diff --git a/Clustering/1-Visualize/README.md b/Clustering/1-Visualize/README.md index d5145919d..0b5c7ff34 100644 --- a/Clustering/1-Visualize/README.md +++ b/Clustering/1-Visualize/README.md @@ -44,11 +44,17 @@ Alternately, you could use it for grouping search results - by shopping links, i > > ๐ŸŽ“ ['Transductive' vs. 'inductive'](https://wikipedia.org/wiki/Transduction_(machine_learning)) > -> Transductive inference is derived from observed training cases that map to specific test cases. Inductive inference is derived from training cases that map to general rules which are only then applied to test cases. +> Transductive inference is derived from observed training cases that map to specific test cases. Inductive inference is derived from training cases that map to general rules which are only then applied to test cases. +> +> An example: Imagine you have a dataset that is only partially labelled. Some things are 'records', some 'cds', and some are blank. Your job is to provide labels for the blanks. If you choose an inductive approach, you'd train a model looking for 'records' and 'cds', and apply those labels to your unlabeled data. This approach will have trouble classifying things that are actually 'cassettes'. A transductive approach, on the other hand, handles this unknown data more effectively as it works to group similar items together and then applies a label to a group. In this case, clusters might reflect 'round musical things' and 'square musical things'. > > ๐ŸŽ“ ['Non-flat' vs. 'flat' geometry](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) > > Derived from mathematical terminology, non-flat vs. flat geometry refers to the measure of distances between points by either 'flat' (non-[Euclidean](https://wikipedia.org/wiki/Euclidean_geometry)) or 'non-flat' (Euclidean) geometrical methods. +> +>'Flat' in this context refers to Euclidean geometry (parts of which are taught as 'plane' geometry), and non-flat refers to non-Euclidean geometry. What does geometry have to do with machine learning? Well, as two fields that are rooted in mathematics, there must be a common way to measure distances between points in clusters, and that can be done in a 'flat' or 'non-flat' way, depending on the nature of the data. If your data, visualized, seems to not exist on a plane, you might need to use a specialized algorithm to handle it. +> +> Infographic: like the last one here https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering > > ๐ŸŽ“ ['Distances'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) > @@ -87,20 +93,28 @@ Data points are assigned to clusters based on their density, or their grouping a **Grid-based clustering** For multi-dimensional datasets, a grid is created and the data is divided amongst the grid's cells, thereby creating clusters. -### Preparation +### Preparing the data -Clustering is heavily dependent on visualization, so let's get started by visualizing our music data. This exercise will help us decide which of the methods of clustering we should most effectively use for the nature of this data. +Clustering as a technique is greatly aided by proper visualization, so let's get started by visualizing our music data. This exercise will help us decide which of the methods of clustering we should most effectively use for the nature of this data. + +Open the notebook.ipynb file in this folder. Import the Seaborn package for good data visualization. + +```python +pip install seaborn +``` -Open the notebook.ipynb file in this folder and append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to explore this data by importing the libraries and dumping out the data: +Append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to explore this data by importing the libraries and dumping out the data: ```python import matplotlib.pyplot as plt import pandas as pd -df = pd.read_csv("../data/nigerian-songs.csv") +df = pd.read_csv("../../data/nigerian-songs.csv") df.head() ``` +Check the first few lines of data: + | | name | album | artist | artist_top_genre | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | @@ -109,9 +123,6 @@ df.head() | 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | | 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | - -Check the first few lines of data: - Get some information about the dataframe: ```python @@ -144,9 +155,7 @@ dtypes: float64(8), int64(4), object(4) memory usage: 66.4+ KB ``` -It's useful that this data is mostly numeric, so it's almost ready for clustering. - -Check for null values: +Double-check for null values: ```python df.isnull().sum() @@ -191,11 +200,13 @@ df.describe() | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | -## Visualize the data +Look at the general values of the data. Note that popularity can be '0', which show songs that have no ranking. Let's remove those shortly. -Now, find out the most popular music genre using a barplot: +Use a barplot to find out the most popular genres: ```python +import seaborn as sns + top = df['artist_top_genre'].value_counts() plt.figure(figsize=(10,7)) sns.barplot(x=top[:5].index,y=top[:5].values) @@ -204,16 +215,76 @@ plt.title('Top genres',color = 'blue') ``` ![most popular](images/popular.png) -โœ… If you'd like to see more top values, change this `[:5]` to a bigger value, or remove it to see all. +โœ… If you'd like to see more top values, change the top `[:5]` to a bigger value, or remove it to see all. -Note, when the top genre is described as 'Missing', that means that Spotify did not classify it. +Note, when the top genre is described as 'Missing', that means that Spotify did not classify it, so let's get rid of it: -Explore the data by checking the most popular genre: +```python +df = df[df['artist_top_genre'] != 'Missing'] +top = df['artist_top_genre'].value_counts() +plt.figure(figsize=(10,7)) +sns.barplot(x=top.index,y=top.values) +plt.xticks(rotation=45) +plt.title('Top genres',color = 'blue') +``` + Now recheck the most popular genres: +![most popular](images/popular.png) +By far, the top three genres dominate this dataset, so let's concentrate on `afro dancehall`, `afropop`, and `nigerian pop`, also filtering the dataset to remove anything with a 0 popularity value (meaning it was not classified with a popularity in the dataset and can be considered noise for our purposes): +```python +df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] +df = df[(df['popularity'] > 0)] +top = df['artist_top_genre'].value_counts() +plt.figure(figsize=(10,7)) +sns.barplot(x=top.index,y=top.values) +plt.xticks(rotation=45) +plt.title('Top genres',color = 'blue') +``` + +Do a quick test to see if the data correlates in any particularly strong way: + +```python +corrmat = df.corr() +f, ax = plt.subplots(figsize=(12, 9)) +sns.heatmap(corrmat, vmax=.8, square=True); +``` +![correlations](images/correlation.png) + +The only strong correlation is between energy and loudness, which is not too surprising, given that loud music is usually pretty energetic. Otherwise, the correlations are relatively weak. It will be interesting to see what a clustering algorithm can make of this data. + +Is there any convergence in this dataset around a song's perceived popularity and danceability? A FacetGrid shows that there are concentric circles that line up, regardless of genre. Could it be that Nigerian tastes converge at a certain level of danceability for this genre? + +โœ… Try different datapoints (energy, loudness, speechiness) and more or different musical genres. What can you discover? Take a look at the `df.describe()` table to see the general spread of the data points. +### Data Distribution + +Are these three genres significantly different in the perception of their danceability, based on their popularity? Examine our top three genres data distribution for popularity and danceability along a given x and y axis. + +```python +sns.set_theme(style="ticks") + +g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", +) +``` + +You can discover concentric circles around a general point of convergence, showing the distribution of points. In general, the three genres align loosely in terms of their popularity and danceability. Determining clusters in this loosely-aligned data will be interesting: + +![distribution](images/distribution.png) + +A scatterplot of the same axes shows a similar pattern of convergence: + +```python +sns.FacetGrid(df, hue="artist_top_genre", size=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() +``` +In general, for clustering, you can use scatterplots to show clusters of data, so mastering this type of visualization is very useful. In the next lesson, we will take this filtered data and use k-means clustering to discover groups in this data that seems to overlap in interesting ways. ## ๐Ÿš€Challenge @@ -221,9 +292,9 @@ Explore the data by checking the most popular genre: ## Review & Self Study -Before you apply clustering algorithms, as we have learned, you must determine the nature of your dataset. Read more onn this topic [here](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) +Before you apply clustering algorithms, as we have learned, it's a good idea to understand the nature of your dataset. Read more onn this topic [here](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) -[This helpful article](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) walks you through the different ways that various clustering algorithms behave given different data shapes +[This helpful article](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) walks you through the different ways that various clustering algorithms behave, given different data shapes. In the next lesson, you will make use of the most popular clustering method, K-Means. Take a look at Stanford's K-Means Simulator [here](https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html). You can use this tool to visualize sample data points and determine its centroids. With fresh data, click 'update' to see how long it takes to find convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids. Does this help you get an idea of how the data can be grouped? diff --git a/Clustering/1-Visualize/images/all-genres.png b/Clustering/1-Visualize/images/all-genres.png new file mode 100644 index 000000000..906d6e4f5 Binary files /dev/null and b/Clustering/1-Visualize/images/all-genres.png differ diff --git a/Clustering/1-Visualize/images/correlation.png b/Clustering/1-Visualize/images/correlation.png new file mode 100644 index 000000000..ef3affdf0 Binary files /dev/null and b/Clustering/1-Visualize/images/correlation.png differ diff --git a/Clustering/1-Visualize/images/distribution.png b/Clustering/1-Visualize/images/distribution.png new file mode 100644 index 000000000..3fe606505 Binary files /dev/null and b/Clustering/1-Visualize/images/distribution.png differ diff --git a/Clustering/1-Visualize/solution/notebook.ipynb b/Clustering/1-Visualize/solution/notebook.ipynb index 087df857b..1542549ce 100644 --- a/Clustering/1-Visualize/solution/notebook.ipynb +++ b/Clustering/1-Visualize/solution/notebook.