From a54c4e5f673be06a22aeededdc4cd87da63506c4 Mon Sep 17 00:00:00 2001 From: "localizeflow[bot]" Date: Thu, 29 Jan 2026 18:20:57 +0000 Subject: [PATCH] chore(i18n): sync translations with latest source changes (chunk 4/4, 148 changes) --- .../1-Introduction/2-history-of-ML/README.md | 155 + .../2-history-of-ML/assignment.md | 16 + .../pt-PT/1-Introduction/3-fairness/README.md | 161 + .../1-Introduction/3-fairness/assignment.md | 16 + .../4-techniques-of-ML/README.md | 123 + .../4-techniques-of-ML/assignment.md | 16 + translations/pt-PT/1-Introduction/README.md | 28 + .../pt-PT/2-Regression/1-Tools/README.md | 230 ++ .../pt-PT/2-Regression/1-Tools/assignment.md | 18 + .../pt-PT/2-Regression/1-Tools/notebook.ipynb | 0 .../1-Tools/solution/Julia/README.md | 6 + .../1-Tools/solution/R/lesson_1-R.ipynb | 449 +++ .../1-Tools/solution/notebook.ipynb | 675 ++++ .../pt-PT/2-Regression/2-Data/README.md | 217 ++ .../pt-PT/2-Regression/2-Data/assignment.md | 13 + .../pt-PT/2-Regression/2-Data/notebook.ipynb | 46 + .../2-Data/solution/Julia/README.md | 6 + .../2-Data/solution/R/lesson_2-R.ipynb | 666 ++++ .../2-Data/solution/notebook.ipynb | 437 +++ .../pt-PT/2-Regression/3-Linear/README.md | 371 +++ .../pt-PT/2-Regression/3-Linear/assignment.md | 16 + .../2-Regression/3-Linear/notebook.ipynb | 128 + .../3-Linear/solution/Julia/README.md | 6 + .../3-Linear/solution/R/lesson_3-R.ipynb | 1087 +++++++ .../3-Linear/solution/notebook.ipynb | 1111 +++++++ .../pt-PT/2-Regression/4-Logistic/README.md | 406 +++ .../2-Regression/4-Logistic/assignment.md | 16 + .../2-Regression/4-Logistic/notebook.ipynb | 269 ++ .../4-Logistic/solution/Julia/README.md | 6 + .../4-Logistic/solution/R/lesson_4-R.ipynb | 686 ++++ .../4-Logistic/solution/notebook.ipynb | 1255 ++++++++ translations/pt-PT/2-Regression/README.md | 45 + .../pt-PT/3-Web-App/1-Web-App/README.md | 350 ++ .../pt-PT/3-Web-App/1-Web-App/assignment.md | 16 + .../pt-PT/3-Web-App/1-Web-App/notebook.ipynb | 0 .../1-Web-App/solution/notebook.ipynb | 267 ++ translations/pt-PT/3-Web-App/README.md | 26 + .../4-Classification/1-Introduction/README.md | 304 ++ .../1-Introduction/assignment.md | 16 + .../1-Introduction/notebook.ipynb | 39 + .../1-Introduction/solution/Julia/README.md | 6 + .../solution/R/lesson_10-R.ipynb | 723 +++++ .../1-Introduction/solution/notebook.ipynb | 728 +++++ .../2-Classifiers-1/README.md | 244 ++ .../2-Classifiers-1/assignment.md | 14 + .../2-Classifiers-1/notebook.ipynb | 41 + .../2-Classifiers-1/solution/Julia/README.md | 6 + .../solution/R/lesson_11-R.ipynb | 1298 ++++++++ .../2-Classifiers-1/solution/notebook.ipynb | 281 ++ .../3-Classifiers-2/README.md | 240 ++ .../3-Classifiers-2/assignment.md | 16 + .../3-Classifiers-2/notebook.ipynb | 163 + .../3-Classifiers-2/solution/Julia/README.md | 6 + .../solution/R/lesson_12-R.ipynb | 650 ++++ .../3-Classifiers-2/solution/notebook.ipynb | 302 ++ .../4-Classification/4-Applied/README.md | 320 ++ .../4-Classification/4-Applied/assignment.md | 16 + .../4-Classification/4-Applied/notebook.ipynb | 39 + .../4-Applied/solution/notebook.ipynb | 290 ++ translations/pt-PT/4-Classification/README.md | 32 + .../pt-PT/5-Clustering/1-Visualize/README.md | 338 ++ .../5-Clustering/1-Visualize/assignment.md | 16 + .../5-Clustering/1-Visualize/notebook.ipynb | 50 + .../1-Visualize/solution/Julia/README.md | 6 + .../1-Visualize/solution/R/lesson_14-R.ipynb | 500 +++ .../1-Visualize/solution/notebook.ipynb | 817 +++++ .../pt-PT/5-Clustering/2-K-Means/README.md | 252 ++ .../5-Clustering/2-K-Means/assignment.md | 16 + .../5-Clustering/2-K-Means/notebook.ipynb | 231 ++ .../2-K-Means/solution/Julia/README.md | 6 + .../2-K-Means/solution/R/lesson_15-R.ipynb | 640 ++++ .../2-K-Means/solution/notebook.ipynb | 546 ++++ .../2-K-Means/solution/tester.ipynb | 343 ++ translations/pt-PT/5-Clustering/README.md | 33 + .../6-NLP/1-Introduction-to-NLP/README.md | 170 + .../6-NLP/1-Introduction-to-NLP/assignment.md | 16 + translations/pt-PT/6-NLP/2-Tasks/README.md | 219 ++ .../pt-PT/6-NLP/2-Tasks/assignment.md | 16 + .../6-NLP/3-Translation-Sentiment/README.md | 191 ++ .../3-Translation-Sentiment/assignment.md | 16 + .../solution/Julia/README.md | 6 + .../solution/R/README.md | 6 + .../solution/notebook.ipynb | 100 + .../pt-PT/6-NLP/4-Hotel-Reviews-1/README.md | 408 +++ .../6-NLP/4-Hotel-Reviews-1/assignment.md | 10 + .../6-NLP/4-Hotel-Reviews-1/notebook.ipynb | 0 .../solution/Julia/README.md | 6 + .../4-Hotel-Reviews-1/solution/R/README.md | 6 + .../4-Hotel-Reviews-1/solution/notebook.ipynb | 174 + .../pt-PT/6-NLP/5-Hotel-Reviews-2/README.md | 380 +++ .../6-NLP/5-Hotel-Reviews-2/assignment.md | 16 + .../6-NLP/5-Hotel-Reviews-2/notebook.ipynb | 0 .../solution/1-notebook.ipynb | 172 + .../solution/2-notebook.ipynb | 137 + .../solution/3-notebook.ipynb | 260 ++ .../solution/Julia/README.md | 6 + .../5-Hotel-Reviews-2/solution/R/README.md | 6 + translations/pt-PT/6-NLP/README.md | 29 + translations/pt-PT/6-NLP/data/README.md | 6 + .../7-TimeSeries/1-Introduction/README.md | 190 ++ .../7-TimeSeries/1-Introduction/assignment.md | 16 + .../1-Introduction/solution/Julia/README.md | 6 + .../1-Introduction/solution/R/README.md | 6 + .../1-Introduction/solution/notebook.ipynb | 170 + .../1-Introduction/working/notebook.ipynb | 63 + .../pt-PT/7-TimeSeries/2-ARIMA/README.md | 396 +++ .../pt-PT/7-TimeSeries/2-ARIMA/assignment.md | 16 + .../2-ARIMA/solution/Julia/README.md | 6 + .../7-TimeSeries/2-ARIMA/solution/R/README.md | 6 + .../2-ARIMA/solution/notebook.ipynb | 1122 +++++++ .../2-ARIMA/working/notebook.ipynb | 50 + .../pt-PT/7-TimeSeries/3-SVR/README.md | 384 +++ .../pt-PT/7-TimeSeries/3-SVR/assignment.md | 18 + .../3-SVR/solution/notebook.ipynb | 1019 ++++++ .../7-TimeSeries/3-SVR/working/notebook.ipynb | 695 ++++ translations/pt-PT/7-TimeSeries/README.md | 28 + .../8-Reinforcement/1-QLearning/README.md | 247 ++ .../8-Reinforcement/1-QLearning/assignment.md | 32 + .../1-QLearning/notebook.ipynb | 412 +++ .../1-QLearning/solution/Julia/README.md | 6 + .../1-QLearning/solution/R/README.md | 6 + .../solution/assignment-solution.ipynb | 478 +++ .../1-QLearning/solution/notebook.ipynb | 577 ++++ .../pt-PT/8-Reinforcement/2-Gym/README.md | 324 ++ .../pt-PT/8-Reinforcement/2-Gym/assignment.md | 48 + .../8-Reinforcement/2-Gym/notebook.ipynb | 392 +++ .../2-Gym/solution/Julia/README.md | 6 + .../2-Gym/solution/R/README.md | 6 + .../2-Gym/solution/notebook.ipynb | 524 +++ translations/pt-PT/8-Reinforcement/README.md | 58 + .../9-Real-World/1-Applications/README.md | 148 + .../9-Real-World/1-Applications/assignment.md | 18 + .../2-Debugging-ML-Models/README.md | 174 + .../2-Debugging-ML-Models/assignment.md | 16 + translations/pt-PT/9-Real-World/README.md | 23 + translations/pt-PT/AGENTS.md | 336 ++ translations/pt-PT/CODE_OF_CONDUCT.md | 14 + translations/pt-PT/CONTRIBUTING.md | 15 + translations/pt-PT/PyTorch_Fundamentals.ipynb | 2830 +++++++++++++++++ translations/pt-PT/README.md | 222 ++ translations/pt-PT/SECURITY.md | 42 + translations/pt-PT/SUPPORT.md | 20 + translations/pt-PT/TROUBLESHOOTING.md | 601 ++++ translations/pt-PT/docs/_sidebar.md | 48 + translations/pt-PT/for-teachers.md | 28 + translations/pt-PT/quiz-app/README.md | 118 + translations/pt-PT/sketchnotes/LICENSE.md | 111 + translations/pt-PT/sketchnotes/README.md | 12 + 148 files changed, 33346 insertions(+) create mode 100644 translations/pt-PT/1-Introduction/2-history-of-ML/README.md create mode 100644 translations/pt-PT/1-Introduction/2-history-of-ML/assignment.md create mode 100644 translations/pt-PT/1-Introduction/3-fairness/README.md create mode 100644 translations/pt-PT/1-Introduction/3-fairness/assignment.md create mode 100644 translations/pt-PT/1-Introduction/4-techniques-of-ML/README.md create mode 100644 translations/pt-PT/1-Introduction/4-techniques-of-ML/assignment.md create mode 100644 translations/pt-PT/1-Introduction/README.md create mode 100644 translations/pt-PT/2-Regression/1-Tools/README.md create mode 100644 translations/pt-PT/2-Regression/1-Tools/assignment.md create mode 100644 translations/pt-PT/2-Regression/1-Tools/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/1-Tools/solution/Julia/README.md create mode 100644 translations/pt-PT/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb create mode 100644 translations/pt-PT/2-Regression/1-Tools/solution/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/2-Data/README.md create mode 100644 translations/pt-PT/2-Regression/2-Data/assignment.md create mode 100644 translations/pt-PT/2-Regression/2-Data/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/2-Data/solution/Julia/README.md create mode 100644 translations/pt-PT/2-Regression/2-Data/solution/R/lesson_2-R.ipynb create mode 100644 translations/pt-PT/2-Regression/2-Data/solution/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/3-Linear/README.md create mode 100644 translations/pt-PT/2-Regression/3-Linear/assignment.md create mode 100644 translations/pt-PT/2-Regression/3-Linear/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/3-Linear/solution/Julia/README.md create mode 100644 translations/pt-PT/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb create mode 100644 translations/pt-PT/2-Regression/3-Linear/solution/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/4-Logistic/README.md create mode 100644 translations/pt-PT/2-Regression/4-Logistic/assignment.md create mode 100644 translations/pt-PT/2-Regression/4-Logistic/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/4-Logistic/solution/Julia/README.md create mode 100644 translations/pt-PT/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb create mode 100644 translations/pt-PT/2-Regression/4-Logistic/solution/notebook.ipynb create mode 100644 translations/pt-PT/2-Regression/README.md create mode 100644 translations/pt-PT/3-Web-App/1-Web-App/README.md create mode 100644 translations/pt-PT/3-Web-App/1-Web-App/assignment.md create mode 100644 translations/pt-PT/3-Web-App/1-Web-App/notebook.ipynb create mode 100644 translations/pt-PT/3-Web-App/1-Web-App/solution/notebook.ipynb create mode 100644 translations/pt-PT/3-Web-App/README.md create mode 100644 translations/pt-PT/4-Classification/1-Introduction/README.md create mode 100644 translations/pt-PT/4-Classification/1-Introduction/assignment.md create mode 100644 translations/pt-PT/4-Classification/1-Introduction/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/1-Introduction/solution/Julia/README.md create mode 100644 translations/pt-PT/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb create mode 100644 translations/pt-PT/4-Classification/1-Introduction/solution/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/README.md create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/assignment.md create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/solution/Julia/README.md create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb create mode 100644 translations/pt-PT/4-Classification/2-Classifiers-1/solution/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/README.md create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/assignment.md create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/solution/Julia/README.md create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb create mode 100644 translations/pt-PT/4-Classification/3-Classifiers-2/solution/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/4-Applied/README.md create mode 100644 translations/pt-PT/4-Classification/4-Applied/assignment.md create mode 100644 translations/pt-PT/4-Classification/4-Applied/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/4-Applied/solution/notebook.ipynb create mode 100644 translations/pt-PT/4-Classification/README.md create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/README.md create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/assignment.md create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/notebook.ipynb create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/solution/Julia/README.md create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb create mode 100644 translations/pt-PT/5-Clustering/1-Visualize/solution/notebook.ipynb create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/README.md create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/assignment.md create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/notebook.ipynb create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/solution/Julia/README.md create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/solution/notebook.ipynb create mode 100644 translations/pt-PT/5-Clustering/2-K-Means/solution/tester.ipynb create mode 100644 translations/pt-PT/5-Clustering/README.md create mode 100644 translations/pt-PT/6-NLP/1-Introduction-to-NLP/README.md create mode 100644 translations/pt-PT/6-NLP/1-Introduction-to-NLP/assignment.md create mode 100644 translations/pt-PT/6-NLP/2-Tasks/README.md create mode 100644 translations/pt-PT/6-NLP/2-Tasks/assignment.md create mode 100644 translations/pt-PT/6-NLP/3-Translation-Sentiment/README.md create mode 100644 translations/pt-PT/6-NLP/3-Translation-Sentiment/assignment.md create mode 100644 translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/Julia/README.md create mode 100644 translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/R/README.md create mode 100644 translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/README.md create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/assignment.md create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/R/README.md create mode 100644 translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/README.md create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/assignment.md create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md create mode 100644 translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/R/README.md create mode 100644 translations/pt-PT/6-NLP/README.md create mode 100644 translations/pt-PT/6-NLP/data/README.md create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/README.md create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/assignment.md create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/solution/Julia/README.md create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/solution/R/README.md create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/solution/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/1-Introduction/working/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/README.md create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/assignment.md create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/solution/Julia/README.md create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/solution/R/README.md create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/solution/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/2-ARIMA/working/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/3-SVR/README.md create mode 100644 translations/pt-PT/7-TimeSeries/3-SVR/assignment.md create mode 100644 translations/pt-PT/7-TimeSeries/3-SVR/solution/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/3-SVR/working/notebook.ipynb create mode 100644 translations/pt-PT/7-TimeSeries/README.md create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/README.md create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/assignment.md create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/notebook.ipynb create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/solution/Julia/README.md create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/solution/R/README.md create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb create mode 100644 translations/pt-PT/8-Reinforcement/1-QLearning/solution/notebook.ipynb create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/README.md create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/assignment.md create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/notebook.ipynb create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/solution/Julia/README.md create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/solution/R/README.md create mode 100644 translations/pt-PT/8-Reinforcement/2-Gym/solution/notebook.ipynb create mode 100644 translations/pt-PT/8-Reinforcement/README.md create mode 100644 translations/pt-PT/9-Real-World/1-Applications/README.md create mode 100644 translations/pt-PT/9-Real-World/1-Applications/assignment.md create mode 100644 translations/pt-PT/9-Real-World/2-Debugging-ML-Models/README.md create mode 100644 translations/pt-PT/9-Real-World/2-Debugging-ML-Models/assignment.md create mode 100644 translations/pt-PT/9-Real-World/README.md create mode 100644 translations/pt-PT/AGENTS.md create mode 100644 translations/pt-PT/CODE_OF_CONDUCT.md create mode 100644 translations/pt-PT/CONTRIBUTING.md create mode 100644 translations/pt-PT/PyTorch_Fundamentals.ipynb create mode 100644 translations/pt-PT/README.md create mode 100644 translations/pt-PT/SECURITY.md create mode 100644 translations/pt-PT/SUPPORT.md create mode 100644 translations/pt-PT/TROUBLESHOOTING.md create mode 100644 translations/pt-PT/docs/_sidebar.md create mode 100644 translations/pt-PT/for-teachers.md create mode 100644 translations/pt-PT/quiz-app/README.md create mode 100644 translations/pt-PT/sketchnotes/LICENSE.md create mode 100644 translations/pt-PT/sketchnotes/README.md diff --git a/translations/pt-PT/1-Introduction/2-history-of-ML/README.md b/translations/pt-PT/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..6a89bae65 --- /dev/null +++ b/translations/pt-PT/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,155 @@ +# História da aprendizagem automática + +![Resumo da História da aprendizagem automática em um sketchnote](../../../../sketchnotes/ml-history.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +--- + +[![ML para iniciantes - História da Aprendizagem Automática](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "ML para iniciantes - História da Aprendizagem Automática") + +> 🎥 Clique na imagem acima para assistir a um vídeo curto sobre esta lição. + +Nesta lição, vamos explorar os principais marcos na história da aprendizagem automática e da inteligência artificial. + +A história da inteligência artificial (IA) como campo está entrelaçada com a história da aprendizagem automática, já que os algoritmos e avanços computacionais que sustentam a aprendizagem automática contribuíram para o desenvolvimento da IA. É útil lembrar que, embora esses campos como áreas distintas de investigação tenham começado a se cristalizar na década de 1950, importantes [descobertas algorítmicas, estatísticas, matemáticas, computacionais e técnicas](https://wikipedia.org/wiki/Timeline_of_machine_learning) precederam e se sobrepuseram a essa era. Na verdade, as pessoas têm pensado sobre essas questões há [centenas de anos](https://wikipedia.org/wiki/History_of_artificial_intelligence): este artigo discute os fundamentos intelectuais históricos da ideia de uma 'máquina pensante'. + +--- +## Descobertas notáveis + +- 1763, 1812 [Teorema de Bayes](https://wikipedia.org/wiki/Bayes%27_theorem) e seus predecessores. Este teorema e suas aplicações fundamentam a inferência, descrevendo a probabilidade de um evento ocorrer com base em conhecimento prévio. +- 1805 [Teoria dos Mínimos Quadrados](https://wikipedia.org/wiki/Least_squares) pelo matemático francês Adrien-Marie Legendre. Esta teoria, que você aprenderá na nossa unidade de Regressão, ajuda no ajuste de dados. +- 1913 [Cadeias de Markov](https://wikipedia.org/wiki/Markov_chain), nomeadas em homenagem ao matemático russo Andrey Markov, são usadas para descrever uma sequência de eventos possíveis com base em um estado anterior. +- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) é um tipo de classificador linear inventado pelo psicólogo americano Frank Rosenblatt que fundamenta avanços em aprendizagem profunda. + +--- + +- 1967 [Vizinho Mais Próximo](https://wikipedia.org/wiki/Nearest_neighbor) é um algoritmo originalmente projetado para mapear rotas. No contexto de aprendizagem automática, é usado para detectar padrões. +- 1970 [Retropropagação](https://wikipedia.org/wiki/Backpropagation) é usada para treinar [redes neurais feedforward](https://wikipedia.org/wiki/Feedforward_neural_network). +- 1982 [Redes Neurais Recorrentes](https://wikipedia.org/wiki/Recurrent_neural_network) são redes neurais artificiais derivadas de redes neurais feedforward que criam gráficos temporais. + +✅ Faça uma pequena pesquisa. Quais outras datas se destacam como marcos na história da aprendizagem automática e da IA? + +--- +## 1950: Máquinas que pensam + +Alan Turing, uma pessoa verdadeiramente notável que foi eleito [pelo público em 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) como o maior cientista do século XX, é creditado por ajudar a estabelecer as bases para o conceito de uma 'máquina que pode pensar'. Ele enfrentou críticos e sua própria necessidade de evidências empíricas desse conceito, em parte criando o [Teste de Turing](https://www.bbc.com/news/technology-18475646), que você explorará nas nossas lições de PNL. + +--- +## 1956: Projeto de Pesquisa de Verão em Dartmouth + +"O Projeto de Pesquisa de Verão em Dartmouth sobre inteligência artificial foi um evento seminal para a inteligência artificial como campo", e foi aqui que o termo 'inteligência artificial' foi cunhado ([fonte](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)). + +> Todo aspecto de aprendizagem ou qualquer outra característica da inteligência pode, em princípio, ser descrito tão precisamente que uma máquina pode ser feita para simulá-lo. + +--- + +O pesquisador principal, professor de matemática John McCarthy, esperava "prosseguir com base na conjectura de que todo aspecto de aprendizagem ou qualquer outra característica da inteligência pode, em princípio, ser descrito tão precisamente que uma máquina pode ser feita para simulá-lo." Os participantes incluíram outro luminar na área, Marvin Minsky. + +O workshop é creditado por ter iniciado e incentivado várias discussões, incluindo "a ascensão de métodos simbólicos, sistemas focados em domínios limitados (primeiros sistemas especialistas) e sistemas dedutivos versus sistemas indutivos." ([fonte](https://wikipedia.org/wiki/Dartmouth_workshop)). + +--- +## 1956 - 1974: "Os anos dourados" + +Dos anos 1950 até meados dos anos 70, o otimismo era alto na esperança de que a IA pudesse resolver muitos problemas. Em 1967, Marvin Minsky afirmou confiantemente que "Dentro de uma geração ... o problema de criar 'inteligência artificial' será substancialmente resolvido." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) + +A pesquisa em processamento de linguagem natural floresceu, a busca foi refinada e tornou-se mais poderosa, e o conceito de 'micro-mundos' foi criado, onde tarefas simples eram realizadas usando instruções em linguagem simples. + +--- + +A pesquisa foi bem financiada por agências governamentais, avanços foram feitos em computação e algoritmos, e protótipos de máquinas inteligentes foram construídos. Algumas dessas máquinas incluem: + +* [Shakey o robô](https://wikipedia.org/wiki/Shakey_the_robot), que podia se movimentar e decidir como realizar tarefas 'inteligentemente'. + + ![Shakey, um robô inteligente](../../../../1-Introduction/2-history-of-ML/images/shakey.jpg) + > Shakey em 1972 + +--- + +* Eliza, um dos primeiros 'chatterbots', podia conversar com pessoas e agir como um 'terapeuta' primitivo. Você aprenderá mais sobre Eliza nas lições de PNL. + + ![Eliza, um bot](../../../../1-Introduction/2-history-of-ML/images/eliza.png) + > Uma versão de Eliza, um chatbot + +--- + +* "Blocks world" foi um exemplo de micro-mundo onde blocos podiam ser empilhados e organizados, e experimentos em ensinar máquinas a tomar decisões podiam ser testados. Avanços construídos com bibliotecas como [SHRDLU](https://wikipedia.org/wiki/SHRDLU) ajudaram a impulsionar o processamento de linguagem. + + [![blocks world com SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world com SHRDLU") + + > 🎥 Clique na imagem acima para assistir a um vídeo: Blocks world com SHRDLU + +--- +## 1974 - 1980: "Inverno da IA" + +Por volta de meados dos anos 1970, tornou-se evidente que a complexidade de criar 'máquinas inteligentes' havia sido subestimada e que sua promessa, dada a potência computacional disponível, havia sido exagerada. O financiamento secou e a confiança na área diminuiu. Alguns problemas que impactaram a confiança incluíram: +--- +- **Limitações**. A potência computacional era muito limitada. +- **Explosão combinatória**. A quantidade de parâmetros necessários para treinar cresceu exponencialmente à medida que mais era exigido dos computadores, sem uma evolução paralela da potência e capacidade computacional. +- **Escassez de dados**. Havia uma escassez de dados que dificultava o processo de testar, desenvolver e refinar algoritmos. +- **Estamos fazendo as perguntas certas?**. As próprias perguntas que estavam sendo feitas começaram a ser questionadas. Pesquisadores começaram a enfrentar críticas sobre suas abordagens: + - Os testes de Turing foram questionados por meio, entre outras ideias, da 'teoria da sala chinesa', que postulava que, "programar um computador digital pode fazê-lo parecer entender a linguagem, mas não poderia produzir compreensão real." ([fonte](https://plato.stanford.edu/entries/chinese-room/)) + - A ética de introduzir inteligências artificiais como o "terapeuta" ELIZA na sociedade foi desafiada. + +--- + +Ao mesmo tempo, várias escolas de pensamento sobre IA começaram a se formar. Uma dicotomia foi estabelecida entre práticas de ["IA desleixada" vs. "IA organizada"](https://wikipedia.org/wiki/Neats_and_scruffies). Laboratórios _desleixados_ ajustavam programas por horas até obterem os resultados desejados. Laboratórios _organizados_ "focavam em lógica e resolução formal de problemas". ELIZA e SHRDLU eram sistemas _desleixados_ bem conhecidos. Nos anos 1980, à medida que surgia a demanda por tornar os sistemas de aprendizagem automática reproduzíveis, a abordagem _organizada_ gradualmente tomou a dianteira, pois seus resultados são mais explicáveis. + +--- +## Sistemas especialistas nos anos 1980 + +À medida que a área crescia, seus benefícios para os negócios tornaram-se mais claros, e nos anos 1980 também ocorreu a proliferação de 'sistemas especialistas'. "Os sistemas especialistas estavam entre as primeiras formas verdadeiramente bem-sucedidas de software de inteligência artificial (IA)." ([fonte](https://wikipedia.org/wiki/Expert_system)). + +Este tipo de sistema é na verdade _híbrido_, consistindo parcialmente de um motor de regras que define os requisitos de negócios e um motor de inferência que utiliza o sistema de regras para deduzir novos fatos. + +Esta era também viu uma atenção crescente às redes neurais. + +--- +## 1987 - 1993: "Resfriamento da IA" + +A proliferação de hardware especializado para sistemas especialistas teve o efeito infeliz de se tornar muito especializado. O surgimento dos computadores pessoais também competiu com esses sistemas grandes, especializados e centralizados. A democratização da computação havia começado, e isso eventualmente abriu caminho para a explosão moderna de big data. + +--- +## 1993 - 2011 + +Este período viu uma nova era para a aprendizagem automática e a IA resolverem alguns dos problemas causados anteriormente pela falta de dados e potência computacional. A quantidade de dados começou a aumentar rapidamente e a se tornar mais amplamente disponível, para o bem e para o mal, especialmente com o advento do smartphone por volta de 2007. A potência computacional expandiu-se exponencialmente, e os algoritmos evoluíram junto. A área começou a ganhar maturidade à medida que os dias livres do passado começaram a se cristalizar em uma verdadeira disciplina. + +--- +## Hoje + +Hoje, a aprendizagem automática e a IA tocam quase todas as partes de nossas vidas. Esta era exige uma compreensão cuidadosa dos riscos e dos potenciais efeitos desses algoritmos na vida humana. Como Brad Smith, da Microsoft, afirmou: "A tecnologia da informação levanta questões que vão ao cerne das proteções fundamentais dos direitos humanos, como privacidade e liberdade de expressão. Essas questões aumentam a responsabilidade das empresas de tecnologia que criam esses produtos. Em nossa visão, elas também exigem uma regulamentação governamental cuidadosa e o desenvolvimento de normas sobre usos aceitáveis" ([fonte](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)). + +--- + +Ainda não se sabe o que o futuro reserva, mas é importante entender esses sistemas computacionais e o software e os algoritmos que eles executam. Esperamos que este currículo o ajude a obter uma melhor compreensão para que você possa decidir por si mesmo. + +[![A história da aprendizagem profunda](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "A história da aprendizagem profunda") +> 🎥 Clique na imagem acima para assistir a um vídeo: Yann LeCun discute a história da aprendizagem profunda nesta palestra + +--- +## 🚀Desafio + +Aprofunde-se em um desses momentos históricos e aprenda mais sobre as pessoas por trás deles. Há personagens fascinantes, e nenhuma descoberta científica foi criada em um vácuo cultural. O que você descobre? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +--- +## Revisão e Estudo Individual + +Aqui estão itens para assistir e ouvir: + +[Este podcast onde Amy Boyd discute a evolução da IA](http://runasradio.com/Shows/Show/739) + +[![A história da IA por Amy Boyd](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "A história da IA por Amy Boyd") + +--- + +## Tarefa + +[Criar uma linha do tempo](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/2-history-of-ML/assignment.md b/translations/pt-PT/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..6b978b59b --- /dev/null +++ b/translations/pt-PT/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,16 @@ +# Criar uma linha do tempo + +## Instruções + +Usando [este repositório](https://github.com/Digital-Humanities-Toolkit/timeline-builder), crie uma linha do tempo sobre algum aspecto da história dos algoritmos, matemática, estatística, IA ou ML, ou uma combinação destes. Pode focar numa pessoa, numa ideia ou num longo período de pensamento. Certifique-se de adicionar elementos multimédia. + +## Critérios de Avaliação + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | ------------------------------------------------ | --------------------------------------- | ---------------------------------------------------------------- | +| | Uma linha do tempo publicada é apresentada como uma página no GitHub | O código está incompleto e não foi publicado | A linha do tempo está incompleta, pouco pesquisada e não foi publicada | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/3-fairness/README.md b/translations/pt-PT/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..1de1ba34b --- /dev/null +++ b/translations/pt-PT/1-Introduction/3-fairness/README.md @@ -0,0 +1,161 @@ +# Construir soluções de Machine Learning com IA responsável + +![Resumo da IA responsável em Machine Learning em um sketchnote](../../../../sketchnotes/ml-fairness.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Introdução + +Neste currículo, começará a descobrir como o machine learning pode impactar e já está a impactar as nossas vidas diárias. Mesmo agora, sistemas e modelos estão envolvidos em tarefas de tomada de decisão diária, como diagnósticos de saúde, aprovações de empréstimos ou deteção de fraudes. Por isso, é importante que esses modelos funcionem bem para fornecer resultados confiáveis. Assim como qualquer aplicação de software, os sistemas de IA podem falhar em atender às expectativas ou gerar resultados indesejáveis. É por isso que é essencial compreender e explicar o comportamento de um modelo de IA. + +Imagine o que pode acontecer quando os dados que utiliza para construir esses modelos não incluem certos grupos demográficos, como raça, género, visão política, religião, ou representam esses grupos de forma desproporcional. E se a saída do modelo for interpretada de forma a favorecer um grupo demográfico? Qual é a consequência para a aplicação? Além disso, o que acontece quando o modelo gera um resultado adverso e prejudica as pessoas? Quem é responsável pelo comportamento dos sistemas de IA? Estas são algumas questões que exploraremos neste currículo. + +Nesta lição, irá: + +- Aumentar a sua consciência sobre a importância da equidade no machine learning e os danos relacionados com a falta de equidade. +- Familiarizar-se com a prática de explorar outliers e cenários incomuns para garantir fiabilidade e segurança. +- Compreender a necessidade de capacitar todos ao projetar sistemas inclusivos. +- Explorar como é vital proteger a privacidade e a segurança dos dados e das pessoas. +- Perceber a importância de uma abordagem de "caixa de vidro" para explicar o comportamento dos modelos de IA. +- Ter em mente como a responsabilidade é essencial para construir confiança nos sistemas de IA. + +## Pré-requisito + +Como pré-requisito, faça o percurso de aprendizagem "Princípios de IA Responsável" e assista ao vídeo abaixo sobre o tema: + +Saiba mais sobre IA Responsável seguindo este [Percurso de Aprendizagem](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) + +[![Abordagem da Microsoft para IA Responsável](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Abordagem da Microsoft para IA Responsável") + +> 🎥 Clique na imagem acima para assistir ao vídeo: Abordagem da Microsoft para IA Responsável + +## Equidade + +Os sistemas de IA devem tratar todos de forma justa e evitar afetar grupos semelhantes de pessoas de maneiras diferentes. Por exemplo, quando os sistemas de IA fornecem orientações sobre tratamentos médicos, aplicações de empréstimos ou emprego, devem fazer as mesmas recomendações para todos com sintomas, circunstâncias financeiras ou qualificações profissionais semelhantes. Cada um de nós, como seres humanos, carrega preconceitos herdados que afetam as nossas decisões e ações. Esses preconceitos podem ser evidentes nos dados que usamos para treinar sistemas de IA. Tal manipulação pode, por vezes, ocorrer de forma não intencional. Muitas vezes, é difícil perceber conscientemente quando está a introduzir preconceitos nos dados. + +**"Injustiça"** abrange impactos negativos, ou "danos", para um grupo de pessoas, como aqueles definidos em termos de raça, género, idade ou deficiência. Os principais danos relacionados com a equidade podem ser classificados como: + +- **Alocação**, se, por exemplo, um género ou etnia for favorecido em detrimento de outro. +- **Qualidade do serviço**. Se treinar os dados para um cenário específico, mas a realidade for muito mais complexa, isso leva a um serviço de desempenho inferior. Por exemplo, um dispensador de sabão que não consegue detetar pessoas com pele escura. [Referência](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **Denigração**. Criticar ou rotular algo ou alguém de forma injusta. Por exemplo, uma tecnologia de rotulagem de imagens que, de forma infame, rotulou imagens de pessoas de pele escura como gorilas. +- **Sobre ou sub-representação**. A ideia de que um determinado grupo não é visto numa certa profissão, e qualquer serviço ou função que continue a promover isso está a contribuir para o dano. +- **Estereotipagem**. Associar um grupo a atributos pré-definidos. Por exemplo, um sistema de tradução entre inglês e turco pode apresentar imprecisões devido a palavras com associações estereotipadas de género. + +![tradução para turco](../../../../1-Introduction/3-fairness/images/gender-bias-translate-en-tr.png) +> tradução para turco + +![tradução de volta para inglês](../../../../1-Introduction/3-fairness/images/gender-bias-translate-tr-en.png) +> tradução de volta para inglês + +Ao projetar e testar sistemas de IA, precisamos garantir que a IA seja justa e não programada para tomar decisões enviesadas ou discriminatórias, que também são proibidas para os seres humanos. Garantir a equidade na IA e no machine learning continua a ser um desafio sociotécnico complexo. + +### Fiabilidade e segurança + +Para construir confiança, os sistemas de IA precisam ser fiáveis, seguros e consistentes em condições normais e inesperadas. É importante saber como os sistemas de IA se comportarão numa variedade de situações, especialmente quando se trata de outliers. Ao construir soluções de IA, é necessário focar-se substancialmente em como lidar com uma ampla variedade de circunstâncias que as soluções de IA podem encontrar. Por exemplo, um carro autónomo precisa de colocar a segurança das pessoas como prioridade máxima. Como resultado, a IA que alimenta o carro precisa de considerar todos os cenários possíveis que o carro pode encontrar, como noite, tempestades, nevascas, crianças a atravessar a rua, animais de estimação, obras na estrada, etc. O quão bem um sistema de IA consegue lidar com uma ampla gama de condições de forma fiável e segura reflete o nível de antecipação que o cientista de dados ou desenvolvedor de IA considerou durante o design ou teste do sistema. + +> [🎥 Clique aqui para um vídeo: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### Inclusividade + +Os sistemas de IA devem ser projetados para envolver e capacitar todos. Ao projetar e implementar sistemas de IA, cientistas de dados e desenvolvedores de IA identificam e abordam potenciais barreiras no sistema que poderiam, de forma não intencional, excluir pessoas. Por exemplo, existem 1 bilião de pessoas com deficiência em todo o mundo. Com o avanço da IA, elas podem aceder a uma ampla gama de informações e oportunidades mais facilmente nas suas vidas diárias. Ao abordar essas barreiras, criam-se oportunidades para inovar e desenvolver produtos de IA com melhores experiências que beneficiam todos. + +> [🎥 Clique aqui para um vídeo: inclusividade na IA](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### Segurança e privacidade + +Os sistemas de IA devem ser seguros e respeitar a privacidade das pessoas. As pessoas têm menos confiança em sistemas que colocam a sua privacidade, informações ou vidas em risco. Ao treinar modelos de machine learning, confiamos nos dados para produzir os melhores resultados. Ao fazê-lo, a origem e a integridade dos dados devem ser consideradas. Por exemplo, os dados foram submetidos por utilizadores ou estavam disponíveis publicamente? Além disso, ao trabalhar com os dados, é crucial desenvolver sistemas de IA que possam proteger informações confidenciais e resistir a ataques. À medida que a IA se torna mais prevalente, proteger a privacidade e garantir a segurança de informações pessoais e empresariais importantes está a tornar-se mais crítico e complexo. Questões de privacidade e segurança de dados requerem atenção especial para a IA, pois o acesso aos dados é essencial para que os sistemas de IA façam previsões e decisões precisas e informadas sobre as pessoas. + +> [🎥 Clique aqui para um vídeo: segurança na IA](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- Como indústria, fizemos avanços significativos em privacidade e segurança, impulsionados significativamente por regulamentações como o RGPD (Regulamento Geral de Proteção de Dados). +- No entanto, com os sistemas de IA, devemos reconhecer a tensão entre a necessidade de mais dados pessoais para tornar os sistemas mais personalizados e eficazes – e a privacidade. +- Assim como com o nascimento de computadores conectados à internet, também estamos a assistir a um grande aumento no número de problemas de segurança relacionados com a IA. +- Ao mesmo tempo, vimos a IA ser usada para melhorar a segurança. Por exemplo, a maioria dos scanners antivírus modernos é alimentada por heurísticas de IA. +- Precisamos garantir que os nossos processos de ciência de dados se harmonizem com as práticas mais recentes de privacidade e segurança. + +### Transparência + +Os sistemas de IA devem ser compreensíveis. Uma parte crucial da transparência é explicar o comportamento dos sistemas de IA e os seus componentes. Melhorar a compreensão dos sistemas de IA exige que as partes interessadas compreendam como e por que funcionam, para que possam identificar potenciais problemas de desempenho, preocupações com segurança e privacidade, preconceitos, práticas de exclusão ou resultados indesejados. Também acreditamos que aqueles que usam sistemas de IA devem ser honestos e claros sobre quando, por que e como escolhem implementá-los, bem como as limitações dos sistemas que utilizam. Por exemplo, se um banco usa um sistema de IA para apoiar as suas decisões de concessão de crédito, é importante examinar os resultados e entender quais dados influenciam as recomendações do sistema. Os governos estão a começar a regulamentar a IA em vários setores, por isso, cientistas de dados e organizações devem explicar se um sistema de IA atende aos requisitos regulamentares, especialmente quando há um resultado indesejável. + +> [🎥 Clique aqui para um vídeo: transparência na IA](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- Como os sistemas de IA são tão complexos, é difícil entender como funcionam e interpretar os resultados. +- Essa falta de compreensão afeta a forma como esses sistemas são geridos, operacionalizados e documentados. +- Mais importante ainda, essa falta de compreensão afeta as decisões tomadas com base nos resultados produzidos por esses sistemas. + +### Responsabilidade + +As pessoas que projetam e implementam sistemas de IA devem ser responsáveis pelo funcionamento dos seus sistemas. A necessidade de responsabilidade é particularmente crucial com tecnologias sensíveis, como o reconhecimento facial. Recentemente, tem havido uma crescente procura por tecnologia de reconhecimento facial, especialmente por parte de organizações de aplicação da lei que veem o potencial da tecnologia em usos como encontrar crianças desaparecidas. No entanto, essas tecnologias podem ser usadas por um governo para colocar em risco as liberdades fundamentais dos seus cidadãos, por exemplo, ao permitir a vigilância contínua de indivíduos específicos. Por isso, cientistas de dados e organizações precisam ser responsáveis pelo impacto dos seus sistemas de IA em indivíduos ou na sociedade. + +[![Investigador líder em IA alerta para vigilância em massa através do reconhecimento facial](../../../../1-Introduction/3-fairness/images/accountability.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Abordagem da Microsoft para IA Responsável") + +> 🎥 Clique na imagem acima para assistir ao vídeo: Alertas sobre Vigilância em Massa através do Reconhecimento Facial + +Em última análise, uma das maiores questões para a nossa geração, como a primeira geração a trazer a IA para a sociedade, é como garantir que os computadores permaneçam responsáveis perante as pessoas e como garantir que as pessoas que projetam computadores sejam responsáveis perante todos os outros. + +## Avaliação de impacto + +Antes de treinar um modelo de machine learning, é importante realizar uma avaliação de impacto para entender o propósito do sistema de IA; qual é o uso pretendido; onde será implementado; e quem interagirá com o sistema. Estas avaliações são úteis para os revisores ou testadores avaliarem o sistema e saberem quais fatores considerar ao identificar potenciais riscos e consequências esperadas. + +As seguintes áreas devem ser focadas ao realizar uma avaliação de impacto: + +* **Impacto adverso nos indivíduos**. Estar ciente de quaisquer restrições ou requisitos, usos não suportados ou quaisquer limitações conhecidas que prejudiquem o desempenho do sistema é vital para garantir que o sistema não seja usado de forma a causar danos aos indivíduos. +* **Requisitos de dados**. Compreender como e onde o sistema usará os dados permite que os revisores explorem quaisquer requisitos de dados que precisem de ser considerados (por exemplo, regulamentações de dados como RGPD ou HIPAA). Além disso, examine se a origem ou a quantidade de dados é substancial para o treino. +* **Resumo do impacto**. Reúna uma lista de potenciais danos que possam surgir do uso do sistema. Ao longo do ciclo de vida do ML, reveja se os problemas identificados foram mitigados ou resolvidos. +* **Objetivos aplicáveis** para cada um dos seis princípios fundamentais. Avalie se os objetivos de cada princípio foram cumpridos e se existem lacunas. + +## Depuração com IA responsável + +Semelhante à depuração de uma aplicação de software, a depuração de um sistema de IA é um processo necessário para identificar e resolver problemas no sistema. Existem muitos fatores que podem afetar o desempenho de um modelo ou a sua responsabilidade. A maioria das métricas tradicionais de desempenho de modelos são agregados quantitativos do desempenho do modelo, o que não é suficiente para analisar como um modelo viola os princípios de IA responsável. Além disso, um modelo de machine learning é uma "caixa preta", o que dificulta entender o que motiva os seus resultados ou fornecer explicações quando comete um erro. Mais tarde neste curso, aprenderemos a usar o painel de IA Responsável para ajudar a depurar sistemas de IA. O painel fornece uma ferramenta holística para cientistas de dados e desenvolvedores de IA realizarem: + +* **Análise de erros**. Para identificar a distribuição de erros do modelo que pode afetar a equidade ou fiabilidade do sistema. +* **Visão geral do modelo**. Para descobrir onde existem disparidades no desempenho do modelo em diferentes coortes de dados. +* **Análise de dados**. Para compreender a distribuição dos dados e identificar potenciais preconceitos nos dados que possam levar a problemas de equidade, inclusividade e fiabilidade. +* **Interpretabilidade do modelo**. Para entender o que afeta ou influencia as previsões do modelo. Isso ajuda a explicar o comportamento do modelo, o que é importante para transparência e responsabilidade. + +## 🚀 Desafio + +Para evitar que danos sejam introduzidos desde o início, devemos: + +- ter diversidade de origens e perspetivas entre as pessoas que trabalham nos sistemas +- investir em conjuntos de dados que reflitam a diversidade da nossa sociedade +- desenvolver melhores métodos ao longo do ciclo de vida do machine learning para detetar e corrigir problemas de IA responsável quando eles ocorrerem + +Pense em cenários da vida real onde a falta de confiança num modelo é evidente na construção e utilização do modelo. O que mais deveríamos considerar? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Estudo Individual + +Nesta lição, aprendeu alguns conceitos básicos sobre equidade e falta de equidade no machine learning. +Assista a este workshop para aprofundar os tópicos: + +- Em busca de IA responsável: Aplicando princípios na prática por Besmira Nushi, Mehrnoosh Sameki e Amit Sharma + +[![Responsible AI Toolbox: Uma framework de código aberto para construir IA responsável](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: Uma framework de código aberto para construir IA responsável") + +> 🎥 Clique na imagem acima para assistir ao vídeo: RAI Toolbox: Uma framework de código aberto para construir IA responsável por Besmira Nushi, Mehrnoosh Sameki e Amit Sharma + +Além disso, leia: + +- Centro de recursos de IA responsável da Microsoft: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Grupo de pesquisa FATE da Microsoft: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox: + +- [Repositório GitHub do Responsible AI Toolbox](https://github.com/microsoft/responsible-ai-toolbox) + +Leia sobre as ferramentas do Azure Machine Learning para garantir equidade: + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## Tarefa + +[Explore o RAI Toolbox](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/3-fairness/assignment.md b/translations/pt-PT/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..d5f8b0683 --- /dev/null +++ b/translations/pt-PT/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,16 @@ +# Explore a Caixa de Ferramentas de IA Responsável + +## Instruções + +Nesta lição, aprendeu sobre a Caixa de Ferramentas de IA Responsável, um "projeto de código aberto e orientado pela comunidade para ajudar cientistas de dados a analisar e melhorar sistemas de IA." Para esta tarefa, explore um dos [notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) da RAI Toolbox e relate as suas descobertas num artigo ou apresentação. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | --------- | -------- | ----------------------- | +| | Um artigo ou apresentação em PowerPoint é apresentado discutindo os sistemas do Fairlearn, o notebook que foi executado e as conclusões obtidas a partir da sua execução | Um artigo é apresentado sem conclusões | Nenhum artigo é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/4-techniques-of-ML/README.md b/translations/pt-PT/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..37c1ec189 --- /dev/null +++ b/translations/pt-PT/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,123 @@ +# Técnicas de Aprendizagem Automática + +O processo de construir, utilizar e manter modelos de aprendizagem automática e os dados que eles utilizam é muito diferente de muitos outros fluxos de trabalho de desenvolvimento. Nesta lição, vamos desmistificar o processo e delinear as principais técnicas que precisa conhecer. Você irá: + +- Compreender os processos que sustentam a aprendizagem automática a um nível elevado. +- Explorar conceitos básicos como 'modelos', 'previsões' e 'dados de treino'. