+(XwH~#=+YaUI6C*ArC4qZ z5=Mqpz%vcRs>_WcuYdg}UR%Z0Kbwg+zFQK@GhV42MO#2vOJan%K$n5GS>>I3Vip${ zlTr0JQtx-guQ=rWosBQq3*Dm(FFLlDD(`Ay`>Cid6%X(K_!TgP7jNdo4=!fM%@taI z5xl@U)ZhE#J%JcV#pF95ta*ZagyDtas^24sw{3fG)Xj8apIF;{(*jvxxETulNSelv zYoi=|#ASQJL4ToiXacKqH|p1I{g^p#A9a0Faw@BU_cN8Zw8(fkczB55>tYJED=XA3 zFN&{g8+#KOWoKwkS2}+@VTfb4Oi3m8aP`+WP62oW%!!g?!eY{@j@{R$W`~Wc#Jcbv zo2v2YvLKbY4F5~-p3CKD5oBj8Hsw@RytA${hi^MC%hq40=y?0i0&}ncDrF4=!{WopENT4y_!ZUPLxJ{e#v`yQFX{(KJ><2Un8sQ z=9WFeLUBIK2h-vq@{B&DYAYgjnwY6_$WdlChK%`%u6zFpbIKuZG1{(Vd|IjB=m&^; zAyfLR)MdLFD)o{~6(K<0?0U=9ruwXL!RyRV@{im-vrB;LDGlGtrntViJ{ELQJI!W9 zbi|{g92+MP+4YvwBNJA~gY0`0zgu(qJav-qVu0VAF` zJofdMjIi6AZh%_}gG_uz%!6pzXvJt4dhhNy-sey6Eml8)<-;1P)Lx*e<<%$S*i-*7 z9saC3lv(SCyh3enx)79ST1K4@JbR9ZY47*O#>T9E-;W!b0+WF;ba+`ATa$gv1T)9@$R99x#u4`)+!$XJ0s&NTei|7w#} zg@%LjJyU>vi*0(GnoMD?I>%A>VMqN85PNluhv42l9g=elvzeJ4vszsVaI+?gC$}pc z*s2f^0>)^@tJ5cropRf-#XEK&wk-8KpVeNFW@QqJS}_;`gBCtvXp+V}`>!Sn!l!P9M4 zx3?Vr$V$mgw;A6EaC4@H>#U|2KtKMRDHI~LP*G9w_14;RD*V3TfMer|de_3tF6lP& z{5_`WpT-4;S|pAfMAL))Dfdg2dtdq$O-AeG->bvE8y_F9#WnQyta&`CEHsxJ_1kd7 z2n$draI)Y#DgG_`KI;1j@-)?{^pW&}#UVIO4HiXd3$Uf?x^>=zxm=tj%vm`&DI+dSB=8mDDTi z?=7W57ydR?-RB;#UGiVV`}qhh0L%Zjom|LFQR*d#e`rUs{qIhwO;61GQ$=WtQ)OLY zCsNyH0dJp37LGdrdVaNS|6Ad%{YKmdDi_ks9bgk+>w@mdUfVCPy`i$Yr#U>I_ut!F zl)kE1u*NS*9!DRn1A07imG{4IlfCGjT+bT4!)!6LIORKK{^1K9Y+A=df22y;xS!6| zY)aObd+H(?rNR&1@crV$4v5YYdD}c4$ZuF+IluZzU_kLe&Q0#`kA-g*l!b+b_?bw> z`|zQ$_@4^>{MN}TR2jX@5o#W36>t0sg3a>QyEAhH7vNE5ZxlRApr8@H(icn7(%is;56KAxMQWJo3)IQ* z@WwEi03CyIm%qcs^}O6SYlnEsv@(tX?bjG<=sp*`E2=6U{v6Oly zx!vGZ_nevZQ$gDxt2M|$`+&|sd5%JFOQV>!ayID4-riWJs^_VDdVUcb;lou0W9_@q zK7`HW;bDXzvL(uJssDO9x(4TN_pF^n0j)WjH09Q&mKXlI*DYM3@&Q|;&;3|XcP*z) z1K<6rTVg5_*g!$k@6G{zs2q?%|hx966Uyw>vZG5mpe>y(CfUItCk-6N`QYK=Rf zHQ9X>vS~8H4-=C^Rj#oZJOpL;1eU#egw5#}Jhc?FtCoq^LX~(6!uB|8g7AvB%U9%` zrA^139_ut+;g7Rg5|guGi3wVUtD)+w`Z^KlCM9qA#(SbhQ8!PqFf85-K(4kqR z@921FX85$0i91j$P`eg#j`Mkf>?hD8-69D17asQS&&>O2b{zNZl@*P7JH!M?qiP%Y zt*NP$`km9pFHd}|Ovtn%(~k0`?y&!$;^@sADM}}qx*>kIextLBGXH!D)J4B%$0iTu z0hF>|Up9*q#&R*`jE`E8sBTa^v9ZZ-#qV?lX~r@Q?$T$QLr%H2aZ7r-NJ zrQQh0x55e9L5f~Wc$Ha&{ijR9yrG#P8Sg5{n4E0a~HGM0mhWuB4uFLn5XIN}uso z2(I7x`gZa;0htA+r%^i5^hg}jTD4WAo*QOkV`FbjlN4yFU&#h`1-X^h%f!2PK8kz0 z!Yejg54+xy-9Yr6Q0C9^4NyMJkn=j(EVDBs^Q-p~6BGLvnKOwEY_TNnC&Wqo}c>*wGrl^>3b-R>i+^6L$CTn8wHT zEY}@dNS$sw;#)2u#XmaFd(5FCFBc~t`5yM6e0r>wWXw$D(jm$6^^U`PiX#^JiHkFt zhCgZt&y)GX3Id_mXI?-EFP!Wi`UG0ZkjhhFb@&6=pH=90z-QCBHnABq6oU zFHfZW_)f~d%(=eGH)gUied6Vny4>Lj0?;$Yzy9;TyWRN58`p9+MUQeQWXH7&L$l}C zhd5!)pWF1}WlTX@a6J(C**XPAtSyBlc7MOA)Y|Y}Zm`fG=R%$$Z+m%pIe)I}UDjaB zF=5f}+T4D~kyHPxgdP=4^F$iUi-=QWyQZ=-K}r+%0DLpsg0vrv^vdN!