Update README.zh-cn.md

pull/118/head
feiyun0112 4 years ago committed by GitHub
parent 076339f237
commit be839fe1e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -13,8 +13,8 @@
- 1763, 1812 [贝叶斯定理](https://wikipedia.org/wiki/Bayes%27_theorem) 及其前身。该定理及其应用是推理的基础,描述了基于先验知识的事件发生的概率。
- 1805 [最小二乘理论](https://wikipedia.org/wiki/Least_squares)由法国数学家Adrien-Marie Legendre提出。 您将在我们的回归单元中了解这一理论,它有助于数据拟合。
- 1913 [马尔可夫链](https://wikipedia.org/wiki/Markov_chain)以俄罗斯数学家安德烈马尔可夫的名字命名,用于描述基于先前状态的一系列可能事件。
- 1957 [感知器](https://wikipedia.org/wiki/Perceptron)是美国心理学家弗兰克·罗森布拉特发明的一种线性分类器,是深度学习发展的基础。
- 1913 [马尔可夫链](https://wikipedia.org/wiki/Markov_chain)以俄罗斯数学家Andrey Markov的名字命名,用于描述基于先前状态的一系列可能事件。
- 1957 [感知器](https://wikipedia.org/wiki/Perceptron)是美国心理学家Frank Rosenblatt发明的一种线性分类器,是深度学习发展的基础。
- 1967 [最近邻](https://wikipedia.org/wiki/Nearest_neighbor)是一种最初设计用于映射路线的算法。 在ML中它用于检测模式。
- 1970 [反向传播](https://wikipedia.org/wiki/Backpropagation)用于训练[前馈神经网络](https://wikipedia.org/wiki/Feedforward_neural_network)。
- 1982 [循环神经网络](https://wikipedia.org/wiki/Recurrent_neural_network) 是源自产生时间图的前馈神经网络的人工神经网络。
@ -22,7 +22,7 @@
✅ 做点调查。在ML和AI的历史上还有哪些日期是重要的
## 1950: 会思考的机器
艾伦·图灵,一个真正杰出的人,[在2019年被公众投票选出](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) 作为20世纪最伟大的科学家他认为有助于为“会思考的机器”的概念打下基础。他通过创建 [图灵测试](https://www.bbc.com/news/technology-18475646)来解决反对者和他自己对这一概念的经验证据的需求,您将在我们的 NLP 课程中进行探索。
Alan Turing,一个真正杰出的人,[在2019年被公众投票选出](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) 作为20世纪最伟大的科学家他认为有助于为“会思考的机器”的概念打下基础。他通过创建 [图灵测试](https://www.bbc.com/news/technology-18475646)来解决反对者和他自己对这一概念的经验证据的需求,您将在我们的 NLP 课程中进行探索。
## 1956: 达特茅斯夏季研究项目
@ -87,14 +87,14 @@
这个时代见证了一个新的时代ML和AI能够解决早期由于缺乏数据和计算能力而导致的一些问题。数据量开始迅速增加变得越来越广泛无论好坏尤其是2007年左右智能手机的出现计算能力呈指数级增长算法也随之发展。这个领域开始变得成熟因为过去那些随心所欲的日子开始具体化为一种真正的纪律。
## Now
## 现在
今天机器学习和人工智能几乎触及我们生活的每一个部分。这个时代要求仔细了解这些算法对人类生活的风险和潜在影响。正如微软的Brad Smith所言“信息技术引发的问题触及隐私和言论自由等基本人权保护的核心。这些问题加重了制造这些产品的科技公司的责任。在我们看来它们还呼吁政府进行深思熟虑的监管并围绕可接受的用途制定规范”([来源](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/))。
未来的情况还有待观察,但了解这些计算机系统以及它们运行的软件和算法是很重要的。我们希望这门课程能帮助你更好的理解,以便你自己决定。
[![深度学习的历史 ](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "深度学习的历史 ")
> 🎥 点击上图观看视频Yann LeCun 在本次讲座中讨论深度学习的历史
[![深度学习的历史](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "深度学习的历史")
> 🎥 点击上图观看视频Yann LeCun在本次讲座中讨论深度学习的历史
---
## 🚀挑战

Loading…
Cancel
Save