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +[![ML para iniciantes - Técnicas de Aprendizagem Automática](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "ML para iniciantes - Técnicas de Aprendizagem Automática") + +> 🎥 Clique na imagem acima para assistir a um vídeo curto sobre esta lição. + +## Introdução + +De forma geral, o processo de criação de processos de aprendizagem automática (ML) é composto por várias etapas: + +1. **Definir a pergunta**. A maioria dos processos de ML começa com uma pergunta que não pode ser respondida por um programa condicional simples ou um motor baseado em regras. Estas perguntas geralmente giram em torno de previsões baseadas numa coleção de dados. +2. **Recolher e preparar os dados**. Para responder à sua pergunta, precisa de dados. A qualidade e, por vezes, a quantidade dos seus dados determinarão o quão bem pode responder à pergunta inicial. Visualizar os dados é um aspeto importante desta fase. Esta fase também inclui dividir os dados em grupos de treino e teste para construir um modelo. +3. **Escolher um método de treino**. Dependendo da sua pergunta e da natureza dos seus dados, precisa de escolher como deseja treinar um modelo para refletir melhor os seus dados e fazer previsões precisas. Esta é a parte do processo de ML que requer conhecimentos específicos e, muitas vezes, uma quantidade considerável de experimentação. +4. **Treinar o modelo**. Usando os seus dados de treino, utilizará vários algoritmos para treinar um modelo que reconheça padrões nos dados. O modelo pode usar pesos internos que podem ser ajustados para privilegiar certas partes dos dados em detrimento de outras, a fim de construir um modelo melhor. +5. **Avaliar o modelo**. Utiliza dados nunca antes vistos (os seus dados de teste) do conjunto recolhido para verificar o desempenho do modelo. +6. **Ajustar parâmetros**. Com base no desempenho do modelo, pode refazer o processo utilizando diferentes parâmetros ou variáveis que controlam o comportamento dos algoritmos usados para treinar o modelo. +7. **Prever**. Use novos dados de entrada para testar a precisão do modelo. + +## Que pergunta fazer + +Os computadores são particularmente habilidosos em descobrir padrões ocultos nos dados. Esta capacidade é muito útil para investigadores que têm perguntas sobre um determinado domínio que não podem ser facilmente respondidas criando um motor de regras condicionais. Dada uma tarefa atuarial, por exemplo, um cientista de dados pode ser capaz de construir regras manuais sobre a mortalidade de fumadores versus não fumadores. + +Quando muitas outras variáveis são introduzidas na equação, no entanto, um modelo de ML pode revelar-se mais eficiente para prever taxas de mortalidade futuras com base no histórico de saúde passado. Um exemplo mais animador pode ser fazer previsões meteorológicas para o mês de abril numa determinada localização com base em dados que incluem latitude, longitude, alterações climáticas, proximidade ao oceano, padrões da corrente de jato, entre outros. + +✅ Este [conjunto de slides](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) sobre modelos meteorológicos oferece uma perspetiva histórica sobre o uso de ML na análise do clima. + +## Tarefas pré-construção + +Antes de começar a construir o seu modelo, há várias tarefas que precisa de completar. Para testar a sua pergunta e formar uma hipótese com base nas previsões de um modelo, precisa de identificar e configurar vários elementos. + +### Dados + +Para responder à sua pergunta com algum grau de certeza, precisa de uma boa quantidade de dados do tipo certo. Há duas coisas que precisa de fazer neste momento: + +- **Recolher dados**. Tendo em mente a lição anterior sobre justiça na análise de dados, recolha os seus dados com cuidado. Esteja atento às fontes desses dados, a quaisquer preconceitos inerentes que possam ter e documente a sua origem. +- **Preparar dados**. Há vários passos no processo de preparação de dados. Pode ser necessário reunir dados e normalizá-los se vierem de fontes diversas. Pode melhorar a qualidade e a quantidade dos dados através de vários métodos, como converter strings em números (como fazemos em [Clustering](../../5-Clustering/1-Visualize/README.md)). Também pode gerar novos dados com base nos originais (como fazemos em [Classificação](../../4-Classification/1-Introduction/README.md)). Pode limpar e editar os dados (como faremos antes da lição sobre [Aplicações Web](../../3-Web-App/README.md)). Por fim, pode ser necessário randomizar e embaralhar os dados, dependendo das suas técnicas de treino. + +✅ Após recolher e processar os seus dados, reserve um momento para verificar se a sua estrutura permitirá abordar a pergunta pretendida. Pode ser que os dados não funcionem bem na sua tarefa, como descobrimos nas nossas lições de [Clustering](../../5-Clustering/1-Visualize/README.md)! + +### Features e Target + +Uma [feature](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) é uma propriedade mensurável dos seus dados. Em muitos conjuntos de dados, é expressa como um cabeçalho de coluna, como 'data', 'tamanho' ou 'cor'. A sua variável de feature, geralmente representada como `X` no código, representa a variável de entrada que será usada para treinar o modelo. + +Um target é aquilo que está a tentar prever. O target, geralmente representado como `y` no código, representa a resposta à pergunta que está a tentar fazer aos seus dados: em dezembro, qual será a **cor** das abóboras mais baratas? Em São Francisco, que bairros terão o melhor **preço** imobiliário? Às vezes, o target também é referido como atributo de rótulo. + +### Selecionar a sua variável de feature + +🎓 **Seleção de Features e Extração de Features** Como saber qual variável escolher ao construir um modelo? Provavelmente passará por um processo de seleção de features ou extração de features para escolher as variáveis certas para o modelo mais eficiente. No entanto, não são a mesma coisa: "A extração de features cria novas features a partir de funções das features originais, enquanto a seleção de features retorna um subconjunto das features." ([fonte](https://wikipedia.org/wiki/Feature_selection)) + +### Visualizar os seus dados + +Um aspeto importante do conjunto de ferramentas de um cientista de dados é a capacidade de visualizar dados usando várias bibliotecas excelentes, como Seaborn ou MatPlotLib. Representar os seus dados visualmente pode permitir-lhe descobrir correlações ocultas que pode aproveitar. As suas visualizações também podem ajudá-lo a identificar preconceitos ou dados desequilibrados (como descobrimos em [Classificação](../../4-Classification/2-Classifiers-1/README.md)). + +### Dividir o seu conjunto de dados + +Antes de treinar, precisa de dividir o seu conjunto de dados em duas ou mais partes de tamanhos desiguais que ainda representem bem os dados. + +- **Treino**. Esta parte do conjunto de dados é ajustada ao seu modelo para treiná-lo. Este conjunto constitui a maior parte do conjunto de dados original. +- **Teste**. Um conjunto de teste é um grupo independente de dados, muitas vezes retirado dos dados originais, que utiliza para confirmar o desempenho do modelo construído. +- **Validação**. Um conjunto de validação é um grupo independente menor de exemplos que utiliza para ajustar os hiperparâmetros ou a arquitetura do modelo, a fim de melhorá-lo. Dependendo do tamanho dos seus dados e da pergunta que está a fazer, pode não ser necessário construir este terceiro conjunto (como notamos em [Previsão de Séries Temporais](../../7-TimeSeries/1-Introduction/README.md)). + +## Construir um modelo + +Usando os seus dados de treino, o seu objetivo é construir um modelo, ou uma representação estatística dos seus dados, utilizando vários algoritmos para **treiná-lo**. Treinar um modelo expõe-no aos dados e permite-lhe fazer suposições sobre padrões percebidos que descobre, valida e aceita ou rejeita. + +### Decidir sobre um método de treino + +Dependendo da sua pergunta e da natureza dos seus dados, escolherá um método para treiná-lo. Explorando a [documentação do Scikit-learn](https://scikit-learn.org/stable/user_guide.html) - que usamos neste curso - pode descobrir várias formas de treinar um modelo. Dependendo da sua experiência, pode ter de experimentar vários métodos diferentes para construir o melhor modelo. É provável que passe por um processo em que os cientistas de dados avaliam o desempenho de um modelo alimentando-o com dados não vistos, verificando a precisão, preconceitos e outros problemas que degradam a qualidade, e selecionando o método de treino mais apropriado para a tarefa em questão. + +### Treinar um modelo + +Com os seus dados de treino, está pronto para 'ajustá-los' para criar um modelo. Notará que em muitas bibliotecas de ML encontrará o código 'model.fit' - é neste momento que envia a sua variável de feature como um array de valores (geralmente 'X') e uma variável target (geralmente 'y'). + +### Avaliar o modelo + +Uma vez concluído o processo de treino (pode levar muitas iterações, ou 'épocas', para treinar um modelo grande), poderá avaliar a qualidade do modelo utilizando dados de teste para medir o seu desempenho. Estes dados são um subconjunto dos dados originais que o modelo ainda não analisou. Pode imprimir uma tabela de métricas sobre a qualidade do modelo. + +🎓 **Ajuste do modelo** + +No contexto da aprendizagem automática, o ajuste do modelo refere-se à precisão da função subjacente do modelo enquanto tenta analisar dados com os quais não está familiarizado. + +🎓 **Subajuste** e **sobreajuste** são problemas comuns que degradam a qualidade do modelo, pois o modelo ajusta-se ou não suficientemente bem ou bem demais. Isso faz com que o modelo faça previsões muito alinhadas ou pouco alinhadas com os seus dados de treino. Um modelo sobreajustado prevê os dados de treino muito bem porque aprendeu os detalhes e o ruído dos dados em excesso. Um modelo subajustado não é preciso, pois não consegue analisar com precisão nem os dados de treino nem os dados que ainda não 'viu'. + +![modelo sobreajustado](../../../../1-Introduction/4-techniques-of-ML/images/overfitting.png) +> Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +## Ajuste de parâmetros + +Depois de concluir o treino inicial, observe a qualidade do modelo e considere melhorá-lo ajustando os seus 'hiperparâmetros'. Leia mais sobre o processo [na documentação](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott). + +## Previsão + +Este é o momento em que pode usar dados completamente novos para testar a precisão do seu modelo. Num cenário de ML 'aplicado', onde está a construir ativos web para usar o modelo em produção, este processo pode envolver a recolha de input do utilizador (um clique num botão, por exemplo) para definir uma variável e enviá-la ao modelo para inferência ou avaliação. + +Nestes módulos, descobrirá como usar estes passos para preparar, construir, testar, avaliar e prever - todos os gestos de um cientista de dados e mais, à medida que progride na sua jornada para se tornar um engenheiro de ML 'full stack'. + +--- + +## 🚀Desafio + +Desenhe um fluxograma refletindo os passos de um praticante de ML. Onde se encontra neste momento no processo? Onde prevê que encontrará dificuldades? O que lhe parece fácil? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Estudo Individual + +Pesquise online entrevistas com cientistas de dados que discutam o seu trabalho diário. Aqui está [uma](https://www.youtube.com/watch?v=Z3IjgbbCEfs). + +## Tarefa + +[Entrevistar um cientista de dados](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/4-techniques-of-ML/assignment.md b/translations/pt-PT/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..7ac787370 --- /dev/null +++ b/translations/pt-PT/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,16 @@ +# Entrevistar um cientista de dados + +## Instruções + +Na sua empresa, num grupo de utilizadores, ou entre os seus amigos ou colegas de estudo, converse com alguém que trabalhe profissionalmente como cientista de dados. Escreva um pequeno artigo (500 palavras) sobre as suas ocupações diárias. São especialistas ou trabalham de forma 'full stack'? + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | ----------------------------------------------------------------------------------- | ----------------------------------------------------------------- | ----------------------- | +| | Um artigo com o comprimento correto, com fontes atribuídas, apresentado como um ficheiro .doc | O artigo tem atribuições inadequadas ou é mais curto do que o comprimento exigido | Nenhum artigo é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/1-Introduction/README.md b/translations/pt-PT/1-Introduction/README.md new file mode 100644 index 000000000..1225a6153 --- /dev/null +++ b/translations/pt-PT/1-Introduction/README.md @@ -0,0 +1,28 @@ +# Introdução ao aprendizado de máquina + +Nesta seção do currículo, será apresentada uma introdução aos conceitos básicos que fundamentam o campo do aprendizado de máquina, o que ele é, além de aprender sobre sua história e as técnicas que os pesquisadores utilizam para trabalhar com ele. Vamos explorar juntos este novo mundo do aprendizado de máquina! + +![globo](../../../translated_images/pt-PT/globe.59f26379ceb40428.webp) +> Foto por Bill Oxford no Unsplash + +### Aulas + +1. [Introdução ao aprendizado de máquina](1-intro-to-ML/README.md) +1. [A história do aprendizado de máquina e da IA](2-history-of-ML/README.md) +1. [Justiça e aprendizado de máquina](3-fairness/README.md) +1. [Técnicas de aprendizado de máquina](4-techniques-of-ML/README.md) + +### Créditos + +"Introdução ao Aprendizado de Máquina" foi escrito com ♥️ por uma equipe de pessoas incluindo [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) e [Jen Looper](https://twitter.com/jenlooper) + +"A História do Aprendizado de Máquina" foi escrito com ♥️ por [Jen Looper](https://twitter.com/jenlooper) e [Amy Boyd](https://twitter.com/AmyKateNicho) + +"Justiça e Aprendizado de Máquina" foi escrito com ♥️ por [Tomomi Imura](https://twitter.com/girliemac) + +"Técnicas de Aprendizado de Máquina" foi escrito com ♥️ por [Jen Looper](https://twitter.com/jenlooper) e [Chris Noring](https://twitter.com/softchris) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/1-Tools/README.md b/translations/pt-PT/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..51fff1e84 --- /dev/null +++ b/translations/pt-PT/2-Regression/1-Tools/README.md @@ -0,0 +1,230 @@ +# Introdução ao Python e Scikit-learn para modelos de regressão + +![Resumo de regressões em um sketchnote](../../../../sketchnotes/ml-regression.png) + +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +> ### [Esta lição está disponível em R!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## Introdução + +Nestes quatro módulos, irá aprender a construir modelos de regressão. Vamos discutir brevemente para que servem. Mas antes de começar, certifique-se de que tem as ferramentas certas para iniciar o processo! + +Nesta lição, irá aprender a: + +- Configurar o seu computador para tarefas locais de machine learning. +- Trabalhar com Jupyter notebooks. +- Utilizar Scikit-learn, incluindo a instalação. +- Explorar regressão linear com um exercício prático. + +## Instalações e configurações + +[![ML para iniciantes - Configure as suas ferramentas para criar modelos de Machine Learning](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "ML para iniciantes - Configure as suas ferramentas para criar modelos de Machine Learning") + +> 🎥 Clique na imagem acima para um vídeo curto sobre como configurar o seu computador para ML. + +1. **Instale o Python**. Certifique-se de que o [Python](https://www.python.org/downloads/) está instalado no seu computador. Irá utilizar Python para muitas tarefas de ciência de dados e machine learning. A maioria dos sistemas já inclui uma instalação do Python. Existem também [Pacotes de Codificação Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) úteis para facilitar a configuração para alguns utilizadores. + + No entanto, algumas utilizações do Python requerem uma versão específica do software. Por isso, é útil trabalhar num [ambiente virtual](https://docs.python.org/3/library/venv.html). + +2. **Instale o Visual Studio Code**. Certifique-se de que tem o Visual Studio Code instalado no seu computador. Siga estas instruções para [instalar o Visual Studio Code](https://code.visualstudio.com/) para uma instalação básica. Vai utilizar Python no Visual Studio Code neste curso, por isso pode ser útil rever como [configurar o Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) para desenvolvimento em Python. + + > Familiarize-se com Python ao explorar esta coleção de [módulos de aprendizagem](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) + > + > [![Configurar Python com Visual Studio Code](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Configurar Python com Visual Studio Code") + > + > 🎥 Clique na imagem acima para um vídeo: usar Python no VS Code. + +3. **Instale o Scikit-learn**, seguindo [estas instruções](https://scikit-learn.org/stable/install.html). Como precisa de garantir que utiliza Python 3, é recomendado que use um ambiente virtual. Note que, se estiver a instalar esta biblioteca num Mac com M1, existem instruções específicas na página acima. + +4. **Instale o Jupyter Notebook**. Será necessário [instalar o pacote Jupyter](https://pypi.org/project/jupyter/). + +## O seu ambiente de desenvolvimento para ML + +Irá utilizar **notebooks** para desenvolver o seu código Python e criar modelos de machine learning. Este tipo de ficheiro é uma ferramenta comum para cientistas de dados e pode ser identificado pela extensão `.ipynb`. + +Os notebooks são um ambiente interativo que permite ao programador tanto codificar como adicionar notas e escrever documentação em torno do código, o que é bastante útil para projetos experimentais ou de pesquisa. + +[![ML para iniciantes - Configurar Jupyter Notebooks para começar a criar modelos de regressão](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "ML para iniciantes - Configurar Jupyter Notebooks para começar a criar modelos de regressão") + +> 🎥 Clique na imagem acima para um vídeo curto sobre este exercício. + +### Exercício - trabalhar com um notebook + +Nesta pasta, encontrará o ficheiro _notebook.ipynb_. + +1. Abra o _notebook.ipynb_ no Visual Studio Code. + + Um servidor Jupyter será iniciado com Python 3+. Encontrará áreas do notebook que podem ser `executadas`, ou seja, blocos de código. Pode executar um bloco de código selecionando o ícone que parece um botão de reprodução. + +2. Selecione o ícone `md` e adicione um pouco de markdown com o seguinte texto: **# Bem-vindo ao seu notebook**. + + Em seguida, adicione algum código Python. + +3. Escreva **print('hello notebook')** no bloco de código. +4. Selecione a seta para executar o código. + + Deverá ver a seguinte saída: + + ```output + hello notebook + ``` + +![VS Code com um notebook aberto](../../../../2-Regression/1-Tools/images/notebook.jpg) + +Pode intercalar o seu código com comentários para auto-documentar o notebook. + +✅ Pense por um momento como o ambiente de trabalho de um programador web é diferente do de um cientista de dados. + +## Começar com Scikit-learn + +Agora que o Python está configurado no seu ambiente local e está confortável com Jupyter notebooks, vamos ficar igualmente confortáveis com o Scikit-learn (pronuncia-se `sci` como em `science`). O Scikit-learn fornece uma [API extensa](https://scikit-learn.org/stable/modules/classes.html#api-ref) para ajudá-lo a realizar tarefas de ML. + +De acordo com o [site oficial](https://scikit-learn.org/stable/getting_started.html), "Scikit-learn é uma biblioteca de machine learning de código aberto que suporta aprendizagem supervisionada e não supervisionada. Também fornece várias ferramentas para ajuste de modelos, pré-processamento de dados, seleção e avaliação de modelos, entre outras utilidades." + +Neste curso, irá utilizar Scikit-learn e outras ferramentas para construir modelos de machine learning para realizar o que chamamos de tarefas de 'machine learning tradicional'. Evitamos deliberadamente redes neurais e deep learning, pois estes tópicos serão abordados no nosso futuro currículo 'AI for Beginners'. + +O Scikit-learn torna simples a construção e avaliação de modelos para uso. Ele é focado principalmente no uso de dados numéricos e contém vários conjuntos de dados prontos para uso como ferramentas de aprendizagem. Também inclui modelos pré-construídos para os alunos experimentarem. Vamos explorar o processo de carregar dados pré-embalados e usar um estimador para o primeiro modelo de ML com Scikit-learn com alguns dados básicos. + +## Exercício - o seu primeiro notebook com Scikit-learn + +> Este tutorial foi inspirado pelo [exemplo de regressão linear](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) no site do Scikit-learn. + +[![ML para iniciantes - O seu primeiro projeto de regressão linear em Python](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "ML para iniciantes - O seu primeiro projeto de regressão linear em Python") + +> 🎥 Clique na imagem acima para um vídeo curto sobre este exercício. + +No ficheiro _notebook.ipynb_ associado a esta lição, limpe todas as células pressionando o ícone da 'lixeira'. + +Nesta secção, irá trabalhar com um pequeno conjunto de dados sobre diabetes que está incluído no Scikit-learn para fins de aprendizagem. Imagine que queria testar um tratamento para pacientes diabéticos. Modelos de Machine Learning podem ajudá-lo a determinar quais pacientes responderiam melhor ao tratamento, com base em combinações de variáveis. Mesmo um modelo de regressão muito básico, quando visualizado, pode mostrar informações sobre variáveis que o ajudariam a organizar os seus ensaios clínicos teóricos. + +✅ Existem muitos tipos de métodos de regressão, e a escolha depende da resposta que procura. Se quiser prever a altura provável de uma pessoa com uma determinada idade, utilizaria regressão linear, pois está à procura de um **valor numérico**. Se estiver interessado em descobrir se um tipo de cozinha deve ser considerado vegan ou não, está à procura de uma **atribuição de categoria**, então utilizaria regressão logística. Aprenderá mais sobre regressão logística mais tarde. Pense um pouco sobre algumas perguntas que pode fazer aos dados e qual destes métodos seria mais apropriado. + +Vamos começar esta tarefa. + +### Importar bibliotecas + +Para esta tarefa, iremos importar algumas bibliotecas: + +- **matplotlib**. É uma ferramenta útil para [criação de gráficos](https://matplotlib.org/) e será usada para criar um gráfico de linha. +- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) é uma biblioteca útil para manipulação de dados numéricos em Python. +- **sklearn**. Esta é a biblioteca [Scikit-learn](https://scikit-learn.org/stable/user_guide.html). + +Importe algumas bibliotecas para ajudar nas suas tarefas. + +1. Adicione as importações escrevendo o seguinte código: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + Acima, está a importar `matplotlib`, `numpy` e está a importar `datasets`, `linear_model` e `model_selection` do `sklearn`. `model_selection` é usado para dividir os dados em conjuntos de treino e teste. + +### O conjunto de dados sobre diabetes + +O [conjunto de dados sobre diabetes](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) incluído possui 442 amostras de dados sobre diabetes, com 10 variáveis de características, algumas das quais incluem: + +- age: idade em anos +- bmi: índice de massa corporal +- bp: pressão arterial média +- s1 tc: T-Cells (um tipo de glóbulos brancos) + +✅ Este conjunto de dados inclui o conceito de 'sexo' como uma variável de característica importante para a pesquisa sobre diabetes. Muitos conjuntos de dados médicos incluem este tipo de classificação binária. Pense um pouco sobre como categorizações como esta podem excluir certas partes da população de tratamentos. + +Agora, carregue os dados X e y. + +> 🎓 Lembre-se, isto é aprendizagem supervisionada, e precisamos de um alvo 'y' nomeado. + +Numa nova célula de código, carregue o conjunto de dados sobre diabetes chamando `load_diabetes()`. O parâmetro `return_X_y=True` indica que `X` será uma matriz de dados e `y` será o alvo da regressão. + +1. Adicione alguns comandos `print` para mostrar a forma da matriz de dados e o seu primeiro elemento: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + O que está a receber como resposta é uma tupla. O que está a fazer é atribuir os dois primeiros valores da tupla a `X` e `y`, respetivamente. Saiba mais [sobre tuplas](https://wikipedia.org/wiki/Tuple). + + Pode ver que estes dados têm 442 itens organizados em arrays de 10 elementos: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ Pense um pouco sobre a relação entre os dados e o alvo da regressão. A regressão linear prevê relações entre a característica X e a variável alvo y. Consegue encontrar o [alvo](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) para o conjunto de dados sobre diabetes na documentação? O que este conjunto de dados está a demonstrar, dado o alvo? + +2. Em seguida, selecione uma parte deste conjunto de dados para plotar, escolhendo a 3ª coluna do conjunto de dados. Pode fazer isso utilizando o operador `:` para selecionar todas as linhas e, em seguida, selecionando a 3ª coluna usando o índice (2). Também pode remodelar os dados para serem um array 2D - conforme necessário para plotagem - utilizando `reshape(n_rows, n_columns)`. Se um dos parâmetros for -1, a dimensão correspondente será calculada automaticamente. + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ A qualquer momento, imprima os dados para verificar a sua forma. + +3. Agora que tem os dados prontos para serem plotados, pode verificar se uma máquina pode ajudar a determinar uma divisão lógica entre os números neste conjunto de dados. Para isso, precisa de dividir tanto os dados (X) quanto o alvo (y) em conjuntos de teste e treino. O Scikit-learn tem uma forma simples de fazer isso; pode dividir os seus dados de teste num ponto específico. + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. Agora está pronto para treinar o seu modelo! Carregue o modelo de regressão linear e treine-o com os seus conjuntos de treino X e y utilizando `model.fit()`: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()` é uma função que verá em muitas bibliotecas de ML, como TensorFlow. + +5. Em seguida, crie uma previsão utilizando os dados de teste, com a função `predict()`. Isto será usado para desenhar a linha entre os grupos de dados. + + ```python + y_pred = model.predict(X_test) + ``` + +6. Agora é hora de mostrar os dados num gráfico. O Matplotlib é uma ferramenta muito útil para esta tarefa. Crie um scatterplot de todos os dados de teste X e y, e utilize a previsão para desenhar uma linha no local mais apropriado, entre os agrupamentos de dados do modelo. + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![um scatterplot mostrando pontos de dados sobre diabetes](../../../../2-Regression/1-Tools/images/scatterplot.png) +✅ Pensa um pouco sobre o que está a acontecer aqui. Uma linha reta está a passar por muitos pequenos pontos de dados, mas o que está realmente a fazer? Consegues perceber como deverias ser capaz de usar esta linha para prever onde um novo ponto de dados, ainda não visto, deveria encaixar em relação ao eixo y do gráfico? Tenta expressar em palavras a utilidade prática deste modelo. + +Parabéns, construíste o teu primeiro modelo de regressão linear, criaste uma previsão com ele e exibiste-a num gráfico! + +--- +## 🚀Desafio + +Representa graficamente uma variável diferente deste conjunto de dados. Dica: edita esta linha: `X = X[:,2]`. Dado o objetivo deste conjunto de dados, o que consegues descobrir sobre a progressão da diabetes como doença? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Neste tutorial, trabalhaste com regressão linear simples, em vez de regressão univariada ou múltipla. Lê um pouco sobre as diferenças entre estes métodos ou dá uma olhada [neste vídeo](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef). + +Lê mais sobre o conceito de regressão e reflete sobre que tipo de perguntas podem ser respondidas com esta técnica. Faz este [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) para aprofundar o teu entendimento. + +## Tarefa + +[Um conjunto de dados diferente](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/1-Tools/assignment.md b/translations/pt-PT/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..6ff389dd4 --- /dev/null +++ b/translations/pt-PT/2-Regression/1-Tools/assignment.md @@ -0,0 +1,18 @@ +# Regressão com Scikit-learn + +## Instruções + +Consulte o [Linnerud dataset](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) no Scikit-learn. Este conjunto de dados possui múltiplos [alvos](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset): 'Consiste em três variáveis de exercício (dados) e três variáveis fisiológicas (alvo) coletadas de vinte homens de meia-idade em um clube de fitness'. + +Com as suas próprias palavras, descreva como criar um modelo de regressão que represente graficamente a relação entre a medida da cintura e o número de abdominais realizados. Faça o mesmo para os outros pontos de dados deste conjunto de dados. + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita de Melhorias | +| ------------------------------ | ----------------------------------- | ----------------------------- | -------------------------- | +| Submeter um parágrafo descritivo | Um parágrafo bem escrito é submetido | Algumas frases são submetidas | Nenhuma descrição é fornecida | + +--- + +**Aviso**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/1-Tools/notebook.ipynb b/translations/pt-PT/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/pt-PT/2-Regression/1-Tools/solution/Julia/README.md b/translations/pt-PT/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/pt-PT/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..a397363e4 --- /dev/null +++ b/translations/pt-PT/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,449 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-03T19:42:25+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Introdução à Regressão - Aula 1\n", + "\n", + "#### Colocando em Perspectiva\n", + "\n", + "✅ Existem muitos tipos de métodos de regressão, e qual você escolhe depende da resposta que está procurando. Se quiser prever a altura provável de uma pessoa com uma determinada idade, utilizaria `regressão linear`, pois está à procura de um **valor numérico**. Se estiver interessado em descobrir se um tipo de culinária deve ser considerado vegano ou não, está à procura de uma **atribuição de categoria**, então utilizaria `regressão logística`. Aprenderá mais sobre regressão logística mais adiante. Pense um pouco sobre algumas perguntas que pode fazer aos dados e qual desses métodos seria mais apropriado.\n", + "\n", + "Nesta seção, irá trabalhar com um [pequeno conjunto de dados sobre diabetes](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html). Imagine que queria testar um tratamento para pacientes diabéticos. Modelos de Machine Learning podem ajudar a determinar quais pacientes responderiam melhor ao tratamento, com base em combinações de variáveis. Mesmo um modelo de regressão muito básico, quando visualizado, pode mostrar informações sobre variáveis que ajudariam a organizar os seus ensaios clínicos teóricos.\n", + "\n", + "Dito isso, vamos começar esta tarefa!\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Carregar o nosso conjunto de ferramentas\n", + "\n", + "Para esta tarefa, vamos precisar dos seguintes pacotes:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [coleção de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem automática.\n", + "\n", + "Pode instalá-los com o seguinte comando:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "O script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso algum esteja em falta.\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora, vamos carregar estes pacotes incríveis e torná-los disponíveis na nossa sessão atual de R. (Isto é apenas para ilustração, `pacman::p_load()` já fez isso por si)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. O conjunto de dados sobre diabetes\n", + "\n", + "Neste exercício, vamos demonstrar nossas habilidades de regressão fazendo previsões com um conjunto de dados sobre diabetes. O [conjunto de dados sobre diabetes](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) inclui `442 amostras` de dados relacionados à diabetes, com 10 variáveis preditoras, `idade`, `sexo`, `índice de massa corporal`, `pressão arterial média` e `seis medições de soro sanguíneo`, além de uma variável de resultado `y`: uma medida quantitativa da progressão da doença um ano após a linha de base.\n", + "\n", + "|Número de observações|442|\n", + "|----------------------|:---|\n", + "|Número de preditores|As primeiras 10 colunas são preditivas numéricas|\n", + "|Resultado/Alvo|A coluna 11 é uma medida quantitativa da progressão da doença um ano após a linha de base|\n", + "|Informação sobre os preditores|- idade em anos\n", + "||- sexo\n", + "||- bmi índice de massa corporal\n", + "||- bp pressão arterial média\n", + "||- s1 tc, colesterol sérico total\n", + "||- s2 ldl, lipoproteínas de baixa densidade\n", + "||- s3 hdl, lipoproteínas de alta densidade\n", + "||- s4 tch, colesterol total / HDL\n", + "||- s5 ltg, possivelmente logaritmo do nível de triglicerídeos no soro\n", + "||- s6 glu, nível de açúcar no sangue|\n", + "\n", + "\n", + "\n", + "> 🎓 Lembre-se, isto é aprendizagem supervisionada, e precisamos de um alvo chamado 'y'.\n", + "\n", + "Antes de poder manipular dados com R, é necessário importar os dados para a memória do R ou estabelecer uma conexão com os dados que o R possa usar para acessá-los remotamente.\n", + "\n", + "> O pacote [readr](https://readr.tidyverse.org/), que faz parte do Tidyverse, oferece uma maneira rápida e amigável de ler dados retangulares no R.\n", + "\n", + "Agora, vamos carregar o conjunto de dados sobre diabetes fornecido neste URL de origem: \n", + "\n", + "Além disso, faremos uma verificação básica nos nossos dados usando `glimpse()` e exibiremos as primeiras 5 linhas usando `slice()`.\n", + "\n", + "Antes de avançarmos, vamos também introduzir algo que você encontrará frequentemente no código R 🥁🥁: o operador pipe `%>%`\n", + "\n", + "O operador pipe (`%>%`) realiza operações em sequência lógica, passando um objeto adiante para uma função ou expressão de chamada. Você pode pensar no operador pipe como dizendo \"e então\" no seu código.\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` mostra-nos que estes dados têm 442 linhas e 11 colunas, sendo todas as colunas do tipo de dados `double`.\n", + "\n", + "
\n", + "\n", + "> glimpse() e slice() são funções do [`dplyr`](https://dplyr.tidyverse.org/). Dplyr, parte do Tidyverse, é uma gramática de manipulação de dados que fornece um conjunto consistente de verbos para ajudar a resolver os desafios mais comuns de manipulação de dados.\n", + "\n", + "
\n", + "\n", + "Agora que temos os dados, vamos focar numa única característica (`bmi`) como alvo para este exercício. Isto exigirá que selecionemos as colunas desejadas. Então, como fazemos isso?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) permite-nos *selecionar* (e opcionalmente renomear) colunas num data frame.\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dados de Treino e Teste\n", + "\n", + "É uma prática comum em aprendizagem supervisionada *dividir* os dados em dois subconjuntos: um conjunto (geralmente maior) para treinar o modelo e um conjunto menor \"reservado\" para verificar como o modelo se comportou.\n", + "\n", + "Agora que temos os dados prontos, podemos verificar se uma máquina pode ajudar a determinar uma divisão lógica entre os números neste conjunto de dados. Podemos usar o pacote [rsample](https://tidymodels.github.io/rsample/), que faz parte do framework Tidymodels, para criar um objeto que contém as informações sobre *como* dividir os dados, e depois usar mais duas funções do rsample para extrair os conjuntos de treino e teste criados:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Treinar um modelo de regressão linear com Tidymodels\n", + "\n", + "Agora estamos prontos para treinar o nosso modelo!\n", + "\n", + "No Tidymodels, especifica-se os modelos utilizando `parsnip()` ao definir três conceitos:\n", + "\n", + "- O **tipo** de modelo diferencia modelos como regressão linear, regressão logística, modelos de árvores de decisão, entre outros.\n", + "\n", + "- O **modo** do modelo inclui opções comuns como regressão e classificação; alguns tipos de modelo suportam ambos, enquanto outros têm apenas um modo.\n", + "\n", + "- O **motor** do modelo é a ferramenta computacional que será usada para ajustar o modelo. Muitas vezes, são pacotes R, como **`\"lm\"`** ou **`\"ranger\"`**\n", + "\n", + "Estas informações sobre o modelo são capturadas numa especificação de modelo, então vamos construir uma!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "Depois de um modelo ter sido *especificado*, pode ser `estimado` ou `treinado` utilizando a função [`fit()`](https://parsnip.tidymodels.org/reference/fit.html), normalmente com uma fórmula e alguns dados.\n", + "\n", + "`y ~ .` significa que ajustaremos `y` como a quantidade/variável alvo prevista, explicada por todos os preditores/características, ou seja, `.` (neste caso, temos apenas um preditor: `bmi`).\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "A partir do resultado do modelo, podemos observar os coeficientes aprendidos durante o treino. Eles representam os coeficientes da linha de melhor ajuste que nos proporciona o menor erro geral entre a variável real e a prevista.\n", + "
\n", + "\n", + "## 5. Fazer previsões no conjunto de teste\n", + "\n", + "Agora que treinámos um modelo, podemos utilizá-lo para prever a progressão da doença y para o conjunto de dados de teste usando [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html). Isto será usado para traçar a linha entre os grupos de dados.\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woohoo! 💃🕺 Acabámos de treinar um modelo e utilizámo-lo para fazer previsões!\n", + "\n", + "Ao fazer previsões, a convenção do tidymodels é sempre produzir um tibble/data frame de resultados com nomes de colunas padronizados. Isto facilita a combinação dos dados originais com as previsões num formato utilizável para operações subsequentes, como a criação de gráficos.\n", + "\n", + "`dplyr::bind_cols()` une eficientemente várias data frames por coluna.\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. Representar os resultados do modelo\n", + "\n", + "Agora é hora de ver isto visualmente 📈. Vamos criar um gráfico de dispersão com todos os valores de `y` e `bmi` do conjunto de teste e, em seguida, usar as previsões para desenhar uma linha no lugar mais apropriado, entre os agrupamentos de dados do modelo.\n", + "\n", + "O R tem vários sistemas para criar gráficos, mas o `ggplot2` é um dos mais elegantes e versáteis. Este permite compor gráficos **combinando componentes independentes**.\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Pensa um pouco sobre o que está a acontecer aqui. Uma linha reta está a passar por muitos pequenos pontos de dados, mas o que está realmente a fazer? Consegues perceber como deverias ser capaz de usar esta linha para prever onde um novo ponto de dados, ainda não visto, deveria encaixar em relação ao eixo y do gráfico? Tenta expressar em palavras a utilidade prática deste modelo.\n", + "\n", + "Parabéns, construíste o teu primeiro modelo de regressão linear, criaste uma previsão com ele e exibiste-a num gráfico!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/1-Tools/solution/notebook.ipynb b/translations/pt-PT/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..aebeb137e --- /dev/null +++ b/translations/pt-PT/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Importar bibliotecas necessárias\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Carregar o conjunto de dados de diabetes, dividido em dados `X` e características `y`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Selecione apenas uma funcionalidade para focar neste exercício\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Divida os dados de treino e teste tanto para `X` como para `y`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Selecione o modelo e ajuste-o com os dados de treino\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Usar dados de teste para prever uma linha\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exibir os resultados num gráfico\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-03T19:39:31+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/README.md b/translations/pt-PT/2-Regression/2-Data/README.md new file mode 100644 index 000000000..1c9a72853 --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/README.md @@ -0,0 +1,217 @@ +# Construir um modelo de regressão usando Scikit-learn: preparar e visualizar dados + +![Infográfico de visualização de dados](../../../../2-Regression/2-Data/images/data-visualization.png) + +Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +> ### [Esta lição está disponível em R!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## Introdução + +Agora que já está equipado com as ferramentas necessárias para começar a construir modelos de machine learning com Scikit-learn, está pronto para começar a fazer perguntas aos seus dados. Ao trabalhar com dados e aplicar soluções de ML, é muito importante saber como formular a pergunta certa para desbloquear adequadamente o potencial do seu conjunto de dados. + +Nesta lição, irá aprender: + +- Como preparar os seus dados para a construção de modelos. +- Como usar o Matplotlib para visualização de dados. + +## Fazer a pergunta certa aos seus dados + +A pergunta que precisa de responder determinará o tipo de algoritmos de ML que irá utilizar. E a qualidade da resposta que obtém dependerá muito da natureza dos seus dados. + +Veja os [dados](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) fornecidos para esta lição. Pode abrir este ficheiro .csv no VS Code. Uma rápida análise mostra imediatamente que há espaços em branco e uma mistura de dados em formato texto e numérico. Há também uma coluna estranha chamada 'Package', onde os dados são uma mistura entre 'sacks', 'bins' e outros valores. Os dados, na verdade, estão um pouco desorganizados. + +[![ML para iniciantes - Como analisar e limpar um conjunto de dados](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "ML para iniciantes - Como analisar e limpar um conjunto de dados") + +> 🎥 Clique na imagem acima para assistir a um vídeo curto sobre como preparar os dados para esta lição. + +De facto, não é muito comum receber um conjunto de dados completamente pronto para criar um modelo de ML diretamente. Nesta lição, irá aprender como preparar um conjunto de dados bruto usando bibliotecas padrão do Python. Também aprenderá várias técnicas para visualizar os dados. + +## Estudo de caso: 'o mercado de abóboras' + +Nesta pasta encontrará um ficheiro .csv na pasta raiz `data` chamado [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv), que inclui 1757 linhas de dados sobre o mercado de abóboras, organizados por cidade. Estes são dados brutos extraídos dos [Relatórios Padrão dos Mercados de Culturas Especiais](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) distribuídos pelo Departamento de Agricultura dos Estados Unidos. + +### Preparar os dados + +Estes dados estão em domínio público. Podem ser descarregados em vários ficheiros separados, por cidade, no site do USDA. Para evitar muitos ficheiros separados, concatenámos todos os dados das cidades num único ficheiro, portanto já _preparámos_ os dados um pouco. Agora, vamos analisar os dados mais de perto. + +### Os dados das abóboras - primeiras conclusões + +O que nota sobre estes dados? Já viu que há uma mistura de texto, números, espaços em branco e valores estranhos que precisa de interpretar. + +Que pergunta pode fazer a estes dados, usando uma técnica de regressão? Que tal "Prever o preço de uma abóbora à venda durante um determinado mês"? Olhando novamente para os dados, há algumas alterações que precisa de fazer para criar a estrutura de dados necessária para esta tarefa. + +## Exercício - analisar os dados das abóboras + +Vamos usar o [Pandas](https://pandas.pydata.org/) (o nome significa `Python Data Analysis`), uma ferramenta muito útil para moldar dados, para analisar e preparar estes dados das abóboras. + +### Primeiro, verificar datas em falta + +Primeiro, precisará de tomar medidas para verificar se há datas em falta: + +1. Converter as datas para um formato de mês (estas são datas dos EUA, então o formato é `MM/DD/YYYY`). +2. Extrair o mês para uma nova coluna. + +Abra o ficheiro _notebook.ipynb_ no Visual Studio Code e importe a folha de cálculo para um novo dataframe do Pandas. + +1. Use a função `head()` para visualizar as primeiras cinco linhas. + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ Que função usaria para visualizar as últimas cinco linhas? + +1. Verifique se há dados em falta no dataframe atual: + + ```python + pumpkins.isnull().sum() + ``` + + Há dados em falta, mas talvez isso não seja relevante para a tarefa em questão. + +1. Para tornar o seu dataframe mais fácil de trabalhar, selecione apenas as colunas necessárias, usando a função `loc`, que extrai do dataframe original um grupo de linhas (passado como primeiro parâmetro) e colunas (passado como segundo parâmetro). A expressão `:` no caso abaixo significa "todas as linhas". + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### Segundo, determinar o preço médio da abóbora + +Pense em como determinar o preço médio de uma abóbora num determinado mês. Que colunas escolheria para esta tarefa? Dica: precisará de 3 colunas. + +Solução: calcule a média das colunas `Low Price` e `High Price` para preencher a nova coluna Price e converta a coluna Date para mostrar apenas o mês. Felizmente, de acordo com a verificação acima, não há dados em falta para datas ou preços. + +1. Para calcular a média, adicione o seguinte código: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ Sinta-se à vontade para imprimir quaisquer dados que queira verificar usando `print(month)`. + +2. Agora, copie os seus dados convertidos para um novo dataframe do Pandas: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + Ao imprimir o seu dataframe, verá um conjunto de dados limpo e organizado, no qual pode construir o seu novo modelo de regressão. + +### Mas espere! Há algo estranho aqui + +Se olhar para a coluna `Package`, verá que as abóboras são vendidas em muitas configurações diferentes. Algumas são vendidas em medidas de '1 1/9 bushel', outras em '1/2 bushel', algumas por abóbora, outras por peso, e algumas em grandes caixas com larguras variadas. + +> Parece que as abóboras são muito difíceis de pesar de forma consistente + +Ao analisar os dados originais, é interessante notar que qualquer coisa com `Unit of Sale` igual a 'EACH' ou 'PER BIN' também tem o tipo `Package` por polegada, por bin ou 'each'. Parece que as abóboras são muito difíceis de pesar de forma consistente, então vamos filtrá-las selecionando apenas abóboras com a string 'bushel' na coluna `Package`. + +1. Adicione um filtro no topo do ficheiro, sob a importação inicial do .csv: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + Se imprimir os dados agora, verá que está a obter apenas cerca de 415 linhas de dados contendo abóboras por bushel. + +### Mas espere! Há mais uma coisa a fazer + +Notou que a quantidade de bushel varia por linha? Precisa de normalizar os preços para mostrar o preço por bushel, então faça alguns cálculos para padronizá-lo. + +1. Adicione estas linhas após o bloco que cria o dataframe new_pumpkins: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ De acordo com [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308), o peso de um bushel depende do tipo de produto, pois é uma medida de volume. "Um bushel de tomates, por exemplo, deve pesar 56 libras... Folhas e verduras ocupam mais espaço com menos peso, então um bushel de espinafre pesa apenas 20 libras." É tudo bastante complicado! Vamos evitar fazer uma conversão de bushel para libra e, em vez disso, calcular o preço por bushel. Todo este estudo sobre bushels de abóboras, no entanto, mostra como é muito importante entender a natureza dos seus dados! + +Agora, pode analisar o preço por unidade com base na medida de bushel. Se imprimir os dados mais uma vez, verá como estão padronizados. + +✅ Reparou que as abóboras vendidas por meio bushel são muito caras? Consegue descobrir porquê? Dica: abóboras pequenas são muito mais caras do que grandes, provavelmente porque há muito mais delas por bushel, dado o espaço não utilizado ocupado por uma grande abóbora oca para torta. + +## Estratégias de Visualização + +Parte do papel do cientista de dados é demonstrar a qualidade e a natureza dos dados com os quais está a trabalhar. Para isso, frequentemente criam visualizações interessantes, como gráficos, diagramas e tabelas, mostrando diferentes aspetos dos dados. Desta forma, conseguem mostrar visualmente relações e lacunas que, de outra forma, seriam difíceis de identificar. + +[![ML para iniciantes - Como visualizar dados com Matplotlib](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "ML para iniciantes - Como visualizar dados com Matplotlib") + +> 🎥 Clique na imagem acima para assistir a um vídeo curto sobre como visualizar os dados para esta lição. + +As visualizações também podem ajudar a determinar a técnica de machine learning mais apropriada para os dados. Um gráfico de dispersão que parece seguir uma linha, por exemplo, indica que os dados são bons candidatos para um exercício de regressão linear. + +Uma biblioteca de visualização de dados que funciona bem em notebooks Jupyter é [Matplotlib](https://matplotlib.org/) (que também viu na lição anterior). + +> Obtenha mais experiência com visualização de dados nestes [tutoriais](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott). + +## Exercício - experimentar com Matplotlib + +Tente criar alguns gráficos básicos para exibir o novo dataframe que acabou de criar. O que um gráfico de linha básico mostraria? + +1. Importe o Matplotlib no topo do ficheiro, sob a importação do Pandas: + + ```python + import matplotlib.pyplot as plt + ``` + +1. Execute novamente todo o notebook para atualizar. +1. No final do notebook, adicione uma célula para plotar os dados como um boxplot: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![Um gráfico de dispersão mostrando a relação entre preço e mês](../../../../2-Regression/2-Data/images/scatterplot.png) + + Este gráfico é útil? Há algo nele que o surpreenda? + + Não é particularmente útil, pois apenas exibe os seus dados como uma dispersão de pontos num determinado mês. + +### Torná-lo útil + +Para que os gráficos exibam dados úteis, geralmente é necessário agrupar os dados de alguma forma. Vamos tentar criar um gráfico onde o eixo y mostra os meses e os dados demonstram a distribuição. + +1. Adicione uma célula para criar um gráfico de barras agrupado: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![Um gráfico de barras mostrando a relação entre preço e mês](../../../../2-Regression/2-Data/images/barchart.png) + + Este é um gráfico de visualização de dados mais útil! Parece indicar que o preço mais alto das abóboras ocorre em setembro e outubro. Isso corresponde às suas expectativas? Porquê ou porquê não? + +--- + +## 🚀Desafio + +Explore os diferentes tipos de visualização que o Matplotlib oferece. Quais tipos são mais apropriados para problemas de regressão? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Explore as várias formas de visualizar dados. Faça uma lista das diferentes bibliotecas disponíveis e anote quais são melhores para determinados tipos de tarefas, por exemplo, visualizações 2D vs. visualizações 3D. O que descobre? + +## Tarefa + +[Explorar visualização](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/assignment.md b/translations/pt-PT/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..36e8094f4 --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/assignment.md @@ -0,0 +1,13 @@ +# Explorando Visualizações + +Existem várias bibliotecas disponíveis para visualização de dados. Crie algumas visualizações utilizando os dados de Abóbora desta lição com matplotlib e seaborn num notebook de exemplo. Quais bibliotecas são mais fáceis de usar? +## Rubrica + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| -------- | --------- | -------- | ------------------- | +| | Um notebook é submetido com duas explorações/visualizações | Um notebook é submetido com uma exploração/visualização | Um notebook não é submetido | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/notebook.ipynb b/translations/pt-PT/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..ba323a12f --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-03T19:44:42+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/solution/Julia/README.md b/translations/pt-PT/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..892256afa --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/pt-PT/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..51c7168e7 --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,666 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-03T19:48:56+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construir um modelo de regressão: preparar e visualizar dados\n", + "\n", + "## **Regressão Linear para Abóboras - Aula 2**\n", + "#### Introdução\n", + "\n", + "Agora que já tem as ferramentas necessárias para começar a construir modelos de machine learning com Tidymodels e Tidyverse, está pronto para começar a fazer perguntas aos seus dados. Ao trabalhar com dados e aplicar soluções de ML, é muito importante saber como formular a pergunta certa para desbloquear adequadamente o potencial do seu conjunto de dados.\n", + "\n", + "Nesta aula, irá aprender:\n", + "\n", + "- Como preparar os seus dados para a construção de modelos.\n", + "\n", + "- Como usar `ggplot2` para visualização de dados.\n", + "\n", + "A pergunta que precisa de responder determinará o tipo de algoritmos de ML que irá utilizar. E a qualidade da resposta que obtém dependerá fortemente da natureza dos seus dados.\n", + "\n", + "Vamos ver isso através de um exercício prático.\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Importar dados de abóboras e invocar o Tidyverse\n", + "\n", + "Vamos precisar dos seguintes pacotes para explorar esta lição:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "Pode instalá-los com o seguinte comando:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "O script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso algum esteja em falta.\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora, vamos ativar alguns pacotes e carregar os [dados](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) fornecidos para esta lição!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "Um rápido `glimpse()` mostra imediatamente que há espaços em branco e uma mistura de strings (`chr`) e dados numéricos (`dbl`). A `Date` é do tipo carácter e há também uma coluna estranha chamada `Package`, onde os dados são uma mistura entre `sacks`, `bins` e outros valores. Os dados, na verdade, estão um pouco desorganizados 😤.\n", + "\n", + "De facto, não é muito comum receber um conjunto de dados completamente pronto para usar e criar um modelo de ML diretamente. Mas não se preocupe, nesta lição, irá aprender como preparar um conjunto de dados bruto utilizando bibliotecas padrão do R 🧑‍🔧. Também irá aprender várias técnicas para visualizar os dados.📈📊\n", + "
\n", + "\n", + "> Um lembrete: O operador pipe (`%>%`) realiza operações numa sequência lógica ao passar um objeto para uma função ou expressão. Pode pensar no operador pipe como dizendo \"e depois\" no seu código.\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Verificar dados em falta\n", + "\n", + "Um dos problemas mais comuns que os cientistas de dados enfrentam é lidar com dados incompletos ou em falta. O R representa valores em falta, ou desconhecidos, com um valor especial chamado `NA` (Not Available).\n", + "\n", + "Então, como podemos saber se o data frame contém valores em falta?\n", + "
\n", + "- Uma forma direta seria usar a função base do R `anyNA`, que retorna os objetos lógicos `TRUE` ou `FALSE`.\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ótimo, parece que há alguns dados em falta! Esse é um bom ponto de partida.\n", + "\n", + "- Outra forma seria usar a função `is.na()` que indica quais elementos individuais das colunas estão em falta com um valor lógico `TRUE`.\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ok, trabalho concluído, mas com um conjunto de dados tão grande como este, seria ineficiente e praticamente impossível rever todas as linhas e colunas individualmente😴.\n", + "\n", + "- Uma forma mais intuitiva seria calcular a soma dos valores em falta para cada coluna:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "Muito melhor! Faltam alguns dados, mas talvez isso não seja relevante para a tarefa em questão. Vamos ver que tipo de análise adicional pode surgir.\n", + "\n", + "> Além dos conjuntos incríveis de pacotes e funções, o R possui uma documentação muito boa. Por exemplo, use `help(colSums)` ou `?colSums` para saber mais sobre a função.\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr: Uma Gramática para Manipulação de Dados\n", + "\n", + "

