From a7258923edc6eb15552f2c745636c287a06f96ae Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Wed, 26 May 2021 16:17:58 -0400 Subject: [PATCH] cluster lesson, improved --- Clustering/1-Visualize/README.md | 107 +++++++++-- Clustering/1-Visualize/images/all-genres.png | Bin 0 -> 22680 bytes Clustering/1-Visualize/images/correlation.png | Bin 0 -> 23038 bytes .../1-Visualize/images/distribution.png | Bin 0 -> 65573 bytes .../1-Visualize/solution/notebook.ipynb | 167 +++++++----------- 5 files changed, 153 insertions(+), 121 deletions(-) create mode 100644 Clustering/1-Visualize/images/all-genres.png create mode 100644 Clustering/1-Visualize/images/correlation.png create mode 100644 Clustering/1-Visualize/images/distribution.png diff --git a/Clustering/1-Visualize/README.md b/Clustering/1-Visualize/README.md index d5145919d..0b5c7ff34 100644 --- a/Clustering/1-Visualize/README.md +++ b/Clustering/1-Visualize/README.md @@ -44,11 +44,17 @@ Alternately, you could use it for grouping search results - by shopping links, i > > πŸŽ“ ['Transductive' vs. 'inductive'](https://wikipedia.org/wiki/Transduction_(machine_learning)) > -> Transductive inference is derived from observed training cases that map to specific test cases. Inductive inference is derived from training cases that map to general rules which are only then applied to test cases. +> Transductive inference is derived from observed training cases that map to specific test cases. Inductive inference is derived from training cases that map to general rules which are only then applied to test cases. +> +> An example: Imagine you have a dataset that is only partially labelled. Some things are 'records', some 'cds', and some are blank. Your job is to provide labels for the blanks. If you choose an inductive approach, you'd train a model looking for 'records' and 'cds', and apply those labels to your unlabeled data. This approach will have trouble classifying things that are actually 'cassettes'. A transductive approach, on the other hand, handles this unknown data more effectively as it works to group similar items together and then applies a label to a group. In this case, clusters might reflect 'round musical things' and 'square musical things'. > > πŸŽ“ ['Non-flat' vs. 'flat' geometry](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) > > Derived from mathematical terminology, non-flat vs. flat geometry refers to the measure of distances between points by either 'flat' (non-[Euclidean](https://wikipedia.org/wiki/Euclidean_geometry)) or 'non-flat' (Euclidean) geometrical methods. +> +>'Flat' in this context refers to Euclidean geometry (parts of which are taught as 'plane' geometry), and non-flat refers to non-Euclidean geometry. What does geometry have to do with machine learning? Well, as two fields that are rooted in mathematics, there must be a common way to measure distances between points in clusters, and that can be done in a 'flat' or 'non-flat' way, depending on the nature of the data. If your data, visualized, seems to not exist on a plane, you might need to use a specialized algorithm to handle it. +> +> Infographic: like the last one here https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering > > πŸŽ“ ['Distances'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) > @@ -87,20 +93,28 @@ Data points are assigned to clusters based on their density, or their grouping a **Grid-based clustering** For multi-dimensional datasets, a grid is created and the data is divided amongst the grid's cells, thereby creating clusters. -### Preparation +### Preparing the data -Clustering is heavily dependent on visualization, so let's get started by visualizing our music data. This exercise will help us decide which of the methods of clustering we should most effectively use for the nature of this data. +Clustering as a technique is greatly aided by proper visualization, so let's get started by visualizing our music data. This exercise will help us decide which of the methods of clustering we should most effectively use for the nature of this data. + +Open the notebook.ipynb file in this folder. Import the Seaborn package for good data visualization. + +```python +pip install seaborn +``` -Open the notebook.ipynb file in this folder and append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to explore this data by importing the libraries and dumping out the data: +Append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to explore this data by importing the libraries and dumping out the data: ```python import matplotlib.pyplot as plt import pandas as pd -df = pd.read_csv("../data/nigerian-songs.csv") +df = pd.read_csv("../../data/nigerian-songs.csv") df.head() ``` +Check the first few lines of data: + | | name | album | artist | artist_top_genre | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | @@ -109,9 +123,6 @@ df.head() | 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | | 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | - -Check the first few lines of data: - Get some information about the dataframe: ```python @@ -144,9 +155,7 @@ dtypes: float64(8), int64(4), object(4) memory usage: 66.4+ KB ``` -It's useful that this data is mostly numeric, so it's almost ready for clustering. - -Check for null values: +Double-check for null values: ```python df.isnull().sum() @@ -191,11 +200,13 @@ df.describe() | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | -## Visualize the data +Look at the general values of the data. Note that popularity can be '0', which show songs that have no ranking. Let's remove those shortly. -Now, find out the most popular music genre using a barplot: +Use a barplot to find out the most popular genres: ```python +import seaborn as sns + top = df['artist_top_genre'].value_counts() plt.figure(figsize=(10,7)) sns.barplot(x=top[:5].index,y=top[:5].values) @@ -204,16 +215,76 @@ plt.title('Top genres',color = 'blue') ``` ![most popular](images/popular.png) -βœ… If you'd like to see more top values, change this `[:5]` to a bigger value, or remove it to see all. +βœ… If you'd like to see more top values, change the top `[:5]` to a bigger value, or remove it to see all. -Note, when the top genre is described as 'Missing', that means that Spotify did not classify it. +Note, when the top genre is described as 'Missing', that means that Spotify did not classify it, so let's get rid of it: -Explore the data by checking the most popular genre: +```python +df = df[df['artist_top_genre'] != 'Missing'] +top = df['artist_top_genre'].value_counts() +plt.figure(figsize=(10,7)) +sns.barplot(x=top.index,y=top.values) +plt.xticks(rotation=45) +plt.title('Top genres',color = 'blue') +``` + Now recheck the most popular genres: +![most popular](images/popular.png) +By far, the top three genres dominate this dataset, so let's concentrate on `afro dancehall`, `afropop`, and `nigerian pop`, also filtering the dataset to remove anything with a 0 popularity value (meaning it was not classified with a popularity in the dataset and can be considered noise for our purposes): +```python +df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] +df = df[(df['popularity'] > 0)] +top = df['artist_top_genre'].value_counts() +plt.figure(figsize=(10,7)) +sns.barplot(x=top.index,y=top.values) +plt.xticks(rotation=45) +plt.title('Top genres',color = 'blue') +``` + +Do a quick test to see if the data correlates in any particularly strong way: + +```python +corrmat = df.corr() +f, ax = plt.subplots(figsize=(12, 9)) +sns.heatmap(corrmat, vmax=.8, square=True); +``` +![correlations](images/correlation.png) + +The only strong correlation is between energy and loudness, which is not too surprising, given that loud music is usually pretty energetic. Otherwise, the correlations are relatively weak. It will be interesting to see what a clustering algorithm can make of this data. + +Is there any convergence in this dataset around a song's perceived popularity and danceability? A FacetGrid shows that there are concentric circles that line up, regardless of genre. Could it be that Nigerian tastes converge at a certain level of danceability for this genre? + +βœ… Try different datapoints (energy, loudness, speechiness) and more or different musical genres. What can you discover? Take a look at the `df.describe()` table to see the general spread of the data points. +### Data Distribution + +Are these three genres significantly different in the perception of their danceability, based on their popularity? Examine our top three genres data distribution for popularity and danceability along a given x and y axis. + +```python +sns.set_theme(style="ticks") + +g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", +) +``` + +You can discover concentric circles around a general point of convergence, showing the distribution of points. In general, the three genres align loosely in terms of their popularity and danceability. Determining clusters in this loosely-aligned data will be interesting: + +![distribution](images/distribution.png) + +A scatterplot of the same axes shows a similar pattern of convergence: + +```python +sns.FacetGrid(df, hue="artist_top_genre", size=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() +``` +In general, for clustering, you can use scatterplots to show clusters of data, so mastering this type of visualization is very useful. In the next lesson, we will take this filtered data and use k-means clustering to discover groups in this data that seems to overlap in interesting ways. ## πŸš€Challenge @@ -221,9 +292,9 @@ Explore the data by checking the most popular genre: ## Review & Self Study -Before you apply clustering algorithms, as we have learned, you must determine the nature of your dataset. Read more onn this topic [here](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) +Before you apply clustering algorithms, as we have learned, it's a good idea to understand the nature of your dataset. Read more onn this topic [here](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) -[This helpful article](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) walks you through the different ways that various clustering algorithms behave given different data shapes +[This helpful article](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) walks you through the different ways that various clustering algorithms behave, given different data shapes. In the next lesson, you will make use of the most popular clustering method, K-Means. Take a look at Stanford's K-Means Simulator [here](https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html). You can use this tool to visualize sample data points and determine its centroids. With fresh data, click 'update' to see how long it takes to find convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids. Does this help you get an idea of how the data can be grouped? diff --git a/Clustering/1-Visualize/images/all-genres.png b/Clustering/1-Visualize/images/all-genres.png new file mode 100644 index 0000000000000000000000000000000000000000..906d6e4f58020d474a4ffdc5e2b5611d7f818707 GIT binary patch literal 22680 zcmeFZcTkgG`zK6Cr5RB%bVG?KMS2Gj5a|L+Z%PEI0qGC|d{MzdN01UgrAi4zX_7z? zghZOsd!m#`4FaJB$Qz%1clUXBc4vQo?Ck72v&>|e+~>Z}Irq6f*XJtdI(dG_!ieh( z{}~1b1}@{<2G$G=OtuURj2oxe=vQ1uZsyVdu>{{VzI%%P2Rj8xqJKXfc-tYEfq~=P z-w)%^Ec}RmQ7y#KKEwv<84`Z~@k0jx`yqjT&=5cG2clsQ9|wCw0~BTDWv@$%J_-p5 z)R2?=ukEtX$6j&`>xp~}45AFi26}fR3f5-B-$>lc-Ty=G381V!%-i5hNl5JyV`w;|=FA^l6#gL_Y_^_i6X{q&klTbhmMH{XgFp`!(=qZ`3bFnacPbH1?6#67 zZ=Ql%4L>GlmO2gDWX8WP!3RoiIuq5g+wnDVsv&Jfr~BBYc?7wgFLtbS@}1LTuw!y# z%w`*4m7 z1XHtzw5H+E%plfe2%>gM4Rija^}I0S9Jk=m!HGPv&wAh2|0WtZ5&mSc`gAoHy5VHE z3QN)?h@5eDIis5MWxg~}ERe5GpQI{s^=Z-TFEpki)-jRBl%}jNMJ7K7-#gDm0i^Go zX}|ikwda$act3@czH}9iy`QuK-Mn^VuqKFQhtkd1&NjE8CtqvqW2rdVhYKh$ERJwftCuUgNzuRsKlq%4iTHwxy4=uj_ z(w_6B5klNGCBCz&H5#&c@~`z~4UA$jHL8=I^je-rkV&j_f*mk`AG05iv+|e6aHgY6 zYBK*sibVkGY)I7JxSU&c{w%{jFN6vT})mVP%*2T;k@-(ID+<)4cm?aNhc zp^Q0!HGy=M3O*0m)BX{z!fNs#(zySjD*gu=%!<}nI8|5QrSiap6jL-Jh^ut1x6~c` z4=VeAV1)mM9{v|U5zJW)dJvzqA7F4~XD|ZFuPXW@S(SLfO|g*6Ffwh7#+mt94gPk1$y%ojQfO z({*9(*JMkbolPbyvQR%>0TmBj3dD_vN(6>&;!Cp#jBbps4AKC=@T%Q4W}dM@9;PaW z5i%b;d{(@H4j7w>M}=n!007gGK@O&A=I~6$u{MfVBGdTj;P|-r%AT8SX;$|0Y;ohf z7iEJ7;A#fvi-2L=jkRyq-?#ule4CX?5t^Gt*iy<~4pWX%mo^p}cg&s^V4P7Rz1qZbfIm-$`!nDgzCoDnWki&Q}Ul|Uy0 zSS36>Kx&cjSvMsqH10S)H2y+-zSu8^(yaC-v*y2#DE9DIS%1?n%_5Hv#1P&0R~X4U#!ZCA>YJqf`vx#IPeZ*6D1X4IHqybv9{f&O%v9 zJ$w&T^nA70PA4pLF$6A(fl6XCOn}FT1rhCjaQB*H=3g8FF2w^zf+Z+n=v3Y zNn|9loQd6_>+l96oKf)f9g`MCP%X;_sOXB;6qruBL&F_{%=FbzjlcA>N}y? zYV`Rp>1w2)W&bDc%m2AB`rm>2{|;2G0e?!9_Pvk8@fy0IU+AP}FbIALAiy0ZMqkmg ze}0VEYqOzivryc1z`ziLYUTo_8EX><-sVyZW;Bca#}gq&=Mk;Zza;hjUt;+;kTUHu z$X4mLa!!1N&oS@Y8xz>Flaemvl{;sMd%pnMh*TxLIqk;)W4Eu(+PZVRa^Jn>Fj9he zG7uYGJRs0k{ckumYy1lm#ec`?TdIpxDZ@kQ|1Yg}Z@JOUa#@KLt1UoY4tO`_UDo4J z#PMz9bL0v25rQUKXF_U6I+N(Wu6AkiQYDr_mUTn66kWbOO2NLRY`?{ZA`aw`mh1s+ zM{UE9D}Pa}OxM>*K{b|UZ4mqp32~-?%NYnrWZYw?-zduu25&Q zEzN>5{b6x~YJMSe1cnqX)7K_%Rc(uo(Eou;{eK&bll$cBUL^4tb-f1!8F|h98-H%N z{ma+~8LX*QJo#&qmH*oKD|N%Cwg+WOtKDb;EJ^=~HCJgZ*Fj|sCe?o#Q>6#{A!{p? zs7iOMg|X!(Qn6B{M}p1l6D6rTbm8|aA1-@@ni(9`sa%kCAl0zU5Dxm8L+5m#{~JBV zi0jjl>T?O|9tzkrbB`fjCKlAo7H2&Uq7$O^w_A#yeV4ox{;Ekz5G!5mM)XnSO0~FQ zNpF|h*yHbM=(@BFWQrR{eG{;AzW}%vBDu#DWy$HvvnB%AHtJfz=3&FBrtj#}owflVm9;_XxaY)8uP6; zG0T}pC(^`f_&NGzCDq3Zp>#WNiyk`Ay;J!*I`(|Juyoq41kgR||J%Ty>p_=}>29cvehdpRX;LkGu7zK8oglLL*-{QDpG=xkRc$Gp4NNBhrQ=O{rBp}nsPKt-w+ zO{9262YHx#M+dJl?uEnmZXot7LBIZs-#Dh0`PXj@-Ie6a4>8pz*)l`kIkRx<*}cak@;g?84Vd z{muhS8H?CFnc5k4uazD(wnP5#_^`+ySKC4iAZR}CO&wc6q1q1iJ!qb#ge zrCz8rlv?aavcI@*ZE#dUeJE9GU;td!&9;_hlVzKD^gj94QSx8%DM9}AE)ysOqj=vq z^Ee~W1J*b?#EvDc>4OGb-}vhtrX(3g7sU(3X~wO_>#q)Sv(~PvrqhuToB+>b%3-d3 zo;3GZ$HC;_rU8tnSpme&yurM?s+&u{!-mlO*ImP4w{N|n`MOX4A4*h^zmfiOBHy~s zW~kO)#VUInH(hrIs_W^m@V|vZ|22V3^2?kJt7HXsZeG=)+BRfD|JI{GgNTv zg&a3bC__BnJf1$Q{{J`hwka-b9B6s4*`J2g#CqN~j?$p>zGTNWIWzfY}StaaWZK;wRPzv9!W)GY=J>17wr1^_doMYcy%Xj zw^QmnkkQ*Yspt(i^xn^SWc1SM-c&VOdT=a#47u=M!A1qN-&CmZ{^uO+uvV*MSre&# zJ7EBoN%OU}t4lc#ql!$a;P62|01F6xEJN&xseTM3wo~_M$APo8)1j>aEP%6!Olo4V||)iIfJVFt(jCW7eU^Ou=VYKjbM%eg4;wP5-Ia zJr7aD_+L6sf!P)RyT`}H3lK2udY6gdHV#frO2S(tlvH+LSBiwVXLdqP)uMqV>AU*v zR7sHJ(bP)mZI=$98mr}=#2UBv!v3L13jsJr2B#UI zHAO|Xk-q(=jjxgx|9U7pyOvL3A+lQCrc8;3UH7owSS0w`WrWsVagv%MXqR8=`>J!# zw&e)s-Pac7Cd8$L5PFyjEN+V;mG1zZNBfoxDGQS|ynSYeaOCm?f3u)HbA()=vq7~y zjH!y&Opi5i$-yp1YMGQ9x0-#@?k|t31 zrV?v{6F$3%q$a(Ox4hMr4|=etSB)%<65hB7;A74)>Xl;i3PeSKQG`u} zotv#TIVsX{M(ywdz?Tup_%~|j2)t4!S$8ZtKCSMZ%9g?ocQ!d#6&*hiA7cz-Pho3h zb3NsE=7>uzvY;2nc3lxPz_?r83uE21Q%G`d98?-C^LznjQXRYD!=rHHh{HicyJYdu z@nuqIykdNQTy$I&=)o|YLljW2uo?9@_9%CTMi*?pfVcoX{2z>GkJI+O{O}&pj?&uR z;ArU;BLSjEe$1}MOEPjkn8KhEZ!h9JomHCR$%b7fHB6~V6X*9YMG6Voa6owZokvB9 zED8~DV*?nb?EcX97I@g)sXtnmQINfwz+t_jA}ycp{US*so)YI0Zx~m^AVPn8(1Xz= z`vze`4esb?Kei}N|NYomo|~kT5a~_fEsbbP1FdK?l9SY;H?`-xn(MIUb{iM0Rxw6L zJ>v-E;k?_3y@$08jnX6PW2xZi{8hqFYz@S-Iq*2(8c{c1g1z9`!&SKJOU{kG%L(XY z$@{Tu`fMOKcF(cM?a`Rv5w&bpp^4MY6&t;C>W$o+T<)!mex2{I)cEN5m=*L_eDNRa zEyMTnxujX%l4xe4BheobX~fXZVEfynrFY!lm3iWcG(gUFuZPCqwUfK?d&6?;Rw#Gi z>CFa>V^893_Z*$^2I0Wl$7qGkNca0hQ6d#-PJP%VMcSQc@o^TBZ4^*VrT*Cr(JhPF|)67L>q=xOz*Dg%o;bskEoMY)z1$Zy_ zX>#pLZhjp=E5=R7hpz5yKz@es5ozgiI&2Z$48xyIF)1W4nMPm>ST6BS8J`|*?Ec`i z$XWP`c=HkJYoSQh&CxR?FCO;LlcD1iJ&RTq<%4`n~YvDtun z6FmQ?ReWC659w`n%(0V6Bxf^lpYs6TH%w0iTYqy|;DYzxn*Nh&O_y#ewh}7@>89tQ z_ORjc7jT@xS5sJyu0#$`iGplX*7C#TH!pOZmnO>>%VVm2rHDSLUBKhmS;MgcL9R6?lLM~E zIa!rCiqfVomUG{TYo!&py4;;)Up8{`%;TOfNk?xCr&B&~!W4Pbn4HvkXtu{&6Rr^{ z{X8idf3yO{K1LKFZjKe3IbeKswq&k=)5oW{0QGiKi);#y)GkG+28IIf^mf!OHSmi4 z>JJs66=*dLR*i3*K+Ya35`QF3q{B#?53vIHo8Mvp^~{t0rFdpfv5}j{=hPS?)HnUy zRoyRcrYG5l-;G>`7!27g^F#;%li@EXO$Xe-({Fpur)TmJZX$4dQ0#7KR5a?Mhqcey zI0QcL&1#%wM#CfaOuYdaNLJe_!&oaQka<&mOWEjUrt)cIakf^R2adsOrgYk>#A7h3 zpozIGbZO9Z?7FKJ%|Zg2G${O4!HsF=w4dUaa5<2#6b-Rv8VIiQOjw^lR14*HtTohd zq^rKm$8&n~5fianyfL-fdY_}mafgu1RUe8V`bG8P1X~0nutcjom4XH|KdZ)1R~Alt zjV!hm=V$AT1xW*&b;=dV;;5y-#9LHfAdwI^p27I_DrEgTPdsUy;O8<})d1eN58(7O zV5_ZSPGv|OC98lFs#2MaQi2Zz()v3EGF{lR=EPF=Wfh>Z?_={8O%AW zRt_Vp$0u*{wh($+MB1H^Pc!4lX&rrf6zbCo<(Ir^+4FcuYQyTz17#$p+Vwr5DzZ}! zkA+bVTL;tj%9a0!KZY*;**&JFKQZw)2MVNN;O8jF~CPOyAM9I5wz&^m6pyty- zVu--xFOlF5R(|MZ5A z81#uqRgs$++p^tv$%?4Uksh<26Gt()xKLMOcV49HHx@#mQTmAs?#tJQ6i4-V&e~e> zqHYYsL}WEdbh636{xI_G=K|%`9n;l@xvNBnC!GAAW6P`>1Wc~Q_Muvi?)%JLQ=HBN z@W`_NY7piLT57hR;f%gzT5aS?yHlFpiq}dIOlPt>R&x_Tgl|1NVIy`0ReQDMiNrK0 zlAlD?VCpO^$>Gt3kmK#Kc`7^c&A^cu-jQVL3vbvkSlg2?(|%??s6W=cZd!9il!G;u zSq@S0DNROM1WeYiVosDFxgQgXdLBI+b`fRkBz;4asyvwm^kZ zZiG_Ejl-f>Z==7I6rK7jg`~B>C~1eq6EoBTB|b=+noEI12sz&Et_rZn~*{<204c!-1pz_+j9k<&Pf=AL1m- z8sdS7gH^`z(6S~5TmD4_K8gHnm8#yNaz)y4X#0RAo1G%Re-9(p$mk6XNR**$f5A=z z-F2S?mBpk-aW+;ASB(b;#-f&wepkHz{-0|B9Ji!e4|?kQydk2LhbZs&tsJ`qNvc;z4hLI&0spLalVn50{cmzw=Ek-o?a(b_fy$Ik! zGe^ie%x|7SeXlzW6h)d{RBM!k-U_a!2;Gm_PH#ZDvAB-s#wtV(yPzq%DS@w4#eH=K zC4H;ts*XHUtyXb7`#=DfN8qE>N}%LMomNTAc%5Qj^E;ml?P!=c=s|d)^rP4U$8^0$ zAFY>f`QKf@^Z#rL$^Lk@VRJ;(yf<7&&T6>fCZe$Eq%}f&T<*7jXGMNy`M~E!82!>IyP1%1X6qyl7#Iu zS0Z*}5Ux-B&bfL_9Q>(0jC_cyB#x*HB@W2jqfc5zCwWLV3&|&eThB2vj{eLC3}1p* zNjVt}Lzt-sW?Y-@Ja;jk2&*}aJctVLw=btXmEK3c$qP6CF7F(_20`CIoQUS8Qu2ar zKOA%`W9LHWu2LNNr~9uY)QkDd)iKnm=8A~WGn9RdQ1V*}|H|StveJ730}nTQxf+R` z4it3QK4Cyx+x3py zy_C%?M^@L^o_$`EzPU6R%|l&pW*#)wJuUg0sFOL>XJEVPVm`-`Q?otiLbIqO^#3XG zxZ*(;DqvmdSg{pq&!4PP+}j|zCwsK+iBgfy=GpGMlBVfBBYpE0Y@1n*UdKIY%6HkB zY3zb`NYGP9>_99x>HrySGm~De4U?bjt2=ivGO+^r_^tlcyYm`;xtJ4;=}|Mk%P63S z2P&jdbF;5|x?T-<1NKDP9D|UyLYS)n=DM!r$%D6$Iq74A(3&31p7;tJ(oq&JRHIhD ziVR*~zsaW932jSEZ{SL`Va{Zm-egnwP1Tts{4&^L+il1@Y5o0v?6ven!I=W1i$mEJ zq{Y@auTesQS<1^s?ao3oL1KM=V)bRGr;gvi`LvDSf{Cy30$xbZ2mE!!OXDAv)n{%& z!ixWj0@`Y=omw006vul#}Pav6FwV_e^D7Q^TrvftPg*$wgId+j1!$xEC zbG^enAYU`1dmUSrtGR2u_nElY{!vcQsM@GTrb`S4<9j~mfS`AwlKH&15b7C19!L;# zMGOwRD2Te-q^z!DgtWvy$$pHJL_#xEi}dmQuVru+ozTnBBlE)ot&YPYqp?#m7AmUn zc26@5Kk8|B^iYbJj9g7mm^X@_7Q@LpC3jhqO-{4>p|HUiTILp;jh#)xT?PB*$m(9f zuNtY9-aM$Y-`9DYG$R%B>ZV?SjY&S(sudCfcWw)e&+C1<+OY4TV1Gcb{5W3EoKwoh z82e}{q`_QW=ESh=T-4)c&2`1->#ed5j|&smXdz0Iu;c2ewIagc=Vvt}Gn9HrO;iBF zXl!No&>5kTt@UAWCuDDrRT;T@;g%e7JOuf?dVE2t3|6}_?7hIXiEJl&3Q$)`VW$awb8Z_h6=x9c^q&n4Sj2>9m`Qt`Y~ro5>8j!P6@h_ zFwfsQ4i4kMuF)N%@eo#QVQAEkTi%ZEw&~g~@J$~w*W!a|43Oa9)_s>M8Z~73>a+&V zH^cv15rf5gpKi_?UxOLK)t$3<<`w7Au7v4NugrUUgO{t;21{+dExzp5+FAbE*4PfK z2LIq^b|l@N&yv>HdA>KQacqLRc%Q6S^7HgigZ8A>NR>>!EA-rWT7OuRRepGPU7tCg zzo~z9=NyE~82aXEE4AfHkvoDqp5Nc6f${8D8x%7wBM9vDdvSWtK9T-ZV1<0zj~5t^ z#_`WrSMM#D&plG{uCl{=t6~GQTqN_6`!SkllJ@XR-Ur;!Mh*^q$9Ao> z$um#x(kkm+8hHTXKeNcG?A>3%x2SULnk7~p?5c3%K&T-*)i27my)YQ+^+MSyjWv~K zlyZ4AzX=Rkm8b^I}J}%AtMN{Uy6(+~8?KkTM zC|inuUCLbYBW9HTzR!X=iqE;mkZptSx}IeOcWYrzHR+%mvOZ*l_pEpQNPKf>#pOiT z`Zk%Wk?loCR9Wn4g-0hAa=Jpq#<1-kyL9u<7;tCVxUb*ML$PEJ0_C5yjWj)KhB=-9 z=AiPWSt@W>e^*|EJOw4=wG-7UIZrO=BS?d_GkzR(tX`=cK&*p{2_l<|51 zvXJks*}b%jp)J$n!7WXNF}Sj^{1thcdJJ12CuMJ<%r!q}gcA-$adbN2`SA_Fulg5~ zQ)ges$5s|umgwM3*#zvy&<}OG-E10ofz@+*D#LR6+!ZiZpmb~wBagYhN=+;R-O`@Q z`8%apMc#7ZMA&FbPTaR=uR8LJ;!5Ps@MjS_Npg(QkK!WIm0>z{k^T%X90xI?+=xwh z>USt^{JM}m$=@^#uzybZ`(<)}yF}{?rOHbFU9vHR;ZVm@q&JZL@u}pm-O(0g>3ZG zL4_P7M1j`7AG^$l>hd+0!F7c9t>t7OmE^N*6G5>h{ttF_K+)-?>*LqIS#R=6f8=Yn zsN$Pfhj=Ynsfz8@Cv%L>M+z~+jt%COpn59$=tf282rCdZNjZk3?Lr}31Jk&C>JWr? zxd)$D8pB^2>AF?6qv=ULPkR+5EMg?0cLDKJ9G92(5g0X!_YAwSV+P*2SxLP zX!cEeED8)O+7wm9iO+{Iab~;>zN~u~zcd4+2*#@D$B439&$|uwPUAgi`*8vr7ZCom z)XIot`RLM)XgqfFXaG&hY|!yonfos4;xu~PVsd=sNfe{BuH)h5t?4nRsDAuuIUYBd~s9LNkCwO?xbke2aOH}ePym;TzU4KdUo(K zeqh>4aFrD=fGr3A67&rTK&P!$!)GG04OLDb$7@U}IPk{`IB-n*Mit2qeWp%4JD@Ws zA)Z-aBYzQxtyX=rT#j#(a0*NLbD1-AMtE4$M4$wk9K|JLGlK7humf(Eb>W%*dl-uhqxAUEimEX@cf9KLohJlgioryq zCuh&dtNS%Sy@5Ns8Rnwl<7S(eJVnGRoPtAz99oCM70-RNdn;?m<~NMve~Y|6Li@D{ zp~ANtx4^gUkXJwNX(YR@Tkp+WTJ8O0DGse|x=y{8`g#6Ia&*=@*q+p}z@H~^VL7K|asNu1W2Nh~-DqC~+T8kOn2wzGTI*B% zKOM>=9WerHNC}){(*_Qe+Cboo}hIa~(Scx!%Aysk$ZoxcSXS^9%FC=iJkF zrkUo+m_*Q6)%Y|wC+1tVchQ7(At-*dPAKwvD4G-HvL}b&JiM_L^i6#OH}L$UJkUEf zWWq3lX|hq9$KidDk9K-D0-x&9stOX@RK}IRlLb+WLlUay8V8LMe*A;KI_&E8GZS}X zNfs5-&KJr1xp{*ci!OyR?S7Tz#Gv<>L)$|JUs|yag_xK^2%qR2d%}Qds^g*gcdkcV za8TSteTEWDVnk*Q5OyB7eaZZjg=@h(##>9#SJo5r?2`nYehYDi65Voj4)3NjuDDXj zHxvT%V<(^&C7BV|eg}_uX*}ged7m6}vf7QOAHT4WFdgFET9DS)8*N<3%zK$Bgp0kA zy`#&4Za(pxIbfgU+)+j`L;w#&zr=(_?@5Rt$qfuMH|KU7Q)}UB2cK3(L!*qg%A&(C z8*uD-0p@@w{%UO-olWTt2)mJk@-g4dbYsgC-M^l^th|vg zhG3UpX}^{cPgOs5^@W&^M6Wc&sH&S#AIwt1;H_t4UX^yPH9T<2G#}DTf128)FhZVx zjCvM6n?59uop0ft92xh|i&u7@;}cb*kSL9pj5;0m$b@Y?cAr6k z7ApaC#>D&mnk|OYTp#~_>y>8iFEB<<0XZ=gIt{*z-?=QFutc-dZLch=-?Jw1t~RJ* zijJ0z$LU!Ei%y{y2*y2XekMdSY2&WqCotwmrbJmj-m!cX&tGXbPA;@kjI+G1w6*!9 z?M~#r@r}8Ww%cs>n5l#s9NfY@f&ZCF<93=5FS4wyt7U-jN)TLy)VVZ&d%Od3wn=4j ze7zMxjw0&{-m`JhKIu(Ic=25piE8HAHzTPUrS-ouFJxI;8y`>WIP`{8ezd#xQNw{( zwQl_6l|1HUT4~=RzU)KnWvXQ;fffP7q;&6C^bNGxzq)Te#>wh%EnN?$i|EObfTE^H z+M#2<$Hk0m$fvlnh8TRCY51rwNgHx`Q4FG+>*}>$h0kk=Z@0|i%)SWjc{$ZKF#Vx$ z9%D6PSJswVmr9Ywug$kn4r5$RFLrk;&rMt!Yv%;^)!r@F?YVOnGgZ77{N8^8vsCYP ze^)dlni#|TCdDhW<9m38B{s80gD*|_oBeQb!gj+hVL*_yL+}2a^*7qU{oKLiq+wI3@HBF*22ias>#+>w$4OFzo&h>#hCr4s zJ*pgBx92Dp9>(CyJ>iC9A7mNV&H^xhV8YBNQ-g>6QLnU4IMVtxy)w<)t8R5|P*e#Z zB;ue4Mf@xmCMJS!yA0w^N%9&cp9lkn=@mU0VhXg9RR8^J!2NaovB&MNI3K(61B@6A zx^4mLqeNDV%czzR(I^G=kS~m-Sr|NaBM7D2_Yq%qdnG&;#5^8H3v#3CP@I3e2E91LOi_x6}4#@RDEzTFQ! zWI>T99q3v87_&eT)~&J-u7>A1)$iI0*4h<%z}h(eW^;U-c=>3gQwDH?z7Hiu(b_-7 zW#T~DpEYH>Lr+(_e}2Evp6ADe&aGa5W9_k$rYuAq`?PM0MA)qC^x$9l?*&PRyR4*1 zK)^HMX{ukpCL-HAR0{Ojeqijf&A`5mQ1OH~W>eK2^-hzLHUEc2Z)K9v;BTga#qe_2BVkrq4?Y^!Q%IDFrVo|lUu zx4ULt`0L&D4Hq2KiSLFM|-=^JAPnAGaXHLi@KR6EU4@<7%2 z4jY8l+v^Jt;yZ93eyAkKoaXo7gvnta!?3RyD&2URpqm+UF4=<=3f%#xn?ELqF@Nx; z{KCXnd$u90KIMliQEd0;7&1a`U8W%xyVn>_D8eW4oJg zTCU=x%83gqZ|@~GIrJnQQWwshu&&g?tsj%xSOv61YS2!h-tWE9;N#KE*#-OlOsN`{ zs|JqaIkgXl!nZji^Q^6xpmCLqdcHM15fa)uef?P)!{Z ze;tt?RCr0sQ`_<;(S+VMYTM>u|8KfSh07T+YYUgH(cf+IK6&Se@;&hVh$402ZaQl=D_-X|5@dA6?WOc@H^sH4)ikL1qZ0!sRc*1pRh^lS7aatmFX#(R zCGK5@@dBIW?6!x4@i$hVLcX_#y#KV}kkbU|H?^!>rd|j=X{aP#EwVByEwDtzeX?pOO~(gy?8xl4B~>Y;uM~3sp_D?!Oz1vb;D$z{q^}CQt$?YDp)Sw92{anFgx$N| z@pM7HEIL|&A-2Rq?(W_wEAN|U8_FM<5DZC^iPMv5=)JbQ*bV)CTU0hpNrNXj{dhkw zCBX7x#;&CAXXt|~-={OzBvCt}gQQrKK}eCo{LFK@219jv?tlr4xTV(|J@x2W{JB0a zynI@eWeZ~9PN1?BA`zdz!Bg2_1(70W93DJ{@Q&^#kGHVsBfM256LNcVF~bW}BYG!n z=;K+Vk#SMzCk&vtNI&~ltbxi$XN8nSIiuavjsZB{%Lk_Oipnc2ws<8}8Tq+z z(#?F7t9G|$e3VW$zkiBuokU7HT+z*(DzRissS&A-l6T;sCg1ngjXy06Y07F5uj5|^ zf!`1NuC!x()-F`s>wVvU373Z?kJ5tAPLhAQ;miJ!%T%^wj=kwsvMymdoS&|IlW_lc zWy4^aDmwAf2lYqUfQ*hV0i3`}_zF5<oDO9p%!0oYC{Ty!qCJ&XY>8)NMrLga1 zK72GXu+XP-V}&tPgi?_DIfC5UF

