diff --git a/2-Regression/1-Tools/notebook.ipynb b/2-Regression/1-Tools/notebook.ipynb index e69de29b..121fae3e 100644 --- a/2-Regression/1-Tools/notebook.ipynb +++ b/2-Regression/1-Tools/notebook.ipynb @@ -0,0 +1,593 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Welcome to your notebook" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 203, + "source": [ + "print('Hello notebook')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Hello notebook\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 204, + "source": [ + "import matplotlib.pyplot as plt\r\n", + "import numpy as np\r\n", + "from sklearn import datasets, linear_model, model_selection" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "X = the set of attributes - age, sex, bmi, bp, and 6 medical measurements\r\n", + "y = the target - a quantitative measure of disease progression one year after baseline" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 205, + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\r\n", + "print(X.ndim, X.shape)\r\n", + "print(X[0])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2 (442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990842 -0.01764613]\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "`.shape` is a numpy property which says how deep the sets go and how many in each.\r\n", + "\r\n", + "(442,10) means 442 arrays of 10 items each\r\n", + "\r\n", + "Each 'level' of array is called an axis in numpy, so we have 2 axes here, \r\n", + "the first has 442 entries and the second has 10 \r\n", + "(i.e. all 442 have 10, no variation allowed)" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "X is 442 entries of the 10 attributes\r\n", + "\r\n", + "y is the 442 results" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 206, + "source": [ + "Xview = X.view()\r\n", + "X = Xview[:, np.newaxis, 2]\r\n", + "print(X.shape)\r\n", + "print(X[0])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(442, 1)\n", + "[0.06169621]\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "This picks the second attribute from each set.\r\n", + "\r\n", + ": - leave outermost dimension alone\r\n", + "\r\n", + "np.newaxis - wrap inner one in a new array\r\n", + "\r\n", + "2 - pick the third attribute (bmi, presumably)\r\n", + "\r\n", + "without np.newaxis, we end up with 1 array of all the bmi's - not what we want.\r\n", + "\r\n", + "this way we get 442 arrays of 1 entry, the bmi.\r\n", + "\r\n", + "I have no idea why instructions said to overwrite original `X` so I saved it as `origX`, I want to check that the numbers match below" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 207, + "source": [ + "print(X.ndim, X.shape)\r\n", + "print(X[0], X[1])\r\n", + "print(origX[0, 2], origX[1, 2])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2 (442, 1)\n", + "[0.06169621] [-0.05147406]\n", + "0.0616962065186885 -0.0514740612388061\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Yay it matches! Maybe I really do understand what's going on here 😀" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Split into training and test data" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 208, + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 209, + "source": [ + "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(296, 1) (296,) (146, 1) (146,)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Now we see if the model can detect a link between bmi and diabetes" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 210, + "source": [ + "model = linear_model.LinearRegression()\r\n", + "model.fit(X_train, y_train)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ] + }, + "metadata": {}, + "execution_count": 210 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "We now have a trained model, based on 2/3 of the initial data.\r\n", + "\r\n", + "Time to see how accurate it is" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 211, + "source": [ + "y_pred = model.predict(X_test)" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Just the inputs, no outputs, and this is data the model hasn't seen before" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "What does y_pred look like? Presumably the same 'shape' as y_test, which is the actual results" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 212, + "source": [ + "print(y_pred.shape)\r\n", + "print(y_test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(146,)\n", + "(146,)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Let's eyeball the first 10 entries, just for fun" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 213, + "source": [ + "print(y_pred[:10])\r\n", + "print(y_test[:10])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[106.13314033 158.77362293 206.44802227 178.63795599 146.8550231\n", + " 141.88893983 306.76290422 180.6243893 140.89572318 108.11957364]\n", + "[138. 151. 242. 296. 141. 81. 242. 270. 60. 93.]\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Let's plot it on a graph" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 214, + "source": [ + "plt.scatter(X_test, y_test, color = 'black')\r\n", + "plt.plot(X_test, y_pred, color = 'blue', linewidth = 3)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo1klEQVR4nO2de5QdVZ3vP7s7nYQmIOQkgxHo02HGuTMMipLmqQKiiEZUROYCtpoFaM+0yDiML5ijo4tluxaOdwb0GrDDIIG0RBHnwriWi0F8oDwSO4E8gIkEPR0eIQkkvOyQTvrs+0dVk9PdtetU1anHrjq/z1q1uk7tOlW/XafPt/b5/vbepbTWCIIgCMWiLesABEEQhPgRcRcEQSggIu6CIAgFRMRdEAShgIi4C4IgFJAZWQcAMG/ePN3d3Z11GIIgCLlizZo1z2mt53uVWSHu3d3dDA8PZx2GIAhCrlBKjZjKxJYRBEEoICLugiAIBUTEXRAEoYCIuAuCIBQQEXdBEIQCIuIuCCEYGhqiu7ubtrY2uru7GRoayjokQfDEiq6QgpAHhoaG6OvrY3R0FICRkRH6+voA6O3tzTI0QZiGtNwFISCVSuU1YZ9gdHSUSqWSUUSCYEbEXRACsmXLllDbBSFLRNwFISBdXV2htgtCloi4C0JABgYG6OzsnLSts7OTgYGBjCKKhiSFWwMRd0EISG9vL4ODg5TLZZRSlMtlBgcHc5VMnUgKj4yMoLV+LSksAl88lA3PUO3p6dEycZggJE93dzcjI9PnmiqXy1Sr1fQDEppCKbVGa93jVSYtd0EoOPU2jJewgySFi4iIuyAUmKk2jAlJCqfLnj1w3HFwyCFw6aWwd2/85xBxF4SEsCFx6dU3fyp5TArnFa3hM5+B2bPhoYfgxRdh6VJ4/PH4zyUjVAUhAWwZzepntyil6OrqYmBgIFdJ4bxy001w0UXeZQsXxn++hglVpdRs4F5gFs7N4Mda668qpRYCK4ESsAb4uNZ6TCk1C7gZWAQ8D5yvta76nUMSqkLRsCVxaUscrcyqVXDSSd5lBx0E1SrMnRvt2M0mVPcAZ2itjwXeArxXKXUScDXw71rrvwB2AZe4+18C7HK3/7u7nyC0FLaMZi1K3/w8snUrKGUW9g0b4KWXogt7IxqKu3Z4xX3Z4S4aOAP4sbt9OXCOu/4h9zVu+buUUiqugAUhD9gymrUIffPzxp490NMDb3iDd/nttzve+zHHJBtHoISqUqpdKfUwsB24G3gCeEFrvc/d5SngcHf9cOBJALf8RRzrZuox+5RSw0qp4R07djRVCaFYxJ2IzCKxaVOLube3l2q1Sq1Wo1qtirAnhNZw2WVOsnTNmunlX/6ys8+556YWkA68AIcAvwTeDmyu234ksNFd3wgcUVf2BDDP77iLFi3SgqC11itWrNCdnZ0a59ehBnRnZ6desWKFFccLe+5yuayVUrpcLqdyTiEbbrpJa0e6py9nnqn13r3JnBcY1ia9NhUY3wD/AnwBeA6Y4W47GbjLXb8LONldn+Hup/yOKeIuTFAulycJ8cRSLpetOF4jRNBbi1WrzKJ+4IFaP/dcsuf3E/eGtoxSar5S6hB3/QDgTOAxtwV/nrvbEuAOd/1O9zVu+S/cIIQc0IyFEYf9EXciMs3Epszb0jpMJEtPPNG7fP16eOUVKE0zpFPEpPoTC/Bm4CFgPY7l8i/u9qOA1cBm4DZglrt9tvt6s1t+VKNzSMvdDpqxMOKyP/Lcck/7V4KQPq++qvXxx5tb6z/+cbrxEKctk8Qi4m4HzYhTXMKWZ89dKeV5DZRSsZ9LSJdaTevLLjOL+j//czZxibgLgWhGnOIUtrh967R8cGm5F5ObbzaL+rvelVyyNAgi7kIgbGi555kse+YI8bN6tVnUDzhA6x07so7QX9xl4jDhNZrpm21Tv+6skAFDxeDZZ51k6QkneJevWwejozBvXrpxhcak+mku0nK3h2YsDOkGKOSZPXu0PuEEc2v9ttuyjnA6+LTc5UlMQmEYGhqiUqmwZcsWme1QCMXll8M113iXXXklfOMbqYYTGHkSk2DF3OJJIn3MhSisWOFYMF7C/s53wtiYvcLeCGm5twBT5xYHxw8vkh8sU9sKYRgehuOP9y6bNQueeioHnjr+LXcR9xagFYSvra0Nr/9lpRS1Wi2DiAQb2bYNXv96c/nDD8Oxx6YWTtOILdPi2DK3OCRnD9kyxW5cFN1GS5uxMTj5ZLOw//CHTto0T8LeEFOmNc1Fesskiy190JPsB16kPuZ+dZEeSeG5/HJzD5gvfSnr6JoDGcTU2tgifEnfZIoifKbrVCqVUvsci3Ath4bMon7aaVqPjWUdYfOIuAtWfFll7pVgmK6TaYn7F5gtjYGoDA+bRX3mTK23b886wvgQcReswBZ7KApp3hxN18m0xH1zzOvntG2bWdRB64ceyjrC+PETd0moCqlhwxQFURKVafehN12nkmFy8LiTxjYl4IMwNgannAKHHeZdvnKlI+9veUuqYWWPSfXTXKTl3jpkaQ9FtRuyaMl6Xae07JI8tdw/9zlzS/2LX8w6uuRBbBlBiC5aNuUK0rg55sFz90uWvuMdxUiWBsFP3GUQk9AyRB3o1AqDwKZi6zw9a9fCokXeZTNmwDPPwPz56caUJTKISSgkYf3zqAOdbMgVpE1vby/VapVarUa1Ws1c2Ldvh/Z2s7CvXQt797aWsDfE1KRPcxFbRghLFOug2WfENmuH2NAdNW+MjWn9treZLZhbb806wmxBPHehCNSLY3t7eyT/PCuBzYOPbRtf+IJZ1D//+ayjswM/cRfPXcgFXjNbemHrRGGt6NtHZeVKuPBC77K3vQ1+8QuYOTPdmGxFPHchNZKa8KpSqTQUdrB3orC89R3PgocecuZW9xL2tjZnRsff/hZuu00mVQuEqUmf5iK2jL2EsTGStB6CDMlPw+aIauuk0Xc8r57+9u1az5hhtmDWrNm/r9hbk0E8dyEKYb9ISQqY6djt7e2piVmzCdkkRSmPojc25vRJN4n6D34w/T15GmCVBiLuQiTCfpGSHOxjg3g1KyxJtqzzJnpf/KJZ1P/pn8zvs2lAmQ2IuAuRCPtFKvqUvjYLi82x1bNypVnUTzlF6z17/N+ft5tY0viJuyRUBSNhB/0kPdgn64E1Nj/tyebYwHl8nVJwwQXTy5SCZ5+F++5r3AumFQeURcak+hMLcCTwS+BR4BHgs+72rwFPAw+7y+K691wJbAY2AWc1Ooe03O0k6kChPCb1gmCDNZS32LZv17qjw9xaHx4Of8wi/4+FhWZsGWABcJy7fhDwe+BoV9w/77H/0cA6YBawEHgCaPc7h4i7vcgXaTI2Xw+bYhsb0/rUU82ibtFlyzVNifu0N8AdwJk+4n4lcGXd67uAk/2OKeKeD2wSj2YpUl1s40tfMov65ZdnHV2xiE3cgW5gC3CwK+5VYD1wI3Cou8//BT5W957/AM7zOFYfMAwMd3V1pXc1hEjY8rM/rjlebKhL0fjRj8yiftJJjZOlQnhiEXdgDrAGONd9fRjQjjPKdQC4UYcQ9/pFWu72Y0MvhbhE2Ya6FImHHzaLOmj97LNZR1hc/MQ9UG8ZpVQHcDswpLX+CYDWepvWelxrXQOWASe4uz+Nk4Sd4Ah3m5BjbBg+7zUFwejoKJVKJdRxbKhLEXjuOZg92/z4ut/9zpF30+PvhGRpKO5KKYXT+n5Ma/1vddsX1O32YWCju34ncIFSapZSaiHwRmB1fCELWWBDV7u4RDnruiQ1/05a7N0L73ynM3f6nj3Ty2+5xRH1Hs/prIQJEv8/MDXpJxbg7Tg/W9dT1+0RuAXY4G6/E1hQ954KTi+ZTcD7Gp1DbJl0aMavtsGnjstOybIuNlzHZrjySrP98tnPal2rZR1hPojr/wAZoSrE8c+UdQ+TOIUxq7rk1e+/7TazqJ94otavvpp1hPkirv8DP3GX+dxbhKLMJ27rsz2DEvU5rlmxfj0ce6y5fOtWeP3r04unKMT1f+A3n7uIe4uQN1EpKnm5yT7/PBxxBLz6qnf56tVw/PHpxlQk4vo/kId1CJknEQUH2+dG2bcPzjgD5s3zFvblyx0zRoS9OVL5PzD5NWku4rknT94TeUUi69yFiUrF7Kv/wz9IsjRu4vg/QDx3AeDTn/40g4ODjI+P097eTl9fH0uXLs06LCFjbr8dzjvPu+z44+E3v4FZs9KNSQiG2DICQ0NDLF++nPHxcQDGx8dZvnx57vpYC/GxYYMz3a5J2J95xvHWRdjziYh7ixDX6E7I/yCcVuf556GzE978Zu/yVascM2bBAu9yIR+IuLcIcY3uHBoaoq+vj5GREbTWjIyM0NfXJwKfA/btg3e/20mW7t49vfymmxxRP+GE6WVC/hBxbxHi6i0T5y8AIT2+8hXo6IB77pledtllUKvBkiXpxyUkh4h7ixBX1yuZdCtf/OQnjq/+9a9PL1u0yOnu+O1vO/sIxULEvUXo7e1lcHCQcrmMUopyuczg4GDo0Z3SXz4fbNzoCPZHPuJd/swzMDwsydIiI+LeQsTxgGnbB+G0Ojt3wpw58KY3eZc/+KAkS1sFEXchFHH9AkiLVunZs28fvOc9UCrBn/40vfz733dE/cQT049NyAYZxCQUlomePfUJ4M7OTqtvRlH46lfhqqu8yy69FL7zHfHUi4pMHCa0JHmZpCsq//mfcO653mVvfSvcf7/zpCShuMgIVSExbLY9itqz55FHnJa4SdiffhrWrhVhb3VE3IXXCCvUtg9oKlrPnmeecUT9mGO8yx94wPHV3/CGdOMSLMU0o1iai8wKGZykZhSMMmuk7U8VKspMmGNj5tkaQesbb8w6QiErkMfsFYMkxSqKUCulPN+jlGo6nriwdXrdoJx+ulnU+/tlGt5Wx0/cJaGaI5JMEEZ5UlPRE5ZZcvXVcMUV5vLdu8VTFyShWhiSTBBG8adlQFP8/PrXjq9uEvbHHnPa7SLsQiNE3HNEkgnCKEKdtwFNNrN1qyPqp5/uXf6jHzmi/ld/lWpYQp4x+TVpLuK5ByPpBGHe/Wk/bK1bo2TppZdmHaFgM0hCNX+YxMhWkbIZW3vNnHGGWdSPOEKSpUJj/MRdEqoW0irD5tPCtsTvt74FX/iCufzll53JvwShETL9QM6wTYzyTpSeQElw771w2mnm8kcfhb/+69TCEQqA9JbJGXkZNm/z1AP1ZD1SdSJZahL2lSsdM0aEXYiThuKulDpSKfVLpdSjSqlHlFKfdbfPVUrdrZR63P17qLtdKaW+rZTarJRar5Q6LulKFI2sxSgItk89UE9WXTb37XNE3TQdQH+/I+rnn59oGIHIy41aCIHJjJ9YgAXAce76QcDvgaOBbwJXuNuvAK521xcDPwMUcBKwqtE5JKE6GVsTgPXYPvXAVNJORJ95pjlZumCBXcnSPPy/Cd4QZ28Z4A7gTGATsEDvvwFscte/B1xYt/9r+5kWEffp2N4rJg9TD3iR9HX91rf8uza+9FKsp4uFvN2ohf3EJu5AN7AFOBh4oW67mngN/BR4e13ZPUCPx7H6gGFguKurK61rIcREqVTyFIRSqZR1aEaSbKHee6+/qD/ySAwVSIi83qgFf3EPnFBVSs0Bbgf+UWv9Un2Ze5JQ3W601oNa6x6tdc/8+fPDvFUQIlGpVCZ1LwUYHR2lUql47h/Eh372WcdXP/VU73Peeqsj70cf3XT4iZGHHI8QnkDirpTqwBH2Ia31T9zN25RSC9zyBcB2d/vTwJF1bz/C3SYUiJ07d4babgNheiE1ShhPJEtND5ru63NE/YILYgs/MWSOoGISpLeMAv4DeExr/W91RXcCS9z1JThe/MT2T7i9Zk4CXtRab40xZsEC8tjaCxOzXyv/ve+Fjg7vc7zudbvp6upm2bL89DqROYIKismv0fu98bfjWC7rgYfdZTFQwvHTHwd+DszV+/337wJPABvw8NunLpJQzR957GERJmZvH/offX31ZctW5u6aCPkGmVtGCEuQXiW29+jxImjMk3uQnOIr6hs3er1Hep0IyeMn7jL9gDANmdvGuQaf+tSX2b37jz77wEc/uv+1LdMcCK2DzC0jhKLV57bZt8/sqQN88pOwbNn07a1+3YT0kbllcoBNw7/zMrdNEixebBb2+fOhVvMWdpBeJ4JdiLhbgG3ztOSxJ0yzXHON07XxZz/zLn/xRdi+3dnHhPQ6EazCZManueQ5oRpHUtG2RFySPWGSSMI2c8z77jMnSkHrDRuaDk8QEgPpLZMMcYmgjcO/+/v7dXt7uwZ0e3u77u/vb/qYSdw0oh5z2zZ/Ub/llsghCUJqiLgnRFwt7lZpuSdRz7DH3LfPX9QvuSRyKIKQOn7iLp57E0RNPE5Nni5evNiqRFzYOViCkkSiNswxzz4bZszwPs7cuU6y9IYbIofSEJuS5kILYFL9NJdWarmbWsX9/f3WDAgy2US4VpFNuYUgx7z2Wv/W+gsvRD59YPI4olewH8SWSYYoX1jbLBgvTDE2K0xpe+733+8v6uvXRz5taPLwuQv5Q8Q9QcL21LAxeToVL8GMS5jS6C2zdOltvqK+fHk85wkTex4+dyF/iLhbRF5acPVC5mfR2ESjZOlFF0U/drO/OvLyuQv5QsTdImzxXsO0QvMgTB/4gFnUX/e65p9Z2uw1sOVzF4qFiLtlZD2bYlihsVmYvvMd/9b6kUceE0uccdgqWX/uQvEQcS8QWY2ItU2YHnjAX9ThzbHeiPLw60VoPUTcC0KRR8QGZft2f1EvlT6XyI3L5l8vQusi4l4QijoiNgiNkqWf+ISzX9gbV5hxB7b9ehEEEfeCEFeLu5lWaBYCd845ZlGfM0fr8fH9+4a9cZn2n3qtpZUu2IiIe0GIs8UdRaTTtia++13/1vquXc3H6NfVM0+/bITWRMQ9IdJuxWbt+6Zl5zz4oL+oP/SQ//vj6OaZ15yE0FqIuCdAVkKbpe+bdCJ2xw5/Ub/xxlhOMwmvz9FUT2m5C7Yh4p4AeUxKNktSdW6ULP3Yx+KJ38TUG2Z/f7/0jBFygYi7D1FbwnnuThiVJH6tnHuuWdQPOGBysjRNpGeMkAdE3A00I1at2HLXOj7RW7rUv7W+c2fMgQtCARFxN9CMQGed3MyCOIR99Wp/UV+7NoHABaGgiLgbaNZaaaWf7s3ezJ57zl/Ub7gh4QoIQgHxE3fllGdLT0+PHh4eTv283d3djIyMTNteLpepVqupx2MzUa9VrQbt7ebjXngh/OAHMQQoCC2IUmqN1rrHq6zhM1SVUjcqpbYrpTbWbfuaUupppdTD7rK4ruxKpdRmpdQmpdRZ8VQhGQYGBqx6dmlWBHm2Z5Tnn553nlnYZ82Cm28e4v775ZmigpAIpib9xAKcChwHbKzb9jXg8x77Hg2sA2YBC4EngPZG58hjb5miENRuCZOfuP56fwvm+edbM2chCHFDs5470B1Q3K8Erqx7fRdwcqPj57Gfe1EIKtpBxPh3v/MX9eHh8OcVBMGMn7g3tGV8+IxSar1r2xzqbjsceLJun6fcbdNQSvUppYaVUsM7duxoIgyhGYLaLb29vQwODlIul1FKUS6XGRwcpLe3l507QSk4/njvcyxb5sj7okXhzysIQjSiivt1wJ8DbwG2Av8n7AG01oNa6x6tdc/8+fMjhiE0S1dXV+Dtvb29VKtVarUa1WqVCy/sZcYMKJW8j33++Y6of/KTzZ1XEITwRBJ3rfU2rfW41roGLANOcIueBo6s2/UId5uQEY2SpVGTyuef7yRLx8enl3V0ONtXrjS/vwjJ7CCJaEHIDJNfU78w3XNfULd+ObDSXf8bJidU/4CFCdVWSaIGTVqGuR6Dg42TpWHi8zpvHj4fSQgLNkAzCVXgVhzrZS+Oh34JcAuwAVgP3DlF7Cs4vWQ2Ae9rdHydsri30pcyzqTl8LC/qENPLEKcl89HEsKCDfiJe8sNYmqlgUttbW14fb5KKWq1WqBj7Nxp9tQBZs78DGNj333tdWdn52uJ1ijk5fOJ49oKQrM0NYipaGTZSyNtj7aZpGWtBjNnmoX9b/8WyuXuScIOMDo6SqVSmbZ/0LrnpReNJIQF6zE16dNc0rRlsvo5nYXdEPWcF1xgtl/a2vZPwxt0bp4wcdhidzTy/fNiHwnFBpk4bD9ZfSmzvKkETU7ecIO/r/7cc9HqFKbuNohmEoloQUgCEfcpZPGltPnhHmvW+Iv66tX7962/dqVSSXd0dDQUwbB1z1o0bfn1IAiNEHG3ABsFY+dOf1G/7rrJ+3u1aGfOnKlLpZKvENtYdz9svhELQj1+4t5yCdWsyHrQTn1Cs1xeSEfHOHPneu977rmOvP/9309+/5IlSxgdHZ2079jYGHPmzHlt1KpXL5ms6x4WG5OlMmBKCI1J9dNcWqHlrnV2dsPkFvcK39b6vn2N3h+tRZu11RIGG3x/m+MR7AGxZbIla2FzbJGLfEV9x45G7/cWdiy2V5oh68+snrzZWkJ6iLhnSNRWV1zisnatWdBB61WrGh/D5EE304K0STxtR3IAggkR9wyJ0uryuiFMfMGDCuGuXf6iDv2BW35+LfdSqRRamMVmCIe03AUTIu4ZEqXV1cgG8RPC8XGtDzjAT9R/4nkMv5Z0I889rDCLWIVDboaCCRH3DIkiZH42iN/7P/5x/9Z6V9fCwOJtEv84fHexGcIjNpbghYh7hkRpdTVquU8Vwu9/31/U/ZKlfufzEuw4hFla7oIQD37iLv3cE8bv8XQmvPqFT6Wrq4t165zH2110kfc+Dz7oyPu8ef4xhpmsK44+4Hnr9y4IucSk+mkuRW65R6XeBpnaWj7ggAW+LfVPfGJ1qJ/wWcz9IjaDIDQPYsvkm/1Cr7RSLxtF/YMfjCa+Yd8jwiwIduAn7oW2ZYoyZLu3t5fTT68CNbSe47nPvn1wxx1QqVSmTRFgmmO9/vhhrSMvinK9BaEQmFQ/zSWJlntRuo/ddJPZfgGtt2+fvH/SPVFM17W/v78Q11sQ8gStaMvkvUfGunX+on7//d7vS7repuO3t7cnel6xggRhOn7iXlhbxrbHtQW1LF580ekBc+yx3se59lpH3k8+2bvcrydKHLaJ6fqNj4+H2j8MQ0ND9PX1MTIygtaakZER+vr6xPYRBD9Mqp/mUvSWexCLqFbT+uCDzS31s88Od76prdy4bKosWu42fZaCYBO0oi1jk+feSJwuusjfgvGahjfuGIKShecuI1oFwZuWFHet7fFpzdMJfNxX1Ldtiy8G7/NHE0jTdU3qekvLXRC8aVlxt4Xp4nSMr6jfd1+851+xYoXxBpMHgbTpV5gg2ISfuBc2oWoT+5OcB+No0wbP/a65xpH3U06J9/yVSsW5k09BKZWLIf9x9cMXhFZCeX3p06anp0cPDw9nHUZiaA2nnfYEv/nNn3uWL14MH/3oEJVKhS1bttDV1cXAwEBs4tXW1uYp7k5s2X/+giBEQym1Rmvd41UmLfeEue46aGvDKOzQwapV87j44os9u/rF0X3RNKlXuVwOfSxBEHKCya+ZWIAbge3Axrptc4G7gcfdv4e62xXwbWAzsB44rtHxdZOeuy1J06nce6/ZUwetDzig25jknFhKpVJsk3SJZy0IxYNmEqrAqcBxU8T9m8AV7voVwNXu+mLgZ67InwSsanR83YS42yhaIyP+ov7YY8Hma/dboiRBbb0JCoIQHT9xD+S5K6W6gZ9qrY9xX28CTtdab1VKLQB+pbX+X0qp77nrt07dz+/4UT337u5uRkZGpm0vl8tUq9XQx2uG3bvhuOPgf/7Hu/y//gvOPttZ9/PAg6CUolarRX6/IAjFIAnP/bA6wX4WOMxdPxx4sm6/p9xtXkH1KaWGlVLDO3bsiBREklMMBPW6tYaLL4bOTm9h//rXnX0mhB2CPdiis7OTUqnkWRbmwRh5RWaYFIQmMTXp6xegm8m2zAtTyne5f38KvL1u+z1AT6PjR7VlkhrcEtTuuf56s/1y9tnmkaVex+/o6NClUimRKQPiIi1rx7Z6C4Kt0OwgJg9x3wQscNcXAJvc9e8BF3rt57fY5rk3umn4JUtLJa137Wp8jv7+/tfmY2lvb9f9/f3GOmbhlU89b5pT+sqIVEEIRhLi/q9MTqh+011/P5MTqquDHN+23jLm6QKO9E2WPvpo8Jhtbpl6xZfmCFeZS0YQgtGUuAO3AluBvTge+iVAybVcHgd+Dsx191XAd4EncIZhNrRkdERxT7JFO73lOFvDRqOo33lns8fPpmVqmj3SNMNjWoJbKpWsuD5xIz2WhLhpuuWe9BJW3JNu+U4+/jKjqF91VbTj29AyNfn+M2fODCzsSQjuihUrPGPo6OjItRja/mtNyCeFE/c0Wr4XX/ygUdTf//7mpuGNO/4oLcIofe2n3pSSECdTXKVSKdbzpI0tv9aEYlE4cU+y5fvb33oLOmh96KFa79zZ/M/rZltx9ecvlUrTWrpBjmXOK3gvE3O2J20r2PCrJgmKWi8hWwon7km0gp580izqsD9ZGtfP66g3CK/zR7kWYVru7e3tqdkHWbVwk/bDpeUuJEHhxD1O/3J0VOtjjjGL+vz5l0z6wmf9JQ0qyo1ahEE997R94TS86Sy6eYrnLiRB4cRd6+ZbWrWa1p/6lFnUzz13neeXMaqYxkVQOyXIzcbUWybrHh1JxpBlN08brq1QLAop7s0wOGgW9fe9z0mWmlrIST4IOghBWu5JtAiLIkxh7CjxwwXbEXF3ue8+s6gfcoiTLJ3Ar4Wc5c/roFMXJH3OvFoKYRLJ4ocLttPy4v7UU2ZRB603bpz+Hj9vPWnboNGx025FZ51niBNTXdLo5ikIcdOy4r57t9ZvepNZ1OfP/9Q0gaxPmib1hTeJc5ot5DA3iCJ14zNd4zS6eQpC3LScuNdqWv/d35lF/cMf9k6WevWamBC2uL7wfuKSlp8f9iZSpJa71sXJHwhCS4n7smVmUT/rLK337s02WRrUFkiyhRxWrIvkuQtCkfAT9xkUhAcegFNO8S47+GD44x9h7lzntelhHuPj457b43j4xwReT44C5yZrIu6Hc4R9yElvby8AlUqFLVu20NXVxcDAwGvbBUGwj6hPYrKGp58GpczCPnt2D0uXDr0m7BBeLOMU17a2cJe8o6ODgYGBUO+pf4rRvHnzmDdv3qQnGpnq41fP3t5eqtUqtVqNarUqwi4ItmNq0qe5RLVlrrvObMHAOUa7IegQfhKwH4Kcs3458MADQx2/Ud1MuQWxWQQhf1BEz71W0/rgg71E/WuBPOv6pJqfuMYteGHF3bn/BifIIJ2ku3PGSV7iFIQsKKS4a631SSftF/Uzz9S6q+uoSAnRNHuDmB5EEZe4Bxmkk5cujJLIFQR//MQ91577PffA2rXw8svw3/8N3/jGVXR2dk7ap7Ozs6FnPTAwYHxfvX894Vk3w7XXXktHR8ekbR0dHcyZM8dz/1KpFOr4QfIDcSdok6JSqTA6Ojpp2+joKJVKJaOIBCFHmFQ/zSXOrpDNTKXrNYlWEgNeTOeaOiPjzJkzIx3b72lKeWr5FmnwlCAkAUW1ZZIm7aHqcfnLJusnzXnZ46Bog6cEIW78xF055dnS09Ojh4eHsw5jGm1tbQS9PuVymWq1mmxAATHFrZSiVqtlEFE0hoaG6Ovrm2TNdHZ2Mjg4KF0xBQFQSq3RWvd4leXac0+aMN50nAOdmiVKP3YTceUcohynt7eXwcFByuUySinK5bIIuyAExdSkT3Ox1ZbJ8sEOzRDnowDjOE5/f7/MuigICYB47tHJ4pFscRCHfx+H571ixYpc3BAFIY/4ibt47hEYGhpqiXlW4vDuu7u7jfPp5C0HIAi2IZ57QIL6wrbMsxJ3H/ypxOHd++Ui8tLfXhByialJn+Zigy1j82hIL2vIq7tj3PHGcU38upPacG0FIc8gnntjbO1T3WhQUtLxNuvdm5LS/f39scYpCK2In7g35bkrparAy8A4sE9r3aOUmgv8EOgGqsD/1lrv8juODZ67rX3DDzroIF555ZXA+2cdrxetkqMQhLRJ2nN/p9b6LXUnuAK4R2v9RuAe97WV1HvWpnnWs/SFh4aGQgk72Olj25KjEIRWIomE6oeA5e76cuCcBM7RNBOjH0dGRtBaez6FKcikY0kSdoKsRvEmnYAVBMEiTH5NkAX4I7AWWAP0udteqCtX9a+nvLcPGAaGu7q6krSlPPF7jqotc4cHmb53YimVSr7x2pwwFgQhGiSVUAUOd//+GbAOOHWqmAO7Gh0ni4RqmBkHs3pghN+DN0qlUqh4kkwYywM1BCEbEhP3SQeCrwGfBzYBC9xtC4BNjd6bhbgHFbssW7xx9jRJavpc+UUgCNnhJ+6RPXel1IFKqYMm1oH3ABuBO4El7m5LgDuiniNJ/B7QUU/QB0bE4WdPPQYwbeKsW265haVLl4Y+dpyTidUjD9QQBEsxqX6jBTgKx4pZBzwCVNztJZxeMo8DPwfmNjpWVv3cg9gJQVq8cbRek24BJ3V8eaCGIGQHMogpOkHsmzj87DQGUSXhjds6+EsQWgE/cZe5ZRoQxL4xzZ8SZo73OI7RiCT6mwe1twRBSBcR9wYEeWBEHH52Up540sgDNQTBUkxN+jQXm22ZIOTBcxcEoXggtkyyxNF6lRawIAhxIg/rEARByCnysA5BEIQWQ8RdEAShgIi4C4IgFBARd0EQhAIi4i4IglBArOgto5TaAYxkHUfCzAOeyzqIFGml+rZSXaG16mt7Xcta6/leBVaIeyuglBo2dVkqIq1U31aqK7RWffNcV7FlBEEQCoiIuyAIQgERcU+PwawDSJlWqm8r1RVaq765rat47oIgCAVEWu6CIAgFRMRdEAShgIi4x4hSaq5S6m6l1OPu30MN+y1x93lcKbWkbvuvlFKblFIPu8ufpRd9MJRS73Vj3KyUusKjfJZS6odu+SqlVHdd2ZXu9k1KqbNSDTwiUeurlOpWSu2u+yyvTz34kASo66lKqbVKqX1KqfOmlHn+T9tMk/Udr/ts70wv6hCYJnqXJfwCfBO4wl2/ArjaY5+5wB/cv4e664e6Zb8CerKuh0/92oEncB6OPhPn4ehHT9nn08D17voFwA/d9aPd/WcBC93jtGddpwTr2w1szLoOMde1G3gzcDNwXt124/+0rUsz9XXLXsm6Do0WabnHy4eA5e76cuAcj33OAu7WWu/UWu8C7gbem054TXMCsFlr/Qet9RiwEqfO9dRfgx8D71JKKXf7Sq31Hq31H4HN7vFsppn65o2GddVaV7XW64HalPfm8X+6mfrmAhH3eDlMa73VXX8WOMxjn8OBJ+teP+Vum+D77k+9r1goEo1in7SP1nof8CJQCvhe22imvgALlVIPKaV+rZR6R9LBNkkzn09RP1s/ZiulhpVSDyqlzok1spiYkXUAeUMp9XPg9R5FlfoXWmutlArbz7RXa/20Uuog4Hbg4zg/CYX8sRXo0lo/r5RaBPw/pdTfaK1fyjowIRbK7nf1KOAXSqkNWusnsg6qHmm5h0Rr/W6t9TEeyx3ANqXUAgD373aPQzwNHFn3+gh3G1rrib8vAz/APtvCGLvXPkqpGcDrgOcDvtc2ItfXtZ+eB9Bar8Hxd/8y8Yij08znU9TP1kjdd/UPOLmyt8YZXByIuMfLncBET4ElwB0e+9wFvEcpdajbm+Y9wF1KqRlKqXkASqkO4GxgYwoxh+F3wBuVUguVUjNxEohTewrUX4PzgF9oJwN1J3CB27tkIfBGYHVKcUclcn2VUvOVUu0AbuvujTiJRlsJUlcTnv/TCcUZF5Hr69Zzlrs+D3gb8GhikUYl64xukRYcr/Ue4HHg58Bcd3sPcEPdfhfjJBQ3Axe52w4E1gDrgUeAa7GwNwmwGPg9Tku04m67Cviguz4buM2t22rgqLr3Vtz3bQLel3Vdkqwv8BH3c3wYWAt8IOu6xFDX43G86T/h/Bp7pO690/6nbV+i1hc4BdiA08NmA3BJ1nXxWmT6AUEQhAIitowgCEIBEXEXBEEoICLugiAIBUTEXRAEoYCIuAuCIBQQEXdBEIQCIuIuCIJQQP4/HThS3EnKh+IAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:37:25.502360\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Are the actual predicted values directly on the line? My prediction: yes" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 215, + "source": [ + "plt.scatter(X_test, y_test, color = 'black')\r\n", + "plt.scatter(X_test, y_pred, color = 'green')\r\n", + "plt.plot(X_test, y_pred, color = 'blue', linewidth = 1)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAx1UlEQVR4nO2de5wcVZn3v6c7M4EmYUh6MBuR6QmKSkLwQtZVUddlACEQuQiCTjAv6/uOdLwkvOsloYVMwEYCYsBLgHFXDHSvulzkEu5kxd199+IGxZkkEAgwE2ERdBICcYAkM+f9o6qnu2eq+lrVdenn+/nUZ6qrTlWdU93zq1PP85znKK01giAIQriIeF0BQRAEwXlE3AVBEEKIiLsgCEIIEXEXBEEIISLugiAIIWSK1xUAaG9v152dnV5XQxAEIVA89thjf9JaH2q1zxfi3tnZyaZNm7yuhiAIQqBQSg3Z7ROzjCAIQggRcRcEQQghIu6CIAghRMRdEAQhhIi4C4IghBARd0Gogmw2S2dnJ5FIhM7OTrLZrNdVEgRLfBEKKQhBIJvN0tPTw8jICABDQ0P09PQA0N3d7WXVBGES0nMXhApJpVLjwp5jZGSEVCrlUY0EwR4Rd0GokB07dlS1XRC8RMRdECqko6Ojqu2C4CUi7oJQIel0mlgsVrQtFouRTqc9qlFtiFO4ORBxF4QK6e7upq+vj0QigVKKRCJBX19foJypOafw0NAQWutxp7AIfPhQfphDdcGCBVoShwmC+3R2djI0NDnXVCKRYHBwsPEVEupCKfWY1nqB1T7puQtCyCk0w1gJO4hT2AuyA1k6r+0ksjpC57WdZAecfXuSOHdBCDETY/PtEKdwY8kOZOm5p4eRfeaYid1D9NxjjpmY74yZT3ruguASfnBcWsXmTySITuGgk9qYYuT+FPRq2HkEACP7RkhtdG7MhPTcBcEF/DKatZS5RSlFR0cH6XQ6UE7hoHPbbTB00aDxYd7PYMaz4/t27HbOPFbWoaqUOgD4F2AqxsPgNq31KqXUHOBnQBx4DDhfa71XKTUVuBk4FhgGztVaD5a6hjhUhbDhF8elX+ohQH8/vOc9xnp0xvOMXngUTN1TVCbRlmBw+WDF56zXofomcLzW+j3Ae4GTlVIfBNYAa7XW7wB2AZ83y38e2GVuX2uWE4Smwi+jWcMSmx9khochFssL+/btsP5XvyI2bayoXKwlRrrLue+lrLhrg9zjpcVcNHA8cJu5fT1whrl+uvkZc3+XUko5VWFBCAJ+Gc0ahtj8oLJ/P3R1QXs7vP46PPQQaA1vf7vhNO1b1EeiLYFCkWhL0LeozzFnKgBa67ILEAUeB/Zg9MTbge0F+w8HNpvrm4G3Fex7Bmi3OGcPsAnY1NHRoQUhRyaT0YlEQiuldCKR0JlMxlfnq/SasVhMY3SENKBjsVhDri14TyqltSHlWn/nO+5dB9ik7XTbbodlYTgE+CXwkXrFvXA59thj3Wu9ECicFkUvRdaLh4rgLbffnhf1T39a69FRd6/nmLgb5+JS4GvAn4Ap5rYPAQ+a6w8CHzLXp5jlVKlzirgLORKJRJEQ55ZEIuGL85VDBL056e/Pi/rhh2v96quNuW4pcS9rc1dKHaqUOsRcPxA4EXjC7MGfbRZbAtxlrt9tfsbc/89mJYQAUE9sthNx3U47Ihvp2JS8Lc3H8DAcdBAcc4zx+emnYccOmD7d23oB5XvuwDHAb4F+DJPLpeb2I4BfA9uBW4Gp5vYDzM/bzf1HlLuG9Nz9QT0mDKfMH0HuuTf6LUHwjn37tO7qyvfWH3zQm3rgpFnGjUXE3R/UI05OCVuQbe5KKct7oJRy/FqCd1xySV7Ur77a27qIuAsVUY84OSlsQY2WkZ57uCl0lp59tvvO0kooJe6S8lcYp57RjDIS0jpJVywWk7jygLN5M8yfb6wfdhhs3QoHH+xtnXJIyl+hIuoZzSgjIWXAUNjYudNwjOaE/amn4Pnn/SPsZbHr0jdyEbOMf6jHhCFhgEIY2LdP6xNPzJtgHnjA6xrZg9jchWZAHi5CvVx6aV7U16zxujblKSXuYpZpEvyQW9xNJMZcqIc77wSl4LLL4KyzYHQUvv51r2tVH+JQbQKawdEnDl2hFrZsgaOPNtZnz4YnnwyQTZ3SDlUR9yagGYQvEolg9VtWSjE2NmZxhNDM7NoFnZ3w6qvG56eegiOP9LRKNSHRMk2OX3KLg3vmIb+k2HWKsJvRvGL/fjj5ZJg50xD2++4zLOxBFPay2BnjG7mIQ9Vd/DK4xs3RomFKsVuqLeI0rp1Vq/LO0iuv9Lo2zoBEyzQ3fhE+tx8yYRE+u/sUj8cb9j2G5V5qrfWdd+ZF/cwz/TGy1ClE3AVf/LNK7pXKsLtPdovTb2B+6QzUy5YteVGfNUvrV17xukbOI+Iu+AK/mIdqoZEPR7v7ZLc4/XAM8vektdY7d2rd1pYX9m3bvK6Re5QSd3GoCg3DDykKanFUNjqG3u4+xeNxy/JOO4395ICvhtFRWLjQcJbu3g333mvI+zvf6XXNPMJO9Ru5SM+9efDSPFSrucGLnqzVfWqUucTvPfdMf0Yn1ia06lU6sTahM/0ZvXp1vqd+xRVe17BxIGYZQahdtPzkK2jEw9HPNvdMf0bH0jFNL8Zy3qJxUT/9dK337/e6ho1FxF0QdO0i7feerBv4wQFvRWJtwhD1pUeNizqxl/ThVxztddU8oZS4i81dCCzV2s9rHejkB19Bo+nu7mZwcJCxsTEGBwd9k6Zi6A+74cphWLfV2PCld8HXZ/H83i3eVsyHiLgLgaQWJ2etIu1UnnYZdVo7o6Nw6qnAml3wxkz47KnQq6D9KQA62oI5EtlV7Lr0jVzELCNUQqGpIBqN1mQq8crc4Gc7tt+5/HI9boI558u/Lba596Jj6ZjO9DfnfUSm2ROCjlVmSyv8miisGZK3Oc2GDbBokbG+aBH84hcQjUJ2IEtqY4odu3fQ0dZBuitN93x/mI0ajSQOExqGW6aHVCpVVtjBv4nCgho77gVPPGHkVl+0CNrbjQyOd99tCDsA/cC1wGrzb79HFfU7dl36Ri5ilvEv1Zgx3DQ9VDIkvxFmjlrNOo2IuPFrhEul7NqldTyeN8E88cTkMmLeKgYJhRRqodp/JDcFzO7c0Wi0YWJWj7C4LUpBFr39+7U+7bS8qN9zj33ZZgxLLYWIu1AT1f4juTnYxw/iVa+wuNmzDqrofetbeVG//PLy5f00oMwPiLgLNVHtP1LYU/r6WVj8XDcrNmzIi/ppp1U+sjSoDzG3KCXu4lAVbKl20I/bg328Hljj59me/Fy3Qp580nCWnnYaxOOGs/SeewqcpWVoxgFlNWOn+rkFOBz4JbAV2AIsM7f3Ai8Aj5vLwoJjVgLbgW3AJ8pdQ3ru/qQWU4jXvWs38YNpKIh109rIpd7enu+tb91a+7nC/BurFuoxywCzgfeb69OBp4C5prh/1aL8XOB3wFRgDvAMEC11DRF3/yL/SMX4+X74sW7792u9aFFe1O++2+sahYu6xH3SAXAXcGIJcV8JrCz4/CDwoVLnFHEPBn4Uj1oJU1v8yhVX5EX9ssu8rk04cUzcgU5gB3CwKe6DGEMIfgzMMMv8AFhccMw/AGdbnKsH2ARs6ujoaNzdEGrCL6/9ToiyX9oSVgqdpQsXNl8a3kbiiLgD04DHgLPMz7OAKMYo1zTwY12FuBcu0nP3P36IUnBKlP3QljDy5JN5UZ8xw5juTnCXUuJeUbSMUqoFuB3Iaq3vANBav6S1HtVajwE/Aj5gFn8Bwwmb423mNiHA+GH4vFUKgpGREVKpVFXn8UNbwsTu3TBrFrz73cbnLVtg506YMcPbejU7ZcVdKaUwet9PaK2/W7B9dkGxM4HN5vrdwHlKqalKqTnAkcCvnauy4AV+CLVzSpS9bktYUv+OjcEZZ8Ahh8DLL8Nddxn99rlzva5ZMHD9d2DXpdd5s8pHMF5b+ykIewRuAQbM7XcDswuOSWFEyWwDTil3DTHLNIZ67NV+sFM7ZU7xsi1+uI9OcOWVeRNMb6/XtQkeTv0OkBGqghM/Jq8jTJwURq/aEnR7/3335UX95JPFWVorTv0ORNyFwItKDq8fMPUSlDQBmf6MTqxNaNWrdGJtQl99913jot7WpvXwsNc1DDZO/Q5KibtM1tEkRCIRrL5rv05uEVaCMGlHdiBLzz09jOwbgTemww+2wR7DxbZ5M8yb53EFQ4BTvwOZrEPw3IkoGPg1N0p2IEvntZ1EVkdY8osljLz5OvzsdrjyVUPYzz2DxNpOEXaHaMTvQMS9SfCrqDQbTk227SS5nvrQ7iE0mtF//b9w2Rg8eRb89WpjIuqj7mLHbgkVdYpG/A7ELNNELF26lL6+PkZHR4lGo/T09LBu3TqvqyV4TOe1nQztHoKnPwHZB4yNb38APnsaREfHyyXaEgwuH/SmkoIlpcwyUxpdGcEbstks69evZ3TU+GcdHR1l/fr1HHfccZ72GoXGM3GC6aFnW+D7Ziev9VVY3gmxXUXHxFpipLvkLS9IiFmmSXBqdCeEZxBOM1JkgnljGkOX/Dt8/2ljZ/JouLhtXNijKopCkWhL0Leoj+750gkIEtJzbxKcGt2ZzWbp6ekZf1AMDQ3R09MDIG8APqWwpx5REUZHx+DWW+GJs40C556JOuouNHkTbawlJoIecKTn3iQ4FS3j5BuA4D6TnKX/dpHhLH3ibPjY5aaz9E40mkRbQnrqIUJ67k1COp0u6nFDbdEyknQrWKQ2pox49e0nQuYhY+MRD0H3QnGWhhwR9yYhZzJJpVLs2LGDjo4O0ul01aaUjo4Oy8EXEi/vT4qcpS174KIExHYWlRFnaTgRs0wT4cQE0xIv718KByJ1XDmPmbNGCpyl8yE1fVzYxVkafkTcharw4yCcUjRLZM+4bX3XDvQ//Zzfr9zCrpdjnLSyj1j6IJi1ebxsrCXG+jPXM7ZqjMHlgyLsIUUGMQmhZWJkDxhvGX5+GNVK57WdDN3/KXjoGmPDxy6H4y8l0ZYg3ZUuimtPd6VF0ENCqUFMIu5CaAlCkq5qmTgAKd2V5i1/6Oakk8wCcx6BxSePO0sVirFVkhgurEjiMME1/Gz2CFtkz8SwxqHnoiw+xhB21ToCX4/DkhOLomA62sTR3ayIuAvjVCvUObPH0NAQWuvxAU1+EfgwZcLMDmSNbI37RuDNafDdIfjeMwDM/trJ3LLpF8Ta3ig6RqJgmhy7RO+NXGSyjspxa7KKWmY58vsEIGGZ0i7Tn9GxdExzqdIcddv4pBmc8ylNL1r1qvFyhRNsZPqD1U6hepCZmMKBm2JVi1AHYVahoM7cVCjU0dVRzdyf50X9o9/S9DK+JNYmvK6u4BGlxF0cqgHCTQdhLTM1hdFh6QeKZkLa9H9gQ19+5zdbYcq+8Y+SA6a5EYdqSHDTQViLfVoGNLlDamOKkcGjoFfnhX15h5EHpkDYoyoqwi7YIuIeINx0ENYi1EEb0BQEdu6EoYsG4Ufmm+zikwxRP+T3ReVyA5FE2AU7RNwDhJs95VqF2omUBo3AzyGbAGNjMGUKxOPmhr/uNUT9HQ+Pl5GUAUJV2BnjG7mIQ3Uydo7AoDoIvcRvUTMTo1o+ePJz487SBQsKomMKnKaxdEyiX4RJIA7VYNFMw+YbgV8cvyfcfAIbn9uY3/DY5+Gevx//+MYbMHWqsW41ElV66sJEJP1AwPCLGIWFWiKBnKZI2P/nfdD3m/zO5QkSCSX51IWqkWiZgBGUYfN+t2Pn8GqkamEK3o3PbYTXDzEiYHLC3n2y6SzdwY7d/vpuheBTVtyVUocrpX6plNqqlNqilFpmbp+plHpYKfW0+XeGuV0ppb6nlNqulOpXSr3f7UaEjSAMm/d76oFCvAjZLMoDMwZc/gasMSae5mOXGaJ+5IPj5b3OAROUB7VQBXbG+NwCzAbeb65PB54C5gJXASvM7SuANeb6QuB+QAEfBP6r3DXEoVqM3xyAVvg99cBEGuWITm5IGiNKc87Q+Zn8yNK/eKzISeoXZ2kQfm+CNTiZfgC4CzgR2AbM1vkHwDZz/UbgMwXlx8vZLSLuk/F7VEwQUg9Y4eZ9TW5I5kX7k3+bF3W05putlsLeelmr51EwQXtQC3lKiXtVDlWlVCfwL8DRwA6t9SHmdgXs0lofopTaAFyptf43c99G4Bta600TztUD9AB0dHQca+VAFPxLe3s7w8PDk7bH43H+9Kc/eVCj8rgdhTTlsimM/s98uPG3+Y3LOmGG9W+7a04Xj3zukbqvWy9+cDgLteGIQ1UpNQ24HViutX61cJ/5BKkq7EZr3ae1XqC1XnDooYdWc6gg1EQqlSoSdoCRkRFSqZRl+XJ26KI5S799DKOr9ueFvfsUw65eIOyxlhiZszLoVRq9SvtC2CEYPh6heqZUUkgp1YIh7Fmt9R3m5peUUrO11i8qpWYDL5vbXwAOLzj8beY2IUTs3Lmzqu1+oJoopIm9/JzD+KaXbuLRPY8yqs0JMcYUXLGH3+83HbYf/RZ0XTLpfLnp7vwYq55Opy3faCRHULCpJFpGAf8APKG1/m7BrruBJeb6EgxbfG7758yomQ8Cu7XWLzpYZ8EHBLG3V02dJ/Xy58PI8hE2vroxL+x33AyXjcH+GPzFb42euoWwJxckfT0RteQICieVmGWOA84HjldKPW4uC4ErgROVUk8DJ5ifAe4DngW2Az8CljpfbcFrgpgRspo6F/Xm5wOnA60YMWC//V9GvHr/+cb+1AFwoRnxq4HR/N/IYxGOe+U4p5viOEHJESRUgZ2ntZGLRMv4j0qiSvwe0WNFpXVOJBKa+WiWo1llRrd84T3FETDLOidHwCyXqBOhcSC5ZYRqkNw2MO/KeWx9Y6vRU3+9Dda8kt/52YXwzvsnH7QXuAcYKN4sUSeCW0j6AaEqqo0qCRtL713K1je3Gh+ueDUv7B9NG3Z1C2FPtCWI/3t8krCDv/0QQngRcfcJfhr+HZTcNk6RHcjSflU7arVCrVZcv+l6+MVNsFrD3unwlgHTWfrNScd2zelCr9IMLh/kuv99XeD8EEJ4qSgUUnAXu7A7wBMzSEdHh2VWyjD2QLMDWS648wL2jZnT1z3+Obhzfb5A6gBoeXPScfED41x3ynVFETC57yqVSrFjxw46OjpIp9NNY8oSfIadMb6RS5Adqk44Ff02/NvNXCNuOGFrOWduwoxxR+iF84udpV+ZY5kuwOtUAYJQCE7mlnFjCaq4OyWCfszTkkwmdTQa1YCORqM6mUzWfU43HhrVnrMo/0svmhUHF4v6Z061FHV60