From b67f8fc8140b9872ee15c2ce5831f237e2fbb08c Mon Sep 17 00:00:00 2001 From: mamutalib Date: Thu, 14 Apr 2022 23:30:26 +0600 Subject: [PATCH] bangla translation added --- .../1-intro-to-ML/translations/README.bn.md | 151 ++++++++++++++++++ 1 file changed, 151 insertions(+) create mode 100644 1-Introduction/1-intro-to-ML/translations/README.bn.md diff --git a/1-Introduction/1-intro-to-ML/translations/README.bn.md b/1-Introduction/1-intro-to-ML/translations/README.bn.md new file mode 100644 index 00000000..97e6b1e8 --- /dev/null +++ b/1-Introduction/1-intro-to-ML/translations/README.bn.md @@ -0,0 +1,151 @@ +# মেশিন লার্নিং এর সূচনা + + +[![ML, AI, deep learning - What's the difference?](https://img.youtube.com/vi/lTd9RSxS9ZE/0.jpg)](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - What's the difference?") + +> 🎥 মেশিন লার্নিং, এআই(আর্টিফিশিয়াল ইন্টিলিজেন্স) এবং ডিপ লার্নিং এর মধ্যে পার্থক্য এর আলোচনা জানতে উপরের ছবিটিতে ক্লিক করে ভিডিওটি দেখুন। + +## [প্রি-লেকচার-কুইজ](https://white-water-09ec41f0f.azurestaticapps.net/quiz/1/) + +--- +বিগিনারদের জন্য ক্লাসিক্যাল মেশিন লার্নিং কোর্স এ আপনাকে স্বাগতম!আপনি হয় এই বিষয়ে সম্পূর্ণ নতুন অথবা মেশিন লার্নিং এ নিজের অনুশীলনকে আরও উন্নত করতে চান, আপনি আমাদের সাথে যোগদান করতে পেরে আমরা খুশি! আমরা আপনার ML অধ্যয়নের জন্য একটি বন্ধুত্বপূর্ণ লঞ্চিং স্পট তৈরি করতে চাই এবং আপনার মূল্যায়ন, প্রতিক্রিয়া,[ফিডব্যাক](https://github.com/microsoft/ML-For-Beginners/discussions). জানাতে এবং অন্তর্ভুক্ত করতে পেরে খুশি হব । + + +[![Introduction to ML](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "Introduction to ML") + + +> 🎥 ভিডিওটি দেখার জন্য উপরের ছবিতে ক্লিক করুন +MIT এর জন গাটেং মেশিন লার্নিং এর পরিচিতি করাচ্ছেন। + +--- +## মেশিন লার্নিং এর শুরু + +এই ক্যারিকুলাম শুরুর করার পূর্বে, নোটবুক রান করার জন্য নোটবুক সেটআপ থাকতে হবে। + + +- **আপনার মেশিন কে কনফিগার করুন এই ভিডিও দেখে**. শিখার জন্য এই লিংকটি ব্যবহার করুন [কিভাবে পাইথন ইন্সটল করতে হয়](https://youtu.be/CXZYvNRIAKM) এবং [সেটআপ এ ইডিটর](https://youtu.be/EU8eayHWoZg) . +- **পাইথন শিখুন**. [পাইথন](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) এর ব্যাসিক নলেজ জানা থাকা জরুরী। এই কোর্সের প্রোগ্রামিং ল্যাঙ্গুয়েজ ডেটা সাইন্সটিস্ট এর জন্য খুবই গুরুত্বপূর্ণ। +- **Node.js এবং JavaScript শিখুন**.