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLร˜indie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" }, "metadata": {}, - "execution_count": 3 + "execution_count": 21 } ], "source": [ @@ -129,7 +129,7 @@ ], "cell_type": "code", "metadata": {}, - "execution_count": 4, + "execution_count": 22, "outputs": [ { "output_type": "stream", @@ -142,7 +142,61 @@ }, { "source": [ - "There are no null values. Look at the general values of the data. Note that popularity can be '0'" + "Double-check for null values." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 23, + "outputs": [ + { + "output_type": "error", + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m Double-check for null values.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "source": [ + "Look at the general values of the data. Note that popularity can be '0' - and there are many rows with that value" ], "cell_type": "markdown", "metadata": {} @@ -198,10 +252,12 @@ }, { "source": [ - "The song's genre is a good candidate for a cluster. Let's examine the genres. Quite a few are listed as 'Missing' which means they aren't categorized in the dataset with a genre " + "Let's examine the genres. Quite a few are listed as 'Missing' which means they aren't categorized in the dataset with a genre " ], - "cell_type": "markdown", - "metadata": {} + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -441,105 +497,10 @@ } ], "source": [ - "import seaborn as sns\n", - "\n", "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", " .add_legend()" ] - }, - { - "source": [ - "reduce the dataframe to only numeric values" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.cluster import KMeans\n", - "wcss = []\n", - "\n", - "X = df[['popularity','danceability']].values\n", - "\n", - "\n", - "for i in range(1, 11):\n", - " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", - " kmeans.fit(X)\n", - " # inertia method returns wcss for that model\n", - " wcss.append(kmeans.inertia_)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAFNCAYAAACE6oJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de1yUZf7/8dfADKAhHoqDCWFlaaWphaZpmloiAiJDtiY/T7tlmZV28Cupaba6lrnhlqu7+1h3v24/q9VVIA1R0zyFJ+ykpfvTUhIVwdQQFQTk98cd2CioIMM9A+/n4zGPmbnmnns+98xDfXtd931dltLS0lJERERExO14mF2AiIiIiFSPgpyIiIiIm1KQExEREXFTCnIiIiIibkpBTkRERMRNKciJiIiIuCkFORFxCdOnTycmJoaYmBjatm1LeHh4+fOCggJat27NiRMnruszWrduTXR0dPl+y25ZWVls27aNqKgoABISEliwYEFNHFaltm3bRuvWrfmf//mfy14bOnQoHTt2vOo+vvnmG6ZMmVK+v7L6q+vEiRO0bt36uvYhIrXLanYBIiIAkydPLn/cu3dvZs+eTbt27Wr8cxYuXEizZs0uaz98+HCNf9bV+Pv7s379es6dO0eDBg3K6zhw4MA1vX///v0cO3bMmSWKiItTj5yIuI333nsPu91O7969WbRoUXn7kiVLsNvtDBw4kBEjRvD9999f92ft3LmTxx9/nP79+zNjxgyKi4sByMjI4PHHHyc6Ohq73c7GjRspKSmhS5cuZGZmAvC3v/2NXr16le9r5MiRbNiw4bLPaNKkCffffz+ffvppeVtycjLR0dEO21V0fEePHuXdd98lIyODV199FYCzZ8/y4osvEhMTQ79+/cjIyADg9OnTvPLKK0RFRREdHc2sWbPKj2f16tVERERgt9uZM2fOdX9vIlK7FORExG2EhISwbNky5s6dy5tvvklRURHbt28nOTmZRYsWkZyczJNPPsnzzz9f6T6GDx/uMKw6ZsyYCrfLzs7mf//3f0lOTmbv3r0sXryYkydP8sILLzBp0iSWL1/OW2+9xfjx4zly5Ai9evVi06ZNAGzatImioiIOHDjA6dOn2bNnD127dq3wcwYOHEhKSkr585UrVzoMkVZ2fM2bN+eFF14gLCyMmTNnltc8YsQIUlJSGDx4MO+99x5gDFs3adKE5cuXs3TpUv773//yj3/8g+PHjzNx4kTee+89li1bRosWLar2g4iI6TS0KiJuoyzg3HXXXZw/f578/HzWr19PZmYmgwcPLt/u559/5tSpUzRp0uSyfVQ2tHqpmJgYGjZsCMCAAQPYsGEDLVq04JZbbqF9+/YA3HHHHdx3331s376dRx99lI8++oiBAweSk5NDVFQU6enpNG7cmIceeggvL68KP6dXr168/vrr/PTTTxw8eJDbbruNxo0bl79+peO7VEhISHltbdq0YenSpQBs3LiRDz/8EIvFgpeXF4MHD2bhwoWEhoZy55130qpVKwB+85vf8M4771z1uxER16EgJyJuw2o1/sqyWCwAlJaWcuHCBWJiYhg/fjwAFy5cICcnxyEMVYenp+dln33hwoXLtistLaW4uJhu3boxefJkNmzYwAMPPMCDDz7Ihx9+SIMGDejfv3+ln+Pl5UXfvn1ZsWIF+/fvJzY21uH1qhyfzWYrf2yxWChbSvvSui9cuEBxcbHDNmXHKCLuRUOrIuLWunXrxieffEJOTg4AH374IcOHD7/u/X7yySecP3+ewsJCli1bRo8ePWjfvj0HDhzgm2++AWDfvn3s2LGDzp074+3tTadOnZg7dy7dunWjc+fOfPXVV2RkZPDQQw9d8bMGDhxIUlISO3bsuGzbKx2fp6dn+bluV9K9e3cWLVpEaWkp58+fZ/HixTz44IOEhYWxf/9+9u7dC8CyZcuq/D2JiLn03y8RcWsPPfQQTz31FL/97W+xWCz4+voyd+7c8l67Sw0fPhwPD8f/w7700kv4+Pg4tAUHB/PEE09w9uxZHn30UWJjY7FYLPzpT3/i97//PQUFBVgsFmbOnMmtt94KwKOPPsrq1avp0qULPj4+tGnThsaNG+Pt7X3FY+jYsSPnzp2jd+/el/WKXen4OnbsyJw5cxgzZgzDhg2rdP+TJ09m+vTpREdHU1RUxEMPPcQzzzyDl5cXs2fP5pVXXsFms9GpU6cr1ikirsdS+ut+dRERERFxGxpaFREREXFTCnIiIiIibkpBTkRERMRNKciJiIiIuKl6d9VqQUEBu3fvxt/f/7J5okRERERcSUlJCbm5ubRt2/ayq+uhHga53bt3Ex8fb3YZIiIiItds0aJFhIWFXdZe74Kcv78/YHwhQUFBJlcjIiIiUrns7Gzi4+PL88ul6l2QKxtODQoKIjg42ORqRERERK6ustPBdLGDiIiIiJtSkBMRERFxUwpyIiIiIm5KQU5ERETETSnIiYiIiLgpBTkRERERN1Xvph+pFRcuQE4OFBaCtzcEBICHMrOIiIjULKWLmnbhAuzaBV26QMuWxv2uXUa7iIiISA1SkKtpOTkQEwOZmcbzzEzjeU6OuXWJiIhInaMgV9MKCy+GuDKZmUa7iIiISA1SkKtp3t4QGurYFhpqtIuIiIjUIAW5mhYQACkpF8NcaKjxPCDA3LpERESkztFVqzXNwwPatYOtW+HAAThzxniuq1ZFRESkhildOIOHBwQFwbp18OijkJ1tdkUiIiJSBynIOZPdbtwnJZlbh4iIiNRJCnLOdNddxm3ZMrMrERERkTpIQc7Z7HbYsAGOHze7EhEREaljFOScLS4OSkrg44/NrkRERETqGAU5Z+vQwViqS8OrIiIiUsMU5JzNYjGGV9esgbw8s6sRERGROkRBrjbExcH58/DJJ2ZXIiIiInWIglxt6NLFmFdOw6siIiJSgxTkaoOHB8TGQmoqnD1rdjUiIiJSRyjI1Za4OCPErV5tdiUiIiJSRyjI1ZYePaBZM1i61OxKREREpI5QkKstNhvExMDy5caFDyIiIiLXSUGuNtnt8PPP8NlnZlciIiIidYCCXG165BHw9dXwqoiIiNQIBbna5OMDUVGQnGws2yUiIiJyHRTkapvdDrm5sHmz2ZWIiIiIm1OQq20REUbPnCYHFhERkeukIFfbfH0hPNwIcqWlZlcjIiIibsypQS4lJYXIyEgiIyN56623ANizZw9xcXGEh4czadIkiouLAThy5Ajx8fH069eP0aNHc+bMGQDy8vIYNWoUERERxMfHk5ubC8D58+cZP348ERERxMbG8v333zvzUGqW3Q5ZWbBjh9mViIiIiBtzWpA7d+4cM2bM4P333yclJYWMjAzS09MZP348r732GqtWraK0tJTFixcDMG3aNIYMGUJaWhpt27Zl3rx5AMyZM4ewsDBWrlzJoEGDmDFjBgDvv/8+DRo0YOXKlUycOJGEhARnHUrNi44Gq1XDqyIiInJdnBbkSkpKuHDhAufOnaO4uJji4mKsVisFBQV06NABALvdTlpaGkVFRezYsYPw8HCHdoD169cTHR0NQFRUFBs3bqSoqIj169czYMAAADp16sTJkyc5cuSIsw6nZjVtCr17G9OQaHhVREREqsnqrB37+voyduxYIiIi8PHxoXPnzthsNvz9/cu38ff359ixY5w8eRJfX1+sVqtDO0BOTk75e6xWK76+vpw4ccKhvew92dnZ3HzzzeVteXl55OXlOdSVnZ3trEOuGrsdnnkGdu+Gdu3MrkZERETckNOC3N69e1m6dCmfffYZjRo14pVXXuHzzz+/bDuLxUJpBb1SFoul0n17eFTckXhp+8KFC5k7d24VK68lAwfC6NHG8KqCnIiIiFSD04ZWN2/eTNeuXbnxxhvx8vLCbrezbds2jh8/Xr5Nbm4uAQEBNGvWjPz8fEp+mSS3rB0gICCg/D3FxcXk5+fTpEkTAgICyi98uPQ9ZYYPH87atWsdbosWLXLWIVdNYCB0765VHkRERKTanBbk2rRpQ3p6OmfPnqW0tJR169bRuXNnvL292blzJwDJycn06NEDm81GWFgYqampDu0APXv2JDk5GYDU1FTCwsKw2Wz07NmTlJQUADIyMvD29nYYVgXw8/MjODjY4RYUFOSsQ666uDjYtQv27TO7EhEREXFDTgty3bt3JzIyErvdzoABAyguLmbUqFHMnj2bmTNnEhERwblz5xg2bBgAU6dOZfHixfTv35+MjAzGjRsHwNixY/nqq6+IjIzkgw8+YMqUKQAMHTqU8+fPExkZyYwZM5g1a5azDsV5YmON+6Qkc+sQERERt2QpregEtTosKyuLPn36sHbtWoKDg80uBzp1Ag8P2LbN7EpERETExVwtt2hlB7PFxcH27XDokNmViIiIiJtRkDOb3W7ca3hVREREqkhBzmx33glt22qVBxEREakyBTlXYLfDpk2Qk2N2JSIiIuJGFORcgd0OFy7AL9OpiIiIiFwLBTlXcO+9cPvtGl4VERGRKlGQcwUWi9Ert3YtnDpldjUiIiLiJhTkXEVcHBQVwYoVZlciIiIibkJBzlV06gQtWmh4VURERK6Zgpyr8PAwluxKS4MzZ8yuRkRERNyAgpwriYuDc+eMMCciIiJyFQpyrqR7d7jpJli61OxKRERExA0oyLkSqxViYowLHgoLza5GREREXJyCnKuJi4PTp42pSERERESuQEHO1fTuDX5+Gl4VERGRq1KQczXe3hAdbSzXVVxsdjUiIiLiwhTkXJHdDj/9BJs2mV2JiIiIuDAFOVcUHg4NGmh4VURERK5IQc4V3XADRERAUhJcuGB2NSIiIuKiFORcld0OR47Atm1mVyIiIiIuSkHOVUVFgc2mtVdFRESkUgpyrqpxY3jkESPIlZaaXY2IiIi4IAU5V2a3ww8/wNdfm12JiIiIuCAFOVcWEwMeHhpeFRERkQopyLkyf3/o0UPTkIiIiEiFFORcnd0O330He/eaXYmIiIi4GAU5Vxcba9wnJZlbh4iIiLgcBTlXFxwMDzyg4VURERG5jIKcO4iLg507ITPT7EpERETEhSjIuYOy4VVdvSoiIiK/oiDnDlq1gnvvVZATERERBwpy7iIuDj7/HLKzza5EREREXISCnLuw242lupKTza5EREREXISCnLu45x64804Nr4qIiEg5BTl3YbEYvXKffQYnTphdjYiIiLgABTl3YrdDcTEsX252JSIiIuICFOTcSVgYhIRoeFVEREQABTn3Uja8umoVnD5tdjUiIiJiMgU5dxMXB4WFsHKl2ZWIiIiIyRTk3M2DD0JAgIZXRUREREHO7Xh6wsCB8MknUFBgdjUiIiJiIgU5dxQXB/n5sGaN2ZWIiIiIiRTk3NHDD0OTJrB0qdmViIiIiIkU5NyRlxdER8PHH0NRkdnViIiIiEkU5NxVXBycPAkbNphdiYiIiJhEQc5d9e0LN9yg4VUREZF6TEHOXTVoAP37Q1ISlJSYXY2IiIiYwKlBbt26ddjtdvr168f06dMBSE9PJzo6mr59+5KYmFi+7Z49e4iLiyM8PJxJkyZRXFwMwJEjR4iPj6dfv36MHj2aM2fOAJCXl8eoUaOIiIggPj6e3NxcZx6Ka7Lb4dgx2LLF7EpERETEBE4LcocOHWLq1KnMmzeP5cuX891337FhwwYmTpzIvHnzSE1NZffu3Wz45Ryv8ePH89prr7Fq1SpKS0tZvHgxANOmTWPIkCGkpaXRtm1b5s2bB8CcOXMICwtj5cqVDBo0iBkzZjjrUFxX//7GhQ+aHFhERKReclqQW7NmDf379ycoKAibzUZiYiINGjQgNDSUkJAQrFYr0dHRpKWlcfjwYQoKCujQoQMAdrudtLQ0ioqK2LFjB+Hh4Q7tAOvXryc6OhqAqKgoNm7cSFF9u4LTz884V27ZMigtNbsaERERqWVWZ+04MzMTm83G7373O3Jzc+nVqxd33HEH/v7+5dsEBARw7NgxcnJyHNr9/f05duwYJ0+exNfXF6vV6tAOOLzHarXi6+vLiRMnCAwMLN9PXl4eeXl5DnVlZ2c765DNYbfDihXwxRdw//1mVyMiIiK1yGlBrqSkhIyMDN5//30aNmzIs88+S4MGDS7bzmKxUFpBb9KV2ivj4eHYwbhw4ULmzp1bjerdyIABxrJdy5YpyImIiNQzTgtyN910E127dqVZs2YA9OnTh7S0NDw9Pcu3ycnJISAggMDAQI4fP17enpubS0BAAM2aNSM/P5+SkhI8PT3L28HozTt+/DhBQUEUFxeTn59PkyZNHGoYPnw4sbGxDm3Z2dnEx8c767Br3403Gis9LFsG9fE8QRERkXrMaefI9erVi82bN5OXl0dJSQmbNm2iX79+HDhwgMzMTEpKSlixYgU9evSgRYsWeHt7s3PnTgCSk5Pp0aMHNpuNsLAwUlNTHdoBevbsSXJyMgCpqamEhYVhs9kcavDz8yM4ONjhFhQU5KxDNo/dDnv3wnffmV2JiIiI1CKn9ci1b9+eJ598kiFDhlBUVES3bt144oknuO2223j++ecpLCykZ8+e9OvXD4DZs2czefJkzpw5w913382wYcMAmDp1KgkJCcyfP5/mzZvzzjvvADB27FgSEhKIjIykUaNGzJ4921mH4vpiY+G554xeubvvNrsaERERqSWW0opORKvDsrKy6NOnD2vXriU4ONjscmpOt25w9ix8+aXZlYiIiEgNuVpu0coOdYXdDl99BT/8YHYlIiIiUksU5OoKu924T0oytw4RERGpNQpydcWtt0LHjrB0qdmViIiISC1RkKtL4uKMdVePHDG7EhEREakFCnJ1iYZXRURE6hUFubrkrrugTRtjGhIRERGp8xTk6pq4ONiwAX61UoaIiIjUTQpydY3dDiUl8PHHZlciIiIiTqYgV9d07AgtW2p4VUREpB5QkKtrLBajV27NGsjLM7saERERcSIFubrIbofz5+GTT8yuRERERJxIQa4u6toVgoI0vCoiIlLHKcjVRR4eEBsLqalw9qzZ1YiIiIiTKMjVVXFxRohbvdrsSkRERMRJFOTqqh49oFkzDa+KiIjUYQpydZXNBgMGGPPJnT9vdjUiIiLiBApydVlcHPz8M3z2mdmViIiIiBMoyNVljzwCvr6wdKnZlYiIiIgTKMjVZT4+EBkJycnGsl0iIiJSpyjI1XVxcZCbC59/bnYlIiIiUsOuGORKS0spLi4GID8/n9WrV3Pw4MHaqEtqSkSE0TOn4VUREZE6p9Igt3//fvr06cOmTZsoKChg0KBBzJkzh9/+9rd8rt4d9+HrC+HhxjQkpaVmVyMiIiI1qNIgN2vWLMaNG0evXr345Jc1O1esWMGiRYt47733aq1AqQF2O2RlwY4dZlciIiIiNajSIHf06FEGDBgAwLZt2+jTpw8eHh40b96c/Pz8WitQakB0NFitmhxYRESkjqk0yHl4XHzpyy+/pFOnTuXPCwsLnVuV1KymTaF3b+M8OQ2vioiI1BmVBrnGjRuzd+9eMjIyyM3NLQ9yX3zxBYGBgbVWoNQQux3274fdu82uRERERGpIpUHupZdeYsSIEYwYMYJx48bRsGFDFixYwNNPP80LL7xQmzVKTRg4ECwWDa+KiIjUIdbKXujQoQMbN26koKAAPz8/ADp27MiSJUto2bJlbdUnNSUwELp3N4ZXp041uxoRERGpAVecR85ms9GwYUPAmEfu+PHjtVKUOIndDrt2wb59ZlciIiIiNUDzyNUndrtxn5Rkbh0iIiJSIzSPXH1yyy0QFqZVHkREROoIzSNX39jtsH07HDpkdiUiIiJynTSPXH0TF2fcJyebW4eIiIhcN80jV9/ceSfcc4+GV0VEROqASqcfKZtHLj8/n1deeaV8Hrm//OUv/PnPf67NGqWmxcXB9OmQkwMBAWZXIyIiItWkeeTqI7sd3ngDUlLgqafMrkZERESq6YrzyJ05c4aioqLy54WFheWhTtzYvffCbbdplQcRERE