V3ru2qupyC4QSlxl2iZOnBqUg2/Tc7hVrSMG+2s9JzZgSwXbriQPXv3GBs0cOUr8Gab8fm4K+HElZbXiKooPcf2sO7UdTXVURDcQqJlXKJWx+NE5+nChQt95YhzK1rGDUdtuXNmB7JM//Z0Ft+xOC/sd/7YcJa+2QaHbjGcpROEvTXaOp4HZv+l+x0Rdj85zYUmwK5L38glqGaZWmzldmaEZDLpmwFBdmYiTFORn3wLpc6Z6c/o1ssLUu2eubjYBJM6wNL8El8Td9y2LjnTBTdAbO7uUMs/rN+cp1bY1bFeYWqUzb3l2BYd/1Y8L9jJoyc4S4+YJOiqV7nqLA3C9y4EDxF3F6k2UsOPztOJWAmmU8LkZrQM89GRFRF7Z+l5i2ydpckN5R3G9dQ9CN+7EDxKibs4VBuM35yndmSz2fF4bbvfiF+G1WcHsiy7fxnDr5uTh2hgzTC8MdP4/OGr4KRvWB47rXUaN5x2Q9mMjfU6mYPyvQvBQhyqPsIv2RTLOfcKswQmEgnLc3g9qCk3snTxHYvzwn7X3xvO0jdmQvsTsEpZCntyQRK9SvPaytcqSsVbr5PZL9+70ETYdekbuQTZLFMLXmdTrNb27UdnYKY/o2PpWIGztNtVZ6kTZhWvv3chfCA29/Dg1YhYvwjTpJGlyXnFov7lt08W9RQ6ua6+QVjiEBX8iIh7SAjziNhyZPozetoV0wqcpdMnOEs/OVnUV6H5Gpr59T+4/Pj2IgilxF0cqgEirCNiS2HpLL3qj/B6u/H5Q9+BT3yt+CANjAAPMJ6C1875a+coXbJkCffdd19RAjCQpGCCvyjlUPW8166l514xTvW46+mFNso8k+nP6PiaeHFP/P035nvq8SfzMyQVLJEVEWMGpQrNJ3bmlon3Wnrpgh9BzDLhwEm7b02ZFBtkmpj7g7nFon3WZ4pNMBcfOEnUE2uNEanV1rHUaFwn7rMguImIu0s02snotd23EU7FrvVdedFeOress9RqZGk130slo3FrfUMSBLcRcXcBr4TWy6iVRjhi6UWzclqxqJ97Rl0jS0th9T3atVN67oLfEHF3gWYMjXO6zbmwRtWrdGJtQt/yu4wm9lJe1D94ja2oO5nca+IDM5lMSmSMEAhE3EtQa084iOGE9eLk20pyQ1KrXpUX7GOvz4v6zKcsnaVuZGu0wy9x/YJQilLi3tShkPXkCwlSOKGTFOacqSUccOm9S7nxsRsZ02ZY4sB5cPtPx/e3fHMG+6a8Mum4ue1z2fLFLfVWXxBCheSWsaGefCHNmCukHmFfeu9SIqsjXL/pekPYXz4KenVe2L/0TuhV7J+ym645XUXHds3pEmEXhCqZ4nUFvKSemYGabab7iW85Q0ND9PT0AJRt8wk3n8DG5zYaH96cBt9+Lb/z02fB3F+Mf+xo6+CRzz3ibOUFoQlparNMs5pWaqHWe5UdyLL4jsWGhf6a/4E9s40df3UtnHJRUVmF4pazbqkoS6MgCHWaZZRSP1ZKvayU2lywrVcp9YJS6nFzWViwb6VSartSaptS6hPONMEdmtG0YkUlc3tW+paTHcjSeW0nkdUROq/tZNn9y2DDD400vHtmwyHPGml4Jwg7Go6ffrwIuyA4RCVmmZ8APwBunrB9rdb6O4UblFJzgfOAecBbgUeUUu/UWo86UFfHaTbTihWVmls6Ojose+6FOd2LzC/A0P/7K7jt5/nCFx8ErcU+DjTwJnAv/Mcz/0F2Vrap7r8guEVFZhmlVCewQWt9tPm5F9hjIe4rAbTW3zY/Pwj0aq3/o9T5JXGYd1RqbikVWcQxcOGGC9mzd4+x44/vhh8+kT/Zl94F7U8VXyAXTPnfwP321xUEwZ5SZpl6HKpfUkp9DtgE/J3WehdwGPCfBWWeN7dZVaoH6AHvZ/RpZio1t1i95bzjK+9g8fbFsN0s9OZB8O09+YPOORvm3W594WeATOX1EQShOmoNhbweeDvwXuBF4JpqT6C17tNaL9BaLzj00ENrrIZQL3YPVqvtuan3jv/J8QxdMMTG10wTjAau+X1e2D/wPehV48IePzBOoi2BQpFoS5A5K0PiXxNV1UcQhOqoSdy11i9prUe11mPAj4APmLteAA4vKPo2c5vgEeWcpdU4lU+4+QTUalVkV+fe7xvO0tfeBm2DhrN04bKi46475ToGlw8ytmqMweWDdM/vDoUzuxJHtCB4ht3Q1cIF6AQ2F3yeXbB+EfAzc30e8DtgKjAHeBaIljt/o9MPNMvQ8krTBVRyPw759iHF6QDOOXtCGt6YZQ6YrvVdJetndd0gfD9eZ+gUBK3rzC0D/BTD9LIPw4b+eeAWjDlu+oG7J4h9CsOiug04pdz5dYPFvZn+KZ1I9JXckCwW7C++q1jUv/guS1FXvaqmjI1B+X6aMXGc4D9KiXvTDWJqpoFLkUgEq+/Xbsq5QiaGNU52lp4D826bfKCGuQfMZcuK2tIFBOX7qefeCoJTSG6ZAupJOVAvjbbRVuMszbH03qXFdnUNfHcoL+x/+QPTWVog7Ll+6xjwa/jzDX+edN5K2+7l91MNtdxbQWgodl36Ri6NNMt49Trthbmhmmtm+jO69bLWYvPKB67Lm18O3mGZhpdVaJaXTntcTT38Yu4oZ/cPivlICDdIPvc8Xv1TevlQKeecnGRXP+dTxXb1lQdZT5qxCs0p5dtUTdv9IJpOOqIFwU1E3CfgxT+lHyf3yPRndHxNPC/WX3rnBGfpu+1FfTE6Ho/rlpaWsiJYbdu9Fk2/vD0IQjlKiXvTOVS9wm+OwiKH6d4YXFFgJz/7XDj6nyyPizwWYeyevMOwtbWV6dOns3PnTtvcPH5reznEWSoEBXGo+gCvB+1ks1mmfGUKqlehek2HqQaufTYv7AvWGc5SC2GfO3Uu0cujRcIOsHfvXqZNm8bY2BiDg4OWSb+8bnu1+NFZKgOmhKqx69I3cgniBNm14JW5IZPJaFZS7BD9q7V588u0F6ydpb3GICQrGzQVmFcm1iEo9mk/2P39XB/BPyA2d2/xUtiSG5KGcOfE+9NnTnCWTrMU9WlXTBufjNrOBp1bwmiL9tPDSHwAgh0i7h5Sa6+rXnHJ9Gf0QemCKJcvv6NY1JceZSnq8TXxcVHPYecQracH6Sfx9Dt+dMYL/kDE3UNq6XVZPRBy/+CVCGHX+q68YF98YLGof+pc6wiYXvs8MKV67vF4vPoHj5gZqkJ67oIdIu4eUkuvq5wZpJQQjsesr0IzY3te1I+93lbUo6ujuuuaLtuedDmbe7XCLGJVHfIwFOwQcfeQWoSslBnE6vhMf0Yn1ia06lWGYH/wmryoH/SirbP0wMsPNI6vQDxyZhQn7O5iZqgeMWMJVpQSd4lzd5lS09PZzRVqFxdeiFKKW353C8vuX8bw68PGxidOh5/fmS+0cjpM3WN5fNecLh753CMlr2cVh+5EDHjQ4t4Fwa9InLuHdHd309fXRyKRQClFIpEoKexgHRdexCmgL9EsvmOxIezD74BenRf2pfOMePUJwh5REZILkuhVelzYobpkXU7EgAct7l0Qgkg9c6gKFdLd3V1SzK3KgzFf6dDQEEqpfG/5QmAWoIC9B8IV+TcCzvosHPNTy3MW9tQn0tHRYdmTthLsdDpt+SZSjTBbzcdqNbJVEITaEbNMAJh35Ty2vrG1eOP3n4KdRxrr7++DT36heH/uax2DyOMRbj73ZlvxrNZ0lM1mRZgFwQc0rVkmDEO2D7vmMLa+udXoqSvgoauNOUt3Hgmxl405SycK+17gDmA1cDmM3TNGKpWyvUYtpiMrwnC/BSEshLbnXosj008svXcp12+6Pr9horN0xcFwwGuTD/wz8ADGJIgFOJX0yu6+LlmyhPXr1wf2fgtCECnVcw+tuAc1IiM7kOUL93yBP+8zk3kNvx2+vz1fIHk0zJo8hd201mnccNoNpBalXG233X2NRqOMjo66dl0xBQnCZJrSLOO36drKmSxOuPkE1GrF4jsWG8K+7wAjAiYn7GcuNiJgLIR9bvtcXlv5Gt3zu0tGojhhNrG7f1bCXqp8NeTeFoaGhtBaMzQ0RE9Pj5h9BKEUdgHwjVzcGMTkp1GQ5QYJFaULWIWmfWt+ENL7flRyZGlyQ9LyehMHvDg1ytHuvkajUdfut5++S0HwEzTjICY/2dwtTRmnAH9J8bvTQ2vg379urB84DF9vN5yoE3jrtLfywt+9UH8dqN5s4oXNXSbPEARrmtIs41QEiBNMMk18DfgA+bv/5CLDBJMT9hVt8I3Jwq5QJBckqxZ2wHbEa7VmE7v7um7dOtfutx8nzxAEvxPanrufGO81zwdOB6IYwr3zCPjeM/mCyfkwa/Ok4yMqwheO/QLrTl1X0/Wz2Sznn3++Ze/X7w5m8NdbmCD4iVI9dxmh2gAWfmMh1//+emjFEPV9B0D69XyBM8+H92Qsj53bPpctX5zsRK2GVCpla9YIwpB/GdEqCNUjPXeXyQ5kueDOC9g3ts/YcOvPYMu5xvp7fwxnfD5fuPCrUKVTBlSDnc0asN0uCIL/aUqbu19IbUwZwt7/GcOuvuVcmPaiMbJ0orD/GmNU6WqIXRXjgugFjoQv2tmmE4lETW0SBMH/lBV3pdSPlVIvK6U2F2ybqZR6WCn1tPl3hrldKaW+p5TarpTqV0q9383Kg/+HvA890W6I+h3/CPFtcHEMvvrWYmepBkaA+/ObRkZGWLZsmSPx3ZKFURCaj0p67j8BTp6wbQWwUWt9JLDR/AxGgN+R5tIDXI+L+GlwS3YgS+e1nURWR+i8tpN1j96GUkCfaW5anoAvvxtaC2ztuYjtl4CrJ59zeHi4yIkIhuiXyhNjhZ8ihwRBaAwV2dyVUp3ABq310ebnbcDHtdYvKqVmA49qrd+llLrRXP/pxHKlzl+rzd0PKQayA9niCTP2t8BPHoXnPwzAxf/wMFe/cGre5p4jZ4a5n6qR+G5BEMAdm/usAsH+A0aGcYDDgN8XlHve3GZVqR6l1Cal1KY//vGPNVXCzRQDlZh7lt67lPPvOD8v7A9eDd/aawj7wi+SWNtJ+m9P5KYzbiJ+YHz8uMgbESNrYwlhj8VixONxy33NEN/td3ObIPgeu6GrhQvQCWwu+PzKhP27zL8bgI8UbN8ILCh3/lrTD7g1LL3cUP3khqSOrI7kUwF86rx8uoBj1o/PWap6recEtTp/S0uLjsfjrqQMcIpGzePpt3YLgl+h3gmyLcR9GzDbXJ8NbDPXbwQ+Y1Wu1FKruLslAqUeGskNybyo97wvL+ozn9JcHCvK/ZJYm7C9RjKZHM/HEo1GdTI5OUdMro1eTIw88brJZLJhgiu5ZAShMtwQ96uBFeb6CuAqc/1UDGODAj4I/LqS89eTOMwN8VNKFQvLfDTLGe+R89VDNWp/XtiXJSYl9YqlYzrTb10Xv/dMreo36Z64KLh211LK+k1IEJqVusQd+CnwIrAPw4b+eSBumlyeBh4BZpplFfBD4BmM6SLKmmR0jeLuZo92vOc4H82KAlG/ZIrm8H/Ni/qSj1tma4yvidsKe9H5Pe6Z2mWPtMvw2CjBjcfjvrg/TuPVW5gQXuruubu9VCvubvd8M5mMjiyK5EW9F82H1+RF/ZQvWYq66lWWKXgn4oeeqZ3dv7W1tWJhd0NwM5mMZR1aWloCLYZ+f1sTgknoxN01R2p/RsfXxItF+1Pn5kV9/i3Fgl+wHJQ+qGRv3c3619IjtKtDuV662+JkV694PO7odRqNX97WhHAROnF3o+db5CjtRfOF9+RFfcbTk5ylrDKXS9Fd13RVda16e3GFYh6Pxyf1dCs5l909tFtisZhOJpOumxX88FbjBmFtl+AtoRN3J3tBk3rrX2vXRPbmhX1Z5+Se+ioMe3wdPdha7a9WD4Za7kU1PfdoNNow84FXPVy37eHScxfcIHTi7oT9MtOf0QelD8oL9iVTNB2/yov65/7Genq7VWhO8e6ftFJRLtcjrNTm3mi7cCNs016EeYrNXXCD0Im71vX1tCaZYI77dl7UT/6KvaivLO6xe/F6Xak5pZKHjV20jNcRHW7WwcswTz/cWyFclBL3psvnnh3Icv4d56PRsPkcuO2fjB3zs3DW4slzlmqMjI0PAAMQjUYZHR2ddN5Eg/LZ2OXTKcSNWYqy2WwoJsuo5P7lkBw+gt+RmZgKSG1MoV88Bm583NhwyLOQPAam/rm4oAbeBO7FiNg3GR0dJRaLTZryrVHpc9Pp9KQp51paWjj44IPZuXOnK8I7cZq7XPZNIHACX03eoWbI4SOEGLsufSOXekaoliLTn9GJtQmtepVOrE3o6391qyb6Rt4E85U5toOQ4h+3H0jjttmg3Lkb/XofJmegXVsaEeYpCE5DGG3u5cj0Z3QsHcs7SxO/LHCWHm9tV+81whpzAuDWP7ydODfS6VbNAyJMYXx297gRYZ6C4DRNJe653vq4YH/kiryof2KZjq+J69bVrZbO0q6LumydbU79w5cSF7th/2449qp5iISp5661ODaF8FBK3EPlUM0OZOm5p4eRfSOw5Wy49VZjx9H/aDhLIxqFYuajMxl+7zC0AbsxsuQ0yFlq59BTSmH3XTjt2Kt2kpOJNndwx2krCEJ1hNqhmh3IktqYYsfuHURUhNEX58IN/cbOtkFYenSRs7SjrYMdv9oBj04+l5WwgzOTf+Swi9Qo9ZB12rFX7SQnOQEPQ7SMIDQLtc7E5DnZgSztV7Wz+I7FDO0eQv95JqOX7ckL+1eOgIvmFAl7rCVGuitdtVg6Ka6RSHW3vKWlpepInMJZjNrb22lvby+a0ciuPaXa2d3dzeDgIGNjYwwODoqwC4LPCaS458wvw68Pw2gUfrIRrv4TjB4A558AvQpmPpc/QEOiLUHfoj6653eTTqeJxWIVXcvpMMdqzSutra1VCenEScOHh4cZHh5G6/wE4gsXLpzU/kaGcwqC0ADsjPGNXKrOLZNzmF4SzTtLT7rIOgLmYmNU6UQKnWqUGOnptLOt1LXslmqoJD2B2+GcThKUegqCFxA2h2pkdcQYYQrw3Mch8SuIFLRjFOOdxHSWJl4t7RCt1sFYD+3t7QwPD1d1TDXfUSQSKVs+KCMvxZErCKUp5VANpFmmo63ANjzn0WJh3wfcCawGroXYM+XNDVZmmpyZotB+nbNZ18N1111HS0tL0baWlhamTZtmWT4ej1d1/kr8A0EZeZlKpYqEHWBkZIRUKuVRjQQhOARS3NNdaWItk23m8QPjJA9Lkng1gVKKRCJRUS+vu7ubvr4+Eoni44Ai+3XOZr106dKaBb+7u5ubbrqp6Fo33XQTN9xwA62trUVlW1tbue666yo+NxgPqonnKSRItvVqo3oEQSjAzl7TyKWmrJATUgtUOgtSNTR6qLpT9mW7OUgbmZfdCcI2eEoQnIaw2dwbRSX26xyNygpZCXb1DoqtPYfY3AWhNKGzuTeKamzTfjIV1BLHbodTPodazmNnLhNhF4QKsOvSN3JxKytkvXg5sUM9OJWAzKnzJJNJybooCC5AMyUOcxovpmRzAifs907YvDOZTCAeiIIQREqJu9jcayAssxKVwwnbfamZj4LmAxAEvyE29wqp1C7slzwrTsfgT8QJ230pX0RQ4u0FIZDYdekbufjBLOPn2emtTENW4Y5O19eJe1IqnNQP91YQggxicy+PX2OqM5mMbm1trTgPjRsTe9Rju7dzSieTSUfrKQjNSClxr8vmrpQaBF7DyOayX2u9QCk1E/g50AkMAp/WWu8qdR4/2Nz9Ghs+ffp09uzZU3F5r+trRbP4KASh0bhtc/8brfV7Cy6wAtiotT4SY46jFQ5cwxUKbdZ2eda9tAtns9mqhB38acf2i49CEJoJNxyqpwPrzfX1wBkuXKNuJuY9t5qFyes8LNUmyCpXX7cdsIIg+Ag7e00lC/Ac8BvgMaDH3PZKwX5V+HnCsT3AJmBTR0eHm2YpS+xs7NFo1De5w8vlmi9c4vF4yfr62WEsCEJt4JZDFTjM/PsW4HfAxyaKObCr3Hm8cKjaCadSalJZryaMKDXxRjwer6o+bjqMZUINQfAG18S96ETQC3wV2AbMNrfNBraVO9YLca9U7Lzs8ToZaVLNw6zeOsobgSA0hlLiXrPNXSl1kFJqem4dOAnYDNwNLDGLLQHuqvUablJqgo5CKp0wwgl79sRzAJMSZ91yyy2sW7eu6nM7mUysEJlQQxB8ip3ql1uAIzBMMb8DtgApc3scI0rmaeARYGa5c3kV516JOaGSHq8TvVe3e8Bund+tNwJBEMqDDGKqnUrMN07YsxsxiMoN27hfB38JQjNQStwlt0wZKjHfODEdXCOmlHMj3rxS85YgCI1FxL0MlUwY4YQ92y2buNvIhBqC4FPsuvSNXPxslqmEINjcBUEIH4hZxl2c6L1KD1gQBCeRyToEQRACikzWIQiC0GSIuAuCIIQQEXdBEIQQIuIuCIIQQkTcBUEQQogvomWUUn8Ehryuh8u0A3/yuhINpJna20xtheZqr9/bmtBaH2q1wxfi3gwopTbZhSyFkWZqbzO1FZqrvUFuq5hlBEEQQoiIuyAIQggRcW8cfV5XoME0U3ubqa3QXO0NbFvF5i4IghBCpOcuCIIQQkTcBUEQQoiIu4MopWYqpR5WSj1t/p1hU26JWeZppdSSgu2PKqW2KaUeN5e3NK72laGUOtms43al1AqL/VOVUj839/+XUqqzYN9Kc/s2pdQnGlrxGqm1vUqpTqXU6wXf5Q0Nr3yVVNDWjymlfqOU2q+UOnvCPsvftJ+ps72jBd/t3Y2rdRXYJXqXpfoFuApYYa6vANZYlJkJPGv+nWGuzzD3PQos8LodJdoXBZ7BmBy9FWNy9LkTyiwFbjDXzwN+bq7PNctPBeaY54l63SYX29sJbPa6DQ63tRM4BrgZOLtgu+1v2q9LPe019+3xug3lFum5O8vpwHpzfT1whkWZTwAPa613aq13AQ8DJzemenXzAWC71vpZrfVe4GcYbS6k8B7cBnQppZS5/Wda6ze11s8B283z+Zl62hs0yrZVaz2ote4HxiYcG8TfdD3tDQQi7s4yS2v9orn+B2CWRZnDgN8XfH7e3JbjJvNV7xIfikS5uheV0VrvB3YD8QqP9Rv1tBdgjlLqt0qpXymlPup2Zeuknu8nrN9tKQ5QSm1SSv2nUuoMR2vmEFO8rkDQUEo9AvyFxa5U4QettVZKVRtn2q21fkEpNR24HTgf45VQCB4vAh1a62Gl1LHAnUqpeVrrV72umOAICfN/9Qjgn5VSA1rrZ7yuVCHSc68SrfUJWuujLZa7gJeUUrMBzL8vW5ziBeDwgs9vM7ehtc79fQ34R/xntrCtu1UZpdQUoA0YrvBYv1Fze03z0zCA1voxDPvuO12vce3U8/2E9bu1peB/9VkMX9n7nKycE4i4O8vdQC5SYAlwl0WZB4GTlFIzzGiak4AHlVJTlFLtAEqpFuA0YHMD6lwN/w0cqZSao5RqxXAgTowUKLwHZwP/rA0P1N3AeWZ0yRzgSODXDap3rdTcXqXUoUqpKIDZuzsSw9HoVyppqx2Wv2mX6ukUNbfXbOdUc70dOA7Y6lpNa8Vrj26YFgxb60bgaeARYKa5fQHw9wXl/hbDobgduMDcdhDwGNAPbAGuw4fRJMBC4CmMnmjK3HYZ8Elz/QDgVrNtvwaOKDg2ZR63DTjF67a42V7gU+b3+DjwG2CR121xoK1/iWGb/jPG29iWgmMn/ab9vtTaXuDDwABGhM0A8Hmv22K1SPoBQRCEECJmGUEQhBAi4i4IghBCRNwFQRBCiIi7IAhCCBFxFwRBCCEi7oIgCCFExF0QBCGE/H+fZBadQPm+HwAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:37:25.751165\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Note that there is one green dot for every black one, on the X axis. The value on the Y axis is the machine's prediction (i.e. on the line), based on bmi alone" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Presumably the point of test data is to see if the prediction matches the reality, but we didn't analyse that here" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Challenge question" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Let's use blood sugar level (attribute 10)" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 236, + "source": [ + "X = Xview[:, np.newaxis, 9]\r\n", + "print(X.shape)\r\n", + "print(X[0])" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(442, 1)\n", + "[0.06169621]\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Split into test and train" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 237, + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\r\n", + "print(X_train.shape, y_train.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(296, 1) (296,)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Train" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 238, + "source": [ + "bloodSugarModel = linear_model.LinearRegression()\r\n", + "bloodSugarModel.fit(X_train, y_train)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ] + }, + "metadata": {}, + "execution_count": 238 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Predict" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 239, + "source": [ + "y_predict = bloodSugarModel.predict(X_test)" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 243, + "source": [ + "plt.scatter(X_test, y_test, color = 'black')\r\n", + "plt.scatter(X_test, y_pred, color = 'green')\r\n", + "plt.plot(X_test, y_pred, color = 'blue', linewidth = 