>^Y6r_m_Gy zMiX8D2Lx#t*9RGAl}z2cE<7g$L_doDTpk%yH?O(7 z6GNfF6%YJo3FOx^irCCbe=d?_5}#@QP_HER?UJzp{N5ldk~vt~ygHN7<<72~bDvat zD!xhNZz{~%z%s@m)J;b%Q%@+@tNNI+M6#g@uNt;BW9>W&kXo36C}V>P+iIY)*FbXW zP+u$$+^oi`%FM>U*XQfZ%=?>+!g5iATTCTYKvmS1(HO9)K)P<`T6-}TTIvUZYv2BO zPs6PF6VH=}1qUolNwT%3%EExU2N}BZx&GynPw|A5lm6JZYE_y7kLQ0Bn{2ZUa;Dk* z{FO{8K_Nqm-{yDl`3Us+?wKW0tS({?mIpuiW_%rfMe#-J4r|L$Y#&0OL3c9i%`35v z)u;7mReS?gxA=itp6Mn@;yH~A$&az|^kP7LP<$mm(Cs!|F}bpmhWNU&GXCCe`p53B z=-;K*)_d_ZoS*%MIq@VRvgPGvnRcS#`FBoKT)%d9P`RA(Nb|wO2MVmJkzM1tQk5$% zz$YI%JAdx%Jen-gOyN|_t~RYCg8YZ>W81NU$IKp{$m&@AVXiRG6(_KIR8$nk3zEXe z3l4wiN0A5z_)DvP9IA7PH6bYKI zaq(~IrCzHO86g^5alkCyO8>tPpSS82Ddqkn?quPA_zjDe=+4F=>J-0n>$CA*Q)Btd zBBG)5y}M{rY+%zeK`_LBc#5~IW>Ft3 zp(`Y#L_MTSZ&18Mkt;@+uaWWZpQ_0I<2@8ktEgA}58a`Db#7^C^iGbg$<&Y1vT{@W zq;_|ABX4Ro7PZ+Ecf-vwA8*cJSP6WrT?8yiipKR=(=MXa-nO2|dF|^|{1+dBuZB~V zm$Lj1GoM&tg+bv5W3nI>_ixqSAQ_%o1!HP5Pf8$_Cyr5$PL5k{`9PIZPC^*ZThQje z$UgS=_BOEN))=bL%dmX+Zy%>!&hL>xC%*bXJ z6#RPb*dh2TO&Q|8Ky-Qh`i*pQ`0?QLJ7Zi*4OtdbJ|9&MeDIDg$g{4DcnT4~wWC?S z4gTL~Ju+7719n^KD(lb_R- zuGCJ2DiNV}?n*lBL>?eFG+q-(>uP0Zww~ifU}|Zp03QPE==kyR576m0y#E#CNFOEq z7-r-I05kkug`{}uff%&zn3Krd`-;J21-l(epL_#p)x9&;(bC9xf06^_rI@ecbGkn* z7;!J&_#xhdA3yZh6IlA}e`>Wa@w`5#Xm|vkd4}hx{U7Ohclc= zNedpttiiCSTcYn6#GL%ChaQ7)al1$UN5D~7jZTU91dH0Vn1x&vH zFb*&{TdV|ZvmBmLV5QLd@|O)n{1H%lC-1h$jB7id~(ugj|i0 zoc>;PAQDHpgvNa%S)xdp2ryWlqIyDddK_sT9TshvlV^{KriolXXPT)Yf4r#}UE+y%YAeg73!)A{v*Tvb%N2-vE*7}78 z5_A$sMNbTe%YM;qFtG!B0MT&t%Q2{sbj19}EDeTM9 zsX{Vpg26L^s2y2+9n(@3i4OW72W7nh2WiIIO#d;#WT8UIqEYpPT*R$H;Cpo$$aSCJ&;3AYrgZQcCZ75HqC_bci6o zW~X;%GgM0O(0dMDFL53qqFH8#S|~*w$1J@}-Hsp=&a}USG=o2DL-l-bb0A%@8|?5x z=c7K1y4s&2cF30qSvNOgY@Tn%%sF$Qcb5h+550+!qU;-=({9t_Y z76=yc$)eI;4E$pb@4%6q&tYjLWVv)oj`51Q6&^3OblFg5mmCuTz_sC2%mq#N{%o@4I34j%3y_DmNYACc62_OWJ#6vr64c86(wVGlJdy z;#D@HO(QJSHBv^7} zSd}Kne&Vmo$H(BN93RvLShH(!b76DOjVKNLwby9ik1%v4_>KBc7#n5>BR;&g0C4@U zi0AdqZ!|a2%|2l^L5=U8Pw~;^@S6P+2^xc@>y2W>Ma8J9)awQn{@Ac2D0sy<)QrCL zKfMOcg`7hSW>zdjI-~Xdc+0lJ*u@D*F^b*3<-8vs|HX$?I|}{~(GV34rE>i|x*R8@ zN&R4NJ3X(C6(Zu*IEu6CKekV|L+7?X-rgoz>g?ZlOWjrIA6BH5eS(#Wfedd*F2|uY z&oQ^$;W?_U5{C^1hwfSSVc4VUHb0ry!zD*4x@8tZiI$CdNp$u% z(bI`C{t<|I$Q?Lz-x1hoc1;w3`e1gAD#NE(Ag)ZITr5bk!3fz>4d_07ThPr5@Da`* zz=Tu-`}ZKOhUe4`PA)Z};tXx#IIngJS7Xohs8yQXP9oVb7OXG!L%2ZF$oR^B$VwXL zIv)Zai|1bhiEju!MZkv1BRwRhsB{t=hE}2cQA!;Dt?$7E!K6yZXC<9x@bncm* zaNk*IC2GstiY?Hvz`BcA#1&k+E~!7SiO#=s7-Bde$jnGux<-#Y+j`%9K>25#Wssd0 z9QG_~zb&gY&!^aEe2a*__R zHb=*Ovd7Q2(+28nLwUS6$LvbhrBVcIg+77EJxQ-VzudPp5Vby@&QMy!