3V2mQ27dvHxEREXzxxRflbWvWrGHAgAH88MMPtVKcOInFYgyvrl0Lp06ZXY2IiIhUU6VB7o9//COTJk3i0UcfLW+bMmUKL730Em+//XatFCdOZLdDURGsWGF2JSIiIlJNlQa5w4cPEx0dfVm73W7nkOYgc3+dO0OLFhpeFRERcWOVBjmrtdLrILDZbE4pRmqRhwfExkJaGpw5Y3Y1IiIiUg2VBrkbb7yRPXv2XNb+3Xff0aBBA6cWJbXEbodz54wwJyIiIm6n0iD37LPP8uyzz/Kf//yH77//nv3797NkyRLGjBnDmDFjarNGcZaHHoKbbtLwqoiIiJuqdPz0zjvv5O233+bdd9/lD3/4Ax4eHnTo0IG3336bsLCw2qxRnMVqhZgYWLIECgvB29vsikRERKQKKg1yXbp04f7776dXr168/vrr3HbbbbVZl9SWuDhYsMCYiqR/f7OrERERkSqoNMht3LiRrVu3smXLFhYtWoTFYqFnz548/PDDdO7cGS8vr9qsU5yld2/w8zPWXlWQExERcSuVBrlmzZrRv39/+v/yj/vhw4dJT09n9uzZZGZm8uWXX9ZakeJE3t4QFWUs1/XXvxrDrSIiIuIWrrhEF0BWVhYLFy5k2rRp/OlPfyIwMJDx48df8we89dZbJCQkALBnzx7i4uIIDw9n0qRJFBcXA3DkyBHi4+Pp168fo0eP5swv02Hk5eUxatQoIiIiiI+PJzc3F4Dz588zfvx4IiIiiI2N5fvvv6/ygcuvxMXBTz/Bpk1mVyIiIiJVUGmQS0xMJDo6mmHDhvHDDz8wZMgQPv30U/76178yZMiQa9r5li1bSEpKKn8+fvx4XnvtNVatWkVpaSmLFy8GYNq0aQwZMoS0tDTatm3LvHnzAJgzZw5hYWGsXLmSQYMGMWPGDADef/99GjRowMqVK5k4cWJ5UJRqCg+HBg2M4VURERFxG5UGub/+9a+EhITwzjvvMG3aNB5++GF8fHyuecenTp0iMTGRZ555BjCGZgsKCujQoQNgrBCRlpZGUVERO3bsIDw83KEdYP369eWrS0RFRbFx40aKiopYv349AwYMAKBTp06cPHmSI0eOXFZDXl4eWVlZDrfs7OxrPoZ644YboF8/SEqCCxfMrkZERESuUaUnRKWlpfHZZ5/xxz/+kYMHD9KtWzcefvhhunfvjq+v71V3PGXKFF588UWOHj0KQE5ODv7+/uWv+/v7c+zYMU6ePImvr2/5ShJl7Ze+x2q14uvry4kTJyrcV3Z2NjfffLNDDQsXLmTu3LnX+l3Ub3FxRpDbvh26dDG7GhEREbkGlQa5li1bMnLkSEaOHEleXh4bN25kzZo1zJw5k9tuu41//vOfle50yZIlNG/enK5du7Lsl8lmS0tLL9vOYrFU2l4ZD4+KOxErah8+fDixsbEObdnZ2cTHx1e6/3orMhJsNmN4VUFORETELVzTJYpHjhzhxIkTnD9/HpvNhqen5xW3T01NJTc3l5iYGH7++WfOnj2LxWLh+PHj5dvk5uYSEBBAs2bNyM/Pp6SkBE9Pz/J2gICAAI4fP05QUBDFxcXk5+fTpEkTAgICyM3NJTQ01GFfl/Lz88PPz++av4x6rUkTeOQRY5WHWbPgCmFaREREXEOl58j961//4rnnnuOBBx5g7Nix/Pjjjzz22GN88skn/P3vf7/iTv/5z3+yYsUKUlJSeOGFF+jduzczZ87E29ubnTt3ApCcnEyPHj2w2WyEhYWRmprq0A7Qs2dPkpOTASMchoWFYbPZ6NmzJykpKQBkZGTg7e192bCqVIPdDj/8AF9/bXYlIiIicg0q7ZHbtGkTPXr0YPz48eU9X9dr9uzZTJ48mTNnznD33XczbNgwAKZOnUpCQgLz58+nefPmvPPOOwCMHTuWhIQEIiMjadSoEbNnzwZg6NChTJkyhcjISLy8vJg1a1aN1FfvxcTA008bvXK/XJQiIiIirstSWtFJanVYVlYWffr0Ye3atQQHB5tdjuvp1Qtyc2H3brMrERERqfeulluuOiGw1DN2O3z7Lfz3v2ZXIiIiIlehICeOyq7y/eVqYxEREXFdCnLiKDgYHnhAqzyIiIi4AQU5uZzdDjt3Qmam2ZWIiIjIFSjIyeXsduP+V+vkioiIiOtRkJPLtWoF996r4VUREREXpyAnFbPb4fPPITvb7EpERESkEgpyUrG4OCgthV9W1hARERHXoyAnFbvnHrjjDk1DIiIi4sIU5KRiFovRK/fZZ3DihNnViIiISAUU5KRydjsUF8Py5WZXIiIiIhVQkJPKhYVBSIiGV0VERFyUgpxUzmIxeuVWrYL8fLOrERERkUsoyMmV2e1QWAipqWZXIiIiIpdQkJMr69YNAgI0vCoiIuKCFOTkyjw9YeBA+OQTKCgwuxoRERH5FQU5uTq73ThHbs0asysRERGRX1GQk6vr1QuaNNHwqoiIiItRkJOr8/KC6GhISYGiIrOrERERkV8oyMm1iYuDkydhwwazKxEREZFfKMjJtenbFxo2hKVLza5EREREfqEgJ9emQQPo3x+SkqCkxOxqREREBAU5qYq4ODh2DLZuNbsSERERQUFOqqJ/f+PCBw2vioiIuAQFObl2fn7w6KPGNCSlpWZXIyIiUu8pyEnVxMVBZiZ88YXZlYiIiNR7CnJSNQMGGMt2aXJgERER0ynISdXceCM8/LCCnIiIiAuwml2AuKGnnwarFfbvB19fCAgAD/2fQEREpLbpX1+pmgsXoFUrePFFuOMO6NIFdu0y2kVERKRWKchJ1eTkQGysccEDGPcxMUa7iIiI1CoFOamawsKLIa5MZqbRLiIiIrVKQU6qxtsbQkMd20JD4dQpzS0nIiJSyxTkpGoCAiAl5WKYCw2Ff/3LuABi+HA4c8bc+kREROoRBTmpGg8PaNfOWG/14EHj/sEHISIC/u//NS5++O9/za5SRESkXlCQk6rz8ICgIKM3LijImIpk6lRYuRKOHoVOneA//zG7ShERkTpPQU5qTng4fPkl3H03DBpkTFFSVGR2VSIiInWWgpzUrJAQ2LgRnn8e5swxVoE4fNjsqkREROokBTmpedbEs7AAABlCSURBVF5e8O678OGH8PXX0LEjrF1rdlUiIiJ1joKcOM/gwbBjB9x0E/TtCzNmaAUIERGRGqQgJ851112wfbsR6iZPhuhoOHHC7KpERETqBAU5cT5fX2Nqkj//Gdasgfvug4wMs6sSERFxewpyUjssFnj2Wdi82VgBols3+MtftBqEiIjIdVCQk9rVuTN88QX07g2jR8OwYVoNQkREpJoU5KT23XgjfPIJTJsGixbBAw9oNQgREZFqUJATc3h4wJQpkJYG2dkQFgZLlphdlYiIiFtRkBNz9e1rrAbRti08/jiMGwfnz5tdlYiIiFtwapCbO3cukZGRREZGMmvWLADS09OJjo6mb9++JCYmlm+7Z88e4uLiCA8PZ9KkSRQXFwNw5MgR4uPj6devH6NHj+bML+dT5eXlMWrUKCIiIoiPjyc3N9eZhyLOFBICGzbACy/An/5krAaRlWV2VSIiIi7PaUEuPT2dzZs3k5SURHJyMt9++y0rVqxg4sSJzJs3j9TUVHbv3s2GDRsAGD9+PK+99hqrVq2itLSUxYsXAzBt2jSGDBlCWloabdu2Zd68eQDMmTOHsLAwVq5cyaBBg5gxY4azDkVqg5eXEeI++gh27TJWg/j0U7OrEhERcWlOC3L+/v4kJCTg5eWFzWbj9ttv5+DBg4SGhhISEoLVaiU6Opq0tDQOHz5MQUEBHTp0AMBut5OWlkZRURE7duwgPDzcoR1g/fr1REdHAxAVFcXGjRspumSB9ry8PLKyshxu2dnZzjpkqQm/+Y2xGkRAgDHsOn26VoMQERGphNVZO77jjjvKHx88eJDU1FSGDh2Kv79/eXtAQADHjh0jJyfHod3f359jx45x8uRJfH19sVqtDu2Aw3usViu+vr6cOHGCwMDA8v0sXLiQuXPnOusQxVnatIFt2+Dpp+G112DLFnj/fWjWzOzKREREXIrTglyZffv28fTTTzNhwgSsVisHDhxweN1isVBawaSwV2qvjIeHYwfj8OHDiY2NdWjLzs4mPj6+KocgZihbDaJ7d+MCiPvug//8x7i6VURERAAnX+ywc+dORowYwcsvv0xsbCyBgYEcP368/PWcnBwCAgIua8/NzSUgIIBmzZqRn59PSUmJQzsYvXll7ykuLiY/P58mTZo4fL6fnx/BwcEOt6CgIGcestQki8WYNPjXq0HMn6/VIERERH7htCB39OhRxowZw+zZs4mMjASgffv2HDhwgMzMTEpKSlixYgU9evSgRYsWeHt7s3PnTgCSk5Pp0aMHNpuNsLAwUlNTHdoBevbsSXJyMgCpqamEhYVhs9mcdThipk6djNUg+vQxlvkaOlSrQYiIiACW0orGL2vA9OnTWbp0Kbfcckt52+DBg2nZsiUzZ86ksLCQnj178uqrr2KxWNi7dy+TJ0/mzJkz3H333cycORMvLy8OHz5MQkICP/30E82bN+edd96hcePGnDp1ioSEBA4dOkSjRo2YPXs2wcHBV60rKyuLPn36sHbt2mvaXlzIhQvwhz8YEwnffTcsXQqtW5tdlYiIiNNcLbc4Lci5KgW5OuDTT+GJJ6CgABYsMCYSFhERqYOullu0soO4n0ceMVaDaNfOmK5k7FitBiEiIvWSgpy4p+BgWL/eCHHvvqvVIEREpF5SkBP35eUFc+bAv/99cTWINWvMrkpERKTWKMiJ+3v8cWM1iMBACA+H3/9eq0GIiEi9oCAndUPZahBDhhhXtUZGwk8/mV2ViIiIUynISd1xww3GUl7z58O6dcZqEDt2mF2ViIiI0yjISd1iscAzzxirQVgsxhJfWg1CRETqKAU5qZs6dYKdO7UahIiI1GkKclJ33XgjrFhhXPzwwQfQuTPs3Wt2VSIiIjVGQU7qNg8PmDwZVq+G3Fyjp27xYrOrEhERqREKclI/PPIIfPEF3HuvVoMQEZE6Q0FO6o+y1SDGjTNWg+jZEw4dMrsqERGRalOQk/rFZoPERGN4dfduY4oSrQYhIiJuSkFO6qdBgyAj4+JqEG+8odUgRETE7SjISf3VurWxGsT/+T8wdSr07w/Hj5tdlYiIyDVTkJP67YYbYOFC+Mtf4LPPjKHW7duN3rnsbMjMNO7VWyciIi5IQU7EYoGnn4bPPzemK3npJWNpry5doGVL437XLoU5ERFxOVazCxBxGWFhxhQlX39tTFGSmWm0Z2ZCTAxs3QpBQebWKCIi8ivqkRP5tWbN4LbbLoa4MpmZcPQo/Pvf8OOPWrtVRERcgnrkRC7l7Q2hoY5hLjTUCHCDBxvPb74ZunY1bl26wP33g4+POfWKiEi9pSAncqmAAEhJMYZTMzONEJeSAnfdZUxZsmXLxdvSpcZ7bDbo2PFiuOvaFUJCjPPvREREnERBTuRSHh7Qrp1xTlxhodFDFxBgtN9/v3F77jlj22PHjO3Kgt3f/gZ/+pPxWvPmjsFOvXYiIlLDFOREKuLhcW0XNgQGGj13MTHG86Ii+OYbx3C3bJnxms0GHTo4hrtbblGvnYiIVJuCnEhNstku9tqNGWO0lfXalYW7v//dWOsVLvbadelysdeuQQPz6hcREbeiICfibJf22hUXG712ZT12W7de7LWzWo1z7cqCXdeuxjl66rUTEZEKKMiJ1Dar1VhB4r77Lvba5eQ4DscuWADvvWe8FhTkeIVsWJh67UREBFCQE3ENAQEwYIBxA6PXbtcuxytkk5KM16xWx3PtylagUK+diEi9oyAn4orKhlg7doRnnzXaynrtynruft1rFxjoeBGFeu1EROoFBTkRd3GlXruycJecbLxmtUL79o7h7te9dhcuGMHw0ulVRETErSjIibirinrtcnMdz7X7xz9g7lzjtcBAYxg2NhbuuQcee8xxwuN27RTmRETcjIKcSF3i7w/R0cYNjF673bsdz7UbPvxiiAPjPibGuHL2hx/g1luN9WabNjXvOERE5JooyInUZWUXRnToAKNHG20//OC4jiwYz0+fhkGDLrY1bmyEuopuLVtCw4a1dhgiIlIxBTmR+qZhQ2M49ddhLjQUbr8dvvgCDhxwvO3dC2lpcO6c434CAysPeiEhxuTIIiLiVApyIvVNQIBxTlxMjOM5cjffDMHBxjl3lyotNVaouDTkHThgnJO3eDGUlFzc3sPDCHOVBb2gIJ2PJyJSAxTkROobDw/jwoatW6/9qlWLxQhfZZMTX6q4GLKyKg56aWlw9Kjj9t7exvBsZUGvaVPNiycicg0U5ETqIw8PI5TVFKvVCGYtW0KvXpe/fu6c0ftXUdDbtg1OnnTc3s/vyufn3XDDlevR9CoiUk8oyImI8zVoAG3aGLeK/PxzxSHv//0/WLXq8vPzAgKufH7enj2XDx1rehURqYMU5ETEfI0bX7y69lKlpUbvWkVBb/t2+M9/jKHdMsuWwYsvXj69SnKyEfCaNXO8NW6sgCcibktBTkRcm8ViXCFbNqHxpYqL4fDhi+Huttsqnl7l559hyJCK99+06eUB72q3pk2NIWURERPpbyERcW9WqzF8GhoKDz8M2dkVT69y221Gj9yJE1e+/fQT7NtnPD51yugRrIyfX9UDYLNmxnl710vnAYoICnIiUtdUNr1KixZVDzolJUZP3tXCX9nt0KGLj389HculGjasXgBs2NDoQbxwwVhnV+cBitR7CnIiUrdUZ3qVynh6XgxRVVFaaqyUca0B8L//vdgbeP585fv18jKGdP/3f+GZZy4/D/Cjj+Djj8HHx7jA5Nf319rm7e0aU7+ox1HkmijIiUjdU9PTq1SVxWIMu/r5GdOlXKvSUuMK3asFvxtvrPg8wPPn4e23HS/+qI6qBL+K2qq6fdljT0/j8+tDj6OCqtQQBTkREVdhsRjDpw0bGqtsVKay8wDvvBOKiowgV1Bg3M6du/xxVdsufe3kyYq3Lyi4vuO3Wo1At2gRPP/85T2OCxbAm28ay795eRm3sscVtV3L4+q8z2a7vtBVH4IqKKzWEgU5ERF3U9l5gAEBxutWK/j6GrfaVFpq/KN9PaGxoMA4n7GiHkdfXzh71uh5LCoy7q/0+EoXqlwvT8/qB8dx42Do0MuD6uLFxtB4WVi0Wq/8+GqvX+tjZwyl14ew6iJBVUFORMTd1OR5gDXJYrk4VNqkSfX3U1mPY2gofP75te+npOTygHctAbCix9f7vvz8i489PSsOqgUFMHOmERBqk4dHzQXDsvunnoL4+IrDamqq8R1Yrcb9rx9fen+l12p6m6oEWhcKqgpyIiLuyOzzAJ3paj2O18rT0xiqbdDAOXVW15WGxktKjJBQXGwEv7Kh8uo8dvY+zp2DvLyKt3nyyYrD6rlzMG1a7X7f18piufZA+N57FV9wtHVrrf+5dOsgt3z5cubPn09RUREjRowgPj7e7JJEROR6uWqPY025WlD18Lg4JOuuKgurrVsbQbWkxLgVF1/+uLL72tjmWt9/000VB9XCwtr9nnHjIHfs2DESExNZtmwZXl5eDB48mAceeIBWrVqZXZqIiFyvutzjWNeDKlw5rJb1fFmtNTM5thkqC6omHI/bBrn09HS6dOlCk1/OwwgPDyctLY3nnnuufJu8vDzy8vIc3pednV2rdYqIiFymLgdVqPthtaaG/2uA2wa5nJwc/P39y58HBATwzTffOGyzcOFC5s6dW9uliYiISF0Oqy4UVN02yJVWcFm55ZIrToYPH05sbKxDW3Z2ts6lExERkevjIkHVbYNcYGAgGRkZ5c9zcnIIuKRL08/PDz8/v9ouTURERKRWuO1g9YMPPsiWLVs4ceIE586dY/Xq1fTo0cPsskRERERqjVv3yL344osMGzaMoqIiHnvsMe69916zyxIRERGpNW4b5ACio6OJjo42uwwRERERU7jt0KqIiIhIfacgJyIiIuKm3HpotTpKSkoATQwsIiIirq8sr5Tll0vVuyCXm5sLoLnkRERExG3k5uYSGhp6WbultKKZdeuwgoICdu/ejb+/P56enmaX47bKJlZetGgRQS4wIaJUnX5D96ff0L3p93N/tfEblpSUkJubS9u2bfHx8bns9XrXI+fj40NYWJjZZdQZQUFBBAcHm12GXAf9hu5Pv6F70+/n/pz9G1bUE1dGFzuIiIiIuCkFORERERE3pSAnIiIi4qY8X3/99dfNLkLck7e3Nw888ADe3t5mlyLVpN/Q/ek3dG/6/dyf2b9hvbtqVURERKSu0NCqiIiIiJtSkBMRERFxUwpyUmVz584lMjKSyMhIZs2aZXY5ch3eeustEhISzC5DqmHdunXY7Xb69evH9OnTzS5HqiElJaX879K33nrL7HLkGuXn5xMVFUVWVhYA6enpREdH07dvXxITE2u9HgU5qZL09HQ2b95MUlISycnJfPvtt6xZs8bssqQatmzZQlJSktllSDUcOnSIqVOnMm/ePJYvX853333Hhg0bzC5LquDcuXPMmDGD999/n5SUFDIyMkhPTze7LLmKr7/+mieeeIKDBw8CxmpREydOZN68eaSmprJ79+5a/7OoICdV4u/vT0JCAl5eXthsNm6//XaOHDlidllSRadOnSIxMZFnnnnG7FKkGtasWUP//v0JCgrCZrORmJhI+/btzS5LqqCkpIQLFy5w7tw5iouLKS4u1pWrbmDx4sVMnTqVgIAAAL755htCQ0MJCQnBarUSHR1NWlpardZU75bokutzxx13lD8+ePAgqampfPTRRyZWJNUxZcoUXnzxRY4ePWp2KVINmZmZ2Gw2fve735Gbm0uvXr0YN26c2WVJFfj6+jJ27FgiIiLw8fGhc+fO3HfffWaXJVcxY8YMh+c5OTn4+/uXPw8ICODYsWO1WpN65KRa9u3bx29/+1smTJhAy5YtzS5HqmDJkiU0b96crl27ml2KVFNJSQlbtmzh7bffZvHixezatUvD5G5m7969LF26lM8++4zNmzfj4eHBggULzC5LqqiiGdwsFkut1qAgJ1W2c+dORowYwcsvv0xsbKzZ5UgVpaam8vnnnxMTE8O7777LunXr+MMf/mB2WVIFN910E127dqVZs2b4+PjQp08fvvnmG7PLkirYvHkzXbt25cYbb8TLywu73c727dvNLkuqKDAwkOPHj5c/z8nJKR92rS0aWpUqOXr0KGPGjCExMVE9Om7qn//8Z/njZcuWsX37diZOnGhiRVJVvXr1YsKECeTl5XHDDTewadMm+vTpY3ZZUgVt2rTh7bff5uzZszRo0IB169bRrl07s8uSKmrfvj0HDhwgMzOT4OBgVqxYQVxcXK3WoCAnVbJgwQIKCwt58803y9sGDx7ME088YWJVIvVL+/btefLJJxkyZAhFRUV069at1v/xkOvTvXt3vvvuO+x2OzabjXbt2jFq1Cizy5Iq8vb25s033+T555+nsLCQnj170q9fv1qtQUt0iYiIiLgpnSMnIiIi4qYU5ERERETclIKciIiIiJtSkBMRERFxUwpyIiIiIm5KQU5ETJeVlUXr1q1ZsmSJQ/uCBQtISEiosc/p3bs3u3btqrH9XUl+fj6DBw8mMjKSVatWXdN7hg4dWu11Gk+fPs2wYcOq9V4RcV+aR05EXIKHhwdvvfUWYWFh3HrrrWaXc9327NnDTz/9xJo1a2rl837++edaC6ki4joU5ETEJfj4+DBy5EhefvllPvroI7y8vBxeT0hI4I477uB3v/vdZc979+5NVFQU69ev59SpUzz//PN88cUXfPvtt1itVubPn09gYCAAH3zwAXv37uX8+fOMHDmSxx57DIB169Yxf/58ioqK8PHxYcKECXTs2JH33nuPr776ipycHFq3bs3s2bMd6vr000+ZO3cuJSUl+Pr68uqrr+Lr68vEiRM5duwYMTEx/Pvf/8bHx6f8Pbm5uUydOpUffvgBDw8PBg8e7NCblpWVRXR0NF9++eVlz3Nzc5kwYQInT54EoGfPnowbN45XX32VgoICYmJiWLZsGQcPHmTGjBmcOnWKkpIShg4dymOPPca2bduYMWMGDRs25OzZsyxatIhJkyaRmZmJh4cH99xzD2+88QYeHhqwEXEHCnIi4jJGjx5Neno6iYmJTJgwoUrvLSws5OOPPyY1NZWXX36ZpKQk2rRpw5gxY0hKSuKZZ54BjJnYk5KSOHbsGAMHDqR9+/bYbDYSExP517/+RdOmTdm3bx8jR45k9erVABw+fJgVK1ZgtTr+lfn9998zdepUPvroI0JCQtiyZQvPPvssaWlpTJ8+nd///vekpKRcVuu0adNo2bIl8+bN4/Tp0zzxxBP07Nnzmo5z8eLFBAcH849//IOzZ88yadIkTp8+zcyZM4mOjiYlJYXi4mJeeOEFZs2axT333MPp06f5zW9+Q6tWrQDYt28fn376KS1atCA5OZkzZ86QkpJCSUkJU6dO5dChQ4SGhlbp+xcRcyjIiYjL8PDw4O233yY2Npbu3btX6b19+/YFICQkhJtuuok2bdoAcMstt/Dzzz+Xbzd48GDAWOy6e/fubNmyBU9PT3JychgxYkT5dhaLhR9//BGADh06XBbiALZu3UqXLl0ICQkBKF/Ifvfu3VgslkprTU9PZ/z48QA0atSIFStWXPNxPvTQQ4waNYqjR4/y4IMP8vLLL9OoUSOHYzx48CA//vijwxq6BQUFfPfdd9x+++00b96cFi1aAHD//feTmJjI0KFDefDBBxk+fLhCnIgbUZATEZdy88038/rrrzNhwgQGDhxY3m6xWPj1ioJFRUUO7/v1UKzNZqt0/78eMiwtLcVqtVJSUkLXrl2ZM2dO+WtHjx4lICCANWvW0LBhwwr3VdEKh6WlpRQXF1+xBqvV6hD0Dh06RNOmTcufX+lY7733XtauXcuWLVvYunUrgwYN4s9//jMBAQHl25SUlODn5+fQG3j8+HEaNWrEV1995XA8ISEhrFmzhm3btrF161ZGjhzJ5MmTa329SBGpHp0EISIuJyIigh49erBw4cLytqZNm7J7924ATpw4QUZGRrX2nZSUBMCRI0dIT0+na9eudOnShc8//5zvv/8egA0bNjBgwAAKCwuvuK+y9x06dAiALVu2cPToUdq3b3/F93Xt2pWlS5cCxtWmw4cP5+DBg+Wv+/n5UVRUxP79+wEcLpiYPXs28+bN45FHHmHSpEm0atWKgwcPlgfS0tJSbr31Vry9vcuD3NGjR4mKiir//n7tgw8+4NVXX6V79+6MHz+e7t27s2/fvivWLyKuQz1yIuKSJk+ezM6dO8ufDx06lFdeeYXw8HCCg4Pp3LlztfZbWFhIbGwsRUVFTJ48ufwK2TfeeIOXXnqpvJdu/vz5lfbElWnVqhVTp07lueeeo6SkBB8fH/7yl7/QqFGjK75vypQpvP7660RHR1NaWsrTTz9N27Zty19v1KgR48eP56mnnqJZs2YOvWPDhw8nISGBqKgovLy8aN26NVFRUXh6enL33XcTERHBhx9+yLx585gxYwZ///vfKS4uZuzYsdx///1s27bNoZaBAweyfft2+vfvT4MGDbj55ps1jYmIG7GUVjQ2ICIiIiIuT0OrIiIiIm5KQU5ERETETSnIiYiIiLgpBTkRERERN6UgJyIiIuKmFORERERE3JSCnIiIiIibUpATERERcVP/H/mWUUDwVwLZAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ], - "source": [ - "plt.figure(figsize=(10,5))\n", - "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", - "plt.title('The Elbow Method')\n", - "plt.xlabel('Number of clusters')\n", - "plt.ylabel('WCSS')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " popularity danceability\n1 30 0.710\n3 14 0.894\n4 25 0.702\n5 26 0.803\n6 29 0.818\n.. ... ...\n514 20 0.838\n515 14 0.786\n519 2 0.879\n522 26 0.863\n525 10 0.735\n\n[286 rows x 2 columns]\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAENCAYAAAAbu05nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gU1feH35ntu6mkEJogHUQEUcEGCKiAoFJEEQRRsYvtK6CIDbGhooJYsICKih0RaXYRBfFHR3oNpJGebJ+5vz8m2WTZ2WQTgoDu+zx5JDuzd+7E3TPnnnvO50hCCEGUKFGiRPnXIB/vCUSJEiVKlLolatijRIkS5V9G1LBHiRIlyr+MqGGPEiVKlH8ZUcMeJUqUKP8yooY9SpQoUf5lRGzYS0pKGDBgAOnp6SHH/v77b4YMGcKll17KpEmT8Pv9dTrJKFGiRIkSOREZ9vXr1zN8+HD27t2re/yBBx5g8uTJLF26FCEEn3zySV3OMUqUKFGi1ICIDPsnn3zCo48+SmpqasixgwcP4na76dSpEwCDBw9myZIldTvLKFGiRIkSMcZITpo6dWrYY9nZ2aSkpAR+T0lJISsrK+S8oqIiioqKgl7zer0cOHCAZs2aYTAYIp1zlChRovynURSFnJwcOnTogNVqDTkekWGvCj1FAkmSQl6bO3cuM2fOPNrLRYkSJUqUMubNm8dZZ50V8vpRG/b69etz+PDhwO85OTm6IZvRo0czaNCgoNcOHjzIqFGjmDdvHmlpaUc7lShRokT5T5CZmcmIESOCoiWVOWrD3qhRIywWC3/99RddunThq6++onv37iHnxcXFERcXpztGWloajRs3PtqpRIkSJcp/inAh7FrnsY8dO5aNGzcC8Pzzz/P000/Tr18/XC4Xo0aNqu2wUaJEiRLlKKmRx/7DDz8E/j179uzAv9u2bctnn31Wd7OKEiVKlCi1Jlp5GiVKlCj/MqKGPUqUKFH+ZUQNe5QoUaL8y4ga9ihRokT5lxE17FGiRPlHEELoFjRGqXuOOo89SpQoUapCqCpKaQ7CUwqAZLRgiElBMpqP88z+vUQ99ihRohwzhBAoRRkBow4g/B78hYcQqnIcZ/bvJmrYo0SJcswQfg/C79U5IFDdRaGvR6kTooY9ShQdiotL+L+1G8nOPlz9yVHCo/jCHBD6Bj9KnRA17FGiVEIIwWOPT6NBozPoc/FVnNribK4Zfgsul+t4T+2kJHwcXUIyWv7RufyXiBr2KCcVBw4c5KmnX+aeeyfzzaLlKErdxmnnzJ3Pi9PfwO12U1RUjMfj5ZtFyxl398N1ep3/CpLRgmTSMeCShGyN/ecn9B8hmhVzFBSt3EjW7K/xZeUT36sL9W8cgDEx+mE9VixZ+iPDrh6Loih4PF7mzJ3PmZ1PZ8nijzCb6ybDYtq0V3E6g71zt9vDhx99yYxXpuo2NYhSNYa4NJTSPISnBIRAMtswOJKQ5Mib6wghEJ4SVHcxIJCtsUiWWN3eD1Gihr3WZL+/hPQn3kV1eQBwbdvH4fnfcdqy6RgT9eWJ/0kUlwe12IkxOR5JPvkXZj6fj+uuuyPI6JaUlLLmr/XMmTufm8deVyfXOZybF+aIoLi4NGrYa4EkyRhjkiEmudZjKMXZCK8T0PLglRIvkqcUQ1xa1LjrcPJ/448DistD+pQKow4gPD78uUVkzV54HGcGqsvDnvtnsK7DSDacezPru9xA3qKVx3VOdcGav9bj1wm7OJ0u5s37os6uc/755+gaiuTkeiQn16uz69QGIQSqpwR/yWEUZ8F/Jl1Q9XmCjLqGQPjcCJ/7eE3rhCZq2GuBa8te0BG4F14fBd+v+ecnVIk9980g76tfER6f9rDJKWDvPS9TvHpLnV4nKyuHBx+aSrdz+zP82lv5c826Oh3/SMxmc9iqRYul7gpdnnryIWJiHIEGBpIkYbfbmPnK08fVMxSqir8gHaU4B+EuQnXm48/fj/B7qn/zSY7wuQg26oEjqL7oprYeUcNeC4xJcQifX/eYKTXxH55NBb7cQgqWrUJ4gtPIVJeHzJl1p5efnn6Ijp168fIrb7Hmr/V89vk39O4zlM+/+KbOrgFQVFTMPfdOpn6DDvTrPxxVVUPOcTjsjL1pRJ1ds127VqxZvZTRo4bRrl0rBlx2McuWzmfgwEvq7Bq1QXHll6UOlhs4AULgL84+ntP6R9Bi8XoPValGcfr/EtEYey2wNmuAvV0zSjfuAn/Fcli2WUi7+YrjNi9fVh6SyYjwhOYOu/dm1tl1pj71EoWFRfj92sNNCIHT6eL2Ox7kyiv6hW3XVRMURaHHRYPYvn0XnrIHlclkRJZl7HYriqIZ+auHXc7QoQOP+nqVadGiGW++8XyV52zevI35n3yF1+dn8KD+nHN25zqdw5EIT4n+AcWPUP1I8r/3qyyZHSAd1nXaZUvMPz+hk4B/76fhGNPynYfYMWYqrq37NGPq89NowkjiLjzjuM3J0qwBKKFeLQaZmLPb1tl1li77OWDUK+N2udm79wAtWjQ76mssW/4ze/bsDxh1AJ/PT0yMg5vHjqR586b06H4e7dq1Oupr1ZQXp7/Oo49Nw+v1oaoqs2a9y003juDFFx4/hlcNFwYSVRz7dyDJMoa4BijFWaCqZbcrYYirH/XYwxA17LXElJJA+2+m4d59EF9uEfb2zTA4bMd1Tga7lbQ7hpD56ucVG7uShGyz0OCuq+rsOsnJ9di/Pz3kdb/iJyGhbjKCNmzYgssVujFWUlKKw+Hg1ltG18l1asr+/Qd55NHncLsrYttOp4u33p7H8OGDOPusTsfkurI1FtVZwJFuq2S0HBPjVr4xqze2UPyo7iKE4kUyWpCtccfcwMomK1LiKaB4EUJo9x3NhglLRDH2hQsX0r9/fy6++GLmzZsXcvznn39m4MCBDBw4kPvvv5/S0lKdUf6dWJs3IvbsdsfdqJfT4O6raPrMbVhbn4KxXhwJfbvS7ptpWJs1qLNr3HfPLdjtwfdrNpvp1etCkpLqJnOk+amnYLeFphbGOBw0P/WUOrlGbfh28XdIUujXxu328NVXi4/ZdWVbApLJSoV3LoFswBCbWqfXEYoPf8FB/Hn7tJ+Cg4hKsgDC78GffwDVVYDwOlGdBfjzDwSdc6yQJK1aVTZZo0a9Gqo17FlZWUyfPp0PP/yQBQsWMH/+fHbu3Bk4XlRUxMSJE5k+fToLFy6kbdu2TJ8+/ZhO+t+M6vWRv2glmW98RdFvG2usXy1JEklDetLhh1fotOE9Ws6eiK1l4zqd49VXX8F9996C1WohLi4Wm83KeeeexftzZ9TZNa64oi+xcTFB8XpZlrHZrQwZMqDOrlNTTCYTshxqVGRZxmQyHbPrSpKEIS4NQ3wDZEcShthUjImnIBnq7ppCqJohr5RpI/we7TWhhfiUkhyOTDtEqCiluXU2jyhHT7WGfeXKlXTr1o2EhATsdjuXXnopS5YsCRzfu3cvDRs2pGXLlgBcdNFFfPfddyHjFBUVkZ6eHvSTmVl3G3rHC9XtxZdXVCcNBDwHsth47i3suW8GB5/5gJ1jprL1igkorhMrpU2SJB579AHS969lwVdzWb/2B75b/ikJCfF1dg2z2cyvP39Nhw5tNU9NkmjfvjUrfvk6ZLVwtAgh+HXFKj788Au2bdtJYWERL738JlcNG8vDk5/hwIGDgXMvH3ipbnaOyWTkmquvrNN5HYkkScgmKwZbPLLFUedeq/CUgt7nWAiEx4kQaljhLuGNph2eSFQbY8/OziYlJSXwe2pqKhs2bAj83qxZMzIzM9m6dStt27Zl8eLFHD4cqog3d+5cZs6cWUfTPvYIISheuYnCH//CGB9D0pAemBtW/B0Ul4f9D71O3oIVIATGlASaPXMb1jan4Nl9CGuLhkHnR8Keu1/Cl1OgbRABwufHuXkPGS99QuMH66aysqYIIcIakISEeC68oGuNxtu6dScHD2XQ6YzTdMM2xcUl/LlmHYkJCcyZ+zE7d+4JPDT37NnPs8/N4M03XqjRNVf/uZYFC5ZgsZi55uorad26ReBYZmY2vS++ioMHMwACm8KSJOFyuTGbzcx89R2WLvmYruecSUpKEm+/NZ0bbrwXg0HWioZUlalPPkjbti1rNK8TDaH6CZcvLlQfUlWbtNHQyAlFtYZdzxOt/EWPi4vj2WefZfLkyaiqyrBhw3SXpKNHj2bQoEFBr2VmZjJiRN3kIKseH569GRiT4zElHZ3nKBSFXTc/R9Gv61GdbiSzkYyXP+HUGfeR2K8bAHvufIHCn9YivFps0XfoMDuun4pklJEtZlSvj4RLunLqy3cjm6tfLvuLSilduyNg1ANz8fjI/ezHGhl21eWhYNlqvNn5xJzVFkenVjXy7jweDw9Nepq33/kQp9NJt65deOXlqXTq1CHiMY4kNzePKwZdz4YNWzCZjHg8XsbddRNTn3wwMLfXXp/D+AlTMJlM+Hw+3G5P0OevtNTJx/MXcPPNozirS/XZR0II7r7nYebMnY/L5cZgMDDt+VlMe+6RwObrqNF3sWvXHvx+/SpOr9eL1+vlppvuY+OGnwAYdtXl9LroAhZ+swyfz8dl/fvQqFHd7WEcLzQlRolQ4y4FNisliyOoaUbgeFTQ64SiWsNev3591qypqKbMzs4mNbViw0ZRFNLS0vj0008B2Lx5M02aNAkZJy4ujri4Y6OhkjX3W9KfnAOqQCgqcRedSYsZ92GIqd2SPf/b3wNGHUB4/Qhgzz0vEd9zLv6CEs2oH5kvrqoIr4ri1by+guWrOfTCRzR+cFT1F1UF+t6SVnUYKa6t+9g6dBLCpyB8PiSjgdjzTqflWw8iGSPLXLh2xG0sXfYzbrd2/yt/X0PPXoNZv/YHmjaNLF7v8Xh49rmZvPX2PDxuLxaLmZzDufgqFXbNfPUdOpzWlmuvHcxvK/9kwsQncbncutkw5bjdHpYs+SEiw/77H2uYM3d+QF/G7/fj9/v53wOPc+UV/bBYzKz4bVVYo16Znbv2kpeXT716WgFacnI9xlx/TZXvWbt2E1u37qBN25ac2fn0aq9xvJFMdjCYQKkcbpHAYEIyad8lgyMFRfEHhWQkkxXZlqhl0khydGPzBKDaGPt5553H77//Tl5eHi6Xi2XLltG9e/fAcUmSuOGGG8jKykIIwTvvvEP//v2P6aQrU/DdGg488hbC5dUMrV+haPmf7Lz5mVqPmfvFzwGjHoQsU7x6C95DOUgReOHC7SXn/aURXdOYEIOtXbOQJa1kNlLv8gsqxhSC4tVbOPDUe2TM+AxPenbQsZ1jn0EpKEEtdSG8flSnh8JfN5Dz4bKI5rFnz36WLvspYNTL8Xi8vDLjrYjGABg85AamPT+LQ4eyyM3L51BGVpBRBy1NcPrLbwLw6qvvVGnQyzGZTMTEOCKaw+efL9Id02AwsHjJD7jdHuQaCKRFqiBZWurkol6D6XHRldx+xwR6XjSIHhcNoqTkxM4WkyQJY3xDJFs8SAaQDEi2OIwJDQPGWpJlbQPXFg8mK7I9EcwxKPkHtCya3L34S3KiTauPM9V+quvXr8+9997LqFGjuPLKKxkwYAAdO3Zk7NixbNy4EVmWeeKJJ7jpppvo27cvsbGx3Hjjjf/E3AE48MQ7ukU5xb9uwJdbWKsxw3q2QiAZDVhbNA6EYKpDKY18U+nUl+/BEO9Atmv61bLDiqVpGg3vH152ecGeu6azY+TjZM36gkMvfsymnneS+/UKADx7MvAc0Ckx93jJnhNZKt627bt0DZjP5+P/1m6MaIx16zbx66+rIjLU+XkFAGRlR2YMZFniqggrTU0mo673KAEmo5G0tNSIQigmk5FLLukR8QNl/MQprP5zHU6ni+KSUpxOF2vWrOOB8U9E9P7jiSTLGB1JmJKaYkpqitGRpGXGFGVqaZAlufhz96G6CsHnQnXmI0pzQJSvegTCXYJSEr7zlBACxVmAL3cvvsO78eUfQI1uvtYpERUoleeoV2b27NmBf/fs2ZOePXvW6cQixZseRitDCFxb92E6v2ONx0y+pg9FP69FdQZno0gGAzHntEc2GUkdcxk5cxcHKTzqEdMl8opPW6smdPxjNnkLfsW9L5OYM1oSf8k5yCbtf1Ph92soWLY6MC/h84MP9t0/g4ReXVBc7iCJg8r4ssPJ0QbTpnULvN7QzAeTyUSXMyMLJ6zfsBlJJyXwSIxGI3379gLgisv7snr1Ot1ORTExDmRZwu9XmPPuyxHHs6+5+kpenfVuyANGUVUuu6wPkiTx7jsv0a//tfh8frxeL3a7TdP+FgKTyYSqqrRo0Yy3Z0eewvvBB5/h8QR/LjweL/M+/JzXZj0b8TgnAoqrELU0j0CYMER0LMxmq6cE4ainW7ikOvO1B0P5exUfSlEmxDdANp34sshCVTRhMklGMtlOyNDTSV95KlnMCK++IJexXu1i+vG9upA0rDeHP/4OBEhGbWHT8p0HA0a28aTRKKVucj/5HuHzY0xNQCkoRfgVzbiaDMhmE6c8ObZG1zbE2EgZoS84lfvlL/ohIoNM0W8bMDdJ1UI5ehvehshCDqeeegp9L72IJUuDwzFWq4Vxd0V2L82anRL2wy5JEkKIQA78pIfuBuDGG67lzTffZ9/+9IAhttttPDzpHtq2aYUQgt69L4zYawbo1KkDkx++lyemvKilCsoyiqLy3twZJCYmAHDeuWezacNPvPX2PLZv30337udy3cihHDyYwfr1m2narAnnnN25hpvP+imBHo+nyiyjI1F9bs0jVnxIJgsGW2IVrebqHqGqwUa9pqgKHGHYhVCDjXrFEVRnPnL8ib0JrTgLUJ35FS9IEsb4Bidcm7+T3rAnDelJzpxvQ16XY2zY2tSsQlF1efCkZ2NKTaTpkzeTen1/in5ZhyHOQWLfbkGbsZmvfUneZz8GNlD9h4swOGwkXH4O7t2HcJzegvpjL8dySv2ju8FKVLX5KRkNmJMTkIwGXeVJW5umEV9n3gezeOTR55j91jxKS0s5t9tZ9Ox5Hhd2v5yMzGxatGjGc89OZuAA/QdQ9wu70aBBGjt37g4Kr1itFi677GIyMrLo3esC7rj9hoDGucNh54/fv+Wtt+fx1VeLSUlJ4s47b6RH93Mjnrce4x+4kwvO78qMV9/GarUycfxdtGnTIuicJk0a8fhj44Nea9OmJW3a1C598aKe5/Hd978G3bskSfTscV6QUReKH9XrRJI0oavK3q3iKUEtrigGEh4/fo8TY0Kjf8y4H7UksEHHvFShIS+UE7u5dfmDNuihJAT+wgyM9ZqeUJ77SW/YG40fQeH3a/BmHAa/JhAkmUy0eHNCxJ2DhBBkvPIpmTM/B1lC+BXqXdmdpk/fSv0bQqsclVIXh178GOGu9EH0K6hON8akeNq9OK6ubi+I5GG9KPj2d93wT9x5pyPbLMR1P4OiX9cHrWI0rZih1Y5fUlKKJEk4HHaefWYyzz4zGYBXZ73Dgw89Fcgu2bFjN9eOuI1P5s+mX1ko5UhiYx0hiXMWi4XXZz0b8JaPJCbGwTVXX0mjhmkkJCZw/nlnVzvn6nhu2swgj/2zzxby3twZDLry2G3wv/LyVM67YAButweXy43NZsVqsfDKy1MD51SEOMrJRY5JxmCN1XLjS3PR82qV0lyM/5BXW/vOWxKyPUFXeuFIDz7oXYZ/bjVSG1R3EWFDTz4Xktn+T08pLCe9HrsxzsFpP8yg6dRbSRx4Pmm3DqLDjzOI7x65GFPupz+QOVMTzlJL3QiPj7wFv3Jgyru657u27kcyhT4Thc9P3te/cuCpueR+/hOqu249kNjzTidlVF8kixnJYka2W5FtFlq8OQHZpi0Fm8+8n7genZHMJmSHFTnGRpPHbqhSdXLXrr1073klKfXbk5zajt4XD2XfPk3kS1VVHn/ihZA+oC6Xm4cnP6073uo/17Jt207UI0JCPp+POXPnh53HE1NeoEWrbtx86wMMu3oszZqfzebN2yL62+ixfv1mpjw5PWBgS0uduFxuRo2+i/z8gqBzd+/ex08/ryQ3bGu8yGnVqjl/b17Bw5PuZciQAUx66B62bP41sAIQfm+lEEfFj1pyWCsSEmpYzzao3F8IVJ8bf2keSlnIpqYIVcFfchhf3gH8BQdRK+eoG8z6XncQWjokRitIMsgm5JgkZJv+w1uSZCRbHKGKlJKWYXMiI8KkHQv0K3aPIye9xw5gsFlIGXFJ2Nh0dWTM/DzECxZuL4c/+o4mk8eEFBiZUhPCbpr6MvLImvUlssNK+jPv0+6baZjr140wliRJNJk8hpQRl1D441oMMTYS+nbFGF+hSW2ItdPq3Un4cgvx5xZhaZZWZYGU0+ni/AsvJy8vP1Aqv2LFai7scTk7t/+B2+2huFhfC3zXzr26r2/duiPstdat26x7bPl3v/D8C6/h8XgCG4/FxSVcNnAku3euqlFaYjkfffylbrzbIMssWvQdI0cOpaiomCFX3cgfv/+F2WLC4/Fy+23X8+wzk8MurYUQfPXVYt559yO8Xh/XjRzKNddcidFY8XVKTq7HhPF36r5f9ZQQLm6tepzI1lj0C4XQ0hDL5qCU5JQVCwkEoDoLAl5/JAhVwZ+fHshoEWpZb1ElHoO9npb+GJeGvygTFH9gSpI9Edlo0mL/BgtSDUW5DPZ6qJIB1VWgXdRgwuBIPuE3TmVLDIpXv5uTdILN/aQ07L7DBeR8tBzX1v04zmhJ8tW9McQ5UIqdyDZLYIMzUvyHw6RFKipqqTvEMBrrxenrnkOgclQtdaO6veyfPJuWb04AtC9j0S/ryPv6VySTkeSretUoa6Yca/NGWJs3qvIcU1JkFbiffvY1LpcrSP9EURSKi0v