1)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACSm0lEQVR4nO2dd3gUVRfGf7PpARIgJPQk9F5FiihFEBBpdqWIglSxUaQpoIi9YflU7JgAKhYEURQUFUG6FJEOofdOIG3P98fZze4mu8mmhzDv88yzu1Pu3Jmdee+5pxoiggkTJkyYKFqwFHQHTJgwYcJE7sMkdxMmTJgogjDJ3YQJEyaKIExyN2HChIkiCJPcTZgwYaIIwregOwBQpkwZiY6OLuhumDBhwsQVhbVr154QkXB32woFuUdHR7NmzZqC7oYJEyZMXFEwDCPO0zZTLWPChAkTRRAmuZswYcJEEUSm5G4YRqBhGKsMw9hgGMa/hmE8bVv/qWEYewzD+Me2NLatNwzDeNMwjJ2GYWw0DKNpHl+DCRMmTJhIA2907gnAjSJywTAMP2CZYRg/2raNEZG5afa/GahhW1oA79o+TZgwYcJEPiFTyV0UF2w//WxLRglpegIzbcf9DZQ0DKN8zrtqwoQJEya8hVc6d8MwfAzD+Ac4BvwiIittm6bZVC+vG4YRYFtXEdjvdPgB2zoTJkyYMGFDbGws0dHRWCwWoqOjiY2NzdX2vSJ3EUkRkcZAJaC5YRj1gfFAbeBaoDQwNisnNgxjsGEYawzDWHP8+PGs9dqECRMmrmDExsYyePBg4uLiEBHi4uIYPHhwrhJ8lrxlROQM8BvQRUQO21QvCcAnQHPbbgeByk6HVbKtS9vWDBFpJiLNwsPd+uCbMGHCRJHExIkTiY+Pd1kXHx/PxIkTc+0c3njLhBuGUdL2PQi4Cdhq16MbhmEAvYDNtkO+B+6zec20BM6KyOFc67EJEyZMeEBeqzpyC/v27cvS+uzAG2+Z8sBnhmH4oIPBlyKywDCMXw3DCAcM4B9gqG3/hUBXYCcQDzyQa701YcKECQ+wqzrsErFd1QHQp0+fguxaOkRGRhIXlz64NDIyMtfOYRSGSkzNmjUTM/2ACRMmcoLo6Gi3hBkVFcXevXvzv0MZIO1ABBAcHMyMGTOyNBAZhrFWRJq522ZGqJowYaJIID9UHbmFPn36MGPGDKKiojAMg6ioqCwTe2YwJXcTJkwUCVxJkntuwZTcTZgwUeQxbdo0goODXdYFBwczbdq0AupRwcIkdxMmTBQJ5Ieq40qCqZYxYcKEiSsUplrGhAkTJq4ymORuwoQJE0UQJrmbMGHCRBGESe4mTJgwUQRhkrsJEyZMFEGY5G7ChIl8wZWS1KuowJvEYSZMmDCRI1xJSb2KCkzJ3YQJE3mO/MhfbsIVJrmbMGEiz3ElJfUqKjDJ3YQJE3kOT3nKczN/uQlXmORuwoSJPIeZ1Cv/YZK7CRMm8hxmUq/8h0nuJkx4iavNlS+3r7dPnz7s3bsXq9XK3r17TWLPY5iukCZMeIGrzZXvarveoggz5a8JE17gaqvyc7Vd75UKM+WvCRM5RG648sVuiiX6jWgsT1uIfiOa2E2FS63jrIZxR+xgui5eSTDVMiZMeIHIyEi3hOetK1/splgGzx9MfJJNzXE2jsHzbWqOBgWv5kirhvEE03XxyoEpuZsw4QVy6so3cclE4g9GwWe/wMFrAIhPimfiksIRoekugjQtTNfFKwsmuZsw4QVy4sqXlARx3/eD99dD4Bkovz51276zhUPNkZG6xXRdvDKRqUHVMIxA4A8gAFXjzBWRyYZhVAHmAGHAWqCfiCQahhEAzASuAU4Cd4vI3ozOYRpUTRRVrF0LAwbAxo1AtUVwbw/wTUzdHhUaxd7H9hZY/+wwDahXJnJqUE0AbhSRRkBjoIthGC2BF4HXRaQ6cBoYaNt/IHDatv51234mTFxVuHQJxo6Frl3h+HGo0eg4QX37uhB7sF8w0zoUDjWHGUFa9JApuYvigu2nn20R4EZgrm39Z0Av2/eett/YtncwDMPIrQ6bMFHY8ccf0KgR7N0Ld98NZcrAyt/C+eD2N4gKjcLAICo0ihndZxQKYyqYEaRFEiKS6QL4AP8AF1BJvAyw02l7ZWCz7ftmoJLTtl1AGTdtDgbWAGsiIyPFhImCRExMjERFRYlhGBIVFSUxMTFZbuPsWZFhw0QqVhT59luRt98WqVZN5NCh3O+vCRMiIsAa8cDbXhlURSRFRBoDlYDmQO1cGFRmiEgzEWkWHh6e0+ZMmMg27G6AcXFxiEhqNGZWwu0XLoT69SExETZvhosX4YUX4JdfoHz5POy8CRMekCVvGRE5A/wGtAJKGoZh95OvBBy0fT+ISvLYtoeihlUTVzkKa26WnBSSOHEC+vWDESPgk0/gww/hzz9h1Cj46SeoUiWvem3CRMbIlNwNwwg3DKOk7XsQcBPwH0ryd9h26w/Ms33/3vYb2/ZfbdMHE1cxckM6zitkJ/pUBL78Eho0UJ36pk3QoQMsXareMd9/D/Xq5VGHTZjwAt64QjZEDaQ+6GDwpYg8YxhGVdQVsjSwHugrIgk218nPgSbAKeAeEdmd0TlMV8iij8LsapfVvh06BMOHw44d8NFH0LKlrl+zRr1j5syBG2/M406bMEEOXSFFZKOINBGRhiJSX0Sesa3fLSLNRaS6iNwpIgm29Zdtv6vbtmdI7CauDhTmMmveugGKKJk3bgwNG8K6dQ5i/+8/6N4dPvgg/4m9sKq7TBQwPFla83O55pprcmQxNlH4ERUVJagLrcsSFRVV0F0Tkcy9ZXbtErnxRpFrrhHZsMH12L17RSpXFvnss3zssA0xMTESHBzsck+Dg4Oz5e1j4soDGXjLFDixi0nuVwWuVBJKThZ5/XWRsDCRl14SSUpy3X7kiEiNGiLTpxdI9wr9oGkib5ERuZtZIU3kC+zBMBMnTmTfvn1ERkYybdq0Qh0ks2ULDBwI/v6wYgXUqOG6/cwZ6NwZ+vSBRx4pkC4WanWXiYKFmTjMRL7hSimzlpgIU6dC27bQvz/89lt6Yo+Ph27ddJ9Jk/KmH97o0j2l4L2aUvOaNgcP8CTS5+diqmVMFBasXi3SsKFI164i+/a53ychQaRLF5H+/UVSUvKmH96qsa5UdVdu4Wq/fkyduwkTGSM+XmTMGJGICJGYGBGr1f1+yckid90l0rNnev17biIruvTcSJ3gDnnVbm7iarc5ZETuZg1VE1c9fv8dHnwQmjWD6dMhIsL9fiIwZAjs2gU//ACBgXnXJ4vFgrt30zAMrFZr3p3YBneVmYKDgwtdMrGCvk8FDbOGqgkTbnDuHAwbpgbRV1+F2bM9EzvA+PGwYQN8913eEjsUvC49JykZ8hMFfZ8KM0xyN3FVwp7oKyVFE3316JHx/i++CPPn63ElSuR9/wo6v7q3XjgFbcws6PtUqOFJX5Ofi6lzN5FfOH5cpE8fkapVRZYs8e6Y994TqVJF5MCBjPfLbR11Qeq8vdFlFxZj5pVgG8grYBpUTVztsFpF5swRKVdOZORIkQsXvDtuzhyRChVEdu7MeL/CQnS5BW+u52o3ZhYGmORu4qrGwYMiPXqI1K0r8vff3h+3cKF6z6RNN+AORZHoMpOIDcNwe82GYRRQj68+ZETups7dCbGbYol+IxrL0xai34gmdpMZDFHYkZHOV0TzqzduDE2aaKKvFi28a/fPP+G++9R42rBh5vsXxUjRzILOTGNm4YaZfsCG2E2xDJ4/mPgk9RCIOxvH4PmDAQpNnUsTrkjrrmfPEQ/QqlUfBg1Sj5glSzTvurdYvx5uvx1mzYJWrbw7JjIy0m3a4KJMdNOmTXPrLmkaMwsJPIn0+bkUBrVM1OtRwhSEJ0oJFVYKXR4RxoVI1OtRBd01Ex7gXhViEcMYKcWLX5KXXxb57LPYLBnbtm0TKV9eZO7crPWlqOncRbwzVF7NxszCAEyde+YwphhK7lMQ2k8UEMH/nHDtO7JlS0H3zoQ7pNf51hVYIfCbBAbWl2HDhmWJcPftE4mKEvnoo+z1pygRXVEcrIoiTHL3AqmSu325aZTgd0GKNZsrZcuKdOgg8t13Gn5uwjPyk+AckrufwFMCxwQGC7g39NkXd0bOY8dEatUSefXVPOtuoYfzf+fj41PkDMRFESa5e4GYjTESPC3YheD9uj0uYeUvyObNmm+kRQuR6GjN633yZEH3uPAhv6W9mJgYCQi4XmCDwHyBihmSun1J681x5oxI06YiEyfmSTevCLj777y5d4UdRWk25Q4muXuJmI0xEvV6lBhTDIl6PUpiNsbIjBkiFStKqmpm1SqRfv1ESpYUGThQ5J9/CrbPhQneugPmxgt38aLI6NEioaHxYhh9vCJ1d/2Jjxdp00Zk+HDPycKuBnj6765kyf1qUC2Z5J5DzJypRjZnf+ejR0WefVaJ/4YbRL74QiQxseD6WBjgjd9zbrxwv/0mUr26yD33qDrFW6kz7bkSE0VuuUWkd++8S917pcDTf3clE2NRjD1IC5PccwFffCFStqzImjWu6xMTRb78UqW/ihVFpk5V4r8a4c3LlJMX7swZkSFD9D7Pm+e6LSYmxqOe2MfHJ90sISVFSb1bN3NQFvH8v7i7d1cKroYgK5PccwnffisSHi6yfLn77f/8I/Lgg6qy6dtXZOXKfO1egcMbqTy7L9yCBSKVKokMGqQkn93zi6j6ZfhwHZDj43N82UUCRVGFYUruJrlnCQsXKsH//rvnfU6eFLn33rXi47NP4G8JC3tUPvlkVv51sgCRmT49qy/csWMqYXub6Msbff7EiWpAPXs2O1dYOJEbdoyiZnwsigNWWuSI3IHKwG/AFuBf4FHb+inAQeAf29LV6ZjxwE5gG9A5s3NcSeQuIrJ4sUiZMiK//OJ+u+Ohsgh0F/hZ4Ij07Lkx08yCRR1Zka5nz1ZV2MiRakDNDbzyiro8HjuWO+0VBlwNJJZdFLUBKy1ySu7lgaa27yWA7UBdG7mPdrN/XWADEABUAXYBPhmd40ojdxGRP/5QCX7BgvTb3EuntaVEiU+lVCkt0/bHH1evd0ZmL9yBAyLdu4vUq5e1RF+Z4aOPNEjJU23UKxVXg/rBhHvkqloGmAfclAG5jwfGO/1eBLTKqM0rkdxFlHgiIkS++cZ1fUZ65bNnRaZPF6lRQ6RRI5EPPyw6et+cSklWq8iMGTormjxZC1Hn1rm/+ko9nrZty702CwuuBsOhCffINXIHooF9QIiN3PcCG4GPgVK2fd4G+jod8xFwh5u2BgNrgDWRkZH5dzdyGWvXqupg9mzHOm8kqZQUkZ9+Ule8MmW0OPOePfne/VxDdlQDzuRZocINUrfuYbn2WpGNG3N+bjvhRUVFydixiyU8XGT9+ry9noKCKblfvcgVcgeKA2uB22y/ywI+aKm+acDHkgVyd16uVMndjk2bVCr89FP9nVVi2LlT5PHHRUqXFunZU3X6V5rKJqsE42qXeFzguPj5jZOZM2Nz7dy6tBQ4Jk89tcjj8e4k9CuJMK+kgchE7iLH5A742dQrIz1sjwY2y1WmlnHGf/+pq9777+vv7EzpL1zQkm716onUqSPyzjsi58/nccdzCVlVDSh51hP4W+BXgWrZJk/PATgNBI4IdPFikHElRk+DRWFVdVwpKiQTuYsckTtgADOBN9KsL+/0/XFgju17PVwNqrspggZVd9i5Uw1206fnrB2rVaMwb7tNpflHHxXZvj0XOpiHyIqkm5AgApNFE30NEudEX9khT/fnriZwQOAuLwYZ98E7V4rkbuLqRU7J/Xrbg70RJ7dH4HNgk23992nIfiLqJbMNuDmzcxQVchcR2btXfbJfeCF32ouLExk3Tj1zunQR+eGHwhkq761qYOVKkfr1RYKCfhF3ib6yQ57pz11BYJdt4Mi43YzC7k1Vh4nCjhyrZfJ6KUrkLqKufLVqiUyZknu68/h4kU8+0eCbatVEXntN5PTp3Gk7txATEyNh7cKExxAmI2HPhknMRiXDixdFRo1S4/OsWSKff567emKHnry0wGaBJ7xqN6MZh6nqMFHYYZJ7AeDIEZVQx43LXeOo1Sry11+aNKtkSZGhQ0U2b8699nMCd2mTg6cFy4QPf5Fq1TTS1Dl4KLfJ89w5kWuvFenWbbPX7ZrGSBNXMkxyLyAcPy7SpInIY4/ljffLoUPqD16unEj79upvn5SU++fxFqkFT0aW12pWT5QSrnlPfEoelO+/z9tzX7qk92Dw4Kzfa1NCdw93KbBNFC5kRO6Gbi9YNGvWTNasWVPQ3cgTnD4NN98MTZrAO++AxZL750hMhK+/hrfegoMHYdgwePBBKFMm98+VESxPWxAEvvwSttypK5t+AJ3GIM+fybPzJifDHXdAQIAWtfbxybNTXTVIWzAeINgvmBndZ5gF4wsRDMNYKyLN3G3LA6ox4YxSpeDnn2HzZhg4EFJSMt4/dlMs0W9EY3naQvQb0cRuis30HP7+cO+9sHw5fPMNbN0KNWrAgAGwfn0uXYgXiAyNhI29ldgDT4GRAil+RIaXzrNzWq16XxMS4PPP0xN7bGws0dHRWCwWoqOjiY3N/H6agIlLJhKfcAn+6Qd/PwxAfFI8E5dMLOCemfAWJrnnA0JC4KefYN8+6NdPJU13sEtLcWfjEIS4s3EMnj/YK4K345pr4NNPYft2JfiePaF1a5gzB5KScud63EEEOp2fDd/EQpktMLISjA/Bcq4K0X/+gtWaN+d8/HHYtUtnLv7+rttjY2MZPHgwcXFxiAhxcXEMHjzYJHgvELe+OsxYCysfgcrLU9fvO7uvAHtlIiswyT2fUKwYLFgAZ87A3XerKiUtJi6ZqNNgqwWSlamyKy2Fh8P48bB7N4wcCe+9B9HR8MwzcORIzq4lLQ4cgB494INJrSgZHk/UxK4Y/peJCg9nxuzDyMlqDB5MKsHnljT9zDPw++96X4OD02+fOHEi8fHxLuvi4+OZONGUPj1hyxa45RawfDMbmr8Ng5pDxbWp2yNDI7PddnZmpSayD5Pc8xFBQfDtt6qaue02uHzZdXuqVPTP/fDqQfhtClwIz5G05OsLt98OS5fq7OHgQahTB/r0gb//Vuk3u7Ba4f331Z4QHg4lSsD6VcHsfWwv1slW9j62l4Et7mHhQlUVDRsGn3+eO9L09OkQGwuLFkHJku732bfP/X3ztP5qxpEjMHSozvzq1IH3Fv1GcIs5mh3ChmC/YKZ1mJat9nNjVmoiazDJPZ8REABffaWSfI8e4CxYpkpFDWZB0GnYfDe8vZViiz5n+/acn7tBAyXj3bv1Je7TB5o3h5kz0w80mWHnTujQAT7+GH77DU6ehLFjdXaQFsWLw48/wqZNMHy4NcfS9MyZ8Oqr8MsvULas5/0iI91LmZ7WX424eBGmToXq1VVt+M8/8MorMOi6u5jRfQZRoVEYGESFRuXImJo6K70QAcl+gKnDz3N4cqPJz6WoukJmhKQkkX79RNq2Vf9skTR+4ve1F0LiJHBkPbl1yAYJDxfp1Utk2bLc60Nyssj8+SKdOmnq4gkTRPbvz7zfL78sEhamgVT2NmrUELl8OeNjz54VgRUCb2U7Z8t336nr55Ytme9r+rB7RnKyyMcfi1SooP/dDz/k7fmY5CN0elzwvSjc3yY1DsKYkre5eoq6Oyemn3vhREqK1lxt1cpRF9T5YSzW/Evp1Ps/EdEIz3fe0ejUVq1Evv5aX9DcwtatIg8/LFKqlMjtt4ssXZreX3zjRg0Sat9e8+iIaORslSoiizwnXXRB5cr1RZOFvZHltANLlmgahrRFyjOC6cOeHj//LNKwoUiJEjpQZyVvfnawcaOIf+R6IfCUEL5ZmGSkknvU61F5dl5PQXVFieBNci/ESEkRGTFCpFkzrb3qjBMnVEp1rkaUnCwyd65IixYi1auL/O9/uVeCTkSl67fe0vQJDRpo8YzTp0UmTdK88x984Er6kyaJ3HGH9+3HxMRIUFB5gVUCr3otTa9cqedfujR712VCSbZLFxHDEBkwQOTw4bw93+XLjudm4KQVYqn6m9Drvnwj2tSgusm4EHxeDij5DZPcCzmsVpHRo1WaSlvbc9YsJdnExPTH/Pmn5n+PiNBI1dyqCxoTEyORkdECN4nFckzU7Krnc8aOHaqecVbleCMpx8TESKVKDQTWSEjI+/L55xm/4Js3a06avI5yvRLhnHvensky7X0/dEhk4EARi0VnfatX532/li/XtNU9emiupdWrRcLKXZDIl6vnuookIUFnkosXa2WzJ58U6dtXhMg/hJB9QtAJ4SnffFMF5SdMcr8CYLWKPPWUvhCHDrmu79JF5LnnXPd3Vt9UGN9e2t+xXUqV0lwzOUkP7NBTB9sk68Pi5zdJunb9V8LCtLbpokU647j5ZpEXX3R3rHc67pMnRRo3FnniCc8pA3bv1jz5pjYlPdzdb+f7/uGHc2TKFJHgYNWtf/553heBOX9eU1SXKyfyxReO891xh9posoPLl1WQ+OUXnTlOnCjSp49I69YiFSuK+PuLREeLtGsncv/9mrBvxgwR/0obhNA9wqBmpuReUItJ7g5Mm6YGLuciznv2qIRsJ21PusR3fpsrTz2leulbb9UEY1mFSoHtBXYKfC4QlioNXryoL02DBpIqzTurkrJTvejECZ2xjB+fnngOHVIbw9tvZ/06igIyMwZ6rkBlERgoPj5HJSBADeX5UfRl0SIl2fvu0//Vju3bVTXjqQ+XL+s+P/+sz9eECZpk7rrrHORdpYraeh54QOTpp0U++0zk9981xXbafEpxcaq2bNJ2vwRNrGjq3AtyMcndFa++qi/J7t2u69q3VwJM1SVOCBbqzRZGR7hIJBcuKCFWrarT8G++8c74euaMCMwQiBPo6tGb5cIFfXLKlFED7MMPq0E2u4Wajx3TDJpPPukg+JMndRCZOjWrd69owBtjoPv73Vlgo23w/UZ27cr7vp48KdK/vxaq+emn9Nv79xe56y4l//ff14HcTt4VKih5V60qcuONagt45hmRmTOVvOPispYM74cfVIX30kv6LJneMia5Fzq8845I5coi27bp76QkkWuuUfc1Y4rN22BwE8GSIJT9R3iiVDpdYnKyyFdfiTRvrrOBd99V7xZ3+P57VX8UL/65QIkMpW/7yymiM4wJE1TvHxj4u8AtNskxa54wR4+K1K2rtoMLF0RathQZObJga8kWJDFEvR6lhsCOY4THK7pVKbhK7g0FFtlIfZNAhzyvGmW1inz5pQ7wnTurof+99/T5uPdeFSwMQ1mmRAmRDh1U928n7z/+0OcnN7y+kpL0vJUqpbcNFWWY5H6F4sMPVbL591/9vW6dqlwqPXONvux33CnU/lpo9YpQ8W+p/Hxdt+1Yrfoi9eihJDxlisP4euyY5oavXl09UTLTm//3n0rsznYBEU25O3jwX2KxrLWpdEYKlMySX/mRI6qGAZ1+FzSxF6QbnTHFECZZhLZThKDjQtfhwiSLywAeExMjgYHVBD4SSBE4KfCQgE+u+vPHx+v//uOPSt7jxom0aSOpqjnQ56djR3XtnTpV9ft//qmGzaFDc6UbHnHokMaLdOyoQsLVBJPcr2B8/rkap/75R3+PGSPS6uY9Sjw3jhdavyBMRnyv/VBqNzuSqVvkf/+JDBqkhT5CQ/UJGDPG1Z3Sk8eL1arS1+uvZ9TfGClXrpdAjFgsZ6R9++2ycaN315qUpEYyUOkuo77kNVJVX49UEboNzndjXOr5pyAMryNU/lOotFzKj+kkIhr49tRTIv7+SQLJAu+IxRLh1lsmM1y8qEFhP/6os7uxY0Xuvlv11mXLigQE6MzvpptU8o6O1v/oxhtFdu3yXPbx7Fm1FTmrF3MbS5aIlC+vAktuxn1cKTDJ/QrHV1+pxL1qlb6IVauKjHnnVynW/Auh+yCJej1KZq6Pld691YMls6CUffvUr94udd12m7quZYY5c1QP7q0O9PBhNX6VL6+S1dy5no+1WlXf2rGjGpBr1hS56651BRZhakwxhLGhQpktKjn3eCBf3ejSzRwmGeLXc4QUC7ksYWEiISH637Vt6xj4PcFO3gsXalzEE0+oDrx5c32uAgL0ft90kw7806aJxMaqQf7gQQd579ypdp9mzUQ2bMj8Gl56SdUzeYGUFBUAypVTL5qrFSa5X8Gw6325t7tYih+XSTN/kp9/VuNVkyYiv/7q2DcxUVMU3H67exJNSdFpdZky+mIkJKh++6231BuhdWuRb791L4mdO6eeC9nRZyYkiMyere1Xrqxunc4++Var1ldt2dLhUXHggIiv726B0VnyvsktRL5SVaj2o3DtW8JDtYTgo8LAFvnqRues8498LUpGvf2rlCrlGJSHDdN7d+GCqu5++EFtNWPGiNx5p0YTh4eLBAYqeXfqpJWqnntO4yeWL1eVRmYF15OSRF55RaXwV17xbnC/fFlViuvX58qtcMGxY6rjv+EGHXyuZpjkfoUinfTWt5NQ7JhM+Ohn6ddP/z1nl0kRfak6dVJ3NOeXdvt2lfJatHBfczUpSY1j116rU/D33nM1vo4apV4POcXatapPDw3V9tasEXn2WfWWSRuhC5UEdgg8niXvm9xA5z7/iaXaEuEpH733994iRsgBeWvx13l+7rT44w9VjzjruNMutWop4Q0ZIvL88zqYrlihs6fMyDsjbNigkrpzyglv8OGH2p/cxl9/qYAwdmzBlpQsLDDJ/QpFqt71KV/hSX/93r+dWIqdkBkz9N9buTL9cRcvilx/vcjw4a6Jvl5/PXO9pNWqLmjduyuhPP20GlrDw90bq7LrUXL8uJKQnZxefVUlfOf2fEb7CLUq2Qy0j7pI7nnpyTJjhg5w7y/70uUcd45YLy1aqPE4N3HunMimTZqA7a23dCC94w73hH7LLSIvvKAqsl9+UWN4RIQGeeWmAfryZXVNDQ9Xos5K28nJOtg4zypzCqtVZw0REXqfTChMcr9Ckery2GmkujyWWyc0+VCoPyv1ZW/UKH1qAhH1Wff31306dJBs+Ttv2aJ6cPu5duxw3Z5Tj5LYWNWZ2n34Q8vEi++NzwqjyjnanIhQK1Jgl8AICQ4OlmH/G5Znniz2gWzr1vTbrFYlXU+ePJ6Mv+fOaV6X778XefNNJe/bb1fX1rAwkaAgjUy++WZVtUycqN4n9vveuLFK756wcqUGgnXqlL3/OS3++kv706tX9tQeX3+tM8DcGmxOndI0G82ba9CSCQdyRO5AZeA3YAvwL/CobX1p4Bdgh+2zlG29AbwJ7AQ2Ak0zO4dJ7u7hkvjojjuFEvsFn0sSVP/ndBLdSy9pbo2TJx0JmywWcfE8yQ4+/1x1p+PGqa7+9tt1up/av0eqCjc8K0QtFW6cIIyo4ZVeev58lUydVUTln+goNPuf4HdBuKdHKnH7jPYRiBYfn/3Sv/9Kx3150k+oM1d4qHaueLLs2qV9+vln99tjNsZI5RfqCGX/kVK3TkodTM6eFXnuuQXi73+HwAiBVwTmimGsk+LFL0twsPrwd+2qs6mXXtLQ/JUrdTZkJ8HERDV4hofr/1amjM4ivPECSUzUVBBhYfrpbsDPDOfPa0Ba+fJqxM8OOVutSsJz52b9WHdYs0btQY88kvfZK69E5JTcy9sJGigBbAfqAi8B42zrxwEv2r53BX60kXxLYGVm5zDJXZFW8ksnoY4vJr5tXpHiJS9J2bIa4Wcn927d1MDkTPhDh2oujuDg9O6LGbkYphpxx5YUn5AjMiXmRxHRl//NN1XaTj1P0HGh5avCvd2E5m8KxQ8J5dbJtGmec9zYpWN7tsth/xumBD4Z4Z7uQkicMDo8XaKn3btFIiNFuGWoTV3l4+hD75tz5Mly9qwS8Ftvpd925ozItK8WiH/fO4QuDwu1v0m9/mIhl6VYMRE/v60C80Vz1Y8WuEOgmVSq1CRTkrRaRebNE6ldW9v09RV57DHNxplV7NypHkeNGql3lbf48Uc10t9/f3rbR1bw22+q0sqpW6LVqsbh8HAdaEy4R66qZYB5wE3ANqC8OAaAbbbv7wP3Ou2fup+nxSR3z8FDw/43LJ1u+b//HOT6zjuO7489ppLntGkqGY4bp1N1Z8IfP17kkUd+l8DAem5dDF1ULc2nC03fT1V5rF8v8tBDIsHBCY42S+4Wug0SJgbYXPYsUnbEnfLQQ9qXJk3UO8Ou0lmzRl/YxYv197D/DVPVyxSEh6uneqV4SvS0c6eIT8kDes4pCIEndWApflBKdnsuQyK1WnWAOnRII3/XrFG98CefOO5PxYqu98vt4ndeaPaOgEi5x7uL1Zr91AurV6uh2952587eFSLJCFarRoCWLavPREZ5ZU6cUON7dLT3OfkzQpcuOtvICc6dU1tCo0Y5S4J3NSDXyB2IBvYBIcAZp/WG/TewALjeadsSoFlG7ZrknvWkW23bqmdE5cquxOOcsMkOq1VJDFQ6DApaJJo/5rTAbwKvCfSV8uVvUhfAiQFCna+0zRE1hFuGin+ljRIZqcEiFStep/2rj9CnjVBjvlDssND+SQmaWClVXZGcrJLc8OFKNMHB2ofevdekzhp4zEbiD9XS890yxIXYg54Jkff+/FL27lWj4/LlIv0nrNJ9I//Qz4afiU+jOS4EeeONqvetXVukWDEvCNtlOSuwTOBdgeESEHCr8MD1wpBGKrV3flT71+URoew/cuFC1v+/vXs1s6H9nNWqqU4+N42ix4+rR1JkpMiCBemfiS++0FlYZgOAt/jnH1XpZFaRKyNs3Khum4MGeU6VkRZFPX9MRsgVcgeKA2uB22y/z6TZflqyQO7AYGANsCYyMjJ/7kQhRlYlv0qV1If43ntdiemJJzyfY+NGuwdGD1v7YQIdBcYIzBbY6pnwegxInWq79LUBStDD6wj1PpTgEpfl/vvVKLd9u7o+Ll0qMn26h3arLBYiNjp+l10vlNopBB8TfC+LYUmRkiV1EKtbV105O3YUqVT9dOoxfuW3SPNOe6VVK8+EHRZ2QSyWHwWmi7pW3iqBgddJ795rpHp1x6DoiaRT1UYh+4QRNVNtIcWu/UruvFMjc70JuDpzRt34AgK0X8WLq448J4SYGRYv1sHjrrvUNfLAAU1FUbeud8Fr3qJ3b9cU0FnFJ5+onWHmTO+PKeg0EQWNHJM74AcsAkY6rTPVMllERhJGViS/+Hj958qVU++Ks2dVzWAnsk6dPJ/z6VkLxWI5LtDB6Tw+AiUlPHywV5Ktj89+gV9sy98C/wrsE8M463b/WrUc34sXnyVaYu/39PuWOCAMaSw8XE0sw8rLxYsqYZ48qYPE11+rZ83DDys52b2BQL1FevTQbRERuu7dd9XTwmr1dH+vF4vluIsaxNMgSwMk8JFmqoaa7CCRj1fPkubNVRWWkR0jMVH1+eHhIj4+2r/+/dPn6MkrxMfroGK/X089lTsDSqp95tFosQSfkhl/fZHlNi5eVA+kOnXcx2BkhFTj+iTDpeJSUcrZnhFyRO42lctM4I0061/G1aD6ku37LbgaVFdldo6rgdwzkzDc6dz9rvGTsGfDXAaDo0dF6tXTf+7LL1WXvW6d+qbPmeNKlu1u2yG+rVVvTr3ZQo0FYon+Mw2pJron8cCTqoJo+Jn4XPOJ1Gh8zP1+7BH4VPz9h8orr8xLDSw5f16l9ZIldb8mTTSYxpU8b/YsaVfcLw0aaDbB0FDVv/bsqYUg+vZdLeHhgwQai5/fdoH0xTzmz1ci/ewz/Z2etKMEDgt0cTkuo0H23pFrpXjrmekG54MHVVefVvUhogPLt9+qkTEkRKNFmzd3LZ2YH9ixQ4tZBAWpmur663Ou23e1z7wptH4+y1Lz1q2a0qJPH+9VQ5cv62D/4YciNH9L8+74n3PJAVSUqi1lhJyS+/W2B3wj8I9t6QqE2VQuO4DFQGlxDAbvALuATe5UMmmXq4HcHTnYg1SF8WBzoV8HCX9gsHz6qUp1d921XkJC3hZ4SwLKzhKjzrdC1Z+Fiiu0sHAaAixTRt3EGjXSl/Xmmx05R1KX4KM2qXi/Gkj7dJFyI7tKly5b0rX33nvqYdPx7m0Z6jDXrhWpXXuZ07EbpXz57RIaquqiHj00de/s2Up6dpdMEPH13SmaM94NqVdZLIRtSv0dEKCBNM6+zTExMeJ3jZ+qgiYjXPOCGKU/l5IlL8qsWa73/N9/VR0xcqRIZGRVJ7IuLprz/NF0M6OMsmLeeKN6tbjD8uU6mPz3n2PdypX6v4SFqTqsQgUdbHISMZpVJCWp62VYmFZCSk7W5a23dN3kyd5J8PHxmvNnxQodrN59VyS08+vCNe8Ktb7V4te2+ARvpeY5c/QZfv99z7aGU6fUbvPaa2r4bdhQvYnsz4il+DH11hrSqMhWW8oIGZG7odsLFs2aNZM1a9YUdDfyFJanLQgCP70G6wZCma0QcB78z8O28xQvDu3aNaVly3qUKAHPrBjDyZQ9ENcWIjbDnxPgcigRD4zg8agYjhyBN95wf64+fSAwED6OPQMJJb3q3y+/wPLjP/LMkGtIGV6bqHIhTOswjT4N+qTbNzY2lsGDBxMf7wP0Bp4EKlGlykmaNg1j2TI4etTbO/MaaqaZisoRisjIanzwwU6+/BK++w6qV4e77oKpXzXizI0bwd+241+j4UJZaPwpPjG/Muyp7bw1xtHOqVNw991w9Oghdu68lkuXjgDfAkcJCnqMDz6YQZ8+rtcYGxvLxIkT2bdvH5GRkUybNo2ePftQvjwcOgQlSri/ko8+gpdegi++gBdf1HtaujQcPw5DhsDEiZ6PzQts2AADB0LJkjBjBlSt6rp97169p6tXw/jxUKMGHDnifrl8GcqVc11mbHsGih+G4kcgfAuU2Q6AgYF1stVjvxISYORIWLQIvvoKmjRRqj5wANavh3/+cXyePAkNG0K9evpMbdwIhw9Djx5w331wovwshv80iPik+NT2g/2CmdF9httnt6jBMIy1ItLM7UZPrJ+fy1UluQ+vKxQ7Iowvpr8fc2+A03zehkOqrTFfeMpXjCmGDB2acem5o0dV71x2+D1CpeXpJWSfBBk61HXdzfdtEYJOCj37u6iNPt8QI8eOqc/0l1+qFFi8+GcCCwQ2C1wQzSOeXhKPilJD5aFDqrJ45