\n", + " \n", + "

Ilustração por @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/), um pacote do Tidyverse, é uma gramática de manipulação de dados que oferece um conjunto consistente de verbos para ajudar a resolver os desafios mais comuns de manipulação de dados. Nesta seção, vamos explorar alguns dos verbos do dplyr!\n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()` é uma função do pacote `dplyr` que ajuda a escolher colunas para manter ou excluir.\n", + "\n", + "Para tornar o seu data frame mais fácil de trabalhar, elimine várias das suas colunas, utilizando `select()`, mantendo apenas as colunas necessárias.\n", + "\n", + "Por exemplo, neste exercício, a nossa análise irá envolver as colunas `Package`, `Low Price`, `High Price` e `Date`. Vamos selecionar estas colunas.\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` é uma função do pacote `dplyr` que ajuda a criar ou modificar colunas, mantendo as colunas existentes.\n", + "\n", + "A estrutura geral do `mutate` é:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "Vamos experimentar o `mutate` utilizando a coluna `Date` e realizar as seguintes operações:\n", + "\n", + "1. Converter as datas (atualmente do tipo carácter) para um formato de mês (estas são datas dos EUA, então o formato é `MM/DD/YYYY`).\n", + "\n", + "2. Extrair o mês das datas para uma nova coluna.\n", + "\n", + "Em R, o pacote [lubridate](https://lubridate.tidyverse.org/) facilita o trabalho com dados de data e hora. Então, vamos usar `dplyr::mutate()`, `lubridate::mdy()`, `lubridate::month()` e ver como alcançar os objetivos acima. Podemos eliminar a coluna `Date`, já que não será mais necessária em operações subsequentes.\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "Uhuu! 🤩\n", + "\n", + "A seguir, vamos criar uma nova coluna `Price`, que representa o preço médio de uma abóbora. Agora, vamos calcular a média das colunas `Low Price` e `High Price` para preencher a nova coluna Price.\n", + "
\n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "Sim!💪\n", + "\n", + "\"Mas espera aí!\", dirás depois de examinar todo o conjunto de dados com `View(pumpkins)`, \"Há algo estranho aqui!\"🤔\n", + "\n", + "Se olhares para a coluna `Package`, as abóboras são vendidas em várias configurações diferentes. Algumas são vendidas em medidas de `1 1/9 bushel`, outras em medidas de `1/2 bushel`, algumas por abóbora, outras por peso, e algumas em grandes caixas com larguras variadas.\n", + "\n", + "Vamos verificar isto:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Incrível!👏\n", + "\n", + "As abóboras parecem ser muito difíceis de pesar de forma consistente, por isso vamos filtrá-las selecionando apenas as abóboras com a palavra *bushel* na coluna `Package` e colocar isso num novo quadro de dados `new_pumpkins`.\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() e stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): cria um subconjunto dos dados contendo apenas as **linhas** que satisfazem as suas condições, neste caso, abóboras com a string *bushel* na coluna `Package`.\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): deteta a presença ou ausência de um padrão numa string.\n", + "\n", + "O pacote [`stringr`](https://github.com/tidyverse/stringr) fornece funções simples para operações comuns com strings.\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "Pode ver que reduzimos para cerca de 415 linhas de dados contendo abóboras por alqueire.🤩 \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**Mas espera! Ainda há algo mais a fazer**\n", + "\n", + "Reparaste que a quantidade por alqueire varia por linha? É necessário normalizar os preços para que sejam apresentados por alqueire, e não por 1 1/9 ou 1/2 alqueire. Está na hora de fazer alguns cálculos para os padronizar.\n", + "\n", + "Vamos usar a função [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) para *alterar* a coluna Price com base em algumas condições. `case_when` permite vectorizar múltiplas instruções `if_else()`.\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora podemos analisar o preço por unidade com base na sua medida em alqueires. Todo este estudo sobre alqueires de abóboras, no entanto, mostra como é `importante` `compreender a natureza dos seus dados`!\n", + "\n", + "> ✅ De acordo com [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308), o peso de um alqueire depende do tipo de produto, já que é uma medida de volume. \"Um alqueire de tomates, por exemplo, deve pesar 56 libras... Folhas e verduras ocupam mais espaço com menos peso, então um alqueire de espinafre pesa apenas 20 libras.\" É tudo bastante complicado! Não vamos nos preocupar em fazer uma conversão de alqueires para libras e, em vez disso, vamos precificar por alqueire. Todo este estudo sobre alqueires de abóboras, no entanto, mostra como é muito importante compreender a natureza dos seus dados!\n", + ">\n", + "> ✅ Reparaste que as abóboras vendidas por meio alqueire são muito caras? Consegues descobrir porquê? Dica: abóboras pequenas são muito mais caras do que as grandes, provavelmente porque há muito mais delas por alqueire, considerando o espaço não utilizado ocupado por uma grande abóbora oca para tartes.\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora, por pura diversão 💁‍♀️, vamos também mover a coluna Mês para a primeira posição, ou seja, `antes` da coluna `Pacote`.\n", + "\n", + "`dplyr::relocate()` é usado para alterar as posições das colunas.\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho!👌 Agora tens um conjunto de dados limpo e organizado para construir o teu novo modelo de regressão!\n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Visualização de dados com ggplot2\n", + "\n", + "