ওয়েব অ্যাপস তৈরির জন্য এই কোর্সে আমরা জাবাস্ক্রিপট ব্যাবহার করব। তাই, আপনার [নোড](https://nodejs.org) এবং [npm](https://www.npmjs.com/) ইন্সটল থাকতে হবে। অন্যদিকে, পাইথন এবং জাভাস্ক্রিপট ডেভেলাপমেন্টের জন্য [ভিজুয়াল স্টুডিও](https://code.visualstudio.com/) কোড এ দুটুই আছে। +- **একটি গিটহাব অ্যাকাউন্ট তৈরি করুন**. যেহেতু আপনি আমাদের কে [গিটহাব](https://github.com) এ পেয়েছেন, তারমানে আপনার ইতিমধ্যেই একাউন্ট আছে। তবে যদি না থাকে, একটি একাউন্ট তৈরি করুন এবং পরে ফর্ক করে আপনার বানিয়ে নিন। (স্টার দিতে ভুলে যাবেন না,😊 ) +- **ঘুরিয়ে আসেন Scikit-learn**. নিজেকে পরিচিত করুন [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) এর সাথে, মেশিন লার্নিং লাইব্রেরি সেট যা আমরা এই কোর্সে উল্লেখ করে থাকব + +--- +## মেশিন লার্নিং কি? +'মেশিন লার্নিং' শব্দটি বর্তমান সময়ের সবচেয়ে জনপ্রিয় এবং প্রায়ই ব্যবহৃত একটি শব্দ। আপনি যে ডোমেইনে কাজ করেন না কেন প্রযুক্তির সাথে আপনার পরিচিতি থাকলে অন্তত একবার এই শব্দটি শুনেছেন এমন একটি অপ্রয়োজনীয় সম্ভাবনা রয়েছে। মেশিন লার্নিং এর মেকানিক্স, যাইহোক, বেশিরভাগ মানুষের কাছে এটি একটি রহস্য। একজন মেশিন লার্নিং নতুনদের জন্য, বিষয়টি কখনও কখনও অপ্রতিরোধ্য মনে হতে পারে। অতএব, মেশিন লার্নিং আসলে কী তা বোঝা গুরুত্বপূর্ণ এবং বাস্তব উদাহরণের মাধ্যমে ধাপে ধাপে এটি সম্পর্কে শিখতে হবে। + +--- +## হাইফ কার্ভ + +![ml hype curve](../images/hype.png) + +> Google Trends এ 'মেশিন লার্নিং' শব্দটির সাম্প্রতিক 'হাইপ কার্ভ'। + +--- +## এক রহস্যময় মহাবিশ্ব + +আমরা রহস্যে ভরপুর একটি আকর্ষনীয় মহাবিশ্বে বাস করি। স্টিফেন হকিং, আলবার্ট আইনস্টাইন এবং আরও অনেকের মতো মহান বিজ্ঞানীরা আমাদের চারপাশের বিশ্বের রহস্য উন্মোচন করে এমন অর্থপূর্ণ তথ্য অনুসন্ধানে তাদের জীবন উৎসর্গ করেছেন।এটি মানুষের শেখার একটি অবস্থা: একটি মানব শিশু নতুন জিনিস শিখে এবং বছরের পর বছর তাদের বিশ্বের গঠন উন্মোচন করে যখন তারা প্রাপ্তবয়স্ক হয়ে ওঠে। + +--- + +## শিশুদের মস্তিষ্ক +একটি শিশুর মস্তিষ্ক এবং ইন্দ্রিয়গুলি তাদের আশেপাশের ঘটনাগুলি উপলব্ধি করে এবং ধীরে ধীরে জীবনের লুকানো নিদর্শনগুলি শিখে যা শিশুকে শেখা নিদর্শনগুলি সনাক্ত করার জন্য যৌক্তিক নিয়ম তৈরি করতে সহায়তা করে। এই প্রথিবীতে মানুষের মস্তিষ্কের শেখার প্রক্রিয়া অন্যান্য প্রাণি থেকে খুবই অত্যাধুনিক। ক্রমাগত শেখা এবং লুকানো প্যাটার্নগুলি আবিষ্কার করে এবং তারপর সেই প্যাটার্নগুলিতে উদ্ভাবন করে আমাদের সারা জীবন জুড়ে নিজেদের আরও ভালো এবং উন্নত করতে সক্ষম করে। এই শেখার ক্ষমতা ও বিকশিত হওয়ার সক্ষমতা কে বলে [ব্রেইন প্লাস্টিসিটি](https://www.simplypsychology.org/brain-plasticity.html)। বাহ্যিকভাবে, আমরা মানব মস্তিষ্কের শেখার প্রক্রিয়া এবং মেশিন লার্নিং ধারণার মধ্যে কিছু অনুপ্রেরণামূলক মিল আঁকতে পারি। + +--- +## মানুষের মস্তিষ্ক + +[মানুষের মস্তিষ্ক]((https://www.livescience.com/29365-human-brain.html)) বাস্তব জগত