hn3KhhdFgj4pt4LZ0NyYqJW+BkwQITAE3pNnR8TxpQRet4vNPpE+zy0gVD8iDz8ims4Z1KSva7nWQkK+kngN4mMrJ6l7JLff68eOBnh1CnH9TRurDaRHj3SR/bmJaxWVRPdeqv2o2NHDdsfM0akXz/N/NiggT4fvr4O+4R9GTxYYyJmz1aJecsWh90iLVzSEnspNe/erfemVi19hkeN0vtaurTer5tvVnfdL75QO9Lq1RrAFB6uiefefz+9/7/pLZNDb5m8XK4GcnfRT9aPFTqMFSbYvE3S6HZFRCpMaKtRn4jgc0nVKx3HiGWUr9Svf8htOTNnvPaa/rtGqT2Ol7fRJy4vcmCgyLJlrsFQaVU6hv9FCQvTUPnbb9eXER4W6CZQX5yrNhmGIadPO46PjFRiOXFC5LPPYqVYsS8FlkupUk9JsWKX5a23RCAhzXlXCbwvpUtPkL//Tu8Ox5N+Qp8uDjVOre/0+9iSem+HNBJLiWPytZv8XnZ/8qx4Y9gxbJgObO6QkCDyxhtKQM2bO64lN/zG7bhwQX38ly3T6M+331aV1YMPagBbs2bp3WJr1VJ/8cce03w0n36qg+T69eo145x468wZvcby5V0LW2cEbzxVLlxQldX//ueaK6dGDfXeef55DaA6fNjR7sGD6nVTr57630+alL8D5JUEk9wLCVI9Cx6qLQQdFeqmL2cHvvLiiyLFS14Sv1tGCwNbCuGbhMcihUrLhOI/ClyUV1/9Ll37KSlavKB3b4fuvdH1BzRkvurPEtzke3n+6/kuBODjo37FqetC96orov136e0yZowSlZ1oMzI6jhun/uXnzikR9esn4uubbGvvnEALgWMSGNhCYmJi5NNP7XlyJgkcF0gUi+VnueGGna6RsJktE5xIZnBTiYhQ3bAdf/3lCOcvX95RY9MbWK1KMps2pV8/d67q9Vu10hw+Zcoo6VasqCSZERISRPbvV+l0/nyNJp46VQPFbr9d9fXVq6u7ZGCg2ldatVKpfNgwTer2/vsi332nScS6d1cJOLuh/zEbY6Tsw7cJ4ZslqO5ieWPRN14dY5eaKz3TVJ54d4m88IIW+6hVS2MbGjVy/E+vvurecHrxohrFO3XSsn0PPqj5dPLTPnElwiR3L+BuapeX071ixeYKPJmGIBuKv/8G6dhRp68xG2PEMspXpfYBkUJ9X9G8JSIREf1S2zpwQNPmVq2qU+7p01Va3rFDjWbr16taIUNyLL9GaDtZyb35dGFciPCUr1gGtJHJk3VKXKyYTqHvumu9BARcL861UoODg6Vly2/Ez2+bQJlUV8CTJyXVo0XJWwRWCpSUyMgo+fZbPX9Y2GiBl9L1q0EDNaKFhbnpc+ApodGn+t1WJNyuFlizRlUO33+vBtny5R3eLPv2iTRtqiXgvMnwuG2bkrXzYLBihc546td3ZHAcMkRLBR47prMDUGPuSy/pZ58+OgDUq6fX4+urRtamTTXvzIABWo92+nQdGH7/Xc999mzGA9HChTpLGjBAVSjZgYsU/qSf0H6iEHxc+o5ZnS6VQEqKPltffqn97dpV72+pUpoAbuRIvf5Nm9QIe911uk/aALuUFFX9PPCAelXdfLOqg7wNXjJhknumcDe99J/qL37P+OVJcETMxhgp+XgzDdQZGirU8xd4RuCYDBq03OVFVhe+TwWG2ojUFsnJUalXT6MxS5VSYlm1SqXB1at12n7ffQ4irFHD8b1OHX2BLl3S41PJsuWrQvGDNuI8KdzXXpiCY8YxLkTCH3xAOvX+TypWPC0WyymBr6R06QnSuPEiMYw9AhVSCT8wsLpUrHhaYKbADRkOLv36qU5+9mzt/7ffqr7YeZ9u3WyfAzZLhXE3Crfdq1ky7f0tcUAstX6QXkM2yjffaE4Se1TsK6+4/gcXL6p02bx55pkP33hDi19s26YFyt3132JRovbzU+K2u6uC/g8vvaSE9/PPGkx27FjOpdLjx3WAqlIl59WIKk5qqXlzon5Tt9kpCCNqSkD0GrFYNH5gxAidTZQoofaUnj01Yvm773QATTsALVqkevTnnnO91m3bdHYTFaWD9yuv5J+/f1FDRuRuessA0W9EE3c2zkZJFrA4WfrPVYBl46D1SxB6gKjQKPY+tjfb54rdFMvg+YPVuj/vQzhbGc5Wws/Yw2uTExgx4jbXvkVHE2dtAb794L7u8OtI+PNVwApYAHjqKTh7FlatUm+CatWgRQto3hyaNoWWLSE5GaZOhbFjbV4GJ+Drr6FtW7jzTnh6xjoS45q6djboJDSMgQ4TwD+9N0L7sD4sXgyDB6sHhCIR2AsEA5UAsFhOYbWWtm1/Fk0uepaQkK6cOzcCgHfegb59oXhxWL4cYmJg7lxISYEzZxxdKl8e9u0DX1/9/fmGWO5rehdMKE5F41ruKD2NEifbsn49rFnj8NqpV0+9VZo0Ua8QHx/1AHn0UfUkGT8eoqJ0/7SeInv2eP4/O3aERx7RfpUrBxER4O/v2D5+PPz9N/z8M/j5eW4nKxBRj5zHH4d779X/tVixrLezc6c+A998A6vWXobKK9TrJeQAnKgFR5rAyZqQHAToPZs3D1q1Ui8gT0hJgaefVu+hWbP0GTt1Cr78EmbOhN27oXdvfQ4bN87ePTChML1lMkFq3vTb79akUFV+EdpNEu67UXiilFD9B8H3otDmaWF88Rydy8XDoO4XKt11GyyRr0WJSPooxw6PdxAerqD7ldydKg2GlDnmUnKtdWsN80+rz1yxwrGPfVqcnKzRkaCGOKtVZxMB9/VylUj9z2mGRkRo9Yp6pwxoJfTqJ6E3TZe7704rwZ5zI9V+IF27/itwyiHVN0CMxw1hkkWMwLMy/PllUreu63HTpumU3o6ffnJsu+su14yHEREOg1xysn5fv16NwF7r7NGI1yef1FnP3LlqM1izRrf5+ensYtgwh394ZsXI7f25+WaVfHMD+/erbr1evawHQlmtOmuYPFlcnh0QsQSd0f+78jItLdh9oDC4qUS+VFNE1APr3nt1lpCRMf/IEVXd3Xij9vX779V+EBKi/9sPP5gVlHITmGqZjOHID+6vuU3qzBVaP6+Rb34XhLL/OF4ES6J88kn2p9SpA8kkQ6P67O1e95I8+eTPEhRkN7IGCjzikYjK3D8kdSq7fLlOcR9+2DUgZd489eBYuFBdAe1l8i5eVH2uva1x4/TYZh3iMifBcuuEBjFC2ymp7pTz5zsbWW8SOCbQS+A6m4eM7hcYuEwoO04YcK0wySL07iogYpTbIKUiLkq/fkoA0dGqh54xQwerS5c0OOqJJ5QsnD1S7Lp4i0+KWEocEyyJGthi2965s7oB3nab41r/+ktTGbzyiqo1nFUooDrvv/5yVcFMnqx67bvuynrBiNOn1Wj98cfZe2ZEXOvfPv2097nNExM1Z0ulSun/y4YN9X588YXIy9/Pk6CpxTJVQ/74o/4/ffqkr8y1dKmqpm65RY3CdvfFGTOyl77YROYwyT0TuOjcH6otBB0Xv4cbqs59YqBmBGz3VLqX4/771bCUlUx+6XyDH4sUEAmo7sYf3b7cOF5o8LngG+8iVd98s+pyV69W/euttyoBffWV6kNBpcaBA/Ul81qKLXZYqLDSdV3HMUKNBUK5tcKwelJ+9M0SEeGQ4mJiYsTfv7/AEQHNGhkUVEqqVDkhr76qRsH580WKXftV+vM1/kjK9B8q//ufur09+KBr3hj7UrOmSJs2SrDDhqkx077NiPhXeDRKc7w/2FwIPibPz3XNB/DHH0qO9nTDzrh4UQfBjO7L5MnZN1hu2aJkZy90khVkVv/WjgsXtP233nLkhndegoJ0m7PboTO8dSC4cEFk9GidMX3yic5ORoxwnKdKFb1XWam5aiJ7MMk9E8RsjJGwF8NSCbfYbY9J5Rqn5OPVs1we9pnrY2XgQHVLcyYWUI+JN97Q0PyMpp0xG2MkaGxVrTR0/TRVAbklkySBc0LFpcJNo4XbegsWWx6YGvMzJCHnl7laNZWm0k7DQQ2UTz6png528urRwzYAjQ3VmUvatAc1v0/97uzqN326SOnSF6R8+ZsFKki5cl2lZMmLApqkyqs86SgpTZ2qBtUVK1RKBTWMtmih0q+zOsRqFTECz+jxRpLmw/G9KNzT3W0wzdKlSvDu6nvu2OEYFMHh/+/vr2mLr79e3RKjo3UmMHWqqhm8NQZ+/73eB29L1yUlOaorpa1/e/SoGixfeEF92atWdX8/hwzR3EO5mUrYjj//dD1Xly6m+2J+wyT3DODOUybo2WBpftNet3pSq1VVHI0bq0vdc8/pXSxbVr0v6tZVb4KbblLvj5Fv/iYRg/sLN42R4IY/SFi5C1I89LIE1v5NaPKR+EetTX05AgLWiKpixgm8LfCTexL0vSTt79guDzzgHWH26qUS1l9/Oao1OVe3sVqV2EEl4reWzBWj7Cah5WuqPhob6rHttGl2fX3Fo396x44i4QMGacpc5zZ73i/lx3aQ6dN1wAkJ0URjAwfq9u++U2KbP1+n/PZBYNAgkRtv3O6+by3eEB6Ndvuf//qrEvzSpfr7+HGNggwL08HkhRdc23Imq5QU9faYPVvVRB076nH26MoJE1Rfv2uXe0J99lnxqsj2+vWqmurQQT1svvpKa6t27aqDdcmSIi1bpif10qWV0H//PW9I1tl90fm8fn5qJzFL4eUvTHLPAKlqkodqqbHw4WrCuBJSaVoDiYx0X2ndatUXrU4dlcIOH1ZVQliYhm9PnZo+rDt1sSRlSMQ+PrMFXhCtxXmrBAR0ly5D3pWwPo96PKZ1a1fJuH9/fbn9/BzrwsPVna94cf29fr3qs3fsUAnsq6/St+tfaaOtbmvaKNL0yy+/qDFt3TrNPgg6w3nxRR0E7UgdTEfU0GP7dBaKHZMnP3YULk1MVAnQm4Er3VJznjCygtD6BbEEn5K771ajaFosXqyDcPfuSvTDh2vB7rp1lbA3b3YU03jllYwlX6tVJC5OB6FJk7TNihWVgNu1U7/vzz/XRGZJSZ6LbF++rPYT58GxRAlVtdmTsc2cqYPP7bc73DyDg9XYOX9+3pFrWvdFuw7/u+90+549OrjVr5+7OeJNZAyT3DNAqoGz/ZOODIqIhvzbvjdurIQ5ZozIyy9rZr9581zDqT0u/meF0tvcbmvYUFU569fr9B5EOnTYZgtwWiYWy3EJCEiURo2UEOzH/fGHyIYNqqK4/XbXNt9/X6U70KAje+7wjJaICJXunde9/rp6pMTFifBkgErbiHpSjCqXqWooo6LcMRtjpPTdYwREyj3eTfpPUP3+gw+qT3izZo52rr9eg3O6d1fvl3LlVDq9/Xat56r1Sp3OPbShLfsmMmP5HHn1VQ3Lb9dO73FKii6zZjmO6fHgJgmqv0gotVPCBzwon29QXXP37jo4NWminjLeBDw549gxVZ08/7zaCapX1//EWaXXr5+jpJzzdYwZo9HGJ07o8vHHOqux2yJ8ffX3rFmqA88LnDypaQNattRn/fHHdbZz2236X+ze7bq/1aqZHsuVU4Pq2bN50y8TDpjkngFcDJyTNXCDzo+Jf+T67EmOaZdm72iSK+d1tb6VBg08HzNihKoODh3SFyY5WXWsvXvr9rfeUtJ5/HFXzxGvlrLrVWoOPClG2c1y3S27pUIFx/auXbWoQ6VKmmtbRKTyizUdx09GVSrO1ZPcLP/+63qfExM1He7XX+vMxnnfqCjH91dfVZWHn5+WbXOHgwdVgnUO0gJRN1YjSaj0qxSv82Cq51Biooa2N27s2Ld+fZV0o+uc0HU156XWgQ2eFiyfrJklISFKrBcvKjl7E/CUFlarwyXwmWdUzZLRfWvfXmdS27drfdwOHVwH6LZt1WvGXTnF3EBiogou7twX161TG87w4RmnCT55UgfqSpVcU0CYyH0USXLPTmqA5GQlzNWrdTr59tsi3QduEp8mMbZc4v+pr6/P5UxJsl8/VUWcP6+uXkFBKtG/+abq3r2S6rOwONcBDQ5Wb4V77tHft92mod7Hj6tUumWLetHccIOqYVw8T4od0QLUI2oIQcel4lPXybx5ju133+2qUho50qmk3cAWGsVob6v2V8KtfYUmH2gVJQ99r1FDVTTVq6t6Ydw4x7ZPP3X8Pw8/rP7RLVvqDCkzpC/dN0/gYrqBcscOVSs4G0vti6X4caH8ap1hjQ5PHegjht0rLVo4zmW1qk65YkXN0+4OSUk6qMXE6P9j18dHRKhL5rhxKtlu26bP4pIljn40bCjpMnU6L507ex7scgqrVVVXztkXnd0XrVadEZYpowOvt1i6VD2cbr1VU2SYyH1kRO5XZISqS5SnDUGU4tlrP6FZ8Z4cPKi5oQ8exOX7kSNQqhRUrKhLpUpQoQKs3b+ZxRv+4+KJUPwuRmM5W5Ua1X1TozzLlYP779f80xUqaJTdJ5/Ajh3u+9ekiUZanuMgmw5vxbqzQ+o2o/w/lEypyeljwdm9XQBERmqk5h13aIRoRIQuZcq4RkKeOqVRhQMGpGlg0LWwswv8NhUfn2NUqwYDBkQwdqzSyX//wYMPwooV6c9tBJxHBtQAa3nY1QmWjYXLGYQsAl37b2FD9AAOGauoYG3Bubd+485bA2nZEgYN0n2Skx19T0kBi8VzezNmwIgRkJQEPXps5qefrCQlNaZy5arcf///sFg68e676fPKjxwJr73mpsGbRkOr12zpcoCfX2ZKp9FMnuy62/ff63159lnNM+6ce3zzZn2uGjfWpUkT/SxfXo91zhNfsWIjIiO/YfnyKgDUrAnbtzvOExWl0cW1asGlS45zlCyp7TZt6visUAEMI8Pb7xYHD0JsrD7P8fEaMdqvn0Y423HhAgwbprnhv/pK+5MVXL4Mzz8P//ufRq0OHZrx/2oiayhyEaqpqpSnfDS3d5AmpDICzkvr1iItOu+VEu1mCJ1GSpn7HpJJny2SPXtEPlkzSypNbSz07iqhnV+XRtcfkLAwnT7edpuqOn77TVUgGzao18MLLzi8NrKzNLjuoIR2ekNoMT113UsvpdeT7tmjelW7vhw0wOajj1Qq37gx4/OUKOHI0V26tHqTtGmjRtTU/W4eoV4klZYLRrLT8evEMNbLuHGaoMQuyeXWrMM34JLb9TUaHZOBAx35wtes0epLISE6AxJxP0P79FOViEuVckSypi01Gx+v6gNPfWrUSN1WK05uIVz3ohB0Qqg/SxjcRJiC+JX/LzUC1K47f/HF9AXJ779f1WTLlmkmTE9wrfD0ots+lS2r6XlXrXJvwHVO2DVunErz4eG62GcG9tKLnjxlLlxwn33R3fn+/VedBh54wLto3Izw7786I2jVKn12TRPZB0VNck+tagRwsBnsaQ/7r4P9rQkLCeZMxEJSKv4B5deBWPA72oqoi3eya1MYcjEMKqyBiE34FT/Hvc1vpl7Ja9mxQyXxnTtVonGGYahUbJcC77svfVUa+7J8OXTrppVi/P3hzz9VGr3hBl0SE+HDD3UG8dpr0MzNmDtpEixdqrlWfv0VfvsNAgJg/36oUkVzncycCXXrwrJlutjPc911ur5WLQgPV4lvzBi47pY9rDq2hOTzpeFiWdjfOlv/1bffatst37yJc7sbwrbuENfOaQ8r8CAwBKgGhAJ+EHAWfC+B1RculXFpMyQEzp1z/K5eXf+HClXOcrz6ayQFHoRix6HYMfziOmNZ9iR1avtSt67moLl4Uf+flSvhjz9UorejRg04f15nbY89Bu3aaXWikycd+/g0/Vyfl1PV4K9xqes7d4ZNm1SqTSuNR0RoxauAAJg9G0JDPd8zqxUqVLiNo0fvBu522nIJiyWRe+4JZdYseOYZzROUFYhodah16/S/tn+eOePa3/PnteLS/PmaG+a++6BnTwgKct/u55/rLOell+CBB7LWJ0+wWuGDD+DJJ7Uy1ZNPasUwE9lH0ZXc0yyRr0VpkYue/R0BP/YlZJ/Q6XHNFVN+tUCKEHhKfCN2SLt2qmt+9FH1bPjkEw2zTlvU4MIFzVGdWQGfpUtVmlqwQCWi7dtVAr//fjVIhYY6+lWzZnqvg9OnVb9pL1BgtYqLXty+DBmiOtyjR3WfHTu07wMGaLv28wQGqnT28epZUunpZg7vndBYgf+yLIlXq6ZSt1HLEdBEgxivbBVMDBTK/KuzCNu6AQPU2NmunRrtfvpJZy05mS306qWue76+aqTcts31Hp85o1JyZu1kVGM0MVHtBLVqpW8/KUndLYcPd+f3f1HgC4GeAgEiojrpChXcF9nODk6cUINs2kjfypX1uXnvPZ0hpPUAio/X+IGaNUWen7sgT1JeHzyo3l81argPJjPhPShqBtWMKsCkujZODBTu7qnFe9O+tCX2ax7wXv2ER6plKXpv3Tol3l27Mt5vypQfxWI5JnBHam5zOw4d0uhOe/Iu+zJqlMjY9xdrcY32T0mxZnMlZmOMxMc7DKpnzij5BQVptaVu3ZTE69VT4+E336i3wqFDavTNCiFGRPSRjz5SNdWcOa5eGvakWaC+3BmXzPNiuWWIBDf9Tvz9xcVbp3JlDd5xNiBzzbse+qtGY+fUCpUrZ8ODyIvl9ts9e6jMmKF9mTdPyfmBB1Rt1KhR2niHvQL9xLl6lXOBbndFtrOKtO6LI0c6DLH2Aipvvql9bNRIn6MGDdTz6KGHtJ9du4p8sGJOplWWcop58/T/euCBvPP+KeoocuQu4tlbxq1UP8kilgFthOteEkrucrxsAafFUvy4lC2rFv2XX9YXLLNq8K+/rgSSmOihb6n61UYChwT6udRHTYsNG1yleXwvCmFbBUR8r39dykWdFXAk/rp8WfXSx46pH/r8+Q7PGXfLtGlqP3C/fbfL71Kl1AXSHrFqJ3N3uV5AhNYvStkRd8j7y75Mo1dGIFJ8fBbkOtGWaPOhnDqlM5Zhw3SwBR307rpLv5curX7qVaroQNGggYbHDxyo1/P22zpLGzlSZwmdO6sE7s35K1VSqXjtWr1XMTFpEnPV/loCa/6e+rtmTZG3356b5t7g9pn48EPtx5kzXr8KLu6LoaE6C/U2++Lly2rrcM7rHxws4ltmt2Yt7TBWa9NOybw+anZw7px66ZQrp0FkeZEmoSijSJK7HWlJftiCYW4lDpf1D9USOj4hlsjlElwiQVq0UAm4Tx8NWAkOVmlwzBh1mTx2zPWcVqujkK87uJahqy2wX2CIi5TmDuUevVWouCJDYqlXTw2l9t8VKqjL3cMPi7z7rkamHjwo0qCBrehGmjS8N9+ss46YmBiJjKwm0CxTMuvXT43AP/6oZNb21h2O7WFbhVavSMDALvLp2th0KYtjYmJkyxbvSNPPP9mr/YJLZK7+qVpVXQu//VYHAW9D8f/4Q2cOS5c6fNItFlUj9OiR9YGoS98tEhurbrPTpi2QihWbCfilm80546GHNM1C2gpIzs965GtRMnXOQo/ui94iIUHJtUoVveYlS7QAR2qpxdA9wk2jUt8lY4qReaPZwMqV6g7auXN6NaUJz8iI3K9Ig6od7lwig/2C6d+oPwt3LGTf2X1EhkYyrcM0+jToQ+ymWCYumeiyvmNEH374Qd0Ff/tNDZwdOkDZsnD4MPz1lxZbiIhQY2Xr1voZFqZuaDExcOONrv2yWCy43teqwGLgbURe9Xg9xiQ/OFUdvp6lhRK8wDvvqKG2Xj2Hi9nYsb/y0ks3ApcBAwgAjtCz53HWrWvA/v1eNQ2o613r1nqO669X97/whmtICN4NW+6CsG1QcRUcq4/lbFXu7BFKt25qjDx4UA3Cv/4KP/zg/TkBiP4Ni8XAurtdlg6bNAmOH4djx1yX8+fVTdTuMpp2KVtWP994Qw3jdnfJ8+e14MTUqekN7Zmi2buUCAyia8X7OXbM0a9Tp6BECT1feHj6z1Kl1CWxRw81QIaFwZwttmf9ZEnY2Ac23IeRXIxed5/n5dENXdwXvYGIGu3tz250tPatcWM1uH52cignSn8PIYddjstpsZqMkJSk9/3ll2HcODWA24uymHCPjAyqVzS5p1ZQ+nMcHKsPpXZB6V2UrXyR9ePnUq5c1vx/4+Nh8WIl+gUL9IXv0QO6d1evghUrlOz/+ktf0PPn1R/7q6/g5psd1XCio6OJi4tL03olfH1/Z9Kkqowdq545W7a4Lv9uu4wUPwAXykFS8XT9u+MO9RtetUpfxMzxKXC/7ftyDKM+FsslUlJ24OcXRnBwNGfPpneXqFdP/a47doTbbnN45CxbBmvX2nZq/QJs6A8XbE7cPgmQEuC2F23bwu+/q3/4hx+672lA9RUk3HIvBJ6BPR3gu08gMcTjlb3/vpLTn3+qR8eyZVC7Njz8sPv9ExO1+lRa0k+7rF6t+xcrptWlkpM9dsEz7rwDTtaCNUPh7tuRGatcNlut+vw4D0L27/ZP+zPhFk0/gEYzIXIZUSW9I9tLl7Qy1YoV6tE1b55j2yuv6ADepIl6/4BnwWlG9xn0adAnizcka9i1S/3hT5zQwc2dR5kJRY68ZYCPgWPAZqd1U4CDwD+2pavTtvHATmAb0Dmz9iUHaplU4+nD1YSuw7SeZrl1qZ4ywcEaZt6zp+pW33lH9bI7dnjWl9uRnKxZFMeOVZ/xChXUy2DhQvUwOHxYQ+md9ZTNmukUd8SIPyQwsLpowY1GAveKr+8LUqOGo4iEPXJv4kTVNa5fL/Lxqtnif/d9muOmf1thfDExwh3eLK+8onpUe6Iq79UD8wRuESjtovP19a2Vbl/ntAgTJ6pHhV13+/nnaqQr03+YVqUKcV/cw57QytPy/PP6aU81nLr4n82y2uOuu1QVMXmy6tJzgsOHtc0771xvK/Qt4uu7U5o33ytNm2ZRJdPgc819j8ZQ/PmnetScPu2dXnnmzBjx8xuTvt27e6WzKbnzZNm3T43ijz4qcu21judz+HBNWQxqXM0IeVkgPjNYrZpiwu77n7bCmAkFOVHLGIbRBrgAzBSR+rZ1U4ALIvJKmn3rArOB5kAFVBdRU0RSMjpHjiX3NIgsVoOv221n3Tr1+127VmuLJiY69vHx0SjPatXcL8XTCM7bt2t04rx56vvcsaP6CXfsCO3bq4qmeHGVTN3d0qZN9zN6dGUqVFDpsm1bmD7dNVrvtdfguZcv4t/vNo4U+4XI0Eieafsc/Zv2zvRe9OypUteXX2a25zvAr8Au4BtUZQQwGV/f5wkNDeHkyTlAR665Zj+XL1fmwAH14963T1VWl4P2sPxPP8RqQKW/4b/b3Z6pUSOtIbpwod6z9eszvQwHSm+HUzVTf1osKvHa4Vd+K0lnwyA+3OWw8qNu4cV+venXyDvpUkQjS7/+WiMoAXx9PyA5+Xv03kx32b9NG+jSRf+/o0d1ZmOHUX4DUnKn+v5btZBq6bIXOXVUp3RVqqh//eXLDjVM2uXMGe2Lc7QqAL2bQM1/3F9Esj8Bx1txR8ir7PinDGtX+ZOS5ENQ1X/o0TGch25rwjXXaNv33APBwerHHh7uvrnChBMnYNQonfm98w7ccktB96hwIcd+7kA06SX30W72Gw+Md/q9CGiVWfvZldwzcolMi8REdQn7+GM1WLVqpW5gzlJRsWIqoQcFqQtbq1bqSWFPtbpwoRronn9evTHSSlXFimm+7m++UXe2f/9Vv/MHH3Tkeb/xRpXu7RJdcrIa+x5/XPeJi9NEUwsXakRkhu6MDT8Tv3JbU6934kRdHxISLwEBNwr4CVwjMFQgJhNps4pNovcT9fCZIxbLGhk+fFlqDnhPi1/5LRJR2WG43bJF5IMP1L3Onm/cXizE7pXx4ouu0bOlIi56bD9tYZTUxZKoOW2KH0y3rXGbAzJ9uvpqR74a7SJ9Wq1qwBs7VvPdREbq/fd8jc9KuXI9JClJDdGVKjURiBVf3z0yYYJG9Z48KdJ3zGrxjdghlPlXQtq9L21v3SGlS+s1lyqlLoZnzujMb98+9VJZuFBdWqtU8XRupxTR5Veqa2+FVW7vhX+D78T/9kHCI1U1wZvT+/DLLzpTmjr1yiym8csvGl9x112eK0ldjSCn3jIeyH0vsBFV25SyrX8b6Ou030fAHR7aHAysAdZERkZm++K8mTp62icpSfN2z5ypU78bblACtuc8z2zx8U2Wm29WDxT7ushI9aL5++/0L9HJk+oHPWGCa1pb+xIYqDnAy5ZVD5guXVx9wO1LwAPdNNNk4Ek9bkQLefn7eQIihqGpCtJ6rYSFhdnIu5xX1+ZuadxYB7Bq1fQ6y5d39Peee1zD/e3upJcv6+8HnnQt21e72ZHUwWjChMw9UcqUcU17nD/LYYEDqYu9spRjOSWGcVBKlbooFSrof5VO1eRhCQ/PeLthZF1FBaJpJUL3CuNCUt2AQ7u8KuXLqyfMlYz4eH23wsNVeLgSB6ncRkbk7pVB1TCMaGCBONQyZYETShZMBcqLyADDMN4G/haRGNt+HwE/isjcjNrPrlrGG3gyDL3fbQYdI/qkM2pu3uwamu4MS62FWMuvVMNt4Fn8pSS9IkZR4mJjdu1SA5879O2r3iZWqxqLNm9WNYU33hcjRsDWrWrw+vhjON/gJc4svR9avAmXS8GKUS77796t0/909yE2lkGDHubSpa/ApyH4A83ehz+fhAYxsKlvhv1o2VITQLVq5Wp0m7hkInF7LRQ72I2kXdeTuP6u1GNeflkTYI1+6hRHb7iHhA9/VmNgp9EEHGlHF/9nmTejgeuJqiyGPR3Tnf+996B48Vj6vnUcgk5D/Tmw/RY4fA0cbgon6uiOrV6F5EBY96BHA697pAA+VKzYgoMHD6TbWq5cc06enEZSUgQwEJVLFBUrVmLlypXpjjlxAj79VJOc+fhomgVP/3mDBuqxsmKFHpcpan8LbaZC8aPpt/kkQrETcCEcvomBFH8OrWiXmsDsSsfGjZpsLiBA723t2gXdo4JDjr1l0pK7p22GYYwHEJHnbdsWAVNExE1uQQfyktxT9fInq8H2bnC8Lhyvi+VkfUoFlaRePc3FYl/q1NEsfs5eNjEbY+n/8RSshxrBvuth9UNg9YNiRwiK3MKo22+kaVN9OZs21UySoF4tnmDPn1KihJ7r3DklzhUr9KGtUkVz0+zapblTqlTRvi1ctw5u7Q/vbnLb7jffQK9ejv6nEvCpg/jN+pmkXe11g5EC4uOhd7OA3cA9QPV0W4OCoFPfzfxcuieXgna7bhTgQEv4yMNfPuha/UwoATuugxXPer5J/uc8e8z4n4eAc7bP85AQoh4q9m2JJTy3mwHGjl3Cm2/25NKli7Y1Bn5+jxAY+ALnzz8LvAi4utAYhoHV2SCQBps36+B+5ox3faheXXXjCQm/Mnv2Yxw4sJXSpZ/g1Cm9V8Oe/4vPrJ1cBJZ0iGsNX8+GRjOJ7PkxcaN2eXfyKwQpKfDuuzBlitqwxo1zCB1XE/JC517e6fvjwBzb93rABtSxugrKED6ZtZ+XxTpSPWruuEuIWqpBGUaS4H9OWrfWwKUJEzQAZNEiDdKJj3ccn06v33y6UNpD3c40y623ahDU5csaXv3JJ5mHxleooOqHsWO1T/acMj16aI6U1H2r/pxhO6tWqfdNwICbhRuedb+fJVGjYdNte0zgNgGR3r3XCKgnyvjxGakDnHTDpXYKwcfc7+d/NsPc76nL7fcIvbsK97cRBlwnhnEh/T6NPxbuulXL6vV4wP31Vf9BcwkVO6yZH5u+L9x/g9aGfRSBaElXzSnN4uOTLGvXpg1OcyxRUVHy6aexUqFCe4EeUrLkNGnVak+W1CnFi2tUqXPgUkqKpqmoXl1r8q5Z4yiy/dbir1NVjT5P+zhFYxtaUL3YEaH3zbmeMqCwYd8+fTdq19YAtIL08CkIkENvmdlAO6AMcBSYbPvd2PZw7wWGiMhh2/4TgQGoePOYiPyY2eiTL5K7M1J8KJlUn4ALNTl6IIjQhIY0DuyJ77nq7N2r+d9LllRJfFPCAuKL/QvFjmomRbtnSPAxKHEIP18/6kfUS/V6SfUDT4P69eGmm+CXX1SSc0ZEBPTvD198oR4p77wDp0+r1L5zp/pyQ5qc3yH74FykSzsPP6zeMmlzmLtF0AmI+Fe/J5SAc5UgPiLDQ9LmHE+FJUlnMmnR836Y96njd9g29WM/WRPKbkiTTdKGdpOg3VSXVVGhUewbuQ+RBqjskAO0fhFusmV+FOBpgDBgF5GRzdi7dwd//qneMO5gGFsQ2QlcAi7h4xNO8eLNOHs2FDgElAM85+pv105naC1a6P80ZIjr9r591Tvk5EmVRq1WeOEFfXbsmDZNszsuXaoZIauNfADiboBtPTTjZqUVcMfdUHI/MbfF5LlfekFDRLOVPjgsnvNRs0m+cRQEnQXyzze/oFBkg5i8gTudu7+PPyJCkjUpdZ3zQ2C1anRqXBy0fq03nInSwKKVDysh3tcRih9z++CI6LEVK6p6p0cPDbjxhL59dSDZvx9Wrz7LoUOhAJQuPY6XX25Mly73UKfBJULHNmZ/nC/Fz1/Dhc9nZu9m1Juj6Y4DzuMTeIkUv9MOtcb6BzCONWTGnMP8+e7dJCRohOCECRq564znnoP/pTThQMo/rht+fAMulYJSe+D3yVnv3y1DYeWjUGE1dB0BgecJ9gvmjfYfM/n2Tzh8uBswItNm0sGSCHW+VX1/lV8dBTnOAG8A3IOPT28+++wcder0oXdvDVAbOVKDf775JotunE6IiNDUtq1ba3Rv2ohLERg+XG0KaTFggAbx2AUHq1XtQr//7khrXKKE9jUVTT+Arg+Bb1KeRpMWNC5e1IHt0CF93w4dgslfzebCyrtUEHukBvjrO1+U78NVTe5AurQDFxIvcPLSSThbSaWd0jugzDYiK1uIG7nH5dhUyf98WXhnCwyvDyGH8TF8+OzWzzxKBCtWaJoC0IpPp05pBOyLL2re9WXLlDQyg2/AZZITAmF0BASfgJ03w6yMY/mDSyQSf97f43af0MME3/YY50suh+JHYMvt8NtU6DmAkLjenPt1GO3b6yykXj2Nvq1cWfN6N22qs4uA0DMcLf8pydXmQeW/wCcJlk6BdQOh+Tuqd9/WM+OLK/MPXEyCS9dCvS8g6neV6lc+lvmNyQiVVsDxOpBQEiI2Qf8bCS4Z7zLA+0kAxRbV5MzfZYFf0jVRp47mrXdeatbU1AAvfL2QydMukrLxzgw6cR6YyQcfPETjxnofPeVOB41xGDXK/bZGjVRQWLVKz9+mja577LE0O951G9T9FrhyJdb4eAdZOxN32t9JSVqBqkIFvTcVKsAb/z4BJQ5Cyb0QuTy1TQMD62TPNpErGVc9uadFarGPU1WUkOLawNlo8I2nYd1gatVSC3ytWrDb50ee3/IAlxaPgRQ/6PqoxxfnzBmYO1dLl23cqEbNkyehePHPuXChORUqDOSll4bRp4+rpL9/P1x77f0coyok9IGzWUgUEnTCUfzi+udh/QME9OnN672H8/JD7dkXNI+UthP0OtcO9brZp59WjwRnD4v//U+vbckSLVAx4elzHIlzY/Bs9YoaNNcOSb/NA/yqLSXpbAScrg4p7gemwMAkEhPPYbX6ACU9N1bna2j5hg6G76+lZKd3uPeG65j12xrOHiyH3+kGWE7VpHQpX2rWVEkYVAr+6Sc1iDtL2PHxGrr/xx+ZFNPwSYCUROA0cIqAgEt07tyKvXtVnVWtmqPoh32xWrVk3yefJBAf/ytW6822xrYDNV2aHzpUVTSrVulAsH+/w0j76g/zeHP7o+nyKRUWXL6cMWnb1126lJ60nRf7utDQ9KlFPAU1mpJ7ASK/yd3tQ3AmEra2oX3CJA4dqsG2bW4OLL2d4rVW0/P62vRudw21aunD9tNPmkBsyRKNWO3bF7p2hTlzZnH//fbo0jLASYKDg5kxY4YLwQMYDQ3ojrooAlgNWPQirByT7et88EFo+3AsT/6qs5bKJaLomhDDexMyr8JksSjBBQdrHU13OVZKlNAoR6sV9u7Ndje9wujRcPasQ0V08aKe9+GH1UXz4kU3BzkNfDVqwL33qvRtl8JF9P9as0Yjj3v0cAy2y5c78rCkezQDzqgq61xl/T0mXF0PBXjaF2iGn18natUayt695alVS2dxZcvqPdu1S+0omat6oomM9GH69F0MGeKaT2jQINW5i2g+mvXr3bvA5jUSErTKVWakfeGCg5gzIu1SpbJXDxYKNh9OQcEk9zSI3RRLvy/7Ib5O154IzIeoc1Hs3buXo0fhudg/+OS7XZz/U+uMGYZQpoxBmTJaQDothg5VQ1mtWqpzr1XrDy5fTgCqQ6UpcMdMCAWfiz58dp+rSsd3jC8pxVPgeC3wTdCppQFMcerj3b2g1nyI+Ql234Q3CA1VF8/Tp9XH+vx5LW12+XIWb1om8Pd3Te+QXXTpogbDevWUtGbNgrFjdVtwsJai++svNaA5IzrazQDjcxl63Y+/v4XgxR+ybmVwKgHOn6+67gMHVAXz4IMOQk9OVv/83bt15lWunPbn0iX4919IqjaP+Aavw49vwfkK0GECNJuBzwUfrK9aiYyMZNq0afTp04eEBJW0f/tNDebukoE1aACbNv2FZvGsDkQAdh3OS/zwwxPMnatF2dPi6Vk/8saXqzi9oheWB2/A6ncenws+pCxKIepcVGo/soqkJO9I++xZvT+ZkXZYWPZJOytwl/m1qBI7mOTuFkZDAzqgJT7PAkuATQ6f5VQp4EwwvLUNHmiL347bSVo8xaWd22/XrHVlyujDvm2bTvMPpMbBLIcgH7jUAjqNhJo/QKndBAf6u0gUxtMGXC4Bb+wFv3hVa5TdCPtucJzs/rYQeBpmLoaH6sHetvDXWBjUHH58E1Z5SImYQxQr5pCMGzWCDRs0KGfDBiW/CROUcHOC8k90ouHBN1kU611Eir2W7KuvwrBhqs+eNg1e/Pkjzqcc1yCmlm/A1l4ABJU5SeWEzrz7rg4gSUmu7dW75XcOB//EqeP+BB7qiM+R5nTuGIBhKKGLwODBWnt00WHbs/H8Trj9Xpj7BQG9+/LRw/e7EElcnKpy/vhDn4kdOxznCwtTNc2//6p6ZvPmNzl79jtgBUrsjdDgb4c4HhqqZApqnN24Mc1Nqfsl3Hm3CgU2YSV4l+tMMTlZvXTc6bGdlzNn1BicGWmXKeOaH8lE/sIkdzdwn5YXoqJUck9V3Sx6RaNAwzdDYnFCrv2B5W88RHS05nn/8099eVetUom9XDlNlNWp91YWh9yENb46nKgFP72l7oLBx9X1sGQcQeX2UbM8bLR8hVT4D3Z1hlM14M57IL40/DgdNvUlrPxFTh4u5trRGydiCf0X64KPoPMTsL+NpuDNBdhdHg1DSVRESe3WW1Wa/vVXVYU4IzgY4sv+CHtudt9oyd1wvmIWo0Zdcf/9SmgXLqjO/5dfHK6joF5JQz+YAd2HwPHa4H9BvZwWveY6SAK+7V4kuezf8MW30Odm+PcuHQgq/Q2lduMTX5GAfV25tYc/gwdrEFLawLZ+Te+E8SFEHL+ThK9nMOfzIOLiHM9EQoIaPxMSNJ99o0Yatduhg6Odixd1xvDWW5v54YeLWK31gLVAOFCXwMAkLl/244EHHJL7wIE6c1zusBm64s474FIYHC8PKysQFFSN2rU7cOiQDsbh4ZmTdni4DuAmCjeKXIHs3ED6knCuZc+MKYYwJkyDTIKOC/7ntOTYmHC37V2+rAmgUgNTAs5oIehr3hVuu1d4vJJjW/snhYEtNACn3Tih0SdCxb8d29NUY/rwQy3llpWgGHfL1KkiL7zgqDCUr0vgSaHMltTflmIn3e5X4vpP5MsvRUaPdl1/zTUig6f+JZVfrCXcfo9Yih+XtrfukAoVND1szMYYKX3HBA1cuv45DVjzOy+EbxKq/Zj+XEMbCp1Guu9rmX+Fzo9KpWcbeXx+TpzQfV97TYPV7MfecYfmPdm2TYOOOnbUIKQvvsg8F0pMTIxERPTJ5Xu/UmCK/PmnVujypvSeiSsHFOUyezmBu5JwdkS9HqWRnU3f1wx7D14rNP5YjMCz0ru35ud2zss9f74mNFqwwHbsJIvQ8QkllvKrdYBI++K1mSI8UVqJv9JyXVd5Wa692IGBmtDr+ee1hFlIiKOw97lzjv1yTPZZ6HNI6Xj9PsniKHloJ9s0+95wg6Pg92NvLBVLzR91kGj2jnDn7TrgIlIs5LIYYU6l/9pOFu66TXjgeqH6wtT1vXop0Wbaz9bPC5NdS8pduqQRkNOmudYbHTJE8/Hv26cZPO++W+sF3HOP1gX93/8ctQOsVi3ZuG6dRppOnap1XsuVy/o9r1hRJKTjW8LAlioc3PCsI0q1X0eNyLXta7GcksBAza7Zt6/WBVi8WOT48fx4y0zkJTIi96tWLZMZ3l/2FUM73QiDr4FSqr4J9gvmtTafEr/6Tt57T42Iw4apcfLll9XjonlzJ1fL72fAukHqtZEc6La6kieULavGz/h4nR6nZJgR347ZwL1YLIuYPFno2LELO3aobnzDBlWngKvu1tcXvvsOVq5UX2u3XifZReA/cLkxNP4I/hkIqDfE6dPgH/kPifU/gICz8G2M7l/1F3wvVKWcfzXeeUd16gsXqvohIfRfkvyPQHIA7L8+/bk6jIda8+D99eB3ES6XTt1U59oj3HdbOfYby/jm8GscOXsCPv3DqZ+nYGhjKLlf1WGxC6HkHiKu+4lBEZ/yxx9aF6BOHVXPtGmjeubnnlPVHKgx+e+/XSNb3Rp5M8HYsfoMXb4Mjz6qwU8zZ2rSMatVA6umT1fvm33Hzqht53JJPXhwUyi3ASxW1bl/HYXvrtEEBAzillsC6NpV2/jnH8cSEpLePbNKFVOPfqXAVMtkA08+qYWgPeWpsFo1hapdOmrfXqspidgk9ykIT/kKdb4San4vjI4Qy8DrcyyN+/uLBAf/4LTuPYFw2/cfBFYLiPj5bZPAQE3Ne9NNKmEOGpR5+02bigwcmCaPjctyRNVG4Zuy0f8Yefttz9t920+Tse8tljfe0N+9e2tfIiPT7Nu7qzCmjNC3k2uemrLrhQGthBav60yp6/BUVcjQt4cLfToI9eYIAaeFqov0mPYThYafqToneolw7Vsu6qNRo0S++kpTOH/xhaqL2rb1/pp9fbUuwCOPaGrpv/4S2bNHKwu9846mSx4wQFUmdnzzjc4C33zTfdWmb77RFMizZ4u889tXUrLri3q+Mlt0ZlP9O6H8I1K+fGeZOTNGTp0See45TUfcubPmRrdaddm9WyuKPfWUziIqV9a019dfLzJihKoE16zRmYuJwgdMtUzWcOqUFuOwqzDcISlJi3Bcc42S+jPPiFSqJNKypciQZ/8S36dKOBH8XDFqzZdP1sySsWOVaEGkZNnDQr1Yr0giOFgTmy1Y4LzeXZk724te8XfhhmkSEL06xwOKxeImCVj7icKQxqqyqrRcVTO+l7PcdlCdJZnuM3euSOQrVdV+4ax+mIJEvlpFMFKE+mnu4+AmEvV6lBw5InL33euE0B1CxEbhhqnC4CaqCrv+uRzfG/sSGamDfXy8yIoVSs5btqR/bqxWTRBWp44WbrELBCKqvhk5UsvgrVyZ8TP63HMLxMdnn8BzUrpNhOB/XhhbUipOaSbDX/hTBg1SFVSZMiK33y7y9tuqDvroIy0K07ix2nHclZs8cUKv5dVXVdXUoIG4VeucOOHN22QiL2GSexYxebLIAw943n7hgki3bioFOdd2TErSLI4NWx/UrIitXhH6txPu7ukdid7aU+57bpxMm6bSU0b7+vklS/HiMwVm55iY6tdXnXydOq7rDcMuwS8TWCOwx30bTgZgex1SwziU7f6UK+day9VluX6a8GBz4Um/1IyH192yWyVv/3PZPqe75ZprdMAOCVFp246UFEf/unRRgk6bjXDw1OVSo4YKCnZs2KCzqFq11EbjLJXv26cSfrduamPICA5ngDCh2G9C9e91JnV/m3TVyPbt0xnDAw/ooFG2rFYz6tFD9faVKyuJnz2bcUbFS5dE1q7VweHhh9UeEhKi96dbN53pzp2rApFZRCP/YJJ7FnD6tEhYmBrF3OHYMZEWLbSEnKci21GvRwmPVMmQOMLCdLH/Tjv9vnjRsS0iQl/AbJFU2H9C+TVCWMZqlBdeEGnSRMvBPfmkln97800tSRgY+IfoLCFeYHeuEqjzcscdmoK5b1+dAWU2wGV7if5V6Hm/MKy+VH6+rnzxhZJUXJzee6tVVRU1a+rgdvPNIjVqKMEvWqT3CbRsnojnco9d+m6RTp1EDhzQWV5EhErQaZ+bH39U0n3xRe+I0SX18MO+wrVv63V1edilaLY77NmjpSb79dNrtt+ToOIJ4nvDq5o+2ekaMkqZm5KiZJ5WrRMSouT/8MM6GKxda6p18gomubuBJ0+ZZ55R4naHXbv0JZ8wIeMK9sYUQxhbUqVMDwTTvr1ISKlL+rvSX6mSUmKilsmbPj1viM0w5tq+t7d9jk23T40a+qI+8YQSweTJP0lQUAWBYIFGAneJj8/X2etDl4eFxh8JiFgqrZKBk1fIddep2smjtJ7DxcfnsFDqQyHwlFDrO+HebsJTPmI8aaSS12uv6czFWdJOStKc+mlLHX71lQ5An3yi+1V+saa22eoV4eFqqeRY+fm6qceMHq2CgzOSkrTubcWKIr//7v2zaxiGg9wn2waUnvcLfbqkntvZ08cTrFYVYmbMEAlu+p1Q/JBgSRDaPJPpIJERPKl1GjTQ36++qttNtU7OYZJ7GnjycZ8xY46UKSOyfXv6Y9au1Zf87bfdt5mSooanqVNFAqqs0qIUNRYowQeeEhp9IuVG3uLZqOlzSfBzU5DChZgd38eN02LLIs6SXLhjf3e+3SzPlAj//lt1xd98o25//fqJXHutSGBgok33/psULx4jffuulpYt84aMM1uKFcv6MYaxWahdUeg4QG0ExQ5I0y4LZfdux3/4+OMqcTpLmdu3q9rBua2vv9Z7cued6l5JwBkh6je1CZTeLowOF27tI4TESYcO+r/NnOn6vBw+LNKunfrBHz2atefXRXJ/DJcZQ3ZJ2Zhi6EDxUC1hULMsDRLewJNap3JlFSSeekrv665dGQtOJlxhknsaeKqoU7LkS9K3b/r9Fy1Sw9Q337iuP3FCPRbuu0+n1bVqiTz6qMgT7y6RoCmlHS/buBAxymwTyLyAckC1v2XECNd1P/zgOKfVqj7SLVqo2uDjj0U+/TTWMVjVLeE49ilf4da+GRNfxyeEDo+rZOu0vm1bkaFDVTWzeLF6c6xcqesCAvKWvMPCRGbNUtuGc7BQvXoejqn+g1D7GyHyD+H2u9XGceNEadfO8zmqVTsu11+v57rpJvWEuXRJ9dHNO+2VUhPrqT990HEJ6vysfPj3bFm1Ks2AEXhWhjz7l1R6tpHjv45aqtsjNkrZh28TES3CHh7uMJL+9psKClOmuFZe8hYuwkkDhAmkUwlltQJRqodXDgeJrCArah17wXUTrjDJPQ1cprWpS3GBo7J1q6thKaz34xJSOl7+/FMfxlWrRJ5+2qET7tZNXdrsnjXHjysZ9hmzRopd+5VQbp0YfvFSNtJRzf6OO0QoadNdl9ylXiftJgmRv2twT9fhqfuuWOH+GqxWkV9/VckvMlLkvvtWSeXKNfXa7rlRj49eIoTsE9o9peXXyq1NT3TBx4TaX4vR/nGZOvUHKVPmYQGREiVmZLlUnKfFN3ynBFRf7mE2kfWla1eV3t97T6T8EzcJve4TWryh5O5/Tii1U4IbLZDnntOB+fBhnY20aZN525Wqn3b8bvmaqjpumCpGxCYJKnlGfJp9rK6Ttn38bh4rg755WAJH1hfqzBVC4gRLgvjUni8z18em/l/ffaeEPmKEGox//jlnz7CzWjGsXZiEPRuWo9JynuwGBVGmzlTreA+T3NPAveQ+VoKDv3M85JPRdAP+Z8W33Qty3S27JTxc9bIjR6oRbO1alTDHjlWviQoVREJDVeoYMULD0FeuVOPo9OkqlYwapYa1VAKpsUB94Z/0F6osVj/rwFNKim1e8erl+vtvkZ49lTReeEGEcSHalicSu7eb0OZp9eTpdV+2SdcuZZUoIeIfuT79PjXmC4g0abNfmvf4Tqg/M/0+jT/OMdn79xouPFHKVkPUIoGPNZbhzy+TUaNU9REaqn3t2VN950EH54MH1cOjU6cM2i+5W2j9gjCwpVgm++o5JuN239CbXxYmBknky9WlfstDMny4Q8Vw/Lhjv4xcbJ2R1i40bNgwjxHVuYHCXH/00iVVe374ob5b11+vz93VrtbJiNyvygjV2NhYBg8eTHy1eM0MGVQMpu/inlHvs6L0x5ow7Jfn4a9xWoau3D8Elz7LoLbdOHtWoz23btUKS40a6dKwoX5GRmqCKXvq0bgz+whd/gZB2+/n799DiIqCTz/VqkYA9LsJ/n4U/C5Bp9Hwhi2ZWYkDcOfdRDU46HWhgU2btJjDnHmnsJZfqVWb8gAdOui1xsdrGtxDh2DF6stcOBOYJ+fLDq65RnO933ijJsLau1crS61bp2l9/7AFqAYEQPHimlDLLZrOgB62oiMXy8DGPrB+AIgFqv0Cfz8OaIbHoCBNqHbLLXDunEaz9u2rn3ffDffco5khS5aEjz/OOAVu6jMaH+9xH0+1Aa4WWK0axewccfvPP3rvGzVyjbqtV0//66IGMyukGwx/dzjvHXpPc7ovGwOHmxJ092AuHakERxvBr1M1i6H/ec1kWHYjD3W/IZXI69fXVLjukJouOOEy/PAOHGpG0AO388E9z9GnQR/GjNHBYcEC2wETg+HLr7SSjyUFttjKt/VvBwHnWXbfWi5dcpCp8/L3nn9YtO1Pzp1PprglnCZlWhG3tTT7tpfK0/vn4wOdO2uxi/Llldg+3PQmC7f/iPVzR030kPbvc+5EcdjkgYAafaapjX9+lcDAP7h8uQUQD3jX/3vu0fQJly9rGl2PJG2DxaJVjJo0gd69PexUbRGUX6v/xR9PwXUvwemqsKcj1JwPQSdhxy1Qahe0fgn/JW8ysEd9brpJ66WGhWk5xcqVdQH4/nvo3l0zWrZurfVRH33Ucz89ZS1NC3sWUxMOnDihApgz4e/apQVbnAm/USMoXTqjlgo/THJ3g9SUvik+8Ooh8EmES6Uh9ABEbNQcHWU3KPGUjCOqpPelulLbnv+elpqrvhAsyQRSilpBN7Bhg0oRCQmZNBS2Fb/AFK6NqkdQEOmWuIv/sXj/fJIt51Ty972MZUdPrDs6uW+v4kq45n2osJTI6hb2X9hNZGgkk69/njFd/ubkyafQilF2HCcwcBuXL2sulzlzlKBWrnTkKV+1CqpXh4i6W1kqU0mM94d5n2hN1H/v1mbK/AdVlkC5lbCjCewaAknFwO+CF/l2GgPbSU6O588/NX976qDoBr17K+HXqaO5xp+f8ytvf3Ce+HU9MzmPVkmq2GI5Wy//DqerwL/3uGwPrxHH8R1RWnD7nl5Q88fUAt6x4+8mIWgvB9t3Zv/y1hg/TUcSSqQe+9tv0K6dft+7F1q21OpdHTu674vFYsGbd9Nef8BExrh8WXPnOxP+hg2a6yhtbp3o6PwpLJIbKNLkHhsby8SJE9m3b59LBZzMkJrcS4Atd0DIfojYDAEXCfYLzlGprtS2d96k0r/vJSVfv0vcm/wzf/0FP/6oBN2ihSadCok4zfEe13N53itwtAGcr4T/rcP4+OnrPZ43dRDZewMsG++ihilW7Bsuhi6GSyO1LqklSZN0Vf0JEl9Atm9myxb44AMlmXLlDrN9+xMkJn6JZp2CwMDqdOz4HQsW1Ett19d3L126XGTIkHpcd50mNHvrLZj6rFVVFXZc9xKE7YBl46DLY1DLxsiJvrDxAVgwQ383fxOu+QDe3YSPzyFSUpKAGcA0YAeQANSgWrUA6tYldalSRSsFLV2qtV3dwcfXSkqy+wxYDzyg1bLefTcDaT/yD+j6MGzoBytGO9oteYiU+OIEVPqP9teF0LtTHeL8f2TKFCspSb5wwzT4ejacr0hQ8UTKhfuzZw9s3qzqAdB+33OPFjmp5qZkrim55z08qXXOn0+v1qlbt3CqdYps4rDMcrJnhIxcv3JqWPLUduSr0VKzpmvAyosvakKv558XCSt3Qco9emuq4S24xGXZutXzeYwphvBIVYdRr/bXwqhyNoOfbal6g257NEoYVkKIeNrFCDhhgsPAl9aA9/zzCyQ0NF78/e+2tWfPxZLs3vDYbZAwvrgjsMZufJyM8Gi05oUpflC9Wm7tK0wMFCYECa1eFhC55561EhQULDBUYH7q//npp7Hy339qMJs6VeTee0UaNRIJChKJilJjdufO6hqaFWPwTTepca53bw3Nd9mn8p9Cif3pjvvmG/XSOHlSvaJefFHT/PqG7xJ84x373jJUA5meayDjxjmO37zZ8f+98466d547l/6/dfdsp128fdZNZA12j7dXXtFgtfr19Vlr2FDdnl97TT3VMksTkR8gJ94yaK2vY8Bmp3WlgV9Q0eoXoJRtvQG8CewENgJNM2tfckDunvzVo6Ki3O6f1n3M/2n/PHH98uRWNuadX6VJE1dr/p496kOfmKiRj2XKuEZqNmjg3sf35EmREm0/EIJOCDdOUJK0n+8x5/sxytbWHIH/CZyUunUPS8eO6nPfsaM+qGk9DP77T7eXLPm8QD+BGQJbU/sVGPir/Pmnumq++aZIcJPvlQyLHVaXwE6PCwOuU7/zaj9plsaWrwlD6zj6eV97odQOoUGMWIofk40b1Wffx2e/QMtMPUKSk0V27tQIy2rVvCD1Xv3U1XSSjyxb5sE10l3ys/YTpfTtE52uXaNKu3YVGT9eZM4cER6qox47/dsK9WdpwY/HK6YGAR044Ghv4kRNMGa16sDes6f7tAP57S1jwjM8eetERmqenkmTdODfvTt/vXVySu5tgKZpyP0lYJzt+zjgRdv3rsCPNpJvCazMrH3JAbm791dHDCN9VJ07ScjvGr8c+wd7gjvpv1MnkU8/Tb9vixYiP/2k3+2BMlWqKPGCpou14/Jl9fMtU0akw53bJGh8tOsMYYItsAUEQl1IKiTkPZk+/evUthISNAiqZk1NWvX99ypZulZBOizwhcAIgYYCFoEbBY7K7Nmu1xv0bLDwWKRWmkpLkK1ekYD7esmAOSMl6MnyQtMZ6hPeu6sETwuWmk2Oyu+/a386dsz8/v73n7p9tmqlro53361uqadPK1GuXet07hB32TN1mTZN5NAhxwv58Ct/pNvHKLlX/PyTpUYNx7rJk3XWM2qUVmLyDdurEcYVVglNPhBC9+o9H3JTap+tVkkNrCpbVokiPl6kdWslBxNXFlJSVLiYO1fzMXXrpvl6QkNVcHjkEX2e161zL6Dlhutpjshdjyc6DblvA8rbvpcHttm+vw/c626/jJb8kNyzKuXnNjZv1hfa3Z/82muuWSgrV9Z/xh7AAZpF8IsvlPS7dRP591/dN+0DUrptmEBLgY+cCKqTBAd/J1Onup43KUlk9WqRl19OT3rXXKOh95GR7u9baOj1UrmyqiWsVh0oHn7lDwms+YcQfExKtJsh97z7tFR+rr7Qp4uE3jRd6l572PU8XYdLxaday+cbYqR7d31JqlcXWbo0/T1KSdFc6E88oZHAFSuKDBumg6Kn6MVP1swSn8azVF1Sf5YQfFTwvZSphF+zyVGJGNJPGNRMAmv9LjUaHZMtW0Q2bRL57DPHfk2aaE6cChVE6jY/LJZGn+t56szVHP5ObfbooQQwZ45I7do6oLZpo3ET772nEuAjr/5eaP3MTXgPT2qdRo1E+vcXef11kQkf/SxBT1bIseYgL8j9jNN3w/4bWABc77RtCdDMQ5uDgTXAmsjIyGzdxKzo3LMi5ecFBg/WcHN32L9fszEmJOjvsmVFtm4VueUWkeuucxBEuXKqQnGHkydF3nhDpFKl00LAduH6MVre76b7xe8aP3nllXlSvLhK588+q4E7ISGq8x06VKXeFSsc56pRQyXLTz+dJX5+fjobeMymP38M8WnsI9Onfy1BQbp/WJhKpbNmuc8AeOSI5mKpUkVnHq+/rnnGy5VzTcwVFOSo8xkfr4Pagw/qPalfX1Uaq1aJzJzpuUSiiCYAe+cdkSp1T6S2XeK+vhL2omOm9tHK2fLpp+nJvUYNve/lyokUL+5Y37ix5tNfvVr3efNNHXTi4jQSNrj6eKHB/zTrZPAhweKagrhuXVUfhYQ41qUrRDK0gceXPaOykCbyFlarChGnT2vw286dmuBv5UpNJ7FwoQonn38u8v77+i4+95wO6KNGqfDWoIFrfigQtVU9UjXb6R4yInevvGUMw4gGFohIfdvvMyJS0mn7aREpZRjGAuAFEVlmW78EGCsiGbrCZMdbxu4lExcXh4+PDykpKURFRXn0lvHkfZAf3gYnT6q74NatWj7PHa6/HsaN0zJt5cqpP/S2berS54ykJC2NB/p4LF2qHi8LF2rwTHSHX3h5fzeSTlWE9zbArf2wHGpJjYsD2LYuAtBSbTfcoOcsY/N8PHJEXfUGDoTRo9XN8bnn4L//4KhlDIl3vQPFLunOyf6wuRe+Sx/C51IbEhKgdm0NEgoOdu2viJaJe+IJbXvSJAgMdN2+Zw80a6bl99xhyhQNBrJ7lbgL8AkODua992ZQrlwfPvlE70eXLupP3qEDPPLyX/zv2Zpwa1+o/jMk++O3ZhSBKyfRv08gkybB4cPqZvnDD+rZ0r69lrOrUkVdGd99V88VEqKBMqAeT089pd4UvXrVBHYBdtfEkkAtYAigUWs1a0JcXCZusNV+gsrLoexGKtQ4wYFnljFrlvtrvpqDmEDfB3sMiD0OJCufWdnXYtHnOygo409v9uk1t7OWg/S/oO7WFuVhAwPrZO9dW3PsCumG3LcB7UTksGEY5YGlIlLLMIz3bd9np90vo/azSu6eXu6MHvTsHJNTpEapLriXYueu4f2PEjy6Nb71lvqMjxoFXbvCnXdCbKwSrb+/Eoi96wcPwuefw4cfqnvWoEHQr58GZKS6R654FBa/AJVWQtQfRNTZzi/DP+fGG2H7dtfgjRMnlNjvukvJ1xmrV0Pze7+BI9dBi7e0Xuc//aHsJqg9g8vffoFhaB+2boX58yFCxxD27oUhQ+D4cfjoIw0ccoc9e6BqVf1eogQ0baptlCypba5bpwEorVvrgDR6dCsOHvzbqYVo4H58fAbSqFElHnhA/d2drzH6jWjiNlaCL+dCwxjYeiuEb6HCbW9w8Pkl6fp04gT89JMS/aJFSvDt28OSJXDmDLz/vgbGDB8OrVrpuRYt2kdychnUz+A/YAuwhfLlzzBv3mJ69oSnn4b+/WHnTg1sGj9eB9gT/qvhSCOw+qfrS0gIJCSsIiFhFbDBtmwGLhVKV8jkZEeQXXaJ1NtjrNbMCdUbss3smKAg8PPLvXuU+p6mQVSo9/E0kDfk/jJwUkReMAxjHFBaRJ4wDOMWYARqWG0BvCkizTNrP6vknl0pPLs+8dlBapTq5USYvhvu7UFw5HaP/vKHDyvB1awJGzfCQw/B5MkQHq7bf/xRSd+O++9X4mzRwjXgItXH3moBqy/4qs+6XSIYPFjbnDZN9z99WkP0b75Z17kL3jCmGHC8Lqx4HIJOqV962E4QkCn6/IjowDB7tkq/0z5Zw6x3qmBt9TKRXb7iuU7PpF63iBL2d99pUfEjR3QAAH1pg4Jcz5+YqPsvW6Z+4d99dwzVBoY77fU28BEi693+H6n35WQ1+H0SNP4Mqv7qlaSUnKxFuu1S/ZYtur5xY51tPfKIzqDWrYtl0KDHuHSpMlAXqIuPTwPCw9ty5kwIKSkqafr46OBcr57O6u66C3zvu4UjJRbC+QpwvA6cqK3LyTpwvLbGS7ggBR1ENvLss3elpsGoVMn9f2i15q4Um9Exycm5R7KZHevnd+UEHDkjlR9yEE8DOSR3wzBmA+3Q0MWjwGTgO+BLIBKIA+4SkVOGYRjoW9YFjSF/IDOVDGSd3D1F79mj9fKTxD0hdWTefBf8/LIG8hhCeLFwPugxA4tFH0r7g/nFF/rCA+AbT8SDgxjQ9AHqBHTk009VLeCMChX0GB8fRzsWC/SY3Z0jFw8BAnYzgyGUL1GOn+9bxP79Okj88YdK/Z06qYrm9dcd7TgvFgs0fKsBZ1JOpWuzlF9Jto/c5rL/qFHwySe2Tg5pAmHbASHIJ5Rh4bM5t7Ed8+dr6oZbb4VevXSA6dFD86/MmeP5noroTKJNm89ISOhvW3sGOAWEERi4gfHj23D99TroOaeHyC1JCXSm8f77mmLAGUuXwoED7p+9y5c1r8ySJfC4pqOhVi1VvdlhVFiPRP0KJfdA6D4wrJAUDMlBcKEcHGwCu5pCYs0s9Rf0vwkMzHuyDQ7WmeaVSLj5DfvMft/ZfUSGRjKtw7QsETsUwQjVjCT3adOmFQrdpPG07ene2h3+uR8wQAzAoHvNnqkmld9/V/16ZihRQiXFo0dVrWLHtdfqi2Rv78TFk8Sd2W+zluv5DHyoWKISIf4lEVE9ujPsKhF3viNWK8QnxXP60hltz9YmGBT3C8HfEoiIStcXL3p/fywWxzlcb1wKFouBxbCkDhiJiZ5aOYvDNp5xLhrDYoUShxCxpg5QhgXKBIcREljCZYBKSNBw9UuX9NPz+fMJ9WdBwDnwi4eUS7A6HriEn18y/fv3JiqqJfv2qS7fvly+7NpE3bqOJHf2pVy5TJKX5QL5mMhbFDlyz0h/bjeypkV+6iZjY2Ppt7YfEpr+3tolxW3bYOxYDXd+/nkYd7gK+/6LgA9X6o6Vl0HTD6ncaiX7xrqy8YkTDnXNAw+o7t3iFGWf2Uu5c6fqsLt2VR2587EerymDNletUmNpdLQaHSM/siCHGsM3sVBqN9SaB7XmQ/EjxNSIcRlkJ3y4mBfGRyI9HoAfp8ODLQnyK8bbnd8nZN89fPQR/Pqrqo3uuQdGjbqRQ4dOAcVclmLFIpg69TXi43WQOXlSZydbt3q+psDgJJIS/EhJyfz6AwJU8g0KSv+5aZOGrHtCtWpw222qt7cfI6JGYsPQGVhgoM56tm3T33d/c6se7BcP1X7W8RR00vSMkemMVETVXVu3Opb//tPP/ft1n/Dw9IRfu7ZK3rmlNjCRtyhy5A6e9eeZqWzyA9HR0cSFxEF3wMk+ZiQbvNPxS/796g6++EI9SIYMUX36PeMXazbKxOJwfzuotEqP8aATXrNGpXZQYp0xwzuSTkhQVchPP0GJGz7hQoeB2ZbKLl5UPXtsLLzxhqpVDMOzCoQzEPVtFNPmT0sdKOSzJdDoU6j8F7y7yaaKSJ9u089Pp/xnzx5GNX6X0n326XObR7VBYKCS2rp1uhw8qO1WqQI33aRL27ZqGPXxybp95vx5uKXfLv6cV00zXfa6Hy6G47+nF43PT2T7qiiqV4du3dSrqWlTzcszYIAanufPV8Ppvfdqe3+3qMK+83vTnSc7aqS0uHBBZ392srcT/44dOijUqQO7/L/mYunlmjyv4moIPJdr5zeReyiS5O4JBenyaEfqANMAzRcfCpwMhK8exXL8CazWGMqW/YOmTaeyZk0dGjSAjRUf5kTUjFQDaGq/M3iZXnkFxoxRMrqh5052t76J/efjPJJ1UhLccQccjt/HpiYdufzW3zC8PoQczrJUtmQJDB6sroKvv+5wqQSV+vrO6esysJEIzNevwffYErPtuw6++RwGN4P/bocF74L4Qs3v4dp3OfLqj6nkbHf/zM3/9+hRNdDal02boEEDKF36P5YseYbExF/RzBveqfai34gmbllLWPAeXPcqtH1W+xYaxY6H9rJsmRpkFyyAs2d15tS1qw7uq1frgFuqlNpBSlTZwtJa1+ar5JycrAPN1q3Q/c0n4EQtNepW/gs6jQWy7qpnIm9xVZF7Qbg8poUrARlAbzTL4RZgLdAWqI6vbywvvFCDUaN6ZmsabLWquuLg2cP8u9kXan0L3YaCRdIdm5ys7oGXLsHGtjXYd3En/PSaZqzsOBHwTio7fVrdMxcvhvfe0/NDekn3RPkTXGx5UQe2s2g42ybwGe1DSnGbHiTmBzheDxJCIPo3aPIxVP8JfFI89iUv/9/4eCXZXr1e4syZ+kAr4ATwF7CMChX2cODAEo966lSPnDORcKgZ1P0GcE+IO3cq0f/wgxYPsdtdFi1Sn//WrSGszZf8XbE3KZKCj+HD4GsG879bPKTAzGXkpgHaRN6hyGaF9ISCjuRzRM62E1gjEC/wj8AJgQUCvQR8hTTpD7KTa+LwYRGfEke1XF6Zf4XrXkoX7ZacrGHQnTpp9KgxxdB9ug0Smr7vdaX7r7/WaNKHHnLNZOg2b4+fn/j7+7usCw52TaZG7a+Fzo8Jo8OzFIad1/+vI5rZEKgnMERgpsAuKV1a0z+88ILIn3+6RuNmt8j0uXOadMrZlH1txzjBSBbuurVAapoWppqqJjwDs8xe3sGdobGpbx/69DnA+vWVAPDxOUhKygw0weYBl+Ozagtwpwvuu3CWqjQeaAsna0D1X7RtDJKfsjJkiENSDA52ksrWDFIJ01ZGzpNUduQIjBihUZsffqiBRM7wpCoJCwujePHiLn2deHyiW4nQx/DBKtZC4ZWRkepn+fK9qWqcZctUV924sUrayZWW8t7R+7jkvz/1mKyqUr76Sv3eA2ss4/JFfzhRB54ok6quy0/J2fSWKfy46iT3nMJbyTCddDM6QnybzxCLT4r4+mq2wIULVXLOjcRlnnLphD0bJrR4XRNWTXbKH/9alDz0kOZJOX/eTb+dJHd3eUw0adj9YrEcl549N7nNGSOSxeycV4BEmJWcRefPiyxZIvL00zozCiqeIL4RO4UmH0nYPaPl5e/nZTkF7C+/iCY5u7ebMDHA5V5lNrsycXWBnCYOy+ulMJF7Vl7s1Gn4ZIQOYwX/c0KpHVLylhfk8OHM2wUkLCwsU7WCfbBxR6CAhLULk6CnSwpl1yth2/oUeMPbUqXeCTlzxk2bG2Ok9J3jhKYz0qmAYmJiJDCwjsAim1qpUYaFIbKcVz8XUp3mNbKr+klOFlm/XuTtt7WoSOXKIuHhIr16afbNFSscCeIyQrnHuwvFD6m6LQsqHhNXF0xyzwKyQlSpuusn/VVyvq+9MMnwKF3FxMRIWFhYurYzIk5vKvIYhiExG2MkdGRLIfiYMLyO0OYZoex6CZpY0SN5vv++FotwRnKySKlSTwscExgt4JM5WeegItbVgH37RGbPVltF48YixYqJ3HCDyLhxmmXy1Kn0x8RsjJHAxxprXvhOIwvlDMdEwcMk9yzAk4rBTqLOUlx2DGgZDR7upMWMJPa0pBv1epTQ/UGtehS+WRhTJsP+pCX3zZu1cAj8JlDdKzWLHQVtxL6ScPaspgieNEmkQwdNK1y3rqaF/uwzLXtotSrBV5zUUijzr4R0eEeGzh9W6Gc8JvIXGZG7aVBNA28KE9td72hIlt0XM6pqHxwc7OLi5+/vT2Imse/OboCWp21trxoBdedCiSOAe1e82E2xPDJ1M6d2VSXy3pdotvtr/viqIdOmwbRpVdi3b2+6cxXGDIRFAcnJsGGDw0j711/q5tq6tS516sDQx09xoPg8Um4eBD7qSmpGjJowDapZgDdqEJyk5azqjz1J4j4+Ppme010fnCVkTzMJn9E+LhK1i0E18g8hfJP41J4vb/7ytcd7UJjVLEVt1mC1am3dzz/XQioNGohgSRQQoe4XLkZzUwd/dQNTLZM1OJOFJ2L1poKTO9LxRJxZIXVPROvOE4WJONVUdfKumYJwa1/1yrjjTmGyK1HkBmFmp42sHnOlDUTZBWNLCn26CF2HuZC76T1zdcMk9xwguy6MGZFOdnXr9iUj4nKeSfiM9nEh9tTFTg5P+QgTA/OEKLJDutk5pqBr4+YXshsgZaJoIyNyN3XumSC74e5ZzYESGxtL3759M+1PWFgYJ06c8KrvHvX7j6EV4NK27RvGiYnetZ0ZspMDJjvHFIZEcfkBM0ujCXfISOfuRR7Bqxf2aND4+Hh8fHwAJRpv8pjs27cvS+v79OlDWFhYpn06d+4csbGxme4HEBkZ6Xa98auhibyckQgs9qpZr+DpOuPi4oiOjnZ7DVm9Z+D5Gj2tv1LRp0EfZnSfQVRoFAYGUaFRJrGbyBieRPr8XAqjWianutzsqAuyaszN7jWATQ//mE1F85j+9saOkLZ9T/rxzNRM7u5lbt2zoqhzN2HCHTB17llHTnW52SWd3DLmumsvM/1+bqRCsF+fNwNV2vMNGzYs3XVn9Z4VBW8ZEya8hUnu2UBWgpk8Iaekk1fGwtyQdj31LSwszOU8GUnwzoOUuz4ZhiHDhg3L0bWaMFGUYZK7l3AmY2/8zvN6+p+XKoecDjwZDX7ZUbdcLV4vJkzkJkxyzwSecr54s+Q1+RRWlUNGEnnae+LNIJWVzJImTJhQmOSeATLTDfv4+OSa/js/kF+DQUxMTJbuSWb9MiV3EyayDpPcM0BmXh12ospIx1xYJOv81lt7mu1kh5Dzw+slNwe+wjqjMnF1Ic/IHdgLbAL+sZ8EKA38AuywfZbKrJ28JveMXsSMpHJnospKKbn8fNG9sRMYhpEnfcptQs5LwszNvprulyYKC/Ka3MukWfcSMM72fRzwYmbt5CW5Z/YiZiS5p31h05JPbkquuXVtmQ1SedGHK0GCzU21j6lCMlFYkN/kvg0ob/teHtiWWTt5Se6ZvYieCLJYsWIybNiwDImroI2AmamUCqJP2UF+DBC5+V8V9P9uwoQdeUnue4B1wFpgsG3dGafthvPvNMcOBtYAayIjI/Ps4r15Ed0Fz3ijciloCS4zldKVIFXml4rDlNxNFEXkJblXtH1GABuANmnJHDidWTsFKblntE9mxxW07tXbfhdmfXB+EaWpczdRFJFn5O7SEEwBRlPI1DI58bH2ZupdkDpnT9eWmTqpMCE/VRymt4yJooY8IXegGFDC6ftyoAvwMq4G1Zcya6sgvWVEsi+552YfsosrnWRMFYcJE9lHXpF7VZsqZgPwLzDRtj4MWIK6Qi4GSmfWVmGIUM1LN8cryWUwv2GqOEyYyD7yRS2Tk6WgyV3Ec0m83CDR3JROiyIZFqXByoSJ/ERG5G5WYsoH5Ga1oOxUKzJhwkTRhFmJqYCRm9WCslOtyIQJE1cfTHLPB0ybNo3g4GCXdcHBwUybNi3LbV0tZeVMmDCRM5jkng/o06cPM2bMICoqCsMwvK7D6g65OVCYMGGi6MLUuV+BsBfu3rdvH5GRkUybNi1bA4UJEyaubGSkczfJ3YQJEyauUJgGVRMmTJi4ymCSuwkTJkwUQZjkbsKECRNFECa5mzBhwkQRhEnuJkyYMFEEUSi8ZQzDOA44x9SXAU4UUHcKAlfb9cLVd81X2/WCec35gSgRCXe3oVCQe1oYhrHGk3tPUcTVdr1w9V3z1Xa9YF5zQcNUy5gwYcJEEYRJ7iZMmDBRBFFYyX1GQXcgn3G1XS9cfdd8tV0vmNdcoCiUOncTJkyYMJEzFFbJ3YQJEyZM5AAmuZswYcJEEUSBkLthGKUNw/jFMIwdts9SHvb7yTCMM4ZhLEizvophGCsNw9hpGMYXhmH450/Ps48sXHN/2z47DMPo77R+qWEY2wzD+Me2RORf772HYRhdbP3caRjGODfbA2z/2U7bfxjttG28bf02wzA652vHc4DsXrNhGNGGYVxy+k/fy/fOZxNeXHMbwzDWGYaRbBjGHWm2uX3GCzNyeL0pTv/x9/nWaU/FVfNyAV4Cxtm+jwNe9LBfB6A7sCDN+i+Be2zf3wOGFcR15PY1A6WB3bbPUrbvpWzblgLNCvo6MrlGH2AXUBXwBzYAddPsMxx4z/b9HuAL2/e6tv0DgCq2dnwK+pry+Jqjgc0FfQ15dM3RQENgJnCH03qPz3hhXXJyvbZtFwqi3wWllukJfGb7/hnQy91OIrIEOO+8zjAMA7gRmJvZ8YUM3lxzZ+AXETklIqeBX4Au+dO9XEFzYKeI7BaRRGAOet3OcL4Pc4EOtv+0JzBHRBJEZA+w09ZeYUdOrvlKRabXLCJ7RWQjkLYC/JX4jOfkegsMBUXuZUXksO37EaBsFo4NA86ISLLt9wGgYm52Lo/gzTVXBPY7/U57bZ/YpnZPFVJyyKz/LvvY/sOz6H/qzbGFETm5ZoAqhmGsNwzjd8MwbsjrzuYScvJfXYn/c077HGgYxhrDMP42DKNXrvYsA/jmVcOGYSwGyrnZNNH5h4iIYRhFwh8zj6+5j4gcNAyjBPA10A+dApq4cnEYiBSRk4ZhXAN8ZxhGPRE5V9AdM5GriLK9u1WBXw3D2CQiu/L6pHlG7iLS0dM2wzCOGoZRXkQOG4ZRHjiWhaZPAiUNw/C1SUGVgIM57G6uIBeu+SDQzul3JVTXjogctH2eNwxjFjpVLGzkfhCo7PTb3X9j3+eAYRi+QCj6n3pzbGFEtq9ZVCGbACAiaw3D2AXUBAp7zcmc/Fcen/FCjBw9m07v7m7DMJYCTVAdfp6ioNQy3wN2K3l/YJ63B9peiN8Au0U6S8cXILy55kVAJ8MwStm8aToBiwzD8DUMowyAYRh+QDdgcz70OatYDdSweTP5o8bDtN4BzvfhDuBX23/6PXCPzbOkClADWJVP/c4Jsn3NhmGEG4bhA2CT6mqgBsbCDm+u2RPcPuN51M/cQrav13adAbbvZYDWwJY866kzCsj6HAYsAXYAi4HStvXNgA+d9vsTOA5cQvVcnW3rq6Iv/k7gKyCgIK4jj655gO26dgIP2NYVA9YCG4F/gekUUk8SoCuwHZVMJtrWPQP0sH0PtP1nO23/YVWnYyfajtsG3FzQ15LX1wzcbvs//wHWAd0L+lpy8Zqvtb2zF9GZ2b9Ox6Z7xgv7kt3rBa4DNqEeNpuAgfnVZzP9gAkTJkwUQZgRqiZMmDBRBGGSuwkTJkwUQZjkbsKECRNFECa5mzBhwkQRhEnuJkyYMFEEYZK7CRMmTBRBmORuwoQJE0UQ/weCMVBV4P6wDQAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:45:40.975176\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "I am ... not quite sure what happened here :)\r\n", + "\r\n", + "Does this mean the machine couldn't figure out any correlation? Surely it's still supposed to give a straight line, even if it's not tightly correlated?" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Ah, typo 😊" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 244, + "source": [ + "y_pred = bloodSugarModel.predict(X_test)\r\n", + "plt.scatter(X_test, y_test, color = 'black')\r\n", + "plt.scatter(X_test, y_pred, color = 'green')\r\n", + "plt.plot(X_test, y_pred, color = 'blue', linewidth = 1)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxsUlEQVR4nO2df5gcVZnvP2c6MyEdIJBJxEiYnnBF2SCoJCKoi7sEBaIRRNiNTCAqmqVHWdAFTRggE9hZL/gjqChh7oIEullR5EFMUC5EwN3rKk4UZxAFgswEslECQgQHyI957x9VPd09U9Vd3V1VXV39fp6nnqmuX31O9fS3Tn/Pe95jRARFURQlXrTUuwCKoiiK/6i4K4qixBAVd0VRlBii4q4oihJDVNwVRVFiyJR6FwBg1qxZ0tnZWe9iKIqiNBSbN29+TkRmO+2LhLh3dnYyMDBQ72IoiqI0FMaYEbd9assoiqLEEBV3RVGUGFJW3I0x+xhjHjLG/MYY81tjzBp7+03GmKeMMQ/by9vs7cYY83VjzBZjzKAx5uiA66AoiqJMwIvn/hpwgoi8bIxpBf7LGPMje9/FInL7hONPAQ6zl3cC19l/FUVRlJAo23IXi5ftl632UiohzanAzfZ5PwcOMMbMqb2oiqIoilc8ee7GmIQx5mHgWeBeEfmFvavPtl7WGmOm2tsOBp4uOP0Ze5uiKIpik81m6ezspKWlhc7OTrLZrK/X9yTuIrJXRN4GzAWOMca8BVgFHA68A5gJfKGSNzbGrDDGDBhjBnbs2FFZqRVFURqYbDbLihUrGBkZQUQYGRlhxYoVvgp8RdEyIvIicD9wsohst62X14BvA8fYh20DDik4ba69beK1+kVkoYgsnD3bMQZfURQllvT09DA6Olq0bXR0lJ6eHt/ew0u0zGxjzAH2+jTgfcDvcz66McYApwGP2KfcBZxjR80cC+wUke2+lVhRFMWFoK0Ov9i6dWtF26vBS7TMHGC9MSaB9TD4rohsMMb8xBgzGzDAw8B59vF3A4uBLcAo8HHfSqsoiuJCzurItYhzVgdAV1dXPYs2iY6ODkZGJg8u7ejo8O09TBRmYlq4cKFo+gFFUWqhs7PTUTBTqRTDw8PhF6gEEx9EAMlkkv7+/ooeRMaYzSKy0GmfjlBVFCUWhGF1+EVXVxf9/f2kUimMMaRSqYqFvRzaclcUJRY0UsvdL7TlrihK7Onr6yOZTBZtSyaT9PX11alE9UXFXVGUWBCG1dFIqC2jKIrSoKgtoyiK0mSouCuKosQQFXdFUZQYouKuKIoSQ1TcFUVRYoiKu6IoodAoSb3igpfEYYqiKDXRSEm94oK23BVFCZww8pcrxai4K4oSOI2U1CsuqLgrihI4bnnK/cxfrhSj4q4oSuBoUq/wUXFXFCVwNKlX+Ki4K4pHmi2Uz+/6dnV1MTw8zNjYGMPDwyrsAaOhkIrigWYL5Wu2+sYRTfmrKB5otll+mq2+jYqm/FWUGmmGUL5CG8ZJ2CFe9Y07Ku6K4oG4h/LlbJiRkRFK/ZqPS32bARV3RfFA3EP5nEaQTiRO9W0GVNwVxQNxD+UrZbfEsb5RIDuUpfOaTlrWtNB5TSfZIX+jr8p2qBpj9gF+CkzFiq65XURWG2PmAd8B2oHNwNkisssYMxW4GVgAPA/8o4gMl3oP7VBVlPqiHajhkh3KsuKHKxjdnf+1lGxN0r+kn64jvT9Aa+1QfQ04QUTeCrwNONkYcyxwFbBWRN4IvACcax9/LvCCvX2tfZyiKBEm7rZT1OjZ1MPorlH47Udg9z4AjO4epWeTf4nUyoq7WLxsv2y1FwFOAG63t68HTrPXT7VfY+9fZIwxfhVYURT/ibvtFCVEYOS2C2GNwPduh1dmju/butO/aCRPnrsxJmGMeRh4FrgXeBJ4UUT22Ic8Axxsrx8MPA1g79+JZd1MvOYKY8yAMWZgx44dNVVCUWql2UafOqEjSINFBM4/H1pagJ9fCG/+AVzWCvv/z/gxHTP8i0byJO4isldE3gbMBY4BDq/1jUWkX0QWisjC2bNn13o5RamaiWGAudGYzSjwiv+MjUE6bYn6tdfC6afDTZtvJXnOWZDYM35csjVJ3yL/bLCKomVE5EXgfuA44ABjTC59wVxgm72+DTgEwN4/A6tjVWlyoto61okklCAYG4NPfQoSCVi3DpYuhd274fvfh+VHn0X/kn5SM1IYDKkZqYo7U8siIiUXYDZwgL0+DfhP4IPA94Cl9vZ1QLe9/mlgnb2+FPhuufdYsGCBKPEmk8lIMpkUrP4aASSZTEomk6l30cQYU1Su3GKMqXfRlAZk716Rj31MxDJiRJYtE9mzJ5j3AgbERVe9tNznAPcbYwaBXwL3isgG4AvA54wxW7A89Rvs428A2u3tnwNWVvncUWJElFvHcR99qoTD3r1w9tlWS/2mm+BjH4M9e+CWW6xtYeMlWmZQRN4uIkeJyFtE5Ap7+x9E5BgReaOInCkir9nbX7Vfv9He/4egK6FEnyjnZmn0MMCo2l3Nwp498NGPwpQpkMnAJz9pCf23v10fUR/HrUkf5qK2TPxJpVKO1kcqlap30UTEso1SqZQYYySVSkXCLvJClO2uuLN7t8gZZ+Ttl/POsyyZMKGELVN3YRcV96ZARSgYov7QjCO7domcdlpe1D/zGZGxsfqUpZS4a24ZJRR0kEwwRNnuihu7dsGSJdDWBnfeCRdeaEXEfOMbEMVhmiruSmjoIJnK8OKla2dw8H0Or70GJ58MU6fChg1w0UWWqK9dG01RH8etSR/moraMohTj1cZqdrsryPq/8orICSfk7ZeVK+tnv7iBeu6K0lhU4qUH1RncCJ3MQfQ5jI6KHH98XtQvvTR6op6jlLjrHKqKEkFaWlpw+m4aYxgbGwv8/SdOkA1WeGjU+kn8vE+jo/C+98HPfma97u2F1at9KGSA6ByqitJg1NtLj/Kgs0L8uE9//Su8850wfbol7FdeabXZoy7s5VBxV5QIUu+BVV6jcOo9gKqW+/Tyy7BgAey7Lzz0EHzxi5aoX3ppUKUNGTe/JsxFPXclDvjtUdfT8/biZUelM7fS+7Rzp8hRR+U99S99KaSCBgDaoaoowRIVofMLL/VphAFUmcGMpNamxPQaOeTf3iIH/68XxkV97dp6l652VNwVJWAaQegqpVyLOOrZNDODGUn2JYUvzBDafz8u6ueseqjeRfONUuKunrvS0NTb880Rx5Gi5Qad1bvT14nsUJbOazppWdPCOdkLGf3yIFz1Ijz/ZvjAedBrePB1Z9atfGEypfwhihJNJobr5WZQAkIP1+vo6GBkZMRxe1zp6+tzDJcMO5tmdihLz6YeRnaOYDDI6IFw/VPIzpR1wJJPwoIbxo/3c57SKKMtd6VhcQvXW758+XgLPqyWfb2jW4Kg3L2LQr6g7FCWFT9cwcjOEfjrLOQrT8PVz8POFJz6Meg1RcIO/s5TGmnc/JowF/XclWpw83yxO//S6XSonZyNMKLTK43SQZxamxIuep0w/Y/jnjofXib04rgk+5KSGYxWHWoBHaGqhEU2m6Wnp4etW7fS0dFBX19fYC25zs5ORyukHKlUiuHhYf8L1OAUfnYtLS3s3bt30jFRunfbt8MbDn0BXj3Q2nD6WXDUf0w6LmESjMkYHTM66FvU5+88pXWm1AhV9dwV3wjbA3fyfL3QyJ2cQTHxs3MSdojGvdu2DQ4/3BqEBAfCGf8Ab/me47Ftpo397t+PPz/4Z+jAmhH6yBALW0fUc1d8w+uQdb988Jznm6hwLrM4d3JWi9Nn50Q9790zz8C0aTB3riXst98OmcEsybdvLDrOYOXhbZ/SjtwlPP/A84jIeGOjaaYhdPNrwlzUc48HXuKeg/Byna7ptkTRN44Cpfov6n3vRkZEpkyRcU/9zjuL9xcOVEqtTY176nEcezARdBCTEgZevkxBfeEymYwkEgnHaycSiVh0cgaJ2+dSz3v31FN5QQeRH/6wsvOjPsjKD1TclVDw0ioP8gvXKBEeUSRK927LlmJRv/vu6q6jLXcV90CIU1hcJZSrd9BfOL3v1de73vfu8ceLRf2ee2q7XpQeWEFRk7gDhwD3A48CvwUusLf3AtuAh+1lccE5q4AtwGPASeXeI27i3gz/VNWi98Z/Gv2e/v73xaJ+333+XbveD6ygqVXc5wBH2+v7AY8D821xv8jh+PnAb4CpwDzgSSBR6j3iJu7N8HOwFuL+hQubRvl/m9jxedWddxWJ+gMP1LuEjUcpcS8bCiki20XkV/b6S8DvgINLnHIq8B0ReU1EnrJb8MeUe584EcckUl7wGuJYLiFVkO9d72sGQSP8vxWmCZBn/4aRzw7zhdOWAPDTn1ry/t731rmQccNN9Z0WoBPYCuyP1XIfBgaBG4ED7WOuBZYVnHMDcIbDtVYAA8BAR0dHKE+5sGiUlpSfVGMN+NWCd3rvXMdtLf5zo1gdjfD/llqbEs47sqilzieOk9TaVL2L1tDgR4cqsC+wGTjdfn0QkMAaCNUH3CgViHvhEjdbppGEwS8qFRg/75Hbe9fykGkEwcwR9f+3X/+62FPnk8eM53oxvfEJS6wHNYs70ArcA3zOZX8