FS^S#loW8A+pP>qr(9Phcb6m2VyO!xA z4HlXd`PrQJXIJApoW8}gwwa*)Z4qgfy$~i!JzJy4#%Y%!F&U5f6v4eb^<>R?a`jHs zxzNDj!zRU0VjE+1^xS7R8g{KTOAMcqm6M?iV-`C4DEu-LKQv^yB41>ogQv7b{oL)Y z%JT?RU2{I{X?=?m-Ew^PY(*`Dvx2(Oe%%kzlg9XGawMe#LRwqB6eTqDq|Gm!+ndZS zOVvXaee>aDJxOHRQ|y*6T?ul2Bc0y(HMFG<*@bZ{@gl-Q)7djbewltUbf5On&f{~y1o(zF6`LMw> z9b9xa`P5UzW@m{jj}@*vH*Ck~z7J~8u_#hN$<4b}T6*l(&usLsG+?DD+b{9_ar!Ge zdXSpEFTA0hdBq-M0^pTE1@{%azuIzbquV@zvok1s6cfOpo-;Jx0!M4{%Ob) z*-05ShVU-k?A%^{wklG2uVU|F94TZg-W)fUSz1V>nfZu($$J**y}8l|KZ%kUlmdgs zL`}aCl9RkL*$);WT-^Z>sZ}eKMywaHF~bA$Dm;d&cz%7u+}0aj)n0Qc+|jnUjpIy& zjnpCsf@~paly$rmHx_e+?joVG9@`k8pTQuFs^1RZLBQYQ3)E)ijaPO+5ak_PEE$)> zLj!?q#qv#%GNoD?&lbtXDpYj#n$1U@$@4JQ$&uz$oAcJ+wEY`TfgZ@C@(%k$5t^B# zjWbv)dOauT!Ls!?q*Kkurvnq-bjLZ>&;Yq~6$kd;5a>Y_8jn3Wd8XB~M~~F$MZx-8 zk|@?dda+HJ&Ty>wLC9!ZX%=<0<&)Gw)H`yT@@RC9^~Rc)wvD+^CRu4KeSZ`O^XGTy z+`pvWINh0nfz?U=@Ec*B|!}!3SGknw2Q_;JNiTGTWz<4YfPbX{_VqZ0ilW z3y-t=UcfzL^;oOrz*GplbvnCA(?OKL9nrink!X3%MuA?ZYKXt#< zx03&mnCYh{3j_d2N$BlqrdF<%TS{w8x&>=qo4%;j!DkSzP7K5?!4PMsuC;svL9eyl^Ud< zc?%3hsUaywa`e3@*bqrbg8i;g?^ZY{KOK6Ry+bRHQ$Zo=w)HNO;BPUO zBz;@B-HPwFlA7{a*B5Jtfhs_I|64i|M=``j`Z+zz8yXhk92x{kvZlzjQrK0H#bu8A zp4Zj^B8w=`ENjpHgB(k9n}7w1M%2Ctp7W19>cgRfgpspr!K)IQi3$)_h?b|+WNjr{ ze|xy_ewL4x7_GYaBF5qAqtUU>&U7%3oD;c|YAznWfaX}sQQYc;%shqTa zuY7J)2%+V9(T&}r&k26-+uy)mtSBfHPoW%Jv7Gh5ptBB%uSdCzq z3_7%2_@njG?-}Nq7A+ghz8h0qv`#<&lk2yuna|1Mm2s@!$Z|q2k;L1mRYb8l+?W=4 z0|w0r15C&G_XXnHGaCl;nCORj=x2Rzsx;B+me{K@$GcX+S1P6oU}t?yQM`v|uwj7u zSgA$7t} z<~pq5niN1RYHUfIKfKGMq7k)6&c{u?jak`ILXEAg?o5&%zFKxn=KMes^98rxNO=cW z*VlJ@wK5xvcqprvvKM+6F;~bb_*p2oN2&R@T9dzt?pp)fgV<-%>QL9z&ei4j?GDe{5!999ZqQ(^%hqoyX$D z@HAzvmt&lfb}PKjmap5RI%C)!xTaS}j?QeIE-VwenCNoXS79e)rV5w$mR@TZg5ntx zCA`r=4<8*tuD4uJKj{lWJzD`oxO$qqfuMW^FZmtFNEk(uns-`fz-H@oX_UVU!%?*& z)D-pcF#png#o)U9E9D{{lY!jcWDqaFi--jC3i`-i2181=rT=3H-(-G*8e? zF;^X&MHf;{LzXBSiE^eFAAup&GF!%7ikG5f`th7xxtortK;?(*Hi!?g!?}4E8R0G{ zJb4xHryUaf9ffT*ky17DS>b=4M2Xin*#$Vgfw_&3m1Y$gc5UO_R|_-b;sVNcYIk6I z%W&*_z#mbE4+w5&03b2T`s5{NAbZ(JN;06HZxTuRY5h$IP%pcgkYRr3T6(9OvwgRN z4811U!hnAK<~$%Z$67}a5DWITmNdiroKV4!5tb#><#a{sNmApn7X!(PG8aP)x|Fsg zwO5wDS!9mbVqF12Jdqv*q5Ye)G(LLj;>cR!zD*K4dBuI=G!rlqTkZgGg8UiPgq8VU8k37jf^BVFLdnFe9-dl- zD-#_uU^Ie%O~5HJX%ZQd{Jj(K=hOk}8yAjyg`SN$NI3K1*=wS!A@|q;j2>cTu5l>7 z_e%=G~8vmi+&%K-*1PU{_tTsUTn4hG4wG^C*gzfc>qVI2U*5#>t{7| zl=MCflsan2d$!AubA}HPOHaYM8T2s~UI1)Uwhj+BzX{RTi$_hy(mQkauDgNO&(FT0 zltl=*jU6}ei4JYJjvn6kD#(_lv9kYanlcM1$GTR`l#9ejYsV;ZHKEW0o5yj?SLr7y zqkt0i^7XfpJ%m2|IRE?-`<>Ipwl}QqzVc8iyHGXq;&RG5E59Lp z8@^Jxs;rjwLHz1JOb^sHcY31Y*V7Fa)}SH->Z>PWg}xv6H1aX+P>gRxp@%raJNm_X z(PSYTrRB1cDP-UZc#0J7BF-gsFem-a1r>AP`})yU<(Cf?AIL8FeKGRUkyleszmg;J zh>DLQocFVAq8IoLPF_qKu^A$nST~$bpV$L0O}SpyNl?{PLd!}{-R_-k5ZRtVrfleDZY|`z#}B3O=(dUKy0%B=qX}6A|K^!Q<(xQ81z0rK0sAAF7jkd`Zxvm(BCl z+3CB(Otd@FjYzSj?DE&O-^G6&wjxV5O5cS6f<$gR-l%F~k`OWy=O+U+Zi-aieyvPa z(G(~?>k^%Q`&@p~*x2Zk!Kq#eyr5;DgLz#{v|$jZ7+ZP~Y8F{wF(5YOPc!|*d8h)4 zf35W9P2{rJa-u=#R&S&36~%j0z_Yw6nZrETCF7oRMV)Rrdy&5HG&Bk;E(Msr5l(H; zesG~^+h&o)!W#-Tdh?+DHmp&lKE^sXw>9_s0)F=<^Y=6B_1wd3F1+@}hHx==SMLU> zA&kd!N(ZCmshy~GTOw%WDEzuSn|#)z{ymASd6@X*=aWl-#-hq_X`y7>(fX?*pP{_M z_l+0{cYn_oGf5-e8yrj?`l!f5AB*2FeXJc=QzCcvcvrZq|54S|2Up0Hz+WSuO76ZC zmaIOnB7XHASLGR#70XZ50oFS0CwIP_ye^UD?nj-@y*tV`-2`wdvb;To-z6ty&wR3e zJ@wC>q;{`+g_c8y*g*-QdpbP?aHD!6Z>G)`3AO)E5mz1# zb@#f)vc1(4K3JJN}hx zYLp#x?8P=AuwUKa*@HbdKjcVw(GH2D%Ov-N{qnr3pI?kvG_7&^ph~wLn5K9+jeI_$ zQ8c6l_#gcDX~@?do+7KTui8t)KmNTiQYVzNR&flTh($Iq?|}Q z*~SjX!6I>~9c(1vA{kr2MW$p zWhS^;XG-r~GJuCs2^1)jv|^2}Iw*A4g`q&Y(vPL}%V*YS$6a`MfmQ%U%GQ&#EJJwTJst2H!}P59&X>YUDG6PakY61a~m_<3!fw{l?@wPA^nu zLh9A>TtaTGk83H-1|`6K$8RbB$W!oOhdcjjxTi69206u6oI2*Sym-@RK`Qq1_HWnu zl>kI{MrQ@h_I1#ow?d~LOvH8c?0{^ZNOkPrn&WZk+YyneOAohfkda@2DF+~NB=Y_X zxEF7;eXp5n7^Fl_g;;_8ho%2S(rG`=mde0}X=zQ2AKJ7hJY&qUJZ zM!wdH0r*qJ?!q!|($UUkR}rf*@Vr+pXdA2StC5hjqQ_k8_|3t4GD3}WZ1CsleA>UE zj6tOWc(7K#u)T%M@HhK56XkqR300PS!Da-;#K5IFl8b8A z3mj&J=WnLMB?Xt!UNRI$)?U`5h@w&s@0{%&c~nukO}!OpRMRYNBu1W4GQav01{jS* z+A(4hQnw(HL6q&9YVU17@yWI}bH~lgOi`DWv2CJFlsDyGx-J^PTQVs0;|xjq=Yb29 z$)h!~UTPv#8*&2OhT`YE{~W8!Ld{3LPL-O9Y-;T9uKi$GpZpC(69~u3ePX^-LSqd8clO4U#}`vrui^~ zFSWaUofk?jv4_DB6PAB|g{hPv&N&&wMC1!=h_4XYNdTIl4h*%C$n$7=K7E+1m5ZQZ zq6wWasb=;Bs5<(*=15vZt0l+$ZzW`zFRlKvKjP`(0BW4#A2bq=&0yh7T*Hpc^sB*g zV4fl0owHTua-yDqM{Bm5p~=SRkml~3B5_^kela=hqJ(nN4WKcz>$81QZGFjykbujZ zpBM_Vg$`7C(eZ&P9bfJ>af1;p@|_Ip=6UPFc@MybEYyw5w{8&eK03jhr8)=8j|k3U zS)l2R3+mF#*J1Wl*chZG1mySZ)Ph5)XGY(x4+cC50S^8~C z+MSS$m-=Bw+#K7aRYM(71Lk~w6c^L(#&<7U_46*&4(1g&z7F`oHEzDLMCJMke}os+ zD5?+KBOA>r`COI5?fxC_Dv=b*oo9bbEU2tw1g|swVa>Y0GyYV&y*BVD3aW3b51g!xg6Ip(*WvIw>L|^0P|U{dNw7NVj+5q z5}n--;e=R+5e1J~ZNsP2tXqlDdFI=#k(~Ujc#1Mb?3;L+`UAn~0qOnuDg7^Q57qg+ zU`YT?V#@(ftr}BCcnm9hoqyQEn>ujz*rBt@kZ`^zeqI=!r4jK|W7`kc@A%!4kW;^y zJe}AfC3iVL zMBpTg{J8%K=e=}A+dO!vb>Dey?E*C|Ge#OsItsWN`RgP`lj&kLZ;dLdP`n~l5!mON z3~4zTxuE0u{Uq2rMror1t39hf1(9R9FIg@c@r7@zk0wGBL^~0w)tMOPO#eij@KSh| zvtBt8q1sC^QPk&tTE2eBT4v`HC$2X!91R9YZOeV2aR8oo+AKU^6!rGr+D4T?)ezMb zTlWqY1I%Ob#@?FC50w+!%BTKc|b1?QD0Zy`SSy1WKJ+S*^EwQL4q0fvH7K5V$l4Co+k0@NAz=Uf|N# z+z3JyArbmX@?e;^ADD}nas$4>JmNlXp72Rm1i&G4hEmxx*-rNQ)ii88L?Ffz)zN|O z(i}JL8CI)kz^9yV?FLoHeqP4kJm)5ODY^JaRdAe>C*QbTbifX;?nHcQGS2CpGot&=2VAeWN3L34R*T${ z29b5+DPIy|&f|`S<1e&#b;CeIPLG zew`bdpel{E4Er&uEh%YqZu*Zg6_Nh#b<*M&N9JYtV=d81Nf`j%yuO$OFFjiW`I}7< zn3tt89(BO`>b3=mEOAi3RHt}e=!Y8iXr=BF9;q30vhpPqP4Uta7$bv}TNa=DyVVNB zdlrCAHD-&Hqe^k5^uP{YWaL$r^@5fKZ% zQ=*$RS^edykCPU6G!0o;QNg2Q@Hydm7>GQYvY=$GcjShT2GH1%v9{uU$eXv^% zE?Ek_zQUxsaqcW?N-GBMm8uQ7M$R!RLH96z-xOyW6YTtYz!xn0tI%WTJf^DMB41SJ z(X;Z5BXeBLVH-D58I8FCMt&({A?yjHPFMZBe@Ywv>cZIl^Q7h;0ZzIhqBc73W!6R4 zDBe5DF3-A7U-H*(zZb$YO&u-G%6-!w+v}~%34iq2Y2GSV#^I?;B=7ZPiWh&&CH|p9 zX`z*7EA^SIXyLepAY`ZS4WBQK+BfCv7p_^_B zu1EitB%UJzdWmnH0>Com8O3UxWr^<68l4zn4>Z9>b`*3({;cJ{aUth#9Pca3Fln_x zy-T1HbeEKs@`8=3gtwAd!=-TutZb?vNfmGu1~<40hzq#H8?4(PbVhLw<+BGmq=XGR zwq&f6XGyAQVx1C>D=cNL7oKU5p7uGOSG$E5@0_QO?&OqQ2AmUZ%RuPy1vlOT^2ezk zgL`bip`yDvmfW%0l0&GG;k&Vw6%E~Nr#iU@Qm>VK=Dr@teadpN4z4o^lGXXdt}pR4 zDLynRWDDxYu<%hZTin>>`T>^#0cg<$ftGkS7yQX@9>@l`i`r|C2EtzME z*v#WihElg>PuempR}++qO-?m)TqP-Z+8%^vnuQLk&mCpza>0f9J?pl^(XX!Q_La4e zS||7UybCxQM1{Ob?-w1Xc$teRDSJngYN=8_j>1#tPlfHOpuIBxbG+RS6CEAcNDwP?{6 zTOoU=LNQUS0Sm$eMH(e<<7jfciqpjekjQe>P$p*zjbk?(e=iphKT+%} zlw+WX;M-?7pgXvn3c|ybCI5v2K*J|w^nWF?IpOuM0A#mi0!ug={7LRA=hq(>7hqv$ JUV+5i{|``y4A=kw literal 0 HcmV?d00001 diff --git a/Clustering/1-Visualize/images/correlation.png b/Clustering/1-Visualize/images/correlation.png new file mode 100644 index 0000000000000000000000000000000000000000..ef3affdf0d0fdca7f0bc0f1310d8730539694194 GIT binary patch literal 23038 zcmaI82UJs88#SB|igXp}AeI0M(xiicj*Ungkwu;8!NAy)8;n_F!mcwi3v1z~mw{E0f`{5yEg?x$}R2!U`OW&A>k!!b1QqDIhF z%b;7nEp z_1q&t2;>9=apjU(SoZ92WRop2nocKYJ%b!&=11Gcvz$AXb_j(zGxE$79e3jc#iFR! ztkgQ+V@fdp%$mhH?`E@AN?0o=@|bUt=^v+#UH$Z%O&$BGPxmYj^E0Ck2k7GTT&_PF z({u&0#atFTW~Q98Fn#c&#=T%eLmQg{RNl5VO{j)8K{W0u3Ra+9^w^VA z4mbADylk}JZKjY{`!|$4WgXGVbNeMFrh2LTvXEOy+e7g`U+j4_Q^4cJ>)nGf{U^DC zW=hQI$uPY41;yFJtb;WZT-v{#)d{)ExJAz%w;L-s8rHKDV4j~=Fy?KuxI1!_=k9t!a$1D{-nqu z*G?=(P|s0Cs4K`|BoHd8Sv9q8fiF(B<%tr|z!cQyq!_S(kEp?=Gwm_9`7ox7xl4>3 z5;eL-!pC?98t>2TH1qz!PFaoiWJb~Q;PLGrrqkWM9t^sh+e#vUUiSS%Lz^n&qfH~N z823$!kQt8|F?aXF_l|RE-+Q&c0;WaMIKan(m?J%YuSy6*+SXNsCO=k(Gk7Lu} z2;%R;qFDoP@~xBW3JO)1412O5j8%oMc6NLW{uy%r{L*`fZKop5OtC;#GV^S zy%G(G<# zwle}K2ATrDM&bML^@y$<85i(#RBx)Py}52v{p!zp<;9a!Vf<%26j?1;&a6>@a{@Y1 zwI;;L`^ah&Sti_K+ zlM{Q^xTgU={|M_Qo?xl! zlm5HN6=l47@wDWv)tqt@fO`t*J!wJeL>RwJOJKT?WWT)Cj`v4|__l@LM%pzNT#^nK zTNH52!)#v#ZtYBn2~~oPnVX2Fa+CxeDR%&JsN|VnC2&uo&7~4TRc5XyxnaxLyeyED zOtIWv933oOOe3FadDaoP-UsV05(`FsR#RCZ7XW)=v;`oC(wmO#8pcZ%`#XRWQjBeL zS$8W^GqZ)h#pFq8a%_45+?f-#Ff#Y_EhJfT>rgXq*sel(UA-FTrXgT7h1Avi6&Wg} zc_d7tyb9stJFf0|r+r6p@iCnI$>xTiKi|i%2zizm$Pkz9r;Y3fcy(ZCup}^Nxdj}8 ziY3O@ctFkDVXWbEpNT}sA(&mwoY~dYkh(dG_C3`ST5 zcm6&#s2?*T(#I-YqjDT%u<8=iQ_TSi~`K5v*@3l9#wQ+k> znx{K^xFBe>bo4klcyV=l-R(z;pLo^lTp1&i$l?L9F52UMJp&~-dEL9dcA_N zPxPwJ|8%?mQ^r=p=-qzTe+HR-eEI=7-^cjBOzbvJbCvnL&y5>_x$<+C(4z}6`G$+jUd*2 z$8FwY$x0YPoxMjD~uCm*-dXpJQL#K(3YXx*LW-QrA>VA!^q5m)et-Y|0{$ za?AouC3>z|*7r5RiRp8f=l`b38HNPvA&45paz8=Kf|P?FM(n+GkMJM;+K4i8IcEw! zPjX!%7NeClLfI9Rs%O%;{|906GyXbY%j(57M5@X&SZKA}mFQwDZPTd#INA|oMiO#w^d>Xv4C_p!ivwE#(@j7@~UHW0>S65(v;rzP+J^AlSak&!8Uw%M5_7AU82 z8C%Hq#K&~0>6O=T3+Z|p0?sJ(V9&Et9#_R8T%d)JZWbS?fV7nv(qdz6KzLKs5yt?# zcH_|h2l24y2A?txe6Ey2kXnFUF(oHF?fmxK`4S)*-G0yi$N>#WEhrrwL$yoSpCDXC z@MO+=H=11pCyDnak`wiyN6aPK(UqEkufcC2Ldr1Og~~6%J~udT?$qrG^OLR)5xBm zJ;bUV-D<@M^6SKTq1s5l{v%xLzcqyRpLF9#lI|nyd9ztMm~`!t7LwtD}DA4oT5(q zck8i-MF1axCQZT?Vq)#-Rt`L}tDln*c+skAmDde|<^8>Bx{I$E#KC|nL^Y%Sg&E8l zdDLZ3A=9x1yZ7-s=1#d3)TBAd9{(KAwvC-*q1{F5#0&){vb5MCS1{Af`1ZIr5a7b` z{&I}G!&4!!@#C-CJgz0xOnZEZ2t?X_%8q3X$G z@J{CM=zp)UxgXtt&p-pE!bY-ClsKKNmW>U&9g+--b+9ks%k&7Uz_gx=9{t7fBt8Wf zsvj9kdJadllE3i&+KC4DuUeCeihylXNA~j8zt@WKbm(4j8U1;*o`P4G?-zB%_^VY+ z@t8LU4UK8bRB|o-#VZt+mEgH^rui;weDSnkvEoB;tZh@^DCHIf5m@MPmL|c?TU5?Y z%C-}pJ~Kmq3pYUF&=yx&HV-W(z|(qcbQN#1tX;;-X6ZH>5?!0}@lW7s(&5S%k#>f@ za`V#W3u@pnr4(OFbWKm2qS%V3zm5%dL333Q^yK2{vK>*(v>KHVZ4^6PHOf5OmrXz1 z?{rUh5<2-*)YoSvP;+s1&l6Eouwn4$z^xGm{78{V@2i!8CZ;fTKf}s#F!bFctZ4*# zMsNN5YTT)YC%d8P?;Op&_e`L9A}(CuDxbO6CCOmcr@QSKjQ!tja(_eo_e?djk>jVR z`5yv)Z8fX%r=8JgUs51E}%6J_dkn000>G;uz1&>Y_rcR4PFeOdzg2paq8!lXoI3nxn5j5LC`iQ`qB8-?cD zB2Acd*_ujyX*zMPFcWB^NyXaBowt|;VsTSTHD&@yN{VX)Iy@U_XBQtM?C-N6QsGw1 z)jKgNZXl6U`Mb@-B`MY8qbaHo=77aSLV=PfN^~temd%S5Q~)5yx4?LC)isovMnD!H zr;M4Ax|2Itayg<-68@g_`9vEM(9j{6C4+Vf)M&MFAcVMjY9xZICssUFwYfKnRr%B zPn;5U7AbZajDfK#m!gZvX3?+><}}?4mqy>T>Eu#EV~%z{s@@*-Vdlwn%r0Yc$a%T@ z8{$qAdw;2>9((AL!wsT13;#30Wdzk}l89mAtQh`eVQ8lY7Hsy0g&1ka5CZ(t@_O#3QM zP^t*NQW*KeqSz-{u~!x@PbnbI@3l^;P_p+Vo9$i~bRIPD5SKL5f?q=hUq^$neteD|GdcqEj9B$3H|=y@5?i0V~UZYsVAu;A~t6g)sy z`>E#QjxToOZ+a@r?;BJ)SCY}jDQ|yJD$0$lPdmhd6#zoxDL+Gag{*cq8au!5W29qV zEsQk?^=lHwzDbrSu-Z2)-$4$uc(pA111oX0hSKgV`%Z_uD#(NIGpNcq&$w<25)v_z zGX5zelg!|xrsOJWRwZWIklNwz-EKnM$nbRf*;X*U7fiU@wp=y`Vj00oZ1P5{xsm1|;pk_%eJ_ z#XHGo8zfyf0iDcsKAxC3o|LjXm3xj^mBxXlyjCJ(l|{(;k)oH7vruX*4b)=^n8JKNH<$Z5hl~i z{g>oA1;}Qx(fXH9*J&eE3lk75e&dQP!i$2Yoh`H1bp?NIkdiTjCW!iOE^AbS`;Ne3 zIy@=+&X8=}q*S;GP-sE2gMA58TYQkh?mgNBaVWyP!!(HWSGa4JYs$08ze?+!zd&dT zg>Jwk43?RwBafNhVjdt>ahQp$sv7|MY<=6>KPlrGcqslB#=|56LA_h7*>V5E>Txyj zQ)l9uzexhIY2%yjzcrLBT!_}Aw_qkz+l`TH?;cN-V%VmTF5M6wXp7QQOK>q<>r<4) zW-;O3Vj`1gnJ#45f2ofJ+AsNfd-iNl@EtzR18K_CqB1$a~p(wqrX(K zyf|M-86tq&Pp7Zo-_DHg`sD>b+rJ_B-oDk6_+9AS*{6zH1#RECP3r%?YxAwF zuhF~zq~X*p(GGDCO_~n`;9SaehRgLGa?VCCJTYOMw^Z$DGlXGn*YObM`#H;NWQN%@ z61ynP04Sc8*gl4LKE?W`-Y3xL#ZUCg>3bK_54s>sincXk7&}@8gLL6>;eSjSWB<{8 zVNyQRe?2X&wgZL#eLQUkd|04z-!@V@koVs)sNHPeh6b!Z?n6?0Z-4n|As$(*=cS{u zP;j0zZ=cSnlL`+97NqOX5pYr&DdV~D1qLgN2fPMWhffg%lh64i?lK@IN{hgPFHF90 ziZGdMn=}3qWMj@T0H|~wMu*Cbmq$(xH-LEvwgjZhs$21M1KZ>aP>rMgWta)5Y+M>t z6efry<>I&S#aV?-5@Ei`Iat%-O}A0MMkY2hl0h693WkUsDiji_9<9qu^9Kex$Mjfq zb#HA*gU=l+@}aga@3KOXZ8o#xX=(@+O7%3#i$_hWO|n56)uN%tGn{<_Ti#;kJ-hO* zDG>58Si_1cO`J5LHtsTD3+upQWZT$M7`6~KRDJld-0^oL>juyms=^AB>{zZT`ExH4 zFxy#=RHS^1w$}vTmQvNrIwSC)xY_gHg~n7r35+?miNo{8nHcuI!U!;NLe~c(=tp)> zse>3zcsgVXrHWC1hbOV-y<*+ycB_Z1enL1191G!3BYZ%@<<=ABw&P z<8Sc!_)9ohs$Q4yj?Y%FU_dI!9SCGS*J&$x+R8tN9T}{y7<+GB8`Z8yI|9x?FsYpU zN-BdT`xjrq0-JAheN}I*fO=v+o`z{qCwQV_9q)y{vv{;`2ensG4Vczhuw@ug2oS}i z!L=Fu#Tq%ezJ@y#wiP5DT*QcUbFvz~GdjuFeNZY;Wl^Fhr}tn1cdQB?UX4{Ub-GIvhw>&S-#e@3k$wQgPi!#(W3Bf64y^(f%56E; z5aVTy2=&ljFFb?{RX8ut3%9`?>$p3AuixGzYr@Q zSwJhIZyhw3ZYJXj%e9+fTcmD!z$J-dfK63pFQD=XKRAJH2z9)Wi9hIE0{yCPw0+xVB@R(H0 zWL^lBf)AV{%$UDh&`}l#ZGOPK8~?r z4iLU4ORz{D`joI+0UtF1Z7T7s7#sN39pFRfJBOZ_Uw|a_mEmXOPdkrEL$%eGva_9i zfIz^Om=M{|yrE0dSr~pF?hjM~UZg7AyM^ja+n)6VmywTvZKiXwDs2T^Fd|mPHd|3g z7q3vwsZ5SIIQf9h+^DcZ4re$YS**rr!Cn$JCd^2*iKU`j9hK6H%+yIdH~xCD$0$6O zy$Kq|w-`fhMy}<+DKJ;nZfHMCm_RwZpEtk@Yi9y8q)je+YbY=irI75!WBbDSCh{pg zd*sRnO^50b*NT}gL?kkga5rHxCjF7s=LjyHLcY+w*BE*I^MZA;DfZsr6tX8wtGkx^ zeA(W`G_af?+{N?YudW__mn69*vRHjKH+Ea5tFjIgL+n^NO`R>+<%nQE3lbo#(Jx$! ze@UHX-i!cu^;F4v@&15&noP7<#CqYzB+jU3A+~)j>s#&ua|oRL`2q^}IahKfch zgIe6zaEa!ymZMh}u(xlaWw@3sED7NdHDnkl#aA+&vM>#<_a@66zcBCK#S7p^jQH2p z99!A9ja1Czinlf1hU)yN1(+CV#_)J;U*OeX>F2b}cHYHkv2QAa8^}F)V?rM2&zh5H zm`q%r#%{0|ZG0G_Qp2#c-s!xP3$z(#xabbe?tK+(dakN_VU6|}xy827{ zW|$g_PZ{PbBA10W@6i!0SAG>JR0-@hUVbkH9mQh0SoRt+oO}TB;^`-t2;TDa5mQzM zn|WBhG__|GS0**^%wBRiyoEap9qZFzpsV6`t>D}gI%WQA>E7k~puP$aF}%p{_HFHtkHqmZn^O_84AQc0 z-M6PekNjib?n3F}+Lst+H{EJ@WBehtrD{9RC&u+^g8+4rSWPS1qNUN`&zP=rN0n?PCv#?JJC zr7faPBPxx@aefkbkW=i{_7havtPZnqhHgAkg`jM04 z7q{GAxxY5g$YjpdMzw;lns4LEt9|c}A7d1hizYMhvu>-M!R^+g96|P$PBf~d?2Zb= zjZXckHzN1Xf!d2dNbRS;J0fRn^HVi|(zVKQkDoSxLEQEC9X})Cn}*`JgN<;Lg&CXx z)9>vG=^eQ9|8hcJ*ZmJNl|HC7_@OSna*S+~hk9s3S_I+N#Oojt@D>K;V`<-3J`*xn z*6)4!7=uBtmQ?bSQ-IlL<9|=kUc*gh8$;}YErgo!@)83D-GSE3nd_2UrhqSe>oySk zEpi@(kT(oK01EI7N>$#A@o6vtNOS60mquU>K|;79F=7E4H>I93%8^wht-QL#K&{17 zac~=`4U%+}szJ3uRx2!?qmIKx)w?s;#Mozf#4?;4;aMsm^?eLJ20k^IbI3uE*An%VXAX&L2}@B zLtvuWmq88jFwt^%q@4F4nC5>5hahrQ924T>c7fU6)lm(?SXMAL%N!&RSty;X8EtdY z24*^pTDW@D5=3j&^RrJp0W17jyu{~7!EH%Ih&Xx9jVg$&=3BI<>Uf6K;*_2|o)N~! zPsxc|PF-PJI4@6k_qZfT(^`JhwY(RCNHL_QuiGmKf{$5;Li9tN`JNy|J8FL z1l(?qhx|{)5D!duAUh9w!S(KQKcmu0%55ZRXkyX`?-M;&t2EzIJgrOZ2DO|SwYR1H z(P~aCXTR&cqKzEKY{3$jO>i!fF~Z072uzNb9D4r5Sod#)iBcz8+G`=PiazNM8$}ql z~?}fu6GBn#~^fM@)R$p?!MoA1&~ia{gEZ<#|jorl9)o?>vSpvW(=?IXyEq*P+6> z8HTh=8Mng&7;EMzuFW7|29?)i;8S=|ZB$%3u(!hSqBe3yd1-{f?4E;;Jhbx{7dXJF zjH$Wu!N2zl1%9OI4LNICMSe=Ni7R6yx_)MP|3#vwYz%1K^9$dJ?f#KJob%kLb}W?( zASB(=`Z`m_(3`s}f8;T;k3Z@S8q=C08R-Y&2qP(ZE3>v_xA;_9Ue8`^Bjt|Q70;ha z9kdE|*H$ua{{%nR0v{AJm?}K@xBnHpj3{$C*P7_4@e}AKe9sa7K%vfv;(f51tP|fa zkN6=v4{9gmTn>2dwaSqO9wZ1$m8osvE9da>Q52Cnt{tQ zMGUw8?F8*5gT}Eh-fPj7hHr%dE5Hy)#G=Xex#K$sd4uILgo|o>QFI`#erl%;Oi^29 zjtBCRJx_vd%UcP`Vih10&`72%SbTD}p4B8=lt}`b%Wcb>t&9CAkFSg~it|j466$B) z*P*G>TZb3VQ)L{pFoUJSk(Dk9PN;SysiLK3$^RTg0CHjXbL7%*MlrtCzP6w^V-4lE z486d;>4hu>bJ=lpruB^1bb0(!#B zbh8;w2gXlO(>jF=P(47CSeW1I6Bv)%$j&m%mQ*PiDmZUDLtE*U6THo%+!jmWAGfBZ739M4k7sI8 zr?b`yY#=+ZQMNtNepLc%CuObMeVY#HKS@aJ97`+tQ*07)9Ugw}B5+-LYZ%1h86-&% zG~^;Bt$6$QX^KeyvGm3eAJD6I4=RaI!6|?V4*9|jgH{S=Iu;5<9j`lDcckvvOU%4) zUs{X~p?US_s8K=YOAOX{IfObZrDVrLWAT$%d|bdy^^LQ_y8>P}%1n1qn1(>_k#dk4 z%YpkHUMsoI97GdWsIPb8QuGLGllQ%K-%mC(S}nW3`6q?WXzS&S?wt@^O@$?FR297e zi3{<>j3L9&P?5oqWN*55H5|C9Gbi@B1Q>Ciwx$0qp80>T+x@zN@Aj?u*g<;i$Cis* z1_%Db+ud)}2(130WGaKUv!&WBgf#+Q2?p=Q_!%rii5aB%f`)X#>fU`lCGd_0g}GR5 z-)^=+Iz26UJ*J((ANu1>Kp*;+mUs6UL!Jd*R~7A%QQr5^g$`-~|BaboLRDMYgH3J(+k?f|LC&7)bG^dpZ~s*uwQ@zSbI71k>To+ z15x+ZFN3*=gmi}N`q0lM(er%#GomG9{84B3b&!AB1DwgWDWC&!+T!l)b0b^nTgZ6K zH2QWs7UxNSbryC0Ok#f1?V2piH{{0wD#F=q2-- z{%rgSNH;2O^@PU59Ske#G}mWD$Ht6C4U)zBs=9A1Cw10=bw;mzr`6&0=nSW{0y>z; z>(9>19ETxVvc?~R1q2^xeJ*?Xh!M?!Xq7o>$@+$=oh06m@!;a{7=ZVze1xYeKGOiKhu>miGjIfC@?R!ws(u8%q z6`n6{EY256D$Y#U-9hZ}g|U>w6w5Hj4VS;QgfD>91!&?4<6Ly*dtbx9sNyK-c*O4- z07K<~dIb^>%$h8)#Qqfx59eBpa!kWu2r*gu6%b2^-?uj#clU;J%y+JWMNu9ox#DT* z&Mi8VjWJ1+&;q9OuHR?%x%z>>jw#Fs*no#eAcsj+u{8^mw=!2?alBIX3HGP9{(=Xh zU?``o^_4ho)Lhmc-5SXY8V=n%6T7A>D|aFYb5~kSkxs~9Rb2Q#ykMOa%HW%1wYEus z#1D5nB7bSr6vsAOI~+m*_OaUS)V_IL+TO7B`*ZD=qhr z)Bwk(%3>i>)i2yzRtBU$c0hC7eH6|hpzCjg-Qmo<8K?;sv$NB#f0X(F89Z0FUQ}S; zN3;E7yzE0o%gX95Z3nYWUdm}7y^d@y-ZJ{4i9Z4+gj`Md!D%2WB1ykE{&S4Xn?7p| zPyjC^QqTQp4@G)vL!UZ>_eTbQ#=Ivz0jbXq7aVWjnSXjG#vWV}+)b|*>Q^#*D!-Ll z8TIU;3wE>cdD2!m_XP);@`5fVdy-iMqQVHQO$w6uKi0VC?HCY6{v2#7hBSx1cNoaV z9o?MXsl=IiBKtwiz>Nkl6z2F!w<+TNj%> zEL-1Ke3l3*QgxyY-_A|ylF?28^)#NXkk1R5lLHnWKQPLT;#~}IEM%W|;-eNL)X)}1 zIxbouje%DWA@GyQV%#)!24h}9kY#KwArRmm9F(gW7WuYxcFUJO&L=R=9 zZb-P%XTn-%*KvvM_EBFLH@HV0*8~5~dSnmxq-i^~yXw^6muq52687@Gc+ywa7?Q2j zl9BR)a}!hZnQ-}-5TOu8$%VIy+7{ay`A2Nl zuRo>6(r*s8lMdL`5YK<|X&~nQNA=ZwayGXFQPu+O7@l#@CQAsyfEJ6sRNAAt*hS_BL`&=)tdMRgw3 zaVH9WeZK~GY=@^wYHAW}z+wonP+J?yP;6`nW1|2&pa&3pHhvGTXISCev+x@{&p6x)5HZCVl4{FbH zj@6#y0=EXk!~Ul;ED~bEs>UjBv>Z%5i@)G#;uz=%rg1@l;_a4WB)he*)qfdWz)#d2 zt7GnG>94O30c)ggBAxI^ye4S}InLqus70v-tVLk(pZZmRS_sW6#qcA8MHe0Lx_m6p z4)k2qj)k7>PUsmBsD-iq;@;4`e=}thgB2|?PSHv2VQwEHXnD&XyG0h?rCMIgQrG=F za5<{nxu)sgEZUFO)ca2zCP{3e94;ya!mVM%M~)V5P-L0|a&fz;g|d`yVA}F8jPRa= z&C^*CGG^Oqk>)=14_=}asO(P7L)!2+nFgD3i86#Tck5fp;QFA1{ zQNS0h8*q0{@cP2>D^fw6yt>EUFxN+>zinB`+Af0{6i@SywJA_bI~n}bJfV6snXc^q zV!w>P=<>COFAX(jB=*)s(3^jns8)742l2CaaZt1SgL?c-27b;5{hY9JF(cPy?$` z0gk%pdp;)6+>v7!CYb_(pOp5Z+|PXiIHf1HgQ|HbFkw=*756X2%{_6rk?iZMa-L5f$&!QVc|?5MreVE)aMS zSj6)4iNOJcnn&)+G(0{_370;81d+=j#*sZVL{3C>8Jx$3cTFICrW?DjB3iEcDxF7+ z3?|fra71370VT(^Uy+^Pl#JrzEYv2;m|L_i(G-d?bHyHPR5^Sht7K{UIv?2yC4nSe zpq7qd=UAH{{cK=ipD$8}z3y<>)gITAiw`k_StCYKZcpkH+4jmY>*zGg#0{|82s8Z{ zFN|N0CWo*ZyJLsho66nk;MYic62iItf{@W^BNBKUMsfJA8{V^A(C-RT2P_`wwB2D^ ziEB=t)%%>hZLpj+6uldF7UZ(lGjM7>B1YeLcN(!cBbg(S(}m}qd{o(0ifKeOg8l<7 zvL}Y6{5n9#HSh3LR$|Dyd(ALZ_F<-f^3Uj_&lokFc=^Y}6E|)ixp(8{F|_!V#h1&c zPW`@2OgweQ^un1#r~2J)962iz!E~~h6aCjs=1Vu2(ZB8NI+f-OR2JqNR`gY_?AVfR zm3J~S{FIfuM`ooQG{D(Uy`>NrSmEQ_A>Aw#_~Aw~W%`q@{YnL0tjAgt;D<(>8}r{&x76 zZ|#0*9ENNHdC9(2yB8MA(K(P8CF-BZ2G*qY&KevK4QBan%s>jtw?g(|;i~hzob>_K zF8P!>#9e!2i@tW~lgJs~8ps?6wK7~y7$K`~9U>3_HhbtK*V|cxkgXgA1ArQ4`OZfWbr!po6+G-I^xot{UV3lcm-h9avYyu*lYdy@>=5_?!&t>a-M$>sau1v z!redVZ#Z1Y>Ezl=j~}@`sBUmwi1=5&MbQ`Zapj1w;oF?M7R%n+9ukEu? zmoS$8V!vF*V1H8-#7NZL&`Jm@#tlEH!KwCd48%bC9dlVY8IyeGJ%1>FdK!4k1a$i4 z{oegQ`Lqk3Kiq#gV!uFCy>Z$7VtwTPLph{0CcJe@_T3TaP*{{K#NV*t47Mxl%{$O__4X&8R6z<%#n=Nq=cw0tFG45-P5`Y~v`00?6ANPJ&o*ssgSuXQ=ME+mfbA6{FyT3G4e(Cr=@N2)L4*Kc# zo6vtQow-5$1xQU(X<0MZx}}YndC_%vLI)vzBf@4%?Edqrbo7y}F%sNc!QFYv7WQ1l znAngX$aRf)2;pQf=_Z2sh!|AE$=PUiUxXVytGd1y1}@CBu45DST(*tr=+6L8TF|u^ znmK}!+C@4w1);K2WvCUj5cki&M(8Syoz|+iM;G+liaWk2{MO2KE|*upvO# zM`1zOJk$L1ApI#@x#~OxKnncQr#6%il_fc6sfKg_5+N;2Vwt>8nPaTwZwkpP`OW#b zLKR?HU)y6@66FO8lVB*4H?DJCYpWC^EJDeGH9};Wl2_tKQXe=~Q-m##*CB~pfbJPY z{^j8Qzt>m5Z&#cKi(EZeIUqINRlD+zp^lQ&E?Q%Z!+>-1U+eK;hLG25fw@=Bpy|q< z-2x=rJCctId!QU_E$d1*N1f&o~&=NumEk5p3+5Vzc6C0k*JCm zDi`rPzNm+P10;4-+N)Y>;6_>NK82*<0uh{0&+*#AxFY-?K$n6@$s@S;wT5R6=Ok?2 zI_B=3J2&+dol!S9pIepCAt@liB44vB^Xn~#zXrS0j@0CNMbcD)6D95ar#Ia7^VJ@# z{C2xy@sq<*ky(BO{ZjYiMj3b3nllKtNnQyiY)X)@cfFTIpr;b~+uWsyBlR5pUF*jX zA7ScDIGGIIh`TgJ@Jk7{j!cVej=T3hTg#^eNh}^MFGJsrixuqZjYls)C{PR7Xic=i zUhg|#ULma{O#$$U+#6gU2F#(@v)M&GH}U-VJg?DAW!+yjZWZ?ED`(t7%}6#2hqbu9 z9sws+J}ro4v62?%O08vC;TmT`6haMd403Ls^Skzs;ccP!tjuFzE=&p4x#2eJR8oIrfg@HZZA2lbqy)|^Sx-;VIRcohZxvz?8a5=A?YNDpKh+oU> z#Rd)5%{OxnX&uVXZ2PMDr;Nw=YszHA&T`!ssteIX(AoN51brEC-YNR?xeHL0JjeM+ z%N#%}4DR`~zk_+_naO~$THGJ=cC7#J8VUK7qGWVV+(&Pdv{hBd%TzbYEspD12;#$C zu^67Ps#NGx^h#WGoG`u=Z%Kty+6B4$t`YswTH9%HA5p=m`(756XRZ-Z=xzEGI-bZK zS2oyE;Z|O9a`K}n=>C#XHl8A8tsND4qZDk>H65;Gkr~rJ6`u!H&lP$*xa^oxOb`tX zL0Gj%U0>b-Aq$iJt`niZU!vU+NJB0*QWEQSFRFs(O4!4SO~KZusTpt6j7-I3u`9M zpSUf5^{J;Ipu!=o zi5w5D(hzeT=sQt*#^JTo^L|T5vkWs>=JQcsShmm3d4y_kEo4)4QIir1)3=T{E8Dtj zDjvvP=|30$#Q5DV20iGLv1Vmy=8znp(fvq*wTrO!r|N@}-6&1we*Aim;tFXx9Q5fM4w#RRFr{VH!N!~>#>ab&VUz&T#Sg2~6*;nWwVuLfz{bx(US&Ht>IpBGXmbJ;Ao>QV05vhe5cQ_&xc<4s40b4k|s%^{Qx zee2fs%luE>JsixK*A&j(>+PGrK}=YC1qetFFJrIHO@8b_PiCY}ZCQH9TxE%OZC#8P zAD_wyP3<|*k{!7kBa^1OYT7fWNKv>E0aS5pK}|LF zz2yL1?%C@Nx1fsbn+m49<1zwa`qn&~YUNFHyk7$zcIvA>L;iIiyBoKJpG1U4n-^kp zu~ItHJ_a&uRtZo3_5>r5rirVzeKBf58gd}EuJ+`S*JW6~{C4}8GS==~ZBB&36k@v; z|46^`I?}5<&EiD&3DqvPP39uCjRib2g~Gks%&CQ-476M!7Vhjc&E<707{Um#k3^q` zAZ+9|@Xd+~W=LCmR8-BJ-3?da1oY^0^HvF$NF4+xtd?S5=vS2i-_17Lt8ARBUb(o= zN>N?qW4%Z$LKEXQDE7)_u)2y=t2GdN3;t4`l6#|X(<^^>XXe4F2e*$ZV~4%3JL(YQ zDaXUx3NmX{@N8bSwI?&B+@H*GBmWo~3cnawJEwZXb;@}MptWQ|r%&i!^UzdbA@;@B zW6L?VQrEL2R{v0Y<`4XAD5DVvBVnz!A3>*;R}F7bMF7gNvMnaMtb z>%J35&{nfTD?zAD$&gwKTn;g9pqbHo99{6>LL?LYv^!T($ZEJ_H|`m(~hS&a=Q2rIsk$$ai|L$PV{X?;=Nk~34bM4#xq zvzc$p7N9uR)Ra{@V)vrw-P3EPJ6p@V6hYqIyC14U?}u}T38h<}F%Y_TbF3lmS=CW@ z3SP#%tHx9HG1lA02!dFcTBw_wnFvjlx^=n6{)NimdOS#|;N)to@wVoOgOddhvdPB5 zVE%p+%h@qf&4Qd*QCeoVAi@Tc$BZrTRvQjMmKOHL*|D@{KSp^9n$js2U1lHqQ1yEM zw4+kK*~tc*6&V_xoMNKzNgBPOW7&|TERwOQXYig7WlXY^ZPq&y_vhz`=c~rsxeC=m z?9huuj@8oGrWV`REdfRNfYmNbq~@=s@ZDpUu)3^VQz!-Nu~E_&@i@^b*&EkvR-ky{ zwb@JUYMxeaBT z*q{g)DRI6CS=SPhQ#17ix}fGP^DkXPC1E5kTS;+) zX%xltSD2ZyUrG?92>lN`vHK=E0cks{N{t%mU!Mlq&y~(Wq+$mO+%iv67GTd-WgRb5 zdX~qkQNG6#`lgI(YURc694dS^7-Xm4aHwD0vefMqetm3f_YE)tX}Z7qCDPNVbEI-C zZqB1ooI+T466d6P+PuRZDNmhgF zJ6?#5Zsmolxpf}@`anq?qRMUS`|;^i?B(Wo&2^|TlR0FM17y(-DmNVrU>oB+f^&N9 zL~;4SW_>LSEx~!S%4AV@zvxo*$8S0BQu|y%B3(Ty=~-__+(TEO)^ko5V?J*x?MeX@+rSPtaQyeT}2oFS)4)qB!@hl_aU+vBCC=iG^M<&2HUs10CMv8fhU{`DiL zQux6Uy{iMg)(E^pXlcaO>6Y`jzsf=-K|%-j3}3lDeL-Jef4%Tz zH$5lAC>(Zgsb)bTN0JLy;DwN#3ZaPVH}tGG)H8oes!^BAk?Y7w_qQuAHC@&l*<;op zydMoODtWcZ=cwmh5K;6p`xOc7ng;IcYbGmJ$th_(swS^9sU0e9u6CyB(B|pINEw?K zlI~i&bh*BoK`{j7xmvp=v!xYr8-G*vg>r8TB^#|k(KRL#R+B4V2gGA)(cV4N{xmQ9 zbXurs;locLZrYWnSu)CO1$xo%@6v0uOIt0 zJDq>@L~vc50DfH@cw&E|)_qQ`7Uurkrg)v6jPA3{ul8{oHCOrY$zv3#`MMhQJW8V| z>Moc2Nl&*rQ1$_sXr`)Nw<)g5Q=?z@&PNNLXu?