@eWvE3EbeyQ3^K(epCa-5t4bbJt_?UFIwSL+@3 zrC7^$(HQLqZelsh>f+Wsmrc?3421p5-lp=|9{0fZn{Lp|Fe+FD}3@g OfsUpDv|iou`TqjHRY6Vw literal 0 HcmV?d00001 From 9d26c547f8e58f027b1d85b43be8057e9d53d021 Mon Sep 17 00:00:00 2001 From: Ravindranath Sawane <65583665+ravindranath-sawane@users.noreply.github.com> Date: Tue, 3 Aug 2021 09:33:15 +0530 Subject: [PATCH 09/12] Update README.md --- 2-Regression/1-Tools/README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/2-Regression/1-Tools/README.md b/2-Regression/1-Tools/README.md index 2bd3f7f2..69986fba 100644 --- a/2-Regression/1-Tools/README.md +++ b/2-Regression/1-Tools/README.md @@ -183,6 +183,9 @@ In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The ```python plt.scatter(X_test, y_test, color='black') plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') plt.show() ``` From d5a71438efdb1895bc13c15ae5267b7b5e12ab3e Mon Sep 17 00:00:00 2001 From: RyanXin Date: Tue, 3 Aug 2021 16:02:52 +0800 Subject: [PATCH 10/12] Fix minor typos. --- 2-Regression/4-Logistic/README.md | 2 +- 3-Web-App/1-Web-App/README.md | 2 +- 4-Classification/README.md | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/2-Regression/4-Logistic/README.md b/2-Regression/4-Logistic/README.md index 62697103..a2a938a7 100644 --- a/2-Regression/4-Logistic/README.md +++ b/2-Regression/4-Logistic/README.md @@ -140,7 +140,7 @@ Now that we have an idea of the relationship between the binary categories of co > **🧮 Show Me The Math** > -> Remember how linear regression often used ordinary least squares to arrive at a value? Logistic regression relies on the concept of 'maximum likelihood' using [sigmoid functions](https://wikipedia.org/wiki/Sigmoid_function). A 'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like thus: +> Remember how linear regression often used ordinary least squares to arrive at a value? Logistic regression relies on the concept of 'maximum likelihood' using [sigmoid functions](https://wikipedia.org/wiki/Sigmoid_function). A 'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like this: > > ![logistic function](images/sigmoid.png) > diff --git a/3-Web-App/1-Web-App/README.md b/3-Web-App/1-Web-App/README.md index c4b406fa..2e409e78 100644 --- a/3-Web-App/1-Web-App/README.md +++ b/3-Web-App/1-Web-App/README.md @@ -199,7 +199,7 @@ Now you can build a Flask app to call your model and return similar results, but 2. Create **index.html** in _templates_ directory. 