n8Ii9vgpYVbDvHuC4UtePm7iLNJ+vXGmIo5/i6WUATqUPGbfrRDVGOor/bwMDE0T9UwsnJfLSlnttlBL3sonDjDEGWA/8WUQuLNg+R0S22+ufBd4pIkuNMUcAt2L57G8ANgGHiYhzsgo0cVgccEvi5ZZoqqWlBaf/PWMMY2Njvry3l+u6nZtIJCKfOCsK5HKpb925dTwx15te7eKYgl62zZvhd62W5z66uyD3e2uS/iX9sUrkFTalEod5yS3zbuBs4ARjzMP2shi42hgzZIwZBP4e+CyAiPwW+C5W6OSPgU+XEnYlHlSaz9zPWXyc3tvrdd06Hffu3Ru7/Ox+U9RJijDyyOtZdlRe2B9+2GqzH300dB3ZRf+SflIzUhgMqRkpFfagcWvSh7nE0ZZpRiqxBvz2iQt98ok2TanrlrKHomh1RInU2pRlr3ziXUX2y5yL31/vojUN6AhVJYoEJZ71fMg0E3z8b4s99e752kkaMqXEXSfrUJqeMCcYiQP33w8nnFCw4dOHw+zHxl+mZqQYvnA49HI1IzpZh6KUoKurS8XcgRNvPpFNT20af/320Yv59dVXj7/+0l13sXroo5M6SfsWab9EFNDJOpRY0yijTKNGkbBveT/0yriwb9liGTEXLfmQdpJGGLVllNgyceo4sCJe+vv7taXuQPfGbvo397M3F9z2+Clw6935Ay6YBwcOI6vrrxmKRa2hkIriK2G1pr1O+6dYwn7dwHWWsD/2QegVS9jNXrigE3oNHDhc72IqFaCeuxIqYU6i3QgJtaJC/+Z++N2pcNud1obEa3D+YXDA03Utl1I92nJXQiXM1rSfA6XizO23w97Veyxhb30ZPjsXLtvHUdgXzVsUfgGVqlBxV0IlzNZ0paNmm43bbgNj4MwzgX1egM+9AXr2gxnbHI9fNG8R951zX7iFVKpGxV0JlTBb011dXfT395NKpTDGkEqltDMVuPVWS9SXLoVZs2D7dkjf3gP7b590bHphGlktyGpRYW8wVNyVUAm7NR3ExCCNys03W6Le1QWvfz386U+wY4e1/q0PfIv0wjQJkwAgYRKkF6b51ge+VedSK1XjNnQ1zEXTD0SLWtICeDlXc7b4R2FOnUQiIRyJJC5KjKfTzQxm5MYb8ykC5s4V2bGj3qVW/ALNLaN4pZZcK5qnJVyK7vcpCJcjrC7Il77kk+Oi3tkp8txz9S6x4jelxF0HMSlFVJqX3a9zlcrp7OxkZP8RWII1nY6xd/zyPNh4nbU+8wnm/stHePqSwTqVUgkSzS2jeKaWaBaNKw+P7FCWkX8YgSR5Uf/FZ+BH37DWZ/0Ozj0Opu1k227jdhklxqi4K0V0dHQ4tr69RLPUcq7indwkGUy3N/z3hXDPWmv9dUPwiXfDPi+NH98xQ+9/M6LRMkoRtUSzaFx5sHRv7GbKFVNYdscyKxPj/7vIShNwz1p4/a9h1X7QfVSRsGuWxuZFxV0popbY8CDiyjWro0VR7pf/XGmJ+r1fgjf8ElbtC+cdDVNfLjpneut0zdLYxGiHqhJZmj2r48R86jx4Kdx/pbU+97/hnBOhbdTxXB1N2hyU6lBVcVciSzNH34wLuwAP9MKDq60dHT+Fs0+C1lcdz2uf1s7XTvmattabBI2WURqSZou+yQ5l6dnUw9adW61BKDf8DJ45zto5bxOc9QFofW3SeakZKfoW9amgK0WouCuRpZmib3IRMKO7RqF/ALYvyO+8ZLqr/aIpAhQ3tENViSyNFn1TS+fvJff1MHrNL2CN5IW9Z5o1SYaDsGvuF6UcZVvuxphDgJuBg7AcwH4R+ZoxZiZwG9AJDAP/ICIvGGMM8DVgMTAKfExEfhVM8ZU4k+s07enpYevWrXR0dNDX1xfJztRqJyERgTe/GbY+MZzf2LOPo/0C2lGqeMdLy30P8C8iMh84Fvi0MWY+sBLYJCKHAZvs1wCnAIfZywrgOt9LHVPCDPur9b38LGupazVKVkcvk5Bkh7J0XtNJy5oWUl+dx+yDX6alBZ54wj7g0qlWS12FXfEDt6QzbgvwA+B9wGPAHHvbHOAxe/164KMFx48f57Zo4rBwk27V+l5+ljWKycaqyVppjCmqQ24xxljXHMxIsi8pXG6EfbeNJ/QyZkxee61gf28+8VeyLymZQU26priDX1khsSyYrcD+wIsF203uNbABeE/Bvk3AwlLXVXGX8bStE5dUKhW596r1/ELxTCQSodXbazriah425e5Jx1fmCdN2jIs6iVeEy6ZIam2+npnBjKTWpsT0mvF0vYpSCl/EHdgX2Aycbr9+ccL+F6QCcceybAaAgY6OjnDuRIQp1/KL0nvVcr6TeIZRb6+iXe2DK5PJSMuSlnza3dUIq5B/+sanZb/9JC/qU18ULkuMt85Nr/+fr9I8lBJ3T9EyxphW4PtAVkTusDf/yRgzx94/B3jW3r4NOKTg9Ln2tiJEpF9EForIwtmzZ3spRqwJc/q5Wt+rlvOdvOlayuIVrxNzVxtb/+2932ZswZjVi2WAsSlw9Stcf/61vPQStEx/Hi5PwKoDILF3/DxN6qUERVlxt6NfbgB+JyJfLdh1F7DcXl+O5cXntp9jLI4FdorI5MkZlSLCDPur9b1qOd/LAKTW1taS16qmM9eraFfz4MoOZfNpAva0Qu9euHI37N0H9nuGjq/M4+b//jHJqfsUnadJvZRAcWvSS94+eQ/WT9NB4GF7WQy0Y1kuTwD3ATMl779/E3gSGKKM3y7quY8T5vRztb5XOp0e98sTiYSk02lP57nZHoVLW1uba3mC8sQrvX6hP55YkxAubctbL4hwwJNW52mB9aKeuuI36DR70aRR5xL1eyo+L6KboxZP3GuZ3T6XzGBG2q9qL4pooWdqsajPerR4qrteijpNFcVPVNwjSBRDAL3iZ7SMm7i7dajW2plb9cTfgxlpvaK1QNT3KRb1gx6eJOr0Ii29LdpCVwJDxT2CVCKQUWvhVyOwbnWo9EERZsjoJOulF+GSZLGov+EhR1GnF2m7ok2FXQkUFfcI4lUgo9jCr1RgS9Wh0vqFdT/SG9Jiek1erFdNLxb1Q/5rkqgn1iTUT1dCRcU9gngVyDBbql5xE9h0Ol1V67zSXyZB/5JZtH5RXrRX7lcs6p0/cWyl62hSpR6UEnedrKNOeJ1lqKWlBafPyBjD2NhYKGV1IpvNFiX0Wrx4MevXr3esz9lnnx3JOhSSy6U+stNOMfzq/vC/d+YPOPT/wjknOZ6rE2Qo9UJnYoooEwXSKeNho8xGVKqcQKTr0L2xm3UD6xAEXjkArnohv/OwDdC1ZPylwVjHoaKu1J9S4l53S0aa1JZxY6LlkE6nI+e5O1GqDyGK/Qa5ztJxa+XzM4vtl8O/P8l6Mb1GrRclUlDCltGZmCKEU07w9evXs3z5cu6+++5I5zQvNWtSVPKyd2/spn9zP3slP/yfv86CL+3Ivz7iO3DmRx3PP2/hedpKVxoGtWUiRKNYME547UOoF+MTTud4+XXw5T/lXx91C5x+juv5mktdiSKlbBmdZi9CNPKE0F1dXfT395NKpTDGkEqlQhP2Urlmujd207KmJS/sL70eeiUv7G+/wZogw0XYc9PZqbArjYa23CNEI7fc64XTL4bWBa3s/+H9eX7P8/kD//IG+GpBctKF18EHux2vaTCct/A8nZ9UiTzacm8QGm1C6CgwKZXvKbD7g7vzwv7iIVZLPSfsx3zdaqlPEHaDASA1I8Utp9+iwq40PCruEaKe1kY1hDnnqxtbt261Zu1dbS/HYOUlfaHTEvVrbEvruC9bor74gknXyAm6rBaGLxzWTlMlFqgto1RFVDpQp35qKrsO3oXd8IY/HwpffzJ/wHu+CCde4niudpIqjY4OYlJ8p579A90bu7l+8/WMScHo1ucOg2sfz78+/go4YbXj+fu27cu6D67TFrrS8KjnrkyiVkvFLYJnZGQkUKume2M31w1clxf2HYdb9ktO2P/+Ust+cRD2XOTLS6teqouwR8HGUpoIt9FNYS46QjVc/Bgx6pYMbOJIVT9HomYGM/kRo+kjikeUnvh5x4ReptdIeoO3WaKCJIqjdJXGB00cphTih6Xi5LkbYxwThNVi1RQm9DIY5I9Hwrrf5A94/7/Au77qeO701ulcv+T6SNgvGuaqBEEpW0bTDzQhfgyWckop4CRelV63kOxQlhU/XMHo7lH4n7cj/b/K7zz5n+HYb7iem16YjlQ4YyMPUFMaE/XcAyLK/mpHR0dF293o6upieHiYsbExhoeHxzNAVnvd7FCW/b64H2aNwawxLLtjGaPD8y1PPSfsH0hbnrqDsLdPaydzegZZLZESdvDvniuKV1TcAyBnWYyMjCAijIyMsGLFisgIfFCDpaq97ok3nzgu5i/vetna+PQ7LVH/P7+0Xi/5lCXq71g36fzprdPJnJ7huc8/FwkLxgkdoKaEjpsZH+YStw7VKMyeVG62oqBmM6rkupnBjEy9cmpxJ+jH313cUXrqcseO0kac/Shqc+EqjQ/aoRou9Z49KSoDjNw44ptH8OhzjxZvHD4ebnow//rDy+Ctk3/p5CbLSM1I0beoL7ItdUUJA41zD5l6+6uT8q0Ao6OjXHDBBXXtB8gOZWm9srVY2P9wgmW/5IT9I0st+2WCsBtM06UJiHK/jdIAuDXpcwtwI/As8EjBtl5gG/CwvSwu2LcK2AI8BpxU7voSQ1um3jHNbrMiTVxaW1ulvb09FJtg/rXzi22VZe8rtl/O/Iir/RJ2nHoU7JN6/w8pjQElbBkv4n48cLSDuF/kcOx84DfAVGAe8CSQKPcecRN3kfoKhJvnH7bYpzekJbEmUSzWZ51SLOpLP+Qq6vUYgBQVUY1Cv40SfWoSd+t8Oj2K+ypgVcHre4Djyl0/juJeT5wEqpqlFlFbtH5RsVgvXVIs6mctdhX1ResX+XxHvFNOVMN6aJeak1ZRcpQS91o8988YYwaNMTcaYw60tx0MPF1wzDP2tkkYY1YYYwaMMQM7duxwOkSpEqfUwe3t7RVfZ3R0lJ6eHs/Hd2/sHo9RH5/56NEPW576d+6yXi87yfLU33R30blTzJTxGPUwMjW6+dmlBhuFGeJa734bJQa4qb5IyZb7QUACq0O2D7jR3n4tsKzguBuAM8pdX1vuwVNta95rS3FSS/2MM4tb6mcvcm2pz792vuc6+NFqLmW9lGq5h2mVRMUeUqINftsybvtQWybSFIpje3u7tLW1lRX3UsKV3pCWljUtxWJ9+lnFor78vc6ivhrhPDyLtJ9iV0qkS71P2FZJFDp2lWjju7gDcwrWPwt8x14/guIO1T/QpB2qjUA5sS8lnpOiX047p1jUP/4e15Y6qxGWVSbSfraay4m0m6iWeyioECthU5O4A/8BbAd2Y3no5wK3AEPAIHDXBLHvwYqSeQw4pdz1RcU9MngVqPSGdF6ol5xbLOrnHluyo7Rakfaz1VxtGdxa9el0Wi0UpS7U3HIPelFxt4hq6y8zmJHpfdOLxfoD/1Qs6p98h6uoT1kzZTxNQLUi7WfLvRaLx+kz0rBFpV6ouDcAUe1AywxmpKW3wFc/5dPFor7iaHf7pXdyZ6nfreZaOlX9epD69asiqg93JbqouLsQxpfJ63tEqfWXGcxI+1XtxUJ90oXFov5Pb3UffLTSCEc6d5b63WqOAn58dlF9uCvRRsXdgTC+TJW8RxQGrThGv5x4cbGop99SckRp64LWsvWNqkhXS5DTFqq1o5RCxd2BML5MlbxHvb/cRZ2kvQgnXFIs6t1/4yrqiTUJSW9I170O9aTWB5ZaO0o1lBL3pk35G0Za3kreox5penPzk27duRXBLuf9q+HB3vxBn3kzzHrc8fyJU9nVO9VxIxPUvLZRSvWs+I+m/HUgjOHdXt4jNwz+7LPPZtq0abS3t4+nDCj1pawlHWx2KMuUNVNYdscyRnaOWMK+6V+tNAE5YT//jVaaAAdhbzEtjnOU6pD56vFjpia3VM+VpJBQYoRbkz7MpVk992rLUPV5Th2l77qq2H7553mO1kvrFa1lZz1yS3HQ3t6u9oAHomLtKI0D6rk7U+9omWo9arfzcuc61SMzmJFkXzIv2Md+tVjUL+xw9dTbr2r3PJ1dJpOR9vb2SeXSyI/gaeY+j2allLg3receBar1qN3Oy5FMJln+5eXc/drdjOyc4ONuvBZ++en868/OhRnbJl0jYRKsWLBi3HrJZrP09PSwdetWOjo66Ovrc7WM/PCPlcpRz735KOW5173VLnVsudebIFrugJW3ZfWEFvjR/cUt9c/NcWylO7XQK7WBomgPNEsUSbPUU7FAbZlo4qfnzpEIF9qiXijsb72pWNT/5aCKU+9W+hCKmj0QxwFCKuKKiIp7pKn2S1qU0+QUh5b6W7LFon7R7JJpAkrNflRpSzxqYhq1h02tRO3+KvWjlLir596g5GLUR3aOWF9vY++47XvwuzPyB148C6Y/P+n8xMsJ9t6zl9RfUiX9c6jOQ6/Eow+auMXfa5+GkkPj3B2oJU683nRv7ObsO87Od5Ya4NYfWHHqOWH//EwrTn2isAvwJOz98l4YwtNUcdXEYHd1dTE8PMzY2BjDw8N17dCLW/x9qakAFSVHU4p7mHNh+k33xm6uG7jOGngE8NNLLFF//EPW6y8cYIl68oX8SYU/4J/EysZfQLmBLk5zsjZSBIYfA4SiRNweVkowNKUt02g/a7s3dtO/uZ+9sje/8YHL4YE11vq05+GCebDPS5NPzgl6pvR7NKpF4ZUo2US1oiGPSg61ZSbQKD9rs0NZpl45lesGrrOEXYCfXGG11B9YA533Q880+MKsYmG3n9eJlxNwB2WFHaxWXyNbVeWIkk1UK43+S0oJh6YU90b4WZsdyvKJH3yCXWO7LLG+799gjcBPL4ND74WefeBjJ0Drq0XnGQzpd6SR1cL6t60n+WSxHdHa2kpbW1vRtmQyyeLFiwO1qrw+OOL8gKmUifeiu7t7/HVPTw99fX2xeFgpAeEWRhPmEnYoZFRDyRatXzR5Iul3XZ0PZ3zj3cKlba7hjKm1qUmDkNLptCQSCQEkkUhIOp0Ofao4r/c7qp9LPXDL06P3RikEjXOfTFQGgWQGM5Jam5os6oW5X950l3Bpq+sEGekNaedrR2SyEK8PjrjFo9dC2VHITXxvlDylxL0pO1SjQvfGbtYNrMtHvgjwo6/DQ+dbrw+/A878R0jscTw/NSNF36I+uo6sPcdLkJ3MXuPM4xaPXgvl8gflaMZ7o+SJdYdqI3q02aEss66elQ9pHDOw4VuWp/7Q+XDEbXDZFFj6EUdhXzRvEbJaGL5w2FHYc/fESazBueO4VLhgrffYax9HI/SFhIXXOjfjvVE84takD3Op1pZpNI92Uj71y01xQq8jM8LlLa6eupfUu168Wref8k5WlR/3WD33ylHPXfECtXjuwI3As8AjBdtmAvcCT9h/D7S3G+DrwBZgEDi63PWlBnGv1KOth8/u6KlfboS33ZgX9bfeVFLU3Tx1J8p5tfWauNnrvY9KX0gUmHgv0um03huliFrF/Xjg6AnifjWw0l5fCVxlry8GfmSL/LHAL8pdX2oQ90o6AevRKkxvSIvpNQWi3iIcdXNe1N/+75bQu4h6pcIu4n5PcoKss/sEiz6clDCpSdyt8+mcIO6PAXPs9TnAY/b69cBHnY4rtYTRcg87EmP+tfPzIn1ZQnjLrXlRX7DOUdRLRb54xe96ul2vvb29pnLGEbWVlLApJe7VdqgeJCLb7fU/AgfZ6wcDTxcc94y9bRLGmBXGmAFjzMCOHTuqKkQlOUPCHJV64s0n8uhzj8LeKXDb7XDlHnjko/COb8LlLbDkPGgpjoRon9bOLaffMmnS6UrxO49KX18fra2tk7a/9NJLde28jmJHetATVEexzkqEcVP9woXJLfcXJ+x/wf67AXhPwfZNwMJy16+m5V448CY3SKfUz+CgWu45T930mvFBRFw2RXjznfmW+juvmZxvvdd7J2nFZfLZGnCaE9WPe1ctUW0hB2lhRbXOSn0hbrZMNf/oQXw5Jk06fWmrtLzpR3lRP+7LrqLuhwUTFlHz3aM62CnIckW1zkp9KSXu1doydwHL7fXlwA8Ktp9jLI4FdkrevvGNan7+BpFsqWdTD6O7R2FPG9zyY/jXXYw9fjK8+ypYbeCki/KTaBSQmpHyxYIJi6jFn0c18VuQqYWjWmclwripvuRb3/8BbAd2Y3no5wLtWJbLE8B9wEz7WAN8EyvJ7BAeLBmpouVeriUZVMTCRAuGnqnCvPvyLfW//VfXlnqpOUqjTtQsgajZRIUE9b+nLXfFCeKWW6bUP3pQ9kvR4KOefYTUA3lRf29vkain1qZk/hfn5yerXo3M/2JjCnuOakQrCKHLZDLS2to66bNva2uLtf8ctQesEg1iJ+6l/tH9bOGkN6SlZU3B4KJLpgmH/Fde1P/usuI49l4k2ZeU9LfSTf9FDEqMmjk0U2PolYnETtxF3P/R/ej8ywxmZHrf9AJRTwoH/zwv6iesmpRqtzBaRn9CB2cjhNW5q0KqNAKlxD12WSGrzW6YHcpywY8u4PlXCiaUfm063PQgbF9gvT7x8/CeLxVfd0aK4QuLr1sqo18qlYrFVG/lCCrDYxhTJOo0dkqjEOuskBOpJmKhe2M3y+5Ylhf2V/eD6x6GL75sCfv7P2dNOj1B2JOtSfoWTb6uWxSJMaYhJ+X2wsQBNjNnznQ8rtYImzAmuw56MJKihIJbkz7Mxe/JOrz8pJ7USdqLsHJ/YfYjefvl5POrytDo5De72QlxsGqc6tva2iptbW2B9DsEbZlELa5fUdwgjp57LWQGM9J2ZcF0dV+YIbT/Pi/qi9Ouoj69b7qnEaUTBchJLKoRjCh6waU6OaNWVi9on4nSKKi420xKv/v5A4UDnsyL+gc/5SrqLWtaahpR6odghBkOV8lDJG4tXQ07VBqFphf3SRbMxe3C/lvzov6hjzuL+mqEi5HWBa01f7HdJl9ob28ve+1SIZ5BtCgrFbc4tnSj+AtJUSbS1OJelP/l4lnCvv+TF/XTznEX9ZUIR/orVJlMxnF0ZSnh9DIjj98t5ErFWlu6ilIfmk7cC9MEJNYkhIteJySfzYv66We5T5BxcbGoTxTRWltx5UbXTmwtlmqxB9VCrsZm0ZauooRPKXGPXZx7dijLih+usBJ6vfR6+Oaj8OqB1s6PLIUjb3M8r31aO1875Wv0LOlxnVg6Ry0xz6Vi4JPJZFEIXltbG7t27QqsLG6EEUuuKErtxDrOPTuUpfOaTlrWtNB5TScX/OgCRp8/AP7tL/CV7Zawn3mGFac+QdiTrUkyp2eQ1cJzn3+OriO7HOOoJ1JLzLNbnHcikZgUW11O2FMeMltWM8FDGLHkfqKTWCiKA25N+jCXqtIPOMWpf3auMGU0b7/842lVx6nnLAZq8LmdrAo3f9rtfZwWr352LV64HzZLGMnG1O9Xmhni5rlPmiTjwg6hZVde1JcumSTmiTWJovwvXqk2EqSU6FTrrecWr8JVqb/vJ2FNqBLHSB1F8UrsxH08Vn01wn5P50X9rMWOrfRkX7LqqeyqbRlWE3HiRdgryX5Y6pdH0K3dakS3mnPiFmOvKJVQStwb0nPfutOefUZaYPbvoOtky1N/092A1TmampHCYEjNSNG/pJ+uIyvvcMxms+N5RhKJBODN54bKZ87p6uqivb29bJn+8pe/ePaUK/H3/c6d4lbPkZERV1+8mtmGojZLlKJEBjfVD3OpuuXucyu9kFq93GpaoV5i2stdw0sd3K7rZyqEcjaT0730656p5640C8TNlpnkudtLqU7SSqnVy61WdPzqzHW6Xjl/389UCF4eVBPfL51OT6p3pfdMY+yVZiJ24i4yeT5Tv0Q9Rzlx9RrJUYvoBNVZ6Edr161shX0C5TqKCx9Sbpk00+nq8/koStyJpbgHQaEYJxKJsvZI0D//g7Qcan3wlHr4VWO3aNSLolSOinsZ3HK+eFmCFp+oWg6lWuQT74mXh5RGvShK5ai4l6CcN5xIJHzzv8MgrIdBqdBNp3tSrlzacleUylFxL0G5qI6cUJXymKPSsg7bt3b7tVONIIcR9eLngy+qv6iU5iIwcQeGgSHg4dybADOBe4En7L8HlrtO4PncS3wRS7XKC4Uq7KnkqqmbWz+BMSawCT38FOQgBdPPsmr4pRIVghb3WRO2XQ2stNdXAleVu06g+dzLfBFLtdwnfmEnio+fLVe/6lbuIRVEGRqhBeun7aMWkhIVwhb3x4A59voc4LFy1wlS3Mt9Ed0Ecvr06ZJOp0sKV707ActZSvUoUzWE8YDw87Oq9+euKDmCFPengF8Bm4EV9rYXC/abwtcTzl0BDAADHR0dgVXeyxfRafCMF8ul3i24cpZSI7Qqw7I4tOWuxJEgxf1g++/rgN8Ax08Uc+CFctepZ8u91DHlzqu39+q13FH2g8MSSvXclTgSmLgXXQh6gYuImC1TS4y1l5/e9fSc3epWzk6KEmFaHBoto8SNQMQdmA7sV7D+M+Bk4EsUd6heXe5a9YyWEam+5e5nGaql0UVGLQ5FqZ6gxP1Q24r5DfBboMfe3g5swgqFvA+YWe5aURihGmSYYyOFDIaNWhyKUj2h2DK1LPUWdxH3KfH8EFE/W6dxFMM4PawUJUxKibux9teXhQsXysDAQL2LERgtLS043WdjDGNjYxVdq7Ozk5GRkUnbU6kUw8PD1RZRUZQGxBizWUQWOu1ryJmYGg0/ZwuqZrYiRVGaDxX3EOjr6yOZTBZtSyaT9PX1VXwtnVZOURQvqLiHQFdXF/39/aRSKYwxnudhdcLPB4WiKPFFPfcGJDdx99atW+no6KCvr6+qB4WiKI1NKc9dxV1RFKVB0Q5VRVGUJkPFXVEUJYaouCuKosQQFXdFUZQYouKuKIoSQyIRLWOM2QEUjqmfBTxXp+LUg2arLzRfnZutvqB1DoOUiMx22hEJcZ+IMWbALbwnjjRbfaH56txs9QWtc71RW0ZRFCWGqLgriqLEkKiKe3+9CxAyzVZfaL46N1t9QetcVyLpuSuKoii1EdWWu6IoilIDKu6KoigxpC7iboyZaYy51xjzhP33QJfjfmyMedEYs2HC9nnGmF8YY7YYY24zxrSFU/LqqaDOy+1jnjDGLC/Y/oAx5jFjzMP28rrwSu8dY8zJdjm3GGNWOuyfan9mW+zPsLNg3yp7+2PGmJNCLXgNVFtnY0ynMeaVgs90XeiFrxIPdT7eGPMrY8weY8wZE/Y5/o9HmRrru7fgM74rtEK7Ta4a5AJcDay011cCV7kctwhYAmyYsP27wFJ7fR2Qrkc9/K4zMBP4g/33QHv9QHvfA8DCetejTB0TwJPAoUAb8Btg/oRjuoF19vpS4DZ7fb59/FRgnn2dRL3rFHCdO4FH6l2HgOrcCRwF3AycUbDd9X88qkst9bX3vVyPctfLljkVWG+vrwdOczpIRDYBLxVuM8YY4ATg9nLnRwwvdT4JuFdE/iwiLwD3AieHUzxfOAbYIiJ/EJFdwHew6l1I4X24HVhkf6anAt8RkddE5Clgi329qFNLnRuVsnUWkWERGQQmzgDfiP/jtdS3btRL3A8Ske32+h+Bgyo4tx14UUT22K+fAQ72s3AB4aXOBwNPF7yeWLdv2z/tLouoOJQrf9Ex9me4E+sz9XJuFKmlzgDzjDG/NsY8aIz526AL6xO1fFaN+DnXWuZ9jDEDxpifG2NO87VkJZgS1IWNMfcBr3fY1VP4QkTEGBOLeMyA69wlItuMMfsB3wfOxvoJqDQu24EOEXneGLMAuNMYc4SI/KXeBVN8JWV/dw8FfmKMGRKRJ4N+08DEXUROdNtnjPmTMWaOiGw3xswBnq3g0s8DBxhjptitoLnAthqL6ws+1Hkb8HcFr+diee2IyDb770vGmFuxfipGTdy3AYcUvHb6bHLHPGOMmQLMwPpMvZwbRaqus1iG7GsAIrLZGPMk8CYg6nNO1vJZuf6PR5ia/jcLvrt/MMY8ALwdy8MPlHrZMncBuV7y5cAPvJ5ofyHuB3I90hWdX0e81Pke4P3GmAPtaJr3A/cYY6YYY2YBGGNagQ8Cj4RQ5kr5JXCYHc3UhtV5ODE6oPA+nAH8xP5M7wKW2pEl84DDgIdCKnctVF1nY8xsY0wCwG7VHYbVwRh1vNTZDcf/8YDK6RdV19eu51R7fRbwbuDRwEpaSJ16n9uBTcATwH3ATHv7QuDfC477T2AH8AqWz3WSvf1QrC/+FuB7wNR61COgOn/CrtcW4OP2tunAZmAQ+C3wNSIaSQIsBh7Hapn02NuuAD5kr+9jf2Zb7M/w0IJze+zzHgNOqXddgq4z8BH783wY+BWwpN518bHO77C/s3/F+mX224JzJ/2PR32ptr7Au4AhrAibIeDcsMqs6QcURVFiiI5QVRRFiSEq7oqiKDFExV1RFCWGqLgriqLEEBV3RVGUGKLiriiKEkNU3BVFUWLI/wcXKDnOEHI3qAAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:46:34.966164\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "That is more like it" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Ok, this is pretty cool, but surely Excel could do this 20 years ago? I remember making a graph and telling Excel to 'Add trendline', and nobody called it machine learning back then..." + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "And I'm still not sure why we are using test data, we didn't actually test it" + ], + "metadata": {} + } + ], + "metadata": { + "orig_nbformat": 4, + "language_info": { + "name": "python", + "version": "3.9.6", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.9.6 64-bit (windows store)" + }, + "interpreter": { + "hash": "c7d6cb708d9496164cad24676295f59deddd15f42781117113af2b6c8d53f583" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file