diff --git a/API/1-API/solution/notebook.ipynb b/API/1-API/solution/notebook.ipynb
index 7e68127bd..0eb54e246 100644
--- a/API/1-API/solution/notebook.ipynb
+++ b/API/1-API/solution/notebook.ipynb
@@ -38,7 +38,7 @@
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 53,
"metadata": {},
"outputs": [
{
@@ -76,7 +76,7 @@
"text/html": "
\n\n
\n \n \n | \n datetime | \n city | \n state | \n country | \n shape | \n duration (seconds) | \n duration (hours/min) | \n comments | \n date posted | \n latitude | \n longitude | \n
\n \n \n \n | 0 | \n 10/10/1949 20:30 | \n san marcos | \n tx | \n us | \n cylinder | \n 2700.0 | \n 45 minutes | \n This event took place in early fall around 194... | \n 4/27/2004 | \n 29.883056 | \n -97.941111 | \n
\n \n | 1 | \n 10/10/1949 21:00 | \n lackland afb | \n tx | \n NaN | \n light | \n 7200.0 | \n 1-2 hrs | \n 1949 Lackland AFB, TX. Lights racing acros... | \n 12/16/2005 | \n 29.384210 | \n -98.581082 | \n
\n \n | 2 | \n 10/10/1955 17:00 | \n chester (uk/england) | \n NaN | \n gb | \n circle | \n 20.0 | \n 20 seconds | \n Green/Orange circular disc over Chester, En... | \n 1/21/2008 | \n 53.200000 | \n -2.916667 | \n
\n \n | 3 | \n 10/10/1956 21:00 | \n edna | \n tx | \n us | \n circle | \n 20.0 | \n 1/2 hour | \n My older brother and twin sister were leaving ... | \n 1/17/2004 | \n 28.978333 | \n -96.645833 | \n
\n \n | 4 | \n 10/10/1960 20:00 | \n kaneohe | \n hi | \n us | \n light | \n 900.0 | \n 15 minutes | \n AS a Marine 1st Lt. flying an FJ4B fighter/att... | \n 1/22/2004 | \n 21.418056 | \n -157.803611 | \n
\n \n
\n
"
},
"metadata": {},
- "execution_count": 77
+ "execution_count": 53
}
],
"source": [
@@ -90,7 +90,33 @@
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 54
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "\n",
+ "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n",
+ "\n",
+ "ufos.Country.unique()\n",
+ "\n",
+ "# 0 au, 1 ca, 2 de, 3 gb, 4 us"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
"metadata": {},
"outputs": [
{
@@ -102,10 +128,6 @@
}
],
"source": [
- "from sklearn.preprocessing import LabelEncoder\n",
- "\n",
- "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n",
- "\n",
"ufos.dropna(inplace=True)\n",
"\n",
"ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n",
@@ -114,14 +136,12 @@
"\n",
"ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n",
"\n",
- "ufos.info()\n",
- "\n",
- "\n"
+ "ufos.info()"
]
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 56,
"metadata": {},
"outputs": [
{
@@ -138,7 +158,7 @@
"text/html": "\n\n
\n \n \n | \n Seconds | \n Country | \n Latitude | \n Longitude | \n
\n \n \n \n | 2 | \n 20.0 | \n 3 | \n 53.200000 | \n -2.916667 | \n
\n \n | 3 | \n 20.0 | \n 4 | \n 28.978333 | \n -96.645833 | \n
\n \n | 14 | \n 30.0 | \n 4 | \n 35.823889 | \n -80.253611 | \n
\n \n | 23 | \n 60.0 | \n 4 | \n 45.582778 | \n -122.352222 | \n
\n \n | 24 | \n 3.0 | \n 3 | \n 51.783333 | \n -0.783333 | \n
\n \n
\n
"
},
"metadata": {},
- "execution_count": 79
+ "execution_count": 56
}
],
"source": [
@@ -152,12 +172,14 @@
"\n",
"new_ufos['Country'] = LabelEncoder().fit_transform(new_ufos['Country'])\n",
"\n",
+ "\n",
+ "\n",
"new_ufos.head()"
]
},
{
"cell_type": "code",
- "execution_count": 88,
+ "execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
@@ -169,12 +191,12 @@
"y = new_ufos['Country']\n",
"\n",
"\n",
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n"
]
},
{
"cell_type": "code",
- "execution_count": 89,
+ "execution_count": 58,
"metadata": {},
"outputs": [
{
@@ -214,12 +236,13 @@
"\n",
"print(classification_report(y_test, predictions))\n",
"print('Predicted labels: ', predictions)\n",
- "print('Accuracy: ', accuracy_score(y_test, predictions))\n"
+ "print('Accuracy: ', accuracy_score(y_test, predictions))\n",
+ "\n"
]
},
{
"cell_type": "code",
- "execution_count": 97,
+ "execution_count": 59,
"metadata": {},
"outputs": [
{