3. Create **styles.css** in _static/css_ directory. -1. Build out the _styles.css__ file with a few styles: +1. Build out the _styles.css_ file with a few styles: ```css body { diff --git a/4-Classification/README.md b/4-Classification/README.md index f6133aa1..73d83beb 100644 --- a/4-Classification/README.md +++ b/4-Classification/README.md @@ -8,7 +8,7 @@ In Asia and India, food traditions are extremely diverse, and very delicious! Le ## What you will learn -In this section, you will build on the skills you learned in the first part of this curriculum all about regressionn to learn about other classifiers you can use that will help you learn about your data. +In this section, you will build on the skills you learned in the first part of this curriculum all about regression to learn about other classifiers you can use that will help you learn about your data. > There are useful low-code tools that can help you learn about working with classification models. Try [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa) From 0ca90cc26988282b72c60043d9aacab2ec53393c Mon Sep 17 00:00:00 2001 From: Jay Patel <59785863+jaypatel31@users.noreply.github.com> Date: Tue, 3 Aug 2021 19:10:11 +0530 Subject: [PATCH 11/12] Feature Explanation Rectified --- 1-Introduction/4-techniques-of-ML/README.md | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/1-Introduction/4-techniques-of-ML/README.md b/1-Introduction/4-techniques-of-ML/README.md index b29c7b18..70b96000 100644 --- a/1-Introduction/4-techniques-of-ML/README.md +++ b/1-Introduction/4-techniques-of-ML/README.md @@ -40,9 +40,13 @@ To be able to answer your question with any kind of certainty, you need a good a ✅ After collecting and processing your data, take a moment to see if its shape will allow you to address your intended question. It may be that the data will not perform well in your given task, as we discover in our [Clustering](../../5-Clustering/1-Visualize/README.md) lessons! -### Selecting your feature variable +### Features and Target + +A [feature](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) is a measurable property of your data. In many datasets it is expressed as a column heading like 'date' 'size' or 'color'. Your feature variable, usually represented as `X` in code, represent the input variable which will be used to train model. -A [feature](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) is a measurable property of your data. In many datasets it is expressed as a column heading like 'date' 'size' or 'color'. Your feature variable, usually represented as `y` in code, represents the answer to the question you are trying to ask of your data: in December, what **color** pumpkins will be cheapest? in San Francisco, what neighborhoods will have the best real estate **price**? +A target is a thing you are trying to predict. Target usually represented as `y` in