\n", + " \n", + "

Infografia por Dasani Madipalli
\n", + "\n", + "\n", + "\n", + "\n", + "Há um ditado *sábio* que diz o seguinte:\n", + "\n", + "> \"O gráfico simples trouxe mais informação à mente do analista de dados do que qualquer outro dispositivo.\" --- John Tukey\n", + "\n", + "Parte do papel do cientista de dados é demonstrar a qualidade e a natureza dos dados com os quais está a trabalhar. Para isso, muitas vezes criam visualizações interessantes, ou gráficos, diagramas e tabelas, que mostram diferentes aspetos dos dados. Desta forma, conseguem mostrar visualmente relações e lacunas que, de outra forma, seriam difíceis de identificar.\n", + "\n", + "As visualizações também podem ajudar a determinar a técnica de machine learning mais adequada para os dados. Um gráfico de dispersão que parece seguir uma linha, por exemplo, indica que os dados são bons candidatos para um exercício de regressão linear.\n", + "\n", + "O R oferece vários sistemas para criar gráficos, mas o [`ggplot2`](https://ggplot2.tidyverse.org/index.html) é um dos mais elegantes e versáteis. O `ggplot2` permite compor gráficos **combinando componentes independentes**.\n", + "\n", + "Vamos começar com um simples gráfico de dispersão para as colunas Price e Month.\n", + "\n", + "Neste caso, começaremos com [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html), fornecendo um conjunto de dados e um mapeamento estético (com [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)) e, em seguida, adicionaremos camadas (como [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html)) para gráficos de dispersão.\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "É um gráfico útil 🤷? Há algo nele que te surpreenda?\n", + "\n", + "Não é particularmente útil, pois tudo o que faz é mostrar os teus dados como uma dispersão de pontos num determinado mês.\n", + "
\n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Como torná-lo útil?**\n", + "\n", + "Para que os gráficos exibam dados úteis, normalmente é necessário agrupar os dados de alguma forma. Por exemplo, no nosso caso, calcular o preço médio das abóboras para cada mês proporcionaria mais insights sobre os padrões subjacentes nos nossos dados. Isso leva-nos a mais uma abordagem rápida do **dplyr**:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "A agregação agrupada em R pode ser facilmente calculada usando\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()` altera a unidade de análise do conjunto de dados completo para grupos individuais, como por mês.\n", + "\n", + "- `dplyr::summarize()` cria um novo data frame com uma coluna para cada variável de agrupamento e uma coluna para cada estatística resumida que especificares.\n", + "\n", + "Por exemplo, podemos usar `dplyr::group_by() %>% summarize()` para agrupar as abóboras com base na coluna **Month** e, em seguida, calcular o **preço médio** para cada mês.\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "Sucinto!✨\n", + "\n", + "Características categóricas, como meses, são melhor representadas utilizando um gráfico de barras 📊. As camadas responsáveis pelos gráficos de barras são `geom_bar()` e `geom_col()`. Consulte `?geom_bar` para saber mais.\n", + "\n", + "Vamos criar um agora!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩Esta é uma visualização de dados mais útil! Parece indicar que o preço mais alto das abóboras ocorre em setembro e outubro. Isso corresponde às suas expectativas? Porquê ou porquê não?\n", + "\n", + "Parabéns por concluir a segunda lição 👏! Preparou os seus dados para a construção do modelo e, em seguida, descobriu mais informações através de visualizações!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/2-Data/solution/notebook.ipynb b/translations/pt-PT/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..a1f689a8e --- /dev/null +++ b/translations/pt-PT/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-03T19:44:58+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/README.md b/translations/pt-PT/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..c61bf2583 --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/README.md @@ -0,0 +1,371 @@ +# Construir um modelo de regressão usando Scikit-learn: quatro abordagens de regressão + +![Infográfico de regressão linear vs polinomial](../../../../2-Regression/3-Linear/images/linear-polynomial.png) +> Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +> ### [Esta lição está disponível em R!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### Introdução + +Até agora, exploraste o que é regressão com dados de exemplo retirados do conjunto de dados de preços de abóboras que utilizaremos ao longo desta lição. Também já os visualizaste utilizando o Matplotlib. + +Agora estás pronto para mergulhar mais fundo na regressão para Machine Learning. Embora a visualização permita compreender os dados, o verdadeiro poder do Machine Learning vem do _treinamento de modelos_. Os modelos são treinados com dados históricos para capturar automaticamente as dependências dos dados, permitindo prever resultados para novos dados que o modelo ainda não viu. + +Nesta lição, aprenderás mais sobre dois tipos de regressão: _regressão linear básica_ e _regressão polinomial_, juntamente com algumas das matemáticas subjacentes a estas técnicas. Esses modelos permitirão prever os preços das abóboras dependendo de diferentes dados de entrada. + +[![ML para iniciantes - Compreendendo a Regressão Linear](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "ML para iniciantes - Compreendendo a Regressão Linear") + +> 🎥 Clica na imagem acima para uma breve visão geral sobre regressão linear. + +> Ao longo deste currículo, assumimos um conhecimento mínimo de matemática e procuramos torná-lo acessível para estudantes de outras áreas. Por isso, presta atenção às notas, 🧮 chamadas, diagramas e outras ferramentas de aprendizagem para ajudar na compreensão. + +### Pré-requisitos + +Deves estar familiarizado, neste momento, com a estrutura dos dados de abóboras que estamos a analisar. Podes encontrá-los pré-carregados e pré-limpos no ficheiro _notebook.ipynb_ desta lição. No ficheiro, o preço das abóboras é exibido por alqueire num novo _data frame_. Certifica-te de que consegues executar estes _notebooks_ em _kernels_ no Visual Studio Code. + +### Preparação + +Como lembrete, estás a carregar estes dados para fazer perguntas sobre eles. + +- Qual é a melhor altura para comprar abóboras? +- Que preço posso esperar por uma caixa de abóboras miniatura? +- Devo comprá-las em cestos de meio alqueire ou em caixas de 1 1/9 de alqueire? +Vamos continuar a explorar estes dados. + +Na lição anterior, criaste um _data frame_ com Pandas e preencheste-o com parte do conjunto de dados original, padronizando os preços por alqueire. No entanto, ao fazer isso, só conseguiste reunir cerca de 400 pontos de dados e apenas para os meses de outono. + +Dá uma olhada nos dados que pré-carregámos no _notebook_ que acompanha esta lição. Os dados estão pré-carregados e um gráfico de dispersão inicial é traçado para mostrar os dados por mês. Talvez possamos obter mais detalhes sobre a natureza dos dados ao limpá-los mais. + +## Uma linha de regressão linear + +Como aprendeste na Lição 1, o objetivo de um exercício de regressão linear é ser capaz de traçar uma linha para: + +- **Mostrar relações entre variáveis**. Mostrar a relação entre variáveis. +- **Fazer previsões**. Fazer previsões precisas sobre onde um novo ponto de dados cairia em relação a essa linha. + +É típico da **Regressão dos Mínimos Quadrados** traçar este tipo de linha. O termo 'mínimos quadrados' significa que todos os pontos de dados ao redor da linha de regressão são elevados ao quadrado e depois somados. Idealmente, essa soma final é o menor possível, porque queremos um número baixo de erros, ou `mínimos quadrados`. + +Fazemos isso porque queremos modelar uma linha que tenha a menor distância cumulativa de todos os nossos pontos de dados. Também elevamos os termos ao quadrado antes de somá-los, pois estamos preocupados com a magnitude e não com a direção. + +> **🧮 Mostra-me a matemática** +> +> Esta linha, chamada de _linha de melhor ajuste_, pode ser expressa por [uma equação](https://en.wikipedia.org/wiki/Simple_linear_regression): +> +> ``` +> Y = a + bX +> ``` +> +> `X` é a 'variável explicativa'. `Y` é a 'variável dependente'. A inclinação da linha é `b` e `a` é o intercepto em Y, que se refere ao valor de `Y` quando `X = 0`. +> +>![calcular a inclinação](../../../../2-Regression/3-Linear/images/slope.png) +> +> Primeiro, calcula-se a inclinação `b`. Infográfico por [Jen Looper](https://twitter.com/jenlooper) +> +> Em outras palavras, e referindo-se à pergunta original sobre os dados das abóboras: "prever o preço de uma abóbora por alqueire por mês", `X` referir-se-ia ao preço e `Y` ao mês de venda. +> +>![completar a equação](../../../../2-Regression/3-Linear/images/calculation.png) +> +> Calcula o valor de Y. Se estás a pagar cerca de $4, deve ser abril! Infográfico por [Jen Looper](https://twitter.com/jenlooper) +> +> A matemática que calcula a linha deve demonstrar a inclinação da linha, que também depende do intercepto, ou onde `Y` está situado quando `X = 0`. +> +> Podes observar o método de cálculo desses valores no site [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html). Também visita [este calculador de mínimos quadrados](https://www.mathsisfun.com/data/least-squares-calculator.html) para ver como os valores dos números impactam a linha. + +## Correlação + +Outro termo a compreender é o **Coeficiente de Correlação** entre as variáveis X e Y fornecidas. Usando um gráfico de dispersão, podes visualizar rapidamente este coeficiente. Um gráfico com pontos de dados dispersos numa linha ordenada tem alta correlação, mas um gráfico com pontos de dados espalhados por todo o lado entre X e Y tem baixa correlação. + +Um bom modelo de regressão linear será aquele que tem um Coeficiente de Correlação alto (mais próximo de 1 do que de 0) usando o método de Regressão dos Mínimos Quadrados com uma linha de regressão. + +✅ Executa o _notebook_ que acompanha esta lição e observa o gráfico de dispersão de Mês para Preço. Os dados que associam Mês ao Preço das vendas de abóboras parecem ter alta ou baixa correlação, de acordo com a tua interpretação visual do gráfico de dispersão? Isso muda se usares uma medida mais detalhada em vez de `Mês`, por exemplo, *dia do ano* (ou seja, número de dias desde o início do ano)? + +No código abaixo, assumiremos que limpámos os dados e obtivemos um _data frame_ chamado `new_pumpkins`, semelhante ao seguinte: + +ID | Mês | DiaDoAno | Variedade | Cidade | Embalagem | Preço Baixo | Preço Alto | Preço +---|-----|----------|-----------|--------|-----------|-------------|------------|------- +70 | 9 | 267 | TIPO TORTA | BALTIMORE | caixas de 1 1/9 alqueires | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | TIPO TORTA | BALTIMORE | caixas de 1 1/9 alqueires | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | TIPO TORTA | BALTIMORE | caixas de 1 1/9 alqueires | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | TIPO TORTA | BALTIMORE | caixas de 1 1/9 alqueires | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | TIPO TORTA | BALTIMORE | caixas de 1 1/9 alqueires | 15.0 | 15.0 | 13.636364 + +> O código para limpar os dados está disponível em [`notebook.ipynb`](../../../../2-Regression/3-Linear/notebook.ipynb). Realizámos os mesmos passos de limpeza da lição anterior e calculámos a coluna `DiaDoAno` usando a seguinte expressão: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +Agora que tens uma compreensão da matemática por trás da regressão linear, vamos criar um modelo de Regressão para ver se conseguimos prever qual embalagem de abóboras terá os melhores preços. Alguém que compra abóboras para um campo de abóboras de feriado pode querer esta informação para otimizar as suas compras de embalagens de abóboras para o campo. + +## Procurando por Correlação + +[![ML para iniciantes - Procurando por Correlação: A Chave para a Regressão Linear](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "ML para iniciantes - Procurando por Correlação: A Chave para a Regressão Linear") + +> 🎥 Clica na imagem acima para uma breve visão geral sobre correlação. + +Na lição anterior, provavelmente viste que o preço médio para diferentes meses parece assim: + +Preço médio por mês + +Isto sugere que deve haver alguma correlação, e podemos tentar treinar um modelo de regressão linear para prever a relação entre `Mês` e `Preço`, ou entre `DiaDoAno` e `Preço`. Aqui está o gráfico de dispersão que mostra a última relação: + +Gráfico de dispersão de Preço vs. Dia do Ano + +Vamos verificar se há correlação usando a função `corr`: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +Parece que a correlação é bastante pequena, -0.15 por `Mês` e -0.17 por `DiaDoAno`, mas pode haver outra relação importante. Parece que há diferentes agrupamentos de preços correspondentes a diferentes variedades de abóboras. Para confirmar esta hipótese, vamos traçar cada categoria de abóbora usando uma cor diferente. Passando um parâmetro `ax` para a função de plotagem `scatter`, podemos traçar todos os pontos no mesmo gráfico: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +Gráfico de dispersão de Preço vs. Dia do Ano + +A nossa investigação sugere que a variedade tem mais efeito no preço geral do que a data de venda. Podemos ver isso com um gráfico de barras: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +Gráfico de barras de preço vs variedade + +Vamos focar-nos, por enquanto, apenas numa variedade de abóbora, o 'tipo torta', e ver qual o efeito da data no preço: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +Gráfico de dispersão de Preço vs. Dia do Ano + +Se agora calcularmos a correlação entre `Preço` e `DiaDoAno` usando a função `corr`, obteremos algo como `-0.27` - o que significa que treinar um modelo preditivo faz sentido. + +> Antes de treinar um modelo de regressão linear, é importante garantir que os nossos dados estão limpos. A regressão linear não funciona bem com valores ausentes, por isso faz sentido eliminar todas as células vazias: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +Outra abordagem seria preencher esses valores vazios com valores médios da coluna correspondente. + +## Regressão Linear Simples + +[![ML para iniciantes - Regressão Linear e Polinomial usando Scikit-learn](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "ML para iniciantes - Regressão Linear e Polinomial usando Scikit-learn") + +> 🎥 Clica na imagem acima para uma breve visão geral sobre regressão linear e polinomial. + +Para treinar o nosso modelo de Regressão Linear, utilizaremos a biblioteca **Scikit-learn**. + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +Começamos separando os valores de entrada (características) e a saída esperada (rótulo) em arrays numpy separados: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> Nota que tivemos de realizar `reshape` nos dados de entrada para que o pacote de Regressão Linear os compreendesse corretamente. A Regressão Linear espera um array 2D como entrada, onde cada linha do array corresponde a um vetor de características de entrada. No nosso caso, como temos apenas uma entrada, precisamos de um array com forma N×1, onde N é o tamanho do conjunto de dados. + +Depois, precisamos dividir os dados em conjuntos de treino e teste, para que possamos validar o nosso modelo após o treino: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +Finalmente, treinar o modelo de Regressão Linear propriamente dito leva apenas duas linhas de código. Definimos o objeto `LinearRegression` e ajustamo-lo aos nossos dados usando o método `fit`: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +O objeto `LinearRegression` após o ajuste (`fit`) contém todos os coeficientes da regressão, que podem ser acessados usando a propriedade `.coef_`. No nosso caso, há apenas um coeficiente, que deve ser em torno de `-0.017`. Isso significa que os preços parecem cair um pouco com o tempo, mas não muito, cerca de 2 cêntimos por dia. Também podemos acessar o ponto de interseção da regressão com o eixo Y usando `lin_reg.intercept_` - será em torno de `21` no nosso caso, indicando o preço no início do ano. + +Para ver quão preciso é o nosso modelo, podemos prever preços num conjunto de dados de teste e depois medir quão próximas estão as nossas previsões dos valores esperados. Isso pode ser feito usando a métrica de erro quadrático médio (MSE), que é a média de todas as diferenças ao quadrado entre o valor esperado e o previsto. + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +O nosso erro parece estar em torno de 2 pontos, o que equivale a ~17%. Não é muito bom. Outro indicador da qualidade do modelo é o **coeficiente de determinação**, que pode ser obtido assim: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +Se o valor for 0, significa que o modelo não considera os dados de entrada e age como o *pior preditor linear*, que é simplesmente o valor médio do resultado. O valor 1 significa que conseguimos prever perfeitamente todos os resultados esperados. No nosso caso, o coeficiente é cerca de 0,06, o que é bastante baixo. + +Também podemos traçar os dados de teste juntamente com a linha de regressão para visualizar melhor como a regressão funciona no nosso caso: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +Regressão linear + +## Regressão Polinomial + +Outro tipo de Regressão Linear é a Regressão Polinomial. Embora às vezes exista uma relação linear entre variáveis - quanto maior o volume da abóbora, maior o preço - em outras situações essas relações não podem ser representadas como um plano ou linha reta. + +✅ Aqui estão [alguns exemplos adicionais](https://online.stat.psu.edu/stat501/lesson/9/9.8) de dados que poderiam usar Regressão Polinomial. + +Observe novamente a relação entre Data e Preço. Este gráfico de dispersão parece que deveria ser analisado necessariamente por uma linha reta? Os preços não podem flutuar? Neste caso, pode-se tentar a regressão polinomial. + +✅ Polinómios são expressões matemáticas que podem consistir em uma ou mais variáveis e coeficientes. + +A regressão polinomial cria uma linha curva para se ajustar melhor a dados não lineares. No nosso caso, se incluirmos uma variável `DayOfYear` ao quadrado nos dados de entrada, deveremos ser capazes de ajustar os dados com uma curva parabólica, que terá um mínimo em determinado ponto do ano. + +O Scikit-learn inclui uma [API de pipeline](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline) útil para combinar diferentes etapas de processamento de dados. Um **pipeline** é uma cadeia de **estimadores**. No nosso caso, criaremos um pipeline que primeiro adiciona características polinomiais ao modelo e, em seguida, treina a regressão: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +Usar `PolynomialFeatures(2)` significa que incluiremos todos os polinómios de segundo grau dos dados de entrada. No nosso caso, isso significará apenas `DayOfYear`2, mas, dado duas variáveis de entrada X e Y, isso adicionará X2, XY e Y2. Também podemos usar polinómios de grau superior, se quisermos. + +Os pipelines podem ser usados da mesma forma que o objeto original `LinearRegression`, ou seja, podemos usar `fit` no pipeline e, em seguida, usar `predict` para obter os resultados da previsão. Aqui está o gráfico mostrando os dados de teste e a curva de aproximação: + +Regressão polinomial + +Usando a Regressão Polinomial, conseguimos um MSE ligeiramente mais baixo e um coeficiente de determinação mais alto, mas não significativamente. Precisamos levar em conta outras características! + +> Pode-se observar que os preços mínimos das abóboras ocorrem por volta do Halloween. Como explicaria isso? + +🎃 Parabéns, acabou de criar um modelo que pode ajudar a prever o preço das abóboras para tartes. Provavelmente poderia repetir o mesmo procedimento para todos os tipos de abóbora, mas isso seria trabalhoso. Vamos agora aprender como levar em conta a variedade de abóbora no nosso modelo! + +## Características Categóricas + +No mundo ideal, queremos ser capazes de prever preços para diferentes variedades de abóbora usando o mesmo modelo. No entanto, a coluna `Variety` é um pouco diferente de colunas como `Month`, porque contém valores não numéricos. Essas colunas são chamadas de **categóricas**. + +[![ML para principiantes - Previsões com características categóricas usando Regressão Linear](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "ML para principiantes - Previsões com características categóricas usando Regressão Linear") + +> 🎥 Clique na imagem acima para um breve vídeo sobre o uso de características categóricas. + +Aqui pode ver como o preço médio depende da variedade: + +Preço médio por variedade + +Para levar a variedade em conta, primeiro precisamos convertê-la para uma forma numérica, ou **codificá-la**. Existem várias formas de fazer isso: + +* A **codificação numérica simples** criará uma tabela com as diferentes variedades e, em seguida, substituirá o nome da variedade por um índice nessa tabela. Esta não é a melhor ideia para regressão linear, porque a regressão linear considera o valor numérico do índice e adiciona-o ao resultado, multiplicando por algum coeficiente. No nosso caso, a relação entre o número do índice e o preço é claramente não linear, mesmo que garantamos que os índices estejam ordenados de uma forma específica. +* A **codificação one-hot** substituirá a coluna `Variety` por 4 colunas diferentes, uma para cada variedade. Cada coluna conterá `1` se a linha correspondente for de uma determinada variedade, e `0` caso contrário. Isso significa que haverá quatro coeficientes na regressão linear, um para cada variedade de abóbora, responsáveis pelo "preço inicial" (ou melhor, "preço adicional") para essa variedade específica. + +O código abaixo mostra como podemos codificar uma variedade usando one-hot encoding: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +Para treinar a regressão linear usando a variedade codificada como one-hot nos dados de entrada, só precisamos inicializar os dados `X` e `y` corretamente: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +O restante do código é o mesmo que usamos acima para treinar a Regressão Linear. Se experimentar, verá que o erro quadrático médio é aproximadamente o mesmo, mas obtemos um coeficiente de determinação muito mais alto (~77%). Para obter previsões ainda mais precisas, podemos levar em conta mais características categóricas, bem como características numéricas, como `Month` ou `DayOfYear`. Para obter um grande conjunto de características, podemos usar `join`: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +Aqui também levamos em conta `City` e o tipo de `Package`, o que nos dá um MSE de 2,84 (10%) e um coeficiente de determinação de 0,94! + +## Resumindo tudo + +Para criar o melhor modelo, podemos usar dados combinados (categóricos codificados como one-hot + numéricos) do exemplo acima juntamente com a Regressão Polinomial. Aqui está o código completo para sua conveniência: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +Isso deve nos dar o melhor coeficiente de determinação de quase 97% e MSE=2,23 (~8% de erro de previsão). + +| Modelo | MSE | Determinação | +|--------|-----|--------------| +| `DayOfYear` Linear | 2,77 (17,2%) | 0,07 | +| `DayOfYear` Polinomial | 2,73 (17,0%) | 0,08 | +| `Variety` Linear | 5,24 (19,7%) | 0,77 | +| Todas as características Linear | 2,84 (10,5%) | 0,94 | +| Todas as características Polinomial | 2,23 (8,25%) | 0,97 | + +🏆 Muito bem! Criou quatro modelos de Regressão numa única lição e melhorou a qualidade do modelo para 97%. Na seção final sobre Regressão, aprenderá sobre Regressão Logística para determinar categorias. + +--- +## 🚀Desafio + +Teste várias variáveis diferentes neste notebook para ver como a correlação corresponde à precisão do modelo. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Autoestudo + +Nesta lição aprendemos sobre Regressão Linear. Existem outros tipos importantes de Regressão. Leia sobre as técnicas Stepwise, Ridge, Lasso e Elasticnet. Um bom curso para aprender mais é o [curso de Aprendizagem Estatística de Stanford](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning). + +## Tarefa + +[Crie um Modelo](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/assignment.md b/translations/pt-PT/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..22dace4fb --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/assignment.md @@ -0,0 +1,16 @@ +# Criar um Modelo de Regressão + +## Instruções + +Nesta lição, foi mostrado como construir um modelo utilizando Regressão Linear e Polinomial. Com base nesse conhecimento, encontre um conjunto de dados ou utilize um dos conjuntos integrados do Scikit-learn para criar um novo modelo. Explique no seu notebook por que escolheu a técnica utilizada e demonstre a precisão do seu modelo. Caso não seja preciso, explique o motivo. + +## Rubrica + +| Critério | Exemplar | Adequado | Precisa de Melhorias | +| -------- | ----------------------------------------------------------- | -------------------------- | -------------------------------- | +| | apresenta um notebook completo com uma solução bem documentada | a solução está incompleta | a solução apresenta falhas ou erros | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/notebook.ipynb b/translations/pt-PT/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..dd488939a --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preços de Abóboras\n", + "\n", + "Carregue as bibliotecas necessárias e o conjunto de dados. Converta os dados para um dataframe contendo um subconjunto dos dados:\n", + "\n", + "- Obtenha apenas abóboras com preços por alqueire\n", + "- Converta a data para um mês\n", + "- Calcule o preço como uma média entre os preços altos e baixos\n", + "- Converta o preço para refletir a quantidade por alqueire\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Um gráfico de dispersão básico lembra-nos que só temos dados mensais de agosto a dezembro. Provavelmente precisamos de mais dados para conseguir tirar conclusões de forma linear.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-03T19:16:20+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/solution/Julia/README.md b/translations/pt-PT/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..b641c7263 --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/pt-PT/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..e4bd71ed7 --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1087 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-03T19:24:43+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Regressão Linear e Polinomial para Preços de Abóboras - Aula 3\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "#### Introdução\n", + "\n", + "Até agora, exploraste o que é regressão com dados de exemplo recolhidos do conjunto de dados sobre preços de abóboras que utilizaremos ao longo desta aula. Também já os visualizaste usando `ggplot2`. 💪\n", + "\n", + "Agora estás pronto para aprofundar o tema da regressão para ML. Nesta aula, vais aprender mais sobre dois tipos de regressão: *regressão linear básica* e *regressão polinomial*, juntamente com alguns dos conceitos matemáticos subjacentes a estas técnicas.\n", + "\n", + "> Ao longo deste currículo, assumimos um conhecimento mínimo de matemática e procuramos torná-la acessível para estudantes de outras áreas. Por isso, presta atenção às notas, 🧮 destaques, diagramas e outras ferramentas de aprendizagem que ajudam na compreensão.\n", + "\n", + "#### Preparação\n", + "\n", + "Como lembrete, estás a carregar estes dados para fazer perguntas sobre eles.\n", + "\n", + "- Qual é a melhor altura para comprar abóboras?\n", + "\n", + "- Qual o preço que posso esperar por uma caixa de abóboras miniatura?\n", + "\n", + "- Devo comprá-las em cestos de meio alqueire ou em caixas de 1 1/9 alqueire? Vamos continuar a explorar estes dados.\n", + "\n", + "Na aula anterior, criaste um `tibble` (uma reinterpretação moderna do data frame) e preencheste-o com parte do conjunto de dados original, padronizando os preços por alqueire. Ao fazer isso, no entanto, só conseguiste recolher cerca de 400 pontos de dados e apenas para os meses de outono. Talvez possamos obter um pouco mais de detalhe sobre a natureza dos dados ao limpá-los melhor? Vamos ver... 🕵️‍♀️\n", + "\n", + "Para esta tarefa, vamos precisar dos seguintes pacotes:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [estrutura de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem automática.\n", + "\n", + "- `janitor`: O [pacote janitor](https://github.com/sfirke/janitor) oferece ferramentas simples para examinar e limpar dados desorganizados.\n", + "\n", + "- `corrplot`: O [pacote corrplot](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) fornece uma ferramenta visual exploratória para matrizes de correlação que suporta o reordenamento automático de variáveis para ajudar a detectar padrões ocultos entre variáveis.\n", + "\n", + "Podes instalá-los da seguinte forma:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "O script abaixo verifica se tens os pacotes necessários para completar este módulo e instala-os para ti caso estejam em falta.\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vamos carregar estes pacotes incríveis e torná-los disponíveis na nossa sessão atual de R. (Isto é apenas para ilustração, `pacman::p_load()` já fez isso por você)\n", + "\n", + "## 1. Uma linha de regressão linear\n", + "\n", + "Como aprendeste na Lição 1, o objetivo de um exercício de regressão linear é conseguir traçar uma *linha* *de* *melhor ajuste* para:\n", + "\n", + "- **Mostrar relações entre variáveis**. Mostrar a relação entre as variáveis.\n", + "\n", + "- **Fazer previsões**. Fazer previsões precisas sobre onde um novo ponto de dados se situaria em relação a essa linha.\n", + "\n", + "Para desenhar este tipo de linha, usamos uma técnica estatística chamada **Regressão dos Mínimos Quadrados**. O termo `mínimos quadrados` significa que todos os pontos de dados ao redor da linha de regressão são elevados ao quadrado e depois somados. Idealmente, essa soma final é o menor valor possível, porque queremos um número baixo de erros, ou `mínimos quadrados`. Assim, a linha de melhor ajuste é a linha que nos dá o menor valor para a soma dos erros ao quadrado - daí o nome *regressão dos mínimos quadrados*.\n", + "\n", + "Fazemos isso porque queremos modelar uma linha que tenha a menor distância acumulada de todos os nossos pontos de dados. Também elevamos os termos ao quadrado antes de somá-los, pois estamos preocupados com a sua magnitude e não com a sua direção.\n", + "\n", + "> **🧮 Mostra-me a matemática**\n", + ">\n", + "> Esta linha, chamada de *linha de melhor ajuste*, pode ser expressa por [uma equação](https://en.wikipedia.org/wiki/Simple_linear_regression):\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` é a '`variável explicativa` ou `preditor`'. `Y` é a '`variável dependente` ou `resultado`'. A inclinação da linha é `b` e `a` é o ponto de interseção no eixo Y, que se refere ao valor de `Y` quando `X = 0`.\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"slope = $y/x$\")\n", + " Infográfico por Jen Looper\n", + ">\n", + "> Primeiro, calcula a inclinação `b`.\n", + ">\n", + "> Em outras palavras, e referindo-nos à pergunta original sobre os dados das abóboras: \"prever o preço de uma abóbora por alqueire ao longo dos meses\", `X` referiria-se ao preço e `Y` ao mês de venda.\n", + ">\n", + "> ![](../../../../../../translated_images/pt-PT/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.png)\n", + " Infográfico por Jen Looper\n", + "> \n", + "> Calcula o valor de Y. Se estás a pagar cerca de \\$4, deve ser abril!\n", + ">\n", + "> A matemática que calcula a linha deve demonstrar a inclinação da linha, que também depende do ponto de interseção, ou onde `Y` está situado quando `X = 0`.\n", + ">\n", + "> Podes observar o método de cálculo destes valores no site [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html). Também visita [este calculador de mínimos quadrados](https://www.mathsisfun.com/data/least-squares-calculator.html) para ver como os valores dos números impactam a linha.\n", + "\n", + "Não é tão assustador, certo? 🤓\n", + "\n", + "#### Correlação\n", + "\n", + "Outro termo importante para entender é o **Coeficiente de Correlação** entre as variáveis X e Y fornecidas. Usando um gráfico de dispersão, podes visualizar rapidamente este coeficiente. Um gráfico com pontos de dados alinhados de forma ordenada tem alta correlação, mas um gráfico com pontos de dados espalhados aleatoriamente entre X e Y tem baixa correlação.\n", + "\n", + "Um bom modelo de regressão linear será aquele que tem um Coeficiente de Correlação alto (mais próximo de 1 do que de 0) usando o método de Regressão dos Mínimos Quadrados com uma linha de regressão.\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. Uma dança com dados: criar um data frame que será usado para modelação**\n", + "\n", + "