5+uulDB58GTExDvLzQ/9GzcPoroeLTdvtNs444zTdY2+88V7IqgCgoKCQP9eso+s5Z+q+b9nyn3n00efYtXsvbdu24skpE+l+oVYd7PX6dFMoBeArkw648aZ7WbnyTzweL66yzeLX33iPdu1ahy1AuuW2B5g/fwGlpU4A/lj1Fx/N/4qFC96L6AFUtW8nyio8Y8qaa1Q+W9Lyx9HaxZUb9crvVUsOI5sdEYVRVFdhpTTFSmM4C5Gt8UiyAclgwpjQWJPLVdUymeCjW+hLkoTBnoDBru/Vn6hIZgeSqQjh81Dxd5eQw2T/HE9OulCMa9t+Nl14OxkvfUL+gl85NO1DNnTTmjavP2MUa9tdy/7Js1EjzDMHcHTWb9ZgTIrDkBDaocW1dT+SI4IntKJSuPxPoCwH/Z6X2TX2WXLn/8DhecvZfs2jpE+bh/PvvRSv3lLnoZtI2L17X8BAVcblcrF7z35kWebhSfeGCG/ZbFaenDJRd8yu55zJaae1CepFKssyVquFMddfHXRudvZhfv7ld7Kzc3THkmU5bGHPV18tZsjQG/hzzTry8gpYufJPLhswgh9+1PL6hw4dgN0WWn2sKAr9+vaiqKiYRd9+F+LVO50uXpz+uu41N2/exkcffRn0NystdbJixSq+/2GF7nuOxGBxEK45hmzWsn4MMclIlvIMIAktVBFf5s1X7fWLCPuAhu0XKhFcWSpp1y+bxn8WTWGzAYbYFM3IW2IxJjTEYKs78bu64qQz7HvHv4pS7Axko6guD2qxE392vlZG7/aS89Fy9j2o/8XUo/Gk0ch2K1TyRGSbhSZPjNVdYppSE8AXYYf4sjTDkj//Jv/blRXpikJovUhf/pS/B45nx+gprDtjFIc//zHieR8Nwq/g3n2ILi1a6qYQWq3WgHc97q6beO7ZR0hLS0WSJFo0b8r7c2fSv19v3bElSWLJtx8x4trB2GxWDAYDvXtdwMoV3wQ2TlVV5Y47J3Jqi3MYPGQMq/9cq+vt+v1+unXtonud/41/PCRH3eVyM36CVgh0brezGDXqKux2LdfYaDRitVq58cZrufOuhxhw+XV4wzgA6ekZuq//+NNvuuqOpaVOli//Sfc9RyIZLUjWI+PMWoxZKotpS5KEMTYVY72mGBMaYUxqGgiPVD14RFPQTg3XTk9UNNgQih9fvhZ/V4oy8efuQ3EVRX6REwih+PEXZWpFUYf34C/OrpFcB5QpbFpiMMbVxxibcsKlOZZzUoViVK+P0v/bXu15wu0l76tfaPLImKD4czjs7U+l3TfTOPTSfErX7cDaNI0Gdw8jtpt+2MDSpD4xZ7amZM3WsE2tASSTkcT+Wrpe/tJVCFcYyVO3F1Fmn/ZNeA1726bYT2te7bwro7q1pbLBXv1KIm/hCvY99AbC46OR38+Lca2Y6NtGnkfz4CwWMy1bnsrFfTTpCEmSuPWWUdx6y6iI87Dj4mJ5840XePONF3TfM/2lN3i/rJCnPKZebnz9fj8GgwGz2cTMGU/jcIRmG/h8vsAG75Fs2bI9MN6MV55i5MihLFiwBKvVwuHDebz77se6YZ9ISEiIx+fTfxjEx0deN2GMSUJYY1A8pUho8Vu9NEZJNuhmksiWWJSQUIz2q2SuWKWUb7Ci+pCMNmRjRVhRtsWjeJ0hY0hGM5LRjBACf1FGWRPtitPU0lwko/mEj4lXplxrPqhC1lOC3+/VUkhPoFTFuuCkMuzI+sU3ekgmI76s/IgMO4CtdRNazPpfxFNpMXsiu29/nuJVm5GMRm2lajUjXF5UrxfZbMLcIIlTHr8JAH9OQTUjagivn+w5i2k27Y6Izvdl57P3fzMp+mUdQggcHVvQ7MVx2FqFCrEBlKzdzt77ZgRt/nY02XinxTnclLURSZK49trBPPbo/3Q96Np8AfTe88qMt0OMq/YAgEGD+pNWP4WxN42kY8f2umMajUYSEuJ0Y/9pacFdhbqecyZdzzmTzMxsWrTqFlIVqofVqu+JxcXFoqr6n0FHpS5abrebL79czJa/t9OubSsGD+6P1RpsCCWjBWMtPT7ZbEO1xiECKXja39gQVz+QZqj6fSgF6VQ23IrRhjE+LaDtLmKStdRKoWXmSEYrhriy2gvFq22ahiBQXYUnl2H3lOhntSg+hM8d9DD8N3ByGXZ/DZZNioq5cc300GuCMSGG1h8+hjcrD39eEdYWjZAMMoU/rcW9Ix1rq8bE9+yMVNYBSC89Uvj8JlkAACAASURBVBdVxZeTX/15aPLCWwc/pAmBlUkJlK7bydYrJ3L6b29g1NkfyHr9q9BYvs9PgxKZfX8sx9I0LbJ5HiVHphuWoygqc955WddLr4wkSYx/4A6mPDk96AFht9t4+KF7dN+zYsUqLGZTtYZdkmDwIP08971792MyGUMEzaAifJORkcW55w+goKCQkpJSYmIcPDjpKX7/7RsaNqy7v6/m9cei+lzahuuRRU6FBwnx6P2avovBUZapJdQggyeEGnCeqgxTVFFodCKi+ryEzUFXvEDUsB83RITOomyzUP+2QUFhCdXnp/j3TahON7HdOugavdpgrl8vKJ0xofdZ0PuskPOszRpo8fZw2TRlSDYL8b26aBk+MVXrUBSt2KA15qisDyMEwusn9/MfqX9jhb6Pa8cBXNsO4NpxQF9ywGTEm5n7jxl2m82qGw6RZbnKDkmqqrLit9XkHs5j5IihuN0eXnjxdfx+PxaLmYcn3cuYMcN135uQGB9ZcbwIn9nTunULLBZLiGF3OOycdpqW4XT3PQ+TmZkVkAMuKSnF5XIz7u5JfPbp25HMIPzUFJ+Wyy4btVi90YxBJ4Sj+rxh865VVyEGRz1Un+uIIilA8eIvysSU2LjK+PGJVIwTCZLRhPCE0Zqvw/aCJwonlWGXjYaw6b3IErLdiik5nrTbB5M8/OLAodL1O9k+8vFAPFz4FJo8MobU0f3+mYkDSUN6cOjlT6osm5asZgx2CweenMuBR97CWC+OxpOvJ2lQD93zPfsyEUqo56S6PLh3HdL+7fayc+wzFP++Cclo0EIwOnoywuvH1jZy2YGjxRUmxi2EoLTUqbuhu3PnHi6+dBgFBYVISHi8Pv53/63kZG0mL6+ApKTEoFzyI+nZ4zwcDnvYvPzAHIC33p7HuLtuCjl2cZ/uJCbGh2TqGI1Ghl11OQDfLFoeovGuKAqLvv0usN+gaaYUlWW3gGyNRbbGhTzIheLXipZkI6ozL7jJhcGoyezqpdqpVWWFaXF35cjy+MBkfQi/V4uj2xOPKKPXmmjL1mPTW+FYIVtjtfs40qkxGANa8/8mTq6sGFkGi37ZsSExjvZLXqTdoudJufaSwBdE9frYPuIxlPxi1BIXaokL4fFyYMq7ODftrvJyQlXx7M+qtfxvZcwNU2jx+gPIMTbkWDtyjA1jUhyNJ48h7qIzcZzZGsdZbVFK3QinG+FXtPj5+FkUfL9Gd0x7+1N1VRRluxVHJ83jPDhtHsUrNyLcXtQSl7ZiECIoe0K2WUi7fVDE+xGRUFrqZNzdk0hMaoMjtjmDhowJ2uxMSUnWfZ8sS1w5eAwjrrud31b+GXhdCMGAy68jPT2D4uJSiopL8Hg8TH/pTZYt/5n69VOqNOqgGd+liz+mSZOGxMQ4qhQUy8vVDxWVlJSSmxsaKnO7PeTkaA2ddUvpK70uhEApzNAMjeIFRatEVYqyKt2vir8wA3/+AZSiTJT8/ZXy2st+FB9KcRh102ri30rhIfCFkVWWQJRtMhrsCRji0rQmHEYLsj0BY0Ljo85l/6eRJFnbJK1kxCWLQ3swHoeNUyGEtvo6RiGtk8pjFx4fhFHOU3IL2XTBbQA4zmxD6/lPYLBZNN0UHSlb4fOT8+Fymj51i+54hT/+H3vvn6GlVioKMWe3p/mr92FKrn1RRUKfs+m0/j1K1mxFMhuJObM1ksFA2i1XoHp9rDttZLD+DCBcHg49/5EW4jkCR5c22E47FeeGXRXdnIwGjAkx1BuoNec4/PF3oZ2eACQJc6NkjPXiSbvtShIHnF/r+zoSIQT9B4zgr7/W43Zr8exFi77j99/XsHXLChIS4rn//tuY+OCTQeGYcuXHn376DUmSWLhwGc88PYnbbxvDxo1/k5GRFVJw5HS6eO21OVzWv0/Y+RQXl/DTzyuxWCz07HEuu3as4s816ygqKmbMDfeQmRlsHGVZplfvC3THWrBgCbKOIRBC5cOPvuChB+9m8KD+fPb5N0HZMyaTkUFX9kOSJFSvsyxPPLi4SPhcqD43ssmKUnIY4XNr51SRMCB8LoSqhHjtsmxANTsQ3lo09xAgGSrCMLLZhnzE5qIQZfMqazR+tAihorqLEX4PksGkrV7quOhHMpgwxjcIfIaOVyaM4i5BLT1csWFtsmOITa3Th+VJ9diVLCYMMdXH9kr/bxtbBjwAaBWguigq/kL9JblrxwF23fwsvux8VJcH4fVTvGozO0YefaME2WIi7vzTiT27XWBjFUApLA27WeUJozkvSRKtP3yc1BsGYEyKxxDnIGlIDxo/MoadNz7NpovuQikOk9Yn4PTfXqf9t89Tb+AFdfohX/PXetat2xQw6qDFxp1OF++9r7VQvO3W0dx5xw1YrVbi4mIxGo3IshwIYQghcDpdTJj4JMXFJRSXlGIw6H/R8wvCr6jmffg5DRufwajRd3HN8Jtp2LgTK39fQ9dzzuTiPj14bdaz2Gy2QAaQ2WwmPj6WJ45QeyynuKQUv074y+v1UVRUDMD0F5+gWbPGOBx2DAYDdrudpk0b89L0KdrfIkxZOgiE340Qqk7VaRWEMfyG2FQkWwI1qyqSkO31whoZIQT+0jytU1Je2c9R5rUL1Y8//wBqaR7CU4LqLMCfv//o1SXDINXRw6g2qD43aklO2f5H2Sa1z4lSnFX1G2vIyWXYJYn6t1wZELyqCs+2/XgP5hB7bgfdXHPZbiWxX4UkrC+ngIPPf8i2YZPZdctzqEd6uX4F9+6DODdXHb6pKYrTTd6CX8lf/DuSWX8BVVXs22Cz0GTSaDqtn0vnLfOI6dyGvfe+QtEv63DvOBB2A83RpU3Qg6Uu2bJFX7jL6XQxadLT2GOace75A7jssos5lL6OH777jK7ndEbRMZgmk4k/Vv0fXc48XbcwyGazBmLbR7Jjx25uvW08Lpeb4uISiopKKCgoZODl1wUqRwcOuISff/qSq4YOpEuXjtxx+xjWr/2BZs3000Uv7tNd1yg4HHb6lRVsJSTEcW63s/B6fRiNRnw+L13P6UJCghaX1jxRPcMiaUVDNRWUCuPZSpKE0VEPU/KpmJKrqYuQTZrnGJeGwR6+klIpzUO4Cgg8dIRAlB4+qqIlpTSvLMum/L611YC/MEP7Kc7ScvH/BaiV/3aVED53rUTcwnFShWIAGowbiur1kf3W1whVhIQuKlO0egvJg3rQ8P7hZEyfr6X5CaHFoDu3JrFvVwA8B7LY0u9+zTvXC1uUYzDgzcitcfFQOIpXb2HHqCna51hVtQfQEZkzstVM44kjIxpPdWt7B0ECZeWfobJxJbMJyWyk6VO31sk96NGqVfi/T7key5o16+jbbzg///QlZ3Y+nQYN9HXrVVUlMTEeq9XKa7Oe5ZZbH8Dj8aIoCg67jebNm3HTjSN03/v+B5/h9+vkYQvBokXLGTbsCgDO7Hw68z6YFdG9tW7dgltvGcWbsz8IPBwcDjv9+/UOaNQ8MeVFPv1sYVAo5osvF9G4cQOmPvlgxUbekUhSWbaJBLIR1PDFb8H3owbEwY5E9ZSgOAuqTU80Jjau1osVQiDc+qsj1ZmLwVa7DVXhDZW00A6oAXkExeNEOOqdkOX7NUHo1gWg7WuoSp1l6ERk2BcuXMhrr72Gz+fj+uuvZ8SI4C/S5s2beeSRR/D5fDRo0IBp06YRF3dsds0lWabx+BE0vGcY/rxiNpxzU0B460jMqZoMaIPbBxPbtT0585ahFDupN/ACEvufG2hckf7UeyhFpRCm8KQc4fVh79CiynMiRfX62DlmqrahWQnJbMSYWg+lsARb+2Y0njQ6YqEw9+5DhFt2G+IcxHRpg739qaSM7ldnipN6nNvtLBIT43U1aCrjdrt54okX+OrLOdx++xi+Xfx9SMw9NTWZLmdq7Q2HXzOI09q34Y033yMjI4sBAy7h2uGDQgp/yikoKNTNN1dUlaJKmTElJaV89vk37N9/kC5dOtL30ovChn0Apj33KH379mLu3Pn4fH6uHT440GoPYNZrc3SlDl5/Yy5Tn3wQSTZgiG+gLb/LP7uyAWNcWmCD1RCTXLaZWp33Hr5oT3Hmozr1PcSgEXSycfQQ4WRrtYPVvr+KGURwjkAtzUO2xB5VLFoIoW1YAxjM/3hIRjLZ9DPjRN3q0Vdr2LOyspg+fTpffPEFZrOZa665hq5du9KyZUWe79SpUxk3bhw9evTgmWee4e233+bee++ts0nqIZtNmNPqYT+jBc61OjKxkoSjc+vArzFd2oY1kEW/rKvWqMs2C0lX98acVjcGsfiPzQidnHbh9RNzTjtavHp/jcc0JsWFlTiwt2tGqzkP13jMSNm//yD33f8IS5f9hMlkoqSk6pRC0L5kGzZsAbSuS1OemMCkh5/BbNZ6jaamJLF40YdBX76OHdvz6sxnIprTZZddzNz3Pgl5wKiqSp/emlzC33/voOdFg3B7PIE0y1atmvPj959XmTXTu9eF9O51oe6x4uLiMK+XBNIdZZMVKfGUinJ9gynoPmWzHSmhIYqrAOH3aYZTL4VRknVDMUKokRl1mybRGxnHxghK1hiEK4LMMwmE313rHHrV6yzLIhLan0U2YIyr/4/qvRjs8fg9xUeESDXVzn9083TlypV069aNhIQE7HY7l156KUuWLAk6R1VVSku13XeXyxXWgzoWnPr8XaFVnbJE2u2DItJNAYJa3h05jrlRMrZ2TWnyxE2cMqVm/UurQvj8Wj653rEwmT/VYa5fj9hup4XE6mWbhbTbBtVqzEgoLCyi67n9+HrhMlwuN0VFxWHL7o+kTdsKB+HucWM5eGAtH334OsuWzmfb1pW0OEIaWFVVVv7+JwsXLgukF4bj4j7dueii84OqWB12O3ePGxuIoV83+k7y8gsCxr+kpJS//97Os8/NjGj+enTpot/U5Mwzzwgy3pIkBXRZ9DxHyWjBGFtfKxYKV/IebiMw3JIfQDZiTNLi7kZHUsReqyxrjTR0OYpccIM9sSwNsRr5SIH2IKsFQvFrK6BAZa0A1Y+/MKPqlUgdI8lGLV3UEqs9kA1mDLEpdd5kpFqPPTs7m5SUitL81NRUNmzYEHTOxIkTGTNmDE899RQ2m41PPvkkZJyioiKKioI3WDIzM2s77wC2NqfQdsEzpE+ZQ+m6HRjrxZF2x2BSrusb8RipYy7j4AsfIyrFpiWziYS+XWukH1MTYrudFlwxWoZst1LvSv2CpEho/tr/2HXrNEpWb9EeeKpKwwdGoDrdHJo+H2vzhiT07YZsqbtqu3KvWG9zsypsNiuTHw5e2cXHx3HpJT11z9+1ay+X9ruGw4fzkGUZj8fDhPF38shk/dWNLMt8/unbLFiwhI/nf6XJBo8ZzkU9tdTOnJxctmzZHpJC6XZ7+GDeZ0x5YkKN7qecl196kj4XX4XH4w0ImlktFl5+aUqtxoMq4tCqVsAUotRYZQs6Y61DEMb4BvgL0oM9TklGtsaiOPM1DXdzTI28T0mStTREvwfh92qrDb0m2rKh1t616ikOHQ/KKrWdSJa6q+GoDslgxBh77OROIALDrteooPKHwu12M2nSJObOnUvHjh159913mTBhAm+++WbQe+bOncvMmbX3gqrC0bElbT59strz/PlFqC4vpgbBXkr9sZfj2raf3AW/IpuMqH4FR+fWNHv29mMyXwCDw0bTaXew974ZmvcuBJgMmJvWJ/3JOewZNx1b6yZaAdP5pwfep3p95H31C3kLf8MY7yBlZN8gFUpjfAxtPnocb0YuvsMFmOrFse3qyfhyCrSmIQ4rhifn0O7r5zA3SKqTe1mzZn1EaolGoxGLxYzT6aJly1N5afoUzjs3sr6mQgguv3IU+/cfDHqAPP/Ca5x9duewvVcNBgODB1/G4MGXRXYzZRxN7PXsszrx56olTHv+Vdau28wZZ5zG+P/dXuvm2LVBM7B2nTx2CdlWe+9QMhgx1muK8JZqWRwGM6qroFLjbQmkPIzxDWpshDWJhIr3qKV5FZXmsiEgXlYbqioEOlZFQseTag17/fr1WbOmovIxOzub1NQK9bzt27djsVjo2FHb4Lr66qt5+eWXQ8YZPXo0gwYFhwMyMzNDNmKPBd6sPHbf8QKl/7cNJAlTaiKnvnQ3sV01gygZDNjanYq86HeEX0ESWophJGmVRzWvjFxNEqD84elTcG/dH/jduWk3O0ZPofWHjxF7TntUn59tVz2M6++9qE5NGqBg6Woa3D2MBncOCRrb3CAJc4Mkdo+bjic9J7A6KO/stO/B1+os5n766W2xfmnF7Q5NSbPbtRxxv8/PlCkTuOfum1EUpdoq0SPZtGkr6ekZIasCp9PFrFnvhjXsVZGSkkSHDm1Zu3ZjkANjtVoYdd1VNR6vMq1bt2D2my8e1RiVkS0xZalyR2Awh9VVN8SmoJRIZTnxEkgSsiMppNioppR3eAJtg5agYquyVMXibC3kUEtDLFvjQJI1yQXZgMGWcFSbi7LJhuLW99rlf6GkQLXfrvPOO48ZM2aQl5eHzWZj2bJlTJlSsaRs2rQpmZmZ7N69m+bNm/P9999z+umnh4wTFxd3zDJlqkIIwbZhk/HszQikEXoPZLPjuic47ceZWBqlkPvFzxyaNi8oTfDw/O+QzUaaPHLDMZmXP7+Yg0+/F7ppe6SGi9vLwWc/oO3nT5G/8Ddcf+/TjHrZuarLw6HpH5M8vE+gFZ5S7CTvm9/wZeeTv2hlaMhHUSn88f+0Vmd1sGEz5vrhPPvcTDweT8BAms1m2rdrxcQJd+Fyubn44h4BOd1wRl0IwarV/8cPP6wgMTGeq4ZeTlJSIhs3/s3/rd0Ytu1cXhilyHK2bNnON4uWYzabGDpkAI0bNwwc++C9mXTvOQi3243L5cZms9KuXWvGP6Dfr/R4IdsTtCrTgBHVDLUxNjXseyRJxhibiohJ1rJvZEOdZ4Go7jCFVIpfS9esRfqeEAKlKCOoBZ3iKUXUoJ/rkUhmu6YxH/QQkpAsDl0d/JOdiDz2e++9l1GjRuHz+Rg6dCgdO3Zk7NixjBs3jtNPP52nn36ae+65ByEESUlJPPXUU8d84qrLgy+3EFNKYpXx4pLVW/Bl5oaoKgq/Qs77S2k8cSQZr3wa2sza5SXn/aU0enBUjXuoRkL+4j+qzcQpx7Vtv/aepX9UdGCqhGQyUvLHZhIvO4/SjbvYNnSSlrNfjZJkXZGcXI9ff/6a224fz8rf12AwyAwZfBkzXplKQkJkeceqqjLyujtYtOg73B4PFouJB8ZPISbGHkgd1Av32GxWhgweEHbcSQ8/zSsz3sLn02LdD09+htdmPct1IzWPvHXrFuzZtYovv1zMvv3pnHVWJ3r3ugBFUdi3L52UlKQq1SbL5z79pTd46eXZ5OcX0vWczrzw/GN06tQhonuPBEmSMcQ3LDPuHiTZqBmlCDYTJUkOdPKqc45BoozwlBzRVxRAoJbkaKX4aP1HDY6kiGUHJEnCEN8Q1a0Jr0loq4J/Mrb+TxKRxRo4cCADBw4Mem327NmBf/fo0YMePWq/4VcThKKQ/vT7ZL2zCAkBBpmGdw8j7Y4hut6I99Bh/XG8fjz7NP1sX1ae/jmKglriQk6snZcQDuFX8GZWndFRmXIpXWNirCaEprNJaYhzIIRgx8gnwssoBE6Wie/VJcRbLy/mqWmYBKCgsJBDGVmYTEZUVZB+MIPSUmfEhv3zz79h0bffUerUNgmdTm2VoRfeKdeUsdttNGvahJvH6hdw/blmHTNmvh14MJTf3223T6Bf394kJ2tpfjabjWuvHRx434yZb/PoY9Pw+/2oqmDM9Vfz4guPYzLpOxD33f8o77z7UeDB8/Mvv9PzokGsXrWE1q3rpu6h/L4lsx2qSff7J7VQtLxsfS2i2hbbVNXPNaAV7ynB73NjTGwS8X1KkoTBFn/SFzlFwkklKQCQ/tw8st5cAF4fwutHuLwcfO5Dct5brHu+44yWqGFa0jnO1PLc7R31v3zGhFjdZta1xbMvk21XT+av5leR8dL8iN4j28w0ekDbh0gZcanu6kS2mok9twPu7QfwV6VEKUvIDhvm+vVo+vRtgZf37z9Iv/7DccQ2JyauOZdfMYpDhyLPWDp4MIO+/Yaze/c+PB4vPp+PlSv/pHefoRFnyszRyTfXw2q10K1bF/r368205x7lj9+/DZtv/sknC4L0asoxGAws+na57ns+/fRrJj38NEVFxTidLtxuN3Pnzmf8RP2Mlvz8Ama/NS9kNeF0uRl4+Sg6n9mH68eM4++/dWot6hihKviLsvDn7tF+Cg5VKRNdJ9cMVwYv1NqnEUb6QFKV2omc/Qc4qSQFhBCaUT8yhKGq7J/8FgemzMFUL4602weRMrp/pSd5uKe/drzxpNFsGzIpIDkAWu5340fGhPUGhKqS+eYCsmcvxF9YQsxZbWnyyA3Y2zcLnOPcvJsDT7xLyV/bMMQ5UEuc2jWqC8EYZFAFpoZJNHnkBuIu6IjnYA7Wlo1p8ugN7H/s7bJURoHBYaXVB48iGQ149ldhjI0GGt53DdbmjYi98AzyF/xC4XdrkJLiGPPZPFYfzgxotSxd9hMXdL+cbX//FtZLrczb73wYUrqvKAqZWTn8/MvvgfTCusDt9tCnd3cefaTmBVyR8ORTL+ka6bfe+pBnnpqExRK8ob5z114sFnNIVyZVVdm1ey8AW/7ezhdffsuypfPDNuY+WoQQ+AsPVRQ8oRXz+PMPBvT3JaNF2zw11WFSQFh9E0mLs9cifi1b41DCCqVVRqD6Pcj/0nDK0XBSeeyq0wO+MKlJqopwe/EeOkz61Pc4+Nw8QGuyEc4DKP1rK6ClS7b96mni+5yFqX49HGe1pdkLd1G8agvrz76RTb3uInve0iD1xf2T3yLjhY/xZeUh3F6KV2xg66CJuPdo4R33roNsHfQQxb9pWuj+7Hxt/pHE1YVAsphQi13kL1rJujNGsbnnnaw7/Tqcm3bTcdVsms+8j1bvPUzHP98KPEys7ZqFHdKUVo+G464i/qLObLtyIulT5lD4w1/kf/YTT6tp9DFWLE8VRSE/v5BvvtH3ao9k5869eHSKqoQQpB84FNEY148aVm07PNB0WS68sGtEYw4bdoVu71JFUbisf0Ujlm8Xf88FF17OKU3PZPt2fZE3VVUpKgqtpm16SmPdez/yek6ni7vvmRzRvGuD8LnD9ictVxIUfjdK4aGyDcS6ocpwS5hsnWrHNNmQrHFUW7CEhFyHZfj/Jk4qw44xsumqLg9Zs79GKXVpjabDbCJWbqBhP605rd6dxBl/vUOrOQ9z4LG3OfzRcnwZubi3HyD9sXfY/9AbgJYPf/jj5SEbrqrbS+asLwDImPk5ai0rSCkTN1OKSsn/egVKYakmUOb2kvvZjwF99tiupwUpNFobp2JtraNKKEs0Hq/FoXPeX4LnQFZg7pIQWCWZCbHNMFf6ErlcLrbviEzJsnv3bjjsoUZZVdWwVZhHMmTIAAZcdjEOe7nUrQ2DwYClUmMVu93Gud3OCloBbNq0ldHXj6PLWRcz9ub72VFpzmef1Ylxd92EzWbFZDJisViwWi28Puu5QHz93Tkfc83wW/hj1V8cysgKEu6qTFxcDElJofnfqanJ9O/XK6I479q1G3TrQuqEKjsmVUaUdU6qG7SKySPvXUKyVl2kpKp+/MU5+AsPoTgLgkJ2kiRhjEnCmNgYQ0wSckyq/kNCkpEs4WUf/sucVKEYg8WMuWl9vPuq1y6WjAa86TmUrNse9hzvAX2d8+z3l+AvKg1KE1RdHg5/+gMN7h6G91AOktkUqgSpqJSu02Kppet3RJaVIoFkMYNBRlS36Yn28Dj86Q80fmQMBp08+9bzHmPbNY/gPaD9jYQQpI4ZQL1BmjZK/qLfdRUxVQRtTQ42+DSv1Gq10qJ5Uw4ezKBhw6oLQ64dPphnnp2B75Afr1cb22630ffSi2jfvnXY91VGlmU+eP9V/lyzju+//5XExHgGXdmfhd8s4913P0ZVVa6//hpuGHNNYC4rfltN/8uuxe32oKoqmzZv49NPv+bHH76kc2ctI+XJKRO5dvhgvlm0HIvFzJDBlwXSHf1+PxMmTKm2uMputzHt2UfCplvu3rM/IoMdGxt77DY0a+C51qXOuWyyQlx9lJLDZWqUEpItrkr9GdVTGqQ/LnxucOZDvSbIlQy4ZDAFVgSy2YpSnBNQe5RMNgwxyRFlBf0XOakMO0CLWQ+wdchDVcr1gqbFYmqQVGWqohQmTbKkrJVcyPlmE87Nu3F0bInw6nhIsoytjeYx21o1wb0jvUrVO8lsxNr6FJo8dgPeQ4fZ979X9cfVQSko0TXs5gZJdPhpJs71O/Hl5OM4oxWm1ApP0xCv7+EYJImSsgq88rj6daPvwmCQSUlO4s03X+DiPt0D53u9Xr744lt+XfEHzZqdwsKv32f27A/4/ItF2GxWbrn5Ou6688aI7qUcSZI45+zOnHN258BrN904Iqws713jHgoyyoqiUFLq5P7/PcoP338eeL19+9a6D5iMjCzdzVXQ8vDr1UugWdMmPPzwvfS99CLd83bt2sv27buqvTe7zcbtt11f7Xm1pbyxdWhnJp1zdcInR5NJI5vtyPVOiXgM/aYSAqUoGzmhosZAqCrC79Y8c6PlhOh+dLJw0hl2xxkt6fDTTLLfXYTr732Y0pLIW/BrkHCWZDWTNLQnxjgHqTcMIHPm5/pjdW5FxszPcHRqRez5HQMfFkuzBrByY6jHrSiYGyZjSk0koW9XCpauDnoAyBYTabdrFaAN7hpK4Q9/BYdrLCbMqYn4c4uQDDL1BnWn8YOjMMTaEYrC/offisiwyxYzppTwLfokScLRqZXusdQxl1GyakvwvGQJt81CtksmVorBZrOSn1+Iz+fD54MD6YcYMvQG/lj5Le3bt6aoqJgLul/O/n3plJQ6sVotTH3qztHPEgAAIABJREFUJZYs/ogXX3i82vnXBX6/n02btuoe+2PVXxGNkZRUDzVM5kaHDm1Z/Yd+plVlCgqLwqaHSpJEXFwMbreXYcMuP2YbvuXXMsQ30BpheEo0h0I26Gi6S0GCU6rPrXnbihcthBKLwVGvVp5wJMa2yoYZ/opjiquwQlIAQCqTFIjG1CPipDPsAJbGqTSZPCbwe72B57P/4TfxHMhGtppJGd2PxhO0mLI5NZG0u4aSOeOz4EEMMgVLVpH31a/IVjO2tk1p8/ETyDYLqTcOIPezH4ONn9GAtUVj7O1PBeDUF+/mwJNzOPzRcoTXj7V5A0556tbARqa9Q3NavvsQ+ya9iWdPBrLFRPK1l9B40ihkc6jHpMXKq1/OyzYLjSeNDmjJ15SE3mcRe+EZFC5bXXFto5Hz5j9FQadW/P33Drqe2y8k1ux2e5j40FQGD+rPihWr2LVrXyATRPN6PVw36k62b115TL0pr9fLsuU/k5ubj9VqCdE9B0iIj6zC2W63MXLEUN7/4NOgDVCbzcqkB++OaIzTO7RF1mkobrFYuOvOG7nyyr60aN6MlJS60eU5EqH4tfCEJCOZbRhjkiFGaxQuhNAMvbsIECAbMcQka+ETQChelMIMKssBCHcRiurHGJd2TOYbCarPXSECFpiaH39hZo3y1v/LSOKY7eZUT3p6Or179+b777+ncePGRz2e6vIgWUy6mzbOLXvImPEZSpET9+6DeNNzgsIkktVM2h2DaXTvNQAU/ryWvffPxF9QDKpK7LkdOHXGfZjqBRsNoSgIrz9IV0b4lSDDW9W8yvEeLmBDp+v1D0pgTE7A3DCFhvcOI6FPZMJZehSv2sy2YZNDViO2dk05bfnLLFn6IyNG3kZhYaimuCzL2GxWnE6XbkzZZrOycf1PYdvKVUdGRhZPTp3O4sU/kJAYzz3jxnLddVcFvsibNm3l4kuHBWLq5WGUyi317HYbDz04jokTxkV0ze+++4UBl48M9FoFiIuLZcumXwISCNUx/5MFjB17P26PNi+73UZaWiqr/1gccYEWlHUo8ntAqEhGa7VyDxWNNAh4tnJsmpYEJgSSyYokyWX/r0SIF+4vzkF49LTjJc2AGo6N3+c7HGZT3mjFlNAQf1FWmPx0bVVS/mD6L1Od7TwpPfZwVCXaZapfj9hzO+DLLqB45UZdTZbc+d+T0OdszA2Tie/RmY5/voX30GEMdqtW9amDZDAg2TQjnvPRcg5N+xBfdj6m+ok0Gj+C5Kv7RCQmpuTrN2cop9PaOdWOEQkHpszV3dR1bd2Ha/dBzujYHneY/QtNdz98EZGqiqAslpqQm5vHWedcSm5uPn6/n/0HDnLnuIfYsHELz097rEzdcXSIBrvRaMBoNOJw2PB4vIy4dggP/O+OiK4phODW28YHGXXQpAuemPICs159Nsx9qnz88VfMfnsePp+P60ZexXfLP+XN2e+Tnp5Bv369uGHMcGJjI8+vFn4v/qJMrYVdmaKhXEUrONXnDm6kUfYftSiDylkqckwKBmtM0GuBa4YrXpK0wqNjZdgNsfV14uwShriyB2m4wiapimNRgvhXGfZwFCxfze7bX0AgED5FVwcdwJuew7ZhkxFeHwl9u3LqC+OwNIpMNznn4+UceOStQPjGl5XP/odng9FA8hD9jTfQslwKf16Lv7AkpN9pOebGFZ6j6vOT/81v5C9aiSHeQcq1lxLTpU1EcwRw7zygf0BAyeq/aXBNH24Ycw1z3/skIinecmRZpsNpbcL2Lq2OWa/NobCwKKjQyel08frr7zH+gTs5eDCTvNxQ6Qe/X6H7hd2YOvVBWrVsHkhjjISMjCwys0Izo/x+PwsXLgtr2K8fM44FXy8NPOQ2bNjCOWd3ZtnS+WEzZ6pCiP9n77zDo6i6MP7ObN9NJw0SivQuTTpIEQIpFEFEAkERpIqiflJEQbFhQwF7pQQElBYUCB0ldOlFeg1ppO9udndm7vfHJBs2O0s2ZZNsvL/n4eHZKXfOJpkzd8495z0EXPa9wr6kBU5any4WFUnMUAUHSoU2AwAQclPBKlSSC6aMXCWdIUOKyU8vI6xKB8jrQDCkAwKXn7fubf3ZMUqtmClT9PsRgJHT2bozVHvHzuuNuDblU7ucc0cIOeLNmrn9CG55/oh6H04u5gyRxE9W2+e1G01I/GiVQ8eee+ISLo9+W2yR5ygixgCPLH1FHM/C4dLIeTCcuSqKgTEMMjYfQK3/jULwC4OdslPmobHrs1qAMv8h9sXn76Jli6b4YokoapWWlu4wnY9lWbAsixo1/LB61TdO2SDFnj0HJDNUFEoFTp46Bw8PLVgHQlYWjkOXzh1KfE2tVuNQ8sDDwWz71Klz2LBxq01s32Aw4tjxU9gev7dU8sGEMzno20sg5GU7CD04O3Ml4PNyINfZP/BkGm9wdg+IfMVDF83WC2BlcrAOlClZtaf44OItD9jGgNX5lWv7uOpMtf8pZe8/5VjZrmC7xGIMyTPj/ro9EJzIUiGEwJIkLSRmvictQiZYOFyOWSAWH+UaReEuXgAUcihrB0LmrYNH15ZosXsJPPN7tWb8kVDo1MULQzCacHfhSljSsyWvU5SA56QbTjBKBTw7NRdtNptx7vy/uH07EWlp6dBoHM+SBEEAx3FITU3DlavXnbJBipq1pBfrjEYjQkNqokP7RyUXzbQaDZ4ZWbq2fz4+3ujdqxsURVJitVoNpk19TvKc/X8dknwY5ObqsWfP39bPHMchbks8Pv7kK8TFxdtJLthAeMcFlgIndhYqck1WKR1ekR5D+g2VkSkg9wkpnAUzLFiNN2Qeru3uUxwMw0LuU0t05AoNGJUOMu+a/wnxrvKiWszYeb0Raet2I2f/KShrByJw7ECo64eIOx8iQqVr2xjePdsg6esN0jN6QRC7DklksTwIwzBQhgaIC7JFUNWWDk3kHj4n/dCwcPB4rBnqL7ZvBp659aBj2d6DZ+Eb0dWhjfrTV2D89xY82jWBpuUjMF68ZQ1JMUo5GnzzP+v3HPnMJOzctd86gy4IyajVKuTlmSCTseCLhIwEQcCw4c8jO/NKqbIWfH2kM1l4XoC/vx+USiV+/vELRI+ZAo7jYLFw0Om0aNGiCcY9N7LE1yvgl58XY2D4M7h85TpkMhZmswXDh0Vi8qRnJY8P8K8BhUJhJyOgVqsQFCg6xLS0dPR4fBCSklJgNOZBrVYjODgAf+3bLJkdw8jVjuWMLHmiBgwBWI03WK2vVeWRUWjyC3Yelv/AgFU5lmpg5ErIH8gdryowDCs6curMS4XbO3YuMxfnw18Fl5opOme5DGmrdqDBt6/Du097ePVsIxlTZ1QK8DkGpK3ZBZmnFkKeye7+UAT4OK3uGDI7BjdeWwJitM2nD5kTY3OcYLIg99hF6E9ftemxavOdHMy+Zd4eAMtI6s2wnoU3ryU1E/d/3wPzvfvQtWuClGV/wnjmmvXNRB7gDZlODT4/7OTZ41F45rffu3btpo1TL0Aul6Nt21Zo1PARrIyVrgswGvNw4sRZtGtn32ilOM6fl64Q9vDQ4eSpc+jf73EMGhSGk//swo8/rUJyShoG9O+FIUMGOiVU9mBhiyAIOHrsJHJz9ejcqT2OHtmOf06cwa2bd9C2bauHZvUMGhSGadNn221nWdYq/Tvjlbdw48ZtWCziLD03V4+bN014ecabiF35ld25DCsDq/WFYMiAo76cACAYs8SURY2XmLfuFQRiMUIw6fOFvgQQkx4Phi8YhQqMongNnrJCBL5QJ95J4S/CmcV+rXKV07rqFOdwe8ee9NV6WJLug5jzX3U5HgLH4/ori/HoPz9D5qlFvc9fwvWXvxA1WDgOjEwGwvHIy29gId4UKHSaDANWrUSd9yc6PfusMbgHGJbB3Y9iYb6dAmWdIITOGgPf8C7WYzJ3HsW1afnt0gTBoSCYzEO6sUPAqP5I37Df7u2CVSrg1VV0pjlHzuPy6HfENEyTBcyyrfnt9wqPN9+0nfXn/HUaVyd+hMYr5+HS5WtQKpV2jp3jOMjlcvz04+dYtXqDw9h0nql4WQQpHqlfF38fOGI3Ls/z4DgO//57BY0bN0CDBvXw/ntzrPsvXryCTz/7CmfOXET79q3x6iuTUb9+Xev+a9duYuq0Wdi952/IZHI80bcHTp46h+zsHLFlH8dhyeL3MDbmabRv17pYO7VaDeK3r8WTw55DZmY2GIaBSqVE7MqvrAvH6zf8aXXqBVgsHDZs3ApCiOTflEzrA0ahgmDMFntwclI/RwLBmAmZRny7KZi5s/n67IQQEJUHhLxsgBCwKg8wKg+X5n3b5MoX9CeVKcSepw6cNRF48NlJYpVs/jliYVQNmqNeTri9Y8/YeqjQqT+AYMhD3rVEaBqGwi+yGzzaN0V63N/gcwxI/n4zyIMLiIQADKCs5Q9WrYKqfi3UnDYcHu2c0zkpwC+qO/yiukvuMyem4uqkj4uVQgAA3oFmjK5NI4TMicGdd5eBUYg3DatSonGsKNtLBAHXpnxiE64hDjKAHoSYLcg5eBamOylo1rSRVe/lQZRKBR7r0AYA0PGxNkg4eMzuGLlcbidLm5OTC7PZjBo1Hp6t8tKL47Fu3WabTBy5XA6e5zHymYkAxE5NQ4eEY/2GP5GVlY1WLZvinxNnYDZbwPM8Tp46h1Wr1mPf3o1o3bo5srNz0LV7JNLTRZEpnjfjz6277K497cU30LZNK7RuLa4xJBw8ilmz38OZMxcQEhKMt+a+ghEjChen27VthetXj+LkyXPgeA7t2raC7AExNkc65MXpk7MKDViFRtRVT78pfdBDxijq6CsCYtIXFkAVTB54M/icZMi9pUM8fE5KYTZOQbZmXg6IXAWmlK3vgAfqAHgLGLmyxM20qxNu79gdzW4Fjofxwk3wWbnQtW0MZc0aCH5hMEx3UpD8zUb7EwhALDxaHlrqEjvv/77vofF+Kwo5NE3qWD8KZgsytx1G7vGLUNUNRo0ne6HG0MeRc+gsZB4aeHZuCTBA7rGLyLueKKZNlgJGqYD5birqdmqBiPAn8OfWXTaZH2q1Ci9OE/u/xq78Ck2bdYepyANg6eL3rd2NkpNT8dy4l7B330EAQONG9fHTT587nBW3bt0csSu/wqRJ/0NOrh4cx0MQeJtY9q1bd/HF4sLOXQcSjtqMwXEccnI5vPLqPOzcsQ6xq9bDaMwrttmHyWTCd9+vwNIlH+DgoWMYMPAZ6wPm4sUrGP/Cq8jIzMLEFwrDagzDWIXGihIZ0Q+b47bb5MfL5TJEhD/h3IyUYfPlACRCiFXMWfHGB3LpH4BYTGKYpYgqIxF4q5BXkTPAG7PAltKxE0EQ+6Q+IEnMyFWQeQf/J4XCnPrGcXFxCA8PR79+/RAbG2uz78KFCxg8eLD1X48ePRAZ6bgHZXkTOC7CvgCIAcDxuPH6UlyKfhunOzwP/RlRqEnu4ymmF0qgCHI+B7qkcBnZkm8WRWEVcvgN7QnD+RswJd3H+f4v48b/liLlxy248/5ynOn6AsyJqfAd0Ble3R+F4ew1nOrwPC6Nfhu35n5nE+MvCcRkhiZf8nfF8qWY/uJ4+Pp6Q6FQoHevbvhr32bUri0uSNeuHYLbt/7BxIkxaNToEfTt0x2/rfsR637bDLW2DnSe9dG8ZU/s2ZuQrzdjwbnz/+KJfk8hKUlaURMAoiL74/atEzhxfCc+Wvgm1KrSObGDh8S3iTNnzjvVlUkQBGvh0xtzP7RvtGEw4rX/vY3uPaIQNWgMtm3f89Dxvvj8XdQMDrJ2dvLw0CE4KBCLv3jPKfsZhoFM5w8pOVyZzjXSBKXmYW8hUg9UIsBhNg8p/u3SEbw+Lf8tgFj/Ec4EXi+drVbdKXbGnpycjEWLFmH9+vVQKpUYOXIkOnXqhIYNGwIAmjVrhk2bNgEQU9OeeuopzJ8/36VGP0iN4b2hP3EJaWt2gVHIxdhyfpciIUe8QYVcIy6NnIdHj/8EmYcGfoO7Iz3ugK2Al0aFmtOHu8xOr17tkLoy3j6rhWUBmRjjVzcIgTLYDxcHzQSjkOd3WyqMxZM8M/g8M66/uAgtdi0GbzTh0qh54LOLd16Qy8RF5IL/i8DqNJD7irFbpVKJ996djffetV8kLMDPzxdfLvkAAJCenoGmzbojIzNLjLnyZslwjsViwU8/r8ach+iwsCyLBg3qQa83IM9UOnlZL09x1te6dXOwLFvsjF2r1aBx4waIjf0dJ0+elTzGaMzDocP/AAD27z+E116bjDfnvmLdf/HiFXz3/QrcvpOIAWG9ceKfndi2bQ/Onf8XzZs1xtChA6FWO19cw6p0EDhvEGO+ZAAYyDwDnF6YrCgYpTY/FFN0BwNIFTmxcvGNRMKJl3aRlxAiCp/Z7xElE/K1c/5LFOvYExIS0LlzZ/j4iGqCYWFh2LZtG6ZNm2Z37LfffovHHnsMHTqUvFiktDAMg7rvT0Lw1GHQn7iMzJ1Hkb5xv53zIjyPrD3/wHdgZ9T9YDKIQJCx5YAovsUyCHk9Gr4DOrvMTq/ureHRqbmY5mgQHRarVcPvycdR553xIBYOt+b/iPQN+0FMFnut9wfIu3oXN9/4Flx6NgRHHaUUcjAsC4YFPLs/Co/OzWE8cx36s1dhunLX7nDBaILx0m3rrN0RUot/P/+yBsa8vGI1yfPyTE5J3AJAt24doVKpwHFOPLQeQKGQY2p+Drqvr0+xNmk0avC8gCVLfwQAp2b4eoMBHy5cgkkTxyIgoAY2b96O6DFTYLFYwHE84rfvxeeff4eEA1swcuSQEtlfAGfIfMCpAwARY9OMDDKldPixMpBpfcGZ9NYuTSIMZB4BkmEnhhEfUHx2ss3xYBjIdPaNTMpM5UlhVSrFOvaUlBQEBBQWLAQGBuL06dN2x2VnZ2Pt2rWIi4uTHCc7OxvZ2bZP9qQk5xsmF4cqJACqkABk/3VSWjKAF0RBL4jNn+t/8TK4d8aDu58FZWhgsbnqZYVhWTT6+Q2kb/oL93/fC0Yhh/+ofvDp31FMweMFpK/f91CHXgDheKQu2+ow9REAPDs2g++AzvDo2AzaFvWt289H/k/aPoXc+vOxux4h+Pa7FXj3vUVISkpB/fp18dGHb2LIkIEAgFOnzkqqLBZFp9Oia1fnBMy6dX0M3bo+hr//PgKD0XlpA0EgCA4S/17//vuwpGNXKhVo3qwxfP18kJiYhKtXb9j1LC0OlUqFQ4eOY8CA3hg3fobN99cbDLh+4zaWfvkTZs8qFCMzm824dOka/P39HiowRggBMUiHEIScFMhq1JXcVxkwrAxy31AIedkgZiMgk0Om8X7oWgCr1ILxCRHj87woKcBqvEqd8sgwDBi5WtRuL7pPUXUeghVJsY5d6saQehLHxcXhiSeeQI0a0jHAZcuWYelS1yxMPoh3n/ZiSmCRkAcRiDUlsAC5twfk3hXXCJeRy1BjWC/UGNbLbh+vNzq3uPogD+mfqqwbjECJKlOfsE4wXrhpo18vGsBD26qB5FiLl/yAN99aaI09X7t2E2PGTsOaX79D+MC+aNu2lV2ZfVEUCgV8fX0QPWqYE19M/BvbtHEZvv1uBX7+eTVycvW4e/eeU/1F3/9wMcaPH43AQH8olQqYixSCqVQqzJn9Enr37oaQ2m3sRMAAQMayYGWy/NASb3cfCIIAvxq+OHP2oo26ZAF5eXn47fctVse+fMVazJjxFgRBgNnC4fGenbFy+VL4eCgBMGCUGusiH7HTUH+AMsShAUAwGyEY0kUBMFYBmc6vzFk0DCuDTOsLaJ2fcTNyJeQOJAVKg8zDP7+QqyDGnv8WUEwYhnAm8MZsgAhgVTowSl21SLksdvE0KCgIaWmFZfEpKSkIDLT/hezcuRPh4eEOxxk7dix27dpl86/oQmx54PNEB2hbN7RZUGW1agSMCYOqbuk1pgULh+Qf4nC273Sc7TUNiUvWOa0/4wwyX08Q/iHdllQKMT7uJA/2Qn2QoGfDoazpB0adH6tlGLAaFWrPGyfZkUkQBLz73iK7BUWjMQ+zZr+L3Xv+RvduHaHVamwEsJRKBWrXDkHt2iEIDPDHc88+jSOHtjrVsLoAhUKBaVPH4fixHdgZv87pG65ggTZmzAjIJDRPZDIWwcEB2L3ngMOMiaCgACQlnsZf+zbaNcRmGAb+/n7o0rk9PHRah3IBBeqO+/86hGkvzkFWdg5ycvUwmUzYuy8BTw0fCz4nFXxuCrj7NyGYC8JArnEsgtmYnz9uEh0gbwafnQw+r3SZVFUJRq6E3Le2WJmr1IHV+uZLDzt+E+eNWeAyE0FMOSBmvfi7yL7nur60FUixM/auXbtiyZIlSE9Ph0ajQXx8PBYsWGBzDCEE586dQ9u2bR2MAnh5ecHLy7kGCGWBkcnQePV8pK/fh/vr94HVqBAwuj+8+5Y87m+8dBvZf52CzFOD++v3IffYReuCa+Lna5G5/QiabfrQoRMtCXxmrsP7mdGqETpzNDK3H0JOgvTins3xGhU8HSg+yjy1aL5tEVJXbkPmzmNQBPgi6PlIeHRoKnl8bq4eublS2thitehTI8bDbObQtGkDtG3TCvv2J0ClUiE6ehgWfjDXmhlSVurUCUHfvj2wa9dfDtvZFcCyLJTqUHh7e2Ho0IH4Y8sOEBAIAoFOp4GMlSE8cjQYhpFc5FUoFBg8eAC8vb3w2GNt8dWXC/Hi9NlgWRl4nkdISDDiNq0Ay7Jo3LgB6teviwsXLtss0up0WkzNb4X36Wff2D0YzWYLDh8/i5t37qFuqDjh4LOTwfjVASuTg2dY6YyTMqgb8vr7sE9NJBAM9/Olfd0b8c3BcWexByECX9jMo3CrmKZp1oNRuffPo1jHHhQUhBkzZiAmJgYWiwXDhw9H69atMWHCBEyfPh2tWrVCeno6FAoFVKVMTytvWIUc/k/3hf/TfUt1PiEEN2d/jbQ1uwBOEGPZRVMkTRYYzl1H1p5/ytT4wmqzVg1GxkqmYioDReeraVoXuScuPTSlkVHIoQjwgW9kN4fHyDw0CJ40FMGTihfP8vDQwdPTA+npmZL7CxpynDv3L3r36gaj3kFhTTmwOvYbvDh9Dlb/Kla++vn5Iisr2y48U+D4MzKysHHjVsSMGYFRo4ZCLpdj2PBxuJeUYjcrUygUsFgs0Ok08PPzw1tvFraxGzN6OIYPi8Cx46fh7eWJVq2a2bw9bPj9Z/QLG4H09AwADMxmC8aNewbDh0cBAG7ftl+sBgClQoHklPtWxw5AdCpqL8i8gsFnJdqewLCQe5UhfOFIf13gHVbEuhuEEPGByLAP/T7EYYs+AsGUC7a6O3YAiIqKQlRUlM22778vLBSpUaMGDhw4UL6WlRAuMxeGc9ehDPaDukFImcbKjD+CtFU7CmPYjkIkFg4Z2w+Xi2OXaVTwGdAZmdsP2yygshoVgiYMAgB4dmoORQ1vO7Ex7aMNYEnOBLFY4BvRFSH/GwVWXT5pcSzLYt5br2L2nPcfqs9uNluwd18C0tLSS6SJXhIIIRAEAQzDgGVY6LRaTJ8+ARs3/omrV2+AYVhkZGTaOG2DwYhflv2KdxfMxPF/TiM312Dn1FmWRevWzdCgQT307NEFo6OH2b1paDQa9OjeSdKu+vXr4vK/B/HX34eRkpyKzp3bW3P+AaBvnx64ePGyXayf4zg0b/LIg9/QahurUIPxqyPGf3kzIFdDpvYqm2wtK5fogQox/dDNIUSUWxCMmfmV5CxYja+4KCvl4BmmUALBbp/7/zzcvvKUEILET1cj6esNYJUKCBwHbbN6aPjLXLs2ds5y7/O1D12YfBBLckapriFFvY+m4mpmLnKOnAerkEMwW1BjZF8ExAwAAGRsPQgu3T5zxXjxFh499pPDLk9lZcrk56BSqbDg3UVISkoGw7CScWUZK0NWVnaZHDvHcbhy5Qa8vT3tmnaMHDUJe/b8bZ2hX79xC++//zn+3r8ZrVs3R9Pm3fNnzbYolQrcvHkHGQ7eOgRBQL26tbFq5deltptlWTzes4vkvldfmYQVK9chKyvbqiGj1ajxxqvPwcNmzYGxWchkWLmkjnqpbdT6QMgtGo5hwGp83H62LhizinSUEsRGHgxj1dZ5EDFbRsqzM2DVrg8Zuxq3dOyZu44h8ZNVMN1KhtzfG+bbqSBmC/j8ma7+9FVcm/QxmqxdUMxI0pgTpTXUpdA0Kl1/TylkHho0XjUfplvJMN1JgaZJHShqFMqWZvyRIC3bK5cj6duN0LVqAM/urcs904dhGIx/Phrjn48GAPQPexq7H9AeL4DjuFL3OwWADRv/xKTJr8OUZ4aFs6Bzp/ZYveobBAb64+bNO9iz52+7+HpengmfLfoGv/y8GE2aNMCVK/aa8EajCfXq1UZQUIDdrBkQ4+GREf1KbXdxBAcH4p9jO/DhwiWI37EPQUEBeGXKKIT37gAbJUaNV5k6FxEiQDBkQjDlAISAUeog0/lZ0whlai9Rw9+QkR+uEJ06Ww2kcQVJaQMCwZgh7dgZBnLvmuCy7tnkurNa32rRU9XtHHt63N+48cpiCPlxZj5LYmGP45F77KLYezSw5EUPqkdqgrufVfyBDOA7SFr0qyyo6gRBVUecreZdv4d7X6xF7rGLDrNwBL0RyT/EiUJgHI+670+E/4jSrS84Q0qqg+YhhCAjI6tUM/aTJ89i7LPTbcI9CQePImrQGBw+tBU3b92RVJ0UBAH//isWPfn5Si+cMQwDrVYDb28vvPbqJHy26FtraqZKpUKTJg0wYsSgEttcEmrVCraRFCCE5Evu5kKcJXqALWPONZ+dZBM7JqYccBYj5L6h1uwfmcZbnJE6EYd2F6xxdSkcNBkBRC0ZuV9dUbuGCGJTj2oiH+xWwSRCCG4v+MXq1B8GI5eVWhAr5H+jHHddehCWhfl20aa85Ufe1bs4P/AV3N+wD6Yb92BJdqx7QfIdOAt+AAAgAElEQVTMEHKNIHlm3JzzLfKuSS/YlQeOFlIZhkFWlnOdnIqyeMkPdk7bYuFw4eJlnD170aHqpEKhsBY9HT5yQnJspUKOixevAABatmwGnuetDk0QBDRq1ABKZcWW6jOMGHaRewZC7hlQZqcuWPJALFLNYvh8jXbbazOsrFo4dSC/roZ1MEct5g2o4PfAqjyqjVMH3M2xmyywJN0v/kCI2SHqR0rXGcarW2vUmvE0GIUcUMgdO3leQM7B4tMPS8udhSvF0IsD0TJHEI5H2m97XWMU4DAXneM4hISUrlbgxs3bkpouCoUcifeSERBQA+Ofj4ZWW+gAWZaFVqvGyy9NAAD415B+O+N4Hn5+PsjJycXzz8+A2WyxLlJaLBZs2RKPrdt2l8puZzGZTFixYh1Gj5mCmbMW4PLlazb7CSHgDZmwpN+C5f4NcDkpIHzxonFWHGW8gEBwmAFSfWB1fnAL0bQKwq0cO6NSgCmu9D+/4Kbuh5PAlKCgpyi1Xn4arY/8gPpfvAzvvu0dHmdJcyJkU0pyj5x3ehHXBo6HkFsyjZWS4EhPRalU4s6de6Ua84m+Pe0KgQDAZDKjXVuxYvizT9/GB++/gUceqQMfH28MHhSGPbvWY8+eA5jzxvvo0KGNjeMHxAfDY4+1RUhITeze/TfkEn8Ter0Bq1dvKJXdzqDXG9ClawSmTZ+DX9dswuIlP6Bdh/6I2xJvPYbPTRVj3wKX3wkpF1zmHbHphjM4mrGCKVPc3l2QqTwg8woCZEoxxCRXQeYVXKHa9FUJt4uxMywjmaHEatXQNKsLZWgggicMgq5NozJfSxHgA79B3WFKTENW/FHJY5S1XDcjUAT4givFg4PVquATJp2aVx7UDq2FxEQpnR+CGg5mzcUxaWIMvv5mGdLS0mGxiAucOp0WUyY/Z43ZsyyLqVOew9QposjXrVt30bV7JHJz9MjV6+Hhocuvp+DzBcQ4NG/WGGtWfyueL2MdFoHJ5a67Fb7+5hdcvnLdGte3WMSerePGvYzEu6cgZ5kiLe3yIQRCXrZYrl8MjEKTr+FeZJbPMKXWOC8JhBCAtwCsrNJCGmwFNxmpyriVYycmi1UZsSiC0YRmmxa65LrePVojUaW001dh1Er49HGdkmXNacNw47WltoumchkgCGC14so9yU+fI2ZObIemVcOrd1t4di1531Fnmfn6NIyOmWqz0KlWqxAZ0Q++DhYwi8PPzxfHj8Zj4UdLsWVLPHz9fDHjpRceuqg5ecrrSE29b9Vqyc3VQy6XY/DgMEx8IQbBQYFo3rywC1bfPj0gSLwB6bRajBnjOsnmNWs3S+rocDyPU6fPo13Lhg5yqslDCmlsYRgGcp9a4HNSCxtZyJSQewa43NHyxmwIhvv59udn43gG/CcbXFQV3MuxP3Sn6/QdtC3qwzeiCzK3HSqU3NWo4NGxOTy7F98ns7T4De4B0+0U3Fu8FmBZEAsHnwGdEDo7Bvrj/4L10MCrx6PQn7yM+2t2QTCZ4Te4B7z7dnDpwtigQWFY8M5MzJv/UX5ZPoeBA/rgxx8WlWncwEB/fPrJfHz6yfxij+V5Hjt3/WUnwMVxHLZu3Y01q7+zO0er1WDNr9/hqRHjwTAMOI4Dy7CYMCEavXs5rtQtK54OZBV4nodOqxVDJY7+fEsQRmFYOeTeNcUWfIRUyMxZMBsgFJEqIGYD+JxUyL2CHJ9IcSlu5dhZpdxxowgv25uHEALz7RQwSgWUwWUv8njk85eQEdcBqb/uALHw8H+qD2oM6+XyzIKa04Yh8PlImG7cgzLYz9oMQxVaWFru2bE5PDs2d6kdRXlp+gRMfGEMrly5gaCgAAQEVOwiFcMwDn/27EOqM8P698LN68ewYeNW5ObqEda/F5o0aegqMwEAkyeNxfF/TtusTTAMg9q1a6Fp04b5srPKwj6ghUdBVoocc4ZxHHIqbwRDBqTyx4nZACLw1SrTxJ1wK8fOsCwCn49Eyg9bgAdnanIZQl4daf2Ye+wirk37FFya2NFH06QOGnzzujU3vLTX9hvcA36De5TlK5QKmUYFbbN6FX7d4lCr1WjZUlo8zNWwLIuIiCfwxx87bapglUoFRjxVGL4hhCB+xz789ttmqNVqxMSMwGMd2mDcc89UmK3Dh0fh7wNH8ONPqyCXy8EwDDw9PbBx/S/Wh5PMKxh8bipIgcIjKxfDGVV84dPh4i4DMYecOvZKgSGVqFF5584d9O3bF7t27UJoaKhT5wgWDrfe+BZpv+0BIxdb4QWNi0TonBgxLJCcjrM9pthWaLIsFMF+aJ3wbZkyZSgl49atu1i7bjOMRiMiIvpZs1vKi+TkVPR4fDBSU9OQl2eGSqVEnToh2L93I3x8vEEIwZiYaYjbEg+93gCWZaFWqzB71nSbBhgVxY0bt5GQcBQBgf7o07sbZBKqoAVhFHcpHuJyUqTb0jEM5H713OI7uCPF+U63c+wFcJm5MCemQVUnCDKPwhS3e4vXIfGLtXadiFgPDRp89Rq8+zhOXaSUH7GrfsfESa9DEARwHAe1WoWxMSOw+Iv3HN7sBoMRP/+yGhs3bUOAfw1MmfIcunfr+NDrFMTUL12+hhYtmqB/v8etoZg9ew9gyNBn7dIz1SoVLl74G6GhpatzoBRCeAu4zLtFKj8ZsDq/UoWRKM5RnO90q1DMg8h9PCD3sddEMd1OkWwvR3gB5qTy7VhOBAG5Ry+Au58NXfsmUAa5RtXQ3cjIyMTESa8jL6/wrclgMGL58nUYPjxKUizLYDCiS9cIXL9xCwaDEQzDYMsfO/DB+3Mwdco4h9eSy+WIiuovuW/Tpm2SipSsjMX2+L14ftyoUnw7yoMwMgXkPiHgDRkgljwwrEzUW6Fph5VKtctH8uzcwpoKaAMh0LUte257AaZbyTjTbRIuxyzA9VcW40zXibjz/vJq0X2lgIsXr+DgoWMwlqDnKABs374XCom8cIPRiF9/lS4E+unn1VanDoixcYPBiFmz3kNOTumkIXQ6LWQSVcMsy0Kr+W/2wnQFjEwBuWcgFH51IPcJoU69ClDtHLtvZDcoQ/xtKlQZjQrevduV6wLk5Wffg/luKgR9nqjRYrIg5Zc/kLn9cLldo7K4ffsu2rZ/Ah07D0BE5GjUDGmNX5b9+tBzLBYLli1fg/CIUfhiyffgHJTDsw66TW3cuFVydq1QKnDo8D8l/xIAokcNg0Jhv/hICEFkpOvUHCmUysZtQzFEECAYTWLnoQditqxKgWabP8K9L9cjI+5vMCoFAkaHITBmYLld23jljij+VaTYRTCYkPLzH/Ad0LncrlXREEIwMGIULl++bpMjPv2luWjevAk6Pmbf/pDjOPQPexr/nDjjUG4AADQaNaJHPSm5z9/fDwzD2L3x8DwPX9/SxWqbN2+MTz+Zj1demQeFQg4wDARBwG/rfrT2I6VQqiNu59gJIUj+dhPuLVkHXp8HuY8HQmaORsAzhTMwmacWobNGI3TWaJfYwOcYHAqDScoIuxEnTp7F7duJdoU/RmMeli79EcuXLbU7Z/Pm7Q6dulqthiAIkMlYTJs6Dl27SHebmjp1HP7custm1s6yLIKDA9G+XemLwF6YMAZPDo3Azp37oVQqEBbWu0QNtSkUd8Qpxx4XF4evv/4aFosFzz77LKKjo232X7t2DfPmzUNWVhYCAgLw2WefwdvbNSviyd9tQuKnq61l9lxaFm6/9QNYjQo1hvR0yTWLom3xiGRmB6NSwjfKdRWMFUFq6n0HaXgEiYnSEsVxW3ZIOnWdVothwyLQqlUzhA/s+9BCoB7dO+HdBbPwxtwPoFAoIPACAoP88eeW2DKnzPn7+2HkyCFlGoNCcSeKjbEnJydj0aJFWLVqFTZt2oQ1a9bgypUr1v2EEEyePBkTJkzA5s2b0axZM3z3nX05d3lACMG9Jb/ZNZwQjCYkfrraJdeUglUqUPfjqWA1SuvMndWooKoTiMCx4RVmhyMEQUDq6p2488Fy6M9cLdG5HR9rI6l7rtGoERHxhOQ5AQF+kqqJrIzFk09GYMbLE52q7pz+4njcuXUCv67+Fjt2rMW/Fw6gQYN6JbKfQqE4MWNPSEhA586d4eMjijuFhYVh27ZtmDZtGgDg3Llz0Gq16NlTnC1PmjQJ2dmla7ZQHMRkAe+geUZJ2tmVB36R3aBpGIqU5Vthvncf3n3ao8bw3pBp7KVnK5LcE5fw75NzrOJgSV+uh6ZlfTT785OHltoX4OvrgzfnzsB7739hDYuo1SrUqhVsbY1XlOeefQZff7MMXBGpB6VCgf79Hi+R/d7eXiU+h0Kh2FKsY09JSUFAQID1c2BgIE6fPm39fOvWLfj7+2PmzJk4f/48GjdujDfffNNunOzsbDuHn5QkJf3qGEalAKvTQMi1z56Q+1d8MYSmaV3UfX9ShV/3YVwa8abVqRdgPHsNd+b9iDoLJjg1xszXX8Sjj7bE0qU/IjXtPoYMHogpk591uODYrFkjfPP1R5g8ZSbkcjkIIdBpNYjbvLLCOxNRKBQnHLtUXvaDMU+O43DkyBGsXLkSrVq1wueff44PP/wQH374oc05y5Ytw9Kl9gtvJcZR44kSdhmqjuQcveCwL2ra2l1OO3YAGBDWGwPCejt9fPSoYRgyeCAOJByFTqdF507tJGP1FArF9RTr2IOCgnDs2DHr55SUFAQGFioLBgQEoG7dumjVStQBiYyMxPTp9jocY8eOxdChQ222JSUl2S3EPgxiskDIk3ZcXEaO0+NUV7g06V6kQL5eexnIy8vDhg1bceXqDbR5tAUGDuxj15xCp9PSMAqFUgUo1rF37doVS5YsQXp6OjQaDeLj47FgwQLr/rZt2yI9PR0XL15E06ZNsXv3brRo0cJuHC8vL3h5eZXJWEalgCLAB5bkDLt96gYhZRq7OuDdu72Dhg2A9tHSS9PeuHEb3XsOQm6uHnq9ATqdFrVrh+CvfaLYlhQGgxFvzVuIZcvXwmQyY+CAPvjk43moXZv+nqoyhIiSu4JJnCixKk8wSi0V83Izil1NCwoKwowZMxATE4MhQ4YgMjISrVu3xoQJE3DmzBmo1Wp8+eWXmDt3LiIiInD48GHMmjXLJcYyDIOQOTFgiyxQMmolQueMdck13QlWrUTNaRKdgGQsHvliRqnHHf/CK0hJSUNurh6EEOTm6nH16g3MffNDh+dEDhqNb75djoyMLBgMRmzctA2duoQjK8s1C+sFmM1m/PrrRkyc9D+89/7nuHMn0aXXq04QQsDnpoLPSRH11M0G8Dkp4HNTK9s0SglxS3XHjD8ScPfjVTDdSYG6QQhC58TA+3H7isj/KhnbD+PuwpXg7mfBo2ML1FkwodTNRoxGI3xrNLHLeAHEDJrU5HN2248dP4U+fYfZSQRotRq8/94cTJvqWNSrLOj1BvToOQjXrt1Ert4AlUoJmUyGzZuWo9fjXV1yzeqEYMkDn3UP9q98Yts9Rl65GV+UQqqluqNvRFf4RtAb1RG+YZ3gW07NrEvzCn7u3EWwrP15BoMRR4+dLA+zJPli8fe4dPka8vLXYUz5PWrHxEzDzevHnEr3/C8j9kqVmucRCGYjZBXs2AkhYrMOhqGdmEoI/UunPBS1Wo0ePTrbZbgolUqMfHqw5DkNG9aXnOHL5TK0bNHEJXYCwK+/brQ69QfJzs7BxYtXJM6g2MCwkO6px+TvqzgEswFcxi1wGbfBpd8El3XPcbcmih3UsVOK5YfvPkNgoD88PXRgWRYeHjo0bFgPC96ZKXn8o62bw2y218TnOB7tyqD7UhxqtfSMUhAEh/sohbAqx8JorEq6IbcrIJwZfHayOFvPf4MgFiP47JLVvfyXoY69ipH22x6c6TYJxxuOwPmI15Bz8Gxlm4S6dUNx5dJBfPP1x5g/7zWsXPElThzf6TAjJj5+L7Rae71zhmEQFxfvMjsnToyBrsh1GYZB/fp1Ub9+XQCAyWTC3Dc/QHCtVvD2bYSnRozHjRu3XWaTO8GwMsi8ggCGgThzZwCGgcwrqEJDIbwxC1IhIcKZQTh7uQuKPW4ZY6+uJP+4BXc/XGEtMjKcuoJLY95B49Vvw/OxZpVqm0qlwtMOQi9FkQqHAIXNM1zFs2Ofxt69Cdi4aSsYhoFMJoOHTovf1v5gPeapEROwZ+8BGI1id6dNm7dj/1+HceHcfvj5+brMNneBVWrB+NXLj7cDjEJT8amOgv3bnmgMQAQODGg1c3HQGXsVgXC8jWqldXueGXcXrqwkq0rHE0/0BMfZF0TpdFoMGxbpsuvKZDKsWL4Uhw9uxaLP3sHKFV/i2tUjaNSoPgDg/PlLNk4dEMM0BoMBP/60ymV2uRsMw4BVakUnXwn564zcQXcrQsDIqFN3BjpjryJwGTkQTNKvmcaLNyvYmrIRGOiPhR/OxazZ78FstoDneeh0WkSEP1EhlanNmzdG8+aN7bafPXvBrloWELXmD5eySxPFBTjMvmEAmh3jFNSxVxFk3jowMhkI7F9DVXWCKsGisjF1yjj07NEFK1aug95gxNAhA9G3T49KrWBs0PARCIK9ppBKpUTLlk0dnpeSkoZ331uELVt2wNPLA9OmjsPz40bR9EkXQUyO5EEICGcCo5DoaUyxgTr2KgKrVCBoQhSSv9tsE45hNUqEvDaqEi0rPa1aNcNHC9+qbDOstGvbCi1aNMHJk+dsNOeVSiVemDBG8pysrGx06BiG1NT7sFjEh+6rr83HP/+cwddfLawQu/9zEAeCfgzjeB/FBjrlqELUevUZBE8dBtZTC8hYKGrWQL1Pp8O7T/vKNk2SCxcuY9nyNdi5a79dK72qCMMw2PrHKjz5ZDiUSgVkMhk6dGiDPbt+R61awZLn/PDjKmRkZFqdOiAWWq1YuQ63b9+tKNOtEEJAeA6kGjs4RqmFZD49ARg5na07A52xVyEYlkWtl0eg5vThICYLGLWySoov8TyP0TFTsWXLDrAsC5ZlUKOGH3bv/B116lRtkS9vby+sXP4luJ++AMdxUKsf7ij2FllsLUCpVOLEibMVKmrGG7MhGNKBfBUQRu0Bmc6/Sv6NlAVW7QkhLwfgLShMe2TA6vzA0PCXU9CfUhXAdCsZhvM3QPKrNRmWBatRVdkb9ptvl+GPP3bCaMyDXm9ATo4et28nYuSoiZVtmtPI5fJinToA1K9fV7LtH8/zCAmt6QrTJBHMBgj6+/mhCAKAgOTlgs+t2M5hFQHDsJD71BIduUIDRqWDzLsmZJqKb6bjrlDHnk/OoXO4MOh1/NN4JM48PhXpcX+7/JrmxFScD38VZ/u8iItDZ+Nkm7HI2HbI5dctK99+t8IuH53neZw6dQ5JSSmVZJVrmDL5WbsuUHK5HA0a1EO7tq0qzA7BkAH7oh0CYsqtlmEZhmEh03hD7l0Tcs8gsHTBtERQxw4g58h5XB7zNvT/XIJgyIPp6l3ceGUJUmO