^(ZMmi|;<_UYK^WW|4eZVbbiH?9lf1CpHRTKs`)0RQ2x1DRJj|tx9mxSvhCHnoIA8U z+GTH1i(}M|tF^dBFiA1i{hLBYAtsh-w$7;WP*L`)hunv(yI5k3Gf$4Nf%&nd*N?Zg zj(`@!12nE)9Oawxw6`6Fe+Af|9KKVsq()mu=Y3tqC!>dp<|XZ_dcXJ}@|XmGRdXsQ zT3%4qsw7(bSA;B#WUFFe&Aq9x-Dg7%P-@^>Z( z_oN1y+MIhX4_U8?zWUkGYEK7Lvu~&!5uTLf_y-=!cyo+$UaZH-sep(O7caVIt_D^8 z0Yjn-dODoB-H3T`)Tqz8)LM%z4xQ!YD>KDGjl_?}IrQ6C`>DX6R_{j1bAM}H*P9G2 zK{^5(sClm-w~Lzi)R*%LpOSr*=b!Din%HCX}IOm=!2uOX`%pv5!^!G$f7DK$NNrXYm=j7;V`4HJ%NhigVGCakUWDg$|*Ki~DYd1k@rK zo2X}OeMX76u6y$&?y@&1HOW}M7w3LF zzV|QpKQNEa=en-<`}2Cep6~fceS4fRm^gFsMgtMN2`^U9SI^MboZh+O&N_v)n`LB? zrFzPi`?$}5bHgW?ADA`)vNT^0Zb)?{F+-(BV^Pjl?$3e?OX_Q7?bM_%@QcqADy>*M z;poYT(>gig31fP##f&y7d&wlL-XA2o^ z6N*c{k!BiLckLXVA1iJ9hClZ4JaSGVUa_u$BMl#E*A`Sq6%%6IL7=;KdfF#EPl`3D5r>PWS7;IqiSqp6tii{_*eC(Ks7!!tO=9*+A_vc26G+RIXYEM zO2P$OK;bRl{qdb?C+|&a8p?P;a~7LSu+!EIld9%!((7BCw@ryUW5Dz zbvP@sb{b6k`pC%m&U?Q?;5zowr}+%QWK;eRqY|PM@r#15afFeJ?u(FYKqSzyR|Otzf*Ir%DC3PE4lRAk&PRIK zniLIsaA{HgLF^OYHO-vLaFl&Rt3wynlvwBS#DWc6nU$N=u#ykX&X_>>3UGF zV9h$unr1fwao^^ciuBlDPhLu4`N~9QG|QXk8=r0L!H4a8SzMqTK3sS!J|(N-sF1}Z@(xLi4c4G!8_N0k}a4DQ~hX}K~~1L z;O{ZEy($8|S6(th`IPbAU|m-KJ4uQ)oCja+Pp&=S(6CLQULdpwiGf*HOE*Sk6-Hh)fOXf6PV z7;UO`qx{**iv_ACQZiW0IiXSQV_?JOM^i`&%|GBx&uQld|CtMgs+8Xc3cYwZY>)uK zojol16W@q!^W7;^&F!1dFnW4gS4}zso37wfKDw2s6~;{?d*3f2G$%gSYoMY>xYDN0 zHocP4us&)2J;R;M^k+vi^MJA?hNRfgX}O!dqC1MygzC;`%psy_6z3e_;kAs%aUcwJ zZ=h@CxO6#nhcb;+bjuq!0VZQMPp#EPEs(%AoxBR@OfAlcAU>30So?WaiS!sBe->NS259Ns|FqI^2M-X-#P-*XouI7y+qMhSrN=B`UgK_5m}eyNLa8;#gUJv z*}_gnsc1QrCsYEm^A`k*GWB0`|Aso}Gbqqr3BymBto`XFyolxXK24YPJ5*8pZzQt; zkWQCNQ6(tjh1i$9a4eBvqHcTiXpxeJyLaDXB>n@ZJxsdIQH=w^cNIdBPi~mL9UqISF6EwxhzvW7T}9cWU-oWJ;7;iZ6k_uK z7WY)zuL*y)9Z(b+iIvsGhk!ZR{lf|Y;MFS5X9LR0UUyO>9Hsek^gQeMa`@V`G9SM_ z`X*j>-jFB+Z`@t!_{0-G(Qx)is?ww)FN5Q;zL_8->?ho@XDB#YPDICm-L*EjG_--j zP-hg8z*8khrSRzOdE=9+i}TE&g-NBwOS4Mfe0do1^HUPwuI7U$)O}sAQ26E&oF{EB zIrmpCt~ipei)x)}JZg5{{gWUWup}OHR`SR--E$9B<5M`6n&OZ{#fLGp=pu(HMser; zeP3uLs3x<{tEG?1OkuhayF~Zw7tOHZxlhH`h6ejReN|Jo+B?wfz$YgYo7{OH-{_su zgOF_D?_@&X4MmP6XU?jm_4Op;o`x>M;;Ejl$?<#z;zt5`vXJ-f>zcxybb0?#^{Y^t ziAQhLN@~)QXL+>mb`StgLJwri=TLbG)b%D)VLC!?nIxTx8LrK9rv!Hzbkm-p6bc~4PDEgZ4&FdMmpTkp7Kki`1v8IUTV zns)W}F5(EDmj@M?HLIM=pdf#1)P0$<{wxL4d~oCJT0_*rFHAmq>G#iQ%GX$8YzrwB z&4YHFi1O6yE+_J~*R?O?mZK(pc=D85HIDVSn`|UlC7Fs$$^)*GC&^~-oi!!qLvrw* z31LSb5F%Th^71h(0uyrX^pR|uPJJt9G_iWdhb?OnKkMlobFi9!D|e8#6%3YV^$t0( zT$v94xR-fw$7}3geM*bxytKi(%>F}j^4Ko;0Bk;E<>DvNyUHB$ZBA^q-N+G2tuk>e zI-euJk*_8==a%Ry8ocuk*%{XSF9~Y4Fh) zYt~a0euF`1bex&-I6fhq;1knkbVlU%dCkLUiJQ*8ef}VWL?TDkxa6Xv_TIa@oCIxL zyi-tMvb0fdXo>miqh}bIL-x3Xk{w;9yaIPb$UxR@sn!r5Ec+~$!D@MBFzy|iQwPfd zW6tUlCL}g|2Tu;r%WsHuyP0;&$92827Vc2AJRKx_G|(6GWApd z_v4CaP0YIi*iZcb9RKL=drfn1(Lu%!TjxG!MODkvb#rJxuZ6S2oXl7`J!OO&FsvP9L4Up%n*HS@9-{I0;&`ZM$^mFSQ%ews=_9#-@B$y+Fbmgy%Z^n;H_9dn)&IrGQJEz2h>sf#JR`Rw5GBcg23=_K zuA07crZ9%JDMA7wnSAqQbLz@3$E7S0B{%4P zuwt!3hqzL1ft6@irecJKCuX`1c_#xD1??v_%@gAH1JP3jGP`x z3nI$XE7E6b0|+5s2bZ(DrIH*6_aJTO7l-RX{Mic&vnEIxS5;TUkO{i2P5KnTX(E4^ zi!DG;>{U7<)I)w0dHK+2EoXz|Rj2fq#gj}<*Lrf$;wM~@F5I%is=^$hs80s^0;eyV z*dPotXu9>s>V?z0$Uf!cGnGo8RHD~<+-BD`CoMkpM&(UMu^)Dl&(rE%{ zaR^uu!1A)Lu)0ab|7>ZczV!ugKiyVHT(I_jr>bJY0qmy&DGNj&`s6-ugihQJh(aIS zhtc^nhp^w%Z4Yp>XrgPY?Rgdm?-zHR;v_8m5m-CEfw3Y*ygquEJ8d^FteEgaWe>lX z7!SkTD1$o_(P0&62>iEo{%48C%u1#_^KR7sn(JYI?f(o6`yC!&Ttu@(h}17=Lj1ii zSb8mqr3hhrVE^s-UY2dLVQDkp)Wp*ny3!g65_5I?C|ob9lthL`2eb+QFneU$HV zfmIynn5JJiXyr9m4g-&RsJkN+dvE^#j6k#SK4ee$A8dVpEa1Oz`^K*Gu{D=F7+o>w Qu4Wk4%He#ih1aeB1KUWtZ2$lO literal 0 HcmV?d00001 diff --git a/Clustering/1-Visualize/images/distribution.png b/Clustering/1-Visualize/images/distribution.png new file mode 100644 index 0000000000000000000000000000000000000000..3fe606505318eda5039cfebf3eff21d7d6413bd3 GIT binary patch literal 65573 zcmZs?1yq$?&^C-BNP~2Di*%=SgLEU^-Hig$-HkLH2?6Pn?(UXuke2>8&-=aWU+Y_+ z3l?(jbGY|CduFcdnmrTtNkI}B0UrSh3JO_TN=z9F>Q%wZHykW@#ZOL&1N?a7EF!H6 z2mblMnS_Gh;T@#3oS~o)(OKZ9vIx1%3V+(!j=vnedoi^$*t zNZ|zJPWGYR2&27uB_@InetN;j#eyF}`offy;MH6WG=*7<~quuH_7o5`59a_gYiU06@jhE;$(ldDRVyuRN(0N6p1ui z5GOeqynu|F8h+r&bRFlXrNxi3^ASSmzj3an@ZtZ&{JWvXqmq#eBf74lqLlNZpl*d% zQ-kZH=$`g)YS*7tN!9)>-MGo!`p4v)kZ0xW9gHxyTs&^6Fn2b;A;}VfdsTjEVwQaK z!e%M?Dw%YDyj=KzLimJ4_(1fEMNb}=@oWY&fn2JK#IWs{yqB?&cSzr=tyv^5bUdZ2 z*YhU^IpgnX>9byLjYG6{%RLo4tnBQ;MaUZgapun2PttoPD`!tuZ`Olo(BsF;+2!*) zbw+k)GH&zC5Sy1xp>SPbgNsm1G`+}fqY0fbhvO%+;4R~Qo7Z|Eb3qhXDU4YHfSbht3QHTU`SL^spM3l&_5Y^J>G5$+_RvPb{1 z@=#ABQcZsQ;$Vco{mPZTWhQb2zeADwG4|DlayBU;4lt@7HF``nxXEmiZ)aUFIy<|B z8Io!5ca=1LgV&|l=87R6nwV;a^81qf&D$L0GKsh1I2SAH=H#+@DiBf^8n6aq_2VDL zR~4w58rSe&HA8j1vDsjAdLxAs2I|bOT|6X5FwW2Wd!PTR9jjCCM6S=$%^7hmc=0j_ z@6`kUh?da}yU@C#RzH3EVvp~Zm*AS2?2o>SBoH`})^#Vp6j5YZw)*($`N4{69~%d; zcs{Q>*M#^QbiKUKE@ z?|D1a7gLjO$>rSVlOo%v=g{fnCd^F?R*XVl(XG{bFRE_moiH1kGXPEPFj3-+8^=;m zEPD9Pk!p0U-6y%W@GvdjpOq`84k}@Fe##JDq@5H!-r-|&`q00n-sey2qmeE&g-!BHIP6g@~#o{};b!@a)?n&dg_SiYIZ zy5Gf*-H=f|zp%LLpmtCj@^4DgzlQ|=Zw=j?gVj@aHi|Ub9Rs*kfwDV~|HI$Ppv`x7 z+@^w4Z{<(+WAEN5_7C}zJVvdYI91R#r6NlDN={S5tkVKRLj7#4NWGsEk_n&atsHCk z=3{QB7&2Wfwy8w?bhKtu@({p=SnTvz@ZM`>9N2y-EQs=Fl^4eI>1N-6;=uYGoBccF zOG)V&Rdv4$*!S(831H)IXZGjTnZagh28^4B2Dt<*sn$mc`Tm3ZRtod56RGnPuUvpg zIp;>{)|~%*Az?m>(@xO#l{innH!r2|9)_3*?^i6YkDzFJRgE+Sb=g?4-@Wd()2i z{(%nSQyV#iKY%5U!^Yt2@Zz$q(Na=0xZ-LJ-YZUS>`6|2Y0q6H!?^-Plkn?HqRd%| ze90G**&_{Qae2LzaJJwnI`~^}P4yZ5GBOnPeh+uj2@s9K)8HbW&5qvuvmdzkpeRRj z+GaEV$DqK(t@Voqo(4FJ0_o>DyUlD=b!P8=c0bAZ#@wAJw)vF1Hrh!b+B0=ox;cz3MD)PTv<4Mf9$C7_$ z#4nfpAuBDg*uiXFmDP4%fGCfYkc*rw3kp+hz2b(%q`o;*DBGFu7KH^t)E*NUuI#{i zm1*hs>>Ux5+%Qp>mS~Z))2hd1bwvmTX3z;0`Xv0H#t)TMR!bRqD?n3zFFB1(iC>vohZjjfhc6|uhWBhdJ~k~#JzBoV>PfvS0?y72d-Wut zzjVfUdc5#aH;k?Dj|n4zyP#)uW;TjET2qje)MFw9vRr#2ER%lox9@aW;VWAuh^(ei zuA|M7tkW~I0q^caTyt!N?YGA5l1&`7#iAHN#^mVALRX!$bDrxNTn&!rF{vC|m)R(i zd$6lNV^ZoKQ{3JBL*Hcb*-)oM-ZIirdn<-e!%2!$7Wi3MKcbv?Jqw#52_}KfCY5-- zw~G%w((>~Pc{a&EK-_+3V`A57^{*DL_?%yE%scqfoU@>o`Jxivk2mX91G9(c%WM3N?$pUQ>rd=(Znt?2XVnhw?XPO*(^g8@79^6|w8 zR2wpxzyQA?_NxUP_y%|1RT_OBzL|uPg$3zL0ULZTD~zYIej5JytAl~(V%I1X&yb|U zA~dDGeT0B-F3%Ew7b&X)CcllMDIBpiTuRDUS7m%8-u)TrckAv0eoE@C8h7Z90pggw zZ(jQAO_umJFhG$H&y(H#D{Jkyn%VAqZKQWj2S{fMZ7{GTl#l0wP0bgnV!rYDi`Kld{gN7SQv}XSVz7|<=JmEs z70Xi~utGD)eh_?Z$9wYo50wd2Wo81ftw>V+=%mt8=p~R@w`#@A<(Ob4CS&G33qG3- z0h8F+kFUiiLf<1)d644~Axe|SF<I){fnMb>0oF` zuC3M7@>@pxu35SG-t!-o+2mHYC0#$maMol$9ATc<9BmaW^*f|XJ8Mh1r#mjn4T!mL z>xFX2Q_SXaqK8o_^beTcQ(&LAw3ajATiEtVGhiI@YIS~}bA|Z2=$@v^MS3-=Adh@M z)wP~FEZAHnYHC%-38xLBaO|AmUM~@$jsHh1635*kMd;5QE`*!Uf!jk8eyoQoarQ6& zUcQ$z;%lbM`^J4vCpMcc)A|09p9vX;6dXM+zsK++zj^qN!LBlDNtU;NRjo;=2~jXt zU*9*GpKQ8+|L)C4$^yYYf@{aqxBi90Iz3E9PeCddG{nDJiY%u&VdhmQ`-|eKIZv(f zIB;Qp8?vz)8PHQ8=pvD%4vxQ4(0$8e3Evu0Wcg2&WqFl(q>cGQo5T6Jm7epL#UiMy z6H=Lw^wgdLbBBt+jz$!O3qqt(S5{gsm>&zV4Ea{{83%R$0ZNk{0XjOs&@?p<-h{W9 zhU0kGIMJjofZX53Rwv7x-0#@~zS@i0+y%4 z&mIU`$BU$sqv0E&k5?2bqNR_@M&pnVd!wecCZkmzQ;pB`)q!7&k#A)1=W84a1Z6yy z@t$!X9PET_SbvPu6x%SrhE`wywNtq8fQ3NGPrcaj>2zrK zCxIvvSjxXNu0TxSJ^aGtc{7MM@2p%g{po7 z?M#Sd|APm0%zY!l`rmgS=o~eB@`~PpT5}fHKLeTi4hS%#{BfB{OJ>ig45~MzwM2V^lEumaU%ZQz7C(95?^njlrV}1%E1ArO z%F+)L?3Cy+TyY*7*|3RUid8(N?Zr-q#ZILp&0WctGWW_*TxPEep%+ZVS<^9U@$&Jc z?fG{;FQ!Aj_mG!NNaf99MNnFQ)@F~yN6rm?ELkU&nUBGT{~r80%yd2m9VIXLF(irK zG=VCu3_WbH$-TAf+Qf-XD*<)DM0gU<%XLI#iv3_kSZ0y8{iw{sP$P+J!F$pqR$4yc z)3BY76P9M{JfS1?R+N#^D6WJl5)~I!vxdJ!t~)?voU@QTpN9NY*B%|ZQa23L`B+iQ zZsRZ^iwNnl(65XVs0zgv9ao_iaGx{<=T952>g2}@;>7*ye zwM0s&Nve6iP>CB#DbR1e-C^T(M}yAtmIte zqdthgJk5S(YkUO=S}7ibYy)`+(~I)NMQHCS zD@d&4cI}TRtpAG7vZA0F>G(3OdOpS4 zuPEPTgD!BZph`~WJ2V=OtsSVO%Hf!wpJ!DP9-L=c0twIiWjn==N#&R$U+^dxZ_#qx zhW_mnvs}bjpb#MqZXBE>6?@xbNQL2e2n&9Iro7U*9xFxlQ6?*C27kya>B)~%p5PVvZ=(sc6P zuv%i;zm#gaR-igQ3@Z$f6a6IV`!R14qj(sjaH4V?{k6ZQr0&9VRDCsJ-}e~f>G!x- zlq9gNiJDwesh6y<5qMcM!TL=338pU9LHacLQ__2;czPkOTFG%zkwu1+1VGbM+qc-Y zuQyHc0)lm`<(BEDlJcN~5JHWv{1(eq(C+ENTk=XfUpS;E5f`@4XqwCu!rU8}T1e~0 z6R8*e>qA#Tzu}~b5F<~hK5tVTEM?X!X?u%%HESssSSilmIuo@YFjCyh_G}nkuIoZZ zzS*Gpo6w-ktD(2z-AJq3a#U+lDrMN|SXI$lF@$5seDBG#74qXfvDcw@WEU4!+5ApR zc+P72)=)l1vUUQJ4sSsn0D*5elc{*if$>gWQFRJKSW#|@CZ})wboZ_P9Dx9L)V&{P z{?eMH6dL@#&Y+bqKzkD{5gOUB&sx=qKH1BRG=9GOCh!SL?PG<%QtQ9Y-mz|^hc6iP zerKa(bdaido`xu|FRDg0QWt&eXrJR?NHX6E|{AGNT|hM?V!08!D`5tuih6W#%o&cKXTjV=y!@H^LXMKP?7Z zD<>>rs)<_@+;x?(#izt0+rrDswsBclc#DeUlk$CYDc=6)7e@0_FfDfDjN8@KRe&g% z6s}WgXkb9N5@!>}ZJMS%s;P;0l=rYK8$}fD&3Z|>R!#83!$USozQ#L_0%KJTjlPH5 z3(ten;{Jhw{e1_NlFDv)^4Sw|qhqf=^x_h-;~$EC1YWIebC1<8?{H-~R{R`>Ay&2` z-o1ErCzIK#x7O;c^iuNE_`gej^)CC9g#tukpUqj*xQ~BLF{gRmj1>7&DWFxk;k>h+ zJAChW4dYv#l0^y^F#a4W>jvtJB9)+4^78xp%Yh)wn7&d7gq%3$#)TGKTiFrgo4Xna znih2VWRF+=Qf}nSwAgI|kN;AFe3JZsmmt3h@+{VqW|kOL;i{>r1$C`wqlj}Onbo8{ zJoq5NiYkUo(tuJ1oUfFc8WtTL9TG9WrkwHGkY&1rvojm`1SU52wF|dzK!XVlcoR1v zwSa&gWxn9Yc*@DCDRJ9txc@#KDJ9_>@~@tk6%^LMT3dnQ2yh5kYVl-qUv_*8rBi3K zKC5FdaCEMxq=2>v3L$Vb4SLOPN}oTY{{DBisnzClYnXBx?i4Vta9NEJ%noJ({n$&JFL98 z-OX`6ZN15Z&_i)8J3xzzi!*#~p1nh z;X^<~Y<#?4ilYo$X?EXqYfj^|#g|QH;IYuK6jy3EZM)ZOcKZO#gNcPz<$Yt9?Q<@z zt)rt=XM@M*enN>I!Qy(LYS(RPD4a zBa(~e)|^F?;}egg@A1_<+Y?qz&9PDU;l#b&cyBy+<=md?*TmiT!9f|@?$CGIrlzKf zA>?p<)?^!FO`mi3GBwPne@v(X#OPCvYUaZEndxi zt^^fp-}3>Q#hbPp0r@HRW5|z+NqzrESMdMxh6YWYCYOD|ZPX&;Mqo!xzWbw^+MS)9 ztu`L#9SaD=DguXTma*-h(a7nIb)1w~hLC^T^;Uu+@#Xv&|3xIH|C7%LLX?*)&DV?8 zweKril&9F`n}Gpq{h#mG(u*v$`HAPS8FfnpuIG)xuZyAYDB}B8t4$*~?UuP;KKnzx ze3Du*yR5dZ&I-IC$M3Gxtp`iPqQl@5_*3_PyHIPvS_seCPRHUNGJKc9+$s*Q@#EJ{ zch85IcJ2M|32tw1v#wk3Pnyd#t6s}b^^cA1f<2~CD6VM+Wk8HhX_~B{sr{`5^PIx! zYQV=IF*8PjhqjF-3#3DQ9y58I8!krqw7|9&=lJoqKWsC_@Ft@QJ;Z`nV}AW&huRs< z8mcxODuF;=|B07n>@cf&7PuP2Z z+CBzW*szms&3#x_gUf0HSJ`$)52gO&Dz>uy;e05K!y5Z=u5z~vRcI?WgjlBSNy;+4 zZq4@i;$hFFNny$K_Rq+Ym+!8MM&CIEa{ea}m71yY)~8KjrE)1j^SSD!t&8Ab*t5XK3|H&o;N2Ym?6v2o8xvF0;~FOHh$@$Tt{J}WpnvN-RKZdWv)bnafPUwNTw zJ{k073HtKdx7||P)f0SC`=P$>)QHP&fd*yYdWAhgYsM}V#30&z>>!V?={LaJ48_heywd*Xw{gt_hAM-K^huTC-Nn4TyXUc zu9xi1|NUKm_}3>Scr@p8IU&i;#pMhf<(0$Din}puT71g9S3=h#7shTA@yYed`1o%S zoyJ9SX`S|d7a5PqT0ae5rRX|I7uy2l9?lVZ_6VW{rRBury0XEzBa&fJ$VCSB+B`pWB9W%Trjmg;Opl`vQR?rouZ zqX^u`-DqCW_?edx-tu^{cHpXy#GgM>i%O>ds#TeM%8rFVy$k#(H|XX;;zI1eL~1 z66L&;@0Qx_+1Ppj_4o2;{q#Ey#^{^2=ht{#Noy4GJjPkiJTePqQrwVQd0UrP?_s8;s9_Ze(`7sMETRF-&yXf(h?G|HRfYx*GCIJPq({Jzh}-X75QH2NckP^3TB?44H8~0JLkidU3=_1%Y%Imz30F93#-XH<52? zX}J!db2mvte|1$g^QT!S@S9Mz1y{^`7{0D|Q=fqhHIc&@1DUT%nmo!w3} z-^ri#5R#qRIsHulR68If<=WbZwl_eM*#XSM^lYO?;EIEg!VPaAe)h_mdMQ0E^ln+2qpHuI(E*nm0X8ToseZN~%v(e0f zKOKQQfYCv{grXJ*a*(t0OG;>Yf|pEF^m@U=B=esXrsyM3_71iHP;_iw8MsZp%fg@} z3&RKWPSSKFor6KQ0j*|Xc)8IzjoduKTp0fOy|+6uZ1=@zk+O+vbDx znqL$IlC`6H;9d}&a&*V^a;D5pPrzwoFq+9ToWT_n8Hog7wPEcxc~L%%^&8l=KnHF) zeqwV#2ISIMVZI1>Uw_ioMWWo1;oXd6OJz2Eoxy1Up_Ra?`@lNOjKMjUu7&=?8~*{GUX?EQ?JRuf8I}VZ)1NdUoX^t zH?wM)sP@0T0F?@%JOSup1piTIf=p6dsk~rHIFXpav9VKjir?$pljpuUCI7=rzwTXs z07vp&H;&tG8xWK&dq z2SbANDz~54GW~L5#hCbn(VA4<+&BS=@<<^(+!cEEOd%|;jG#w19GO2|iha=p>m@#S z`^Efsd-(PyHNh&0&jjq>^1@%GK@ zS0^nO3NkV>pD@22Ry0Rnj0p+xpf~hw8iJ*~P)i_NSlv%_pKko0Q;-Qb|6F-V%gdVr zieO@9#_D_LGAeMR+xBk*(S?`jC161$XBi2MyI^@=AFYFc`Mr5&P^*0l07O0SMr zA74CW6$q~fKcSbv$NB8zsOU5DF;68hIH;%_Rj&aR19UgsmCTNuPBoQ!pY%zmF=r&^ zv7u_6{HSc(0J)L;{rd=j&51FBcYyFoP~I@<)I|as#|#LgdZqrzVP!kYZ;BZHPO!DN zQ#nsT|3l{#qY?B$X3DT{3)8RM1<3ODdrM2^*gn9v*guc8}}V z6nf7<3YlD9{x9kP8%Rq_>${sF#?k_!LuCd!25X)qloL2&^y1(3t^pt;lTCwBh{ER% zkAL|CI{!lUpnP`u);iW5p#Glqk-TK27jnb`o-d$-l!}T9>Lu|_Nv%Q!!Xg`ioYV5R z6LA?V^ko@YMNO$J#uBXA_I=|On=V*aS65);m6Vh^cy=?Pe|LvrIPzuz{Cmv|HWdjL znumuc6J#JCpl$@ zA_tGpjR8ttUYmrxjBY0D*sTL<_S=A&*=egkP{FlI z=su%j15iLV@S&IBz(s;pFVp-wVey8P5QPn7b->NtS3PM;OH2Fy$`ewQ3Xol$a#H>h zEUB(mCSWlNQrFU2n97CgbgZ>qs>?=M4}CcN{5%Qb5-6}=41S4R$* zYybj$0GbV`=_WuCSHhb+7Mu}-Y_?*yGn_V@$x~C@#l5jl@3n;V>#76R0BXHtZyJ;d zNG}WOQ2Zw>o=>L#s~dCU?AXPSo*tlO-n6fc(G_QQl05wlAtw6$3GFW4)mw1ARe;2O zsLC8GdlVf0zx{v_)2G$sLI)y@or6P3Q?nmX({6#AWl>*W0j@P4Hvik9&o4R%7dSrf z`!e0ec$#dF0FBSSSXl~vzbvOTe_1FMf0cXnLZU8!>m;P7hj*=iFDZfh@(j|$3l$6! zA)}OjVeke328Xi+G7y2fOT(jt1cs3KrA|*zL${rt#hbZ*r}&~sS&(0EIYph! zpd|u)%kPFs`&THy$_xOm=NW4c|7j~g|MP&%Q$R~En!raM$FwNo*~;aa58&JCz_^~k zKiiCfh41MEM~Fr;kqwaVmh@27Wui=n%=?j=NM=V8@9By#l}8jN%NeU}@Jtq1`>V_i zIFI;PufjG!vhFls{tK`lWD7)W1_Kb#%bvSgFC?BH=yjkhrY0vlK^0-lvN)@^$@TCh zw=%W;Bll{}&H?2IexQ*6V;AyV2D0g=)eOD9*FF_6UG)$nph0k8L&3ugB`6ApE!e!M z)-8}YcHG-%1*QOlof2!U}Gh1#@sIpT4cYR_?52+txta|sT3M8v%*B703k|rmK?&FZ^urxQ?wJzBPYc4Q z%g9AxDCGqi8NQw%MgHosKNW{tC{RuG50ItDs8M3F~3f>>F0S+2AVg~&Opdcdz0xAl?`=2@iB^K7w!UK|$EMGE4p{-&wQ|h$k z0>!RAqqkQASQsXjzy4ug(ccLCwc#v29I5H>^Yimmc1v_EEvDq?%k3C zvksNz+%kEEPJY%7t<`hw&j$UnS*V6Sv9_?-W4|{tGouFZb)R@Y*Z$N4VsZMz8N4qz zhh=}OQ}TEA(|&nwr;dDMar(h5Zz4*Kg_-tLzw;I|t1+$CH4>|>Wr2?Jz|X>U=7qSz z{L{XCOKlw|t31JRF_ zf#8e1?v3Snu;YEF93H)j(p-2Rqy!S&^jzv6Pl;X=bzlOYr65w7z_PbQ!W#*Tm*wNK zHjvI?tqItvhMp@Hs5$_$zx~DeT`di%n%d0*&hu;{0_bX_FP=LLlgOW*ojuPdc?<=$ zt$4Ok?m)n?!y_URws}Xx-WV|B@)B{OhmDVqf61c-WrQ!*6^*b`l&`ZCBxPk~i>U*z z8Xu{eUmk>S~H105?BZ(JkE%IW-OvsyCVP9Ah@ zTH@P%PCai@r$5AqIgk+Ii1J%*8*MGUE!FqM-a!cHIt?Ha;NBST;sSY z0Ycepd=6-kZ<55GK|_qqNUi!~pq!P;TIj4ZGhM233yL$NV}93ckrEUy0tCPvaI~aS<^>VJxHmorypEBQO6I)Y2eIoc`J_J-`mr_O#MC zV?w5lB4r<%hHX5l@8d4ic~;|mR2}hy>OJeBeB>ZuZ^^Ks?(cdI4x>tQ&REu%oh(lE5v&K3I$dZwy*{Ai)(_NM*0RgtL~Xqgl4wJ?lel@g z-xNJZV(4C*GHJyGPT>=0JxVQY#A|-#IkOu(c*UylmpJ8Nn@pyGCa{l&+I~8nBho%@ zDuaRp-y0elbQYNw6I5x@Y0$#oMRrg85*uOYvFbKtGde16A8cL%EYFpHZl?8u>FMtX z_h_o2(L~SM@dmAT$fmw%(@E1|10c9~LVo-=YyLvuOo0pyj@fJ&x1#9)vPl%}@KQ(F z{$XnFOjme*aF`BELg`f3KmWx5Hz#q0fK-J>_{msLbK0& zfSh_|W+U+)B_BDZM>?1z$;O+S=UPr#&f6N4dX-L5loyj-UQWwP&nAynmeR=I&xjai zC+uUuGMjt}?Bu6eunY^{f9d(=Oj6!p%wJaNX{uI)>$}m1upP>qfJFbZFu_iqsw-V4 zH(r(&TY~A3&$XLdJ)Y8#eUBO6h5MLVRgD5IdICRk!!l}o62HT0HX+@J*P>i{PY|Y* zb67dieo#PwNT!~L5x#U&m-0nhJNW|c4@lj)M-VAtFt~YJ#bfY@YY!&ZvCOq{4PH5t z+cul;xQWxT)>e^8oaqqh$U&#o&!ZbnZGMRoCxZ2JTQRG4(pg>kZX2 zOcN(ydoQ!z@2Vd!bqd8s7!WAHuc$ zp`jY-wB!i5)0FT;@#6HQ>I5!+`o9bL;r8d=isLI$PM&xG=>RSpBJ*yH2xvwzcP7V^ z`x1m5lNSt4`-E+j4NJ~J^`@>|k$5Op>x=0hO$JeFBVz949gkR6MJ&^785tdVI{VT* zp6Pf7`-zMJ_bp~>XKvtdpp6y`I}H3Rinnq!oF=+^gC9nx%Jr|b#J(_ZRMN6M!^vIX zSgfKTp8v4+^dLf$G8pQ(1GPlX+j` z2uZqyssuuB>Tn2}z3g`uj$k2tv6+W~YKg2@Dmou#jF|INVxF8b^l1`ym^Z64ERZDt zhj=kw+LcKI!-n#zu#0I#s7)Q4NPU7{M;QO}6(0ld#Udl0n>`um+wI3VudX;!0o}bH zYb#N-;_-3>;x8nIcM6uPOcvPSf{od|yQb&9E$mkoaiH~(M88AmgBRZrGY*q*6qmo; z7>rc?v~?dlY=OlxAmuxVn_kn0CPx%LVAW+bNkcHGQYLXU+dXN>k(Y3j-7+H;J9|Ks znB*_7wW2^z&-qF39-brT5dILo{f>$fmfHz8iziaJ!UrMK6Uk*K&Q4yyf;^O-1?0x^ zIJBz|e)#-;>DnUfp5*Mm#4Ic#$G4*M=~zk0hR~r|k0VEky1y?wB8@sS)6NOIrDKV! zl>Sw%8EOsL=+(2aW>`;vFujthFJdM0W(Tctcqts!LyH|?!i4ijR4kK}mzP)Z7zDI` zs*yp&!f08*49i!GybG!GTG;n)`B+_slsk`crtrlpVxSRnj-+D+zbLOQi9IB38Z)6G z^5z3jHOtGHN9TTJCN)v-?(kPl$a63?emd*YQLqNP3{-g|f_`qGeX779f_+lUn7P{L zTnl=N$&kN~@0=a!0xhl7=O4myo;hs`D|kYMem#f%zU0M=kPaF6-eoYp9xIYr=-V&l z%2htE`9XeH*7Z#XHBsCm_qqko{c~K&SF!*b6eH;{qhBF$Bd;*?V?vK)k5Yu)vVR| zDVY@J)ttvbbtc=R6i`SAwDH!?JEo;d@CnKOTESjzs}52x(>~y6v0&zb$9#Uc`;or< z%EorSW9RPJNBIiNdMWq{Z)?!pW)@Du9L3nAcigzikyA)02LhqTCm=x8QlDbqNEeX{ zdlx2|KqQC63vJd4pD^knCoQJN0Xlae?=ivC7mtK0(DYiL^xJT{YxTWfurdDLh8LkE zalU&tzpLmx=8jFGKGI%^20Ex!)RGi`v~SED|5!L??4!)UD|t^otNA;+QjJqQ@HZzV ze6?~pXyn8dWKKF#eZS9$Xo-TM&-=C$;7|407e;+Yk7?uD#nx*-m7e zuCP9F>ip|sr+kY2lFs9@&c9`y$32^XAB`sf5?Gk13 ziOREj*a)FvarIeMB9Y~0&RU38nB=yULdY1*UB19lwD(KaQl59dTo!l90EC zZsu$g=@~`#AYu$?3_PQc6H}~{I`pf|AaH?I9zg-xU-?D*?*l{zx;1uXcJ<=eEgJNE zZ=zQJXp9HrEc8BV)36Xr1g^aJJwihXvVihVyC$|G$BfxWq*-{TFTP( zO;R-tQni%HVCV_Od5|TFeL`VIm2=K^H!AD2y0jt{Ge0UqB4@}wB*$~Qy^cUT;9-A_ zU_onreeg7TW3omvRMtc9`(`7f-r1-7oHZ4{MUkg99b`EnzCoO}+GUpmwM;FKzXb93 z2%xDJPh83K_AtiNb}r+Mr7-fMl2tJ4FiU!Zgoz3}L*P4T71SSOycOMawxtGOz0J$p ziS?>VhxQ+j9X25=7E~+g$=sglLdPP({APZB< zX&xT*rRTGh_KET=3wZIov7nEAi*+a&3{~akS)vv;b17@p2lDzu+evpBkH6y&mzAof zOfYkd100r#D&uPfKZ43z)_xu+V;!8UPYlD+MJph649wmgA6b@)iFR52WM;Ic1UZ^^ zkl1$|g$xW1(0~4**2W7;8kTVEQT2tQwPBZcyg&7ADM=ywFOdB!Zsl_-#1%nbBjgN-~trN zuJmB8Ntx2-fXQU1>tCwMC#8AoIvi0pI zmc!;BqJW4QI9I3%jN2E*P2k83<1y}+9}vtdcoB)u4+k*xtsG$5Y79&)GV^p##Er8@ z`L}Bg57tr*3l@ISVd9gfEHoYmdyr*RaGpyrzmAk34=VuXC@G7B>;A*uM1@swbuG>_Jt9m7e2jo%l}3&6vlKlTRJ zk8X7wiJz7mB9a~Qh-8=!0Tl)Jq*#lSRgj_9szYKew*+%il8Isu6Hr*$_=EgOwpGUp z)VqL6svs!rL<$$joem3>ZT6^r<8rUqzAdlJO>ot9o-7%6&4?s$7b3v}VOX_1oKbBq+YSsYXz;F@#%iLCBJ!}>w8>2TS zh|)h>EsiFde5l0xOsgNeB5sVCcroTO2}&-wl!2(oYG+|djBO9={m3Sto2-y;FS-;8 zZF@5ZhHCq(&4ErPuRMm;(MkrzWS|q~r<4aylAXXjRO#6ajlJDSohdWBFLT!tRIZ7TI=0*R;9blvOPSvxW4-tq*z{%=9~uZ`x$lAxWlO3KVF_PS1Cew?&3DDbaj6jmA4J z(%zeApyiiDMQL}Fq|$!#LT`IM7%RVMnvLC+SxCV3$#A7nZ&rCAgKy2)w@1RrD$~$1 z5KJ7>125_|Ty!5FZ9q3Szt!-08vR@QdQcum!l>rUO0PR;5*%`8?-roo~9Z~Hq|+4D`w56>p*Y1rv#)c&vS{k7;qGt(4xdh)S4_x62K!b}a(Kf@$4~ zW}gO@XbBQ|eSGo4LIesy`8g!5Y>PKuQiJHi00%IQ}KH0WCPn~VtP zVj6IH6qp^v!3KzuKMy)~X(%jaoZ^kU`sF4QvdcR2AZD_UZrV|ZtSbN83s834ZIR!= z|NPplK%T!aK9CfljA5m}PqK|t6|Ykd!_Gi#`A?^C9_{(j+xvO1k~pDd{ieh;OW4uO}g+rqX#C)kEctE9pQ5kR_AUmZd!|LE4HVS2ZkrPNU zi=tg-%dWFzd2&{waQWS+7FPL6x_#))va0Sz>cqv!C6$Hm zg8)6O@BQD8in8$Ha9*|1CB!35|9;~7SCvzv7gk|usPK&TvSuO|!nyfFb2N^Ap*E%@ z)5@PPi4=oyuU_YkEOt!Pv4$@V(OFi)1qr{J4kEt_T0cI#dP zMlYW;7`F}`FC7n-LfckoVdYb=#7h{G%4m(EwnjX5dv>If3RUXEpimS)mMX|slU57F zD_#l_d+llY&SZzL^zx{%=tuU}-#2!Iu2fyd7Yes4v#IzVj=MV3I_Zt1=GYoIy1ca1 z*;B{c>;ASK7LMl|qPu9N_g8N7k7WOzbTw`!^-4C_!dj1B@s6Ni3pGZ=u+=oIi#!_% zV~Wpe*llM)%TAPbHn>lYY>7WRmCyP!jN%tO!_0qP?2V8`owTfq_)I^(Ek9^X*~(A6TnV+Bq;S~wc`G$z9C1aMt0kr1cvKmyCkR(gm;7 z^V(=!aIo_F(9oqLXFrN)BCT8L{bsB2CRD|Fi z-5>s1;7!fpOZgG3k82Q`J-}@pJ8Iz3BDkuh)UBZdk&=te9pMvct&K*k9$R00ho~?( zYgOZV-jTa~RJInQfHhbsy2HZd%nQLFmdVeLh*Dcx_*9jpU`~Us6g*8Fl|S=k%;w`R zmWS>$Osx^&dzYHnZ(4s#<^MmLt~#j8rfWYcEl7%VcS=i3cOwnb-Q6hC-QC^YDP7Xt z-Q5k}^3HrS{-fahZtmSZ=c+w?%N52!LDdSYzl;lli{Zy$w4(4<_%l@0sUvsaC1J@z zz?U5rje{+2no<`3U!m~ytA{;1ZH%L${DPL4su9a{9tRh9(1*SR=fVdP`A$^Pi5_Hp z^vCQVuJFqL!pBFcLu+Fklprs-b&6#DdbSw3Si_eB;LUSmRe~H*7925Zwfl$)=Jy8; zi%`Jbaah7ns=&yp2X|?=JF!A{(X%67higfsNUb-e z$OQe56GqOs!Q+S}Lw6L0zGP&}!bs#XgYCCbk3@b< zE{4D65)(bq8NsCd%k`gnx6jANw=-%drS1G<{qV*ok_=jj>mpFuj)8qR6pjBvKd%6DKF9N-gQHQ81l-RzwntbZm}Hofer>P!^PO z`b=m3AIu06galgVib|eOKgMn`!IGl4AQh?ooIO#VMi|kBzs%ph1>+huPU8d1%#I0u z3*`^s(DP0r!m36Vf_L2$6H|#%37tBk!;Bn{q?UuIa z(?@(ZL0s)xx-**P@Yb%|nEv>2;GMCMzPe$LjCHa5FZaf)X zmb#WR%w<@tuOY*3?5^qks$SC>K&WKPH1-{-HSjgo}aYD?0K=I0x3XsgBARh?B4U~yEiI-1ri z@J;}U^alf%1G9^tWL5Tr7<};Kcqu|y?Fn6xh2Bq1%I(zYn&xCA0ZGxVm#=Y>ipb^C zx+)r=$cuyfizw)3y@lqv16sk8 zyZKe*2OIsLBnSqKyJc+>jPtRd``HCYRD2|{U!pbBXLoZuRfZyGbZ^*jb0-voAz&eG z1R4l-afEvjgoq-?Of8HC#y^{vE=%PIkJ9R)Gf=htGQb|Xvvz=;r{wUHVyJ4;{UEk} z&h_r z4^=+aN8PM7|7JKXqtSgkSe_e8o_6-q;nCq??gL3d!^T^t=v(Q1F7vx7HXP1I2osoo zokh|wKp8P+fun0@4ha|MA>yI&>&t)r5=qz*{p?L}=5lVzL#q*}Rk~SMsm#QoaBbh|@*7&ct465IEjjUI^1 ziuQ|2;trgvFoq|L+?#HC=iegjt7OKRZ01;%X^TykpQz}8672W$-`<^$C<)3SN0GC| zsmN3!c48byTCxcJhHPPAdwY94c;d1a#nB-U_}#p;?rShhOkuo<*{x}^aJRjqp7~+P zmk(z!eiqD5?qS>h5nT?gaTh=Nzq{E#OrtwdP`^$`9eRiHCu^^nCh*n0b9U!V% zhL`NgmPutX=J8MZ%7I1R$ns*c zsTu17-j`o({xhkVi97j@BDpt2syG7q^L%o#k(~$9LB*j{%*n{EX)|;ENE4_I-QA+H zKB_hYAqlOiHJlvA)sAat9FI8VufcId4O0Qqv{_8>f2iVGfKQd1%fL(=ln~HSCsPZ*E zvt!G+FQr*M3nOQ9T$Xs%0X`KfE#BeVLd7atHE;r=5VulIzB{gvUS3}GUnHeBi!K$M zJs+__D@CA?ae@EQ%dxW3?lUn$1<qa)UE*q;^(N z44F=~_;#D>#XQzhwGe3V?{Cp*SlQ@#8Qs43af4#`=pU!BIQ`vGA8R(WWh11Y{;e3o z9H`MeovfMfTI3VcWppJN6i+l)y=*i9U)5M?D3wy zOmo0-lOw`qKq++N_xwkOJ$pbADzEn7f)<9xsRR;I8Dbj~6#@}LKjGBdJvS%ZmXK_h z#YY^%KWo{=PrkK_TFp?fc?;Rt#U+nQ6IHr4!4Ri9Y zF&@{XQx3B_nV;o$5Mu+00_YGL_#+?r<=`^=#|h4<&Rw<|G>IJjXXyv1K1YbQihkB2 zA|j+&^5^RQt)Sbxckrz&HGe9~qF+0JFqm*$6||F=HDRYL3SF+6-$7ERIx%8rp(%k< zRvD8zom+dIa{{^*O%|;;ll{|g=(bFTjFT$$DZxCeRxY0_UHPoCY=bin?-{FpwChLL z4im4_C;7sdsxYdT#!aaZX(qPNrl5svWcS+KpnOlx#HTA5o^LfNR)g)Nb}M2RVx=4@>eoRRn4aKSggktNXz?e4~7Ti0VQWgO!0n!jq0A;l+fI%cv`6 z80*Z;$wpBQKazDY6(4JUC-Rxq5(z_{C2qlpTed_XDL+ z0kw1%$!ZMcORf;%DX!MVLkqJ?QsJJ?Y^;MKq?%vx7S#oOB7Eq8j2m zoTWcoeidi>oSlC`W`BJ6z6be)cKFG^P(-3Uwf7|Mzs=Kx*?1)Mp}U+&Nh!?P{IH|P zJ=+8qy;t%h%WtBd_N=#(YLYp^;nN12J(^Z_8I2K%CeicFJW!eeLA$5PzXgeO+?IK? z<}Z2R61`uOtS5i5OaPu;Jj7Pr;{4gM{*OuFrYiH(#((qg*8-L6^bQ;^PW_D#4w@fX zHXiL#OWo;9C0@llLq{{Dx$x4=*w|H`w$v;ezNS+{6$Y(eHL1uorO^k^ZhZDgiD!u( zx*R=qI=N>DoITYrAgh1!^vKZ4hFWHcBZ*DoXUE~?#nqC?gJ$B1<+uJz&J_Z&FQa;s zr*O_V>f*uowE*#@J>={OXDf(lG!TaKT?4&Y3i9eIpe@e@X09C1&2jWtSsVv-1R@2Q^# zgu}Ff==J@M!7zsG+)aKbID|=+Ix@KQ?zX>rE-xt~%eF<$V7=0=2~_1w`1(#Qxc>3h zwTc_+W4&@epZr(7fBC$4*RZ8WlI6|WM`tK}VqFwc`((De$m~$h$mD@Ci>~1~K_r^K zrZ+jkTe-M0xQ>Lt6NoJrL7;LCvm6Ptj9lOWHO0sx59{pyo>e5AeBwi+B)?%++PW%K z?^e%O67GW>)6r!*YF`Tj91GgFhZ&w>{hMw?^=$@GlzZzRsa}RGO^Zky3ny=ec{%^q*_Hm~$-D#{aZr?38G zBCiM^I@~#amY7p%O1d#(D`%Y$nyC2uHsu1y8#cMPsuZ8N6^JV_x1vq>0A!$VrGxhz6)hgE4&RU zU8OzUe!_NA9l4-hUI!!L11V)Pz_K}c@wF*!Ywl~_==Ir2hm0zhE8(ueC_G17PHR-V zx$AE<43$YE4!jh6dva?L^L|THM6K19hZ&3|F`t;9JG}tonY=T18<#QD<+9 z%v2Y;a?&03d!V$$2~O0`he%-wOY1V9kE>l$X^<_C;T>ur$N>%$NbN=cV{( z?8I5{b>?oGIK*Mfe)`rlkT6!1!AJ1!M{BK|pcyfP&)utu`oS3(>X($DxKVz;nGu3= z$DN;g4Xt8(MV-{Vh!OwI8z4D97%6MRoMDSyUtBBeg4_hi``v2mId>8iSU`53OrC?C z-SO~vccq29Z#}i@W=__xTk*k1HFzx5N=o8!7aW%Cm8_ROOMr)o$Q|9-+i}KgaK~cm zyZYH{4QMz=`mp5j$KXJYTf@#i%`vm1wkV~Ss|V?{7CkVi!%G8C6io=olIJfSqXqTM zpq^|!L@Hl3%f1v^gAys+a_vC))3R(0(Fy(R>17uaD|#q<@&uj(xqgwu#eSIyw7$Ec z6#oyt7Sutkmn)Gn5evG`CsB`qp)i}F9_baCrqtP}es;Ha*bkwQ;Qy%FI+Lm&I1&cD z*I8Dht7M5}e6fThlRVOMhx*Vw*>#ddHiN?(E9!X!sNW>lv z&_tp>$FdfPATJRk9IlluPz=L2PmE0x#7{p!klhtB zKL2^omO4^Y6egIIi72+DfEfs6pjCcqx*1%znJ_llAD_K6d#F|AG_J-5a%pR?cx1+{ zb6{lAz`s;}*YKiyZC5N84=trQ3w@JyI8Y{?WEwJ8{VaGo`VIlf)|+NEG>}}cV^AiJ z6<2M{kEjoC`=epD3#5&kef|Ygi`{h2m8?#cuA`8`rEkCZ7f`{^j!jj6-jO+4*}N1I z{>|TiMBTbqHf&T708ms9t)g^Q(e5i>LCNN#S(W0hE-TMhgxOSHpW>aZCz9P;Se~}h zm60gopL&iCOzZ|UvtbP-GHk!n;o3E<0p95_cc`>A`^?lwQk~}s$ru>2*sFzmwSD!_ z!d3t5(Bd60lK0H29pcD_v)0-rfkXrK;=Zyhcv$rNZmbcQc9D|om zK1N+M435u?w16HgLg{u%>0C&@F6x@H96nxhAHXCbVfc>nw2Y0CBcuW&29g`rFOAPq zY4<0jWpoWO!IwKXE_py$sSj_3YUKz4l)}b2u{@62|Rh?Y< zQ|s3XFLPsNue4_*iEz*1_#QLLfd1B&qX(q`WSt<2?