\n", + " \n", + "

Ilustração por @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "Carregue as bibliotecas necessárias e o conjunto de dados. Converta os dados para um data frame contendo um subconjunto dos dados:\n", + "\n", + "- Obtenha apenas abóboras com preços por alqueire\n", + "\n", + "- Converta a data para um mês\n", + "\n", + "- Calcule o preço como uma média entre os preços altos e baixos\n", + "\n", + "- Converta o preço para refletir a quantidade por alqueire\n", + "\n", + "> Abordámos estes passos na [lição anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb).\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "No espírito de pura aventura, vamos explorar o [`pacote janitor`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor) que fornece funções simples para examinar e limpar dados desorganizados. Por exemplo, vamos dar uma olhada nos nomes das colunas dos nossos dados:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 Podemos fazer melhor. Vamos tornar estes nomes de colunas `friendR` ao convertê-los para a convenção [snake_case](https://en.wikipedia.org/wiki/Snake_case) usando `janitor::clean_names`. Para saber mais sobre esta função: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Muito tidyR 🧹! Agora, uma dança com os dados usando `dplyr`, como na lição anterior! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho!👌 Agora tens um conjunto de dados limpo e organizado sobre o qual podes construir o teu novo modelo de regressão!\n", + "\n", + "Que tal um gráfico de dispersão?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "Um gráfico de dispersão lembra-nos que só temos dados mensais de agosto a dezembro. Provavelmente precisamos de mais dados para conseguir tirar conclusões de forma linear.\n", + "\n", + "Vamos analisar novamente os nossos dados de modelação:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "E se quiséssemos prever o `price` de uma abóbora com base nas colunas `city` ou `package`, que são do tipo carácter? Ou, ainda mais simples, como poderíamos encontrar a correlação (que exige que ambos os seus inputs sejam numéricos) entre, por exemplo, `package` e `price`? 🤷🤷\n", + "\n", + "Os modelos de aprendizagem automática funcionam melhor com características numéricas em vez de valores de texto, por isso, geralmente é necessário converter características categóricas em representações numéricas.\n", + "\n", + "Isto significa que temos de encontrar uma forma de reformular os nossos preditores para os tornar mais fáceis de usar por um modelo de forma eficaz, um processo conhecido como `feature engineering`.\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Pré-processamento de dados para modelação com recipes 👩‍🍳👨‍🍳\n", + "\n", + "Atividades que reformulam os valores dos preditores para torná-los mais fáceis de usar de forma eficaz por um modelo são chamadas de `engenharia de características`.\n", + "\n", + "Modelos diferentes têm requisitos de pré-processamento distintos. Por exemplo, mínimos quadrados requerem `codificação de variáveis categóricas`, como mês, variedade e city_name. Isso envolve simplesmente `traduzir` uma coluna com `valores categóricos` em uma ou mais `colunas numéricas` que substituem a original.\n", + "\n", + "Por exemplo, suponha que os seus dados incluam a seguinte característica categórica:\n", + "\n", + "| cidade |\n", + "|:---------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tóquio |\n", + "\n", + "Pode aplicar *codificação ordinal* para substituir cada categoria por um valor inteiro único, assim:\n", + "\n", + "| cidade |\n", + "|:------:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "E é isso que vamos fazer com os nossos dados!\n", + "\n", + "Nesta secção, vamos explorar outro pacote incrível do Tidymodels: [recipes](https://tidymodels.github.io/recipes/) - que foi criado para ajudar a pré-processar os seus dados **antes** de treinar o modelo. No seu núcleo, uma receita é um objeto que define quais passos devem ser aplicados a um conjunto de dados para prepará-lo para a modelação.\n", + "\n", + "Agora, vamos criar uma receita que prepara os nossos dados para modelação, substituindo um número inteiro único por todas as observações nas colunas de preditores:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Incrível! 👏 Acabámos de criar a nossa primeira receita que especifica um resultado (preço) e os seus respetivos preditores, e que todas as colunas de preditores devem ser codificadas como um conjunto de números inteiros 🙌! Vamos analisar rapidamente:\n", + "\n", + "- A chamada para `recipe()` com uma fórmula indica à receita os *papéis* das variáveis, utilizando os dados de `new_pumpkins` como referência. Por exemplo, a coluna `price` foi atribuída ao papel de `outcome`, enquanto o resto das colunas foram atribuídas ao papel de `predictor`.\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` especifica que todos os preditores devem ser convertidos num conjunto de números inteiros, começando a numeração em 0.\n", + "\n", + "Temos a certeza de que pode estar a pensar algo como: \"Isto é tão fixe!! Mas e se eu precisar de confirmar que as receitas estão a fazer exatamente o que espero? 🤔\"\n", + "\n", + "Essa é uma ótima ideia! Veja, uma vez que a sua receita está definida, pode estimar os parâmetros necessários para realmente pré-processar os dados e, em seguida, extrair os dados processados. Normalmente, não precisa de fazer isto quando utiliza Tidymodels (vamos ver a convenção normal daqui a pouco-\\> `workflows`), mas pode ser útil quando quiser fazer algum tipo de verificação para confirmar que as receitas estão a funcionar como esperado.\n", + "\n", + "Para isso, vai precisar de mais dois verbos: `prep()` e `bake()`. E, como sempre, os nossos pequenos amigos do R criados por [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) ajudam a compreender isto melhor!\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): estima os parâmetros necessários a partir de um conjunto de treino que podem ser posteriormente aplicados a outros conjuntos de dados. Por exemplo, para uma determinada coluna preditora, qual observação será atribuída ao número inteiro 0, 1, 2, etc.\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): utiliza uma receita preparada e aplica as operações a qualquer conjunto de dados.\n", + "\n", + "Dito isto, vamos preparar e aplicar as nossas receitas para realmente confirmar que, nos bastidores, as colunas preditoras serão primeiro codificadas antes de ajustar um modelo.\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo!🥳 Os dados processados `baked_pumpkins` têm todos os seus preditores codificados, confirmando que, de facto, os passos de pré-processamento definidos como a nossa receita funcionarão conforme esperado. Isto torna mais difícil para ti ler, mas muito mais inteligível para o Tidymodels! Dedica algum tempo a descobrir que observação foi mapeada para um número inteiro correspondente.\n", + "\n", + "Também vale a pena mencionar que `baked_pumpkins` é um data frame no qual podemos realizar cálculos.\n", + "\n", + "Por exemplo, vamos tentar encontrar uma boa correlação entre dois pontos dos teus dados para, potencialmente, construir um bom modelo preditivo. Vamos usar a função `cor()` para fazer isto. Escreve `?cor()` para saberes mais sobre a função.\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "Afinal, há apenas uma correlação fraca entre a Cidade e o Preço. No entanto, há uma correlação um pouco melhor entre o Pacote e o seu Preço. Faz sentido, certo? Normalmente, quanto maior a caixa de produtos, maior o preço.\n", + "\n", + "Já que estamos nisso, vamos também tentar visualizar uma matriz de correlação de todas as colunas usando o pacote `corrplot`.\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Muito melhor.\n", + "\n", + "Uma boa pergunta a fazer agora com estes dados seria: '`Que preço posso esperar de um determinado pacote de abóboras?`' Vamos começar!\n", + "\n", + "> Nota: Quando **`bake()`** a receita preparada **`pumpkins_prep`** com **`new_data = NULL`**, extrai os dados de treino processados (ou seja, codificados). Se tiver outro conjunto de dados, por exemplo, um conjunto de teste, e quiser ver como uma receita o pré-processaria, basta fazer o bake de **`pumpkins_prep`** com **`new_data = test_set`**.\n", + "\n", + "## 4. Construir um modelo de regressão linear\n", + "\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora que criámos uma receita e confirmámos que os dados serão pré-processados de forma adequada, vamos agora construir um modelo de regressão para responder à pergunta: `Qual o preço que posso esperar de um determinado pacote de abóbora?`\n", + "\n", + "#### Treinar um modelo de regressão linear utilizando o conjunto de treino\n", + "\n", + "Como já deve ter percebido, a coluna *price* é a variável `resultado`, enquanto a coluna *package* é a variável `preditor`.\n", + "\n", + "Para isso, primeiro vamos dividir os dados de forma que 80% sejam usados para treino e 20% para teste, depois definiremos uma receita que codificará a coluna preditora num conjunto de inteiros e, em seguida, construiremos uma especificação de modelo. Não vamos preparar e aplicar a nossa receita, pois já sabemos que ela irá pré-processar os dados conforme esperado.\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho! Agora que temos uma receita e uma especificação de modelo, precisamos encontrar uma forma de agrupá-los num objeto que primeiro pré-processa os dados (prep+bake nos bastidores), ajusta o modelo nos dados pré-processados e também permite possíveis atividades de pós-processamento. Que tal para a tua tranquilidade!🤩\n", + "\n", + "No Tidymodels, este objeto prático chama-se [`workflow`](https://workflows.tidymodels.org/) e guarda convenientemente os teus componentes de modelação! Isto é o que chamaríamos de *pipelines* em *Python*.\n", + "\n", + "Então, vamos agrupar tudo num workflow!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Além disso, um fluxo de trabalho pode ser ajustado/treinado de forma muito semelhante a um modelo.\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "A partir dos resultados do modelo, podemos observar os coeficientes aprendidos durante o treino. Eles representam os coeficientes da linha de melhor ajuste que nos proporciona o menor erro geral entre a variável real e a prevista.\n", + "\n", + "#### Avaliar o desempenho do modelo utilizando o conjunto de teste\n", + "\n", + "É hora de ver como o modelo se saiu 📏! Como fazemos isso?\n", + "\n", + "Agora que treinámos o modelo, podemos utilizá-lo para fazer previsões no test_set usando `parsnip::predict()`. Depois, podemos comparar estas previsões com os valores reais das etiquetas para avaliar quão bem (ou não!) o modelo está a funcionar.\n", + "\n", + "Vamos começar por fazer previsões para o conjunto de teste e, em seguida, ligar as colunas ao conjunto de teste.\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "Sim, acabou de treinar um modelo e utilizou-o para fazer previsões! 🔮 Será que é bom? Vamos avaliar o desempenho do modelo!\n", + "\n", + "No Tidymodels, fazemos isso utilizando `yardstick::metrics()`! Para regressão linear, vamos focar nas seguintes métricas:\n", + "\n", + "- `Root Mean Square Error (RMSE)`: A raiz quadrada do [MSE](https://en.wikipedia.org/wiki/Mean_squared_error). Esta métrica fornece um valor absoluto na mesma unidade que o rótulo (neste caso, o preço de uma abóbora). Quanto menor o valor, melhor o modelo (de forma simplista, representa o preço médio pelo qual as previsões estão erradas!).\n", + "\n", + "- `Coefficient of Determination (geralmente conhecido como R-quadrado ou R2)`: Uma métrica relativa em que, quanto maior o valor, melhor o ajuste do modelo. Essencialmente, esta métrica representa o quanto da variância entre os valores previstos e os valores reais o modelo consegue explicar.\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lá se vai o desempenho do modelo. Vamos ver se conseguimos obter uma indicação melhor ao visualizar um gráfico de dispersão do pacote e do preço, e depois usar as previsões feitas para sobrepor uma linha de melhor ajuste.\n", + "\n", + "Isto significa que teremos de preparar e processar o conjunto de teste para codificar a coluna do pacote e, em seguida, associar isso às previsões feitas pelo nosso modelo.\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ótimo! Como pode ver, o modelo de regressão linear não generaliza muito bem a relação entre um pacote e o seu preço correspondente.\n", + "\n", + "🎃 Parabéns, acabou de criar um modelo que pode ajudar a prever o preço de algumas variedades de abóboras. O seu campo de abóboras para o feriado será lindo. Mas provavelmente pode criar um modelo ainda melhor!\n", + "\n", + "## 5. Construir um modelo de regressão polinomial\n", + "\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Às vezes, os nossos dados podem não ter uma relação linear, mas ainda assim queremos prever um resultado. A regressão polinomial pode ajudar-nos a fazer previsões para relações não lineares mais complexas.\n", + "\n", + "Por exemplo, considere a relação entre o tamanho e o preço no nosso conjunto de dados de abóboras. Embora, por vezes, exista uma relação linear entre as variáveis - quanto maior o volume da abóbora, maior o preço - outras vezes estas relações não podem ser representadas como um plano ou uma linha reta.\n", + "\n", + "> ✅ Aqui estão [alguns exemplos adicionais](https://online.stat.psu.edu/stat501/lesson/9/9.8) de dados que poderiam usar regressão polinomial\n", + ">\n", + "> Observe novamente a relação entre Variedade e Preço no gráfico anterior. Este diagrama de dispersão parece que deveria ser necessariamente analisado por uma linha reta? Talvez não. Neste caso, pode experimentar a regressão polinomial.\n", + ">\n", + "> ✅ Polinómios são expressões matemáticas que podem consistir em uma ou mais variáveis e coeficientes\n", + "\n", + "#### Treinar um modelo de regressão polinomial usando o conjunto de treino\n", + "\n", + "A regressão polinomial cria uma *linha curva* para ajustar melhor os dados não lineares.\n", + "\n", + "Vamos ver se um modelo polinomial terá um desempenho melhor ao fazer previsões. Seguiremos um procedimento algo semelhante ao que fizemos anteriormente:\n", + "\n", + "- Criar uma receita que especifique os passos de pré-processamento que devem ser realizados nos nossos dados para os preparar para modelação, ou seja: codificar preditores e calcular polinómios de grau *n*\n", + "\n", + "- Construir uma especificação de modelo\n", + "\n", + "- Agrupar a receita e a especificação de modelo num fluxo de trabalho\n", + "\n", + "- Criar um modelo ajustando o fluxo de trabalho\n", + "\n", + "- Avaliar o desempenho do modelo nos dados de teste\n", + "\n", + "Vamos começar!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Avaliar o desempenho do modelo\n", + "\n", + "👏👏Construíste um modelo polinomial, vamos fazer previsões no conjunto de teste!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo, vamos avaliar como o modelo se saiu no test_set usando `yardstick::metrics()`.\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Desempenho muito melhor.\n", + "\n", + "O `rmse` diminuiu de cerca de 7 para cerca de 3, uma indicação de um erro reduzido entre o preço real e o preço previsto. Pode-se *interpretar de forma aproximada* que, em média, as previsões incorretas erram por cerca de 3€. O `rsq` aumentou de cerca de 0.4 para 0.8.\n", + "\n", + "Todos estes indicadores mostram que o modelo polinomial tem um desempenho muito superior ao modelo linear. Bom trabalho!\n", + "\n", + "Vamos ver se conseguimos visualizar isto!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "Pode ver uma linha curva que se ajusta melhor aos seus dados! 🤩\n", + "\n", + "Pode torná-la mais suave ao passar uma fórmula polinomial para `geom_smooth` assim:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "Muito parecido com uma curva suave!🤩\n", + "\n", + "Aqui está como fazer uma nova previsão:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "A previsão do `polynomial model` faz sentido, considerando os gráficos de dispersão de `price` e `package`! E, se este modelo for melhor do que o anterior, olhando para os mesmos dados, será necessário prever um orçamento para estas abóboras mais caras!\n", + "\n", + "🏆 Muito bem! Você criou dois modelos de regressão em uma única lição. Na seção final sobre regressão, aprenderá sobre regressão logística para determinar categorias.\n", + "\n", + "## **🚀Desafio**\n", + "\n", + "Teste várias variáveis diferentes neste notebook para ver como a correlação corresponde à precisão do modelo.\n", + "\n", + "## [**Questionário pós-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **Revisão & Estudo Autônomo**\n", + "\n", + "Nesta lição aprendemos sobre Regressão Linear. Existem outros tipos importantes de Regressão. Leia sobre as técnicas Stepwise, Ridge, Lasso e Elasticnet. Um bom curso para aprender mais é o [curso de Aprendizagem Estatística de Stanford](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning).\n", + "\n", + "Se quiser aprender mais sobre como usar o incrível framework Tidymodels, consulte os seguintes recursos:\n", + "\n", + "- Website do Tidymodels: [Introdução ao Tidymodels](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn e Julia Silge, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **AGRADECIMENTOS A:**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontre mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/3-Linear/solution/notebook.ipynb b/translations/pt-PT/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..fdccd458f --- /dev/null +++ b/translations/pt-PT/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Regressão Linear e Polinomial para Preços de Abóboras - Aula 3\n", + "\n", + "Carregue as bibliotecas necessárias e o conjunto de dados. Converta os dados para um dataframe contendo um subconjunto dos dados:\n", + "\n", + "- Obtenha apenas abóboras com preços por alqueire\n", + "- Converta a data para um mês\n", + "- Calcule o preço como uma média entre os preços altos e baixos\n", + "- Converta o preço para refletir o valor por quantidade de alqueires\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
\n", + "
" + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Um gráfico de dispersão lembra-nos que só temos dados mensais de agosto a dezembro. Provavelmente precisamos de mais dados para conseguir tirar conclusões de forma linear.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Parece que a correlação é bastante pequena, mas existe alguma outra relação mais importante - porque os pontos de preço no gráfico acima parecem ter vários clusters distintos. Vamos criar um gráfico que mostre diferentes variedades de abóbora:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regressão Linear\n", + "\n", + "Vamos usar o Scikit Learn para treinar um modelo de regressão linear:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A inclinação da linha pode ser determinada a partir dos coeficientes de regressão linear:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regressão Polinomial\n", + "\n", + "Por vezes, a relação entre as características e os resultados é intrinsecamente não linear. Por exemplo, os preços das abóboras podem ser altos no inverno (meses=1,2), depois cair no verão (meses=5-7) e voltar a subir novamente. A regressão linear não consegue captar esta relação com precisão.\n", + "\n", + "Neste caso, podemos considerar adicionar características adicionais. Uma forma simples é usar polinómios das características de entrada, o que resultaria numa **regressão polinomial**. No Scikit Learn, podemos pré-computar automaticamente características polinomiais utilizando pipelines:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Codificação de variedades\n", + "\n", + "No mundo ideal, queremos ser capazes de prever os preços para diferentes variedades de abóbora usando o mesmo modelo. Para levar a variedade em consideração, primeiro precisamos convertê-la para uma forma numérica, ou **codificar**. Existem várias maneiras de fazer isso:\n", + "\n", + "* Codificação numérica simples que cria uma tabela com diferentes variedades e, em seguida, substitui o nome da variedade por um índice nessa tabela. Esta não é a melhor ideia para regressão linear, porque a regressão linear leva em conta o valor numérico do índice, e o valor numérico provavelmente não terá correlação numérica com o preço.\n", + "* Codificação one-hot, que substitui a coluna `Variety` por 4 colunas diferentes, uma para cada variedade, que conterão 1 se a linha correspondente for da variedade dada, e 0 caso contrário.\n", + "\n", + "O código abaixo mostra como podemos codificar uma variedade usando one-hot:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
700001
710001
720001
730001
740001
...............
17380100
17390100
17400100
17410100
17420100
\n", + "