থেকে জিনিসগুলি উপলব্ধি করে, অনুভূত তথ্য প্রক্রিয়া করে, যৌক্তিক সিদ্ধান্ত নেয় এবং পরিস্থিতির উপর ভিত্তি করে কিছু ক্রিয়া সম্পাদন করে। এটাকেই আমরা বলি বুদ্ধিমত্তার সাথে আচরণ করা। যখন আমরা একটি মেশিনে বুদ্ধিমান আচরণগত প্রক্রিয়ার একটি প্রতিকৃতি প্রোগ্রাম করি, তখন এটিকে কৃত্রিম বুদ্ধিমত্তা (AI) বলা হয়। + +--- +## কিছু পরিভাষা + +যদিও এটা বিভ্রান্তকর হতে পারে, মেশিন লার্নিং (এম. এল) আর্টিফিশিয়াল ইন্টিলিজেন্স এর একটি অংশ। **ML অর্থপূর্ণ তথ্য উন্মোচন করার জন্য বিশেষ অ্যালগরিদম ব্যবহার করে এবং যুক্তিসঙ্গত সিদ্ধান্ত গ্রহণের প্রক্রিয়াটিকে সমর্থন করার জন্য অনুভূত ডেটা থেকে লুকানো নিদর্শনগুলি খুঁজে বের করার সাথে সম্পর্কিত।** + +--- +## এ আই, এম এল, মেশিন লার্নিং + +![এ আই, এম এল, মেশিন লার্নিং, ডেটা সাইন্স](../images/ai-ml-ds.png) + +> ডায়াগ্রামটি এআই,এমএল, ডিপ লার্নিং এবং ডেটা সাইন্স এর মধ্যে সম্পর্ক বুঝাচ্ছে। ইনফোগ্রাফিক করেছেন [জেন লুপার](https://twitter.com/jenlooper) এবং [এই গ্রাফিক](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) থেকে অনুপ্রাণিত হয়েছেন। + +--- +## কভার-ধারণা + +এই কারিকুলামে,আমরা শুধু মেশিন লার্নিং এর মুল ধারনা গুলো আলোচনা করব যা একজন নতুন শিক্ষার্থীর জানা প্রয়োজন। আমরা যাকে 'ক্লাসিক্যাল মেশিন লার্নিং' বলি তা আমরা প্রাথমিকভাবে Scikit-learn ব্যবহার করে কভার করি, একটি চমৎকার লাইব্রেরি যা অনেক শিক্ষার্থী মৌলিক বিষয়গুলি শিখতে ব্যবহার করে। কৃত্রিম বুদ্ধিমত্তা বা গভীর শিক্ষার বিস্তৃত ধারণা বোঝার জন্য, মেশিন লার্নিংয়ের একটি শক্তিশালী মৌলিক জ্ঞান অপরিহার্য, এবং তাই আমরা এটি এখানে অফার করতে চাই। + +--- +## এই কোর্স থেকে আপনি শিখবেন: + +- মেশিন লার্নিং এর মুল ধারণা +- মেশিন লার্নিং এর ইতিহাস +- মেশিন লার্নিং এবং ভয় +- রিগ্রেশন এম এল (মেশিন লার্নিং) টেকনিকস +- ক্লাসিফিকেশন এম এল (মেশিন লার্নিং) টেকনিকস +- ক্লাস্টারিং এম এল (মেশিন লার্নিং) টেকনিকস +- ন্যাচেরাল লেঙ্গুয়েজ প্রসেসিং এম এল (মেশিন লার্নিং) টেকনিকস +- টাইম সিরিজ ফরকাস্টিং এম এল (মেশিন লার্নিং) টেকনিকস +- রিএনফোর্সমেন্ট লার্নিং +- মেশিন লার্নিং এর জন্য বাস্তব জগতের অ্যাপলিকেশন। + +--- +## কি শিখানো হবে না: + +- ডিপ লার্নিং +- নিউরাল নেটওয়ার্কস +- এ আই (আর্টিফিশিয়াল ইন্টিলিজেন্স) + + +আরও ভালো শিখার অভিজ্ঞতা তৈরি করার জন্য, আমরা নিউরাল নেটওয়ার্ক এবং 'ডিপ লার্নিং'এর জটিলতাগুলি এড়াব - নিউরাল নেটওয়ার্ক ব্যবহার করে বহু-স্তর বিশিষ্ট মডেল-বিল্ডিং - এবং এআই, যা আমরা একটি ভিন্ন পাঠ্যক্রমে আলোচনা করব। আমরা এই বৃহত্তর প্লাটফর্মটির দিকের উপর ফোকাস করার জন্য একটি আসন্ন ডেটা সায়েন্স পাঠ্যক্রমও অফার করব। + +--- +## কেন মেশিন লার্নিং? + +মেশিন লার্নিং, একটি সিস্টেমের দৃষ্টিকোণ থেকে, স্বয়ংক্রিয় সিস্টেমের