$0$teNA?#tj@iKIO&2I#C(Ei%UC+pMel{A@j_|TFj#8USU=_ z!}Mk6O+B(XN7-OgQb~?z+9885`Nv0GbGofqZhUQf`}IRnl0gRVRoWC`!>F)@FDqmu zdRvsCkpwV6UoQZMXhKCIw=j;wPT~6+vtTA6H&Nncwb29lc0V)V(+N$QEv;D*4#`*r zG^-Tzuh~Q8*n>^LIdi1{FCmk#EZ$jV%JEzDO=&kbY(aWx&T^LOPnAJO3{F zj+R~Qh1s@1k0XtRD!=Q1JoL(1OGH9A1g1%H241HTF_SsaNYhd-Iki@v@$m6pQl$L@ zu|+iJjdX}2MOB!eQ25aZ-K~w;@j8Z{QLTjYXQKAgB(z)!!KT)&Np5gBntsRlM}unf zz*_VY@#wGQOCfj%TcXq(b@b#bMFzBDNV?#e@YF) z$T~Y3sWi8-3*CM(9Ecc(<7X0Yr0o`w&S-!9v%7k2>Y=dKOY~0sTWkCe(3OVzFr7rX zlH#8Nfc(3tGI@uUf<+TLR|EVUUNY`ec=T>vd)Qi}-d8ET4g~g=%2T}?R@|MP@!*8` z-7J;1DDa2ka7A{IiOq4h`wwHluoFhH_M>$+aobUbX)7F28EoZo1Ee7u! z3nPDD0!6?U96bTr9<+Mpwa+aD`r>{)JB++ebi|vNZqt&_8i2xfUtKvRB^{)jm(pRA z{!bj0ozNN>tU_@AQHB1WfG9~~eB3fh?bs8@~dJXY1!!xqOp&*;blZaNyXUs%qUkKC}jxtE`M!TR@y* z7$L2We|GXZwF=1}AtfywbJBKekRRYIT)B9@cUFwSYH&G{j9Pi6@|r(EdnH}}#T3$FS0I%0C1}9mt0xuquevn8 z9CbV~wm^FW#Mz~}Ep}@PX^Sr$*&F^ghjXh>BswkCQ2WdodGq{w&7n4%1|=rtZ}lE> z+5}Z7(&>|XkP>Dm&|+cSUx3^LG+yht(9JLj;fhK_YV6{=N`lvxjNbkeo3o|5S@tEh ze<53i<}YL+_5$Bzmbl*4PQ1c=I|zCwoBt5}8Gv`7bXhpK%`Z9!l%=(ZMA4-c7H;;l z=z~Tm>~8!oLso0hiSXUJBNfLt$lG#ZeANMZABXqpb*u8Cmvha!@E|!&`6? z6$h0`fuPsfU^*wn*OwO0jmn4Sy!$u58^hfGGs6CP2Ayy|9Ps1PFK$cA&(2~N-F%IS znAf=&F11!TD?&aSU>jFE*pBA(VhK7~|H(mA(5Y-h7CJW?9!3Zr-nQE1=`FgDqG7-Ij9B*YaW+ilZ_2+y-h&n( zmzw;2LE)`!49xZ^?o5c|pxbKz1q`h=-tKZw=$%O_&>?_bNI1e4@`*5RiW#Pl-I@|D>!$NvXrd(MrZ&wdUMCU%)LVW^Owep>4fNFE1m!G z11Zl1EI(KCwE;%z+4HQnSn`($ExEI!2hP3$$lu-+}P?7xAX)8CIK*3H6z4E-q=2+#M z78zkd+ta0K*thIN5Ed5u;5#LBi_O7trgsUk43K8NEy7$GZj(&}i7KTuLG&m-vz8K*Dyu9`(B5ZaCh0r$s}U0jkSryNL)XC^SUh{dp$T_<<3xyhFFvdU{l#r$%{LurYEzi;CB6=VJCMAGAmf41e8T zGV}^dWm<27o5&a5CHt888tD*c3{>tE;9)Xn;IZ|soqYpfN`4%*j${1pSG$ypk|M`t zl~L5^L~&t3@$x5sKJ$&l+ncj}KU+^b%M-Cthmw_oLB-wj=l!eM*KckZPRIw=jM)>Q zoTLE-7Pd(RV5aA?IU%{6MT0j)+uAtbg`dhoL$B3iB($0lS4L8A<3v$2v(W zM~J%v#yvydeuHJYzqlR(5DVw0t$!)sxc>#Am5qz1%fw{f(1;C-gf?|=$9@vDhdG|U z$LD`;cbmPtZ({e8$I52+l|lto{6M4A#V}XRgBb8>-+6KDzGUD92okM7co#cc8z7`B z(-?{0Afa?V?WRVv$I|5|f>Rt(CbQGI)JBxHt1sERQ+Wwa$6b{(ZTxonmn+wW=BIVC zKW+8Gn@>yZ=Ecih{$M#ZHUiQmVV_^INW`Vu*-1hNUsKsNc`y=kmSx@-3J$(OZBcvl zQA@X2a@HqayhPXC3`q4+tel@1-UJhdRm7tvBx2Yy?!3j*R>k$%5rc_|tPE%KgH@q> z(;V`#0>77WDo+S<`zG&r08!Bwm{y|0WelgJe2LKh5seutE^V6fD)w3Mw@i51R&|!u z*8n2K{862yyCE4DM8|OAj566JE$Pxm2H8H;VwMQZ*xp7}rv3m)0BYF_qHY5d7>R!G z6Qim&wT0|wgLK2Ep3Td<>!p%opb(7%2_QQ+5#ZpA+CP#+q(bTaAvJ+pSd0TK`r0so zIEoD-M3ET^{+SB?k+`vVvh>!@DQI=ERqg)k_08u5R!5Hs46u+X@!Ws71ZKiNQBxWO z{bIXLUXKTl)KS$L+fwTV`=no83u5Cv=wM&vWi~~sa z(XEDGglHLV<*(Tr&;GimR>@;>$rPMyffCF>{X0j1dU=2h{rgwGoy!ZPV&cL5+Sx8z zHv+8qZQEBP)@`ucXf-+-x{*nIZ#7BllaKmyP>8zRu$>YWdtfiJadzko?F?D3v}% zT|Q-TnSuC&FjDjkmglAVksIh4hT?)`mp3N_9+s~d87v~Fj>#kUol+qJ zHMV2>em5F5mhVmFq?`k;gKd&Ywd0uSF#&5kq;G9R-|UG%ww+#$(=}Y9Nh~4B;YMN% zm*3QxATa7h5oDeQ4hh2evSpcAZ6NeeMF@h3fUsg-xI7GA>Dwm>3&OqOgNnImH~SC1 zf<%P8WXa@Nrv{qaPA!dIu;u;j8#|QodJ9*CVM)Y%m=O$_P{4m31ywBra3(`u66jy5 z`_XSO*1(qz&T$H9^?Ou$Mm)t)8AN3|{pgAh zETR66IDQ`XhtG&ojjf{ztl57kTFDA>rV@PCK}v3Z-g>Qs?*Ljp7pvnKUR+}=1*wWt zGXR$5jJFzZEAV>s;$PhB*;L9ZLIS262%&XaH+qQH8bY|khr((}Xp3GQa}*B@f#{kpb=(1f&>FA3GnoF0>l z5^)l`aVdy&A90FTmbzz259gKIzl4tpxEsTN*%{GMe3AvYLT0{adf#SZEL&yF*d(*D zIn>Y$1l1guxGkvut`_m@jZIi6MPS8tvkQ=evxxKsUCLeM$i$+NCQ`JYK|eyTe+|TQ z<}|9K=_O_^cBSa8EqCnE!&Sd&6Lo(daj=|$Kf)u&$9?g>1a5ZbBLW7S=l4#jQHblo zk>R9~d=ce}T*Fy0geXO-?Tr>Y7l2>DVPxQ9rQd5c+uKBF-K>X& zqSaLTG8A5BpfLQY48xW1AHy9>>mk02|-z%)UAvoK>>rC^Ox zS_`6zH>`LM^MymN>V*4&Z~9dBJed9Ro7 zJ@{tENJN^J6yzjj2txc4*P{h-D&3lw9p@|x5X9>6*%}A_e-mk`sQ&x&!4RIu6EhC) z`RU>Nd5^B&U5wcg1*Pt4HF1@J#0|E4zW+IwlIdsm6~8)7oo?20<8R!!G<>t7`?5QX zfE9EJ#{;5~>~k9Z<1_N6O<3=B>Kew3Cx{giB6$L1&U~Vaw9*6I(8IPey)4#ya-p5C z9&C(`d~#x_8$GwS-y9!pJDql@0aGW1dE>mM0e;P3-@H%QrNW$K!KmqD%EIzgvDz@o zsQAT#Q-L*(-(;l{{9onU1&8)X?V4|aGtjpYVVc=8Xh5TQAvjK~ z^KH|LP;&{HvVK57xx-8XNxkYUd+y0evXqP4Csl-r*`Hp+L-g$-eVgmO*j8I$4#$3N zYehxG+a+#iF1(G+O_!T_qw#&uMjp2O51E8;BvjCZQ7@;}9TSp+u%@%eb<*Z|B7d_F zP?C^^&Kzz_r$LGPW&HyKveIL^wK|#@W|&3`I) zF*(XFEIUWIN}$GXrGET1OD?;tpO@1s2*|=k6I~K#_$-hj@M8Tl1tv6t zYxAQQ+e30xu{2<03@j>HL~QJ5jLRtn85=Ou_N!hme45J+=8F5J)Jgm6OZs8d2n@v* zqrNzz{LfeRNJn+@Y#CWoo|#JKN|C;@`33JKY+(}zr}Ae(IS_P(1u6%WN1|EN!I`Q0 z`P8ng!l|yHjG(ObeB`0t`(9(i2NFwcJBRWI>~Ba4WG@m zD9lg=W(5rE^&K7MEgE#4*sR?&BD>DHz$N0;Y6um`4~4+WF+1g*&DVbhvf`5?A0Gjl z4cXtr%c_z+Y#w?wsT8tzZWdJGmh<8+9$zfOy{54~mywZ^dN-oVza_pSk-~V6rmi(W zdi%!!ha*0nj?#i+FZw?n;N!01pbSJ)-`}*>BN;u#*^%dE$={Ka@u5+i7LWl21Wn{t zfKp)%p{j`oIonq6&Q;>GOQO!)l1J@0$kpO?ES7&E4tVcajyims7Ocl2D%bR~e|f!= z=Q*EmwEjf}63N3OG^~#NpG9>#CKRl;pv+IfL!HGcS9drce=+!wD(0UMo4eKtxSnPS%P16FZJNEyUm)cE9vujmv!C!`;%ff)uCxG%1;|Ad zaN+h~&%H0s0)GVtql@3#((84sy4+xlkE^YV!M)DQ{a?u#I85)w0p!GZnUBhh#1=$O zA{lCcVaQ$} zN1Y>%_UYkbgY^~$x+F%h+WBS0fiz@vkC;QW?=p*!Ia_HDCCj>nOiqy_j6;+wBT5&$ zl{}RTW#m?#5E3ebGh$_Kb7=hy{kpaUa&%Om_0XIzP<(qo1#ZVl_{r7O#4QyKKdlcf z)4bND9MbjgrZ9*dmGJ%=Ffp9?FIcP@2i<-!I$BV8SNIa7+-N>QyGpHkqX!QKDP``@ zx>;1#ZJxV4IM1c-q-D){!bbtAxu!aZ9a90?mbzUW0$x5s2x#Yog0y`H-|XP!YgpmH z=E~09j?sHNB{MU^_E+cK29lES{)qS|EIZ>O_}h8OmK$IQk#P2S1(?ds(^siNqe9dA z*jH1N^3Xe?FKX~!$?goJap-V16HX2%eXL2-GuwkEd~*A1^ygTKR%PwoaYMt<>o1k8 zS3XMKrTh?l+RB@Jy`<=0E$&oa?iN11Wnekc(X>&y+>cCv*y;Hd=LDOkc7`WCaU(0-qJkgjz3?-13P zjotX9W_-yqH*;BBQ-aNbcG;f2gd$2JvX7YnnOXmShtbpd9s3vIh{PO3XKG%E&^Yuq zI?d6Y1KfTCxVP=oQi9odb3)6E}|8{D!c5$Ii_TxWF2|o@`b;ZZ+Q~$UPp{yKF^@I3L%}x*lJG(IgkAVBpDa)4$300Il>9Pb`@bcZ|8^ zx=Qv66LP;y;#|@wGPXNuUw#t}2qEARA4*ECefMX|^0Js1qIj;Hg>B-vijl+fTlS=G zgS{}>PxCSoZa$G80T9?co}6v<{f8YpL@#aE1{?g@F2)DP9!kwx>G7owZYn=+Xs0!= zJzec%c;lH#ID$j^r@kvM;{Tx&VWUPoF_75iQ%hlSSJE7)niz$x-i^RzjJgXrOG^of zLaKcaP&bI@P{rPbrpk10Ua#9fS~s-J;ovn{SpH*W%d;dW3l6@agBGs-gX#i>6&sS1 z@U`lKTT#qu9nJjTaKZo!G5!7c`wVb(pjFC$UbZn5So0vFyrVC@2}FZOi>{0iX<^Lx zz^d*4UK@;%e_GJ5XJ0sVm~49A34IuB1W*iI76A#Y6R|$Z&y0*!BvTuNoKj49CkBFY}a}?$F71yqlBv^ z`ShTEqKvDP?+{A37dC8Kan6_st+|4 z86m@^+l%8FF7CMA7&!1uB1?jI$4#6Vs66-RS%3SOD$=BU4fRFMlN(pJqlX9)%`Zgy>cMuPAXRV0heh>(z@-u5W~e?I&8QAks6J*;Pr-UGHbDc@)JIA`Wr zLFF@aXb2*vK=gl$dTUS_ne)E`LYS_g`Af!}{@@XVd$SiNwqpx_0aXmS;fjEgAQ`=v zV*u&lUkaMtfgd9`TU{S9jL>7t}1S#@&O9CX+KXVtb*ZMg?y6lOFdr5|5)=K+Upag%1i&c%|%DYsMs_)0}E+G$@r@SymJ|6Pcu3ya%Wpq z9g`ocmEGbwoR)o&Lh#{p3El)4I5-N%@`VEs9ze+dBfoQ>4*#~lnr)cHi^8_f@7cndqCof$dU;z338HTL*kFIW z+$0pvz$as?%q1Lp;rG+*4`Nt3>br|(aeK8N_>l{&X3+GD<+(|vp1=l-ETjP#sMID*h}CMvdD)Eu~E?c#T; zO}7JtFx;=OFOt22#@24`D&{8{nd3jP5V-aI1T|MtqE0uBwkJl?dDHJN-EQ|>z-ZSG zujyc{7Ly^wY0QHcW+oM__l#8bs9Jyy7RH~(YV;b4?SDfTtu;TA0(7cSIA4Q%>GmX0)o zEEK7H>-k1GPjI|E#->mAe}NFCQm;O6(w{trhMrs|d0m_bk3&N6AO3{zqq?_vS+j#{ zZ8UhT)?>Z>)OT+!EB&*_pXE($u-CtAkLZYAtwE}$YJCB@|0=-vO6xv>tn^apFj=E9 z{W|&9E|9O-esaZtgcsNw5y@D{&SgzFhG`EcLJ)FmzbWfe!R7iz0|Riy5l;8=oBh`$ z^z2tvG>G4%B5h=>%p3*ZiV0v^yv~?(YvfX}b3Rm2Jox(h8(fXppx4G$7rCSE8Vr;4 zjn&UR(zptsJwu62gs+DMUbXL9kUe7RMm*t~Lr;Wl9LaAnf6s>#h-n-v*fM7yn=^82 z;0U3M&z*JtFL)B}4k4-M_|+>wt)q4qA+w=ZRHFG~{AehW3Lmb&^4YacUtpFfxJ7Bh zh(PI@z{U_O)6U7?SeZmQu<7Qa?uG^6tRtH;eCt{WNKO#Red+sY$SWwXf-`FA;hX(I zmUa&@7x#z#T&PAAo7EUC5^(2S+@DvSU&oAqIPC1WviW4WU^NgvfEUAHx^KDJ`X~K- zu^ex6_&FUZ4{jTHN$2%;_`MVj!ZiV3b}Bh1m=Z_YA>$$^2nb@VsQ(*DX*Od;LXGi?7vEu&*(Vf$*7Isrt?b& zrG4mmIaZQcwTzMv%n8q|a>H?kpkFVNbyq@l(q!6QA#G5i9ph9(5AorvkG z-~cb-RnO|xsH+l>&n9!6tNHi`*1uuiy>HjtSN9z^wv?9iyXOvG*m$qEB{T6P>)y?ML0|+ zEv@hV^8<^?Z0D7--cLWW`UJAl&z>08 z7g+Vq%BtF#v1o@$4mO}j%3S~VE`0^TRfxoI6TiB)^>)WsYN5sn-J7%P$YSj|@^3PU2@9rEF_VjR6NrGMz-2M`UW>Te$8hk>ko5drR?l>8|McaL z7VgN;Q4e!jTp17V@Zo7r7whYv&JWFA3Km7XL787J((h$#UbocygGY`uqtVa zd);qE13fM&!0W2R!a z$YbgvU`bFHow+_v{S5yF*lKPCW z;jJ~XwZ4z0$_)lO;aHq)~+uc`Y&OxY{R)3g#* zNu*yizLsHp$V)x_d~d?-PTJ2K-d49)R%_J~snVZ49+D^zO{ zj=I@5-a%(=jiC!W9jCeb!|_>+8m#;A7S3hTdY(U!ffM~RRm(I%{dm=VOxmm!wdQQ| znI@=7m9bNf$XnUMyM%o^6_jTQOUL%JM3-m#lT~Xs%OBlke?|-t(n!E#PbnZ%(;c>qmJrf)b zefYLC?6KWk9@aiS?Vq(H1$RGFrZg0{A{lim$-3$i5vs>@j(y=^FBJ=Fb`~R~5 z98`DHX}lnu7cVCkyOik6HuE5;#*ud;>w0))2m;#;oSRUc+?rlq^uP*{ zqtlo%MuGhw)AA6z5eBhSpp((3&| zP?zS|fudCt1^-k22mI8ie9wws&}?bCe`&1q@{(2M6x5%+u&t;6P2*VgZ`Lk3iG32q zm^OCeNQK8Jy*e1a!lt2v^ymBdLHMIQ-$-90IR$TNudbbTHG2go&WUH0C^Oe8iS<+) zs+S4IFpD@8r~276CG6FY@WWljDWzUJk)IvrOm=1mEG0pjwkun(fg||&J)&X?$jMZ< z@?%Qg@%(+um~2(d;PPSWpYI?382oiEy@6=jF6BT(UL{pfj zmiXX7Q{VE-YNs{66BRsX!Y9#Hm>79TEpgo82Ud4`aYmG<`DlgF;bIh|U?B(u=$ymK}ccPtBYe%r~_WHetmj1TccmP?NgY`jabgaXJ1?*!^9Ub^<@EADw@F59J+x zaMW+pNl-67`=}nWtdqYu7hFDw9V*_tG0!xoBscu(_Ke}>;k=(;~l1%XtqKSw}bP#3wYZ1Gcmal39@ z-DUt@MmtH87Y+~i2F{8aBtvEziJ)sF`l*b4K-gxe3zyf`kM}GuTuoQV-uVr-TwkQ~ zqis7n^R#7(5Ziw#opcOWm+Kn*)7=u7_tO#8P+$oZe+cY#*BV|Hb(KX~m1uR{s$(kc zCmKAH-|J1)q%x(?UYr}UFqxIUnn4?>`xM;yB37umF(~X=EA5Qw(Y&w?T84;!wt76 zhieGhti7Dvs=yBg{94*)j1VP#CT@094)0c#p!9sKpE9I@ay)m&pPfz7oL&3JinfiX zLYhOlh}!Vc_CwetUr?r4DjN$XJQRbz-tX0(IOtkg*s4sEHvKR z?oL#CsV;?hJ$ncBJ{)NicVIL4G+mK)Js6|zi%a{R!XQWS*kJb(h6{2rQ<(#FmX0D@ zBMihY<3d}&(hh$b=K~yr7V?wxizaaubM^GddXl?OzgC%4lg-qE0E+@j6DR4Y#zanNVsvqV|j(y~^OuA8%sBF_F=N$=-XHOEnm zR!|~x%DgSbJJX*|R>XFO|D|EEH%re%r)~}E^Vj@7LBUNa?O?sBMJhrd()hxaXR`ob z{*|YkqkmiCgUjutu)F05sh#v(#7QPq!0AG-wQW91w zkSL}ZAI&w0OQf~7HX?_+97zQ*_I}*+a-Ln;Ce;o zxE+7Nw`n$qV5(MxQW(YOAMbhJSn4>rL98ZFj%rVh*{<4=eBE)@d*G2SV;QwUos~NMSu0P;Y+Uq?vYW z*VyhqVH$Bazc)&CO0>nI`$i*-B!)zWVLel*`HJ|=wim2#H&?h{Xau6Dl=w`z5p9Hb zZg&$#GkR4?vZ9}9#6RjRuB$wE9ck9 zO(~b9I7eEdNSL3sY&JY{%t;an$W@?=#8iG|fjB2ov;O&|=^@13wjybn9RbvI3VmI9 z-6s{harme#_W<~bu!cINR%rD@w#l*CZ`;4nw${T%k;Xa3cusiGn_~x0IFx$m63;X^ zYD3&7KPlS6*5@wuaN^HicDILJ1ansPizcW@8~oK>JD$X^%zyZbXUkHbt2uPB=lhKV z%f!~Qdmm$&*z^E{pu8mYFuo^T6=hMbGJW=9g|wG5DxJQ`E2g=8-qffok~pCAp@Gcg zxk1sZcv)P}>tiAz<)&8q@`?843RrV4v6OYGS#8AUop&4VMj>whn92Mmb@@rsRV=i! zu|Q2vIdBpafdr2%_&PV>gxASDbb`(Q%fC2pfrr_u2E2>p<&MA&o#p)R@JhrUWV2s0 z`HA{uj*oA+;AVZb?dFWf>qEa;H5kD#R>mBxaFnT|ix}wP-*3~^Y1ytxmN-&_d($V+ z-2X?@RYyg^1^Z7?K_sM+?v(BhDFH#cySqC@y1N_cE@_bN?(Xic1>WVo^Ui_4SXg%N z&fNLM%%G`mxaY91DEf4fW9m8Zh7j*g=p7N~-Ax(FNr4+k2Sy`{W3>+`SzmDAzUiUzFRH&~VfO5_1HS`yGb!7+7%>QL?`u zNps7Wx#_QA4@HKvZV{nLeE*1foX>)n2Q|UwyH2)B@4!Vn^vSB!XS17DaezLi>^{{S zrRY<0 zu^!a+0>%C*D@i6xGlP7^%UuoM`?;H$nmNvS)i~VYSYUTs+exZZ>A^+P|Kb79^KM9! zmqUJdVu=3vy4rx-(~b2~&WD_(mrLI1t+#SUVflas0+&e2d?_(Ix)duK0or%52cM72 z4aWF;TP@kreQ;7b?UBK?0pdM8htd1fDa)TC?batI9wYM+pP@?CJ5Li{Vo!55n6h`b zaFS(ENQehndxKTk)yIZvCG^fGQd@2wR><&PAc#jryj^ijN*6KjZ^H{ie~yoJLI+3@ z-yCT>ENy(0u<3-F)2lrF@52Y0<|mbp)!FWeF?)>}kNzZ;&8VyJPJ8802-QdeyfzI^ zcU(G^Kg<_$Qo$q zf$bQOrforh9Ob(}_m0H--72Q3D^>+p>DNJ6^8A`Gyq1rCLQ>!ZEybMX2#w_(LbQ_^ zOEE`R?Y->ZK$T$@Lz|PA|LcjRSACW|u-##xa=Wez;UoDIqQTYLAMs8fs*Pr{DT~bMUz- zxWi>ky}*Lc8E(k(KyIbP=wUtO`#%ncGw08br+UnQfK+@@%9Jzy{3#pB^uKDoCrsw~ z0@H&|(QQBF&kYi;^j$S}b0)ZZ{6xqodGJ_qgul!vrq=C$t|)XyU;V^EAn%3MNScOJ zz;Qx1ffjDt)ADF46)>w{Qv=Q3)s^X|dn7mt`bj!}uiZB3M{fy2B4zBpZHhB5r z7az_8`G*h*3~CyRpn%=wFtOa-=?SmsRapp{Csoe*eGq5k;}33Iy$_mtm`!ORBkh)d z6Hd4Dxx7Y4ot}OLm#JDxG{u9D}pOXSENq&R3Lr`(gkf&>?N3&9M9LbBbVVGQ* z*?8Th>xvu6Lw6OUV+~qo`y}mv=Rl;bKyhoD){&?GNIM>$7UVyPoF1dUZ{}Rp1V}`( z&)aotFQ?k1e=aVJN?Z2p^BZp_xIGVLAiR7k6ziZv=j)5uT@F%YV12)|ZhZmi;g(Xe zud;uSX(6K6tI56o_0BRJ zl|Nk8;i~!tH02?z9TxHz$IDC}xehCB3-5AV@OMTFb_)4hYrs63hEEtB;OlsmMp6Zy zhyST4jm4HL(|0VvhrUdy;7X4* zyUuqij+gGm*2Z^-=vnt-1+ia89HU~^56DNZ+hwE@a&tNOx7rUQwUex3*5mNG|@z_M2h_>Ass*UT= z5(a5|qHW98(tv!HS&3nKLvwsB<{?-yw_fO#v1Tt!UZ;-MHF9&?&!xdFSgS+iTHCq4 zg^!P_+)bm{u9b4MN>P;2h)$I`Lr?(yT zNvq6cz4DBI*4y{arvzIO;8er7JL*u)9i{yYK zntolI0>svfUcTq^=2d5`GJ;IL-azTk?>gQxGyiQ8`sop?Nxb9Ft#1nWgVJxLHP&eo z0(GtBN&4M=>vggJlH8S>;agn1lcH9R*cCI%<@5f`*ql4Njp4)pJLz>3la>Mx0dje2;$_R(lQW&H=Mya$vP> z6ynKVByUv5<$RN-4ld&*4`F2BQQ-Di!|x-tO>e%-qP%WMm4eReVbo`^bH3QlNi``W zw)qZ?&+O^1nzxY`>i{SXMiZuaL#MM@r^`9FqNu}!UP8pe+?r$jPRhd8_HUG6Y?fbo}qNi`b{G2pk?C8aTeq>R^)o;O*-!xVv*Z{ zi}CX^O7M}CFSvnTSK>fHBUI@3BfsvBo|u^UuYTPhJCV<8W1<6utZEU~IPqJUGew)m z4&ktCMVE=mx!rW(w+RR<6?>*#k&en5Rw(^%h$V>k1-`rggizko7zKW`vnVz_A}0DN zQ9v75GA7SUv)WmdNO~e0F8296$HnPl^0;jsEe!9agGVU;D>0KktF$KM^C+H6(rad# zuEeP3wB%q6LY0uCpi^%M=9vzdm-FzQwO!o?9MZ>&Gx7!UXtB}HKFn|K3f<3SO=SkB za&}a45TMCYzO)#4^TwoG>d~eB=BdHvG`TIw`mr!_%i6NLqD3r+vW?rmRKbkwo)dH( z#7RdsO8=GhQv;3gQ7MPGrUa5{VKmp|Y&DVLcmZ_Y3im&)@K!+`wJ&vfnw{BwM>4zB z3#HsnR|+7u*H<{$n7HU|x*VI9+qG5)$@Bk&J(fvji56_qJ!*D~?swD0a|f=XDs&7F z$FWO7nU`40md!;FH3XrDgchUF8CXE7C=L8Xs>AqNlfFrP$7U;+BA`(ih;gf9U}H{; z{Z}|{pK@(MT!Xs0A~TSl`oU5?>7Q_Q?@a9>!_9hOs^OdlOsbsrJp8BP2WQWxtte0* zK0EJa*keCBJGb8^p)fv5WSEJ+d9^>hZUVMCjVk5=l8-+;cI#D&*KAfK)l%5H&YdgO z{yv+I6Z^TmaV4iYX31~oKJ^ktFGQ_@CUs`ZG{F$5vaD988sDF>PVAh1@iD{sNf~KD z@@;e84x8et1o&iDc` z*`{*_BDhbkpTjw)sKgbw_}eU`cT&Pd(!k04qXU zjn_vATz?t-x!SwCE)*X4129^{*)3a0QYcQX-4#}LTRQ%79oZu|0&pqlAk70}EY?v` zr&jG;cCX%W28%YVY3_+5BLou9)a-om<6#(TbD<6~5gu~iCxKd*U?=);{WVOLUiUGx ze;{LZF~^Qdu;kYY#v9$TLxq$^;x_|U4obN2Zfh2*tee=Q>t-yflB*_k?SQn%Ee#i*NZ0H-~U_0?* zNIf%U3dzg6>=xps_K)g_2Q$AAKpDEva?NDSqFa@u!HVhQE%uoZMMCB~nseXO9x7Hd zDknHT@b`d;t+$dBTqL}1!mP4ZXF{LfrAp;f7c(Me)?tpNz{4qj*keP?WW(NLJKSeO z1Op@hT_{mkiShV(T7#cpiOJVM1|te7RWjNOlE}Qb^Q^c+IoA=C=MESr$X2#n5LS+~ z;^gGN>Hw|m!MQ=G`MPR)MzgM)sz%Fn5AuYW6M>UPqF*2GWmtFd$pQR(9POl>wye8^ zgb$-8f1-CT{(dRFKEk22dCI`DF77?iXzBTKiULSTyf$L&6j2mV)}m7tMrY8p;t!)9 zKKogaVp@<*_!w3`8Pm{NQR-^ie&%a7yr~a)A2Tf^=S8hTSSZ)JViMX_5uQf>D;$^q zTQMFV-S!_QS1oj&9^Pk%3mRLs;KXhGUMM@OjH>Gap+tHDp1ZZ*V0j~0_4aR}*2oQ> zHN|2;*JTnDpRp3P*kg<2x?-!>d;9=F%!8~&t(9l26ET1C`=d4nAVm$G{VHqS*%X@` zQ0+_voXG%;vdw15_#(h56<-rh@lqK$uFq%-&}a$ zSPgumjRz8v>I~Ue{OQ0tt|N1r#o?api1B_FZkO|K#BfJ|6<2V;dyK7|ee;Y(`QPcZ4wHfq#V4w|8L#89;(?j5KWI>b$s8S=}&e1mOyef zR5dtj5Pub1z?#e&W=b-06+*~=JXm({Ti;KkyDa9q<`(ngnPX+PKJu4{uXnr=rw_z! z%eUO%;*EUFB8eXOnC^vk=+xTNU2L`e`(_eye0SKaQIRAZH9rLZ!^mF=ldsL3N4gb9 zz{c~FQu(!T_I^GnijvbmNU`oTRY!mNB}gPnd`m#`Q_3wMt&HsBdMlECk3Z7Jc9=+6 z&$pdlB4r}PxBtEsahAW20Xt6{^V3sz-iA-@0!r(bc+pm{FB)K&I1M>UK})!jw8fvi zx?iAjXw7hmNl{=nuDaM?$6`G$)gRM0*j}=RY%V(IZV6AxlJaS}zZ5)AI2#|Ct@{yU z7aq}xRtz*`&GI|)zir<|3jOdyQS&a-`|19=YouxoO=Yk;pEWC%s@~;B0X(0preOX( zP4`w^y3XHTLCqC+|09)O+&4T*D$YbWW_`k>3Q|2RW z<%)C_;KrJjYLSp}`%<|Q1)+bOp%W%ZhC%u8XKd`J;J0t{m3qC*)H`PXtns@KDhM$e z7>R2)%=uvvtXaI=Mv@e;40Twpo0=p2&Hip{Oy|6f7W-Vu=*aNW{}L%7tHH9paUk_} zBnu7N4C;P9`|*DHx$QheWAtoK__lsfcA*CC3U^g}uJ8$R9-iNCMQvcT?fEzMWGg2c z7XT{5`|jvUdLK>l<`*02x-!Y_@oqDupm(4`;>qK6{qeLn{NY3C??iKSz&kqTOH2sy z^M6GqMv;gLGN8z{jYTFkO+v1f^b^U$i@Jx$ENyNpPAv^6Djca~GRjL-xO^KJbSujE zzEUY=Sp=k+;iuB68&;WV4G9w?v=4&>J_PiGbm7IwN=$5DJ%(geLt4|ELU`B3JPke8iY9izD#1yVAg}4kNJaoewS96-!Cy(EnHPD*SQ0t-p zXb@rx)s*9V;l3xsBccmGR;bc;q<^uK>-m%6(dOcv6V~uGJe7-7bjc(%ta=7z(?~2| zT!Sf~^Q0LAHfOpEx;vw))EyBvDD|}<1T4?2ENRNw$ZKs3R+K{R@9z`8ov@xKXJfmi zZp%DH_LtyCZ|WXK#vY0M@Pl=V5e?A1C+&E*40wzz>992L-=so84ui6VVzD^`H^alqq#Ika|EvR zamO+^8(GEKA2xC<4O|EWi^N28(!$<#$aHBq?*fY9jM?;Ru*Os1uaX~tv~H80BZgJ- zk${>cZp+(Q_AN?pTAJ~mnW4nK6vA|x5D~JS!Uh#>gqDD4LLB0ay!DkY=1X>hzU*Wq*Ob}&Z6iXTecHB7n2 zd@MM$_>)!c7o#v8%gQD@H6|vkMB~`bEy#9S?7v1%0A&r!%#m67&D#-4w>{2*GS{|7 zoMnYdI=i{!T+wB{{Dx2&g+GzjS@1n{Q>T=r1QHkZtzBd7yCh{1$A9XANk2S(#o?Rt z@+)N=zCps?>DN#qVc;Y6&M6hWmv~-;TaYXX)a<(MH|y0uO$*_b<5L@StZs3~M{hz? zQ~E6M*WR;+1a7-hiNT3wv+l-o>Rcr!+yZxxpe;AiX9gLtfeZ_hYwvn9>u6LZ zO^qS-tjKZ#b(IPEh|T;O(kOYs@-qgxc8dlsDZ^hTzeK(wYuTXp7mf}ovt1)6<4{3eg&32&6O(lqD@xrv_1^drn2!d z-e9u$cPjgGm~+VvIt+@)+3{?d0;WMqQHXA9IlHtu>II;nx=1YK;m{RR^NcpZp}2@p zPRqoaNG#@%+K**ss}__^fkCha}-hDsO6a&zTJN=h+@T1wj{Pq7#i2Sb0 z2Q!L5kSLk}DM*7)_akzLW8CS9+r)(70S`qo6%?PbEn(a6uz2Du}rmPAK7b z;ibS8v`Y|^GYkaOu=6n*eaM{bo71w3)xvX*qt!z!{1vps{YcfpL;f6Y4}Wv^eSa7D zBKi~tju3=qSYnzmgqRlHgMV3At^IWUY`;k-BhqNU2e4XhnnJ26)tbCSmYVmh^zpZP zqVy^v2Dm%h(*=9lBoxo~?VFCjvd^wp4p(^slG`Tkr`g@=E%v4!1WlbIeBo`s)tL)1)D|O0;HN?Y2I3{^Q|%uFZk!Qo)|^X{@j`9NtZDNj zfTx@I9g~R5j#4Y%|7&4W?*mDY*wF9GlQpA^mpA3Hg1k#~Mk(w-=TZNW_)wG`@a?ghC%o+AdoE$P*E9^vr5-)h*&OJHmls6Vl&O(t*HdvHbhh z=~T?7SB+?3NrX-GgH3l-N+|s}aEmMz;myO-PXsa)f+T^=2cjNjFV}8G$Fo6)A-YMcd@o? zVtFx;;0IU|e;*nkOZiUab;~CYBhsn$1s@ek2(@UOAsJ{)bF<%um;0haGy?3R;Y=Q* zuzcL7cbEBWInw|HZBNN(8@HOU`#$yde>q^cP>f(Y+{iqe^|1jBzec<3qyOGE$JIDA z`N;bk!5F3_{rx4y)=AsWhSi`fVrfUX-~L^!TNYi!u)6r*^K#D$L)#s|9eBx3b1K;h!R%d4B=L-AuyYt5* zUQ1$$#s0434>qTgG`~G=AqBuhK@PXnz!Cyv;5m`TcwRFb&rO9TgA;3eTt0P%ocD^t zcOz_eV`xECX%Cv-W@P;vXJM}rMLj6bDi~163po#emswIhfEx+mhl#*<9IK(to2x^h zs=Ug|BLh(8l=J<^`?F#9p8M_nuU@*l%d7+nCa)o;lwoei>4ER~nnVIZp<2v3#dvx9 z*BRNeqB$D3?@FO?0mrvbZ$D{ql-oNc+V)+#m!EtZ9ST&ThL0TR1E!Ji3b5Dz1ekEX z{^uWRLh6I+C*&`l$4@Ae8QUi#woO3-i;B!49;CbHG#erLRhTLoh|WvxL+kdsc60QL zUjgsENAux9@(H;8jM?lbb@ps;YxH#~fxxVuUXcp47G#Jn8QRkk%XM{*E+4o)bLuby zC;e>A?9rLtlZF=|H^N42(j#cI!LQN7Z_r~`B*Sfm(BO>q87qp(EaH4U#n!jXK+2W# zog&9H(5AYGWcQ6^hb>vgvFIc9I>oPCCChx+cxWI_p--=Z=^XPL2N`J{eS#@S`oa2k!2 zIt08{p8IA%8-u%zd^d0WVef{RMU0e)Hi@Z$ovywI_pic{!MAmEeIP;TuXJ_GT(({K zt>0^Rcr#n27n`)$ZV$W+bi2=HM!981_L)pOg*x+43H7!vi2&1#po4(%79MI%d}w5e z3Tje!WskZPYnq{@GUppS&#!3=8EJ8kD(D_aI*pY|RltD(Y1@vtNYS8+G+XR|I*mKK zRA56XNl_mW#$$&%4YA60yTzvX6dg36&Qr)(JFL?S_@tVKIZKgZ7vukCd{>PB6y=5_ z|Ful!e56;FOzd(DwI#<2gDIXE$u$2je=G#h4aQ75Rmme}f4>t&19|mKaWC)&)(8+G zgvtCw+}~ivKS(86C{D@@&-g@eEU1LTlLwKJhj6+Dm6$`@eo-Vr?N0%Emn(Ac zUnSuMiqq9+D-~8pK9N6v18@w4lRMvKkCpIuhYs%=`@#^BX3J$xusFAGbQDaIp?AA6 zuURNGv-+WD4j>tj`2C-EkjlwNtW7?kD>_zD(8Shcs-&9IcI{L&DfNQTy({*ZlWmMS z8e<03oyW!YYbfLQuCCQ3Kt}7+nLuDP*PqNn91qpx6K(I$Z?vMYB0G|kLc}g2GS1#) z54OVTSrBS8J%@2qd=T#I8ny@$3l%wGu%vNSz8TuLpO`So%&dy(7?27cXfob+iX)$b z{b;kU2|S1>*gN0#D?a2-Y?ta)s#S0tos{$n2Yx1w>HGN|wU6|IPNTId5e{eMJ~Hh` zgS?K&fpv5tTcyw+(kVJD6MGohQvwoIEfQ7yE>m2DuB}<-i}56lSnLZM-EQ7Bzn;i{ z6ZMj`nrI@*-X8#a1`JxzwvN^%3=smwNNMVw6JIWqFyaM#w5|%`Ojo^=ZXFYVB54j9>vZqNEH6F6dW^}GU;J8Y90IIVjSf%44(eIAR{eD|Qw9x8sH;8Lj ziUU){99@&Q_SaKwZz6tr|C36c)F_Tex3#jQUi{(BE~_r{q6!b6?S$RyyX&|40+uBJ z+c9+rQFR-OU7lQ{+RgD|uU-U?h`IS!gn-`<53cEMCmcINNoAk3C=8tg>@siI9Rrqe zVRSp1#|rdQDJ=D5R4Fby7}uDJWMpo(4rV!kGahKyc@~!!hek;B(@ggD?YqFqco34i;0!eJN2u!%>k2P zJhbVohll%n8MtXD-WpX>Fs6X${G&?={I0vKTe9lQ-GJpj|edHOtHuG>l_ zNlC!-0=aCyo>8-G$lTb_O?Te-$ZD~0Rjaw=^oHq4cTUB{8&GX^6F$l$^n9eo#?yLw z;JycR3K!K)M5Ln@4o8B;wwnv_DU|G6!|Z6ve%K$|2VD~PXG5&=vZO%2Vp=~iG7xz? zZ^PvLH2L;MX>0w;guGXEgN!EdJ<>0{=XWNM^V_p-rER~u36ux}Htm%gdve**>#6x`Op);HAKEg}fG zCfN;>{Bphj!CSaKeE3ShLinjn1b;p2HE(bYB?thDt1J!&A-VzP{5n;Y#1jXW)9!`{c#n!_K-t zSr0m+BSlu|a%*{}{$5E_n48tA-S-B)SpVS-*d7NW;_-r2uGwkq+h_t9;+jLl;bgx{ z>@(Aswm?uN{0F-rE+X~NkX} zU9wOX{!*}ugY+52Qh3>K9wIG0G3jdAIQ`J+{LIMu)%JrT20nS!(*43~-9yEYx>Ot> zB@um$#_@=sF#Wq=Vm>LinwOvTL)tFjSG*Kd_p}D)a89=psV)+pIHhe8rk^BSuxIE2 zXJ{~$xh^$UN}7r*n#J-y>V6A{!_bGLFE$8a;v#_=$u&aK57R~z_(RY*>NvID4opgo z9$~=00@Wh>(c|yuWy5J7@cb;DH#q{?^N+HbU=y zXp-SqVD?$i66F_qLuPa(S($+4Xev`h-*1GBhT>zK{n1cSi(8};A1x8fOa#!!r5`kL z{b@A^Tv8@WNlET|FFTLaMkO*GuyzsiyO{@C-5D<3NYy%fwGOJCoa zKUBtUgQ&@6KN5kGwxy-zKN3>X^Mm5@D$gfZAtIy{Rtw#erG}TdPmnf*G(m|HCz4+5 z%X+Hw5?pupdJLQOboctY=xr6Gl2DDInJSG};#`aNzVgvO_&jI}z}Z*jlXuK>p!RzL zh@-kZjS#7<*Ba}Ej!Ny34!_BxD#!*|SFT z^dw^DBo}G=6u9sqH&~wVt?--1ip@ygcfi zaUnSkye>55sSAC89Qc}U<0w$U>d6u2QQE8pp=7KKr8X?%|NL%-w2WwgD-|RBB_QM2 zH5mw!Hp3+>&ObKh3NIt=?z4?)wNQUJwFNCrIKonKQIwr*7z-4;wGrU6tiQ2SA(?~W zu|qYp#c2&WZC5M)XI?kPvh}c#ZIv&)Dg}JX`N^N=)a>3_$3YSEbOzpr5smYO1Nwq{ zODilZkpRY6o{^dA3zLt-73L%RN}{OFH(FAE@l;)MU}@J+$`kuA@B)O&m&XhRWUhb>BN zCcJZy?Qv=F_sTdWtRf}^7C?Nq0NeG3BMduw8xk)Gdo#KJ(xpZ3kv} z7QUyaC->t~^`8AIkK3j&(tI;uAGoLx&z^>`m&@~eA7k)NN4dDfRU(mxstWu7_0VtT za>_VK*JCk62J`lIsNrMCa>wHPlzoO9TZw~daOoRDlU*DgXkA#2lOL6E|7%^)1A@U| zQDS$@z`}pdW@sRn8>z%oHy!M=$&AlQ{E)+Ep?R9BJGhrH!kML9=%a!pvW2tR%%yLf ztk-)IiCv}lPdLw>8txJ(EZ4?5P5&HM=qx+{1(4Ny;klohpxeVGdtJFJsm zv`EUBJS!`t;Do#8YOKX`C<`pQM0^jFPwyAU3^jvCgBL|*Oh&sir~AAvc(tX6k$^&) z<4OwhDJUzQd2V??OdZD1?N-%Gh!}X6YJ9L2UtpJ664y}x+&2p7NI66owX+eKt2f{P zI7CGWtrz=(eO{eEAnVhcU+fuQmcULVAi>?HE+n)E=_=7#y3EX}TxE9malOYscbOL8 zj#C9Txw@2Pj<6Rz9P~?=_+=30fw1F9D4fYvX&|lvX89VT*_V7L@tl%ypUaSo7u~I^ z^YZ+J2}k=0s%cru!-EHr=W49Jx2CrCe93OK(qxiMpYhA#Y&kg>S4tvg0!PB+{uY>I zw0Yi(Z#14Q4B40V+Q?1N+yDc0o?xF#UNp`ki&Zdr1HenJx17P^4q$vu5T^&ICohwl z&s7Wwt4mB7&{bBOm1)xFL+f7Wi@6c?68ySRiO{<%zw%{!|6cG+U9n#9-&oM9;3oxh zO_c9W)aSlx4^J$j^9l};6y?@Ceg=_Wq6I6+w8arI=t_M`y7;S*M@L%bju93bb ztkmb7ga7d3OTiS@I3UW(vot2;Tt*`8<&ceWg&MCq?}$>^P&Dq>u*lALRBf!UF8YJUnmwtgRKesRyB0J7B`P-@LwjE4S zY`cA?YhvJIM-W>pN-FMy`EHZKu1RsAc3psqEchfkc`41j^V-CDm2~}D%e<-p$KQTz z9(JGMAoEM)|0?R?J!y8IDR}xoBceIt5&$zg_M-5+Uk+9b9QkK>czAnz`^dz^zWvGk z{sF8~PIuaH9FC5q2D|esd*PEfYNd;LqYRsur&}o6ymawgU2yvUExDbxT;1MAa7uf5 zy%fxKxSrK~GS?~mA7?mtC* z{%sV|Jd}g6e0YKgrqaGTX~FSoa@773b%exYN0(~@YdE;@f8lw)R%Div4bi`AdpYEt zqU%1fUOKiLy31=0U4#&~(>^4+5{Int zSt1mPpfSG+X4BWYAAn~3ID;=#wtFj&tOqI>>mL2LJ@6tR#Bt*uLACDz{vU|r{!6H} z?|Y@ryQFV)(W|ch)Ei1sCk@`I5YK^wL(0;_ECY)FD7SSDh3~7t?W<4r?(-2_t4Lz! z`kL`3B`?+dcMU6I*(l%8HPk9WIbdu}|Ct3D>-)t+7!qFSQ8t;S={(0~`&%a831T9K#2+O;rRIY?mjK;`S$iUKQr^+lN(3`t*x!xH*eF;?eGQA&5`kS38OdjOe(Zo@WmQ|nxSF65|ys|z>_{deTVFmF{Gpv^Yubbdfc z?XenPl~k}x0+g8uQ@GIlRMDUFK9PY}Y(4t9!=W9J`{9Qe?+5}(@3ijqI7t{?5zM({@d^Fd62mK!afnmoe5~9?^1|@9kE#G1tHm# zo%jbI&=mdZP*qrV@HK{dl}mO4j3iC9Y_ebwr?lx+3$2dHxqnI+DABxHFY)x~X30yp zgOjM~`dW3dV)Uwv(kA!2OjwA;0-$7>WC$B&{v-fjCEz%#*=Sl~JJ^8OX^1Yp}bQ|?-%t3OmUQPO~mSu;-1Ea6vMYs&4*V$#x5fL~7+Il&M;(@{O-|aMRO!Wp?v{y zjm;xF8G57lLNi*)zW=T1oQfoh!qD&t!ra1RVFY8bpg>xhzunw+Lif##*%v#!l`?1|m3cpqIW_meu}mUi)Q?;r~<9h)1s z`jNF=nX1#)hH*$v3%V#5yyIU}^H~oV5#obq=|~Ozcj7Xr?|+Z`u4n_LSIoqP^dqGN zhpM$VdLsh6k)zJZ3qq9KPZ34UFMgy7*Z1b!BYKM$n2o8%9Y+fjXzf3T^o}=QwF5kD8ogHM0xLOWh;(vzs+T%eTgHwi>svAb6@cSUw|s zNUFyklDdN5HyKpefluFQ*rmliIgKu4IpPvJR<3^YE0oq#l%v}l&-h#ZIzG3#5X_a` zNJ8%RgG41p!p;AC0hYaT^>^c< z)3g+My1DkvXA`O1 zwLVc}<)-?sQ9*jAXSm{45987*fkgKCVTXy>2Pudh3qq)~GlQij)S zE(uOd(`6eC{j2i7qxou;8e=56Jjr!1;i>GB#m2^FD1|LzX-WO)_*kXImBnsnsL-?Z zTL8k=&Q5e{s-(O;Dk$pm9S#?M+c_ok4(rXQIeMQWdyy?P8HDk=L37cR^G&2B@U6D1 zX`SwjqHs;r=_xhi^4x1b?lxEKXyEO!r+a2Co4Iq&7Fg_IFQkD#!4aD@bRd_aVq;4@ z7+y|1$KpMg8E%hwAofqe(gz$Ko14h&QV5Q!f=?PBuiI`)hN@tpgmdF! zWA`ar5`QgU;8Wg)=IxHz*t1bimpaFZ`-O#Jsf8uSR&7G;Zj^6SNoGm zydIoPhC`Vai+^#rog+Eyc7B3EcNrP@r!BX5>FKjtlacZ9J>GAilUfBl-JvznMg zRY1L*Rj|rZEOd4|yR7Z85FfZ|KEI|7PaRp$YFeN#a{6>J0DHGPQqCUjkXrWZIBCU% zsLWyLA5{rO8Eu)%(FSFvskr^D_f6Lahd&K!Yw!*n254IPW(Rnz8Oz=G*^;RaQg9~o z0qg5eV><@X4QCpmr0<;(TrhWUpezsVb%bU5?