415 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regressão Linear sobre Variedade\n", + "\n", + "Agora vamos usar o mesmo código mencionado acima, mas em vez de `DayOfYear`, utilizaremos a nossa variedade codificada em one-hot como entrada:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos também tentar usar outras funcionalidades da mesma maneira e combiná-las com funcionalidades numéricas, como `Month` ou `DayOfYear`:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regressão Polinomial\n", + "\n", + "A regressão polinomial também pode ser utilizada com características categóricas que foram codificadas em one-hot. O código para treinar a regressão polinomial seria essencialmente o mesmo que vimos acima.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-03T19:17:56+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/README.md b/translations/pt-PT/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..c87868711 --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/README.md @@ -0,0 +1,406 @@ +# Regressão logística para prever categorias + +![Infográfico de regressão logística vs. regressão linear](../../../../2-Regression/4-Logistic/images/linear-vs-logistic.png) + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +> ### [Esta lição está disponível em R!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## Introdução + +Nesta última lição sobre Regressão, uma das técnicas básicas _clássicas_ de ML, vamos explorar a Regressão Logística. Esta técnica é usada para descobrir padrões e prever categorias binárias. Este doce é chocolate ou não? Esta doença é contagiosa ou não? Este cliente vai escolher este produto ou não? + +Nesta lição, você aprenderá: + +- Uma nova biblioteca para visualização de dados +- Técnicas de regressão logística + +✅ Aprofunde seu entendimento sobre como trabalhar com este tipo de regressão neste [módulo de aprendizado](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) + +## Pré-requisito + +Depois de trabalhar com os dados de abóbora, já estamos suficientemente familiarizados para perceber que há uma categoria binária com a qual podemos trabalhar: `Color`. + +Vamos construir um modelo de regressão logística para prever, com base em algumas variáveis, _qual é a cor provável de uma abóbora_ (laranja 🎃 ou branca 👻). + +> Por que estamos falando de classificação binária em uma lição sobre regressão? Apenas por conveniência linguística, já que a regressão logística é [na verdade um método de classificação](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), embora baseado em linearidade. Aprenda sobre outras formas de classificar dados no próximo grupo de lições. + +## Definir a questão + +Para nossos propósitos, vamos expressar isso como um binário: 'Branca' ou 'Não Branca'. Há também uma categoria 'listrada' em nosso conjunto de dados, mas há poucos exemplos dela, então não a utilizaremos. Ela desaparece quando removemos os valores nulos do conjunto de dados, de qualquer forma. + +> 🎃 Curiosidade: às vezes chamamos as abóboras brancas de abóboras 'fantasma'. Elas não são muito fáceis de esculpir, então não são tão populares quanto as laranjas, mas têm um visual interessante! Assim, poderíamos reformular nossa questão como: 'Fantasma' ou 'Não Fantasma'. 👻 + +## Sobre regressão logística + +A regressão logística difere da regressão linear, que você aprendeu anteriormente, em alguns aspectos importantes. + +[![ML para iniciantes - Entendendo a Regressão Logística para Classificação de Machine Learning](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "ML para iniciantes - Entendendo a Regressão Logística para Classificação de Machine Learning") + +> 🎥 Clique na imagem acima para um breve vídeo sobre regressão logística. + +### Classificação binária + +A regressão logística não oferece os mesmos recursos que a regressão linear. A primeira oferece uma previsão sobre uma categoria binária ("branca ou não branca"), enquanto a segunda é capaz de prever valores contínuos, por exemplo, dado a origem de uma abóbora e o tempo de colheita, _quanto seu preço vai aumentar_. + +![Modelo de classificação de abóbora](../../../../2-Regression/4-Logistic/images/pumpkin-classifier.png) +> Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +### Outras classificações + +Existem outros tipos de regressão logística, incluindo multinomial e ordinal: + +- **Multinomial**, que envolve mais de uma categoria - "Laranja, Branca e Listrada". +- **Ordinal**, que envolve categorias ordenadas, útil se quisermos ordenar nossos resultados logicamente, como nossas abóboras que são ordenadas por um número finito de tamanhos (mini,pequeno,médio,grande,xl,xxl). + +![Regressão multinomial vs ordinal](../../../../2-Regression/4-Logistic/images/multinomial-vs-ordinal.png) + +### As variáveis NÃO precisam ser correlacionadas + +Lembra como a regressão linear funcionava melhor com variáveis mais correlacionadas? A regressão logística é o oposto - as variáveis não precisam estar alinhadas. Isso funciona para este conjunto de dados, que tem correlações relativamente fracas. + +### Você precisa de muitos dados limpos + +A regressão logística fornecerá resultados mais precisos se você usar mais dados; nosso pequeno conjunto de dados não é ideal para esta tarefa, então tenha isso em mente. + +[![ML para iniciantes - Análise e Preparação de Dados para Regressão Logística](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "ML para iniciantes - Análise e Preparação de Dados para Regressão Logística") + +> 🎥 Clique na imagem acima para um breve vídeo sobre preparação de dados para regressão linear. + +✅ Pense nos tipos de dados que se adaptariam bem à regressão logística. + +## Exercício - organizar os dados + +Primeiro, limpe os dados, removendo valores nulos e selecionando apenas algumas colunas: + +1. Adicione o seguinte código: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + Você sempre pode dar uma olhada no seu novo dataframe: + + ```python + pumpkins.info + ``` + +### Visualização - gráfico categórico + +Agora que você carregou o [notebook inicial](../../../../2-Regression/4-Logistic/notebook.ipynb) com os dados de abóbora novamente e os limpou para preservar um conjunto de dados contendo algumas variáveis, incluindo `Color`, vamos visualizar o dataframe no notebook usando uma biblioteca diferente: [Seaborn](https://seaborn.pydata.org/index.html), que é construída sobre o Matplotlib que usamos anteriormente. + +Seaborn oferece algumas maneiras interessantes de visualizar seus dados. Por exemplo, você pode comparar distribuições dos dados para cada `Variety` e `Color` em um gráfico categórico. + +1. Crie tal gráfico usando a função `catplot`, com os dados de abóbora `pumpkins`, e especificando um mapeamento de cores para cada categoria de abóbora (laranja ou branca): + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![Uma grade de dados visualizados](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_1.png) + + Observando os dados, você pode ver como os dados de `Color` se relacionam com `Variety`. + + ✅ Dado este gráfico categórico, quais são algumas explorações interessantes que você pode imaginar? + +### Pré-processamento de dados: codificação de características e rótulos + +Nosso conjunto de dados de abóboras contém valores de string em todas as suas colunas. Trabalhar com dados categóricos é intuitivo para humanos, mas não para máquinas. Algoritmos de aprendizado de máquina funcionam bem com números. Por isso, a codificação é uma etapa muito importante na fase de pré-processamento de dados, pois permite transformar dados categóricos em dados numéricos, sem perder informações. Uma boa codificação leva à construção de um bom modelo. + +Para codificação de características, existem dois tipos principais de codificadores: + +1. Codificador ordinal: é adequado para variáveis ordinais, que são variáveis categóricas cujos dados seguem uma ordem lógica, como a coluna `Item Size` em nosso conjunto de dados. Ele cria um mapeamento em que cada categoria é representada por um número, que é a ordem da categoria na coluna. + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. Codificador categórico: é adequado para variáveis nominais, que são variáveis categóricas cujos dados não seguem uma ordem lógica, como todas as características diferentes de `Item Size` em nosso conjunto de dados. É uma codificação one-hot, o que significa que cada categoria é representada por uma coluna binária: a variável codificada é igual a 1 se a abóbora pertence àquela `Variety` e 0 caso contrário. + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +Então, `ColumnTransformer` é usado para combinar múltiplos codificadores em uma única etapa e aplicá-los às colunas apropriadas. + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +Por outro lado, para codificar o rótulo, usamos a classe `LabelEncoder` do scikit-learn, que é uma classe utilitária para ajudar a normalizar rótulos de forma que contenham apenas valores entre 0 e n_classes-1 (aqui, 0 e 1). + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +Depois de codificar as características e o rótulo, podemos mesclá-los em um novo dataframe `encoded_pumpkins`. + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ Quais são as vantagens de usar um codificador ordinal para a coluna `Item Size`? + +### Analisar relações entre variáveis + +Agora que pré-processamos nossos dados, podemos analisar as relações entre as características e o rótulo para ter uma ideia de quão bem o modelo será capaz de prever o rótulo com base nas características. + +A melhor maneira de realizar esse tipo de análise é plotando os dados. Usaremos novamente a função `catplot` do Seaborn para visualizar as relações entre `Item Size`, `Variety` e `Color` em um gráfico categórico. Para melhor plotar os dados, usaremos a coluna codificada `Item Size` e a coluna não codificada `Variety`. + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![Um gráfico categórico de dados visualizados](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_2.png) + +### Usar um gráfico de dispersão + +Como `Color` é uma categoria binária (Branca ou Não), ela precisa de '[uma abordagem especializada](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) para visualização'. Existem outras maneiras de visualizar a relação dessa categoria com outras variáveis. + +Você pode visualizar variáveis lado a lado com gráficos do Seaborn. + +1. Experimente um gráfico de dispersão ('swarm') para mostrar a distribuição de valores: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![Um gráfico de dispersão de dados visualizados](../../../../2-Regression/4-Logistic/images/swarm_2.png) + +**Atenção**: o código acima pode gerar um aviso, já que o Seaborn pode falhar ao representar uma quantidade tão grande de pontos de dados em um gráfico de dispersão. Uma solução possível é diminuir o tamanho do marcador, usando o parâmetro 'size'. No entanto, esteja ciente de que isso afeta a legibilidade do gráfico. + +> **🧮 Mostre-me a Matemática** +> +> A regressão logística baseia-se no conceito de 'máxima verossimilhança' usando [funções sigmoides](https://wikipedia.org/wiki/Sigmoid_function). Uma 'Função Sigmoide' em um gráfico tem a forma de um 'S'. Ela pega um valor e o mapeia para algo entre 0 e 1. Sua curva também é chamada de 'curva logística'. Sua fórmula é assim: +> +> ![função logística](../../../../2-Regression/4-Logistic/images/sigmoid.png) +> +> onde o ponto médio da sigmoide encontra-se no ponto 0 de x, L é o valor máximo da curva, e k é a inclinação da curva. Se o resultado da função for maior que 0.5, o rótulo em questão será atribuído à classe '1' da escolha binária. Caso contrário, será classificado como '0'. + +## Construir seu modelo + +Construir um modelo para encontrar essas classificações binárias é surpreendentemente simples no Scikit-learn. + +[![ML para iniciantes - Regressão Logística para classificação de dados](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "ML para iniciantes - Regressão Logística para classificação de dados") + +> 🎥 Clique na imagem acima para um breve vídeo sobre construção de um modelo de regressão linear. + +1. Selecione as variáveis que deseja usar em seu modelo de classificação e divida os conjuntos de treinamento e teste chamando `train_test_split()`: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. Agora você pode treinar seu modelo, chamando `fit()` com seus dados de treinamento, e imprimir o resultado: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + Veja o desempenho do seu modelo. Não está ruim, considerando que você tem apenas cerca de 1000 linhas de dados: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## Melhor compreensão via uma matriz de confusão + +Embora você possa obter um relatório de desempenho [termos](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) imprimindo os itens acima, talvez consiga entender melhor seu modelo usando uma [matriz de confusão](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) para ajudar a avaliar como o modelo está se saindo. + +> 🎓 Uma '[matriz de confusão](https://wikipedia.org/wiki/Confusion_matrix)' (ou 'matriz de erro') é uma tabela que expressa os verdadeiros vs. falsos positivos e negativos do seu modelo, avaliando assim a precisão das previsões. + +1. Para usar uma matriz de confusão, chame `confusion_matrix()`: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + Veja a matriz de confusão do seu modelo: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +No Scikit-learn, as linhas (eixo 0) são os rótulos reais e as colunas (eixo 1) são os rótulos previstos. + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +O que está acontecendo aqui? Digamos que nosso modelo seja solicitado a classificar abóboras entre duas categorias binárias, categoria 'branca' e categoria 'não branca'. + +- Se o modelo prevê uma abóbora como não branca e ela realmente pertence à categoria 'não branca', chamamos isso de verdadeiro negativo, mostrado pelo número no canto superior esquerdo. +- Se o modelo prevê uma abóbora como branca e ela realmente pertence à categoria 'não branca', chamamos isso de falso negativo, mostrado pelo número no canto inferior esquerdo. +- Se o modelo prevê uma abóbora como não branca e ela realmente pertence à categoria 'branca', chamamos isso de falso positivo, mostrado pelo número no canto superior direito. +- Se o modelo prevê uma abóbora como branca e ela realmente pertence à categoria 'branca', chamamos isso de verdadeiro positivo, mostrado pelo número no canto inferior direito. + +Como você deve ter imaginado, é preferível ter um número maior de verdadeiros positivos e verdadeiros negativos e um número menor de falsos positivos e falsos negativos, o que implica que o modelo está se saindo melhor. +Como é que a matriz de confusão se relaciona com a precisão e o recall? Lembra-te, o relatório de classificação impresso acima mostrou precisão (0,85) e recall (0,67). + +Precisão = tp / (tp + fp) = 22 / (22 + 4) = 0,8461538461538461 + +Recall = tp / (tp + fn) = 22 / (22 + 11) = 0,6666666666666666 + +✅ P: De acordo com a matriz de confusão, como se saiu o modelo? R: Não foi mau; há um bom número de verdadeiros negativos, mas também alguns falsos negativos. + +Vamos rever os termos que vimos anteriormente com a ajuda do mapeamento TP/TN e FP/FN da matriz de confusão: + +🎓 Precisão: TP/(TP + FP) A fração de instâncias relevantes entre as instâncias recuperadas (ex.: quais etiquetas foram bem classificadas) + +🎓 Recall: TP/(TP + FN) A fração de instâncias relevantes que foram recuperadas, independentemente de terem sido bem classificadas ou não + +🎓 f1-score: (2 * precisão * recall)/(precisão + recall) Uma média ponderada da precisão e do recall, sendo o melhor 1 e o pior 0 + +🎓 Suporte: O número de ocorrências de cada etiqueta recuperada + +🎓 Precisão (Accuracy): (TP + TN)/(TP + TN + FP + FN) A percentagem de etiquetas previstas corretamente para uma amostra. + +🎓 Macro Avg: O cálculo da média não ponderada das métricas para cada etiqueta, sem considerar o desequilíbrio entre etiquetas. + +🎓 Weighted Avg: O cálculo da média das métricas para cada etiqueta, considerando o desequilíbrio entre etiquetas ao ponderá-las pelo seu suporte (o número de instâncias verdadeiras para cada etiqueta). + +✅ Consegues pensar em qual métrica deves prestar atenção se quiseres que o teu modelo reduza o número de falsos negativos? + +## Visualizar a curva ROC deste modelo + +[![ML para principiantes - Análise do Desempenho da Regressão Logística com Curvas ROC](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML para principiantes - Análise do Desempenho da Regressão Logística com Curvas ROC") + + +> 🎥 Clica na imagem acima para uma breve explicação sobre curvas ROC + +Vamos fazer mais uma visualização para ver a chamada curva 'ROC': + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +Usando Matplotlib, desenha a [Curva Característica de Operação do Recetor](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) ou ROC do modelo. As curvas ROC são frequentemente usadas para obter uma visão do desempenho de um classificador em termos de verdadeiros positivos vs. falsos positivos. "As curvas ROC geralmente apresentam a taxa de verdadeiros positivos no eixo Y e a taxa de falsos positivos no eixo X." Assim, a inclinação da curva e o espaço entre a linha do meio e a curva são importantes: queres uma curva que rapidamente suba e ultrapasse a linha. No nosso caso, há falsos positivos no início, e depois a linha sobe e ultrapassa corretamente: + +![ROC](../../../../2-Regression/4-Logistic/images/ROC_2.png) + +Por fim, usa a API [`roc_auc_score`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) do Scikit-learn para calcular a 'Área Sob a Curva' (AUC): + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +O resultado é `0.9749908725812341`. Dado que o AUC varia de 0 a 1, queres um valor elevado, já que um modelo que acerta 100% nas suas previsões terá um AUC de 1; neste caso, o modelo é _bastante bom_. + +Em futuras lições sobre classificações, vais aprender como iterar para melhorar os resultados do teu modelo. Mas, por agora, parabéns! Completaste estas lições sobre regressão! + +--- +## 🚀Desafio + +Há muito mais para explorar sobre regressão logística! Mas a melhor forma de aprender é experimentar. Encontra um conjunto de dados que se preste a este tipo de análise e constrói um modelo com ele. O que aprendes? dica: experimenta [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) para conjuntos de dados interessantes. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Lê as primeiras páginas [deste artigo de Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) sobre alguns usos práticos da regressão logística. Pensa em tarefas que sejam mais adequadas para um ou outro tipo de regressão entre as que estudámos até agora. O que funcionaria melhor? + +## Tarefa + +[Repetir esta regressão](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/assignment.md b/translations/pt-PT/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..5cfe4f003 --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,16 @@ +# Repetir uma Regressão + +## Instruções + +Na aula, utilizaste um subconjunto dos dados de abóbora. Agora, volta aos dados originais e tenta usar todos eles, limpos e padronizados, para construir um modelo de Regressão Logística. + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| --------- | ---------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | +| | Um notebook é apresentado com um modelo bem explicado e com bom desempenho | Um notebook é apresentado com um modelo que tem desempenho mínimo | Um notebook é apresentado com um modelo de baixo desempenho ou nenhum | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/notebook.ipynb b/translations/pt-PT/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..d8881903b --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Variedades de Abóbora e Cor\n", + "\n", + "Carregue as bibliotecas necessárias e o conjunto de dados. Converta os dados para um dataframe contendo um subconjunto dos dados:\n", + "\n", + "Vamos analisar a relação entre a cor e a variedade\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-03T19:30:02+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/solution/Julia/README.md b/translations/pt-PT/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/pt-PT/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..9d6e3139d --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,686 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construir um modelo de regressão logística - Aula 4\n", + "\n", + "![Infográfico de regressão logística vs. regressão linear](../../../../../../translated_images/pt-PT/linear-vs-logistic.ba180bf95e7ee667.webp)\n", + "\n", + "#### **[Questionário pré-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### Introdução\n", + "\n", + "Nesta última aula sobre Regressão, uma das técnicas básicas *clássicas* de ML, vamos explorar a Regressão Logística. Esta técnica é usada para descobrir padrões e prever categorias binárias. Este doce é chocolate ou não? Esta doença é contagiosa ou não? Este cliente vai escolher este produto ou não?\n", + "\n", + "Nesta aula, irá aprender:\n", + "\n", + "- Técnicas para regressão logística\n", + "\n", + "✅ Aprofunde o seu entendimento sobre como trabalhar com este tipo de regressão neste [módulo de aprendizagem](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "## Pré-requisito\n", + "\n", + "Depois de trabalhar com os dados das abóboras, já estamos suficientemente familiarizados para perceber que há uma categoria binária com a qual podemos trabalhar: `Color`.\n", + "\n", + "Vamos construir um modelo de regressão logística para prever, com base em algumas variáveis, *qual é a cor provável de uma determinada abóbora* (laranja 🎃 ou branca 👻).\n", + "\n", + "> Por que estamos a falar de classificação binária numa aula sobre regressão? Apenas por conveniência linguística, já que a regressão logística é [na verdade um método de classificação](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), embora baseado em métodos lineares. Aprenda sobre outras formas de classificar dados no próximo grupo de aulas.\n", + "\n", + "Para esta aula, vamos precisar dos seguintes pacotes:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [coleção de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem automática.\n", + "\n", + "- `janitor`: O pacote [janitor](https://github.com/sfirke/janitor) oferece ferramentas simples para examinar e limpar dados desorganizados.\n", + "\n", + "- `ggbeeswarm`: O pacote [ggbeeswarm](https://github.com/eclarke/ggbeeswarm) fornece métodos para criar gráficos estilo \"beeswarm\" usando ggplot2.\n", + "\n", + "Pode instalá-los com o seguinte comando:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "Alternativamente, o script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso estejam em falta.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Definir a pergunta**\n", + "\n", + "Para os nossos propósitos, vamos expressar isto como um binário: 'Branco' ou 'Não Branco'. Existe também uma categoria 'listado' no nosso conjunto de dados, mas há poucos exemplos dela, por isso não a utilizaremos. De qualquer forma, ela desaparece quando removemos os valores nulos do conjunto de dados.\n", + "\n", + "> 🎃 Curiosidade: às vezes chamamos as abóboras brancas de abóboras 'fantasma'. Elas não são muito fáceis de esculpir, por isso não são tão populares quanto as laranjas, mas têm um visual interessante! Assim, poderíamos reformular a nossa pergunta como: 'Fantasma' ou 'Não Fantasma'. 👻\n", + "\n", + "## **Sobre regressão logística**\n", + "\n", + "A regressão logística difere da regressão linear, que você aprendeu anteriormente, em alguns aspectos importantes.\n", + "\n", + "#### **Classificação binária**\n", + "\n", + "A regressão logística não oferece as mesmas funcionalidades que a regressão linear. A primeira fornece uma previsão sobre uma `categoria binária` (\"laranja ou não laranja\"), enquanto a segunda é capaz de prever `valores contínuos`, por exemplo, dado a origem de uma abóbora e o momento da colheita, *quanto o seu preço irá aumentar*.\n", + "\n", + "![Infográfico por Dasani Madipalli](../../../../../../translated_images/pt-PT/pumpkin-classifier.562771f104ad5436.webp)\n", + "\n", + "### Outras classificações\n", + "\n", + "Existem outros tipos de regressão logística, incluindo multinomial e ordinal:\n", + "\n", + "- **Multinomial**, que envolve mais de uma categoria - \"Laranja, Branco e Listado\".\n", + "\n", + "- **Ordinal**, que envolve categorias ordenadas, útil se quisermos organizar os resultados logicamente, como as nossas abóboras que são ordenadas por um número finito de tamanhos (mini,pequeno,médio,grande,xl,xxl).\n", + "\n", + "![Regressão multinomial vs ordinal](../../../../../../translated_images/pt-PT/multinomial-vs-ordinal.36701b4850e37d86.webp)\n", + "\n", + "#### **As variáveis NÃO precisam estar correlacionadas**\n", + "\n", + "Lembra como a regressão linear funcionava melhor com variáveis mais correlacionadas? A regressão logística é o oposto - as variáveis não precisam estar alinhadas. Isso funciona para este conjunto de dados, que tem correlações relativamente fracas.\n", + "\n", + "#### **Você precisa de muitos dados limpos**\n", + "\n", + "A regressão logística fornecerá resultados mais precisos se você usar mais dados; nosso pequeno conjunto de dados não é ideal para esta tarefa, então tenha isso em mente.\n", + "\n", + "✅ Pense nos tipos de dados que seriam adequados para regressão logística\n", + "\n", + "## Exercício - organizar os dados\n", + "\n", + "Primeiro, limpe os dados um pouco, removendo valores nulos e selecionando apenas algumas das colunas:\n", + "\n", + "1. Adicione o seguinte código:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pode sempre dar uma olhadela ao seu novo dataframe utilizando a função [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html), como mostrado abaixo:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vamos confirmar que, de facto, estaremos a resolver um problema de classificação binária:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualização - gráfico categórico\n", + "Neste momento, já carregaste novamente os dados das abóboras e limpaste-os para preservar um conjunto de dados contendo algumas variáveis, incluindo Cor. Vamos visualizar o dataframe no notebook utilizando a biblioteca ggplot.\n", + "\n", + "A biblioteca ggplot oferece algumas formas interessantes de visualizar os teus dados. Por exemplo, podes comparar as distribuições dos dados para cada Variedade e Cor num gráfico categórico.\n", + "\n", + "1. Cria um gráfico deste tipo utilizando a função geombar, com os dados das abóboras, e especifica um mapeamento de cores para cada categoria de abóbora (laranja ou branca):\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ao observar os dados, pode ver como os dados de Cor se relacionam com a Variedade.\n", + "\n", + "✅ Dado este gráfico categórico, que explorações interessantes consegue imaginar?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pré-processamento de dados: codificação de características\n", + "\n", + "O nosso conjunto de dados de abóboras contém valores em formato de texto para todas as suas colunas. Trabalhar com dados categóricos é intuitivo para humanos, mas não para máquinas. Os algoritmos de aprendizagem automática funcionam bem com números. É por isso que a codificação é um passo muito importante na fase de pré-processamento de dados, pois permite transformar dados categóricos em dados numéricos, sem perder nenhuma informação. Uma boa codificação contribui para a construção de um bom modelo.\n", + "\n", + "Para a codificação de características, existem dois tipos principais de codificadores:\n", + "\n", + "1. Codificador ordinal: é adequado para variáveis ordinais, que são variáveis categóricas cujos dados seguem uma ordem lógica, como a coluna `item_size` no nosso conjunto de dados. Ele cria um mapeamento em que cada categoria é representada por um número, que corresponde à ordem da categoria na coluna.\n", + "\n", + "2. Codificador categórico: é adequado para variáveis nominais, que são variáveis categóricas cujos dados não seguem uma ordem lógica, como todas as características diferentes de `item_size` no nosso conjunto de dados. Trata-se de uma codificação one-hot, o que significa que cada categoria é representada por uma coluna binária: a variável codificada é igual a 1 se a abóbora pertence àquela variedade e 0 caso contrário.\n", + "\n", + "O Tidymodels oferece mais uma ferramenta interessante: [recipes](https://recipes.tidymodels.org/) - um pacote para pré-processamento de dados. Vamos definir uma `recipe` que especifica que todas as colunas preditoras devem ser codificadas em um conjunto de números inteiros, `prep` para estimar as quantidades e estatísticas necessárias para qualquer operação e, finalmente, `bake` para aplicar os cálculos a novos dados.\n", + "\n", + "> Normalmente, o recipes é usado como um pré-processador para modelagem, onde define quais passos devem ser aplicados a um conjunto de dados para prepará-lo para a modelagem. Nesse caso, é **altamente recomendado** que utilize um `workflow()` em vez de estimar manualmente uma receita usando prep e bake. Veremos tudo isso em breve.\n", + ">\n", + "> No entanto, por agora, estamos a usar recipes + prep + bake para especificar quais passos devem ser aplicados a um conjunto de dados para prepará-lo para análise de dados e, em seguida, extrair os dados pré-processados com os passos aplicados.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ Quais são as vantagens de usar um codificador ordinal para a coluna Item Size?\n", + "\n", + "### Analisar relações entre variáveis\n", + "\n", + "Agora que pré-processámos os nossos dados, podemos analisar as relações entre as características e o rótulo para ter uma ideia de quão bem o modelo será capaz de prever o rótulo com base nas características. A melhor forma de realizar este tipo de análise é através da visualização dos dados. \n", + "Vamos utilizar novamente a função ggplot geom_boxplot_ para visualizar as relações entre Item Size, Variety e Color num gráfico categórico. Para representar melhor os dados, utilizaremos a coluna codificada Item Size e a coluna não codificada Variety.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Usar um gráfico de enxame\n", + "\n", + "Como a cor é uma categoria binária (Branco ou Não), é necessário 'uma [abordagem especializada](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf) para visualização'.\n", + "\n", + "Experimente um `gráfico de enxame` para mostrar a distribuição da cor em relação ao tamanho do item.\n", + "\n", + "Vamos usar o [pacote ggbeeswarm](https://github.com/eclarke/ggbeeswarm), que fornece métodos para criar gráficos no estilo enxame usando ggplot2. Gráficos de enxame são uma forma de plotar pontos que normalmente se sobreporiam, posicionando-os lado a lado.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Agora que temos uma ideia da relação entre as categorias binárias de cor e o grupo maior de tamanhos, vamos explorar a regressão logística para determinar a provável cor de uma abóbora.\n", + "\n", + "## Construir o seu modelo\n", + "\n", + "Selecione as variáveis que deseja usar no seu modelo de classificação e divida os dados em conjuntos de treino e teste. [rsample](https://rsample.tidymodels.org/), um pacote do Tidymodels, fornece infraestrutura para uma divisão e reamostragem de dados eficiente:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 Estamos prontos para treinar um modelo ajustando as características de treino ao rótulo de treino (cor).\n", + "\n", + "Vamos começar por criar uma receita que especifica os passos de pré-processamento que devem ser realizados nos nossos dados para os preparar para a modelação, ou seja: codificar variáveis categóricas em um conjunto de inteiros. Tal como `baked_pumpkins`, criamos uma `pumpkins_recipe`, mas não usamos `prep` e `bake`, já que isso será incorporado num fluxo de trabalho, como verá em apenas alguns passos.\n", + "\n", + "Existem várias formas de especificar um modelo de regressão logística no Tidymodels. Consulte `?logistic_reg()`. Por agora, vamos especificar um modelo de regressão logística através do motor padrão `stats::glm()`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Agora que temos uma receita e uma especificação do modelo, precisamos encontrar uma forma de combiná-las num único objeto que, primeiro, pré-processe os dados (prep+bake nos bastidores), ajuste o modelo aos dados pré-processados e também permita possíveis atividades de pós-processamento.\n", + "\n", + "No Tidymodels, este objeto prático é chamado de [`workflow`](https://workflows.tidymodels.org/) e armazena convenientemente os seus componentes de modelação.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Depois de um fluxo de trabalho ter sido *especificado*, um modelo pode ser `treinado` utilizando a função [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html). O fluxo de trabalho irá estimar uma receita e pré-processar os dados antes do treino, por isso não será necessário fazer isso manualmente utilizando prep e bake.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "O modelo imprime os coeficientes aprendidos durante o treino.\n", + "\n", + "Agora que treinámos o modelo utilizando os dados de treino, podemos fazer previsões nos dados de teste usando [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html). Vamos começar por usar o modelo para prever etiquetas para o nosso conjunto de teste e as probabilidades para cada etiqueta. Quando a probabilidade é superior a 0.5, a classe prevista é `WHITE`, caso contrário, é `ORANGE`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Muito bom! Isto fornece mais detalhes sobre como funciona a regressão logística.\n", + "\n", + "### Melhor compreensão através de uma matriz de confusão\n", + "\n", + "Comparar cada previsão com o respetivo valor real (\"ground truth\") não é uma forma muito eficiente de determinar o quão bem o modelo está a prever. Felizmente, o Tidymodels tem mais algumas ferramentas úteis: [`yardstick`](https://yardstick.tidymodels.org/) - um pacote utilizado para medir a eficácia dos modelos através de métricas de desempenho.\n", + "\n", + "Uma métrica de desempenho associada a problemas de classificação é a [`matriz de confusão`](https://wikipedia.org/wiki/Confusion_matrix). Uma matriz de confusão descreve o desempenho de um modelo de classificação. Ela tabula quantos exemplos de cada classe foram corretamente classificados por um modelo. No nosso caso, mostrará quantas abóboras laranjas foram classificadas como laranjas e quantas abóboras brancas foram classificadas como brancas; a matriz de confusão também indica quantas foram classificadas nas categorias **erradas**.\n", + "\n", + "A função [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) do yardstick calcula esta tabela cruzada de classes observadas e previstas.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vamos interpretar a matriz de confusão. O nosso modelo foi solicitado a classificar abóboras entre duas categorias binárias, categoria `branca` e categoria `não-branca`.\n", + "\n", + "- Se o seu modelo prevê que uma abóbora é branca e ela pertence à categoria 'branca' na realidade, chamamos isso de um `verdadeiro positivo`, representado pelo número no canto superior esquerdo.\n", + "\n", + "- Se o seu modelo prevê que uma abóbora não é branca e ela pertence à categoria 'branca' na realidade, chamamos isso de um `falso negativo`, representado pelo número no canto inferior esquerdo.\n", + "\n", + "- Se o seu modelo prevê que uma abóbora é branca e ela pertence à categoria 'não-branca' na realidade, chamamos isso de um `falso positivo`, representado pelo número no canto superior direito.\n", + "\n", + "- Se o seu modelo prevê que uma abóbora não é branca e ela pertence à categoria 'não-branca' na realidade, chamamos isso de um `verdadeiro negativo`, representado pelo número no canto inferior direito.\n", + "\n", + "| Verdade |\n", + "|:-------:|\n", + "\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **Previsto** | BRANCA | LARANJA |\n", + "| BRANCA | VP | FP |\n", + "| LARANJA | FN | VN |\n", + "\n", + "Como pode imaginar, é preferível ter um número maior de verdadeiros positivos e verdadeiros negativos e um número menor de falsos positivos e falsos negativos, o que implica que o modelo tem um desempenho melhor.\n", + "\n", + "A matriz de confusão é útil porque dá origem a outras métricas que podem ajudar-nos a avaliar melhor o desempenho de um modelo de classificação. Vamos analisar algumas delas:\n", + "\n", + "🎓 Precisão: `VP/(VP + FP)` definida como a proporção de positivos previstos que são realmente positivos. Também chamada de [valor preditivo positivo](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\").\n", + "\n", + "🎓 Recall: `VP/(VP + FN)` definida como a proporção de resultados positivos em relação ao número de amostras que eram realmente positivas. Também conhecida como `sensibilidade`.\n", + "\n", + "🎓 Especificidade: `VN/(VN + FP)` definida como a proporção de resultados negativos em relação ao número de amostras que eram realmente negativas.\n", + "\n", + "🎓 Exatidão: `(VP + VN)/(VP + VN + FP + FN)` A percentagem de etiquetas previstas corretamente para uma amostra.\n", + "\n", + "🎓 Medida F: Uma média ponderada da precisão e do recall, sendo o melhor valor 1 e o pior valor 0.\n", + "\n", + "Vamos calcular estas métricas!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizar a curva ROC deste modelo\n", + "\n", + "Vamos fazer mais uma visualização para observar a chamada [`curva ROC`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic):\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As curvas ROC são frequentemente utilizadas para obter uma visão do desempenho de um classificador em termos de verdadeiros positivos vs. falsos positivos. As curvas ROC geralmente apresentam a `Taxa de Verdadeiros Positivos`/Sensibilidade no eixo Y e a `Taxa de Falsos Positivos`/1-Especificidade no eixo X. Assim, a inclinação da curva e o espaço entre a linha do meio e a curva são importantes: o ideal é ter uma curva que rapidamente suba e ultrapasse a linha. No nosso caso, há falsos positivos no início, e depois a linha sobe e ultrapassa adequadamente.\n", + "\n", + "Por fim, vamos usar `yardstick::roc_auc()` para calcular a Área Sob a Curva. Uma forma de interpretar a AUC é como a probabilidade de o modelo classificar um exemplo positivo aleatório mais alto do que um exemplo negativo aleatório.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "O resultado é cerca de `0.975`. Dado que o AUC varia de 0 a 1, é desejável um valor elevado, já que um modelo que acerta 100% das suas previsões terá um AUC de 1; neste caso, o modelo é *bastante bom*.\n", + "\n", + "Nas próximas lições sobre classificações, aprenderás como melhorar os resultados do teu modelo (como lidar com dados desequilibrados neste caso).\n", + "\n", + "## 🚀Desafio\n", + "\n", + "Há muito mais para explorar sobre regressão logística! Mas a melhor forma de aprender é experimentar. Encontra um conjunto de dados que se preste a este tipo de análise e constrói um modelo com ele. O que aprendes? dica: experimenta [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) para conjuntos de dados interessantes.\n", + "\n", + "## Revisão & Estudo Individual\n", + "\n", + "Lê as primeiras páginas [deste artigo de Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) sobre algumas utilizações práticas da regressão logística. Reflete sobre tarefas que são mais adequadas para um ou outro tipo de regressão entre as que estudámos até agora. O que funcionaria melhor?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-03T19:35:13+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/pt-PT/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..db181f04c --- /dev/null +++ b/translations/pt-PT/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Regressão Logística - Aula 4\n", + "\n", + "Carregue as bibliotecas necessárias e o conjunto de dados. Converta os dados para um dataframe contendo um subconjunto dos dados:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NamePackageVarietyOriginItem SizeColor
2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
\n", + "
" + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vamos dar uma olhada nos nossos dados!\n", + "\n", + "Visualizando-os com Seaborn\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pré-processamento de dados\n", + "\n", + "Vamos codificar as características e os rótulos para representar melhor os dados e treinar o modelo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 48 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
\n", + "