3u+yahBD8O3IeDOeug+SZIeiN4DNzcf3FRTD+e8tl1y0PpEITAMCyrMN97kqTJg3x+28/oVatYGg0aqhUSvTo0Qnb/lxdoW9UhH9Io5T/iIYKIQSCxQjBbJTs7EYphDp2AHfeXw7BaJtDLhhNuPPhShCJ9LjyQP/PJViS0+1a+glmC1J++dMl1ywvhg+LhEplXygSGOCPevVqV4JFrqXfEz1x8/oxnDm1FzevH8eO7WsRGOhfoTY4lMxlGICt/ktlgsUILv0m+Owk8DlJ4NJvQjAbKtusKgt17ADyHMyQBX0e+Cy9S65pSc0ApBaCeAHmxKrd2GDm69NQp04IdDotADEPXKfTYtmyJeU+i83OzsFvv8Vh3brNyMzMKtexSwLDMKhXrzb8/Uuna19WZDo/2GeKMGC1vlV2Laa8IAIPPitJXF8gJP+fAD47GUQoW8vH6kr1f9Q7gTI0EMYLN+y2MwoZZJ5al1xT17YxiIQCIqNRwatXO5dcs7zw8fHGP8d2YO26zdizNwH1H6mD58eNQkhI+S4mbty4FTFjX4Qsf/GS4zh8/92nGPn0kHK9jjvAyJWQ+9QCr08H4UwAK4dM61uhqouVBTE7nlwJplzIND6lH5u3QMjLASECWKUOjEJdLR6U1LEDqPXaM7g+7bMihUEqBL0wGIxERkR5oAzyQ+DYgUhduR2CQbwuo1RAEegL/xF9XHLN8kSj0WBszNMYG/O0S8ZPTk7FmLHT7GL2E154Fd27dURoaC2nxxIEAf/+exVKpQINGtQrZ0srDkaugty74jJxqgpiOFS6AUhZQqV8Xg6E3DTr2HxeDhilBjLPILd37jQUA7HjUJ0PJkEe4ANGLgProUHwlKGoNcM1TquA0DefQ71PXoSuQ1OoG9dG8JShaP7nJ5DpHIgg/YdYv+EPye2CIGDdb3FOj7P/r0Oo90gHdO4ajjbt+qLVo73x77+06YY7wSo1cNQARNxXcogg2Dj1/K0gZiNINYjdOzVjj4uLw9dffw2LxYJnn30W0dHRNvuXLl2K33//HV5eXgCAESNG2B1T1fEf3hs1hvWCoM8Dq1GCkblebIhhGPgN6g6/Qd1dfi13w2DIk+zCxHE89HrnbrzExCREDRpjc/zFi5fR54nhuHHtKBQKRbnZS3EdjFwFRqUDMenxYMESo9SUuhKVWIzis8LuRYBAMOW6fYirWMeenJyMRYsWYf369WI7tJEj0alTJzRs2NB6zNmzZ/HZZ5+hbVv3bijNMAxkHnS2XBUYOKAP5r/9sU0pPyAu1EaE93NqjOUr1tnJBxdowm/btgdRUf3LzV6Ka5F5BIAodRDysgGI1amMUlf6kAnDSEd3AOmXAzej2FBMQkICOnfuDB8fH2i1WoSFhWHbtm02x5w9exbff/89oqKi8M4778Bkkm60UJXhsnKR9N0mXJnwIe4sXAlzYvWr6HMnmjdvjMmTxkKrFRs9MAwDnU6LmDEj0LZtS6fGuH0n0drQ+kE4jkPiPdpmzZ1gGAasSicWLHnXBKvyKFMcnFFoHDhwBqzKq9TjVhWKnbGnpKQgICDA+jkwMBCnT5+2ftbr9WjWrBlmzpyJkJAQzJo1C1999RVmzJhhM052djays7NttiUlVY2by3zvPs6Hvwo+xwCSZwajlCPlpy1osmYBdG0aVbZ5sKRlwnjhJpQhAVDXd37R0N35aOFbiIoKw6pVv0MQCJ55Zige79nF6fN79eyClSt/h15vn1XRtctj5Wkqxc1gGAYyz2C7PqqM2qvUcfuqRLGOXarC68EnpU6nw/fff2/9PG7cOMyZM8fOsS9btgxLly4ti60u484Hy8GlZ1uLhYiZAzFzuPHaUrTY+UWl2UUIwe15PyI1djtYpQKChYOuTSM0/GkO5F7uHQN0lh7dO6FH906lOnfIkIFY+PGXuHjxsrVdn1arQUTEE2jVqnJbDVIqH1apAeNXF8Ssz0931IKRVY91l2Ide1BQEI4dO2b9nJKSgsDAQOvnxMREJCQkYPjw4QBEZyTVpWbs2LEYOnSozbakpKQqsciatfu4XQUoAORduQMuW19pTjR1VTzSVu8AMVnAm8RYs/74v7jxymI0/GF2pdhU0eTm6rFz534QQtC3bw94eXk6fa5CocC+PRuweMkPWP3rRqhUCrwwYQzGPfdMme0yGIzYuXM/LBYL+vbt4bCxN6Vqw7AsGLXzf1PuQrGOvWvXrliyZAnS09Oh0WgQHx+PBQsWWPer1Wp8/PHH6NSpE0JDQxEbG4t+/ewXt7y8vKxZM1UBLjMX6Rv3w3Q72fFBDANWUXmp/infb7bvgWrhkLX7OPhcY7Vf6I3bEo/o0VMgl8lAIGbE/PzTIgwfFuX0GDqdFrNnTcfsWdPLza7t8Xvx9MgXrG+unIXD119/hNHRw8rtGhRKWXBqxj5jxgzExMTAYrFg+PDhaN26NSZMmIDp06ejVatWeOeddzB58mRYLBa0a9cOzz33XEXYXmoM567h36fmglh4CEYTGIXcLvWJUcjh3acdWI2j/ouuh3MkZ8Aw1d6xp6SkYVT0FBiNtiqSz417GV06d3C6ytVisWDFyt8QG/s71GoVJowfjcGDB5R64S0zMwtPjRhvp245ecrr6NqlA+rXr1uqcSmU8sSp6WhUVBSiomxnSQ/G1cPCwhAWFla+lrmQa9MWgc8uzG0mFg5gGYBlREcuEKjq10S9T6ZVopWAV882SN+43y5MJPfzgiLI16XXPnv2In74MRapqfcRFdkfw4ZFVGje9+/rt0AqH00QCNb9FoeXX3qh2DF4nsfA8FE4cvSE1RH/feAIxowejqVLPiiVXZs2bwMr8VDgeR6rf92AN+a8XKpxKZTy5D8nKWBOTofplkQ2jkCgCPJF7XnjoKwdCF2bRpVeVhzyejSydh+HoM8TdWVkLFilAvU+mupS21as/A1Tps6E2WwBz/PY8scOLP3yJ+zauQ4qVcW8wej1RskCJYvFgtxc54TZ/ty6C8eOn7KZXev1BvyybA2mvzgejRs3KJVdvEQZu8XCIcdJuygUV/OfkxRgZKzDwgRWrYTfoO7waNu40p06AKhCAtBy9xIETRwMXYemqDGsF5rFfQTv3q4TCdPrDZg6bRaMxjxrH1O93oDTZ84jdtV6l123KAMH9JHsXKRWqzBwYF+nxoiP3yv5EGBZFnv3JZTKrv79Hpf8+9FqNIiMcK5wikJxNf85x67w94GmaR0x9PIAjFqJGk875zAqEkWAD0JnjkazjR/ikc+mQ9PUtTHcg4eOSWY1GQxGrFmzyaXXfpAWLZpg/Pho6LRa60NWp9MietSTaN+utVNjBATUsOt+BAAymQw1/EoXymrY8BFMnz7eWjhVYNeQoQPRrSvNjadUDf5zoRgAqP/Va7g4dDYEownEbAEjl0PXphGCJ/735GCLotNpHSrmeXl5VKgtn33yNgZFhSE29ncIhGDUM0PRt08Pp8+PGTMCH3/yld12mUInFTYAABMfSURBVEyGiIgnSm3Xe+/OxoABfbBixTqYzRaMHDkEYf17VYm3PAoFcFPHnrZ2FxI/WQ1zUjpUdYMQOmcsfAd2dvp8db2aaH34e2TtOArzvTTo2jSGrn0TemMC6NSxHTy9PO3ixTqtFhMnxlSoLQzDoHevbujdq1upzq9XrzZWxX6Nsc+KqY6CIMDT0wObNi5zqpH1wyhL4RSF4mrczrGnxm7H7fk/WfO7Tdfv4fr0z8B89Rp8+nV0ehxWqYBvRFdXmem2sCyLP+JWov+Ap8VqTUJgtnCYMWMinujbs7LNKzFRkf2RlHgah4+cgFKpwGMd2oCV6lxFoVQj3MqxE0Jw9+NVdkU7gtGMOx+sKJFjpzimVatmuHXjOHbvOYDMjCz06NEJtWoFV7ZZpUapVNLZNeU/hXs5dpNF1HSRwHSzagiKVRcUCgXC+veqbDMoFEopcKt3UkalgNxXWtdBVTuogq2hUCiUqol7OXaGQa1Xn7Er82fUSoTMGl1JVlGqO4QQJBw8ivlvf4JFn3+LxET6dkip2rhVKAYAAsYMACNjkfjpr7CkZEBZOxChc2LgO8D5rBgKxVkEQUDM2BcRtyUeBoMRSqUCb837CKtWfk07MFGqLG7n2BmGQUB0GAKiw0AIoSmKFJcSFxePuC3x1r6pBR2Zxoydhnt3T0Gjqb5CbBT3xa1CMUWhTr36YTQakXDwKC5cuFzZpgAAVsb+Jtk8W5QlOFgJFlEoxePWjp1Svfj5l18RXKs1IqPGoFOXgWjb7gncvn23Um2Syez1agqg+fCUqgr9y6RUCQ4dPo6XXp4Lvd6A7OwcGAxGnL9wCeGR0ZLtGSuKmJgR0Om09jsIQa/Hne+/SqFUJNSxU6oES5f+BKMxz2Ybz/O4desuTp06V0lWiSqT0aOehEajhlKpgE6nhVarwdq131eYhDGFUlLcbvGUUj25dy9ZcmYuk8mQmpZeCRaJMAyDr75ciMmTnsWOnfvg7e2FJ4eGw9fXp9JsolCKgzp2SpUgIqIfjhw9YTdrN5vNeKzDo5VkVSGtWjVDq1bNKtsMCsUpnArFxMXFITw8HP369UNsbKzD4/bu3Ys+ffqUm3GU/w4TxkejVq1gqNWF4Q2tVoO33nwFPj7elWgZheJ+FDtjT05OxqJFi7B+/XoolUqMHDkSnTp1QsOGDW2OS0tLw8KFC11mKKV64+npgSOHtuKrr3/Bps3b4O9fAy9Oe57q1VAopaDYGXtCQgI6d+4MHx8faLVahIWFYdu2bXbHzZ07F9OmVW7zZ4p74+3thdmzpuNQwp/YsnkFdeoUSikpdsaekpKCgIAA6+fAwECcPn3a5pjly5ejefPmePRRx7HQ7OxsZGfbKjMmJVHNDQqFQilvinXsUpkKD1Z8Xrp0CfHx8fjll18e6qiXLVuGpUuXltJMCoVCoThLsY49KCgIx44ds35OSUlBYGCg9fO2bduQmpqKYcOGwWKxICUlBaNGjcKqVatsxhk7diyGDh1qsy0pKQnR0dFl/Q4UCoVCeYBiHXvXrl2xZMkSpKenQ6PRID4+HgsWLLDunz59OqZPF3tK3rlzBzExMXZOHQC8vLzg5eVVjqZTKBQKRYpiF0+DgoIwY8YMxMTEYMiQIYiMjETr1q0xYcIEnDlzpiJspFAoFEoJcKpAKSoqClFRUTbbvv/+e7vjQkNDsXv37vKxjEKhUCilgmrFUCgUSjWDOnYKhUKpZlDHTqFQKNUM6tgpFAqlmkEdO4VCoVQzqGOnUCiUagZ17BQKhVLNoI6dQqFQqhnUsVMoFEo1gzp2CoVCqWZQx06hUCjVDOrYKRQKpZpBHTuFQqFUM6hjp1AolGoGdewUCoVSzaCOnUKhUKoZ1LFTKBRKNYM6dgqFQqlmOOXY4+LiEB4ejn79+iE2NtZu/44dOxAVFYWIiAjMmjULZrO53A2lUCgUinMU69iTk5OxaNEirFq1Cps2bcKaNWtw5coV636DwYB33nkHP//8M/744w+YTCZs2LDBpUZTKBQKxTHFOvaEhAR07twZPj4+0Gq1CAsLw7Zt26z7tVotdu/eDX9/fxgMBty/fx9eXl4uNZpCoVAojpEXd0BKSgoCAgKsnwMDA3H69GmbYxQKBfbt24fXX38dgYGB6N69u9042dnZyM7OttmWlJRUWrspFAqF4oBiHTshxG4bwzB22x5//HEcPnwYn332GebPn49PP/3UZv+yZcuwdOnSMphKoVAoFGco1rEHBQXh2LFj1s8pKSkIDAy0fs7MzMTZs2ets/SoqCjMmDHDbpyxY8di6NChNtuSkpIQHR1dauMpFAqFYk+xMfauXbvi4MGDSE9Ph9FoRHx8PHr27GndTwjB//73PyQmJgIAtm7dinbt2tmN4+XlhdDQUJt/wcHB5fhVKBQKhQI4OWOfMWMGYmJiYLFYMHz4cLRu3RoTJkzA9OnT0apVKyxYsAATJ04EwzBo2LAh3n777YqwnUKhUCgSMEQqiF5B3LlzB3379sWuXbsQGhpaWWZQKBSKW1Gc76SVpxQKhVLNoI6dQqFQqhnUsVMoFEo1gzp2CoVCqWZQx06pNBIOHkWfvsMQENQCHTsNwJY/dlS2SRRKtYA6dkql8NffhxE2YCT2/3UIGRmZ+OfEGYyKnozVv1IBOQqlrFDHTqkUZs1+F0Zjns02g8GI12cukJSxoFAozkMdO6VSOHv2ouT21NT70OsNFWwNhVK9oI6dUinUqiUtJ6HRqKHRqCvYGgqlekEdO6VSeHPuDGi1GpttWq0GM15+ATKZrJKsolCqB8VqxVAormDUM08iKysbb837CEZjHuQyGV56aQLmvmGvDEqhUEoGdeyUSmPypGfxwoQxuH8/A76+3lAoFJVtEoVSLaCOnVKpyGQyBAb6V7YZFEq1gsbYKRQKpZpBHTuFQqFUM6hjp1AolGoGdewUCoVSzaCOnUKhUKoZ1LFTKBRKNYM6dgqFQqlmVGoeO8/zAICkpKTKNINCoVDcigKfWeBDi1Kpjj01NRUAEB0dXZlmUCgUiluSmpqKunXr2m1nSCWKX+fl5eHs2bMICAgoVvgpKSkJ0dHRiI2NRXCwtDJgVcBd7ATcx1ZqZ/njLrZSO6XheR6pqalo2bIl1Gp7NdRKnbGr1Wp06NChROcEBwcjNDTURRaVH+5iJ+A+tlI7yx93sZXaaY/UTL0AunhKoVAo1Qzq2CkUCqWaQR07hUKhVDNk8+fPn1/ZRjiLSqVCp06doFKpKtuUh+IudgLuYyu1s/xxF1upnSWnUrNiKBQKhVL+0FAMhUKhVDOoY6dQKJRqhts49ri4OISHh6Nfv36IjY2tbHPsyM3NRWRkJO7cuQMASEhIQFRUFPr3749FixZVsnUiS5cuRUREBCIiIvDRRx8BqJp2fvHFFwgPD0dERAR+/vlnAFXTzgIWLlyIWbNmAQAuXLiAYcOGISwsDG+88QY4jqtk60RiYmIQERGBwYMHY/DgwTh16lSVvKd2796NJ598EgMGDMC7774LoOr97tetW2f9OQ4ePBjt27fHO++8U7XsJG5AUlIS6d27N8nIyCB6vZ5ERUWRy5cvV7ZZVk6ePEkiIyNJixYtyO3bt4nRaCSPP/44uXXrFrFYLGTcuHFk7969lWrjgQMHyNNPP01MJhMxm80kJiaGxMXFVTk7Dx8+TEaOHEksFgsxGo2kd+/e5MKFC1XOzgISEhJIp06dyMyZMwkhhERERJATJ04QQgiZPXs2iY2NrUzzCCGECIJAunXrRiwWi3VbVbynbt26Rbp3707u3btHzGYzeeaZZ8jevXur7O+eEEIuXbpE+vXrRxITE6uUnW4xY09ISEDnzp3h4+MDrVaLsLAwbNu2rbLNsrJ27VrMmzcPgYGBAIDTp0+jbt26qF27NuRyOaKioird3oCAAMyaNQtKpRIKhQINGjTAjRs3qpydHTt2xPLlyyGXy3H//n3wPI/s7OwqZycAZGZmYtGiRZg0aRIA4O7du8jLy0ObNm0AAE8++WSVsPPatWtgGAYTJkzAoEGDsHLlyip5T+3YsQPh4eEIDg6GQqHAokWLoNFoquTvvoD58+djxowZuH37dpWy0y0ce0pKCgICAqyfAwMDkZycXIkW2fLee+/ZSCNURXsbNWpkdTg3btzAn3/+CYZhqpydAKBQKLB48WJERESgS5cuVfLnCQBvvfUWZsyYAS8vLwD2v/eAgIAqYWd2dja6dPl/e3cf0mT3x3H8PczKh7CWJVJEGGVJKGUSKiYmyUwqI8M1xLAnyFBSiErsjyhIppAFkUVW/1g6zYxGZGhPBsPUqMyaWJiYGSmKldq2Nn9/RCN/3j3cvx/de7i/r/8urx2vj+dwfXc8znNFcurUKS5evEh5eTlv3751uj7t6urCarWyfft21q9fz6VLl5x27OHrhPPz588kJiY6XU6XKOxjf/GJTIVC4YAkv8eZ83Z0dLBt2zb279/PvHnzJpx3lpzZ2dkYDAZ6e3t5/fr1hPOOzllZWUlgYCCRkZH2rznruC9btgytVou3tzdKpZKUlBROnjw54XWOzmq1WjEYDBQWFqLT6WhtbbX/zep7js75TXl5ORkZGYDzjb1DNwH7XQEBATQ3N9uP379/b1/2cEYBAQH09/fbj50lb0tLC9nZ2eTl5ZGUlMTDhw+dLuerV68wm80sWbIELy8vEhISuHnz5rjdP50h540bN+jr62PDhg0MDQ0xMjKCQqEY1599fX0OzwnQ3NyMxWKxvwmNjY0xZ84cpxt7f39/IiMjUSqVAMTHxzvl2AOYzWaampooKCgAnO+ed4kZe1RUFAaDgYGBAUZHR7l16xarVq1ydKwfCgsLo7Oz0/6rpV6vd3je3t5e9uzZQ1FREUlJSU6b882bN+Tn52M2mzGbzdTX16NWq50u54ULF9Dr9Vy7do3s7GxWr17NsWPHmDJlCi0tLQDU1NQ4PCfAx48f0Wq1mEwmPn36xNWrVyksLHS6eyouLo4HDx7w4cMHrFYrDQ0NqFQqpxt7gPb2dubPn4+3tzfgfPeSy8zYc3JySE9Px2KxkJKSQmhoqKNj/dCUKVMoKCggKysLk8lEbGwsKpXKoZlKS0sxmUz2GQaAWq12upyxsbE8efKE5ORkPDw8SEhIICkpCaVS6VQ5f6SoqIj8/HyGh4cJCQkhPT3d0ZGIi4uz96nNZkOj0RAeHu5091RYWBg7duxAo9FgsViIjo5my5YtBAUFOd3Yd3d3j9t33dnuedlSQAgh3IxLLMUIIYT4fVLYhRDCzUhhF0IINyOFXQgh3IwUdiGEcDNS2IX4iQMHDlBaWvq32tTX19t3Jrx79y4nTpz4E9GE+CGX+By7EK4kPj6e+Ph4AFpbWxkaGnJwIvFvI4VduKTGxka0Wi0BAQF0d3czdepUCgoKmD17NocPH8ZoNKJQKIiJiSE3N5dJkyYREhLC1q1baWxsZGRkhNzcXBISEqiurqa2tpYzZ84ATDj+pqqqioqKCiwWC0NDQ+zcuRONRkN1dTVVVVWMjo7i6+vLxo0bqa2tJTMzk/LycqxWK9OmTePp06eoVCpSU1MBOH36NIODg+Tl5f3j/SfcmxR24bKeP3/OwYMHWbFiBZcvX2bfvn0sXLiQ6dOnc/36dSwWC7t37+b8+fPs2rULq9WKn58f1dXVGI1G0tLSxu3K+TPDw8NUVlZy9uxZZsyYwePHj8nIyECj0QDw8uVLbt++ja+vL9XV1cDX/6RUq9UMDg6Sk5NDXV0dJSUlpKamYrPZqKys5Ny5c3+sf8S/l6yxC5e1ePFie2HetGkTL168QK/Xk5aWhkKhYPLkyajVau7fv29vk5aWZm+7aNEimpqafutaPj4+lJSUcO/ePYqLiykpKWFkZMR+Pjg4GF9f359+j7i4OPr7+zEajTQ0NDB37lyCgoL+7o8txC9JYRcu6/td/+DrroX/vUOGzWYb93i679vYbDY8PDxQKBTj2lkslgnXevfuHcnJyfT09BAeHs7evXvHnf+2GdSv8qrVaqqqqrhy5QpqtfqXbYT4X0hhFy7LaDRiNBoBqKioYPny5SQmJlJWVsbY2BhmsxmdTkdUVJS9TU1NDQBtbW10dnYSERGBUqmko6MDk8nEly9fuHPnzoRrPXv2DKVSSWZmJjExMfbXWK3Wn2b08PAY98ayefNm6urqaGtrY82aNf93HwjxV2SNXbgsf39/iouL6enpQalUotVq8fHx4ejRo6xbtw6LxUJMTIz90XUAjx49QqfTYbPZOH78OH5+fkRHRxMREUFiYiKzZs1i5cqVtLe3j7tWdHQ0VVVVqFQqvLy8CA0NRalU0tXV9dOMkZGRZGVl4enpyaFDh5g5cyZLly5lwYIFeHp6/pF+EUJ2dxQuqbGxkSNHjqDX63+7TXBwMAaDwf4gB0cYGBggJSWFsrIyAgMDHZZDuDdZihHiH6LT6Vi7di3p6elS1MUfJTN2IYRwMzJjF0IINyOFXQgh3IwUdiGEcDNS2IUQws1IYRdCCDcjhV0IIdzMfwDhtz30d8hhswAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ], - "source": [ - "selection = df[['popularity','danceability']]\n", - "print(selection)\n", - "\n", - "from sklearn.cluster import KMeans\n", - "kmeans = KMeans(n_clusters = 3)\n", - "kmeans.fit(selection)\n", - "labels = kmeans.predict(selection)\n", - "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", - "plt.xlabel('danceability')\n", - "plt.xlabel('popularity')\n", - "plt.show()\n" - ] } ] } \ No newline at end of file