#^ij)e zL3KIgAWcm$)qf(q7L($Y(hLp9>)|Q&wp4z;;VZqnsaeYVYdKol z7vGC1VrO`dceN)slDM?rR|Mt@pPb>EUy}P_v`r>VVX1>%Do5pJOJzM8p4AImPb#M# zs$>?|3TpE+vkL@9oO1r=9=%>?7_NLlUJ*ajU-Yrd-T(e(!#}l|rj@gKOoCI;OE3)! zw^P9|!O(1yIQePF7^SHb#`xvURB`!w7~9I4ABN_?$w?F~Ev-Dsqz>xxX5Evy6Jr{l zluPA=NA_e7AL-lY@);7Ov>AV+e8=@NO&v(pHZvH|#1`j@;v@{ev)n$qdAQdt%GJ8D zO!HDy`(_Q_g}t8PYc{^uAzR3(Xv?6U#tHFQ?w2+^wO%cywr-~4747YyuvkUSmz`qS zLgP*Be!G_RwI@Ql@e#UYQc)#(yC=6J(^dH1bUjMms<;}j7r%=dy*m4_gHB~d$&n(u z%Ii;^wS$3XcuJN9+QWr3uc^fDHq#8xNhQ&Zp4AllMvHw(8*C?cjn;@>)ZT4EdK|&; zSR9XW^c=r)WP93HFD<+vuwk<12#Wo))_fzU0emp|#{vbz6hKN}P zjD+tj0Z6C7l(av-d0T}NLoS_Huk87KxK!z~EYyrCdf3RRa_y{2b#$>nL9(rhCSqkW zo=23)`B_V?pPGuiZ#shmDqY9)kpX9fvuBc8)9ARc^qMO0FxxKM3yciAeMZR$b4>`~ z`teV(bi4S8??Sob5_0=b_hJzC0L`mH?LX<;#F3`oS_Gge;1q#oI}Y+22bcZBZ`}<@ z9bHuQiJIg?@L|Rg*>=e@vYrXy3NfCjLT}CXDlJZ)yjD+Ue9NJOCbXJcvrLv)ZX8+?j9rjwgkR&+vLBYG6&<>gMfrntV}0GQ7*$vt zc7djmp+HG6nb`#S6&rJKaJZkfLxg3(=Q^^fVrG~c=1bk82Yz39^x0bd+(-CUyOqq zPUjpGDtwwXYL-ZagO+5}|9q{r_m$(T(C@eX+-toA!Vpu&v(hE8kh^cXJ{@r^Tv7dDCQDEgyEjny*uR{+ zv(Q@80cX$pH>`2aq6K+ku2L_F!;TE(TTHkQK+){{^F5~QMR1&e*%aHb`v*A)dAm9< z0TG)Ug@_Os$K5o(YoSub^9}MvvEc%7anrcutaT3;x3%g$X3iaRNQEozc$n$VQD?>` zp5chMk@Xbk+4JAgJL}#ARE4SXPfEG6NSm|4Ae`1~pQTaOQAV)b{G0?^?wilp&Dvc2 zOX9S&DH`u9Q9Vvvz{p~h+7YDH@#@2)qNb99>~|PV4;JoDxs~IcA00kzRP($vZI?Ac zs(d(&M3Ut~wWv=lS$rMx>n{vzV|Wyg5tJSCibqWJwO zoM-yE#m0Qx4YrpGN5Io=dF$Afs;W!CrFl8|-R{{eCLV`3s*_Ty<<8J0hueMI=}X6n z7H=jI^|t?rO1!J@!?*H1f-c zW37s#IaTmRZx!|4yK$U9tj|5>naQ6?It?uUFYMr-_ zC0MzJK!d!&P#Q4V&*vZE^c3Lq7ZT!`Wg}_9m)Cfr=5fdINMHMeN%prT#A6q+@_q~5 z@qaq|>ZmH)r(IqV5Gj?E6zT2;5mY*)yQI52L{hq&O(WgiNJ_Km?rxAq;N08y{LcE; zx4yI1S;xQBy`TNuH8a=DTr;;Jk-o;PxTZ>*xJDd21b%+Jb?7}Ie^~{c(UI$!Gkxw( zJ8w1U6tQ$iSgUs+!HX`kX z2&xDsC1$>&Zc)ix!BjUC2LqSyPcxzE(YA0@v~)ph=r01iPBRnQxZpHWt({k+;V|29 zwjuIv`HpD$Pwn^GG?siq3m#iW5<%JDQ*aSBAg<8Qy8O=L|A@c+=ZWK9H z#v`oOOZ;%D5QyulKW_bgY11HnVtpeFGharm=H@vex&1FL+p0aGK-Jgtq)OG>w zI3c?R`ifv83jB1ea(u|vj>dJ*CCH8q?*(6KqNTG(G6peB- z+7c1X&`PyLSC-s6(8_Gj9Bj75jFdv4Ci2wOrElsoQd50c?Vb-bBG3omY$`o6 z6ld)8CmEY*9L$-jxtb9Lj6({|ws+ZgsyR(8Ci0bNrGkBybaRS3-s=Ss`<`A^;OCVq ztQ2JN&qIRY$aqUOpC|3H*P@!uhJ0givtzxY-m$jLz^sEEe2VzQ~rxjhkM^C1LU6EY9N$ z?2$WDQ%#P@ z`}r|PTe`Xk$#Pz%qsj7-w`r$Tid{*3^XhBN0PQd6CdH-98xwU8r(@AmeP!3I!7~u}(5q>gAT~BO)Iw7B*zBFUwe8|`G2bPM_C7wV=A}pATO2ms5C()hEVU8!@R^6bFIX$`{ z@cqR!++_|)F&pVW3xfQ~i=wR84&rY~-Yw#$&~f_gZ!E_P>>~A15BDt3)(L$v2exhA zH%))CPnw>;IdryYDMwTcx2KlaYy3EKd}fTHkZCdNHjDZ>ZZIoPq-|_hDEXx!k#Q3X zZc6pV$5;r(AO#_lqdh7GI&i^b;#AxUcFbPie8T=iI--b%&bK#uWBMMcge>*M`J!ih z65ZLjN%E7@p^bfQk?mn=kM8t0M;Zd2H2Z+?2g^NvG`{*f*A+jDs%jHF;o z>#xek5~~Red1|ePsHZI*cwEd+koX3UOzoL@NED1vmb`56+tSpBnfi)&Qot>MmmbAa zrS%>BSlPrePryK2{$%pZQP#k>L1N~BzoK2 zG2>;m>=;osZkoth$#Hz|%tUaRRKH6OAgD5HXSqahD<>ObkK!^414W(lK ziYUth_Z{MysHQB$#W6~2;5UE871XRrV^^4aA#WSi`I?GH#VweO0$0qA8`-;HfmkVu z$*SkYp96T)r9oT_+$PDAGmCWY+-R+mlU$yFZhEfp7R(c)t5Qkbzr-ySX>y&50{H6U`HV5nZ zP&f={;?qPa$&t_R=6?&qRGw^)Ow%FDVi48`id-|%P|Dn?*khlw!e|9X=Z+jiZ|xR0 zXoLOsUTNc>KY#WXb-NF@t&Syt_b)PjF*(I|b-Pn5(_K}P20ceWe-@!hqRpt)1t z+00I2(Gig$WA3Kg(t{I*SxvAhSymCrF$s>SlQ=pI8jHD*bO?N~){t_h?Ka8ytW-mv z;e=8^OUf}3e;F@d=662CwG0d=NyfCweI`w?k3{ZUn%%t+cK@5#(v*q`4-LdX2t7Y& zoYpZpmAh@LiJTV~sz+)?!z;!WvruvI;r^&@3WSyfR34pkDyPk~-_5`4oc{@epLfh} zihDsfpW##{-TNhbiw6eCLWkXi8Ftjqqfi1oaff`Q)t^V)vyT;gboh9}4Xvs7xZ&k& zmVz4cPF0r^I0x*!S)Om7IbHNlLs44#+SAT`3HzmtJW{URsD2gE6cnpJU(G04u8;U> zvU2yK?ZpB9`w_`I*?YN<<$Pb$p(&GmBWFWrrAIc}!puC}yo5=z7*Uw|>4)=;sTGA9pPP5X@@6-wG(^wQNLI{wxyr z5vt0wE|D#&hb|wofgS9zI1uo7=7iF&%U*G@;u>!$FjNuC&(2B9`{`z^$`cNf?O{{6 z9X2ClE~;rmwdTVoXPQsW!j=U5t1X);mRD@i%!#OQ-1EF=y1l2UrN%@}<_(&Sxkpoqy!d49HV$^NYyb18Gro}j|zeR z;$3J}({c9JVuG`Nwt@ZE%;0LV{!G55iCP3p<)6wYI3#K^fku`l%f((_HLQkt)9|O$ zuC?_%>S$rZ&_4}`IkzHd_huBTetyw>)D_Yg8^1q$uE8tG1tAw`@|)628^l{C{#sUK zJz>oJx{qckZVGCdg-1uDSg5}IHT4prq3jJ232dpobU5kB(MB#1jUe{8T69LmV}^qq zUCHXR1{l2F40t}gk^72-V<$ix_vOKGO|Ca!%6TZOf0(AIxrmiq$G*0g**gsV4#NFh?#4b^ z_d(}oa^^@gXA^Iy_^OWz)c`@@m6R=SE8^J1&2i5i-qMCGcd z9V{f9+4oYEPrAg>?8Xowtkv=9g_IaT*gSD@am^36`;!rUc+s2WhUxA3iB@LIF-Yqg zF)nLwf5(^k!+k#uWBuTFp`c#6J#A@x?K(~aFv9K&Xi~*uZ%i4_08^j&^>muGnv20} z=Q@0ePAB^zpte3t)_ryq-fi6r_8+l~iE z$Iait@X^1Mo~JUE>C&?|ItM#6h*)NM^hmi551=J*OvCGZkrtouO}Sd+%8lUOwRTQJ zLx93uI(Ns3#XVCPD=bvE7ZG6K7sh+R5^Qq(%;J1F$5_#ZvFLkfvoPxb>o2OXS6a{2 zWcWVwnVnvQ#&g!iH2j0ej&CZG z!@CmIp$iNrg&K7!SeT{=xHB(F*aR3EocpbFOyT>64R*iKuSR(Q2PQl9I+L z#z*UD&+P2a2nk@06{}ToJ0B6w&dz=m6}3NE5o&ZgG&`E!7t=^v5ylqvc4xM$l9oZW1-zkMsv39hAa=41-X z6)yro|HB_^!}P;j>yXD))nU`QyH9K-oh{eP?b6_GwwH&PGS#x&b zcWo?qX#7i-W)KEW-@ac|O>N!c+gUwb`gHBu7gi z_-6I2V<_PdZ$RMjuVg9`Ch16TuCFtoCMHYGJiQSl#-N5fHZD%<(Ld`aWLQ!tduqY1 zX47c6HMNf~ut#LbPbdmC2u<&%wyJn3u45@j3LqMg6h+3cBWs^WwsuC+gjiHmO=ie{ z`)QI@z3|>k4q^7j5QKdxDY7Hkwo#x2g@vkhs1Al}E7WUWl3%V(Gt>Q=q~&NyaVF!; zCo7V%_|ga6{Np&OagH2j2++>FQzv_p)Su-eYaXXltglB8CytU#47_J_#%Cj^QW2u& zLrzU;;4hEz!o%rGfO47N2B6Xl3qO&QlcQHH_bxAI2I1!+qLljJ^A6NM5Kn7YT|v%r_{X_> z2EO4#D#m)uqhTj0V*GBupHbwHKE1~Z`sm@UNA3tWrb-rQNQqnah+K2sJGZuoENc39jXns0n6RKNh+BTiV_D|Fo?_6^acsJ@ zDS<@3ZBb_rVw?bB4Ha!ye}5EQR#3-+!=yb3+)64;e0uUa`Zgi;f50)S-0Px*`3@GA z)syDp78A5{)hAifA%(K5!C8?ynnE&OJpQ?Hii-H3u|{X|E2d3t94osAhL*le=0hC9 zr4E_nGhg1T+E9P<+o&n#Y4F#3d5`xJ+V&GuL0KG~EJVqv|ueCBkiCTLqo*tYO?nq*n64_h0|S zKQ9uROo{}Th_&LYIqyvrPzMVe7?9H`7wfKd1sP#{o=`L$%{KS8d&I9n8#(ugy{h%< zaMutd?Wx1Q?_4uE#Qe68jexI2iw*W{a`7o;_ea}L$gZ0R0LR)j7JJ{j`eP|$DQKz* zC$*+Z0Jl=U=Am1pHfYXBMBxwq%dvX%ZAOlk(Au%On=<4oZ>t{3@ziHpht@TH%A1{w(^MKqp zSTv#U8tn|rF20LTt|cQx#fD_J6E--C-_;~xQvuo*m5(;5*6zk~tw={pn$MYVZO*~g z^!h#kk=YO(_HjPh#v>f;;H;DMWt`~5q%M$-YRY8bs?9svOo0#C!JkR%Z4zUBrF4eI z>%jQ~zvX4qI0kTEyq6igRw`lBCjAfqce0tFbJmF=82IXqDI6RLllVs=MMYfigZVn9 z_1*}suMSx_815>J@mm}-Hx?YVAkdz8{p%ay2v29s7FIf-ra{2)Fx-00 zcQ*!Yv%Fa6$#o?h=I{9yN_HSE`0Ga%U&Ztcl%kx-Go|;{A*Stk$x~-{6%kR4^)%%V zAU)U9`a1~reHd(JvuNDfpP=Q)v=R!n;s~u@k>O&`z1+@Gg4tylB(!UC-@9)dT(fxa zGSvt-cH?)GL{?)L=%&=rB=nLMb05c)`@Dlc`qM{_qZsI_C^Au2s|9XEGSE1? zXxnuw3vXri(D0$T6Z-oa`nkU&Y6~KYnq}p^4`CVP# z5q~TvKF8R%9VdtcSs~#?-)D{(Uo7@tCQ4COO4|RT?aR#1N(4eq5Qi3Ciw?vFI@q@z zKt}^Ue@M8-90)JT6}2%=+fl!o%b^3f>1=rGs~#ZtOy9{GK`5y4^WJ8o>nt84n>yeA z<3T8ZeDfhLyr)u=yoh`?Zgm{O!bV-l^00hBWkmwQTWV%YS9l&J%IG#=Yyql6}wXyJMP2Tf$AZr8* zd$V;+;*qCXOC2)_x6K>S$&lTcK8qM^nm%9%r1Q0X+3X7gkyz{9$iW_EeaVr?(sR^Z z2{%2&A{i^dZh=^c&r0VQGtzsfRc6GPZ>9fS=uA)HP4JN-??cJz*+7Wn zcbl&u0J7gr(rqLI4V*x(43?V1oLlM+7@t?O{Q?gQ_G+UO!#EONdbafoTUMpTYaxG_ zPN|&I=4HLBNUYCOr9%i3rIAkVGjlEYt9&a;L`S)*o08sQhiQqM@=#82&npetEXFy( zfiTV6=H#iZ@6nO?q#&N7u=wNjtntd#c;JzxXo2%iN$rIe(CN9|6ad0!Ug*?%Y zp>`h-wBYB|xC;ZQkPBY^E_c=kxxZ_V5f3l!bCh}cOJ)`$ETa2)&IVZ-M`S0Il~ozc zhO$LGAc4B(d)msW3%@|F7_i1LHy1&tNoJUo*_?KcFSQIKBgF+sum)EFCfG>90#>*Y zNm*(B!r*KmEQBw}e)Qw=32Ty+hr8~}0a=Uu!j93+R!T0GPwdUX{e?Ku5apqz^N$DY zjT)ub)?tImk*{98x(4*v(ftdl6wa`|7%H8M`Y-~nv)lc$Do}i6A23eNV{&+7ztDLu zcHB|d#<12>lKyICt=GGp7?5td2BfgP2hKM)VmG67l-~<|dfAPg8~eJyfL&R;a3iAw z7(w4DVq6GY8oJdrFDS^d=hQHN@7zuP9S9IeBNGmat(jcfUZx8wdZva+grz{}WNOh( zEZ9vZ@Ixud3DhMTn>^{j7&0s^n} z%>pZ&CyPycgjDjr-LJzAo{ zrCwXyaCq4rg6j&RE<@NoMA?$>`FPpQJ1-|%V8Ll?4En8k_z+}Uw2U}sZaw0kAnUxo zz7rHvq7UJkl=wh_fc**P)M>|R;R{de_T5jiZZSoIN} zS>9KB#2<51@IZ<3M>qeZO^g8{b6Jbey?bu<-EkB-TY2`a)G@`;gn%SLGnJ6Vwa1bi zI%DbpH0XMkeaGSwnjjU^6RkhU4wh4IG=Ai5%{gQRl}1Tkyor9pev^>sCuR!WB?@1e%{0SPC^o%(eD?Ux&dPMMmC)ht28n*{A$F<-QP5>j{o#0F z7$sR7u}*J9;47PI$Cb@iwiE-E5au#)roVLaVDrFLSDnc8ZGEZr174MX-PLgjx~GSS zn3Pnp?O@%qm!yLO`{A6HyG z7dn2{eh={LW{(8wkHS*8Fm+!@7z27OI`=H^N?}o<%C_Ed0GJ}MZd?;ex$*_0GbT1Q zwm&C_{Z|BwDVa*>*TIqYYO?VIX(C`ZNgyJkb?uix!DYueyJVB>2m;qg=kP9y?PeQT z=QL4X*~S7}DqG|HeQlM3G6}I+L$#;%cdJInZu9F+MBwOR&+Gcj3ZXn<&sw}H~(T~P1HLiJ@-Swmae(%wzrc5x=HT`2xVldXE2N%5!Dz0 zGvLPuK#vLRj`P<-d;R+Lbm|*Ye3BXoX%Jz6zFXxV)guHxo<1NA0X@aCOmgdgBt-NYZz@Er zjJc?#fG)TrD3y(#uQpuEv<;-tSZgny9R(A9*Mi6Si7l<7b=5dPazZB^_t7<}46ZU4 zj11&KSwM2x&fdPFuFe<)8wQiu@@{VcoQGWp4+pvmC-OR)l^8r-SzCMS&a^1xfUj{I z;FM==;w*nQuIg#WrlD|IesjS1L@OD}#U2k*-KXVk6*Yoe@~U!!;S-+4f-PZSyMRV! zE1c975kYT0j3fKFt~}i`?BI&Rip}nf((Ea;Xk=tbI+V;2QlOBRHNF3u&xxLeg+(g; z9R!SIwAONdKmFqZ6kx}sCD&J1H3UPz3swE<#`nl~jrkiBkWu+SoGRP_{kv%-!=m*^ z;Nc-L5*o?g3ZWYkg8(Lgz8k<$fcSoiP#wa{Ctf5^D&&ez>#|C(0)EJsa?a>)f|=qm z>%swII~jBNu9y0Y8VFOrfqB0b@C(*K+y+jl^r8A9h#Y`lkU9lX9S+s$w55Ei7G__C z1{%Tv9%=bYan_Kke@^VrerV_-xjl9M(cu2sw>kZVN~1@a`&M_uAG^;Z8R+v#EV;Xk zF;Nm|S#qb&mxh`tE&C z?}1Jc^M#?8sQaqt0$*t~1yvD`mS!?RPEk$DON|s)^7k*=hF^fa$r@bAtUXt`*f$jg zIL@dj$C7}6l+1IdewY|neALVUZ%Jz z*KKYUn>4NMO9e$WyUy*J8tB^LjyRjKPUF++>;{cDnMXgbd0Zu*yu#6IWdFXAWnXPW zzD0p7&W?;vfc8>b@1u+Vq)W4=j*OM-KcBF>V-@4&t@7J-S-;3jfg~bOmJawt=<0l_ zmJpjN`-W8x72!mUTqs<=O-+Iy`NwQSkm=AdM;dO8NB;!cG-OW0*K*JCs`6r0MfZmb zKhxVh{~XE4JKkjlSoh0VVTJ?9aLw%ECV`ZSXo)Yp}uDIgVmG)to0;g zdf)Y8QswmG0^toSYqX!ApZYcpJ$+7jd3ldMP?uZJHNcW(4ZANARSKogzLHl~##vfg zn$)?wz6KR*s`oWbO?<%Bc$(4NoH`=-md8jrx6jdVfsM1yX<5Jeh&-V1l-#CJy%UlO&eQV7L`P>%Gi6&)4(08qhw?ZC*pI8 zOi7VcQ+r*cQuYIwi^&m!FcD(+0~XNwyC;OHb!OvE#Q(+G*5YgAzG8+PwJIYP$34Y! zHv#?La0*Jw08o#|29!1{D=W9#IW1IHGx|fC0CZTBw)Y335f*J1NFU0fA^hZf zL?8pgC2mj@;X&O%1 zDUc(B<6aE07=;~?!oMP@Cmt-XG$1qCWjremJ3!`C|B6Z{qyk<1uaF5O{XJ31VhIp% zpeAB}WzF#4 zgFf{>O6{*mN{kPS!GtHPB9aA2*^Bs`U*Q!nq3g_b6vGMcSol}qV($M+GE&kd15A*9 zRa=AaPUV^!lmC7D1!LV`QSp0WMD=%$sc)+eV1f}iu>bD|<>Y^-A-wSJ@7tgzbJG7l zdWiM!Z_F7({9Yy7G11X@AX4@r0Cg3#-0IS0PGlnl z3MMC~evhH=e-xQ1ZllYC*=9hXD^{-oFi^Ez_gh29OX2T5`#=W)CBbFqLEtLh83U;aaAUQQ$oN?KS4uk8{PA-GIH9v~2{^_zjC zwnwj{hV8V!KoSU$0ozBg5%F@{El0E@D=BZQD01rSxwnQ=M6IkCFE1~PwOf)wMTDXt z$%_}>GI{#Tt)32h6G0&LnY7g6J`JlULSbZN+ zM^A0HT?!DD`W_x`1fsTE&tck&K}(FCvGg(?z4Jh^e-hEYSW{gcA081^cd^m&DI%ge zFW4&P5WYigs(+Ow!hg}~FO-E~hx}R58`!b&Q;Pg+duaa^4eY;Xul)JHR^YF0Y@pDX0a;f2b9DD&3yFov$!nk z;9TE&xy{W@!gn5c*4EY*K&|3SiijWrb!_zT=jQt6MvXnbkv*PU=nDsKP|fP1MCyep z>1$L(phu1prxdgQpdTI_>?|}?<#y)(92qH-^O!TGxAo~VV|-=a$)=Ku4~F3Ji1vw+ z15EtCPjUz-``f}?Uy}m|ULvrLAM(c4cw>1v{?F^c-w1p~cwk2G<2c#BI^(aMgste9 z^jw`aiGEM0-bB6}3>fF+<-vbeRsBU4!QWA?*O|!gYUikgEGa1_rh9#|ii*$v{pRu zJQ<(wKmp4wmTSoczIApI!W51%v#3d!+OFfB7XtqSeUvlN@ zw0TL$%SVGnue4be-mK^)R>1lsr|o{ou~{|p4)%Ai+g&O{5RbzNIjscy`1c8I?KF9L z`K+$qUOFn7)N%*a;4JEXfO%t2*L&%(v9To#4Rcw6rl%k!6#_awB04#_5O@unfEJ|4 zX|-Uo`?<(+xm9a-swCy?plXB`JWeJO`q}I5kn58i*5=K2y2{o_x^>?Pcz-NND(4!H zr1gW;OKg9?gds>%^!J1jl$+@1mZdKh!jpLoGc&3S3kx{J>+o>MencR!q=Z4eBp!!B-RAN@ zO;}j?+4JYZ+0YjxB-R|KTie@g&PSRsV+c1kJ`Q5bd7gKdaG}HkbF^Qys*KP&12JII zP@+5lYD0l5Q`f(5#*WXDBn8}BJ!U*+JXAosD{3f3!J%KV{(497?%g{$a!N|=3tsj8 zV`2RU@FPU~Mpq1>F5lobE0EFPBQ0%lt2E8NX`&Bf(qZLq3> zy!@zH4gdM*2Lof{@iHAj@HAL_ULGD6`zs4TB2cIFsc2Gt$kFrn5SO`!XH8q) z;Gk5|y_Shoj=uvDNH1joe8BMl;k3m6JSp$Cm1GQN$bY+&J zeh4h=6)ZJCtDvN!s&YB~!f7$nK2@S2S2SrcUt2O|JN1H2^Um0+qzxr3s5-J#A0%Z_ z2{?l+$Q`>4`0Ce6MT%1YugX?KCW@%{N8z#ahUK(l}R|5`0Nxri~P z3luwWhJA6hUB0~}6DfDUvSQS3R=sbo>1qOZd{tIe!2l-!nz8ZmS@H#DUC9uLC3c0I zt1Fmw9?DFo8Dd^ zuRX%RbeaOw3P9uu=t-exZmx0flK#%~8pzAHLITxo&^|aOF1M?@8?=K*2M#hg_4>d; zK0jKV2dCC)wFBYdJWmjI3mn^*u4ixn6Za;u8H(?c(J4>JmfmMcI0T>t@h`WpZUNBk!W4pj}h66YO=tO35(;T3>_He#VL0uh) zbFofaTB%l(`lh45`J)%&)2FJIgJJ&FkyahhY*95(76^!?8z2dZSg0-n19WW0!yCZJ z>UVvA$<4?28w^o{d#+H{p~`6J3ov*8)*ebqNrmQiK3N%HYRk#W@^M~r&AY7t(Y=#l zzT=Y#1zC`976R*m$Lo-fkX<}~cic82$<*>uTpSq+g-StqC&x&krCNM|IIl-3o$RMw zmIpXkQmNcgAVXc$R4U+pxv>My1|o`IqAWRIYw5ZXC5p#x5;>`*l2426P_is*{s(rT z9U}kQ&HtwQ|7T;mh7VKOuyO(dw;|BVyO7S@dZ9iFaBF`NW+Fq$`*_Jo@kc?eBvWfhGkVFOi`xz!HZIgEfR%gA>5425MqvcJ>s^b!C0M6YwfT?Ce+pS0C_DPtV6? zv!Nyc8*G70L&=6=1+Yy1Qas6#s5whXoVW50i9dR=$b^JmK)_LLa$-pLx}^azvt9$%3Sh_{?vKBw9Ns>I;sKVK zNo-bDRv~78B8$El;HQA&EtSNI019b=_Qa%=(gp6^WEm)Zk+?7?d;4~#%2>8#X#fh1 zk`=sgwwE9>D#Rk&$ss%LbNHv)LtTW5b}FMnB zrAl-00VhX^M4ughKNQ;2^Fu@!cFm6(SWD4xLcP%pp*jyVKNB+pRB?6*ZEbCj>(xL2 zX4Y3%e*!XnV0Jc{b@M4AKqx>q-7fZ&S|+*MAMWqe%60#tj0pnUxwf|_5kV{f8%AdU zTIc+Hiq&GH?ZHe1{_$kCCWKehLcyd)UEAx% zkY7N+bo>VzgL-xObv(JSDp|oL13m;88y4eX!gvM^<>P744x$pclY40U^rT!|2|)F+ zf>i-5f1?U+zj9>|6zH-n*Zuhf=G9CTC{Vlx0sgVS9vXHI%){*Xe}KHJkN+HWkQo$z S-H(F\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n" }, "metadata": {}, - "execution_count": 3 + "execution_count": 21 } ], "source": [ @@ -129,7 +129,7 @@ ], "cell_type": "code", "metadata": {}, - "execution_count": 4, + "execution_count": 22, "outputs": [ { "output_type": "stream", @@ -142,7 +142,61 @@ }, { "source": [ - "There are no null values. Look at the general values of the data. Note that popularity can be '0'" + "Double-check for null values." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 23, + "outputs": [ + { + "output_type": "error", + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m Double-check for null values.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "source": [ + "Look at the general values of the data. Note that popularity can be '0' - and there are many rows with that value" ], "cell_type": "markdown", "metadata": {} @@ -198,10 +252,12 @@ }, { "source": [ - "The song's genre is a good candidate for a cluster. Let's examine the genres. Quite a few are listed as 'Missing' which means they aren't categorized in the dataset with a genre " + "Let's examine the genres. Quite a few are listed as 'Missing' which means they aren't categorized in the dataset with a genre " ], - "cell_type": "markdown", - "metadata": {} + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -441,105 +497,10 @@ } ], "source": [ - "import seaborn as sns\n", - "\n", "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", " .add_legend()" ] - }, - { - "source": [ - "reduce the dataframe to only numeric values" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.cluster import KMeans\n", - "wcss = []\n", - "\n", - "X = df[['popularity','danceability']].values\n", - "\n", - "\n", - "for i in range(1, 11):\n", - " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", - " kmeans.fit(X)\n", - " # inertia method returns wcss for that model\n", - " wcss.append(kmeans.inertia_)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "

", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAFNCAYAAACE6oJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de1yUZf7/8dfADKAhHoqDCWFlaaWphaZpmloiAiJDtiY/T7tlmZV28Cupaba6lrnhlqu7+1h3v24/q9VVIA1R0zyFJ+ykpfvTUhIVwdQQFQTk98cd2CioIMM9A+/n4zGPmbnmnns+98xDfXtd931dltLS0lJERERExO14mF2AiIiIiFSPgpyIiIiIm1KQExEREXFTCnIiIiIibkpBTkRERMRNKciJiIiIuCkFORFxCdOnTycmJoaYmBjatm1LeHh4+fOCggJat27NiRMnruszWrduTXR0dPl+y25ZWVls27aNqKgoABISEliwYEFNHFaltm3bRuvWrfmf//mfy14bOnQoHTt2vOo+vvnmG6ZMmVK+v7L6q+vEiRO0bt36uvYhIrXLanYBIiIAkydPLn/cu3dvZs+eTbt27Wr8cxYuXEizZs0uaz98+HCNf9bV+Pv7s379es6dO0eDBg3K6zhw4MA1vX///v0cO3bMmSWKiItTj5yIuI333nsPu91O7969WbRoUXn7kiVLsNvtDBw4kBEjRvD9999f92ft3LmTxx9/nP79+zNjxgyKi4sByMjI4PHHHyc6Ohq73c7GjRspKSmhS5cuZGZmAvC3v/2NXr16le9r5MiRbNiw4bLPaNKkCffffz+ffvppeVtycjLR0dEO21V0fEePHuXdd98lIyODV199FYCzZ8/y4osvEhMTQ79+/cjIyADg9OnTvPLKK0RFRREdHc2sWbPKj2f16tVERERgt9uZM2fOdX9vIlK7FORExG2EhISwbNky5s6dy5tvvklRURHbt28nOTmZRYsWkZyczJNPPsnzzz9f6T6GDx/uMKw6ZsyYCrfLzs7mf//3f0lOTmbv3r0sXryYkydP8sILLzBp0iSWL1/OW2+9xfjx4zly5Ai9evVi06ZNAGzatImioiIOHDjA6dOn2bNnD127dq3wcwYOHEhKSkr585UrVzoMkVZ2fM2bN+eFF14gLCyMmTNnltc8YsQIUlJSGDx4MO+99x5gDFs3adKE5cuXs3TpUv773//yj3/8g+PHjzNx4kTee+89li1bRosWLar2g4iI6TS0KiJuoyzg3HXXXZw/f578/HzWr19PZmYmgwcPLt/u559/5tSpUzRp0uSyfVQ2tHqpmJgYGjZsCMCAAQPYsGEDLVq04JZbbqF9+/YA3HHHHdx3331s376dRx99lI8++oiBAweSk5NDVFQU6enpNG7cmIceeggvL68KP6dXr168/vrr/PTTTxw8eJDbbruNxo0bl79+peO7VEhISHltbdq0YenSpQBs3LiRDz/8EIvFgpeXF4MHD2bhwoWEhoZy55130qpVKwB+85vf8M4771z1uxER16EgJyJuw2o1/sqyWCwAlJaWcuHCBWJiYhg/fjwAFy5cICcnxyEMVYenp+dln33hwoXLtistLaW4uJhu3boxefJkNmzYwAMPPMCDDz7Ihx9+SIMGDejfv3+ln+Pl5UXfvn1ZsWIF+/fvJzY21uH1qhyfzWYrf2yxWChbSvvSui9cuEBxcbHDNmXHKCLuRUOrIuLWunXrxieffEJOTg4AH374IcOHD7/u/X7yySecP3+ewsJCli1bRo8ePWjfvj0HDhzgm2++AWDfvn3s2LGDzp074+3tTadOnZg7dy7dunWjc+fOfPXVV2RkZPDQQw9d8bMGDhxIUlISO3bsuGzbKx2fp6dn+bluV9K9e3cWLVpEaWkp58+fZ/HixTz44IOEhYWxf/9+9u7dC8CyZcuq/D2JiLn03y8RcWsPPfQQTz31FL/97W+xWCz4+voyd+7c8l67Sw0fPhwPD8f/w7700kv4+Pg4tAUHB/PEE09w9uxZHn30UWJjY7FYLPzpT3/i97//PQUFBVgsFmbOnMmtt94KwKOPPsrq1avp0qULPj4+tGnThsaNG+Pt7X3FY+jYsSPnzp2jd+/el/WKXen4OnbsyJw5cxgzZgzDhg2rdP+TJ09m+vTpREdHU1RUxEMPPcQzzzyDl5cXs2fP5pVXXsFms9GpU6cr1ikirsdS+ut+dRERERFxGxpaFREREXFTCnIiIiIibkpBTkRERMRNKciJiIiIuKl6d9VqQUEBu3fvxt/f/7J5okRERERcSUlJCbm5ubRt2/ayq+uhHga53bt3Ex8fb3YZIiIiItds0aJFhIWFXdZe74Kcv78/YHwhQUFBJlcjIiIiUrns7Gzi4+PL88ul6l2QKxtODQoKIjg42ORqRERERK6ustPBdLGDiIiIiJtSkBMRERFxUwpyIiIiIm5KQU5ERETETSnIiYiIiLgpBTkRERERN1Xvph+pFRcuQE4OFBaCtzcEBICHMrOIiIjULKWLmnbhAuzaBV26QMuWxv2uXUa7iIiISA1SkKtpOTkQEwOZmcbzzEzjeU6OuXWJiIhInaMgV9MKCy+GuDKZmUa7iIiISA1SkKtp3t4QGurYFhpqtIuIiIjUIAW5mhYQACkpF8NcaKjxPCDA3LpERESkztFVqzXNwwPatYOtW+HAAThzxniuq1ZFRESkhildOIOHBwQFwbp18OijkJ1tdkUiIiJSBynIOZPdbtwnJZlbh4iIiNRJCnLOdNddxm3ZMrMrERERkTpIQc7Z7HbYsAGOHze7EhEREaljFOScLS4OSkrg44/NrkRERETqGAU5Z+vQwViqS8OrIiIiUsMU5JzNYjGGV9esgbw8s6sRERGROkRBrjbExcH58/DJJ2ZXIiIiInWIglxt6NLFmFdOw6siIiJSgxTkaoOHB8TGQmoqnD1rdjUiIiJSRyjI1Za4OCPErV5tdiUiIiJSRyjI1ZYePaBZM1i61OxKREREpI5QkKstNhvExMDy5caFDyIiIiLXSUGuNtnt8PPP8NlnZlciIiIidYCCXG165BHw9dXwqoiIiNQIBbna5OMDUVGQnGws2yUiIiJyHRTkapvdDrm5sHmz2ZWIiIiIm1OQq20REUbPnCYHFhERkeukIFfbfH0hPNwIcqWlZlcjIiIibsypQS4lJYXIyEgiIyN56623ANizZw9xcXGEh4czadIkiouLAThy5Ajx8fH069eP0aNHc+bMGQDy8vIYNWoUERERxMfHk5ubC8D58+cZP348ERERxMbG8v333zvzUGqW3Q5ZWbBjh9mViIiIiBtzWpA7d+4cM2bM4P333yclJYWMjAzS09MZP348r732GqtWraK0tJTFixcDMG3aNIYMGUJaWhpt27Zl3rx5AMyZM4ewsDBWrlzJoEGDmDFjBgDvv/8+DRo0YOXKlUycOJGEhARnHUrNi44Gq1XDqyIiInJdnBbkSkpKuHDhAufOnaO4uJji4mKsVisFBQV06NABALvdTlpaGkVFRezYsYPw8HCHdoD169cTHR0NQFRUFBs3bqSoqIj169czYMAAADp16sTJkyc5cuSIsw6nZjVtCr17G9OQaHhVREREqsnqrB37+voyduxYIiIi8PHxoXPnzthsNvz9/cu38ff359ixY5w8eRJfX1+sVqtDO0BOTk75e6xWK76+vpw4ccKhvew92dnZ3HzzzeVteXl55OXlOdSVnZ3trEOuGrsdnnkGdu+Gdu3MrkZERETckNOC3N69e1m6dCmfffYZjRo14pVXXuHzzz+/bDuLxUJpBb1SFoul0n17eFTckXhp+8KFC5k7d24VK68lAwfC6NHG8KqCnIiIiFSD04ZWN2/eTNeuXbnxxhvx8vLCbrezbds2jh8/Xr5Nbm4uAQEBNGvWjPz8fEp+mSS3rB0gICCg/D3FxcXk5+fTpEkTAgICyi98uPQ9ZYYPH87atWsdbosWLXLWIVdNYCB0765VHkRERKTanBbk2rRpQ3p6OmfPnqW0tJR169bRuXNnvL292blzJwDJycn06NEDm81GWFgYqampDu0APXv2JDk5GYDU1FTCwsKw2Wz07NmTlJQUADIyMvD29nYYVgXw8/MjODjY4RYUFOSsQ666uDjYtQv27TO7EhEREXFDTgty3bt3JzIyErvdzoABAyguLmbUqFHMnj2bmTNnEhERwblz5xg2bBgAU6dOZfHixfTv35+MjAzGjRsHwNixY/nqq6+IjIzkgw8+YMqUKQAMHTqU8+fPExkZyYwZM5g1a5azDsV5YmON+6Qkc+sQERERt2QpregEtTosKyuLPn36sHbtWoKDg80uBzp1Ag8P2LbN7EpERETExVwtt2hlB7PFxcH27XDokNmViIiIiJtRkDOb3W7ca3hVREREqkhBzmx33glt22qVBxEREakyBTlXYLfDpk2Qk2N2JSIiIuJGFORcgd0OFy7AL9OpiIiIiFwLBTlXcO+9cPvtGl4VERGRKlGQcwUWi9Ert3YtnDpldjUiIiLiJhTkXEVcHBQVwYoVZlciIiIibkJBzlV06gQtWmh4VURERK6Zgpyr8PAwluxKS4MzZ8yuRkRERNyAgpwriYuDc+eMMCciIiJyFQpyrqR7d7jpJli61OxKRERExA0oyLkSqxViYowLHgoLza5GREREXJyCnKuJi4PTp42pSERERESuQEHO1fTuDX5+Gl4VERGRq1KQczXe3hAdbSzXVVxsdjUiIiLiwhTkXJHdDj/9BJs2mV2JiIiIuDAFOVcUHg4NGmh4VURERK5IQc4V3XADRERAUhJcuGB2NSIiIuKiFORcld0OR47Atm1mVyIiIiIuSkHOVUVFgc2mtVdFRESkUgpyrqpxY3jkESPIlZaaXY2IiIi4IAU5V2a3ww8/wNdfm12JiIiIuCAFOVcWEwMeHhpeFRERkQopyLkyf3/o0UPTkIiIiEiFFORcnd0O330He/eaXYmIiIi4GAU5Vxcba9wnJZlbh4iIiLgcBTlXFxwMDzyg4VURERG5jIKcO4iLg507ITPT7EpERETEhSjIuYOy4VVdvSoiIiK/oiDnDlq1gnvvVZATERERBwpy7iIuDj7/HLKzza5EREREXISCnLuw242lupKTza5EREREXISCnLu45x64804Nr4qIiEg5BTl3YbEYvXKffQYnTphdjYiIiLgABTl3YrdDcTEsX252JSIiIuICFOTcSVgYhIRoeFVEREQABTn3Uja8umoVnD5tdjUiIiJiMgU5dxMXB4WFsHKl2ZWIiIiIyRTk3M2DD0JAgIZXRUREREHO7Xh6wsCB8MknUFBgdjUiIiJiIgU5dxQXB/n5sGaN2ZWIiIiIiRTk3NHDD0OTJrB0qdmViIiIiIkU5NyRlxdER8PHH0NRkdnViIiIiEkU5NxVXBycPAkbNphdiYiIiJhEQc5d9e0LN9yg4VUREZF6TEHOXTVoAP37Q1ISlJSYXY2IiIiYwKlBbt26ddjtdvr168f06dMBSE9PJzo6mr59+5KYmFi+7Z49e4iLiyM8PJxJkyZRXFwMwJEjR4iPj6dfv36MHj2aM2fOAJCXl8eoUaOIiIggPj6e3NxcZx6Ka7Lb4dgx2LLF7EpERETEBE4LcocOHWLq1KnMmzeP5cuX891337FhwwYmTpzIvHnzSE1NZffu3Wz45Ryv8ePH89prr7Fq1SpKS0tZvHgxANOmTWPIkCGkpaXRtm1b5s2bB8CcOXMICwtj5cqVDBo0iBkzZjjrUFxX//7GhQ+aHFhERKReclqQW7NmDf379ycoKAibzUZiYiINGjQgNDSUkJAQrFYr0dHRpKWlcfjwYQoKCujQoQMAdrudtLQ0ioqK2LFjB+Hh4Q7tAOvXryc6OhqAqKgoNm7cSFF9u4LTz884V27ZMigtNbsaERERqWVWZ+04MzMTm83G7373O3Jzc+nVqxd33HEH/v7+5dsEBARw7NgxcnJyHNr9/f05duwYJ0+exNfXF6vV6tAOOLzHarXi6+vLiRMnCAwMLN9PXl4eeXl5DnVlZ2c765DNYbfDihXwxRdw//1mVyMiIiK1yGlBrqSkhIyMDN5//30aNmzIs88+S4MGDS7bzmKxUFpBb9KV2ivj4eHYwbhw4ULmzp1bjerdyIABxrJdy5YpyImIiNQzTgtyN910E127dqVZs2YA9OnTh7S0NDw9Pcu3ycnJISAggMDAQI4fP17enpubS0BAAM2aNSM/P5+SkhI8PT3L28HozTt+/DhBQUEUFxeTn59PkyZNHGoYPnw4sbGxDm3Z2dnEx8c767Br3403Gis9LFsG9fE8QRERkXrMaefI9erVi82bN5OXl0dJSQmbNm2iX79+HDhwgMzMTEpKSlixYgU9evSgRYsWeHt7s3PnTgCSk5Pp0aMHNpuNsLAwUlNTHdoBevbsSXJyMgCpqamEhYVhs9kcavDz8yM4ONjhFhQU5KxDNo/dDnv3wnffmV2JiIiI1CKn9ci1b9+eJ598kiFDhlBUVES3bt144oknuO2223j++ecpLCykZ8+e9OvXD4DZs2czefJkzpw5w913382wYcMAmDp1KgkJCcyfP5/mzZvzzjvvADB27FgSEhKIjIykUaNGzJ4921mH4vpiY+G554xeubvvNrsaERERqSWW0opORKvDsrKy6NOnD2vXriU4ONjscmpOt25w9ix8+aXZlYiIiEgNuVpu0coOdYXdDl99BT/8YHYlIiIiUksU5OoKu924T0oytw4RERGpNQpydcWtt0LHjrB0qdmViIiISC1RkKtL4uKMdVePHDG7EhEREakFCnJ1iYZXRURE6hUFubrkrrugTRtjGhIRERGp8xTk6pq4ONiwAX61UoaIiIjUTQpydY3dDiUl8PHHZlciIiIiTqYgV9d07AgtW2p4VUREpB5QkKtrLBajV27NGsjLM7saERERcSIFubrIbofz5+GTT8yuRERERJxIQa4u6toVgoI0vCoiIlLHKcjVRR4eEBsLqalw9qzZ1YiIiIiTKMjVVXFxRohbvdrsSkRERMRJFOTqqh49oFkzDa+KiIjUYQpydZXNBgMGGPPJnT9vdjUiIiLiBApydVlcHPz8M3z2mdmViIiIiBMoyNVljzwCvr6wdKnZlYiIiIgTKMjVZT4+EBkJycnGsl0iIiJSpyjI1XVxcZCbC59/bnYlIiIiUsOuGORKS0spLi4GID8/n9WrV3Pw4MHaqEtqSkSE0TOn4VUREZE6p9Igt3//fvr06cOmTZsoKChg0KBBzJkzh9/+9rd8rt4d9+HrC+HhxjQkpaVmVyMiIiI1qNIgN2vWLMaNG0evXr345Jc1O1esWMGiRYt47733aq1AqQF2O2RlwY4dZlciIiIiNajSIHf06FEGDBgAwLZt2+jTpw8eHh40b96c/Pz8WitQakB0NFitmhxYRESkjqk0yHl4XHzpyy+/pFOnTuXPCwsLnVuV1KymTaF3b+M8OQ2vioiI1BmVBrnGjRuzd+9eMjIyyM3NLQ9yX3zxBYGBgbVWoNQQux3274fdu82uRERERGpIpUHupZdeYsSIEYwYMYJx48bRsGFDFixYwNNPP80LL7xQmzVKTRg4ECwWDa+KiIjUIdbKXujQoQMbN26koKAAPz8/ADp27MiSJUto2bJlbdUnNSUwELp3N4ZXp041uxoRERGpAVecR85ms9GwYUPAmEfu+PHjtVKUOIndDrt2wb59ZlciIiIiNUDzyNUndrtxn5Rkbh0iIiJSIzSPXH1yyy0QFqZVHkREROoIzSNX39jtsH07HDpkdiUiIiJynTSPXH0TF2fcJyebW4eIiIhcN80jV9/ceSfcc4+GV0VEROqASqcfKZtHLj8/n1deeaV8Hrm//OUv/PnPf67NGqWmxcXB9OmQkwMBAWZXIyIiItWkeeTqI7sd3ngDUlLgqafMrkZERESq6YrzyJ05c4aioqLy54WFheWhTtzYvffCbbdplQcRERE3V2mQ27dvHxEREXzxxRflbWvWrGHAgAH88MMPtVKcOInFYgyvrl0Lp06ZXY2IiIhUU6VB7o9//COTJk3i0UcfLW+bMmUKL730Em+//XatFCdOZLdDURGsWGF2JSIiIlJNlQa5w4cPEx0dfVm73W7nkOYgc3+dO0OLFhpeFRERcWOVBjmrtdLrILDZbE4pRmqRhwfExkJaGpw5Y3Y1IiIiUg2VBrkbb7yRPXv2XNb+3Xff0aBBA6cWJbXEbodz54wwJyIiIm6n0iD37LPP8uyzz/Kf//yH77//nv3797NkyRLGjBnDmDFjarNGcZaHHoKbbtLwqoiIiJuqdPz0zjvv5O233+bdd9/lD3/4Ax4eHnTo0IG3336bsLCw2qxRnMVqhZgYWLIECgvB29vsikRERKQKKg1yXbp04f7776dXr168/vrr3HbbbbVZl9SWuDhYsMCYiqR/f7OrERERkSqoNMht3LiRrVu3smXLFhYtWoTFYqFnz548/PDDdO7cGS8vr9qsU5yld2/w8zPWXlWQExERcSuVBrlmzZrRv39/+v/yj/vhw4dJT09n9uzZZGZm8uWXX9ZakeJE3t4QFWUs1/XXvxrDrSIiIuIWrrhEF0BWVhYLFy5k2rRp/OlPfyIwMJDx48df8we89dZbJCQkALBnzx7i4uIIDw9n0qRJFBcXA3DkyBHi4+Pp168fo0eP5swv02Hk5eUxatQoIiIiiI+PJzc3F4Dz588zfvx4IiIiiI2N5fvvv6/ygcuvxMXBTz/Bpk1mVyIiIiJVUGmQS0xMJDo6mmHDhvHDDz8wZMgQPv30U/76178yZMiQa9r5li1bSEpKKn8+fvx4XnvtNVatWkVpaSmLFy8GYNq0aQwZMoS0tDTatm3LvHnzAJgzZw5hYWGsXLmSQYMGMWPGDADef/99GjRowMqVK5k4cWJ5UJRqCg+HBg2M4VURERFxG5UGub/+9a+EhITwzjvvMG3aNB5++GF8fHyuecenTp0iMTGRZ555BjCGZgsKCujQoQNgrBCRlpZGUVERO3bsIDw83KEdYP369eWrS0RFRbFx40aKiopYv349AwYMAKBTp06cPHmSI0eOXFZDXl4eWVlZDrfs7OxrPoZ644YboF8/SEqCCxfMrkZERESuUaUnRKWlpfHZZ5/xxz/+kYMHD9KtWzcefvhhunfvjq+v71V3PGXKFF588UWOHj0KQE5ODv7+/uWv+/v7c+zYMU6ePImvr2/5ShJl7Ze+x2q14uvry4kTJyrcV3Z2NjfffLNDDQsXLmTu3LnX+l3Ub3FxRpDbvh26dDG7GhEREbkGlQa5li1bMnLkSEaOHEleXh4bN25kzZo1zJw5k9tuu41//vOfle50yZIlNG/enK5du7Lsl8lmS0tLL9vOYrFU2l4ZD4+KOxErah8+fDixsbEObdnZ2cTHx1e6/3orMhJsNmN4VUFORETELVzTJYpHjhzhxIkTnD9/HpvNhqen5xW3T01NJTc3l5iYGH7++WfOnj2LxWLh+PHj5dvk5uYSEBBAs2bNyM/Pp6SkBE9Pz/J2gICAAI4fP05QUBDFxcXk5+fTpEkTAgICyM3NJTQ01GFfl/Lz88PPz++av4x6rUkTeOQRY5WHWbPgCmFaREREXEOl58j961//4rnnnuOBBx5g7Nix/Pjjjzz22GN88skn/P3vf7/iTv/5z3+yYsUKUlJSeOGFF+jduzczZ87E29ubnTt3ApCcnEyPHj2w2WyEhYWRmprq0A7Qs2dPkpOTASMchoWFYbPZ6NmzJykpKQBkZGTg7e192bCqVIPdDj/8AF9/bXYlIiIicg0q7ZHbtGkTPXr0YPz48eU9X9dr9uzZTJ48mTNnznD33XczbNgwAKZOnUpCQgLz58+nefPmvPPOOwCMHTuWhIQEIiMjadSoEbNnzwZg6NChTJkyhcjISLy8vJg1a1aN1FfvxcTA008bvXK/XJQiIiIirstSWtFJanVYVlYWffr0Ye3atQQHB5tdjuvp1Qtyc2H3brMrERERqfeulluuOiGw1DN2O3z7Lfz3v2ZXIiIiIlehICeOyq7y/eVqYxEREXFdCnLiKDgYHnhAqzyIiIi4AQU5uZzdDjt3Qmam2ZWIiIjIFSjIyeXsduP+V+vkioiIiOtRkJPLtWoF996r4VUREREXpyAnFbPb4fPPITvb7EpERESkEgpyUrG4OCgthV9W1hARERHXoyAnFbvnHrjjDk1DIiIi4sIU5KRiFovRK/fZZ3DihNnViIiISAUU5KRydjsUF8Py5WZXIiIiIhVQkJPKhYVBSIiGV0VERFyUgpxUzmIxeuVWrYL8fLOrERERkUsoyMmV2e1QWAipqWZXIiIiIpdQkJMr69YNAgI0vCoiIuKCFOTkyjw9YeBA+OQTKCgwuxoRERH5FQU5uTq73ThHbs0asysRERGRX1GQk6vr1QuaNNHwqoiIiItRkJOr8/KC6GhISYGiIrOrERERkV8oyMm1iYuDkydhwwazKxEREZFfKMjJtenbFxo2hKVLza5EREREfqEgJ9emQQPo3x+SkqCkxOxqREREBAU5qYq4ODh2DLZuNbsSERERQUFOqqJ/f+PCBw2vioiIuAQFObl2fn7w6KPGNCSlpWZXIyIiUu8pyEnVxMVBZiZ88YXZlYiIiNR7CnJSNQMGGMt2aXJgERER0ynISdXceCM8/LCCnIiIiAuwml2AuKGnnwarFfbvB19fCAgAD/2fQEREpLbpX1+pmgsXoFUrePFFuOMO6NIFdu0y2kVERKRWKchJ1eTkQGysccEDGPcxMUa7iIiI1CoFOamawsKLIa5MZqbRLiIiIrVKQU6qxtsbQkMd20JD4dQpzS0nIiJSyxTkpGoCAiAl5WKYCw2Ff/3LuABi+HA4c8bc+kREROoRBTmpGg8PaNfOWG/14EHj/sEHISIC/u//NS5++O9/za5SRESkXlCQk6rz8ICgIKM3LijImIpk6lRYuRKOHoVOneA//zG7ShERkTpPQU5qTng4fPkl3H03DBpkTFFSVGR2VSIiInWWgpzUrJAQ2LgRnn8e5swxVoE4fNjsqkREROokBTmpedbEs7AAABlCSURBVF5e8O678OGH8PXX0LEjrF1rdlUiIiJ1joKcOM/gwbBjB9x0E/TtCzNmaAUIERGRGqQgJ851112wfbsR6iZPhuhoOHHC7KpERETqBAU5cT5fX2Nqkj//Gdasgfvug4wMs6sSERFxewpyUjssFnj2Wdi82VgBols3+MtftBqEiIjIdVCQk9rVuTN88QX07g2jR8OwYVoNQkREpJoU5KT23XgjfPIJTJsGixbBAw9oNQgREZFqUJATc3h4wJQpkJYG2dkQFgZLlphdlYiIiFtRkBNz9e1rrAbRti08/jiMGwfnz5tdlYiIiFtwapCbO3cukZGRREZGMmvWLADS09OJjo6mb9++JCYmlm+7Z88e4uLiCA8PZ9KkSRQXFwNw5MgR4uPj6devH6NHj+bML+dT5eXlMWrUKCIiIoiPjyc3N9eZhyLOFBICGzbACy/An/5krAaRlWV2VSIiIi7PaUEuPT2dzZs3k5SURHJyMt9++y0rVqxg4sSJzJs3j9TUVHbv3s2GDRsAGD9+PK+99hqrVq2itLSUxYsXAzBt2jSGDBlCWloabdu2Zd68eQDMmTOHsLAwVq5cyaBBg5gxY4azDkVqg5eXEeI++gh27TJWg/j0U7OrEhERcWlOC3L+/v4kJCTg5eWFzWbj9ttv5+DBg4SGhhISEoLVaiU6Opq0tDQOHz5MQUEBHTp0AMBut5OWlkZRURE7duwgPDzcoR1g/fr1REdHAxAVFcXGjRspumSB9ry8PLKyshxu2dnZzjpkqQm/+Y2xGkRAgDHsOn26VoMQERGphNVZO77jjjvKHx88eJDU1FSGDh2Kv79/eXtAQADHjh0jJyfHod3f359jx45x8uRJfH19sVqtDu2Aw3usViu+vr6cOHGCwMDA8v0sXLiQuXPnOusQxVnatIFt2+Dpp+G112DLFnj/fWjWzOzKREREXIrTglyZffv28fTTTzNhwgSsVisHDhxweN1isVBawaSwV2qvjIeHYwfj8OHDiY2NdWjLzs4mPj6+KocgZihbDaJ7d+MCiPvug//8x7i6VURERAAnX+ywc+dORowYwcsvv0xsbCyBgYEcP368/PWcnBwCAgIua8/NzSUgIIBmzZqRn59PSUmJQzsYvXll7ykuLiY/P58mTZo4fL6fnx/BwcEOt6CgIGcestQki8WYNPjXq0HMn6/VIERERH7htCB39OhRxowZw+zZs4mMjASgffv2HDhwgMzMTEpKSlixYgU9evSgRYsWeHt7s3PnTgCSk5Pp0aMHNpuNsLAwUlNTHdoBevbsSXJyMgCpqamEhYVhs9mcdThipk6djNUg+vQxlvkaOlSrQYiIiACW0orGL2vA9OnTWbp0Kbfcckt52+DBg2nZsiUzZ86ksLCQnj178uqrr2KxWNi7dy+TJ0/mzJkz3H333cycORMvLy8OHz5MQkICP/30E82bN+edd96hcePGnDp1ioSEBA4dOkSjRo2YPXs2wcHBV60rKyuLPn36sHbt2mvaXlzIhQvwhz8YEwnffTcsXQqtW5tdlYiIiNNcLbc4Lci5KgW5OuDTT+GJJ6CgABYsMCYSFhERqYOullu0soO4n0ceMVaDaNfOmK5k7FitBiEiIvWSgpy4p+BgWL/eCHHvvqvVIEREpF5SkBP35eUFc+bAv/99cTWINWvMrkpERKTWKMiJ+3v8cWM1iMBACA+H3/9eq0GIiEi9oCAndUPZahBDhhhXtUZGwk8/mV2ViIiIUynISd1xww3GUl7z58O6dcZqEDt2mF2ViIiI0yjISd1iscAzzxirQVgsxhJfWg1CRETqKAU5qZs6dYKdO7UahIiI1GkKclJ33XgjrFhhXPzwwQfQuTPs3Wt2VSIiIjVGQU7qNg8PmDwZVq+G3Fyjp27xYrOrEhERqREKclI/PPIIfPEF3HuvVoMQEZE6Q0FO6o+y1SDGjTNWg+jZEw4dMrsqERGRalOQk/rFZoPERGN4dfduY4oSrQYhIiJuSkFO6qdBgyAj4+JqEG+8odUgRETE7SjISf3VurWxGsT/+T8wdSr07w/Hj5tdlYiIyDVTkJP67YYbYOFC+Mtf4LPPjKHW7duN3rnsbMjMNO7VWyciIi5IQU7EYoGnn4bPPzemK3npJWNpry5doGVL437XLoU5ERFxOVazCxBxGWFhxhQlX39tTFGSmWm0Z2ZCTAxs3QpBQebWKCIi8ivqkRP5tWbN4LbbLoa4MpmZcPQo/Pvf8OOPWrtVRERcgnrkRC7l7Q2hoY5hLjTUCHCDBxvPb74ZunY1bl26wP33g4+POfWKiEi9pSAncqmAAEhJMYZTMzONEJeSAnfdZUxZsmXLxdvSpcZ7bDbo2PFiuOvaFUJCjPPvREREnERBTuRSHh7Qrp1xTlxhodFDFxBgtN9/v3F77jlj22PHjO3Kgt3f/gZ/+pPxWvPmjsFOvXYiIlLDFOREKuLhcW0XNgQGGj13MTHG86Ii+OYbx3C3bJnxms0GHTo4hrtbblGvnYiIVJuCnEhNstku9tqNGWO0lfXalYW7v//dWOsVLvbadelysdeuQQPz6hcREbeiICfibJf22hUXG712ZT12W7de7LWzWo1z7cqCXdeuxjl66rUTEZEKKMiJ1Dar1VhB4r77Lvba5eQ4DscuWADvvWe8FhTkeIVsWJh67UREBFCQE3ENAQEwYIBxA6PXbtcuxytkk5KM16xWx3PtylagUK+diEi9oyAn4orKhlg7doRnnzXaynrtynruft1rFxjoeBGFeu1EROoFBTkRd3GlXruycJecbLxmtUL79o7h7te9dhcuGMHw0ulVRETErSjIibirinrtcnMdz7X7xz9g7lzjtcBAYxg2NhbuuQcee8xxwuN27RTmRETcjIKcSF3i7w/R0cYNjF673bsdz7UbPvxiiAPjPibGuHL2hx/g1luN9WabNjXvOERE5JooyInUZWUXRnToAKNHG20//OC4jiwYz0+fhkGDLrY1bmyEuopuLVtCw4a1dhgiIlIxBTmR+qZhQ2M49ddhLjQUbr8dvvgCDhxwvO3dC2lpcO6c434CAysPeiEhxuTIIiLiVApyIvVNQIBxTlxMjOM5cjffDMHBxjl3lyotNVaouDTkHThgnJO3eDGUlFzc3sPDCHOVBb2gIJ2PJyJSAxTkROobDw/jwoatW6/9qlWLxQhfZZMTX6q4GLKyKg56aWlw9Kjj9t7exvBsZUGvaVPNiycicg0U5ETqIw8PI5TVFKvVCGYtW0KvXpe/fu6c0ftXUdDbtg1OnnTc3s/vyufn3XDDlevR9CoiUk8oyImI8zVoAG3aGLeK/PxzxSHv//0/WLXq8vPzAgKufH7enj2XDx1rehURqYMU5ETEfI0bX7y69lKlpUbvWkVBb/t2+M9/jKHdMsuWwYsvXj69SnKyEfCaNXO8NW6sgCcibktBTkRcm8ViXCFbNqHxpYqL4fDhi+Huttsqnl7l559hyJCK99+06eUB72q3pk2NIWURERPpbyERcW9WqzF8GhoKDz8M2dkVT69y221Gj9yJE1e+/fQT7NtnPD51yugRrIyfX9UDYLNmxnl710vnAYoICnIiUtdUNr1KixZVDzolJUZP3tXCX9nt0KGLj389HculGjasXgBs2NDoQbxwwVhnV+cBitR7CnIiUrdUZ3qVynh6XgxRVVFaaqyUca0B8L//vdgbeP585fv18jKGdP/3f+GZZy4/D/Cjj+Djj8HHx7jA5Nf319rm7e0aU7+ox1HkmijIiUjdU9PTq1SVxWIMu/r5GdOlXKvSUuMK3asFvxtvrPg8wPPn4e23HS/+qI6qBL+K2qq6fdljT0/j8+tDj6OCqtQQBTkREVdhsRjDpw0bGqtsVKay8wDvvBOKiowgV1Bg3M6du/xxVdsufe3kyYq3Lyi4vuO3Wo1At2gRPP/85T2OCxbAm28ay795eRm3sscVtV3L4+q8z2a7vtBVH4IqKKzWEgU5ERF3U9l5gAEBxutWK/j6GrfaVFpq/KN9PaGxoMA4n7GiHkdfXzh71uh5LCoy7q/0+EoXqlwvT8/qB8dx42Do0MuD6uLFxtB4WVi0Wq/8+GqvX+tjZwyl14ew6iJBVUFORMTd1OR5gDXJYrk4VNqkSfX3U1mPY2gofP75te+npOTygHctAbCix9f7vvz8i489PSsOqgUFMHOmERBqk4dHzQXDsvunnoL4+IrDamqq8R1Yrcb9rx9fen+l12p6m6oEWhcKqgpyIiLuyOzzAJ3paj2O18rT0xiqbdDAOXVW15WGxktKjJBQXGwEv7Kh8uo8dvY+zp2DvLyKt3nyyYrD6rlzMG1a7X7f18piufZA+N57FV9wtHVrrf+5dOsgt3z5cubPn09RUREjRowgPj7e7JJEROR6uWqPY025WlD18Lg4JOuuKgurrVsbQbWkxLgVF1/+uLL72tjmWt9/000VB9XCwtr9nnHjIHfs2DESExNZtmwZXl5eDB48mAceeIBWrVqZXZqIiFyvutzjWNeDKlw5rJb1fFmtNTM5thkqC6omHI/bBrn09HS6dOlCk1/OwwgPDyctLY3nnnuufJu8vDzy8vIc3pednV2rdYqIiFymLgdVqPthtaaG/2uA2wa5nJwc/P39y58HBATwzTffOGyzcOFC5s6dW9uliYiISF0Oqy4UVN02yJVWcFm55ZIrToYPH05sbKxDW3Z2ts6lExERkevjIkHVbYNcYGAgGRkZ5c9zcnIIuKRL08/PDz8/v9ouTURERKRWuO1g9YMPPsiWLVs4ceIE586dY/Xq1fTo0cPsskRERERqjVv3yL344osMGzaMoqIiHnvsMe69916zyxIRERGpNW4b5ACio6OJjo42uwwRERERU7jt0KqIiIhIfacgJyIiIuKm3HpotTpKSkoATQwsIiIirq8sr5Tll0vVuyCXm5sLoLnkRERExG3k5uYSGhp6WbultKKZdeuwgoICdu/ejb+/P56enmaX47bKJlZetGgRQS4wIaJUnX5D96ff0L3p93N/tfEblpSUkJubS9u2bfHx8bns9XrXI+fj40NYWJjZZdQZQUFBBAcHm12GXAf9hu5Pv6F70+/n/pz9G1bUE1dGFzuIiIiIuCkFORERERE3pSAnIiIi4qY8X3/99dfNLkLck7e3Nw888ADe3t5mlyLVpN/Q/ek3dG/6/dyf2b9hvbtqVURERKSu0NCqiIiIiJtSkBMRERFxUwpyUmVz584lMjKSyMhIZs2aZXY5ch3eeustEhISzC5DqmHdunXY7Xb69evH9OnTzS5HqiElJaX879K33nrL7HLkGuXn5xMVFUVWVhYA6enpREdH07dvXxITE2u9HgU5qZL09HQ2b95MUlISycnJfPvtt6xZs8bssqQatmzZQlJSktllSDUcOnSIqVOnMm/ePJYvX853333Hhg0bzC5LquDcuXPMmDGD999/n5SUFDIyMkhPTze7LLmKr7/+mieeeIKDBw8CxmpREydOZN68eaSmprJ79+5a/7OoICdV4u/vT0JCAl5eXthsNm6//XaOHDlidllSRadOnSIxMZFnnnnG7FKkGtasWUP//v0JCgrCZrORmJhI+/btzS5LqqCkpIQLFy5w7tw5iouLKS4u1pWrbmDx4sVMnTqVgIAAAL755htCQ0MJCQnBarUSHR1NWlpardZU75bokutzxx13lD8+ePAgqampfPTRRyZWJNUxZcoUXnzxRY4ePWp2KVINmZmZ2Gw2fve735Gbm0uvXr0YN26c2WVJFfj6+jJ27FgiIiLw8fGhc+fO3HfffWaXJVcxY8YMh+c5OTn4+/uXPw8ICODYsWO1WpN65KRa9u3bx29/+1smTJhAy5YtzS5HqmDJkiU0b96crl27ml2KVFNJSQlbtmzh7bffZvHixezatUvD5G5m7969LF26lM8++4zNmzfj4eHBggULzC5LqqiiGdwsFkut1qAgJ1W2c+dORowYwcsvv0xsbKzZ5UgVpaam8vnnnxMTE8O7777LunXr+MMf/mB2WVIFN910E127dqVZs2b4+PjQp08fvvnmG7PLkirYvHkzXbt25cYbb8TLywu73c727dvNLkuqKDAwkOPHj5c/z8nJKR92rS0aWpUqOXr0KGPGjCExMVE9Om7qn//8Z/njZcuWsX37diZOnGhiRVJVvXr1YsKECeTl5XHDDTewadMm+vTpY3ZZUgVt2rTh7bff5uzZszRo0IB169bRrl07s8uSKmrfvj0HDhwgMzOT4OBgVqxYQVxcXK3WoCAnVbJgwQIKCwt58803y9sGDx7ME088YWJVIvVL+/btefLJJxkyZAhFRUV069at1v/xkOvTvXt3vvvuO+x2OzabjXbt2jFq1Cizy5Iq8vb25s033+T555+nsLCQnj170q9fv1qtQUt0iYiIiLgpnSMnIiIi4qYU5ERERETclIKciIiIiJtSkBMRERFxUwpyIiIiIm5KQU5ETJeVlUXr1q1ZsmSJQ/uCBQtISEiosc/p3bs3u3btqrH9XUl+fj6DBw8mMjKSVatWXdN7hg4dWu11Gk+fPs2wYcOq9V4RcV+aR05EXIKHhwdvvfUWYWFh3HrrrWaXc9327NnDTz/9xJo1a2rl837++edaC6ki4joU5ETEJfj4+DBy5EhefvllPvroI7y8vBxeT0hI4I477uB3v/vdZc979+5NVFQU69ev59SpUzz//PN88cUXfPvtt1itVubPn09gYCAAH3zwAXv37uX8+fOMHDmSxx57DIB169Yxf/58ioqK8PHxYcKECXTs2JH33nuPr776ipycHFq3bs3s2bMd6vr000+ZO3cuJSUl+Pr68uqrr+Lr68vEiRM5duwYMTEx/Pvf/8bHx6f8Pbm5uUydOpUffvgBDw8PBg8e7NCblpWVRXR0NF9++eVlz3Nzc5kwYQInT54EoGfPnowbN45XX32VgoICYmJiWLZsGQcPHmTGjBmcOnWKkpIShg4dymOPPca2bduYMWMGDRs25OzZsyxatIhJkyaRmZmJh4cH99xzD2+88QYeHhqwEXEHCnIi4jJGjx5Neno6iYmJTJgwoUrvLSws5OOPPyY1NZWXX36ZpKQk2rRpw5gxY0hKSuKZZ54BjJnYk5KSOHbsGAMHDqR9+/bYbDYSExP517/+RdOmTdm3bx8jR45k9erVABw+fJgVK1ZgtTr+lfn9998zdepUPvroI0JCQtiyZQvPPvssaWlpTJ8+nd///vekpKRcVuu0adNo2bIl8+bN4/Tp0zzxxBP07Nnzmo5z8eLFBAcH849//IOzZ88yadIkTp8+zcyZM4mOjiYlJYXi4mJeeOEFZs2axT333MPp06f5zW9+Q6tWrQDYt28fn376KS1atCA5OZkzZ86QkpJCSUkJU6dO5dChQ4SGhlbp+xcRcyjIiYjL8PDw4O233yY2Npbu3btX6b19+/YFICQkhJtuuok2bdoAcMstt/Dzzz+Xbzd48GDAWOy6e/fubNmyBU9PT3JychgxYkT5dhaLhR9//BGADh06XBbiALZu3UqXLl0ICQkBKF/Ifvfu3VgslkprTU9PZ/z48QA0atSIFStWXPNxPvTQQ4waNYqjR4/y4IMP8vLLL9OoUSOHYzx48CA//vijwxq6BQUFfPfdd9x+++00b96cFi1aAHD//feTmJjI0KFDefDBBxk+fLhCnIgbUZATEZdy88038/rrrzNhwgQGDhxY3m6xWPj1ioJFRUUO7/v1UKzNZqt0/78eMiwtLcVqtVJSUkLXrl2ZM2dO+WtHjx4lICCANWvW0LBhwwr3VdEKh6WlpRQXF1+xBqvV6hD0Dh06RNOmTcufX+lY7733XtauXcuWLVvYunUrgwYN4s9//jMBAQHl25SUlODn5+fQG3j8+HEaNWrEV1995XA8ISEhrFmzhm3btrF161ZGjhzJ5MmTa329SBGpHp0EISIuJyIigh49erBw4cLytqZNm7J7924ATpw4QUZGRrX2nZSUBMCRI0dIT0+na9eudOnShc8//5zvv/8egA0bNjBgwAAKCwuvuK+y9x06dAiALVu2cPToUdq3b3/F93Xt2pWlS5cCxtWmw4cP5+DBg+Wv+/n5UVRUxP79+wEcLpiYPXs28+bN45FHHmHSpEm0atWKgwcPlgfS0tJSbr31Vry9vcuD3NGjR4mKiir//n7tgw8+4NVXX6V79+6MHz+e7t27s2/fvivWLyKuQz1yIuKSJk+ezM6dO8ufDx06lFdeeYXw8HCCg4Pp3LlztfZbWFhIbGwsRUVFTJ48ufwK2TfeeIOXXnqpvJdu/vz5lfbElWnVqhVTp07lueeeo6SkBB8fH/7yl7/QqFGjK75vypQpvP7660RHR1NaWsrTTz9N27Zty19v1KgR48eP56mnnqJZs2YOvWPDhw8nISGBqKgovLy8aN26NVFRUXh6enL33XcTERHBhx9+yLx585gxYwZ///vfKS4uZuzYsdx///1s27bNoZaBAweyfft2+vfvT4MGDbj55ps1jYmIG7GUVjQ2ICIiIiIuT0OrIiIiIm5KQU5ERETETSnIiYiIiLgpBTkRERERN6UgJyIiIuKmFORERERE3JSCnIiIiIibUpATERERcVP/H/mWUUDwVwLZAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ], - "source": [ - "plt.figure(figsize=(10,5))\n", - "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", - "plt.title('The Elbow Method')\n", - "plt.xlabel('Number of clusters')\n", - "plt.ylabel('WCSS')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " popularity danceability\n1 30 0.710\n3 14 0.894\n4 25 0.702\n5 26 0.803\n6 29 0.818\n.. ... ...\n514 20 0.838\n515 14 0.786\n519 2 0.879\n522 26 0.863\n525 10 0.735\n\n[286 rows x 2 columns]\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAENCAYAAAAbu05nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gU1feH35ntu6mkEJogHUQEUcEGCKiAoFJEEQRRsYvtK6CIDbGhooJYsICKih0RaXYRBfFHR3oNpJGebJ+5vz8m2WTZ2WQTgoDu+zx5JDuzd+7E3TPnnnvO50hCCEGUKFGiRPnXIB/vCUSJEiVKlLolatijRIkS5V9G1LBHiRIlyr+MqGGPEiVKlH8ZUcMeJUqUKP8yooY9SpQoUf5lRGzYS0pKGDBgAOnp6SHH/v77b4YMGcKll17KpEmT8Pv9dTrJKFGiRIkSOREZ9vXr1zN8+HD27t2re/yBBx5g8uTJLF26FCEEn3zySV3OMUqUKFGi1ICIDPsnn3zCo48+SmpqasixgwcP4na76dSpEwCDBw9myZIldTvLKFGiRIkSMcZITpo6dWrYY9nZ2aSkpAR+T0lJISsrK+S8oqIiioqKgl7zer0cOHCAZs2aYTAYIp1zlChRovynURSFnJwcOnTogNVqDTkekWGvCj1FAkmSQl6bO3cuM2fOPNrLRYkSJUqUMubNm8dZZ50V8vpRG/b69etz+PDhwO85OTm6IZvRo0czaNCgoNcOHjzIqFGjmDdvHmlpaUc7lShRokT5T5CZmcmIESOCoiWVOWrD3qhRIywWC3/99RddunThq6++onv37iHnxcXFERcXpztGWloajRs3PtqpRIkSJcp/inAh7FrnsY8dO5aNGzcC8Pzzz/P000/Tr18/XC4Xo0aNqu2wUaJEiRLlKKmRx/7DDz8E/j179uzAv9u2bctnn31Wd7OKEiVKlCi1Jlp5GiVKlCj/MqKGPUqUKFH+ZUQNe5QoUaL8y4ga9ihRokT5lxE17FGiRPlHEELoFjRGqXuOOo89SpQoUapCqCpKaQ7CUwqAZLRgiElBMpqP88z+vUQ99ihRohwzhBAoRRkBow4g/B78hYcQqnIcZ/bvJmrYo0SJcswQfg/C79U5IFDdRaGvR6kTooY9ShQdiotL+L+1G8nOPlz9yVHCo/jCHBD6Bj9KnRA17FGiVEIIwWOPT6NBozPoc/FVnNribK4Zfgsul+t4T+2kJHwcXUIyWv7RufyXiBr2KCcVBw4c5KmnX+aeeyfzzaLlKErdxmnnzJ3Pi9PfwO12U1RUjMfj5ZtFyxl398N1ep3/CpLRgmTSMeCShGyN/ecn9B8hmhVzFBSt3EjW7K/xZeUT36sL9W8cgDEx+mE9VixZ+iPDrh6Loih4PF7mzJ3PmZ1PZ8nijzCb6ybDYtq0V3E6g71zt9vDhx99yYxXpuo2NYhSNYa4NJTSPISnBIRAMtswOJKQ5Mib6wghEJ4SVHcxIJCtsUiWWN3eD1Gihr3WZL+/hPQn3kV1eQBwbdvH4fnfcdqy6RgT9eWJ/0kUlwe12IkxOR5JPvkXZj6fj+uuuyPI6JaUlLLmr/XMmTufm8deVyfXOZybF+aIoLi4NGrYa4EkyRhjkiEmudZjKMXZCK8T0PLglRIvkqcUQ1xa1LjrcPJ/448DistD+pQKow4gPD78uUVkzV54HGcGqsvDnvtnsK7DSDacezPru9xA3qKVx3VOdcGav9bj1wm7OJ0u5s37os6uc/755+gaiuTkeiQn16uz69QGIQSqpwR/yWEUZ8F/Jl1Q9XmCjLqGQPjcCJ/7eE3rhCZq2GuBa8te0BG4F14fBd+v+ecnVIk9980g76tfER6f9rDJKWDvPS9TvHpLnV4nKyuHBx+aSrdz+zP82lv5c826Oh3/SMxmc9iqRYul7gpdnnryIWJiHIEGBpIkYbfbmPnK08fVMxSqir8gHaU4B+EuQnXm48/fj/B7qn/zSY7wuQg26oEjqL7oprYeUcNeC4xJcQifX/eYKTXxH55NBb7cQgqWrUJ4gtPIVJeHzJl1p5efnn6Ijp168fIrb7Hmr/V89vk39O4zlM+/+KbOrgFQVFTMPfdOpn6DDvTrPxxVVUPOcTjsjL1pRJ1ds127VqxZvZTRo4bRrl0rBlx2McuWzmfgwEvq7Bq1QXHll6UOlhs4AULgL84+ntP6R9Bi8XoPValGcfr/EtEYey2wNmuAvV0zSjfuAn/Fcli2WUi7+YrjNi9fVh6SyYjwhOYOu/dm1tl1pj71EoWFRfj92sNNCIHT6eL2Ox7kyiv6hW3XVRMURaHHRYPYvn0XnrIHlclkRJZl7HYriqIZ+auHXc7QoQOP+nqVadGiGW++8XyV52zevI35n3yF1+dn8KD+nHN25zqdw5EIT4n+AcWPUP1I8r/3qyyZHSAd1nXaZUvMPz+hk4B/76fhGNPynYfYMWYqrq37NGPq89NowkjiLjzjuM3J0qwBKKFeLQaZmLPb1tl1li77OWDUK+N2udm79wAtWjQ76mssW/4ze/bsDxh1AJ/PT0yMg5vHjqR586b06H4e7dq1Oupr1ZQXp7/Oo49Nw+v1oaoqs2a9y003juDFFx4/hlcNFwYSVRz7dyDJMoa4BijFWaCqZbcrYYirH/XYwxA17LXElJJA+2+m4d59EF9uEfb2zTA4bMd1Tga7lbQ7hpD56ucVG7uShGyz0OCuq+rsOsnJ9di/Pz3kdb/iJyGhbjKCNmzYgssVujFWUlKKw+Hg1ltG18l1asr+/Qd55NHncLsrYttOp4u33p7H8OGDOPusTsfkurI1FtVZwJFuq2S0HBPjVr4xqze2UPyo7iKE4kUyWpCtccfcwMomK1LiKaB4EUJo9x3NhglLRDH2hQsX0r9/fy6++GLmzZsXcvznn39m4MCBDBw4kPvvv5/S0lKdUf6dWJs3IvbsdsfdqJfT4O6raPrMbVhbn4KxXhwJfbvS7ptpWJs1qLNr3HfPLdjtwfdrNpvp1etCkpLqJnOk+amnYLeFphbGOBw0P/WUOrlGbfh28XdIUujXxu328NVXi4/ZdWVbApLJSoV3LoFswBCbWqfXEYoPf8FB/Hn7tJ+Cg4hKsgDC78GffwDVVYDwOlGdBfjzDwSdc6yQJK1aVTZZo0a9Gqo17FlZWUyfPp0PP/yQBQsWMH/+fHbu3Bk4XlRUxMSJE5k+fToLFy6kbdu2TJ8+/ZhO+t+M6vWRv2glmW98RdFvG2usXy1JEklDetLhh1fotOE9Ws6eiK1l4zqd49VXX8F9996C1WohLi4Wm83KeeeexftzZ9TZNa64oi+xcTFB8XpZlrHZrQwZMqDOrlNTTCYTshxqVGRZxmQyHbPrSpKEIS4NQ3wDZEcShthUjImnIBnq7ppCqJohr5RpI/we7TWhhfiUkhyOTDtEqCiluXU2jyhHT7WGfeXKlXTr1o2EhATsdjuXXnopS5YsCRzfu3cvDRs2pGXLlgBcdNFFfPfddyHjFBUVkZ6eHvSTmVl3G3rHC9XtxZdXVCcNBDwHsth47i3suW8GB5/5gJ1jprL1igkorhMrpU2SJB579AHS969lwVdzWb/2B75b/ikJCfF1dg2z2cyvP39Nhw5tNU9NkmjfvjUrfvk6ZLVwtAgh+HXFKj788Au2bdtJYWERL738JlcNG8vDk5/hwIGDgXMvH3ipbnaOyWTkmquvrNN5HYkkScgmKwZbPLLFUedeq/CUgt7nWAiEx4kQaljhLuGNph2eSFQbY8/OziYlJSXwe2pqKhs2bAj83qxZMzIzM9m6dStt27Zl8eLFHD4cqog3d+5cZs6cWUfTPvYIISheuYnCH//CGB9D0pAemBtW/B0Ul4f9D71O3oIVIATGlASaPXMb1jan4Nl9CGuLhkHnR8Keu1/Cl1OgbRABwufHuXkPGS99QuMH66aysqYIIcIakISEeC68oGuNxtu6dScHD2XQ6YzTdMM2xcUl/LlmHYkJCcyZ+zE7d+4JPDT37NnPs8/N4M03XqjRNVf/uZYFC5ZgsZi55uorad26ReBYZmY2vS++ioMHMwACm8KSJOFyuTGbzcx89R2WLvmYruecSUpKEm+/NZ0bbrwXg0HWioZUlalPPkjbti1rNK8TDaH6CZcvLlQfUlWbtNHQyAlFtYZdzxOt/EWPi4vj2WefZfLkyaiqyrBhw3SXpKNHj2bQoEFBr2VmZjJiRN3kIKseH569GRiT4zElHZ3nKBSFXTc/R9Gv61GdbiSzkYyXP+HUGfeR2K8bAHvufIHCn9YivFps0XfoMDuun4pklJEtZlSvj4RLunLqy3cjm6tfLvuLSilduyNg1ANz8fjI/ezHGhl21eWhYNlqvNn5xJzVFkenVjXy7jweDw9Nepq33/kQp9NJt65deOXlqXTq1CHiMY4kNzePKwZdz4YNWzCZjHg8XsbddRNTn3wwMLfXXp/D+AlTMJlM+Hw+3G5P0OevtNTJx/MXcPPNozirS/XZR0II7r7nYebMnY/L5cZgMDDt+VlMe+6RwObrqNF3sWvXHvx+/SpOr9eL1+vlppvuY+OGnwAYdtXl9LroAhZ+swyfz8dl/fvQqFHd7WEcLzQlRolQ4y4FNisliyOoaUbgeFTQ64SiWsNev3591qypqKbMzs4mNbViw0ZRFNLS0vj0008B2Lx5M02aNAkZJy4ujri4Y6OhkjX3W9KfnAOqQCgqcRedSYsZ92GIqd2SPf/b3wNGHUB4/Qhgzz0vEd9zLv6CEs2oH5kvrqoIr4ri1by+guWrOfTCRzR+cFT1F1UF+t6SVnUYKa6t+9g6dBLCpyB8PiSjgdjzTqflWw8iGSPLXLh2xG0sXfYzbrd2/yt/X0PPXoNZv/YHmjaNLF7v8Xh49rmZvPX2PDxuLxaLmZzDufgqFXbNfPUdOpzWlmuvHcxvK/9kwsQncbncutkw5bjdHpYs+SEiw/77H2uYM3d+QF/G7/fj9/v53wOPc+UV/bBYzKz4bVVYo16Znbv2kpeXT716WgFacnI9xlx/TZXvWbt2E1u37qBN25ac2fn0aq9xvJFMdjCYQKkcbpHAYEIyad8lgyMFRfEHhWQkkxXZlqhl0khydGPzBKDaGPt5553H77//Tl5eHi6Xi2XLltG9e/fAcUmSuOGGG8jKykIIwTvvvEP//v2P6aQrU/DdGg488hbC5dUMrV+haPmf7Lz5mVqPmfvFzwGjHoQsU7x6C95DOUgReOHC7SXn/aURXdOYEIOtXbOQJa1kNlLv8gsqxhSC4tVbOPDUe2TM+AxPenbQsZ1jn0EpKEEtdSG8flSnh8JfN5Dz4bKI5rFnz36WLvspYNTL8Xi8vDLjrYjGABg85AamPT+LQ4eyyM3L51BGVpBRBy1NcPrLbwLw6qvvVGnQyzGZTMTEOCKaw+efL9Id02AwsHjJD7jdHuQaCKRFqiBZWurkol6D6XHRldx+xwR6XjSIHhcNoqTkxM4WkyQJY3xDJFs8SAaQDEi2OIwJDQPGWpJlbQPXFg8mK7I9EcwxKPkHtCya3L34S3KiTauPM9V+quvXr8+9997LqFGjuPLKKxkwYAAdO3Zk7NixbNy4EVmWeeKJJ7jpppvo27cvsbGx3Hjjjf/E3AE48MQ7ukU5xb9uwJdbWKsxw3q2QiAZDVhbNA6EYKpDKY18U+nUl+/BEO9Atmv61bLDiqVpGg3vH152ecGeu6azY+TjZM36gkMvfsymnneS+/UKADx7MvAc0Ckx93jJnhNZKt627bt0DZjP5+P/1m6MaIx16zbx66+rIjLU+XkFAGRlR2YMZFniqggrTU0mo673KAEmo5G0tNSIQigmk5FLLukR8QNl/MQprP5zHU6ni+KSUpxOF2vWrOOB8U9E9P7jiSTLGB1JmJKaYkpqitGRpGXGFGVqaZAlufhz96G6CsHnQnXmI0pzQJSvegTCXYJSEr7zlBACxVmAL3cvvsO78eUfQI1uvtYpERUoleeoV2b27NmBf/fs2ZOePXvW6cQixZseRitDCFxb92E6v2ONx0y+pg9FP69FdQZno0gGAzHntEc2GUkdcxk5cxcHKTzqEdMl8opPW6smdPxjNnkLfsW9L5OYM1oSf8k5yCbtf1Ph92soWLY6MC/h84MP9t0/g4ReXVBc7iCJg8r4ssPJ0QbTpnULvN7QzAeTyUSXMyMLJ6zfsBlJJyXwSIxGI3379gLgisv7snr1Ot1ORTExDmRZwu9XmPPuyxHHs6+5+kpenfVuyANGUVUuu6wPkiTx7jsv0a//tfh8frxeL3a7TdP+FgKTyYSqqrRo0Yy3Z0eewvvBB5/h8QR/LjweL/M+/JzXZj0b8TgnAoqrELU0j0CYMER0LMxmq6cE4ainW7ikOvO1B0P5exUfSlEmxDdANp34sshCVTRhMklGMtlOyNDTSV95KlnMCK++IJexXu1i+vG9upA0rDeHP/4OBEhGbWHT8p0HA0a28aTRKKVucj/5HuHzY0xNQCkoRfgVzbiaDMhmE6c8ObZG1zbE2EgZoS84lfvlL/ohIoNM0W8bMDdJ1UI5ehvehshCDqeeegp9L72IJUuDwzFWq4Vxd0V2L82anRL2wy5JEkKIQA78pIfuBuDGG67lzTffZ9/+9IAhttttPDzpHtq2aYUQgt69L4zYawbo1KkDkx++lyemvKilCsoyiqLy3twZJCYmAHDeuWezacNPvPX2PLZv30337udy3cihHDyYwfr1m2narAnnnN25hpvP+imBHo+nyiyjI1F9bs0jVnxIJgsGW2IVrebqHqGqwUa9pqgKHGHYhVCDjXrFEVRnPnL8ib0JrTgLUJ35FS9IEsb4Bidcm7+T3rAnDelJzpxvQ16XY2zY2tSsQlF1efCkZ2NKTaTpkzeTen1/in5ZhyHOQWLfbkGbsZmvfUneZz8GNlD9h4swOGwkXH4O7t2HcJzegvpjL8dySv2ju8FKVLX5KRkNmJMTkIwGXeVJW5umEV9n3gezeOTR55j91jxKS0s5t9tZ9Ox5Hhd2v5yMzGxatGjGc89OZuAA/QdQ9wu70aBBGjt37g4Kr1itFi677GIyMrLo3esC7rj9hoDGucNh54/fv+Wtt+fx1VeLSUlJ4s47b6RH93Mjnrce4x+4kwvO78qMV9/GarUycfxdtGnTIuicJk0a8fhj44Nea9OmJW3a1C598aKe5/Hd978G3bskSfTscV6QUReKH9XrRJI0oavK3q3iKUEtrigGEh4/fo8TY0Kjf8y4H7UksEHHvFShIS+UE7u5dfmDNuihJAT+wgyM9ZqeUJ77SW/YG40fQeH3a/BmHAa/JhAkmUy0eHNCxJ2DhBBkvPIpmTM/B1lC+BXqXdmdpk/fSv0bQqsclVIXh178GOGu9EH0K6hON8akeNq9OK6ubi+I5GG9KPj2d93wT9x5pyPbLMR1P4OiX9cHrWI0rZih1Y5fUlKKJEk4HHaefWYyzz4zGYBXZ73Dgw89Fcgu2bFjN9eOuI1P5s+mX1ko5UhiYx0hiXMWi4XXZz0b8JaPJCbGwTVXX0mjhmkkJCZw/nlnVzvn6nhu2swgj/2zzxby3twZDLry2G3wv/LyVM67YAButweXy43NZsVqsfDKy1MD51SEOMrJRY5JxmCN1XLjS3PR82qV0lyM/5BXW/vOWxKyPUFXeuFIDz7oXYZ/bjVSG1R3EWFDTz4Xktn+T08pLCe9HrsxzsFpP8yg6dRbSRx4Pmm3DqLDjzOI7x65GFPupz+QOVMTzlJL3QiPj7wFv3Jgyru657u27kcyhT4Thc9P3te/cuCpueR+/hOqu249kNjzTidlVF8kixnJYka2W5FtFlq8OQHZpi0Fm8+8n7genZHMJmSHFTnGRpPHbqhSdXLXrr1073klKfXbk5zajt4XD2XfPk3kS1VVHn/ihZA+oC6Xm4cnP6073uo/17Jt207UI0JCPp+POXPnh53HE1NeoEWrbtx86wMMu3oszZqfzebN2yL62+ixfv1mpjw5PWBgS0uduFxuRo2+i/z8gqBzd+/ex08/ryQ3bGu8yGnVqjl/b17Bw5PuZciQAUx66B62bP41sAIQfm+lEEfFj1pyWCsSEmpYzzao3F8IVJ8bf2keSlnIpqYIVcFfchhf3gH8BQdRK+eoG8z6XncQWjokRitIMsgm5JgkZJv+w1uSZCRbHKGKlJKWYXMiI8KkHQv0K3aPIye9xw5gsFlIGXFJ2Nh0dWTM/DzECxZuL4c/+o4mk8eEFBiZUhPCbpr6MvLImvUlssNK+jPv0+6baZjr140wliRJNJk8hpQRl1D441oMMTYS+nbFGF+hSW2ItdPq3Un4cgvx5xZhaZZWZYGU0+ni/AsvJy8vP1Aqv2LFai7scTk7t/+B2+2huFhfC3zXzr26r2/duiPstdat26x7bPl3v/D8C6/h8XgCG4/FxSVcNnAku3euqlFaYjkfffylbrzbIMssWvQdI0cOpaiomCFX3cgfv/+F2WLC4/Fy+23X8+wzk8MurYUQfPXVYt559yO8Xh/XjRzKNddcidFY8XVKTq7HhPF36r5f9ZQQLm6tepzI1lj0C4XQ0hDL5qCU5JQVCwkEoDoLAl5/JAhVwZ+fHshoEWpZb1ElHoO9npb+GJeGvygTFH9gSpI9Edlo0mL/BgtSDUW5DPZ6qJIB1VWgXdRgwuBIPuE3TmVLDIpXv5uTdILN/aQ07L7DBeR8tBzX1v04zmhJ8tW9McQ5UIqdyDZLYIMzUvyHw6RFKipqqTvEMBrrxenrnkOgclQtdaO6veyfPJuWb04AtC9j0S/ryPv6VySTkeSretUoa6Yca/NGWJs3qvIcU1JkFbiffvY1LpcrSP9EURSKi0v5+uulDB58GTExDvLzQ/9GzcPoroeLTdvtNs444zTdY2+88V7IqgCgoKCQP9eso+s5Z+q+b9nyn3n00efYtXsvbdu24skpE+l+oVYd7PX6dFMoBeArkw648aZ7WbnyTzweL66yzeLX33iPdu1ahy1AuuW2B5g/fwGlpU4A/lj1Fx/N/4qFC96L6AFUtW8nyio8Y8qaa1Q+W9Lyx9HaxZUb9crvVUsOI5sdEYVRVFdhpTTFSmM4C5Gt8UiyAclgwpjQWJPLVdUymeCjW+hLkoTBnoDBru/Vn6hIZgeSqQjh81Dxd5eQw2T/HE9OulCMa9t+Nl14OxkvfUL+gl85NO1DNnTTmjavP2MUa9tdy/7Js1EjzDMHcHTWb9ZgTIrDkBDaocW1dT+SI4IntKJSuPxPoCwH/Z6X2TX2WXLn/8DhecvZfs2jpE+bh/PvvRSv3lLnoZtI2L17X8BAVcblcrF7z35kWebhSfeGCG/ZbFaenDJRd8yu55zJaae1CepFKssyVquFMddfHXRudvZhfv7ld7Kzc3THkmU5bGHPV18tZsjQG/hzzTry8gpYufJPLhswgh9+1PL6hw4dgN0WWn2sKAr9+vaiqKiYRd9+F+LVO50uXpz+uu41N2/exkcffRn0NystdbJixSq+/2GF7nuOxGBxEK45hmzWsn4MMclIlvIMIAktVBFf5s1X7fWLCPuAhu0XKhFcWSpp1y+bxn8WTWGzAYbYFM3IW2IxJjTEYKs78bu64qQz7HvHv4pS7Axko6guD2qxE392vlZG7/aS89Fy9j2o/8XUo/Gk0ch2K1TyRGSbhSZPjNVdYppSE8AXYYf4sjTDkj//Jv/blRXpikJovUhf/pS/B45nx+gprDtjFIc//zHieR8Nwq/g3n2ILi1a6qYQWq3WgHc97q6beO7ZR0hLS0WSJFo0b8r7c2fSv19v3bElSWLJtx8x4trB2GxWDAYDvXtdwMoV3wQ2TlVV5Y47J3Jqi3MYPGQMq/9cq+vt+v1+unXtonud/41/PCRH3eVyM36CVgh0brezGDXqKux2LdfYaDRitVq58cZrufOuhxhw+XV4wzgA6ekZuq//+NNvuuqOpaVOli//Sfc9RyIZLUjWI+PMWoxZKotpS5KEMTYVY72mGBMaYUxqGgiPVD14RFPQTg3XTk9UNNgQih9fvhZ/V4oy8efuQ3EVRX6REwih+PEXZWpFUYf34C/OrpFcB5QpbFpiMMbVxxibcsKlOZZzUoViVK+P0v/bXu15wu0l76tfaPLImKD4czjs7U+l3TfTOPTSfErX7cDaNI0Gdw8jtpt+2MDSpD4xZ7amZM3WsE2tASSTkcT+Wrpe/tJVCFcYyVO3F1Fmn/ZNeA1726bYT2te7bwro7q1pbLBXv1KIm/hCvY99AbC46OR38+Lca2Y6NtGnkfz4CwWMy1bnsrFfTTpCEmSuPWWUdx6y6iI87Dj4mJ5840XePONF3TfM/2lN3i/rJCnPKZebnz9fj8GgwGz2cTMGU/jcIRmG/h8vsAG75Fs2bI9MN6MV55i5MihLFiwBKvVwuHDebz77se6YZ9ISEiIx+fTfxjEx0deN2GMSUJYY1A8pUho8Vu9NEZJNuhmksiWWJSQUIz2q2SuWKWUb7Ci+pCMNmRjRVhRtsWjeJ0hY0hGM5LRjBACf1FGWRPtitPU0lwko/mEj4lXplxrPqhC1lOC3+/VUkhPoFTFuuCkMuzI+sU3ekgmI76s/IgMO4CtdRNazPpfxFNpMXsiu29/nuJVm5GMRm2lajUjXF5UrxfZbMLcIIlTHr8JAH9OQTUjagivn+w5i2k27Y6Izvdl57P3fzMp+mUdQggcHVvQ7MVx2FqFCrEBlKzdzt77ZgRt/nY02XinxTnclLURSZK49trBPPbo/3Q96Np8AfTe88qMt0OMq/YAgEGD+pNWP4WxN42kY8f2umMajUYSEuJ0Y/9pacFdhbqecyZdzzmTzMxsWrTqFlIVqofVqu+JxcXFoqr6n0FHpS5abrebL79czJa/t9OubSsGD+6P1RpsCCWjBWMtPT7ZbEO1xiECKXja39gQVz+QZqj6fSgF6VQ23IrRhjE+LaDtLmKStdRKoWXmSEYrhriy2gvFq22ahiBQXYUnl2H3lOhntSg+hM8d9DD8N3ByGXZ/DZZNioq5cc300GuCMSGG1h8+hjcrD39eEdYWjZAMMoU/rcW9Ix1rq8bE9+yMVNYBSC89Uvj8JlkAACAASURBVBdVxZeTX/15aPLCWwc/pAmBlUkJlK7bydYrJ3L6b29g1NkfyHr9q9BYvs9PgxKZfX8sx9I0LbJ5HiVHphuWoygqc955WddLr4wkSYx/4A6mPDk96AFht9t4+KF7dN+zYsUqLGZTtYZdkmDwIP08971792MyGUMEzaAifJORkcW55w+goKCQkpJSYmIcPDjpKX7/7RsaNqy7v6/m9cei+lzahuuRRU6FBwnx6P2avovBUZapJdQggyeEGnCeqgxTVFFodCKi+ryEzUFXvEDUsB83RITOomyzUP+2QUFhCdXnp/j3TahON7HdOugavdpgrl8vKJ0xofdZ0PuskPOszRpo8fZw2TRlSDYL8b26aBk+MVXrUBSt2KA15qisDyMEwusn9/MfqX9jhb6Pa8cBXNsO4NpxQF9ywGTEm5n7jxl2m82qGw6RZbnKDkmqqrLit9XkHs5j5IihuN0eXnjxdfx+PxaLmYcn3cuYMcN135uQGB9ZcbwIn9nTunULLBZLiGF3OOycdpqW4XT3PQ+TmZkVkAMuKSnF5XIz7u5JfPbp25HMIPzUFJ+Wyy4btVi90YxBJ4Sj+rxh865VVyEGRz1Un+uIIilA8eIvysSU2LjK+PGJVIwTCZLRhPCE0Zqvw/aCJwonlWGXjYaw6b3IErLdiik5nrTbB5M8/OLAodL1O9k+8vFAPFz4FJo8MobU0f3+mYkDSUN6cOjlT6osm5asZgx2CweenMuBR97CWC+OxpOvJ2lQD93zPfsyEUqo56S6PLh3HdL+7fayc+wzFP++Cclo0EIwOnoywuvH1jZy2YGjxRUmxi2EoLTUqbuhu3PnHi6+dBgFBYVISHi8Pv53/63kZG0mL6+ApKTEoFzyI+nZ4zwcDnvYvPzAHIC33p7HuLtuCjl2cZ/uJCbGh2TqGI1Ghl11OQDfLFoeovGuKAqLvv0usN+gaaYUlWW3gGyNRbbGhTzIheLXipZkI6ozL7jJhcGoyezqpdqpVWWFaXF35cjy+MBkfQi/V4uj2xOPKKPXmmjL1mPTW+FYIVtjtfs40qkxGANa8/8mTq6sGFkGi37ZsSExjvZLXqTdoudJufaSwBdE9frYPuIxlPxi1BIXaokL4fFyYMq7ODftrvJyQlXx7M+qtfxvZcwNU2jx+gPIMTbkWDtyjA1jUhyNJ48h7qIzcZzZGsdZbVFK3QinG+FXtPj5+FkUfL9Gd0x7+1N1VRRluxVHJ83jPDhtHsUrNyLcXtQSl7ZiECIoe0K2WUi7fVDE+xGRUFrqZNzdk0hMaoMjtjmDhowJ2uxMSUnWfZ8sS1w5eAwjrrud31b+GXhdCMGAy68jPT2D4uJSiopL8Hg8TH/pTZYt/5n69VOqNOqgGd+liz+mSZOGxMQ4qhQUy8vVDxWVlJSSmxsaKnO7PeTkaA2ddUvpK70uhEApzNAMjeIFRatEVYqyKt2vir8wA3/+AZSiTJT8/ZXy2st+FB9KcRh102ri30rhIfCFkVWWQJRtMhrsCRji0rQmHEYLsj0BY0Ljo85l/6eRJFnbJK1kxCWLQ3swHoeNUyGEtvo6RiGtk8pjFx4fhFHOU3IL2XTBbQA4zmxD6/lPYLBZNN0UHSlb4fOT8+Fymj51i+54hT/+H3vvn6GlVioKMWe3p/mr92FKrn1RRUKfs+m0/j1K1mxFMhuJObM1ksFA2i1XoHp9rDttZLD+DCBcHg49/5EW4jkCR5c22E47FeeGXRXdnIwGjAkx1BuoNec4/PF3oZ2eACQJc6NkjPXiSbvtShIHnF/r+zoSIQT9B4zgr7/W43Zr8exFi77j99/XsHXLChIS4rn//tuY+OCTQeGYcuXHn376DUmSWLhwGc88PYnbbxvDxo1/k5GRFVJw5HS6eO21OVzWv0/Y+RQXl/DTzyuxWCz07HEuu3as4s816ygqKmbMDfeQmRlsHGVZplfvC3THWrBgCbKOIRBC5cOPvuChB+9m8KD+fPb5N0HZMyaTkUFX9kOSJFSvsyxPPLi4SPhcqD43ssmKUnIY4XNr51SRMCB8LoSqhHjtsmxANTsQ3lo09xAgGSrCMLLZhnzE5qIQZfMqazR+tAihorqLEX4PksGkrV7quOhHMpgwxjcIfIaOVyaM4i5BLT1csWFtsmOITa3Th+VJ9diVLCYMMdXH9kr/bxtbBjwAaBWguigq/kL9JblrxwF23fwsvux8VJcH4fVTvGozO0YefaME2WIi7vzTiT27XWBjFUApLA27WeUJozkvSRKtP3yc1BsGYEyKxxDnIGlIDxo/MoadNz7NpovuQikOk9Yn4PTfXqf9t89Tb+AFdfohX/PXetat2xQw6qDFxp1OF++9r7VQvO3W0dx5xw1YrVbi4mIxGo3IshwIYQghcDpdTJj4JMXFJRSXlGIw6H/R8wvCr6jmffg5DRufwajRd3HN8Jtp2LgTK39fQ9dzzuTiPj14bdaz2Gy2QAaQ2WwmPj6WJ45QeyynuKQUv074y+v1UVRUDMD0F5+gWbPGOBx2DAYDdrudpk0b89L0KdrfIkxZOgiE340Qqk7VaRWEMfyG2FQkWwI1qyqSkO31whoZIQT+0jytU1Je2c9R5rUL1Y8//wBqaR7CU4LqLMCfv//o1SXDINXRw6g2qD43aklO2f5H2Sa1z4lSnFX1G2vIyWXYJYn6t1wZELyqCs+2/XgP5hB7bgfdXHPZbiWxX4UkrC+ngIPPf8i2YZPZdctzqEd6uX4F9+6DODdXHb6pKYrTTd6CX8lf/DuSWX8BVVXs22Cz0GTSaDqtn0vnLfOI6dyGvfe+QtEv63DvOBB2A83RpU3Qg6Uu2bJFX7jL6XQxadLT2GOace75A7jssos5lL6OH777jK7ndEbRMZgmk4k/Vv0fXc48XbcwyGazBmLbR7Jjx25uvW08Lpeb4uISiopKKCgoZODl1wUqRwcOuISff/qSq4YOpEuXjtxx+xjWr/2BZs3000Uv7tNd1yg4HHb6lRVsJSTEcW63s/B6fRiNRnw+L13P6UJCghaX1jxRPcMiaUVDNRWUCuPZSpKE0VEPU/KpmJKrqYuQTZrnGJeGwR6+klIpzUO4Cgg8dIRAlB4+qqIlpTSvLMum/L611YC/MEP7Kc7ScvH/BaiV/3aVED53rUTcwnFShWIAGowbiur1kf3W1whVhIQuKlO0egvJg3rQ8P7hZEyfr6X5CaHFoDu3JrFvVwA8B7LY0u9+zTvXC1uUYzDgzcitcfFQOIpXb2HHqCna51hVtQfQEZkzstVM44kjIxpPdWt7B0ECZeWfobJxJbMJyWyk6VO31sk96NGqVfi/T7key5o16+jbbzg///QlZ3Y+nQYN9HXrVVUlMTEeq9XKa7Oe5ZZbH8Dj8aIoCg67jebNm3HTjSN03/v+B5/h9+vkYQvBokXLGTbsCgDO7Hw68z6YFdG9tW7dgltvGcWbsz8IPBwcDjv9+/UOaNQ8MeVFPv1sYVAo5osvF9G4cQOmPvlgxUbekUhSWbaJBLIR1PDFb8H3owbEwY5E9ZSgOAuqTU80Jjau1osVQiDc+qsj1ZmLwVa7DVXhDZW00A6oAXkExeNEOOqdkOX7NUHo1gWg7WuoSp1l6ERk2BcuXMhrr72Gz+fj+uuvZ8SI4C/S5s2beeSRR/D5fDRo0IBp06YRF3dsds0lWabx+BE0vGcY/rxiNpxzU0B460jMqZoMaIPbBxPbtT0585ahFDupN/ACEvufG2hckf7UeyhFpRCm8KQc4fVh79CiynMiRfX62DlmqrahWQnJbMSYWg+lsARb+2Y0njQ6YqEw9+5DhFt2G+IcxHRpg739qaSM7ldnipN6nNvtLBIT43U1aCrjdrt54okX+OrLOdx++xi+Xfx9SMw9NTWZLmdq7Q2HXzOI09q34Y033yMjI4sBAy7h2uGDQgp/yikoKNTNN1dUlaJKmTElJaV89vk37N9/kC5dOtL30ovChn0Apj33KH379mLu3Pn4fH6uHT440GoPYNZrc3SlDl5/Yy5Tn3wQSTZgiG+gLb/LP7uyAWNcWmCD1RCTXLaZWp33Hr5oT3Hmozr1PcSgEXSycfQQ4WRrtYPVvr+KGURwjkAtzUO2xB5VLFoIoW1YAxjM/3hIRjLZ9DPjRN3q0Vdr2LOyspg+fTpffPEFZrOZa665hq5du9KyZUWe79SpUxk3bhw9evTgmWee4e233+bee++ts0nqIZtNmNPqYT+jBc61OjKxkoSjc+vArzFd2oY1kEW/rKvWqMs2C0lX98acVjcGsfiPzQidnHbh9RNzTjtavHp/jcc0JsWFlTiwt2tGqzkP13jMSNm//yD33f8IS5f9hMlkoqSk6pRC0L5kGzZsAbSuS1OemMCkh5/BbNZ6jaamJLF40YdBX76OHdvz6sxnIprTZZddzNz3Pgl5wKiqSp/emlzC33/voOdFg3B7PIE0y1atmvPj959XmTXTu9eF9O51oe6x4uLiMK+XBNIdZZMVKfGUinJ9gynoPmWzHSmhIYqrAOH3aYZTL4VRknVDMUKokRl1mybRGxnHxghK1hiEK4LMMwmE313rHHrV6yzLIhLan0U2YIyr/4/qvRjs8fg9xUeESDXVzn9083TlypV069aNhIQE7HY7l156KUuWLAk6R1VVSku13XeXyxXWgzoWnPr8XaFVnbJE2u2DItJNAYJa3h05jrlRMrZ2TWnyxE2cMqVm/UurQvj8Wj653rEwmT/VYa5fj9hup4XE6mWbhbTbBtVqzEgoLCyi67n9+HrhMlwuN0VFxWHL7o+kTdsKB+HucWM5eGAtH334OsuWzmfb1pW0OEIaWFVVVv7+JwsXLgukF4bj4j7dueii84OqWB12O3ePGxuIoV83+k7y8gsCxr+kpJS//97Os8/NjGj+enTpot/U5Mwzzwgy3pIkBXRZ9DxHyWjBGFtfKxYKV/IebiMw3JIfQDZiTNLi7kZHUsReqyxrjTR0OYpccIM9sSwNsRr5SIH2IKsFQvFrK6BAZa0A1Y+/MKPqlUgdI8lGLV3UEqs9kA1mDLEpdd5kpFqPPTs7m5SUitL81NRUNmzYEHTOxIkTGTNmDE899RQ2m41PPvkkZJyioiKKioI3WDIzM2s77wC2NqfQdsEzpE+ZQ+m6HRjrxZF2x2BSrusb8RipYy7j4AsfIyrFpiWziYS+XWukH1MTYrudFlwxWoZst1LvSv2CpEho/tr/2HXrNEpWb9EeeKpKwwdGoDrdHJo+H2vzhiT07YZsqbtqu3KvWG9zsypsNiuTHw5e2cXHx3HpJT11z9+1ay+X9ruGw4fzkGUZj8fDhPF38shk/dWNLMt8/unbLFiwhI/nf6XJBo8ZzkU9tdTOnJxctmzZHpJC6XZ7+GDeZ0x5YkKN7qecl196kj4XX4XH4w0ImlktFl5+aUqtxoMq4tCqVsAUotRYZQs6Y61DEMb4BvgL0oM9TklGtsaiOPM1DXdzTI28T0mStTREvwfh92qrDb0m2rKh1t616ikOHQ/KKrWdSJa6q+GoDslgxBh77OROIALDrteooPKHwu12M2nSJObOnUvHjh159913mTBhAm+++WbQe+bOncvMmbX3gqrC0bElbT59strz/PlFqC4vpgbBXkr9sZfj2raf3AW/IpuMqH4FR+fWNHv29mMyXwCDw0bTaXew974ZmvcuBJgMmJvWJ/3JOewZNx1b6yZaAdP5pwfep3p95H31C3kLf8MY7yBlZN8gFUpjfAxtPnocb0YuvsMFmOrFse3qyfhyCrSmIQ4rhifn0O7r5zA3SKqTe1mzZn1EaolGoxGLxYzT6aJly1N5afoUzjs3sr6mQgguv3IU+/cfDHqAPP/Ca5x9duewvVcNBgODB1/G4MGXRXYzZRxN7PXsszrx56olTHv+Vdau28wZZ5zG+P/dXuvm2LVBM7B2nTx2CdlWe+9QMhgx1muK8JZqWRwGM6qroFLjbQmkPIzxDWpshDWJhIr3qKV5FZXmsiEgXlYbqioEOlZFQseTag17/fr1WbOmovIxOzub1NQK9bzt27djsVjo2FHb4Lr66qt5+eWXQ8YZPXo0gwYFhwMyMzNDNmKPBd6sPHbf8QKl/7cNJAlTaiKnvnQ3sV01gygZDNjanYq86HeEX0ESWophJGmVRzWvjFxNEqD84elTcG/dH/jduWk3O0ZPofWHjxF7TntUn59tVz2M6++9qE5NGqBg6Woa3D2MBncOCRrb3CAJc4Mkdo+bjic9J7A6KO/stO/B1+os5n766W2xfmnF7Q5NSbPbtRxxv8/PlCkTuOfum1EUpdoq0SPZtGkr6ekZIasCp9PFrFnvhjXsVZGSkkSHDm1Zu3ZjkANjtVoYdd1VNR6vMq1bt2D2my8e1RiVkS0xZalyR2Awh9VVN8SmoJRIZTnxEkgSsiMppNioppR3eAJtg5agYquyVMXibC3kUEtDLFvjQJI1yQXZgMGWcFSbi7LJhuLW99rlf6GkQLXfrvPOO48ZM2aQl5eHzWZj2bJlTJlSsaRs2rQpmZmZ7N69m+bNm/P9999z+umnh4wTFxd3zDJlqkIIwbZhk/HszQikEXoPZLPjuic47ceZWBqlkPvFzxyaNi8oTfDw/O+QzUaaPHLDMZmXP7+Yg0+/F7ppe6SGi9vLwWc/oO3nT5G/8Ddcf+/TjHrZuarLw6HpH5M8vE+gFZ5S7CTvm9/wZeeTv2hlaMhHUSn88f+0Vmd1sGEz5vrhPPvcTDweT8BAms1m2rdrxcQJd+Fyubn44h4BOd1wRl0IwarV/8cPP6wgMTGeq4ZeTlJSIhs3/s3/rd0Ytu1cXhilyHK2bNnON4uWYzabGDpkAI0bNwwc++C9mXTvOQi3243L5cZms9KuXWvGP6Dfr/R4IdsTtCrTgBHVDLUxNjXseyRJxhibiohJ1rJvZEOdZ4Go7jCFVIpfS9esRfqeEAKlKCOoBZ3iKUXUoJ/rkUhmu6YxH/QQkpAsDl0d/JOdiDz2e++9l1GjRuHz+Rg6dCgdO3Zk7NixjBs3jtNPP52nn36ae+65ByEESUlJPPXUU8d84qrLgy+3EFNKYpXx4pLVW/Bl5oaoKgq/Qs77S2k8cSQZr3wa2sza5SXn/aU0enBUjXuoRkL+4j+qzcQpx7Vtv/aepX9UdGCqhGQyUvLHZhIvO4/SjbvYNnSSlrNfjZJkXZGcXI9ff/6a224fz8rf12AwyAwZfBkzXplKQkJkeceqqjLyujtYtOg73B4PFouJB8ZPISbGHkgd1Av32GxWhgweEHbcSQ8/zSsz3sLn02LdD09+htdmPct1IzWPvHXrFuzZtYovv1zMvv3pnHVWJ3r3ugBFUdi3L52UlKQq1SbL5z79pTd46eXZ5OcX0vWczrzw/GN06tQhonuPBEmSMcQ3LDPuHiTZqBmlCDYTJUkOdPKqc45BoozwlBzRVxRAoJbkaKX4aP1HDY6kiGUHJEnCEN8Q1a0Jr0loq4J/Mrb+TxKRxRo4cCADBw4Mem327NmBf/fo0YMePWq/4VcThKKQ/vT7ZL2zCAkBBpmGdw8j7Y4hut6I99Bh/XG8fjz7NP1sX1ae/jmKglriQk6snZcQDuFX8GZWndFRmXIpXWNirCaEprNJaYhzIIRgx8gnwssoBE6Wie/VJcRbLy/mqWmYBKCgsJBDGVmYTEZUVZB+MIPSUmfEhv3zz79h0bffUerUNgmdTm2VoRfeKdeUsdttNGvahJvH6hdw/blmHTNmvh14MJTf3223T6Bf394kJ2tpfjabjWuvHRx434yZb/PoY9Pw+/2oqmDM9Vfz4guPYzLpOxD33f8o77z7UeDB8/Mvv9PzokGsXrWE1q3rpu6h/L4lsx2qSff7J7VQtLxsfS2i2hbbVNXPNaAV7ynB73NjTGwS8X1KkoTBFn/SFzlFwkklKQCQ/tw8st5cAF4fwutHuLwcfO5Dct5brHu+44yWqGFa0jnO1PLc7R31v3zGhFjdZta1xbMvk21XT+av5leR8dL8iN4j28w0ekDbh0gZcanu6kS2mok9twPu7QfwV6VEKUvIDhvm+vVo+vRtgZf37z9Iv/7DccQ2JyauOZdfMYpDhyLPWDp4MIO+/Yaze/c+PB4vPp+PlSv/pHefoRFnyszRyTfXw2q10K1bF/r368205x7lj9+/DZtv/sknC4L0asoxGAws+na57ns+/fRrJj38NEVFxTidLtxuN3Pnzmf8RP2Mlvz8Ama/NS9kNeF0uRl4+Sg6n9mH68eM4++/dWot6hihKviLsvDn7tF+Cg5VKRNdJ9cMVwYv1NqnEUb6QFKV2omc/Qc4qSQFhBCaUT8yhKGq7J/8FgemzMFUL4602weRMrp/pSd5uKe/drzxpNFsGzIpIDkAWu5340fGhPUGhKqS+eYCsmcvxF9YQsxZbWnyyA3Y2zcLnOPcvJsDT7xLyV/bMMQ5UEuc2jWqC8EYZFAFpoZJNHnkBuIu6IjnYA7Wlo1p8ugN7H/s7bJURoHBYaXVB48iGQ149ldhjI0GGt53DdbmjYi98AzyF/xC4XdrkJLiGPPZPFYfzgxotSxd9hMXdL+cbX//FtZLrczb73wYUrqvKAqZWTn8/MvvgfTCusDt9tCnd3cefaTmBVyR8ORTL+ka6bfe+pBnnpqExRK8ob5z114sFnNIVyZVVdm1ey8AW/7ezhdffsuypfPDNuY+WoQQ+AsPVRQ8oRXz+PMPBvT3JaNF2zw11WFSQFh9E0mLs9cifi1b41DCCqVVRqD6Pcj/0nDK0XBSeeyq0wO+MKlJqopwe/EeOkz61Pc4+Nw8QGuyEc4DKP1rK6ClS7b96mni+5yFqX49HGe1pdkLd1G8agvrz76RTb3uInve0iD1xf2T3yLjhY/xZeUh3F6KV2xg66CJuPdo4R33roNsHfQQxb9pWuj+7Hxt/pHE1YVAsphQi13kL1rJujNGsbnnnaw7/Tqcm3bTcdVsms+8j1bvPUzHP98KPEys7ZqFHdKUVo+G464i/qLObLtyIulT5lD4w1/kf/YTT6tp9DFWLE8VRSE/v5BvvtH3ao9k5869eHSKqoQQpB84FNEY148aVm07PNB0WS68sGtEYw4bdoVu71JFUbisf0Ujlm8Xf88FF17OKU3PZPt2fZE3VVUpKgqtpm16SmPdez/yek6ni7vvmRzRvGuD8LnD9ictVxIUfjdK4aGyDcS6ocpwS5hsnWrHNNmQrHFUW7CEhFyHZfj/Jk4qw44xsumqLg9Zs79GKXVpjabDbCJWbqBhP605rd6dxBl/vUOrOQ9z4LG3OfzRcnwZubi3HyD9sXfY/9AbgJYPf/jj5SEbrqrbS+asLwDImPk5ai0rSCkTN1OKSsn/egVKYakmUOb2kvvZjwF99tiupwUpNFobp2JtraNKKEs0Hq/FoXPeX4LnQFZg7pIQWCWZCbHNMFf6ErlcLrbviEzJsnv3bjjsoUZZVdWwVZhHMmTIAAZcdjEOe7nUrQ2DwYClUmMVu93Gud3OCloBbNq0ldHXj6PLWRcz9ub72VFpzmef1Ylxd92EzWbFZDJisViwWi28Puu5QHz93Tkfc83wW/hj1V8cysgKEu6qTFxcDElJofnfqanJ9O/XK6I479q1G3TrQuqEKjsmVUaUdU6qG7SKySPvXUKyVl2kpKp+/MU5+AsPoTgLgkJ2kiRhjEnCmNgYQ0wSckyq/kNCkpEs4WUf/sucVKEYg8WMuWl9vPuq1y6WjAa86TmUrNse9hzvAX2d8+z3l+AvKg1KE1RdHg5/+gMN7h6G91AOktkUqgSpqJSu02Kppet3RJaVIoFkMYNBRlS36Yn28Dj86Q80fmQMBp08+9bzHmPbNY/gPaD9jYQQpI4ZQL1BmjZK/qLfdRUxVQRtTQ42+DSv1Gq10qJ5Uw4ezKBhw6oLQ64dPphnnp2B75Afr1cb22630ffSi2jfvnXY91VGlmU+eP9V/lyzju+//5XExHgGXdmfhd8s4913P0ZVVa6//hpuGHNNYC4rfltN/8uuxe32oKoqmzZv49NPv+bHH76kc2ctI+XJKRO5dvhgvlm0HIvFzJDBlwXSHf1+PxMmTKm2uMputzHt2UfCplvu3rM/IoMdGxt77DY0a+C51qXOuWyyQlx9lJLDZWqUEpItrkr9GdVTGqQ/LnxucOZDvSbIlQy4ZDAFVgSy2YpSnBNQe5RMNgwxyRFlBf0XOakMO0CLWQ+wdchDVcr1gqbFYmqQVGWqohQmTbKkrJVcyPlmE87Nu3F0bInw6nhIsoytjeYx21o1wb0jvUrVO8lsxNr6FJo8dgPeQ4fZ979X9cfVQSko0TXs5gZJdPhpJs71O/Hl5OM4oxWm1ApP0xCv7+EYJImSsgq88rj6daPvwmCQSUlO4s03X+DiPt0D53u9Xr744lt+XfEHzZqdwsKv32f27A/4/ItF2GxWbrn5Ou6688aI7qUcSZI45+zOnHN258BrN904Iqws713jHgoyyoqiUFLq5P7/PcoP338eeL19+9a6D5iMjCzdzVXQ8vDr1UugWdMmPPzwvfS99CLd83bt2sv27buqvTe7zcbtt11f7Xm1pbyxdWhnJp1zdcInR5NJI5vtyPVOiXgM/aYSAqUoGzmhosZAqCrC79Y8c6PlhOh+dLJw0hl2xxkt6fDTTLLfXYTr732Y0pLIW/BrkHCWZDWTNLQnxjgHqTcMIHPm5/pjdW5FxszPcHRqRez5HQMfFkuzBrByY6jHrSiYGyZjSk0koW9XCpauDnoAyBYTabdrFaAN7hpK4Q9/BYdrLCbMqYn4c4uQDDL1BnWn8YOjMMTaEYrC/offisiwyxYzppTwLfokScLRqZXusdQxl1GyakvwvGQJt81CtksmVorBZrOSn1+Iz+fD54MD6YcYMvQG/lj5Le3bt6aoqJgLul/O/n3plJQ6sVotTH3qztHPEgAAIABJREFUJZYs/ogXX3i82vnXBX6/n02btuoe+2PVXxGNkZRUDzVM5kaHDm1Z/Yd+plVlCgqLwqaHSpJEXFwMbreXYcMuP2YbvuXXMsQ30BpheEo0h0I26Gi6S0GCU6rPrXnbihcthBKLwVGvVp5wJMa2yoYZ/opjiquwQlIAQCqTFIjG1CPipDPsAJbGqTSZPCbwe72B57P/4TfxHMhGtppJGd2PxhO0mLI5NZG0u4aSOeOz4EEMMgVLVpH31a/IVjO2tk1p8/ETyDYLqTcOIPezH4ONn9GAtUVj7O1PBeDUF+/mwJNzOPzRcoTXj7V5A0556tbARqa9Q3NavvsQ+ya9iWdPBrLFRPK1l9B40ihkc6jHpMXKq1/OyzYLjSeNDmjJ15SE3mcRe+EZFC5bXXFto5Hz5j9FQadW/P33Drqe2y8k1ux2e5j40FQGD+rPihWr2LVrXyATRPN6PVw36k62b115TL0pr9fLsuU/k5ubj9VqCdE9B0iIj6zC2W63MXLEUN7/4NOgDVCbzcqkB++OaIzTO7RF1mkobrFYuOvOG7nyyr60aN6MlJS60eU5EqH4tfCEJCOZbRhjkiFGaxQuhNAMvbsIECAbMcQka+ETQChelMIMKssBCHcRiurHGJd2TOYbCarPXSECFpiaH39hZo3y1v/LSOKY7eZUT3p6Or179+b777+ncePGRz2e6vIgWUy6mzbOLXvImPEZSpET9+6DeNNzgsIkktVM2h2DaXTvNQAU/ryWvffPxF9QDKpK7LkdOHXGfZjqBRsNoSgIrz9IV0b4lSDDW9W8yvEeLmBDp+v1D0pgTE7A3DCFhvcOI6FPZMJZehSv2sy2YZNDViO2dk05bfnLLFn6IyNG3kZhYaimuCzL2GxWnE6XbkzZZrOycf1PYdvKVUdGRhZPTp3O4sU/kJAYzz3jxnLddVcFvsibNm3l4kuHBWLq5WGUyi317HYbDz04jokTxkV0ze+++4UBl48M9FoFiIuLZcumXwISCNUx/5MFjB17P26PNi+73UZaWiqr/1gccYEWlHUo8ntAqEhGa7VyDxWNNAh4tnJsmpYEJgSSyYokyWX/r0SIF+4vzkF49LTjJc2AGo6N3+c7HGZT3mjFlNAQf1FWmPx0bVVS/mD6L1Od7TwpPfZwVCXaZapfj9hzO+DLLqB45UZdTZbc+d+T0OdszA2Tie/RmY5/voX30GEMdqtW9amDZDAg2TQjnvPRcg5N+xBfdj6m+ok0Gj+C5Kv7RCQmpuTrN2cop9PaOdWOEQkHpszV3dR1bd2Ha/dBzujYHneY/QtNdz98EZGqiqAslpqQm5vHWedcSm5uPn6/n/0HDnLnuIfYsHELz097rEzdcXSIBrvRaMBoNOJw2PB4vIy4dggP/O+OiK4phODW28YHGXXQpAuemPICs159Nsx9qnz88VfMfnsePp+P60ZexXfLP+XN2e+Tnp5Bv369uGHMcGJjI8+vFn4v/qJMrYVdmaKhXEUrONXnDm6kUfYftSiDylkqckwKBmtM0GuBa4YrXpK0wqNjZdgNsfV14uwShriyB2m4wiapimNRgvhXGfZwFCxfze7bX0AgED5FVwcdwJuew7ZhkxFeHwl9u3LqC+OwNIpMNznn4+UceOStQPjGl5XP/odng9FA8hD9jTfQslwKf16Lv7AkpN9pOebGFZ6j6vOT/81v5C9aiSHeQcq1lxLTpU1EcwRw7zygf0BAyeq/aXBNH24Ycw1z3/skIinecmRZpsNpbcL2Lq2OWa/NobCwKKjQyel08frr7zH+gTs5eDCTvNxQ6Qe/X6H7hd2YOvVBWrVsHkhjjISMjCwys0Izo/x+PwsXLgtr2K8fM44FXy8NPOQ2bNjCOWd3ZtnS+WEzZ6pCiP9n77zDo6i6MP7ObN9NJw0SivQuTTpIEQIpFEFEAkERpIqiflJEQbFhQwF7pQQElBYUCB0ldOlFeg1ppO9udndm7vfHJBs2O0s2ZZNsvL/n4eHZKXfOJpkzd8495z0EXPa9wr6kBU5any4WFUnMUAUHSoU2AwAQclPBKlSSC6aMXCWdIUOKyU8vI6xKB8jrQDCkAwKXn7fubf3ZMUqtmClT9PsRgJHT2bozVHvHzuuNuDblU7ucc0cIOeLNmrn9CG55/oh6H04u5gyRxE9W2+e1G01I/GiVQ8eee+ISLo9+W2yR5ygixgCPLH1FHM/C4dLIeTCcuSqKgTEMMjYfQK3/jULwC4OdslPmobHrs1qAMv8h9sXn76Jli6b4YokoapWWlu4wnY9lWbAsixo1/LB61TdO2SDFnj0HJDNUFEoFTp46Bw8PLVgHQlYWjkOXzh1KfE2tVuNQ8sDDwWz71Klz2LBxq01s32Aw4tjxU9gev7dU8sGEMzno20sg5GU7CD04O3Ml4PNyINfZP/BkGm9wdg+IfMVDF83WC2BlcrAOlClZtaf44OItD9jGgNX5lWv7uOpMtf8pZe8/5VjZrmC7xGIMyTPj/ro9EJzIUiGEwJIkLSRmvictQiZYOFyOWSAWH+UaReEuXgAUcihrB0LmrYNH15ZosXsJPPN7tWb8kVDo1MULQzCacHfhSljSsyWvU5SA56QbTjBKBTw7NRdtNptx7vy/uH07EWlp6dBoHM+SBEEAx3FITU3DlavXnbJBipq1pBfrjEYjQkNqokP7RyUXzbQaDZ4ZWbq2fz4+3ujdqxsURVJitVoNpk19TvKc/X8dknwY5ObqsWfP39bPHMchbks8Pv7kK8TFxdtJLthAeMcFlgIndhYqck1WKR1ekR5D+g2VkSkg9wkpnAUzLFiNN2Qeru3uUxwMw0LuU0t05AoNGJUOMu+a/wnxrvKiWszYeb0Raet2I2f/KShrByJw7ECo64eIOx8iQqVr2xjePdsg6esN0jN6QRC7DklksTwIwzBQhgaIC7JFUNWWDk3kHj4n/dCwcPB4rBnqL7ZvBp659aBj2d6DZ+Eb0dWhjfrTV2D89xY82jWBpuUjMF68ZQ1JMUo5GnzzP+v3HPnMJOzctd86gy4IyajVKuTlmSCTseCLhIwEQcCw4c8jO/NKqbIWfH2kM1l4XoC/vx+USiV+/vELRI+ZAo7jYLFw0Om0aNGiCcY9N7LE1yvgl58XY2D4M7h85TpkMhZmswXDh0Vi8qRnJY8P8K8BhUJhJyOgVqsQFCg6xLS0dPR4fBCSklJgNOZBrVYjODgAf+3bLJkdw8jVjuWMLHmiBgwBWI03WK2vVeWRUWjyC3Yelv/AgFU5lmpg5ErIH8gdryowDCs6curMS4XbO3YuMxfnw18Fl5opOme5DGmrdqDBt6/Du097ePVsIxlTZ1QK8DkGpK3ZBZmnFkKeye7+UAT4OK3uGDI7BjdeWwJitM2nD5kTY3OcYLIg99hF6E9ftemxavOdHMy+Zd4eAMtI6s2wnoU3ryU1E/d/3wPzvfvQtWuClGV/wnjmmvXNRB7gDZlODT4/7OTZ41F45rffu3btpo1TL0Aul6Nt21Zo1PARrIyVrgswGvNw4sRZtGtn32ilOM6fl64Q9vDQ4eSpc+jf73EMGhSGk//swo8/rUJyShoG9O+FIUMGOiVU9mBhiyAIOHrsJHJz9ejcqT2OHtmOf06cwa2bd9C2bauHZvUMGhSGadNn221nWdYq/Tvjlbdw48ZtWCziLD03V4+bN014ecabiF35ld25DCsDq/WFYMiAo76cACAYs8SURY2XmLfuFQRiMUIw6fOFvgQQkx4Phi8YhQqMongNnrJCBL5QJ95J4S/CmcV+rXKV07rqFOdwe8ee9NV6WJLug5jzX3U5HgLH4/ori/HoPz9D5qlFvc9fwvWXvxA1WDgOjEwGwvHIy29gId4UKHSaDANWrUSd9yc6PfusMbgHGJbB3Y9iYb6dAmWdIITOGgPf8C7WYzJ3HsW1afnt0gTBoSCYzEO6sUPAqP5I37Df7u2CVSrg1VV0pjlHzuPy6HfENEyTBcyyrfnt9wqPN9+0nfXn/HUaVyd+hMYr5+HS5WtQKpV2jp3jOMjlcvz04+dYtXqDw9h0nql4WQQpHqlfF38fOGI3Ls/z4DgO//57BY0bN0CDBvXw/ntzrPsvXryCTz/7CmfOXET79q3x6iuTUb9+Xev+a9duYuq0Wdi952/IZHI80bcHTp46h+zsHLFlH8dhyeL3MDbmabRv17pYO7VaDeK3r8WTw55DZmY2GIaBSqVE7MqvrAvH6zf8aXXqBVgsHDZs3ApCiOTflEzrA0ahgmDMFntwclI/RwLBmAmZRny7KZi5s/n67IQQEJUHhLxsgBCwKg8wKg+X5n3b5MoX9CeVKcSepw6cNRF48NlJYpVs/jliYVQNmqNeTri9Y8/YeqjQqT+AYMhD3rVEaBqGwi+yGzzaN0V63N/gcwxI/n4zyIMLiIQADKCs5Q9WrYKqfi3UnDYcHu2c0zkpwC+qO/yiukvuMyem4uqkj4uVQgAA3oFmjK5NI4TMicGdd5eBUYg3DatSonGsKNtLBAHXpnxiE64hDjKAHoSYLcg5eBamOylo1rSRVe/lQZRKBR7r0AYA0PGxNkg4eMzuGLlcbidLm5OTC7PZjBo1Hp6t8tKL47Fu3WabTBy5XA6e5zHymYkAxE5NQ4eEY/2GP5GVlY1WLZvinxNnYDZbwPM8Tp46h1Wr1mPf3o1o3bo5srNz0LV7JNLTRZEpnjfjz6277K497cU30LZNK7RuLa4xJBw8ilmz38OZMxcQEhKMt+a+ghEjChen27VthetXj+LkyXPgeA7t2raC7AExNkc65MXpk7MKDViFRtRVT78pfdBDxijq6CsCYtIXFkAVTB54M/icZMi9pUM8fE5KYTZOQbZmXg6IXAWmlK3vgAfqAHgLGLmyxM20qxNu79gdzW4Fjofxwk3wWbnQtW0MZc0aCH5hMEx3UpD8zUb7EwhALDxaHlrqEjvv/77vofF+Kwo5NE3qWD8KZgsytx1G7vGLUNUNRo0ne6HG0MeRc+gsZB4aeHZuCTBA7rGLyLueKKZNlgJGqYD5birqdmqBiPAn8OfWXTaZH2q1Ci9OE/u/xq78Ck2bdYepyANg6eL3rd2NkpNT8dy4l7B330EAQONG9fHTT587nBW3bt0csSu/wqRJ/0NOrh4cx0MQeJtY9q1bd/HF4sLOXQcSjtqMwXEccnI5vPLqPOzcsQ6xq9bDaMwrttmHyWTCd9+vwNIlH+DgoWMYMPAZ6wPm4sUrGP/Cq8jIzMLEFwrDagzDWIXGihIZ0Q+b47bb5MfL5TJEhD/h3IyUYfPlACRCiFXMWfHGB3LpH4BYTGKYpYgqIxF4q5BXkTPAG7PAltKxE0EQ+6Q+IEnMyFWQeQf/J4XCnPrGcXFxCA8PR79+/RAbG2uz78KFCxg8eLD1X48ePRAZ6bgHZXkTOC7CvgCIAcDxuPH6UlyKfhunOzwP/RlRqEnu4ymmF0qgCHI+B7qkcBnZkm8WRWEVcvgN7QnD+RswJd3H+f4v48b/liLlxy248/5ynOn6AsyJqfAd0Ble3R+F4ew1nOrwPC6Nfhu35n5nE+MvCcRkhiZf8nfF8qWY/uJ4+Pp6Q6FQoHevbvhr32bUri0uSNeuHYLbt/7BxIkxaNToEfTt0x2/rfsR637bDLW2DnSe9dG8ZU/s2ZuQrzdjwbnz/+KJfk8hKUlaURMAoiL74/atEzhxfCc+Wvgm1KrSObGDh8S3iTNnzjvVlUkQBGvh0xtzP7RvtGEw4rX/vY3uPaIQNWgMtm3f89Dxvvj8XdQMDrJ2dvLw0CE4KBCLv3jPKfsZhoFM5w8pOVyZzjXSBKXmYW8hUg9UIsBhNg8p/u3SEbw+Lf8tgFj/Ec4EXi+drVbdKXbGnpycjEWLFmH9+vVQKpUYOXIkOnXqhIYNGwIAmjVrhk2bNgEQU9OeeuopzJ8/36VGP0iN4b2hP3EJaWt2gVHIxdhyfpciIUe8QYVcIy6NnIdHj/8EmYcGfoO7Iz3ugK2Al0aFmtOHu8xOr17tkLoy3j6rhWUBmRjjVzcIgTLYDxcHzQSjkOd3WyqMxZM8M/g8M66/uAgtdi0GbzTh0qh54LOLd16Qy8RF5IL/i8DqNJD7irFbpVKJ996djffetV8kLMDPzxdfLvkAAJCenoGmzbojIzNLjLnyZslwjsViwU8/r8ach+iwsCyLBg3qQa83IM9UOnlZL09x1te6dXOwLFvsjF2r1aBx4waIjf0dJ0+elTzGaMzDocP/AAD27z+E116bjDfnvmLdf/HiFXz3/QrcvpOIAWG9ceKfndi2bQ/Onf8XzZs1xtChA6FWO19cw6p0EDhvEGO+ZAAYyDwDnF6YrCgYpTY/FFN0BwNIFTmxcvGNRMKJl3aRlxAiCp/Z7xElE/K1c/5LFOvYExIS0LlzZ/j4iGqCYWFh2LZtG6ZNm2Z37LfffovHHnsMHTqUvFiktDAMg7rvT0Lw1GHQn7iMzJ1Hkb5xv53zIjyPrD3/wHdgZ9T9YDKIQJCx5YAovsUyCHk9Gr4DOrvMTq/ureHRqbmY5mgQHRarVcPvycdR553xIBYOt+b/iPQN+0FMFnut9wfIu3oXN9/4Flx6NgRHHaUUcjAsC4YFPLs/Co/OzWE8cx36s1dhunLX7nDBaILx0m3rrN0RUot/P/+yBsa8vGI1yfPyTE5J3AJAt24doVKpwHFOPLQeQKGQY2p+Drqvr0+xNmk0avC8gCVLfwQAp2b4eoMBHy5cgkkTxyIgoAY2b96O6DFTYLFYwHE84rfvxeeff4eEA1swcuSQEtlfAGfIfMCpAwARY9OMDDKldPixMpBpfcGZ9NYuTSIMZB4BkmEnhhEfUHx2ss3xYBjIdPaNTMpM5UlhVSrFOvaUlBQEBBQWLAQGBuL06dN2x2VnZ2Pt2rWIi4uTHCc7OxvZ2bZP9qQk5xsmF4cqJACqkABk/3VSWjKAF0RBL4jNn+t/8TK4d8aDu58FZWhgsbnqZYVhWTT6+Q2kb/oL93/fC0Yhh/+ofvDp31FMweMFpK/f91CHXgDheKQu2+ow9REAPDs2g++AzvDo2AzaFvWt289H/k/aPoXc+vOxux4h+Pa7FXj3vUVISkpB/fp18dGHb2LIkIEAgFOnzkqqLBZFp9Oia1fnBMy6dX0M3bo+hr//PgKD0XlpA0EgCA4S/17//vuwpGNXKhVo3qwxfP18kJiYhKtXb9j1LC0OlUqFQ4eOY8CA3hg3fobN99cbDLh+4zaWfvkTZs8qFCMzm824dOka/P39HiowRggBMUiHEIScFMhq1JXcVxkwrAxy31AIedkgZiMgk0Om8X7oWgCr1ILxCRHj87woKcBqvEqd8sgwDBi5WtRuL7pPUXUeghVJsY5d6saQehLHxcXhiSeeQI0a0jHAZcuWYelS1yxMPoh3n/ZiSmCRkAcRiDUlsAC5twfk3hXXCJeRy1BjWC/UGNbLbh+vNzq3uPogD+mfqqwbjECJKlOfsE4wXrhpo18vGsBD26qB5FiLl/yAN99aaI09X7t2E2PGTsOaX79D+MC+aNu2lV2ZfVEUCgV8fX0QPWqYE19M/BvbtHEZvv1uBX7+eTVycvW4e/eeU/1F3/9wMcaPH43AQH8olQqYixSCqVQqzJn9Enr37oaQ2m3sRMAAQMayYGWy/NASb3cfCIIAvxq+OHP2oo26ZAF5eXn47fctVse+fMVazJjxFgRBgNnC4fGenbFy+VL4eCgBMGCUGusiH7HTUH+AMsShAUAwGyEY0kUBMFYBmc6vzFk0DCuDTOsLaJ2fcTNyJeQOJAVKg8zDP7+QqyDGnv8WUEwYhnAm8MZsgAhgVTowSl21SLksdvE0KCgIaWmFZfEpKSkIDLT/hezcuRPh4eEOxxk7dix27dpl86/oQmx54PNEB2hbN7RZUGW1agSMCYOqbuk1pgULh+Qf4nC273Sc7TUNiUvWOa0/4wwyX08Q/iHdllQKMT7uJA/2Qn2QoGfDoazpB0adH6tlGLAaFWrPGyfZkUkQBLz73iK7BUWjMQ+zZr+L3Xv+RvduHaHVamwEsJRKBWrXDkHt2iEIDPDHc88+jSOHtjrVsLoAhUKBaVPH4fixHdgZv87pG65ggTZmzAjIJDRPZDIWwcEB2L3ngMOMiaCgACQlnsZf+zbaNcRmGAb+/n7o0rk9PHRah3IBBeqO+/86hGkvzkFWdg5ycvUwmUzYuy8BTw0fCz4nFXxuCrj7NyGYC8JArnEsgtmYnz9uEh0gbwafnQw+r3SZVFUJRq6E3Le2WJmr1IHV+uZLDzt+E+eNWeAyE0FMOSBmvfi7yL7nur60FUixM/auXbtiyZIlSE9Ph0ajQXx8PBYsWGBzDCEE586dQ9u2bR2MAnh5ecHLy7kGCGWBkcnQePV8pK/fh/vr94HVqBAwuj+8+5Y87m+8dBvZf52CzFOD++v3IffYReuCa+Lna5G5/QiabfrQoRMtCXxmrsP7mdGqETpzNDK3H0JOgvTins3xGhU8HSg+yjy1aL5tEVJXbkPmzmNQBPgi6PlIeHRoKnl8bq4eublS2thitehTI8bDbObQtGkDtG3TCvv2J0ClUiE6ehgWfjDXmhlSVurUCUHfvj2wa9dfDtvZFcCyLJTqUHh7e2Ho0IH4Y8sOEBAIAoFOp4GMlSE8cjQYhpFc5FUoFBg8eAC8vb3w2GNt8dWXC/Hi9NlgWRl4nkdISDDiNq0Ay7Jo3LgB6teviwsXLtss0up0WkzNb4X36Wff2D0YzWYLDh8/i5t37qFuqDjh4LOTwfjVASuTg2dY6YyTMqgb8vr7sE9NJBAM9/Olfd0b8c3BcWexByECX9jMo3CrmKZp1oNRuffPo1jHHhQUhBkzZiAmJgYWiwXDhw9H69atMWHCBEyfPh2tWrVCeno6FAoFVKVMTytvWIUc/k/3hf/TfUt1PiEEN2d/jbQ1uwBOEGPZRVMkTRYYzl1H1p5/ytT4wmqzVg1GxkqmYioDReeraVoXuScuPTSlkVHIoQjwgW9kN4fHyDw0CJ40FMGTihfP8vDQwdPTA+npmZL7CxpynDv3L3r36gaj3kFhTTmwOvYbvDh9Dlb/Kla++vn5Iisr2y48U+D4MzKysHHjVsSMGYFRo4ZCLpdj2PBxuJeUYjcrUygUsFgs0Ok08PPzw1tvFraxGzN6OIYPi8Cx46fh7eWJVq2a2bw9bPj9Z/QLG4H09AwADMxmC8aNewbDh0cBAG7ftl+sBgClQoHklPtWxw5AdCpqL8i8gsFnJdqewLCQe5UhfOFIf13gHVbEuhuEEPGByLAP/T7EYYs+AsGUC7a6O3YAiIqKQlRUlM22778vLBSpUaMGDhw4UL6WlRAuMxeGc9ehDPaDukFImcbKjD+CtFU7CmPYjkIkFg4Z2w+Xi2OXaVTwGdAZmdsP2yygshoVgiYMAgB4dmoORQ1vO7Ex7aMNYEnOBLFY4BvRFSH/GwVWXT5pcSzLYt5br2L2nPcfqs9uNluwd18C0tLSS6SJXhIIIRAEAQzDgGVY6LRaTJ8+ARs3/omrV2+AYVhkZGTaOG2DwYhflv2KdxfMxPF/TiM312Dn1FmWRevWzdCgQT307NEFo6OH2b1paDQa9OjeSdKu+vXr4vK/B/HX34eRkpyKzp3bW3P+AaBvnx64ePGyXayf4zg0b/LIg9/QahurUIPxqyPGf3kzIFdDpvYqm2wtK5fogQox/dDNIUSUWxCMmfmV5CxYja+4KCvl4BmmUALBbp/7/zzcvvKUEILET1cj6esNYJUKCBwHbbN6aPjLXLs2ds5y7/O1D12YfBBLckapriFFvY+m4mpmLnKOnAerkEMwW1BjZF8ExAwAAGRsPQgu3T5zxXjxFh499pPDLk9lZcrk56BSqbDg3UVISkoGw7CScWUZK0NWVnaZHDvHcbhy5Qa8vT3tmnaMHDUJe/b8bZ2hX79xC++//zn+3r8ZrVs3R9Pm3fNnzbYolQrcvHkHGQ7eOgRBQL26tbFq5deltptlWTzes4vkvldfmYQVK9chKyvbqiGj1ajxxqvPwcNmzYGxWchkWLmkjnqpbdT6QMgtGo5hwGp83H62LhizinSUEsRGHgxj1dZ5EDFbRsqzM2DVrg8Zuxq3dOyZu44h8ZNVMN1KhtzfG+bbqSBmC/j8ma7+9FVcm/QxmqxdUMxI0pgTpTXUpdA0Kl1/TylkHho0XjUfplvJMN1JgaZJHShqFMqWZvyRIC3bK5cj6duN0LVqAM/urcs904dhGIx/Phrjn48GAPQPexq7H9AeL4DjuFL3OwWADRv/xKTJr8OUZ4aFs6Bzp/ZYveobBAb64+bNO9iz52+7+HpengmfLfoGv/y8GE2aNMCVK/aa8EajCfXq1UZQUIDdrBkQ4+GREf1KbXdxBAcH4p9jO/DhwiWI37EPQUEBeGXKKIT37gAbJUaNV5k6FxEiQDBkQjDlAISAUeog0/lZ0whlai9Rw9+QkR+uEJ06Ww2kcQVJaQMCwZgh7dgZBnLvmuCy7tnkurNa32rRU9XtHHt63N+48cpiCPlxZj5LYmGP45F77KLYezSw5EUPqkdqgrufVfyBDOA7SFr0qyyo6gRBVUecreZdv4d7X6xF7rGLDrNwBL0RyT/EiUJgHI+670+E/4jSrS84Q0qqg+YhhCAjI6tUM/aTJ89i7LPTbcI9CQePImrQGBw+tBU3b92RVJ0UBAH//isWPfn5Si+cMQwDrVYDb28vvPbqJHy26FtraqZKpUKTJg0wYsSgEttcEmrVCraRFCCE5Evu5kKcJXqALWPONZ+dZBM7JqYccBYj5L6h1uwfmcZbnJE6EYd2F6xxdSkcNBkBRC0ZuV9dUbuGCGJTj2oiH+xWwSRCCG4v+MXq1B8GI5eVWhAr5H+jHHddehCWhfl20aa85Ufe1bs4P/AV3N+wD6Yb92BJdqx7QfIdOAt+AAAgAElEQVTMEHKNIHlm3JzzLfKuSS/YlQeOFlIZhkFWlnOdnIqyeMkPdk7bYuFw4eJlnD170aHqpEKhsBY9HT5yQnJspUKOixevAABatmwGnuetDk0QBDRq1ABKZcWW6jOMGHaRewZC7hlQZqcuWPJALFLNYvh8jXbbazOsrFo4dSC/roZ1MEct5g2o4PfAqjyqjVMH3M2xmyywJN0v/kCI2SHqR0rXGcarW2vUmvE0GIUcUMgdO3leQM7B4tMPS8udhSvF0IsD0TJHEI5H2m97XWMU4DAXneM4hISUrlbgxs3bkpouCoUcifeSERBQA+Ofj4ZWW+gAWZaFVqvGyy9NAAD415B+O+N4Hn5+PsjJycXzz8+A2WyxLlJaLBZs2RKPrdt2l8puZzGZTFixYh1Gj5mCmbMW4PLlazb7CSHgDZmwpN+C5f4NcDkpIHzxonFWHGW8gEBwmAFSfWB1fnAL0bQKwq0cO6NSgCmu9D+/4Kbuh5PAlKCgpyi1Xn4arY/8gPpfvAzvvu0dHmdJcyJkU0pyj5x3ehHXBo6HkFsyjZWS4EhPRalU4s6de6Ua84m+Pe0KgQDAZDKjXVuxYvizT9/GB++/gUceqQMfH28MHhSGPbvWY8+eA5jzxvvo0KGNjeMHxAfDY4+1RUhITeze/TfkEn8Ter0Bq1dvKJXdzqDXG9ClawSmTZ+DX9dswuIlP6Bdh/6I2xJvPYbPTRVj3wKX3wkpF1zmHbHphjM4mrGCKVPc3l2QqTwg8woCZEoxxCRXQeYVXKHa9FUJt4uxMywjmaHEatXQNKsLZWgggicMgq5NozJfSxHgA79B3WFKTENW/FHJY5S1XDcjUAT4givFg4PVquATJp2aVx7UDq2FxEQpnR+CGg5mzcUxaWIMvv5mGdLS0mGxiAucOp0WUyY/Z43ZsyyLqVOew9QposjXrVt30bV7JHJz9MjV6+Hhocuvp+DzBcQ4NG/WGGtWfyueL2MdFoHJ5a67Fb7+5hdcvnLdGte3WMSerePGvYzEu6cgZ5kiLe3yIQRCXrZYrl8MjEKTr+FeZJbPMKXWOC8JhBCAtwCsrNJCGmwFNxmpyriVYycmi1UZsSiC0YRmmxa65LrePVojUaW001dh1Er49HGdkmXNacNw47WltoumchkgCGC14so9yU+fI2ZObIemVcOrd1t4di1531Fnmfn6NIyOmWqz0KlWqxAZ0Q++DhYwi8PPzxfHj8Zj4UdLsWVLPHz9fDHjpRceuqg5ecrrSE29b9Vqyc3VQy6XY/DgMEx8IQbBQYFo3rywC1bfPj0gSLwB6bRajBnjOsnmNWs3S+rocDyPU6fPo13Lhg5yqslDCmlsYRgGcp9a4HNSCxtZyJSQewa43NHyxmwIhvv59udn43gG/CcbXFQV3MuxP3Sn6/QdtC3qwzeiCzK3HSqU3NWo4NGxOTy7F98ns7T4De4B0+0U3Fu8FmBZEAsHnwGdEDo7Bvrj/4L10MCrx6PQn7yM+2t2QTCZ4Te4B7z7dnDpwtigQWFY8M5MzJv/UX5ZPoeBA/rgxx8WlWncwEB/fPrJfHz6yfxij+V5Hjt3/WUnwMVxHLZu3Y01q7+zO0er1WDNr9/hqRHjwTAMOI4Dy7CYMCEavXs5rtQtK54OZBV4nodOqxVDJY7+fEsQRmFYOeTeNcUWfIRUyMxZMBsgFJEqIGYD+JxUyL2CHJ9IcSlu5dhZpdxxowgv25uHEALz7RQwSgWUwWUv8njk85eQEdcBqb/uALHw8H+qD2oM6+XyzIKa04Yh8PlImG7cgzLYz9oMQxVaWFru2bE5PDs2d6kdRXlp+gRMfGEMrly5gaCgAAQEVOwiFcMwDn/27EOqM8P698LN68ewYeNW5ObqEda/F5o0aegqMwEAkyeNxfF/TtusTTAMg9q1a6Fp04b5srPKwj6ghUdBVoocc4ZxHHIqbwRDBqTyx4nZACLw1SrTxJ1wK8fOsCwCn49Eyg9bgAdnanIZQl4daf2Ye+wirk37FFya2NFH06QOGnzzujU3vLTX9hvcA36De5TlK5QKmUYFbbN6FX7d4lCr1WjZUlo8zNWwLIuIiCfwxx87bapglUoFRjxVGL4hhCB+xz789ttmqNVqxMSMwGMd2mDcc89UmK3Dh0fh7wNH8ONPqyCXy8EwDDw9PbBx/S/Wh5PMKxh8bipIgcIjKxfDGVV84dPh4i4DMYecOvZKgSGVqFF5584d9O3bF7t27UJoaKhT5wgWDrfe+BZpv+0BIxdb4QWNi0TonBgxLJCcjrM9pthWaLIsFMF+aJ3wbZkyZSgl49atu1i7bjOMRiMiIvpZs1vKi+TkVPR4fDBSU9OQl2eGSqVEnToh2L93I3x8vEEIwZiYaYjbEg+93gCWZaFWqzB71nSbBhgVxY0bt5GQcBQBgf7o07sbZBKqoAVhFHcpHuJyUqTb0jEM5H713OI7uCPF+U63c+wFcJm5MCemQVUnCDKPwhS3e4vXIfGLtXadiFgPDRp89Rq8+zhOXaSUH7GrfsfESa9DEARwHAe1WoWxMSOw+Iv3HN7sBoMRP/+yGhs3bUOAfw1MmfIcunfr+NDrFMTUL12+hhYtmqB/v8etoZg9ew9gyNBn7dIz1SoVLl74G6GhpatzoBRCeAu4zLtFKj8ZsDq/UoWRKM5RnO90q1DMg8h9PCD3sddEMd1OkWwvR3gB5qTy7VhOBAG5Ry+Au58NXfsmUAa5RtXQ3cjIyMTESa8jL6/wrclgMGL58nUYPjxKUizLYDCiS9cIXL9xCwaDEQzDYMsfO/DB+3Mwdco4h9eSy+WIiuovuW/Tpm2SipSsjMX2+L14ftyoUnw7yoMwMgXkPiHgDRkgljwwrEzUW6Fph5VKtctH8uzcwpoKaAMh0LUte257AaZbyTjTbRIuxyzA9VcW40zXibjz/vJq0X2lgIsXr+DgoWMwlqDnKABs374XCom8cIPRiF9/lS4E+unn1VanDoixcYPBiFmz3kNOTumkIXQ6LWQSVcMsy0Kr+W/2wnQFjEwBuWcgFH51IPcJoU69ClDtHLtvZDcoQ/xtKlQZjQrevduV6wLk5Wffg/luKgR9nqjRYrIg5Zc/kLn9cLldo7K4ffsu2rZ/Ah07D0BE5GjUDGmNX5b9+tBzLBYLli1fg/CIUfhiyffgHJTDsw66TW3cuFVydq1QKnDo8D8l/xIAokcNg0Jhv/hICEFkpOvUHCmUysZtQzFEECAYTWLnoQditqxKgWabP8K9L9cjI+5vMCoFAkaHITBmYLld23jljij+VaTYRTCYkPLzH/Ad0LncrlXREEIwMGIULl++bpMjPv2luWjevAk6Pmbf/pDjOPQPexr/nDjjUG4AADQaNaJHPSm5z9/fDwzD2L3x8DwPX9/SxWqbN2+MTz+Zj1demQeFQg4wDARBwG/rfrT2I6VQqiNu59gJIUj+dhPuLVkHXp8HuY8HQmaORsAzhTMwmacWobNGI3TWaJfYwOcYHAqDScoIuxEnTp7F7duJdoU/RmMeli79EcuXLbU7Z/Pm7Q6dulqthiAIkMlYTJs6Dl27SHebmjp1HP7custm1s6yLIKDA9G+XemLwF6YMAZPDo3Azp37oVQqEBbWu0QNtSkUd8Qpxx4XF4evv/4aFosFzz77LKKjo232X7t2DfPmzUNWVhYCAgLw2WefwdvbNSviyd9tQuKnq61l9lxaFm6/9QNYjQo1hvR0yTWLom3xiGRmB6NSwjfKdRWMFUFq6n0HaXgEiYnSEsVxW3ZIOnWdVothwyLQqlUzhA/s+9BCoB7dO+HdBbPwxtwPoFAoIPACAoP88eeW2DKnzPn7+2HkyCFlGoNCcSeKjbEnJydj0aJFWLVqFTZt2oQ1a9bgypUr1v2EEEyePBkTJkzA5s2b0axZM3z3nX05d3lACMG9Jb/ZNZwQjCYkfrraJdeUglUqUPfjqWA1SuvMndWooKoTiMCx4RVmhyMEQUDq6p2488Fy6M9cLdG5HR9rI6l7rtGoERHxhOQ5AQF+kqqJrIzFk09GYMbLE52q7pz+4njcuXUCv67+Fjt2rMW/Fw6gQYN6JbKfQqE4MWNPSEhA586d4eMjijuFhYVh27ZtmDZtGgDg3Llz0Gq16NlTnC1PmjQJ2dmla7ZQHMRkAe+geUZJ2tmVB36R3aBpGIqU5Vthvncf3n3ao8bw3pBp7KVnK5LcE5fw75NzrOJgSV+uh6ZlfTT785OHltoX4OvrgzfnzsB7739hDYuo1SrUqhVsbY1XlOeefQZff7MMXBGpB6VCgf79Hi+R/d7eXiU+h0Kh2FKsY09JSUFAQID1c2BgIE6fPm39fOvWLfj7+2PmzJk4f/48GjdujDfffNNunOzsbDuHn5QkJf3qGEalAKvTQMi1z56Q+1d8MYSmaV3UfX9ShV/3YVwa8abVqRdgPHsNd+b9iDoLJjg1xszXX8Sjj7bE0qU/IjXtPoYMHogpk591uODYrFkjfPP1R5g8ZSbkcjkIIdBpNYjbvLLCOxNRKBQnHLtUXvaDMU+O43DkyBGsXLkSrVq1wueff44PP/wQH374oc05y5Ytw9Kl9gtvJcZR44kSdhmqjuQcveCwL2ra2l1OO3YAGBDWGwPCejt9fPSoYRgyeCAOJByFTqdF507tJGP1FArF9RTr2IOCgnDs2DHr55SUFAQGFioLBgQEoG7dumjVStQBiYyMxPTp9jocY8eOxdChQ222JSUl2S3EPgxiskDIk3ZcXEaO0+NUV7g06V6kQL5eexnIy8vDhg1bceXqDbR5tAUGDuxj15xCp9PSMAqFUgUo1rF37doVS5YsQXp6OjQaDeLj47FgwQLr/rZt2yI9PR0XL15E06ZNsXv3brRo0cJuHC8vL3h5eZXJWEalgCLAB5bkDLt96gYhZRq7OuDdu72Dhg2A9tHSS9PeuHEb3XsOQm6uHnq9ATqdFrVrh+CvfaLYlhQGgxFvzVuIZcvXwmQyY+CAPvjk43moXZv+nqoyhIiSu4JJnCixKk8wSi0V83Izil1NCwoKwowZMxATE4MhQ4YgMjISrVu3xoQJE3DmzBmo1Wp8+eWXmDt3LiIiInD48GHMmjXLJcYyDIOQOTFgiyxQMmolQueMdck13QlWrUTNaRKdgGQsHvliRqnHHf/CK0hJSUNurh6EEOTm6nH16g3MffNDh+dEDhqNb75djoyMLBgMRmzctA2duoQjK8s1C+sFmM1m/PrrRkyc9D+89/7nuHMn0aXXq04QQsDnpoLPSRH11M0G8Dkp4HNTK9s0SglxS3XHjD8ScPfjVTDdSYG6QQhC58TA+3H7isj/KhnbD+PuwpXg7mfBo2ML1FkwodTNRoxGI3xrNLHLeAHEDJrU5HN2248dP4U+fYfZSQRotRq8/94cTJvqWNSrLOj1BvToOQjXrt1Ert4AlUoJmUyGzZuWo9fjXV1yzeqEYMkDn3UP9q98Yts9Rl65GV+UQqqluqNvRFf4RtAb1RG+YZ3gW07NrEvzCn7u3EWwrP15BoMRR4+dLA+zJPli8fe4dPka8vLXYUz5PWrHxEzDzevHnEr3/C8j9kqVmucRCGYjZBXs2AkhYrMOhqGdmEoI/UunPBS1Wo0ePTrbZbgolUqMfHqw5DkNG9aXnOHL5TK0bNHEJXYCwK+/brQ69QfJzs7BxYtXJM6g2MCwkO6px+TvqzgEswFcxi1wGbfBpd8El3XPcbcmih3UsVOK5YfvPkNgoD88PXRgWRYeHjo0bFgPC96ZKXn8o62bw2y218TnOB7tyqD7UhxqtfSMUhAEh/sohbAqx8JorEq6IbcrIJwZfHayOFvPf4MgFiP47JLVvfyXoY69ipH22x6c6TYJxxuOwPmI15Bz8Gxlm4S6dUNx5dJBfPP1x5g/7zWsXPElThzf6TAjJj5+L7Rae71zhmEQFxfvMjsnToyBrsh1GYZB/fp1Ub9+XQCAyWTC3Dc/QHCtVvD2bYSnRozHjRu3XWaTO8GwMsi8ggCGgThzZwCGgcwrqEJDIbwxC1IhIcKZQTh7uQuKPW4ZY6+uJP+4BXc/XGEtMjKcuoJLY95B49Vvw/OxZpVqm0qlwtMOQi9FkQqHAIXNM1zFs2Ofxt69Cdi4aSsYhoFMJoOHTovf1v5gPeapEROwZ+8BGI1id6dNm7dj/1+HceHcfvj5+brMNneBVWrB+NXLj7cDjEJT8amOgv3bnmgMQAQODGg1c3HQGXsVgXC8jWqldXueGXcXrqwkq0rHE0/0BMfZF0TpdFoMGxbpsuvKZDKsWL4Uhw9uxaLP3sHKFV/i2tUjaNSoPgDg/PlLNk4dEMM0BoMBP/60ymV2uRsMw4BVakUnXwn564zcQXcrQsDIqFN3BjpjryJwGTkQTNKvmcaLNyvYmrIRGOiPhR/OxazZ78FstoDneeh0WkSEP1EhlanNmzdG8+aN7bafPXvBrloWELXmD5eySxPFBTjMvmEAmh3jFNSxVxFk3jowMhkI7F9DVXWCKsGisjF1yjj07NEFK1aug95gxNAhA9G3T49KrWBs0PARCIK9ppBKpUTLlk0dnpeSkoZ331uELVt2wNPLA9OmjsPz40bR9EkXQUyO5EEICGcCo5DoaUyxgTr2KgKrVCBoQhSSv9tsE45hNUqEvDaqEi0rPa1aNcNHC9+qbDOstGvbCi1aNMHJk+dsNOeVSiVemDBG8pysrGx06BiG1NT7sFjEh+6rr83HP/+cwddfLawQu/9zEAeCfgzjeB/FBjrlqELUevUZBE8dBtZTC8hYKGrWQL1Pp8O7T/vKNk2SCxcuY9nyNdi5a79dK72qCMMw2PrHKjz5ZDiUSgVkMhk6dGiDPbt+R61awZLn/PDjKmRkZFqdOiAWWq1YuQ63b9+tKNOtEEJAeA6kGjs4RqmFZD49ARg5na07A52xVyEYlkWtl0eg5vThICYLGLWySoov8TyP0TFTsWXLDrAsC5ZlUKOGH3bv/B116lRtkS9vby+sXP4luJ++AMdxUKsf7ij2FllsLUCpVOLEibMVKmrGG7MhGNKBfBUQRu0Bmc6/Sv6NlAVW7QkhLwfgLShMe2TA6vzA0PCXU9CfUhXAdCsZhvM3QPKrNRmWBatRVdkb9ptvl+GPP3bCaMyDXm9ATo4et28nYuSoiZVtmtPI5fJinToA1K9fV7LtH8/zCAmt6QrTJBHMBgj6+/mhCAKAgOTlgs+t2M5hFQHDsJD71BIduUIDRqWDzLsmZJqKb6bjrlDHnk/OoXO4MOh1/NN4JM48PhXpcX+7/JrmxFScD38VZ/u8iItDZ+Nkm7HI2HbI5dctK99+t8IuH53neZw6dQ5JSSmVZJVrmDL5WbsuUHK5HA0a1EO7tq0qzA7BkAH7oh0CYsqtlmEZhmEh03hD7l0Tcs8gsHTBtERQxw4g58h5XB7zNvT/XIJgyIPp6l3ceGUJUmO3u+yahBD8O3IeDOeug+SZIeiN4DNzcf3FRTD+e8tl1y0PpEITAMCyrMN97kqTJg3x+28/oVatYGg0aqhUSvTo0Qnb/lxdoW9UhH9Io5T/iIYKIQSCxQjBbJTs7EYphDp2AHfeXw7BaJtDLhhNuPPhShCJ9LjyQP/PJViS0+1a+glmC1J++dMl1ywvhg+LhEplXygSGOCPevVqV4JFrqXfEz1x8/oxnDm1FzevH8eO7WsRGOhfoTY4lMxlGICt/ktlgsUILv0m+Owk8DlJ4NJvQjAbKtusKgt17ADyHMyQBX0e+Cy9S65pSc0ApBaCeAHmxKrd2GDm69NQp04IdDotADEPXKfTYtmyJeU+i83OzsFvv8Vh3brNyMzMKtexSwLDMKhXrzb8/Uuna19WZDo/2GeKMGC1vlV2Laa8IAIPPitJXF8gJP+fAD47GUQoW8vH6kr1f9Q7gTI0EMYLN+y2MwoZZJ5al1xT17YxiIQCIqNRwatXO5dcs7zw8fHGP8d2YO26zdizNwH1H6mD58eNQkhI+S4mbty4FTFjX4Qsf/GS4zh8/92nGPn0kHK9jjvAyJWQ+9QCr08H4UwAK4dM61uhqouVBTE7nlwJplzIND6lH5u3QMjLASECWKUOjEJdLR6U1LEDqPXaM7g+7bMihUEqBL0wGIxERkR5oAzyQ+DYgUhduR2CQbwuo1RAEegL/xF9XHLN8kSj0WBszNMYG/O0S8ZPTk7FmLHT7GL2E154Fd27dURoaC2nxxIEAf/+exVKpQINGtQrZ0srDkaugty74jJxqgpiOFS6AUhZQqV8Xg6E3DTr2HxeDhilBjLPILd37jQUA7HjUJ0PJkEe4ANGLgProUHwlKGoNcM1TquA0DefQ71PXoSuQ1OoG9dG8JShaP7nJ5DpHIgg/YdYv+EPye2CIGDdb3FOj7P/r0Oo90gHdO4ajjbt+qLVo73x77+06YY7wSo1cNQARNxXcogg2Dj1/K0gZiNINYjdOzVjj4uLw9dffw2LxYJnn30W0dHRNvuXLl2K33//HV5eXgCAESNG2B1T1fEf3hs1hvWCoM8Dq1GCkblebIhhGPgN6g6/Qd1dfi13w2DIk+zCxHE89HrnbrzExCREDRpjc/zFi5fR54nhuHHtKBQKRbnZS3EdjFwFRqUDMenxYMESo9SUuhKVWIzis8LuRYBAMOW6fYirWMeenJyMRYsWYf369WI7tJEj0alTJzRs2NB6zNmzZ/HZZ5+hbVv3bijNMAxkHnS2XBUYOKAP5r/9sU0pPyAu1EaE93NqjOUr1tnJBxdowm/btgdRUf3LzV6Ka5F5BIAodRDysgGI1amMUlf6kAnDSEd3AOmXAzej2FBMQkICOnfuDB8fH2i1WoSFhWHbtm02x5w9exbff/89oqKi8M4778Bkkm60UJXhsnKR9N0mXJnwIe4sXAlzYvWr6HMnmjdvjMmTxkKrFRs9MAwDnU6LmDEj0LZtS6fGuH0n0drQ+kE4jkPiPdpmzZ1gGAasSicWLHnXBKvyKFMcnFFoHDhwBqzKq9TjVhWKnbGnpKQgICDA+jkwMBCnT5+2ftbr9WjWrBlmzpyJkJAQzJo1C1999RVmzJhhM052djays7NttiUlVY2by3zvPs6Hvwo+xwCSZwajlCPlpy1osmYBdG0aVbZ5sKRlwnjhJpQhAVDXd37R0N35aOFbiIoKw6pVv0MQCJ55Zige79nF6fN79eyClSt/h15vn1XRtctj5Wkqxc1gGAYyz2C7PqqM2qvUcfuqRLGOXarC68EnpU6nw/fff2/9PG7cOMyZM8fOsS9btgxLly4ti60u484Hy8GlZ1uLhYiZAzFzuPHaUrTY+UWl2UUIwe15PyI1djtYpQKChYOuTSM0/GkO5F7uHQN0lh7dO6FH906lOnfIkIFY+PGXuHjxsrVdn1arQUTEE2jVqnJbDVIqH1apAeNXF8Ssz0931IKRVY91l2Ide1BQEI4dO2b9nJKSgsDAQOvnxMREJCQkYPjw4QBEZyTVpWbs2LEYOnSozbakpKQqsciatfu4XQUoAORduQMuW19pTjR1VTzSVu8AMVnAm8RYs/74v7jxymI0/GF2pdhU0eTm6rFz534QQtC3bw94eXk6fa5CocC+PRuweMkPWP3rRqhUCrwwYQzGPfdMme0yGIzYuXM/LBYL+vbt4bCxN6Vqw7AsGLXzf1PuQrGOvWvXrliyZAnS09Oh0WgQHx+PBQsWWPer1Wp8/PHH6NSpE0JDQxEbG4t+/ewXt7y8vKxZM1UBLjMX6Rv3w3Q72fFBDANWUXmp/infb7bvgWrhkLX7OPhcY7Vf6I3bEo/o0VMgl8lAIGbE/PzTIgwfFuX0GDqdFrNnTcfsWdPLza7t8Xvx9MgXrG+unIXD119/hNHRw8rtGhRKWXBqxj5jxgzExMTAYrFg+PDhaN26NSZMmIDp06ejVatWeOeddzB58mRYLBa0a9cOzz33XEXYXmoM567h36fmglh4CEYTGIXcLvWJUcjh3acdWI2j/ouuh3MkZ8Aw1d6xp6SkYVT0FBiNtiqSz417GV06d3C6ytVisWDFyt8QG/s71GoVJowfjcGDB5R64S0zMwtPjRhvp245ecrr6NqlA+rXr1uqcSmU8sSp6WhUVBSiomxnSQ/G1cPCwhAWFla+lrmQa9MWgc8uzG0mFg5gGYBlREcuEKjq10S9T6ZVopWAV882SN+43y5MJPfzgiLI16XXPnv2In74MRapqfcRFdkfw4ZFVGje9+/rt0AqH00QCNb9FoeXX3qh2DF4nsfA8FE4cvSE1RH/feAIxowejqVLPiiVXZs2bwMr8VDgeR6rf92AN+a8XKpxKZTy5D8nKWBOTofplkQ2jkCgCPJF7XnjoKwdCF2bRpVeVhzyejSydh+HoM8TdWVkLFilAvU+mupS21as/A1Tps6E2WwBz/PY8scOLP3yJ+zauQ4qVcW8wej1RskCJYvFgtxc54TZ/ty6C8eOn7KZXev1BvyybA2mvzgejRs3KJVdvEQZu8XCIcdJuygUV/OfkxRgZKzDwgRWrYTfoO7waNu40p06AKhCAtBy9xIETRwMXYemqDGsF5rFfQTv3q4TCdPrDZg6bRaMxjxrH1O93oDTZ84jdtV6l123KAMH9JHsXKRWqzBwYF+nxoiP3yv5EGBZFnv3JZTKrv79Hpf8+9FqNIiMcK5wikJxNf85x67w94GmaR0x9PIAjFqJGk875zAqEkWAD0JnjkazjR/ikc+mQ9PUtTHcg4eOSWY1GQxGrFmzyaXXfpAWLZpg/Pho6LRa60NWp9MietSTaN+utVNjBATUsOt+BAAymQw1/EoXymrY8BFMnz7eWjhVYNeQoQPRrSvNjadUDf5zoRgAqP/Va7g4dDYEownEbAEjl0PXphGCJ/735GCLotNpHSrmeXl5VKgtn33yNgZFhSE29ncIhGDUM0PRt08Pp8+PGTMCH3/yld12mUInFTYAABMfSURBVEyGiIgnSm3Xe+/OxoABfbBixTqYzRaMHDkEYf17VYm3PAoFcFPHnrZ2FxI/WQ1zUjpUdYMQOmcsfAd2dvp8db2aaH34e2TtOArzvTTo2jSGrn0TemMC6NSxHTy9PO3ixTqtFhMnxlSoLQzDoHevbujdq1upzq9XrzZWxX6Nsc+KqY6CIMDT0wObNi5zqpH1wyhL4RSF4mrczrGnxm7H7fk/WfO7Tdfv4fr0z8B89Rp8+nV0ehxWqYBvRFdXmem2sCyLP+JWov+Ap8VqTUJgtnCYMWMinujbs7LNKzFRkf2RlHgah4+cgFKpwGMd2oCV6lxFoVQj3MqxE0Jw9+NVdkU7gtGMOx+sKJFjpzimVatmuHXjOHbvOYDMjCz06NEJtWoFV7ZZpUapVNLZNeU/hXs5dpNF1HSRwHSzagiKVRcUCgXC+veqbDMoFEopcKt3UkalgNxXWtdBVTuogq2hUCiUqol7OXaGQa1Xn7Er82fUSoTMGl1JVlGqO4QQJBw8ivlvf4JFn3+LxET6dkip2rhVKAYAAsYMACNjkfjpr7CkZEBZOxChc2LgO8D5rBgKxVkEQUDM2BcRtyUeBoMRSqUCb837CKtWfk07MFGqLG7n2BmGQUB0GAKiw0AIoSmKFJcSFxePuC3x1r6pBR2Zxoydhnt3T0Gjqb5CbBT3xa1CMUWhTr36YTQakXDwKC5cuFzZpgAAVsb+Jtk8W5QlOFgJFlEoxePWjp1Svfj5l18RXKs1IqPGoFOXgWjb7gncvn23Um2Syez1agqg+fCUqgr9y6RUCQ4dPo6XXp4Lvd6A7OwcGAxGnL9wCeGR0ZLtGSuKmJgR0Om09jsIQa/Hne+/SqFUJNSxU6oES5f+BKMxz2Ybz/O4desuTp06V0lWiSqT0aOehEajhlKpgE6nhVarwdq131eYhDGFUlLcbvGUUj25dy9ZcmYuk8mQmpZeCRaJMAyDr75ciMmTnsWOnfvg7e2FJ4eGw9fXp9JsolCKgzp2SpUgIqIfjhw9YTdrN5vNeKzDo5VkVSGtWjVDq1bNKtsMCsUpnArFxMXFITw8HP369UNsbKzD4/bu3Ys+ffqUm3GU/w4TxkejVq1gqNWF4Q2tVoO33nwFPj7elWgZheJ+FDtjT05OxqJFi7B+/XoolUqMHDkSnTp1QsOGDW2OS0tLw8KFC11mKKV64+npgSOHtuKrr3/Bps3b4O9fAy9Oe57q1VAopaDYGXtCQgI6d+4MHx8faLVahIWFYdu2bXbHzZ07F9OmVW7zZ4p74+3thdmzpuNQwp/YsnkFdeoUSikpdsaekpKCgIAA6+fAwECcPn3a5pjly5ejefPmePRRx7HQ7OxsZGfbKjMmJVHNDQqFQilvinXsUpkKD1Z8Xrp0CfHx8fjll18e6qiXLVuGpUuXltJMCoVCoThLsY49KCgIx44ds35OSUlBYGCg9fO2bduQmpqKYcOGwWKxICUlBaNGjcKqVatsxhk7diyGDh1qsy0pKQnR0dFl/Q4UCoVCeYBiHXvXrl2xZMkSpKenQ6PRID4+HgsWLLDunz59OqZPF3tK3rlzBzExMXZOHQC8vLzg5eVVjqZTKBQKRYpiF0+DgoIwY8YMxMTEYMiQIYiMjETr1q0xYcIEnDlzpiJspFAoFEoJcKpAKSoqClFRUTbbvv/+e7vjQkNDsXv37vKxjEKhUCilgmrFUCgUSjWDOnYKhUKpZlDHTqFQKNUM6tgpFAqlmkEdO4VCoVQzqGOnUCiUagZ17BQKhVLNoI6dQqFQqhnUsVMoFEo1gzp2CoVCqWZQx06hUCjVDOrYKRQKpZpBHTuFQqFUM6hjp1AolGoGdewUCoVSzaCOnUKhUKoZ1LFTKBRKNYM6dgqFQqlmOOXY4+LiEB4ejn79+iE2NtZu/44dOxAVFYWIiAjMmjULZrO53A2lUCgUinMU69iTk5OxaNEirFq1Cps2bcKaNWtw5coV636DwYB33nkHP//8M/744w+YTCZs2LDBpUZTKBQKxTHFOvaEhAR07twZPj4+0Gq1CAsLw7Zt26z7tVotdu/eDX9/fxgMBty/fx9eXl4uNZpCoVAojpEXd0BKSgoCAgKsnwMDA3H69GmbYxQKBfbt24fXX38dgYGB6N69u9042dnZyM7OttmWlJRUWrspFAqF4oBiHTshxG4bwzB22x5//HEcPnwYn332GebPn49PP/3UZv+yZcuwdOnSMphKoVAoFGco1rEHBQXh2LFj1s8pKSkIDAy0fs7MzMTZs2ets/SoqCjMmDHDbpyxY8di6NChNtuSkpIQHR1dauMpFAqFYk+xMfauXbvi4MGDSE9Ph9FoRHx8PHr27GndTwjB//73PyQmJgIAtm7dinbt2tmN4+XlhdDQUJt/wcHB5fhVKBQKhQI4OWOfMWMGYmJiYLFYMHz4cLRu3RoTJkzA9OnT0apVKyxYsAATJ04EwzBo2LAh3n777YqwnUKhUCgSMEQqiF5B3LlzB3379sWuXbsQGhpaWWZQKBSKW1Gc76SVpxQKhVLNoI6dQqFQqhnUsVMoFEo1gzp2CoVCqWZQx06pNBIOHkWfvsMQENQCHTsNwJY/dlS2SRRKtYA6dkql8NffhxE2YCT2/3UIGRmZ+OfEGYyKnozVv1IBOQqlrFDHTqkUZs1+F0Zjns02g8GI12cukJSxoFAozkMdO6VSOHv2ouT21NT70OsNFWwNhVK9oI6dUinUqiUtJ6HRqKHRqCvYGgqlekEdO6VSeHPuDGi1GpttWq0GM15+ATKZrJKsolCqB8VqxVAormDUM08iKysbb837CEZjHuQyGV56aQLmvmGvDEqhUEoGdeyUSmPypGfxwoQxuH8/A76+3lAoFJVtEoVSLaCOnVKpyGQyBAb6V7YZFEq1gsbYKRQKpZpBHTuFQqFUM6hjp1AolGoGdewUCoVSzaCOnUKhUKoZ1LFTKBRKNYM6dgqFQqlmVGoeO8/zAICkpKTKNINCoVDcigKfWeBDi1Kpjj01NRUAEB0dXZlmUCgUiluSmpqKunXr2m1nSCWKX+fl5eHs2bMICAgoVvgpKSkJ0dHRiI2NRXCwtDJgVcBd7ATcx1ZqZ/njLrZSO6XheR6pqalo2bIl1Gp7NdRKnbGr1Wp06NChROcEBwcjNDTURRaVH+5iJ+A+tlI7yx93sZXaaY/UTL0AunhKoVAo1Qzq2CkUCqWaQR07hUKhVDNk8+fPn1/ZRjiLSqVCp06doFKpKtuUh+IudgLuYyu1s/xxF1upnSWnUrNiKBQKhVL+0FAMhUKhVDOoY6dQKJRqhts49ri4OISHh6Nfv36IjY2tbHPsyM3NRWRkJO7cuQMASEhIQFRUFPr3749FixZVsnUiS5cuRUREBCIiIvDRRx8BqJp2fvHFFwgPD0dERAR+/vlnAFXTzgIWLlyIWbNmAQAuXLiAYcOGISwsDG+88QY4jqtk60RiYmIQERGBwYMHY/DgwTh16lSVvKd2796NJ598EgMGDMC7774LoOr97tetW2f9OQ4ePBjt27fHO++8U7XsJG5AUlIS6d27N8nIyCB6vZ5ERUWRy5cvV7ZZVk6ePEkiIyNJixYtyO3bt4nRaCSPP/44uXXrFrFYLGTcuHFk7969lWrjgQMHyNNPP01MJhMxm80kJiaGxMXFVTk7Dx8+TEaOHEksFgsxGo2kd+/e5MKFC1XOzgISEhJIp06dyMyZMwkhhERERJATJ04QQgiZPXs2iY2NrUzzCCGECIJAunXrRiwWi3VbVbynbt26Rbp3707u3btHzGYzeeaZZ8jevXur7O+eEEIuXbpE+vXrRxITE6uUnW4xY09ISEDnzp3h4+MDrVaLsLAwbNu2rbLNsrJ27VrMmzcPgYGBAIDTp0+jbt26qF27NuRyOaKioird3oCAAMyaNQtKpRIKhQINGjTAjRs3qpydHTt2xPLlyyGXy3H//n3wPI/s7OwqZycAZGZmYtGiRZg0aRIA4O7du8jLy0ObNm0AAE8++WSVsPPatWtgGAYTJkzAoEGDsHLlyip5T+3YsQPh4eEIDg6GQqHAokWLoNFoquTvvoD58+djxowZuH37dpWy0y0ce0pKCgICAqyfAwMDkZycXIkW2fLee+/ZSCNURXsbNWpkdTg3btzAn3/+CYZhqpydAKBQKLB48WJERESgS5cuVfLnCQBvvfUWZsyYAS8vLwD2v/eAgIAqYWd2dja6dPl/e3cf0mT3x3H8PczKh7CWJVJEGGVJKGUSKiYmyUwqI8M1xLAnyFBSiErsjyhIppAFkUVW/1g6zYxGZGhPBsPUqMyaWJiYGSmKldq2Nn9/RCN/3j3cvx/de7i/r/8urx2vj+dwfXc8znNFcurUKS5evEh5eTlv3751uj7t6urCarWyfft21q9fz6VLl5x27OHrhPPz588kJiY6XU6XKOxjf/GJTIVC4YAkv8eZ83Z0dLBt2zb279/PvHnzJpx3lpzZ2dkYDAZ6e3t5/fr1hPOOzllZWUlgYCCRkZH2rznruC9btgytVou3tzdKpZKUlBROnjw54XWOzmq1WjEYDBQWFqLT6WhtbbX/zep7js75TXl5ORkZGYDzjb1DNwH7XQEBATQ3N9uP379/b1/2cEYBAQH09/fbj50lb0tLC9nZ2eTl5ZGUlMTDhw+dLuerV68wm80sWbIELy8vEhISuHnz5rjdP50h540bN+jr62PDhg0MDQ0xMjKCQqEY1599fX0OzwnQ3NyMxWKxvwmNjY0xZ84cpxt7f39/IiMjUSqVAMTHxzvl2AOYzWaampooKCgAnO+ed4kZe1RUFAaDgYGBAUZHR7l16xarVq1ydKwfCgsLo7Oz0/6rpV6vd3je3t5e9uzZQ1FREUlJSU6b882bN+Tn52M2mzGbzdTX16NWq50u54ULF9Dr9Vy7do3s7GxWr17NsWPHmDJlCi0tLQDU1NQ4PCfAx48f0Wq1mEwmPn36xNWrVyksLHS6eyouLo4HDx7w4cMHrFYrDQ0NqFQqpxt7gPb2dubPn4+3tzfgfPeSy8zYc3JySE9Px2KxkJKSQmhoqKNj/dCUKVMoKCggKysLk8lEbGwsKpXKoZlKS0sxmUz2GQaAWq12upyxsbE8efKE5ORkPDw8SEhIICkpCaVS6VQ5f6SoqIj8/HyGh4cJCQkhPT3d0ZGIi4uz96nNZkOj0RAeHu5091RYWBg7duxAo9FgsViIjo5my5YtBAUFOd3Yd3d3j9t33dnuedlSQAgh3IxLLMUIIYT4fVLYhRDCzUhhF0IINyOFXQgh3IwUdiGEcDNS2IX4iQMHDlBaWvq32tTX19t3Jrx79y4nTpz4E9GE+CGX+By7EK4kPj6e+Ph4AFpbWxkaGnJwIvFvI4VduKTGxka0Wi0BAQF0d3czdepUCgoKmD17NocPH8ZoNKJQKIiJiSE3N5dJkyYREhLC1q1baWxsZGRkhNzcXBISEqiurqa2tpYzZ84ATDj+pqqqioqKCiwWC0NDQ+zcuRONRkN1dTVVVVWMjo7i6+vLxo0bqa2tJTMzk/LycqxWK9OmTePp06eoVCpSU1MBOH36NIODg+Tl5f3j/SfcmxR24bKeP3/OwYMHWbFiBZcvX2bfvn0sXLiQ6dOnc/36dSwWC7t37+b8+fPs2rULq9WKn58f1dXVGI1G0tLSxu3K+TPDw8NUVlZy9uxZZsyYwePHj8nIyECj0QDw8uVLbt++ja+vL9XV1cDX/6RUq9UMDg6Sk5NDXV0dJSUlpKamYrPZqKys5Ny5c3+sf8S/l6yxC5e1ePFie2HetGkTL168QK/Xk5aWhkKhYPLkyajVau7fv29vk5aWZm+7aNEimpqafutaPj4+lJSUcO/ePYqLiykpKWFkZMR+Pjg4GF9f359+j7i4OPr7+zEajTQ0NDB37lyCgoL+7o8txC9JYRcu6/td/+DrroX/vUOGzWYb93i679vYbDY8PDxQKBTj2lkslgnXevfuHcnJyfT09BAeHs7evXvHnf+2GdSv8qrVaqqqqrhy5QpqtfqXbYT4X0hhFy7LaDRiNBoBqKioYPny5SQmJlJWVsbY2BhmsxmdTkdUVJS9TU1NDQBtbW10dnYSERGBUqmko6MDk8nEly9fuHPnzoRrPXv2DKVSSWZmJjExMfbXWK3Wn2b08PAY98ayefNm6urqaGtrY82aNf93HwjxV2SNXbgsf39/iouL6enpQalUotVq8fHx4ejRo6xbtw6LxUJMTIz90XUAjx49QqfTYbPZOH78OH5+fkRHRxMREUFiYiKzZs1i5cqVtLe3j7tWdHQ0VVVVqFQqvLy8CA0NRalU0tXV9dOMkZGRZGVl4enpyaFDh5g5cyZLly5lwYIFeHp6/pF+EUJ2dxQuqbGxkSNHjqDX63+7TXBwMAaDwf4gB0cYGBggJSWFsrIyAgMDHZZDuDdZihHiH6LT6Vi7di3p6elS1MUfJTN2IYRwMzJjF0IINyOFXQgh3IwUdiGEcDNS2IUQws1IYRdCCDcjhV0IIdzMfwDhtz30d8hhswAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ], - "source": [ - "selection = df[['popularity','danceability']]\n", - "print(selection)\n", - "\n", - "from sklearn.cluster import KMeans\n", - "kmeans = KMeans(n_clusters = 3)\n", - "kmeans.fit(selection)\n", - "labels = kmeans.predict(selection)\n", - "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", - "plt.xlabel('danceability')\n", - "plt.xlabel('popularity')\n", - "plt.show()\n" - ] } ] } \ No newline at end of file