5 rows × 49 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Atenção**: Ignorar avisos NÃO é uma boa prática e deve ser evitado sempre que possível. Os avisos frequentemente contêm mensagens úteis que nos ajudam a melhorar o nosso código e resolver um problema. \n", + "A razão pela qual estamos a ignorar este aviso específico é para garantir a legibilidade do gráfico. Representar todos os pontos de dados com um tamanho reduzido de marcador, mantendo a consistência com a paleta de cores, gera uma visualização pouco clara.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-03T19:30:49+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/2-Regression/README.md b/translations/pt-PT/2-Regression/README.md new file mode 100644 index 000000000..305a969f8 --- /dev/null +++ b/translations/pt-PT/2-Regression/README.md @@ -0,0 +1,45 @@ +# Modelos de regressão para aprendizagem automática +## Tema regional: Modelos de regressão para preços de abóboras na América do Norte 🎃 + +Na América do Norte, as abóboras são frequentemente esculpidas em rostos assustadores para o Halloween. Vamos descobrir mais sobre estes vegetais fascinantes! + +![jack-o-lanterns](../../../translated_images/pt-PT/jack-o-lanterns.181c661a9212457d.webp) +> Foto por Beth Teutschmann no Unsplash + +## O que irá aprender + +[![Introdução à Regressão](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "Vídeo de introdução à regressão - Clique para assistir!") +> 🎥 Clique na imagem acima para um vídeo rápido de introdução a esta lição + +As lições desta secção abordam os tipos de regressão no contexto da aprendizagem automática. Os modelos de regressão podem ajudar a determinar a _relação_ entre variáveis. Este tipo de modelo pode prever valores como comprimento, temperatura ou idade, revelando assim relações entre variáveis enquanto analisa pontos de dados. + +Nesta série de lições, irá descobrir as diferenças entre regressão linear e logística, e quando deve preferir uma em vez da outra. + +[![ML para principiantes - Introdução aos modelos de regressão para aprendizagem automática](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "ML para principiantes - Introdução aos modelos de regressão para aprendizagem automática") + +> 🎥 Clique na imagem acima para um vídeo curto que introduz os modelos de regressão. + +Neste grupo de lições, irá preparar-se para começar tarefas de aprendizagem automática, incluindo configurar o Visual Studio Code para gerir notebooks, o ambiente comum para cientistas de dados. Irá descobrir o Scikit-learn, uma biblioteca para aprendizagem automática, e construir os seus primeiros modelos, focando-se nos modelos de regressão neste capítulo. + +> Existem ferramentas úteis de baixo código que podem ajudá-lo a aprender a trabalhar com modelos de regressão. Experimente [Azure ML para esta tarefa](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +### Lições + +1. [Ferramentas do ofício](1-Tools/README.md) +2. [Gestão de dados](2-Data/README.md) +3. [Regressão linear e polinomial](3-Linear/README.md) +4. [Regressão logística](4-Logistic/README.md) + +--- +### Créditos + +"ML com regressão" foi escrito com ♥️ por [Jen Looper](https://twitter.com/jenlooper) + +♥️ Contribuidores do quiz incluem: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) e [Ornella Altunyan](https://twitter.com/ornelladotcom) + +O conjunto de dados de abóboras foi sugerido por [este projeto no Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) e os seus dados são provenientes dos [Relatórios Padrão dos Mercados Terminais de Culturas Especiais](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) distribuídos pelo Departamento de Agricultura dos Estados Unidos. Adicionámos alguns pontos relacionados com a cor com base na variedade para normalizar a distribuição. Estes dados estão em domínio público. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/3-Web-App/1-Web-App/README.md b/translations/pt-PT/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..781b10cc6 --- /dev/null +++ b/translations/pt-PT/3-Web-App/1-Web-App/README.md @@ -0,0 +1,350 @@ +# Construir uma Aplicação Web para Utilizar um Modelo de ML + +Nesta lição, vais treinar um modelo de ML com um conjunto de dados fora do comum: _avistamentos de OVNIs ao longo do último século_, provenientes da base de dados do NUFORC. + +Vais aprender: + +- Como 'pickle' um modelo treinado +- Como usar esse modelo numa aplicação Flask + +Continuaremos a usar notebooks para limpar os dados e treinar o modelo, mas podes levar o processo um passo adiante ao explorar como usar um modelo "no mundo real", por assim dizer: numa aplicação web. + +Para isso, precisas de construir uma aplicação web utilizando Flask. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Construir uma aplicação + +Existem várias formas de construir aplicações web para consumir modelos de machine learning. A arquitetura da tua aplicação web pode influenciar a forma como o modelo é treinado. Imagina que estás a trabalhar numa empresa onde o grupo de ciência de dados treinou um modelo que querem que utilizes numa aplicação. + +### Considerações + +Há muitas perguntas que precisas de fazer: + +- **É uma aplicação web ou uma aplicação móvel?** Se estás a construir uma aplicação móvel ou precisas de usar o modelo num contexto de IoT, podes usar [TensorFlow Lite](https://www.tensorflow.org/lite/) e utilizar o modelo numa aplicação Android ou iOS. +- **Onde o modelo vai residir?** Na nuvem ou localmente? +- **Suporte offline.** A aplicação precisa de funcionar offline? +- **Que tecnologia foi usada para treinar o modelo?** A tecnologia escolhida pode influenciar as ferramentas que precisas de usar. + - **Usando TensorFlow.** Se estás a treinar um modelo com TensorFlow, por exemplo, esse ecossistema permite converter um modelo TensorFlow para uso numa aplicação web utilizando [TensorFlow.js](https://www.tensorflow.org/js/). + - **Usando PyTorch.** Se estás a construir um modelo com uma biblioteca como [PyTorch](https://pytorch.org/), tens a opção de exportá-lo no formato [ONNX](https://onnx.ai/) (Open Neural Network Exchange) para uso em aplicações web JavaScript que podem utilizar o [Onnx Runtime](https://www.onnxruntime.ai/). Esta opção será explorada numa lição futura para um modelo treinado com Scikit-learn. + - **Usando Lobe.ai ou Azure Custom Vision.** Se estás a usar um sistema ML SaaS (Software como Serviço) como [Lobe.ai](https://lobe.ai/) ou [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) para treinar um modelo, este tipo de software fornece formas de exportar o modelo para várias plataformas, incluindo construir uma API personalizada para ser consultada na nuvem pela tua aplicação online. + +Também tens a oportunidade de construir uma aplicação web Flask completa que seria capaz de treinar o modelo diretamente no navegador. Isso também pode ser feito utilizando TensorFlow.js num contexto JavaScript. + +Para os nossos propósitos, como temos trabalhado com notebooks baseados em Python, vamos explorar os passos necessários para exportar um modelo treinado de um notebook para um formato legível por uma aplicação web construída em Python. + +## Ferramenta + +Para esta tarefa, precisas de duas ferramentas: Flask e Pickle, ambas executadas em Python. + +✅ O que é [Flask](https://palletsprojects.com/p/flask/)? Definido como um 'micro-framework' pelos seus criadores, Flask fornece as funcionalidades básicas de frameworks web utilizando Python e um motor de templates para construir páginas web. Dá uma olhada neste [módulo de aprendizagem](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) para praticar a construção com Flask. + +✅ O que é [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 é um módulo Python que serializa e desserializa uma estrutura de objetos Python. Quando 'pickle' um modelo, estás a serializar ou achatar a sua estrutura para uso na web. Atenção: pickle não é intrinsecamente seguro, por isso tem cuidado se fores solicitado a 'des-picklar' um ficheiro. Um ficheiro pickled tem o sufixo `.pkl`. + +## Exercício - limpar os dados + +Nesta lição vais usar dados de 80.000 avistamentos de OVNIs, recolhidos pelo [NUFORC](https://nuforc.org) (Centro Nacional de Relatórios de OVNIs). Estes dados têm descrições interessantes de avistamentos de OVNIs, por exemplo: + +- **Descrição longa de exemplo.** "Um homem emerge de um feixe de luz que brilha num campo de relva à noite e corre em direção ao estacionamento da Texas Instruments". +- **Descrição curta de exemplo.** "as luzes perseguiram-nos". + +A folha de cálculo [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) inclui colunas sobre a `cidade`, `estado` e `país` onde o avistamento ocorreu, a `forma` do objeto e a sua `latitude` e `longitude`. + +No [notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb) em branco incluído nesta lição: + +1. Importa `pandas`, `matplotlib` e `numpy` como fizeste nas lições anteriores e importa a folha de cálculo de OVNIs. Podes dar uma olhada num conjunto de dados de exemplo: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. Converte os dados de OVNIs para um pequeno dataframe com títulos novos. Verifica os valores únicos no campo `Country`. + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. Agora, podes reduzir a quantidade de dados com que precisas de lidar ao eliminar valores nulos e importar apenas avistamentos entre 1-60 segundos: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. Importa a biblioteca `LabelEncoder` do Scikit-learn para converter os valores de texto dos países para números: + + ✅ LabelEncoder codifica os dados alfabeticamente + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + Os teus dados devem parecer-se com isto: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## Exercício - construir o modelo + +Agora podes preparar-te para treinar um modelo dividindo os dados em grupos de treino e teste. + +1. Seleciona as três características que queres treinar como o teu vetor X, e o vetor y será o `Country`. Queres ser capaz de inserir `Seconds`, `Latitude` e `Longitude` e obter um id de país como retorno. + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. Treina o modelo utilizando regressão logística: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +A precisão não é má **(cerca de 95%)**, o que não é surpreendente, já que `Country` e `Latitude/Longitude` estão correlacionados. + +O modelo que criaste não é muito revolucionário, pois deverias ser capaz de inferir um `Country` a partir da sua `Latitude` e `Longitude`, mas é um bom exercício para tentar treinar a partir de dados brutos que limpaste, exportaste e depois usaste este modelo numa aplicação web. + +## Exercício - 'pickle' o modelo + +Agora, é hora de _picklar_ o modelo! Podes fazer isso em algumas linhas de código. Uma vez _pickled_, carrega o modelo pickled e testa-o contra um array de dados de exemplo contendo valores para segundos, latitude e longitude. + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +O modelo retorna **'3'**, que é o código de país para o Reino Unido. Incrível! 👽 + +## Exercício - construir uma aplicação Flask + +Agora podes construir uma aplicação Flask para chamar o modelo e retornar resultados semelhantes, mas de uma forma mais visualmente agradável. + +1. Começa por criar uma pasta chamada **web-app** ao lado do ficheiro _notebook.ipynb_ onde o teu ficheiro _ufo-model.pkl_ reside. + +1. Nessa pasta, cria mais três pastas: **static**, com uma pasta **css** dentro dela, e **templates**. Deves agora ter os seguintes ficheiros e diretórios: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ Consulta a pasta de solução para ver a aplicação finalizada + +1. O primeiro ficheiro a criar na pasta _web-app_ é o ficheiro **requirements.txt**. Tal como _package.json_ numa aplicação JavaScript, este ficheiro lista as dependências necessárias para a aplicação. No **requirements.txt** adiciona as linhas: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. Agora, executa este ficheiro navegando até _web-app_: + + ```bash + cd web-app + ``` + +1. No terminal, digita `pip install` para instalar as bibliotecas listadas no _requirements.txt_: + + ```bash + pip install -r requirements.txt + ``` + +1. Agora, estás pronto para criar mais três ficheiros para finalizar a aplicação: + + 1. Cria **app.py** na raiz. + 2. Cria **index.html** na pasta _templates_. + 3. Cria **styles.css** na pasta _static/css_. + +1. Desenvolve o ficheiro _styles.css_ com alguns estilos: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. Em seguida, desenvolve o ficheiro _index.html_: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
+ +
+ +

According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

+ +
+ + + + +
+ +

{{ prediction_text }}

+ +
+ +
+ + + + ``` + + Dá uma olhada na utilização de templates neste ficheiro. Repara na sintaxe 'mustache' em torno das variáveis que serão fornecidas pela aplicação, como o texto de previsão: `{{}}`. Há também um formulário que envia uma previsão para a rota `/predict`. + + Finalmente, estás pronto para construir o ficheiro Python que conduz o consumo do modelo e a exibição das previsões: + +1. No `app.py` adiciona: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 Dica: quando adicionas [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) enquanto executas a aplicação web utilizando Flask, quaisquer alterações que fizeres na tua aplicação serão refletidas imediatamente sem necessidade de reiniciar o servidor. Atenção! Não habilites este modo numa aplicação em produção. + +Se executares `python app.py` ou `python3 app.py` - o teu servidor web inicia localmente, e podes preencher um pequeno formulário para obter uma resposta à tua pergunta sobre onde os OVNIs foram avistados! + +Antes de fazer isso, dá uma olhada nas partes do `app.py`: + +1. Primeiro, as dependências são carregadas e a aplicação inicia. +1. Depois, o modelo é importado. +1. Em seguida, o index.html é renderizado na rota inicial. + +Na rota `/predict`, várias coisas acontecem quando o formulário é enviado: + +1. As variáveis do formulário são recolhidas e convertidas para um array numpy. Elas são então enviadas para o modelo e uma previsão é retornada. +2. Os países que queremos exibir são re-renderizados como texto legível a partir do código de país previsto, e esse valor é enviado de volta ao index.html para ser renderizado no template. + +Usar um modelo desta forma, com Flask e um modelo pickled, é relativamente simples. O mais difícil é entender qual é a forma dos dados que devem ser enviados ao modelo para obter uma previsão. Isso depende de como o modelo foi treinado. Este tem três pontos de dados que devem ser inseridos para obter uma previsão. + +Num ambiente profissional, podes ver como é necessária uma boa comunicação entre as pessoas que treinam o modelo e aquelas que o consomem numa aplicação web ou móvel. No nosso caso, és apenas tu! + +--- + +## 🚀 Desafio + +Em vez de trabalhar num notebook e importar o modelo para a aplicação Flask, poderias treinar o modelo diretamente dentro da aplicação Flask! Tenta converter o teu código Python no notebook, talvez depois de os dados serem limpos, para treinar o modelo dentro da aplicação numa rota chamada `train`. Quais são os prós e contras de seguir este método? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Existem muitas formas de construir uma aplicação web para consumir modelos de ML. Faz uma lista das formas como poderias usar JavaScript ou Python para construir uma aplicação web que aproveite o machine learning. Considera a arquitetura: o modelo deve permanecer na aplicação ou viver na nuvem? Se for o último caso, como o acederias? Desenha um modelo arquitetural para uma solução web aplicada de ML. + +## Tarefa + +[Experimenta um modelo diferente](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/3-Web-App/1-Web-App/assignment.md b/translations/pt-PT/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..8b5aa294e --- /dev/null +++ b/translations/pt-PT/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,16 @@ +# Experimente um modelo diferente + +## Instruções + +Agora que já criou uma aplicação web utilizando um modelo de Regressão treinado, utilize um dos modelos de uma lição anterior sobre Regressão para refazer esta aplicação web. Pode manter o estilo ou desenhá-la de forma diferente para refletir os dados das abóboras. Certifique-se de alterar os inputs para corresponder ao método de treino do seu modelo. + +## Critérios de Avaliação + +| Critérios | Exemplar | Adequado | Necessita Melhorias | +| -------------------------- | -------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------- | +| | A aplicação web funciona como esperado e está implementada na nuvem | A aplicação web contém falhas ou apresenta resultados inesperados | A aplicação web não funciona corretamente | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/3-Web-App/1-Web-App/notebook.ipynb b/translations/pt-PT/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/pt-PT/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/pt-PT/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..97b3a034b --- /dev/null +++ b/translations/pt-PT/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-03T20:19:38+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
\n
" + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
SecondsCountryLatitudeLongitude
220.0353.200000-2.916667
320.0428.978333-96.645833
1430.0435.823889-80.253611
2360.0445.582778-122.352222
243.0351.783333-0.783333
\n
" + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/3-Web-App/README.md b/translations/pt-PT/3-Web-App/README.md new file mode 100644 index 000000000..10ebbbd40 --- /dev/null +++ b/translations/pt-PT/3-Web-App/README.md @@ -0,0 +1,26 @@ +# Crie uma aplicação web para usar o seu modelo de ML + +Nesta secção do currículo, será introduzido a um tópico aplicado de ML: como guardar o seu modelo Scikit-learn como um ficheiro que pode ser utilizado para fazer previsões dentro de uma aplicação web. Depois de guardar o modelo, aprenderá como utilizá-lo numa aplicação web construída em Flask. Primeiro, irá criar um modelo utilizando alguns dados relacionados com avistamentos de OVNIs! Em seguida, irá construir uma aplicação web que permitirá introduzir um número de segundos juntamente com valores de latitude e longitude para prever qual país relatou ter visto um OVNI. + +![Estacionamento de OVNIs](../../../translated_images/pt-PT/ufo.9e787f5161da9d4d.webp) + +Foto por Michael Herren em Unsplash + +## Lições + +1. [Crie uma Aplicação Web](1-Web-App/README.md) + +## Créditos + +"Crie uma Aplicação Web" foi escrito com ♥️ por [Jen Looper](https://twitter.com/jenlooper). + +♥️ Os questionários foram escritos por Rohan Raj. + +O conjunto de dados foi obtido de [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings). + +A arquitetura da aplicação web foi sugerida em parte por [este artigo](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) e [este repositório](https://github.com/abhinavsagar/machine-learning-deployment) de Abhinav Sagar. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/README.md b/translations/pt-PT/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..43446af18 --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/README.md @@ -0,0 +1,304 @@ +# Introdução à classificação + +Nestes quatro módulos, vais explorar um dos focos fundamentais do machine learning clássico - _classificação_. Vamos utilizar vários algoritmos de classificação com um conjunto de dados sobre as brilhantes culinárias da Ásia e da Índia. Espero que estejas com fome! + +![uma pitada!](../../../../4-Classification/1-Introduction/images/pinch.png) + +> Celebra as culinárias pan-asiáticas nestas lições! Imagem por [Jen Looper](https://twitter.com/jenlooper) + +Classificação é uma forma de [aprendizagem supervisionada](https://wikipedia.org/wiki/Supervised_learning) que tem muito em comum com técnicas de regressão. Se o machine learning consiste em prever valores ou nomes para coisas utilizando conjuntos de dados, então a classificação geralmente divide-se em dois grupos: _classificação binária_ e _classificação multicategorias_. + +[![Introdução à classificação](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "Introdução à classificação") + +> 🎥 Clica na imagem acima para ver um vídeo: John Guttag do MIT apresenta a classificação + +Lembra-te: + +- **Regressão linear** ajudou-te a prever relações entre variáveis e a fazer previsões precisas sobre onde um novo ponto de dados se encaixaria em relação a essa linha. Por exemplo, podias prever _qual seria o preço de uma abóbora em setembro vs. dezembro_. +- **Regressão logística** ajudou-te a descobrir "categorias binárias": a este preço, _esta abóbora é laranja ou não-laranja_? + +A classificação utiliza vários algoritmos para determinar outras formas de identificar o rótulo ou classe de um ponto de dados. Vamos trabalhar com estes dados sobre culinárias para ver se, ao observar um grupo de ingredientes, conseguimos determinar a sua origem culinária. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +> ### [Esta lição está disponível em R!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### Introdução + +Classificação é uma das atividades fundamentais do investigador de machine learning e do cientista de dados. Desde a classificação básica de um valor binário ("este email é spam ou não?"), até à classificação e segmentação complexa de imagens utilizando visão computacional, é sempre útil conseguir organizar dados em classes e fazer perguntas sobre eles. + +De forma mais científica, o teu método de classificação cria um modelo preditivo que te permite mapear a relação entre variáveis de entrada e variáveis de saída. + +![classificação binária vs. multicategorias](../../../../4-Classification/1-Introduction/images/binary-multiclass.png) + +> Problemas binários vs. multicategorias para algoritmos de classificação. Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +Antes de começar o processo de limpeza dos dados, visualizá-los e prepará-los para as nossas tarefas de ML, vamos aprender um pouco sobre as várias formas como o machine learning pode ser utilizado para classificar dados. + +Derivada da [estatística](https://wikipedia.org/wiki/Statistical_classification), a classificação utilizando machine learning clássico usa características, como `fumador`, `peso` e `idade`, para determinar _probabilidade de desenvolver X doença_. Como técnica de aprendizagem supervisionada semelhante aos exercícios de regressão que realizaste anteriormente, os teus dados estão rotulados e os algoritmos de ML utilizam esses rótulos para classificar e prever classes (ou 'características') de um conjunto de dados e atribuí-las a um grupo ou resultado. + +✅ Tira um momento para imaginar um conjunto de dados sobre culinárias. Que tipo de perguntas um modelo multicategorias poderia responder? E um modelo binário? E se quisesses determinar se uma determinada culinária provavelmente utiliza feno-grego? E se quisesses ver se, dado um saco de compras cheio de anis-estrelado, alcachofras, couve-flor e rábano, conseguirias criar um prato típico indiano? + +[![Cestos misteriosos malucos](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "Cestos misteriosos malucos") + +> 🎥 Clica na imagem acima para ver um vídeo. Todo o conceito do programa 'Chopped' é o 'cesto misterioso', onde os chefs têm de criar um prato com uma escolha aleatória de ingredientes. Certamente um modelo de ML teria ajudado! + +## Olá 'classificador' + +A pergunta que queremos fazer sobre este conjunto de dados de culinárias é, na verdade, uma **questão multicategorias**, já que temos várias possíveis culinárias nacionais com que trabalhar. Dado um conjunto de ingredientes, a qual destas muitas classes os dados pertencem? + +O Scikit-learn oferece vários algoritmos diferentes para classificar dados, dependendo do tipo de problema que queres resolver. Nas próximas duas lições, vais aprender sobre alguns desses algoritmos. + +## Exercício - limpar e equilibrar os dados + +A primeira tarefa, antes de começar este projeto, é limpar e **equilibrar** os teus dados para obter melhores resultados. Começa com o ficheiro vazio _notebook.ipynb_ na raiz desta pasta. + +A primeira coisa a instalar é [imblearn](https://imbalanced-learn.org/stable/). Este é um pacote do Scikit-learn que te permitirá equilibrar melhor os dados (vais aprender mais sobre esta tarefa em breve). + +1. Para instalar `imblearn`, executa `pip install`, assim: + + ```python + pip install imblearn + ``` + +1. Importa os pacotes necessários para importar os teus dados e visualizá-los, e também importa `SMOTE` de `imblearn`. + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + Agora estás pronto para importar os dados. + +1. A próxima tarefa será importar os dados: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + Utilizar `read_csv()` irá ler o conteúdo do ficheiro csv _cusines.csv_ e colocá-lo na variável `df`. + +1. Verifica a forma dos dados: + + ```python + df.head() + ``` + + As primeiras cinco linhas têm este aspeto: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. Obtém informações sobre estes dados chamando `info()`: + + ```python + df.info() + ``` + + O teu output será semelhante a: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## Exercício - aprender sobre culinárias + +Agora o trabalho começa a tornar-se mais interessante. Vamos descobrir a distribuição dos dados, por culinária. + +1. Representa os dados como barras chamando `barh()`: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![distribuição de dados de culinárias](../../../../4-Classification/1-Introduction/images/cuisine-dist.png) + + Existem um número finito de culinárias, mas a distribuição dos dados é desigual. Podes corrigir isso! Antes de o fazer, explora um pouco mais. + +1. Descobre a quantidade de dados disponível por culinária e imprime-a: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + o output será semelhante a: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## Descobrir ingredientes + +Agora podes aprofundar os dados e aprender quais são os ingredientes típicos por culinária. Deves limpar dados recorrentes que criam confusão entre culinárias, então vamos aprender sobre este problema. + +1. Cria uma função `create_ingredient()` em Python para criar um dataframe de ingredientes. Esta função começará por eliminar uma coluna inútil e organizar os ingredientes pelo seu número: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + Agora podes usar essa função para ter uma ideia dos dez ingredientes mais populares por culinária. + +1. Chama `create_ingredient()` e representa os dados chamando `barh()`: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![thai](../../../../4-Classification/1-Introduction/images/thai.png) + +1. Faz o mesmo para os dados japoneses: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![japanese](../../../../4-Classification/1-Introduction/images/japanese.png) + +1. Agora para os ingredientes chineses: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![chinese](../../../../4-Classification/1-Introduction/images/chinese.png) + +1. Representa os ingredientes indianos: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![indian](../../../../4-Classification/1-Introduction/images/indian.png) + +1. Finalmente, representa os ingredientes coreanos: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![korean](../../../../4-Classification/1-Introduction/images/korean.png) + +1. Agora, elimina os ingredientes mais comuns que criam confusão entre culinárias distintas, chamando `drop()`: + + Toda a gente adora arroz, alho e gengibre! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## Equilibrar o conjunto de dados + +Agora que limpaste os dados, utiliza [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "Técnica de Sobreamostragem Sintética de Minorias" - para equilibrá-los. + +1. Chama `fit_resample()`, esta estratégia gera novas amostras por interpolação. + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + Ao equilibrar os teus dados, vais obter melhores resultados ao classificá-los. Pensa numa classificação binária. Se a maior parte dos teus dados pertence a uma classe, um modelo de ML vai prever essa classe com mais frequência, apenas porque há mais dados para ela. O equilíbrio dos dados elimina esta desigualdade. + +1. Agora podes verificar os números de rótulos por ingrediente: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + O teu output será semelhante a: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + Os dados estão limpos, equilibrados e muito deliciosos! + +1. O último passo é guardar os teus dados equilibrados, incluindo rótulos e características, num novo dataframe que pode ser exportado para um ficheiro: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. Podes dar mais uma olhada nos dados utilizando `transformed_df.head()` e `transformed_df.info()`. Guarda uma cópia destes dados para uso em lições futuras: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + Este novo CSV pode agora ser encontrado na pasta de dados raiz. + +--- + +## 🚀Desafio + +Este currículo contém vários conjuntos de dados interessantes. Explora as pastas `data` e vê se alguma contém conjuntos de dados que seriam apropriados para classificação binária ou multicategorias. Que perguntas farias a este conjunto de dados? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Explora a API do SMOTE. Para que casos de uso é mais adequado? Que problemas resolve? + +## Tarefa + +[Explora métodos de classificação](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/assignment.md b/translations/pt-PT/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..3f7236c9b --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,16 @@ +# Explorar métodos de classificação + +## Instruções + +Na [documentação do Scikit-learn](https://scikit-learn.org/stable/supervised_learning.html) encontrarás uma longa lista de formas de classificar dados. Faz uma pequena caça ao tesouro nestes documentos: o teu objetivo é procurar métodos de classificação e associar um conjunto de dados deste currículo, uma pergunta que possas fazer sobre ele e uma técnica de classificação. Cria uma folha de cálculo ou tabela num ficheiro .doc e explica como o conjunto de dados funcionaria com o algoritmo de classificação. + +## Rubrica + +| Critérios | Exemplário | Adequado | Necessita de Melhorias | +| --------- | ------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | é apresentado um documento que descreve 5 algoritmos juntamente com uma técnica de classificação. A descrição é bem explicada e detalhada. | é apresentado um documento que descreve 3 algoritmos juntamente com uma técnica de classificação. A descrição é bem explicada e detalhada. | é apresentado um documento que descreve menos de três algoritmos juntamente com uma técnica de classificação e a descrição não é bem explicada nem detalhada. | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/notebook.ipynb b/translations/pt-PT/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..0098ed614 --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-03T20:33:35+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/solution/Julia/README.md b/translations/pt-PT/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..892256afa --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/pt-PT/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..05d570ffe --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,723 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-03T20:39:15+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construir um modelo de classificação: Deliciosas Cozinhas Asiáticas e Indianas\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Introdução à classificação: Limpar, preparar e visualizar os seus dados\n", + "\n", + "Nestes quatro módulos, irá explorar um dos focos fundamentais do machine learning clássico - *classificação*. Vamos percorrer o uso de vários algoritmos de classificação com um conjunto de dados sobre as brilhantes culinárias da Ásia e da Índia. Esperamos que esteja com fome!\n", + "\n", + "

\n", + " \n", + "

Celebre as culinárias pan-asiáticas nestas lições! Imagem por Jen Looper
\n", + "\n", + "\n", + "\n", + "\n", + "Classificação é uma forma de [aprendizagem supervisionada](https://wikipedia.org/wiki/Supervised_learning) que tem muito em comum com técnicas de regressão. Na classificação, treina-se um modelo para prever a que `categoria` um item pertence. Se o machine learning trata de prever valores ou nomes para coisas usando conjuntos de dados, então a classificação geralmente se divide em dois grupos: *classificação binária* e *classificação multicategorias*.\n", + "\n", + "Lembre-se:\n", + "\n", + "- **Regressão linear** ajudou-o a prever relações entre variáveis e fazer previsões precisas sobre onde um novo ponto de dados se encaixaria em relação àquela linha. Por exemplo, poderia prever valores numéricos como *qual seria o preço de uma abóbora em setembro vs. dezembro*.\n", + "\n", + "- **Regressão logística** ajudou-o a descobrir \"categorias binárias\": a este preço, *esta abóbora é laranja ou não-laranja*?\n", + "\n", + "A classificação utiliza vários algoritmos para determinar outras formas de identificar o rótulo ou classe de um ponto de dados. Vamos trabalhar com estes dados de culinária para ver se, ao observar um grupo de ingredientes, conseguimos determinar a sua origem culinária.\n", + "\n", + "### [**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **Introdução**\n", + "\n", + "A classificação é uma das atividades fundamentais do investigador de machine learning e do cientista de dados. Desde a classificação básica de um valor binário (\"este email é spam ou não?\"), até à classificação e segmentação complexa de imagens usando visão computacional, é sempre útil poder organizar dados em classes e fazer perguntas sobre eles.\n", + "\n", + "Para expressar o processo de forma mais científica, o seu método de classificação cria um modelo preditivo que permite mapear a relação entre variáveis de entrada e variáveis de saída.\n", + "\n", + "

\n", + " \n", + "

Problemas binários vs. multicategorias para algoritmos de classificação. Infográfico por Jen Looper
\n", + "\n", + "\n", + "\n", + "Antes de começar o processo de limpar os nossos dados, visualizá-los e prepará-los para as nossas tarefas de ML, vamos aprender um pouco sobre as várias formas como o machine learning pode ser utilizado para classificar dados.\n", + "\n", + "Derivada da [estatística](https://wikipedia.org/wiki/Statistical_classification), a classificação usando machine learning clássico utiliza características, como `fumador`, `peso` e `idade`, para determinar *probabilidade de desenvolver X doença*. Como uma técnica de aprendizagem supervisionada semelhante aos exercícios de regressão que realizou anteriormente, os seus dados são rotulados e os algoritmos de ML utilizam esses rótulos para classificar e prever classes (ou 'características') de um conjunto de dados e atribuí-los a um grupo ou resultado.\n", + "\n", + "✅ Tire um momento para imaginar um conjunto de dados sobre culinárias. O que um modelo multicategorias seria capaz de responder? O que um modelo binário seria capaz de responder? E se quisesse determinar se uma determinada culinária provavelmente utiliza feno-grego? E se quisesse ver se, dado um saco de compras cheio de anis-estrelado, alcachofras, couve-flor e rábano, conseguiria criar um prato típico indiano?\n", + "\n", + "### **Olá 'classificador'**\n", + "\n", + "A pergunta que queremos fazer a este conjunto de dados de culinária é, na verdade, uma questão **multicategorias**, já que temos várias possíveis culinárias nacionais com que trabalhar. Dado um lote de ingredientes, a qual destas muitas classes os dados se encaixam?\n", + "\n", + "O Tidymodels oferece vários algoritmos diferentes para classificar dados, dependendo do tipo de problema que deseja resolver. Nas próximas duas lições, aprenderá sobre alguns desses algoritmos.\n", + "\n", + "#### **Pré-requisitos**\n", + "\n", + "Para esta lição, precisaremos dos seguintes pacotes para limpar, preparar e visualizar os nossos dados:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [coleção de pacotes](https://www.tidymodels.org/packages/) para modelagem e machine learning.\n", + "\n", + "- `DataExplorer`: O [pacote DataExplorer](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html) foi criado para simplificar e automatizar o processo de EDA e geração de relatórios.\n", + "\n", + "- `themis`: O [pacote themis](https://themis.tidymodels.org/) fornece passos extras de receitas para lidar com dados desequilibrados.\n", + "\n", + "Pode instalá-los como:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativamente, o script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso estejam em falta.\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Mais tarde, iremos carregar estes pacotes incríveis e torná-los disponíveis na nossa sessão atual de R. (Isto é apenas para ilustração, `pacman::p_load()` já fez isso por si)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Exercício - limpar e equilibrar os seus dados\n", + "\n", + "A primeira tarefa, antes de começar este projeto, é limpar e **equilibrar** os seus dados para obter melhores resultados.\n", + "\n", + "Vamos conhecer os dados! 🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "Interessante! Pelo que parece, a primeira coluna é uma espécie de coluna `id`. Vamos obter um pouco mais de informações sobre os dados.\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "A partir dos resultados, podemos ver imediatamente que temos `2448` linhas e `385` colunas e `0` valores em falta. Também temos 1 coluna discreta, *cuisine*.\n", + "\n", + "## Exercício - aprender sobre cozinhas\n", + "\n", + "Agora o trabalho começa a tornar-se mais interessante. Vamos descobrir a distribuição dos dados, por cozinha.\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Existem um número finito de cozinhas, mas a distribuição dos dados é desigual. Pode resolver isso! Antes de o fazer, explore um pouco mais.\n", + "\n", + "De seguida, vamos atribuir cada cozinha ao seu próprio tibble e descobrir quantos dados estão disponíveis (linhas, colunas) por cozinha.\n", + "\n", + "> Um [tibble](https://tibble.tidyverse.org/) é uma versão moderna de um data frame.\n", + "\n", + "