সৃষ্টি হিসাবে সংজ্ঞায়িত করা হয় যা বুদ্ধিমান সিদ্ধান্ত নিতে সহায়তা করার জন্য ডেটা থেকে লুকানো প্যাটার্নগুলি শিখতে পারে। + +এই অনুপ্রেরণাটি ঢিলেঢালাভাবে অনুপ্রাণিত হয় কিভাবে মানুষের মস্তিষ্ক বাইরের জগত থেকে প্রাপ্ত তথ্যের ভিত্তিতে কিছু জিনিস শিখে। + +✅ এক মিনিটের জন্য চিন্তা করুন কেন একটি ব্যবসা ’মেশিন লার্নিং’ কৌশল ব্যবহার করতে চায় যেখানে একটি হার্ড-কোডেড নিয়ম-ভিত্তিক ইঞ্জিন তৈরি করা যায় । + +--- +## মেশিন লার্নিং এর অ্যাপ্লিকেশন + +মেশিন লার্নিং এর অ্যাপ্লিকেশন এখন প্রায় সবখানে, এবং আমাদের সমাজের চারপাশে প্রচলিত ডেটার মতই সর্বব্যাপী, আমাদের স্মার্ট ফোন, সংযুক্ত ডিভাইস এবং অন্যান্য সিস্টেম দ্বারা উত্পন্ন। অত্যাধুনিক মেশিন লার্নিং অ্যালগরিদমের অপার সম্ভাবনার কথা বিবেচনা করে, গবেষকরা বহুমাত্রিক এবং বহু-বিষয়ক বাস্তব-জীবনের সমস্যার সমাধান করার জন্য তাদের সক্ষমতা অন্বেষণ করে চলেছেন যার মাধ্যমে বড় ইতিবাচক ফলাফল পাওয়া যাবে। + +--- +## ব্যবহৃত মেশিন লার্নিং এর উদাহরণ + +**আপনি মেশিন লার্নিং বিভিন্ন মাধ্যমে ব্যবহার করতে পারবেন**: + +- রোগীর চিকিৎসার রিপোর্ট থেকে রোগের সম্ভাবনা অনুমান করা। +- দিতে আবহাওয়ার ডেটা ব্যবহার করে আবহাওয়া এর পূর্বাভাস দেওয়া +- একটি পাঠ্যের অনুভূতি বোঝার জন্য। +- অপপ্রচার বন্ধ করতে ভুয়া খবর শনাক্ত করা। + +অর্থ, অর্থনীতি, আর্থ সায়েন্স, স্পেস এক্সপ্লোরেশন, বায়োমেডিকেল ইঞ্জিনিয়ারিং, জ্ঞানীয় বিজ্ঞান এবং এমনকি মানবিক ক্ষেত্রগুলি তাদের ডোমেনের কঠিন, ডেটা-প্রসেসিং ভারী সমস্যাগুলি সমাধান করার জন্য মেশিন লার্নিংকে ব্যবহার করেছে। + +--- +## উপসংহার + +মেশিন লার্নিং বাস্তব-বিশ্ব বা উৎপন্ন ডেটা থেকে অর্থপূর্ণ অন্তর্দৃষ্টি খোঁজার মাধ্যমে প্যাটার্ন-আবিষ্কারের প্রক্রিয়াটিকে স্বয়ংক্রিয় করে। এটি অন্যদের মধ্যে ব্যবসা, স্বাস্থ্য এবং আর্থিক অ্যাপ্লিকেশনগুলিতে অত্যন্ত মূল্যবান বলে প্রমাণিত হয়েছে। + +অদূর ভবিষ্যতে, মেশিন লার্নিংয়ের বুনিয়াদিগুলি বোঝা যে কোনও ডোমেনের লোকেদের জন্য এটির ব্যাপক গ্রহণের কারণে অপরিহার্য হতে চলেছে। + +--- +# 🚀 Challenge + +স্কেচ, কাগজে বা একটি অনলাইন অ্যাপ ব্যবহার করে [এক্সালিড্র](https://excalidraw.com/) AI, ML, ডিপ লার্নিং এবং ডেটা সায়েন্সের মধ্যে পার্থক্য সম্পর্কে। + +# [লেকচার-কুইজ](https://white-water-09ec41f0f.azurestaticapps.net/quiz/2/) + +--- +# পর্যালোচনা ও সেল্ফ স্টাডি + +আপনি কিভাবে ক্লাউডে এমএল অ্যালগরিদম দিয়ে কাজ করতে পারেন সে সম্পর্কে আরও জানতে, এটি অনুসরণ করুন [লার্নিং পাথ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)। + +এম এল বেসিক জানুন [লার্নিং পাথ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa) + +--- +# এসাইন্টমেন্ট + +[চলুন শুরু করি](assignment.md) \ No newline at end of file