code, represents the answer to the question you are trying to ask of your data: in December, what **color** pumpkins will be cheapest? in San Francisco, what neighborhoods will have the best real estate **price**? Sometimes target is also referred as label attribute. + +### Selecting your feature variable 🎓 **Feature Selection and Feature Extraction** How do you know which variable to choose when building a model? You'll probably go through a process of feature selection or feature extraction to choose the right variables for the most performant model. They're not the same thing, however: "Feature extraction creates new features from functions of the original features, whereas feature selection returns a subset of the features." ([source](https://wikipedia.org/wiki/Feature_selection)) @@ -68,7 +72,7 @@ Depending on your question and the nature of your data, you will choose a method ### Train a model -Armed with your training data, you are ready to 'fit' it to create a model. You will notice that in many ML libraries you will find the code 'model.fit' - it is at this time that you send in your data as an array of values (usually 'X') and a feature variable (usually 'y'). +Armed with your training data, you are ready to 'fit' it to create a model. You will notice that in many ML libraries you will find the code 'model.fit' - it is at this time that you send in your feature variable as an array of values (usually 'X') and a target variable (usually 'y'). ### Evaluate the model From 2cb01b28428f4bf1c1e76ce18323662dbb1f47a7 Mon Sep 17 00:00:00 2001 From: LAKSHAY AGGARWAL <48948478+LakshayAggarwal25@users.noreply.github.com> Date: Tue, 3 Aug 2021 19:36:40 +0530 Subject: [PATCH 12/12] Updated table visualization Updated table visualization for output table on line number 298 --- 7-TimeSeries/2-ARIMA/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/7-TimeSeries/2-ARIMA/README.md b/7-TimeSeries/2-ARIMA/README.md index d54a781b..97d0c49a 100644 --- a/7-TimeSeries/2-ARIMA/README.md +++ b/7-TimeSeries/2-ARIMA/README.md @@ -295,7 +295,7 @@ Walk-forward validation is the gold standard of time series model evaluation and eval_df.head() ``` - ```output + Output | | | timestamp | h | prediction | actual | | --- | ---------- | --------- | --- | ---------- | -------- | | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | @@ -303,7 +303,7 @@ Walk-forward validation is the gold standard of time series model evaluation and | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | - ``` + Observe the hourly data's prediction, compared to the actual load. How accurate is this?