\n", + " \n", + "

Ilustração por @allison_horst
\n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **Exercício - Descobrir os principais ingredientes por cozinha usando dplyr**\n", + "\n", + "Agora pode explorar mais profundamente os dados e descobrir quais são os ingredientes típicos de cada cozinha. Deve limpar os dados recorrentes que criam confusão entre as cozinhas, então vamos aprender sobre este problema.\n", + "\n", + "Crie uma função `create_ingredient()` em R que devolva um dataframe de ingredientes. Esta função começará por remover uma coluna pouco útil e organizar os ingredientes pelo seu número de ocorrências.\n", + "\n", + "A estrutura básica de uma função em R é:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "Uma introdução prática às funções em R pode ser encontrada [aqui](https://skirmer.github.io/presentations/functions_with_r.html#1).\n", + "\n", + "Vamos direto ao assunto! Vamos utilizar os [verbos dplyr](https://dplyr.tidyverse.org/) que temos vindo a aprender nas nossas lições anteriores. Como resumo:\n", + "\n", + "- `dplyr::select()`: ajuda a escolher quais **colunas** manter ou excluir.\n", + "\n", + "- `dplyr::pivot_longer()`: ajuda a \"alongar\" os dados, aumentando o número de linhas e diminuindo o número de colunas.\n", + "\n", + "- `dplyr::group_by()` e `dplyr::summarise()`: ajudam a encontrar estatísticas resumidas para diferentes grupos e colocá-las numa tabela organizada.\n", + "\n", + "- `dplyr::filter()`: cria um subconjunto dos dados contendo apenas as linhas que satisfazem as suas condições.\n", + "\n", + "- `dplyr::mutate()`: ajuda a criar ou modificar colunas.\n", + "\n", + "Confira este [tutorial *artístico* learnr](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome) de Allison Horst, que introduz algumas funções úteis de manipulação de dados no dplyr *(parte do Tidyverse)*.\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora podemos usar a função para obter uma ideia dos dez ingredientes mais populares por cozinha. Vamos testá-la com `thai_df`.\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "Na seção anterior, utilizámos `geom_col()`, vamos ver como pode usar `geom_bar` também, para criar gráficos de barras. Use `?geom_bar` para leitura adicional.\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "E quanto às cozinhas chinesas?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "A partir das visualizações de dados, podemos agora eliminar os ingredientes mais comuns que geram confusão entre diferentes cozinhas, utilizando `dplyr::select()`.\n", + "\n", + "Toda a gente adora arroz, alho e gengibre!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Pré-processamento de dados usando receitas 👩‍🍳👨‍🍳 - Lidando com dados desequilibrados ⚖️\n", + "\n", + "

\n", + " \n", + "

Ilustração por @allison_horst
\n", + "\n", + "Dado que esta lição é sobre culinárias, temos de colocar `recipes` em contexto.\n", + "\n", + "O Tidymodels oferece mais um pacote interessante: `recipes` - um pacote para pré-processamento de dados.\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vamos dar uma olhada novamente na distribuição das nossas culinárias.\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "Como pode ver, há uma distribuição bastante desigual no número de cozinhas. As cozinhas coreanas são quase 3 vezes mais numerosas do que as tailandesas. Dados desequilibrados frequentemente têm efeitos negativos no desempenho do modelo. Pense numa classificação binária. Se a maior parte dos seus dados pertence a uma classe, um modelo de ML vai prever essa classe com mais frequência, simplesmente porque há mais dados disponíveis para ela. Equilibrar os dados corrige qualquer desvio e ajuda a eliminar esse desequilíbrio. Muitos modelos têm o melhor desempenho quando o número de observações é igual e, por isso, tendem a ter dificuldades com dados desequilibrados.\n", + "\n", + "Existem principalmente duas formas de lidar com conjuntos de dados desequilibrados:\n", + "\n", + "- adicionar observações à classe minoritária: `Over-sampling`, por exemplo, utilizando um algoritmo SMOTE\n", + "\n", + "- remover observações da classe maioritária: `Under-sampling`\n", + "\n", + "Vamos agora demonstrar como lidar com conjuntos de dados desequilibrados utilizando uma `recipe`. Uma recipe pode ser vista como um plano que descreve quais passos devem ser aplicados a um conjunto de dados para prepará-lo para análise de dados.\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vamos analisar os nossos passos de pré-processamento.\n", + "\n", + "- A chamada para `recipe()` com uma fórmula indica à receita os *papéis* das variáveis usando os dados de `df_select` como referência. Por exemplo, a coluna `cuisine` foi atribuída ao papel de `outcome`, enquanto as restantes colunas foram atribuídas ao papel de `predictor`.\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) cria uma *especificação* de um passo da receita que gera sinteticamente novos exemplos da classe minoritária utilizando os vizinhos mais próximos desses casos.\n", + "\n", + "Agora, se quisermos ver os dados pré-processados, teremos de [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) e [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) a nossa receita.\n", + "\n", + "`prep()`: estima os parâmetros necessários a partir de um conjunto de treino que podem ser posteriormente aplicados a outros conjuntos de dados.\n", + "\n", + "`bake()`: aplica uma receita preparada às operações em qualquer conjunto de dados.\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vamos agora verificar a distribuição das nossas culinárias e compará-las com os dados desequilibrados.\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "Yum! Os dados estão limpos, equilibrados e muito deliciosos 😋!\n", + "\n", + "> Normalmente, uma receita é usada como um pré-processador para modelagem, onde define quais passos devem ser aplicados a um conjunto de dados para prepará-lo para a modelagem. Nesse caso, um `workflow()` é geralmente utilizado (como já vimos nas nossas lições anteriores) em vez de estimar manualmente uma receita.\n", + ">\n", + "> Assim, normalmente não é necessário **`prep()`** e **`bake()`** receitas quando se utiliza tidymodels, mas estas são funções úteis para ter na sua caixa de ferramentas para confirmar que as receitas estão a fazer o que espera, como no nosso caso.\n", + ">\n", + "> Quando se **`bake()`** uma receita preparada com **`new_data = NULL`**, obtém-se de volta os dados que foram fornecidos ao definir a receita, mas que passaram pelos passos de pré-processamento.\n", + "\n", + "Vamos agora guardar uma cópia destes dados para usar em lições futuras:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Este novo CSV pode agora ser encontrado na pasta raiz de dados.\n", + "\n", + "**🚀Desafio**\n", + "\n", + "Este currículo contém vários conjuntos de dados interessantes. Explore as pastas `data` e veja se alguma contém conjuntos de dados que seriam apropriados para classificação binária ou multi-classe. Que perguntas faria sobre este conjunto de dados?\n", + "\n", + "## [**Questionário pós-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **Revisão & Estudo Individual**\n", + "\n", + "- Veja o [pacote themis](https://github.com/tidymodels/themis). Que outras técnicas poderíamos usar para lidar com dados desbalanceados?\n", + "\n", + "- Site de referência dos [modelos tidy](https://www.tidymodels.org/start/).\n", + "\n", + "- H. Wickham e G. Grolemund, [*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/).\n", + "\n", + "#### OBRIGADO A:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontre mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) e [Jen Looper](https://www.twitter.com/jenlooper) por criarem a versão original em Python deste módulo ♥️\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/pt-PT/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..57d5f3950 --- /dev/null +++ b/translations/pt-PT/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,728 @@ +{ + "cells": [ + { + "source": [ + "# Deliciosas Cozinhas Asiáticas e Indianas\n", + "\n", + "## Introdução\n", + "\n", + "A culinária asiática e indiana é conhecida pela sua diversidade de sabores, ingredientes únicos e técnicas de preparação. Este guia oferece uma visão geral de algumas receitas populares e dicas para recriar esses pratos em casa.\n", + "\n", + "## Ingredientes Essenciais\n", + "\n", + "### Cozinha Asiática\n", + "- Molho de soja\n", + "- Óleo de sésamo\n", + "- Gengibre fresco\n", + "- Alho\n", + "- Vinagre de arroz\n", + "- Pasta de miso\n", + "\n", + "### Cozinha Indiana\n", + "- Garam masala\n", + "- Cúrcuma\n", + "- Cominhos\n", + "- Cardamomo\n", + "- Ghee\n", + "- Lentilhas\n", + "\n", + "[!TIP] Certifique-se de usar ingredientes frescos para obter o melhor sabor possível.\n", + "\n", + "## Receitas Populares\n", + "\n", + "### Frango Teriyaki\n", + "O frango teriyaki é um prato japonês clássico que combina sabores doces e salgados. Para preparar, siga os passos abaixo:\n", + "\n", + "1. Misture molho de soja, açúcar e vinagre de arroz para criar o molho teriyaki.\n", + "2. Cozinhe o frango numa frigideira até ficar dourado.\n", + "3. Adicione o molho e deixe reduzir até engrossar.\n", + "4. Sirva com arroz branco e vegetais cozidos.\n", + "\n", + "### Caril de Lentilhas\n", + "O caril de lentilhas é uma opção vegetariana rica em proteínas e cheia de sabor. Para preparar:\n", + "\n", + "1. Refogue cebola, alho e gengibre em ghee.\n", + "2. Adicione cúrcuma, cominhos e garam masala.\n", + "3. Misture lentilhas cozidas e tomate picado.\n", + "4. Deixe cozinhar até os sabores se misturarem.\n", + "5. Sirva com arroz basmati ou pão naan.\n", + "\n", + "[!NOTE] Ajuste o nível de picante conforme o seu gosto.\n", + "\n", + "## Dicas de Cozinha\n", + "\n", + "- **Planeie com antecedência:** Muitos pratos asiáticos e indianos requerem marinadas ou tempos de cozimento prolongados.\n", + "- **Use utensílios adequados:** Uma wok ou uma panela de fundo pesado pode fazer toda a diferença.\n", + "- **Experimente:** Não tenha medo de ajustar os temperos para criar o seu próprio toque pessoal.\n", + "\n", + "[!WARNING] Alguns ingredientes, como o molho de soja, podem conter altos níveis de sódio. Use com moderação.\n", + "\n", + "## Conclusão\n", + "\n", + "Cozinhar pratos asiáticos e indianos em casa pode ser uma experiência gratificante e deliciosa. Com os ingredientes certos e um pouco de prática, você pode trazer os sabores autênticos dessas cozinhas para a sua mesa.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Instale o Imblearn, que permitirá o SMOTE. Este é um pacote do Scikit-learn que ajuda a lidar com dados desequilibrados ao realizar classificação. (https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "Este conjunto de dados inclui 385 colunas que indicam todos os tipos de ingredientes em várias cozinhas de um determinado conjunto de cozinhas.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
065indian00000000...0000000000
166indian10000000...0000000000
267indian00000000...0000000000
368indian00000000...0000000000
469indian00000000...0000000010
\n

5 rows × 385 columns

\n
" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "Mostrar as cozinhas num gráfico de barras\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "Equilibre os dados com sobreamostragem SMOTE para a classe mais alta. Leia mais aqui: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
0indian000000000...0000000000
1indian100000000...0000000000
2indian000000000...0000000000
3indian000000000...0000000000
4indian000000000...0000000010
..................................................................
3990thai000000000...0000000000
3991thai000000000...0000000000
3992thai000000000...0000000000
3993thai000000000...0000000000
3994thai000000000...0000000000
\n

3995 rows × 381 columns

\n
" + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-03T20:34:40+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/README.md b/translations/pt-PT/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..68b123896 --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,244 @@ +# Classificadores de culinária 1 + +Nesta lição, vais utilizar o conjunto de dados que guardaste na última lição, cheio de dados equilibrados e limpos sobre culinárias. + +Vais usar este conjunto de dados com uma variedade de classificadores para _prever uma culinária nacional com base num grupo de ingredientes_. Enquanto fazes isso, vais aprender mais sobre algumas das formas como os algoritmos podem ser utilizados para tarefas de classificação. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) +# Preparação + +Assumindo que completaste [Lição 1](../1-Introduction/README.md), certifica-te de que existe um ficheiro _cleaned_cuisines.csv_ na pasta raiz `/data` para estas quatro lições. + +## Exercício - prever uma culinária nacional + +1. Trabalhando na pasta _notebook.ipynb_ desta lição, importa esse ficheiro juntamente com a biblioteca Pandas: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + Os dados têm este aspeto: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. Agora, importa mais algumas bibliotecas: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. Divide as coordenadas X e y em dois dataframes para treino. `cuisine` pode ser o dataframe de etiquetas: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + Vai ter este aspeto: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. Remove a coluna `Unnamed: 0` e a coluna `cuisine`, utilizando `drop()`. Guarda o resto dos dados como características treináveis: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + As tuas características têm este aspeto: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +Agora estás pronto para treinar o teu modelo! + +## Escolher o classificador + +Agora que os teus dados estão limpos e prontos para treino, tens de decidir qual o algoritmo a usar para o trabalho. + +O Scikit-learn agrupa a classificação sob Aprendizagem Supervisionada, e nessa categoria vais encontrar muitas formas de classificar. [A variedade](https://scikit-learn.org/stable/supervised_learning.html) pode parecer confusa à primeira vista. Os seguintes métodos incluem técnicas de classificação: + +- Modelos Lineares +- Máquinas de Vetores de Suporte +- Descida de Gradiente Estocástica +- Vizinhos Mais Próximos +- Processos Gaussianos +- Árvores de Decisão +- Métodos de Ensemble (classificador por votação) +- Algoritmos multiclasses e multioutput (classificação multiclasses e multilabel, classificação multiclasses-multioutput) + +> Também podes usar [redes neuronais para classificar dados](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification), mas isso está fora do âmbito desta lição. + +### Qual classificador escolher? + +Então, qual classificador deves escolher? Muitas vezes, testar vários e procurar um bom resultado é uma forma de experimentar. O Scikit-learn oferece uma [comparação lado a lado](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) num conjunto de dados criado, comparando KNeighbors, SVC de duas formas, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB e QuadraticDiscriminationAnalysis, mostrando os resultados visualizados: + +![comparação de classificadores](../../../../4-Classification/2-Classifiers-1/images/comparison.png) +> Gráficos gerados na documentação do Scikit-learn + +> O AutoML resolve este problema de forma prática ao realizar estas comparações na nuvem, permitindo-te escolher o melhor algoritmo para os teus dados. Experimenta [aqui](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) + +### Uma abordagem melhor + +Uma forma melhor do que adivinhar aleatoriamente é seguir as ideias deste [guia de consulta de ML](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) que podes descarregar. Aqui, descobrimos que, para o nosso problema multiclasses, temos algumas opções: + +![guia para problemas multiclasses](../../../../4-Classification/2-Classifiers-1/images/cheatsheet.png) +> Uma secção do Guia de Algoritmos da Microsoft, detalhando opções de classificação multiclasses + +✅ Descarrega este guia, imprime-o e pendura-o na tua parede! + +### Raciocínio + +Vamos ver se conseguimos raciocinar sobre diferentes abordagens dadas as restrições que temos: + +- **Redes neuronais são demasiado pesadas**. Dado o nosso conjunto de dados limpo, mas minimalista, e o facto de estarmos a realizar o treino localmente via notebooks, redes neuronais são demasiado pesadas para esta tarefa. +- **Sem classificadores de duas classes**. Não usamos um classificador de duas classes, o que exclui o one-vs-all. +- **Árvore de decisão ou regressão logística podem funcionar**. Uma árvore de decisão pode funcionar, ou regressão logística para dados multiclasses. +- **Árvores de decisão impulsionadas multiclasses resolvem outro problema**. A árvore de decisão impulsionada multiclasses é mais adequada para tarefas não paramétricas, como tarefas projetadas para criar rankings, por isso não é útil para nós. + +### Usar Scikit-learn + +Vamos usar o Scikit-learn para analisar os nossos dados. No entanto, existem muitas formas de usar regressão logística no Scikit-learn. Dá uma olhada nos [parâmetros a passar](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Basicamente, há dois parâmetros importantes - `multi_class` e `solver` - que precisamos especificar quando pedimos ao Scikit-learn para realizar uma regressão logística. O valor de `multi_class` aplica um certo comportamento. O valor do solver é o algoritmo a usar. Nem todos os solvers podem ser combinados com todos os valores de `multi_class`. + +De acordo com a documentação, no caso multiclasses, o algoritmo de treino: + +- **Usa o esquema one-vs-rest (OvR)**, se a opção `multi_class` estiver definida como `ovr` +- **Usa a perda de entropia cruzada**, se a opção `multi_class` estiver definida como `multinomial`. (Atualmente, a opção `multinomial` é suportada apenas pelos solvers ‘lbfgs’, ‘sag’, ‘saga’ e ‘newton-cg’.) + +> 🎓 O 'esquema' aqui pode ser 'ovr' (one-vs-rest) ou 'multinomial'. Como a regressão logística foi projetada para suportar classificação binária, esses esquemas permitem que ela lide melhor com tarefas de classificação multiclasses. [fonte](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 O 'solver' é definido como "o algoritmo a usar no problema de otimização". [fonte](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +O Scikit-learn oferece esta tabela para explicar como os solvers lidam com diferentes desafios apresentados por diferentes tipos de estruturas de dados: + +![solvers](../../../../4-Classification/2-Classifiers-1/images/solvers.png) + +## Exercício - dividir os dados + +Podemos focar-nos na regressão logística para o nosso primeiro teste de treino, já que aprendeste sobre ela recentemente numa lição anterior. +Divide os teus dados em grupos de treino e teste chamando `train_test_split()`: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## Exercício - aplicar regressão logística + +Como estás a usar o caso multiclasses, precisas de escolher que _esquema_ usar e que _solver_ definir. Usa LogisticRegression com uma configuração multiclasses e o solver **liblinear** para treinar. + +1. Cria uma regressão logística com multi_class definida como `ovr` e o solver definido como `liblinear`: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ Experimenta um solver diferente como `lbfgs`, que muitas vezes é definido como padrão +> Nota, utilize a função Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) para achatar os seus dados quando necessário. +A precisão é boa, acima de **80%**! + +1. Pode ver este modelo em ação ao testar uma linha de dados (#50): + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + O resultado é impresso: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ Experimente um número de linha diferente e verifique os resultados. + +1. Explorando mais a fundo, pode verificar a precisão desta previsão: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + O resultado é impresso - cozinha indiana é a melhor estimativa, com boa probabilidade: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ Consegue explicar por que o modelo tem tanta certeza de que se trata de uma cozinha indiana? + +1. Obtenha mais detalhes imprimindo um relatório de classificação, como fez nas lições de regressão: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precisão | recall | f1-score | suporte | + | ------------ | -------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀Desafio + +Nesta lição, utilizou os seus dados limpos para construir um modelo de aprendizagem automática que pode prever uma cozinha nacional com base numa série de ingredientes. Dedique algum tempo a explorar as muitas opções que o Scikit-learn oferece para classificar dados. Aprofunde o conceito de 'solver' para entender o que acontece nos bastidores. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Explore um pouco mais a matemática por trás da regressão logística nesta [lição](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf). +## Tarefa + +[Estude os solvers](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/assignment.md b/translations/pt-PT/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..0f8430285 --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,14 @@ +# Estude os solucionadores +## Instruções + +Nesta lição, aprendeste sobre os vários solucionadores que combinam algoritmos com um processo de aprendizagem automática para criar um modelo preciso. Revê os solucionadores mencionados na lição e escolhe dois. Com as tuas próprias palavras, compara e contrasta esses dois solucionadores. Que tipo de problema eles resolvem? Como trabalham com diferentes estruturas de dados? Por que escolherias um em vez do outro? +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita Melhorar | +| --------- | --------------------------------------------------------------------------------------------- | ------------------------------------------------ | ---------------------------- | +| | Um ficheiro .doc é apresentado com dois parágrafos, um sobre cada solucionador, comparando-os de forma reflexiva. | Um ficheiro .doc é apresentado com apenas um parágrafo | A tarefa está incompleta | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/pt-PT/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..8815f1694 --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-03T20:19:58+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Construir Modelos de Classificação\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..b641c7263 --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..999719458 --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1298 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-03T20:23:38+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construir um modelo de classificação: Deliciosas Cozinhas Asiáticas e Indianas\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Classificadores de culinária 1\n", + "\n", + "Nesta lição, vamos explorar uma variedade de classificadores para *prever uma culinária nacional específica com base em um grupo de ingredientes.* Enquanto fazemos isso, aprenderemos mais sobre algumas das formas como os algoritmos podem ser utilizados em tarefas de classificação.\n", + "\n", + "### [**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **Preparação**\n", + "\n", + "Esta lição é uma continuação da nossa [lição anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb), onde:\n", + "\n", + "- Fizemos uma introdução leve às classificações usando um conjunto de dados sobre todas as brilhantes culinárias da Ásia e da Índia 😋.\n", + "\n", + "- Explorámos alguns [verbos do dplyr](https://dplyr.tidyverse.org/) para preparar e limpar os nossos dados.\n", + "\n", + "- Criámos visualizações bonitas usando ggplot2.\n", + "\n", + "- Demonstrámos como lidar com dados desequilibrados ao pré-processá-los usando [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html).\n", + "\n", + "- Mostrámos como `prep` e `bake` a nossa receita para confirmar que funcionará como esperado.\n", + "\n", + "#### **Pré-requisitos**\n", + "\n", + "Para esta lição, precisaremos dos seguintes pacotes para limpar, preparar e visualizar os nossos dados:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [framework de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem automática.\n", + "\n", + "- `themis`: O [pacote themis](https://themis.tidymodels.org/) fornece passos adicionais de receitas para lidar com dados desequilibrados.\n", + "\n", + "- `nnet`: O [pacote nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) fornece funções para estimar redes neurais feed-forward com uma única camada oculta e para modelos de regressão logística multinomial.\n", + "\n", + "Pode instalá-los da seguinte forma:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativamente, o script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso estejam em falta.\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Dividir os dados em conjuntos de treino e teste.\n", + "\n", + "Vamos começar por selecionar alguns passos da nossa lição anterior.\n", + "\n", + "### Eliminar os ingredientes mais comuns que geram confusão entre diferentes cozinhas, utilizando `dplyr::select()`.\n", + "\n", + "Toda a gente adora arroz, alho e gengibre!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 381
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
<fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
indian0000000000000000000
indian1000000000000000000
indian0000000000000000000
indian0000000000000000000
indian0000000000000000010
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisinen
<fct><int>
korean 799
indian 598
chinese 442
japanese320
thai 289
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Perfeito! Agora, é hora de dividir os dados de forma que 70% dos dados sejam destinados ao treino e 30% aos testes. Também aplicaremos uma técnica de `estratificação` ao dividir os dados para `manter a proporção de cada tipo de cozinha` nos conjuntos de treino e validação.\n", + "\n", + "[rsample](https://rsample.tidymodels.org/), um pacote do Tidymodels, fornece infraestrutura para divisão e reamostragem eficiente de dados:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 381
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
<fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
chinese0000000000000100000
chinese0000000000000100000
chinese0000000000000000000
chinese0000000000000000000
chinese0000000000000000000
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisinen
<fct><int>
korean 559
indian 418
chinese 309
japanese224
thai 202
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Lidar com dados desequilibrados\n", + "\n", + "Como deve ter reparado no conjunto de dados original, assim como no nosso conjunto de treino, há uma distribuição bastante desigual no número de tipos de cozinha. As cozinhas coreanas são *quase* 3 vezes mais numerosas do que as cozinhas tailandesas. Dados desequilibrados frequentemente têm efeitos negativos no desempenho do modelo. Muitos modelos funcionam melhor quando o número de observações é igual e, por isso, tendem a ter dificuldades com dados desequilibrados.\n", + "\n", + "Existem principalmente duas formas de lidar com conjuntos de dados desequilibrados:\n", + "\n", + "- adicionar observações à classe minoritária: `Over-sampling`, por exemplo, utilizando um algoritmo SMOTE que gera sinteticamente novos exemplos da classe minoritária com base nos vizinhos mais próximos desses casos.\n", + "\n", + "- remover observações da classe majoritária: `Under-sampling`\n", + "\n", + "Na nossa lição anterior, demonstrámos como lidar com conjuntos de dados desequilibrados utilizando uma `recipe`. Uma recipe pode ser vista como um plano que descreve os passos que devem ser aplicados a um conjunto de dados para prepará-lo para análise. No nosso caso, queremos ter uma distribuição igual no número de tipos de cozinha no nosso `conjunto de treino`. Vamos começar!\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Pode, claro, confirmar (usando prep+bake) que a receita funcionará como esperado - todas as etiquetas de cozinha têm `559` observações.\n", + "\n", + "Como vamos usar esta receita como um pré-processador para modelagem, um `workflow()` fará todo o trabalho de preparação e execução para nós, então não será necessário estimar manualmente a receita.\n", + "\n", + "Agora estamos prontos para treinar um modelo 👩‍💻👨‍💻!\n", + "\n", + "## 3. Escolher o seu classificador\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "Agora temos de decidir qual algoritmo usar para o trabalho 🤔.\n", + "\n", + "No Tidymodels, o [`parsnip package`](https://parsnip.tidymodels.org/index.html) fornece uma interface consistente para trabalhar com modelos em diferentes motores (pacotes). Consulte a documentação do parsnip para explorar [tipos de modelos e motores](https://www.tidymodels.org/find/parsnip/#models) e os seus correspondentes [argumentos de modelo](https://www.tidymodels.org/find/parsnip/#model-args). A variedade pode ser bastante confusa à primeira vista. Por exemplo, os seguintes métodos incluem técnicas de classificação:\n", + "\n", + "- Modelos de Classificação Baseados em Regras C5.0\n", + "\n", + "- Modelos de Discriminação Flexível\n", + "\n", + "- Modelos de Discriminação Linear\n", + "\n", + "- Modelos de Discriminação Regularizada\n", + "\n", + "- Modelos de Regressão Logística\n", + "\n", + "- Modelos de Regressão Multinomial\n", + "\n", + "- Modelos de Bayes Ingénuo\n", + "\n", + "- Máquinas de Vetores de Suporte\n", + "\n", + "- Vizinhos Mais Próximos\n", + "\n", + "- Árvores de Decisão\n", + "\n", + "- Métodos de Ensemble\n", + "\n", + "- Redes Neuronais\n", + "\n", + "E a lista continua!\n", + "\n", + "### **Qual classificador escolher?**\n", + "\n", + "Então, qual classificador deve escolher? Muitas vezes, testar vários e procurar um bom resultado é uma forma de experimentar.\n", + "\n", + "> O AutoML resolve este problema de forma prática ao realizar estas comparações na nuvem, permitindo-lhe escolher o melhor algoritmo para os seus dados. Experimente [aqui](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "Além disso, a escolha do classificador depende do nosso problema. Por exemplo, quando o resultado pode ser categorizado em `mais de duas classes`, como no nosso caso, deve usar um `algoritmo de classificação multiclasses` em vez de `classificação binária.`\n", + "\n", + "### **Uma abordagem melhor**\n", + "\n", + "Uma abordagem melhor do que adivinhar aleatoriamente, no entanto, é seguir as ideias deste [Guia de Referência de ML](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) disponível para download. Aqui, descobrimos que, para o nosso problema de multiclasses, temos algumas opções:\n", + "\n", + "

\n", + " \n", + "

Uma secção do Guia de Referência de Algoritmos da Microsoft, detalhando opções de classificação multiclasses
\n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Raciocínio**\n", + "\n", + "Vamos analisar diferentes abordagens dadas as restrições que temos:\n", + "\n", + "- **Redes Neurais Profundas são demasiado pesadas**. Dado o nosso conjunto de dados limpo, mas minimalista, e o facto de estarmos a executar o treino localmente através de notebooks, redes neurais profundas são demasiado pesadas para esta tarefa.\n", + "\n", + "- **Sem classificador de duas classes**. Não utilizamos um classificador de duas classes, o que elimina a abordagem um-contra-todos.\n", + "\n", + "- **Árvore de decisão ou regressão logística podem funcionar**. Uma árvore de decisão pode funcionar, ou regressão multinomial/regressão logística multiclasses para dados multiclasses.\n", + "\n", + "- **Árvores de decisão multiclasses impulsionadas resolvem outro problema**. A árvore de decisão multiclasses impulsionada é mais adequada para tarefas não paramétricas, por exemplo, tarefas destinadas a construir rankings, por isso não é útil para nós.\n", + "\n", + "Além disso, normalmente antes de embarcar em modelos de aprendizagem automática mais complexos, como métodos de ensemble, é uma boa ideia construir o modelo mais simples possível para ter uma ideia do que está a acontecer. Assim, para esta lição, começaremos com um modelo de `regressão multinomial`.\n", + "\n", + "> A regressão logística é uma técnica utilizada quando a variável de resultado é categórica (ou nominal). Na regressão logística binária, o número de variáveis de resultado é dois, enquanto na regressão logística multinomial o número de variáveis de resultado é superior a dois. Consulte [Advanced Regression Methods](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) para leitura adicional.\n", + "\n", + "## 4. Treinar e avaliar um modelo de regressão logística multinomial.\n", + "\n", + "No Tidymodels, `parsnip::multinom_reg()`, define um modelo que utiliza preditores lineares para prever dados multiclasses usando a distribuição multinomial. Consulte `?multinom_reg()` para conhecer as diferentes formas/motores que pode usar para ajustar este modelo.\n", + "\n", + "Neste exemplo, ajustaremos um modelo de regressão multinomial através do motor padrão [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf).\n", + "\n", + "> Escolhi um valor para `penalty` de forma um pouco aleatória. Existem formas melhores de escolher este valor, nomeadamente utilizando `resampling` e ajustando o modelo, algo que discutiremos mais tarde.\n", + ">\n", + "> Consulte [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/) caso queira aprender mais sobre como ajustar os hiperparâmetros do modelo.\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho 🥳! Agora que temos uma receita e uma especificação de modelo, precisamos encontrar uma forma de agrupá-los num objeto que primeiro pré-processará os dados, depois ajustará o modelo nos dados pré-processados e também permitirá atividades de pós-processamento, caso necessário. No Tidymodels, este objeto prático é chamado de [`workflow`](https://workflows.tidymodels.org/) e organiza convenientemente os seus componentes de modelação! Isto é o que chamaríamos de *pipelines* em *Python*.\n", + "\n", + "Então, vamos agrupar tudo num workflow!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Workflows 👌👌! Um **`workflow()`** pode ser ajustado de forma muito semelhante a um modelo. Então, é hora de treinar um modelo!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "Os resultados mostram os coeficientes que o modelo aprendeu durante o treino.\n", + "\n", + "### Avaliar o Modelo Treinado\n", + "\n", + "É hora de verificar como o modelo se saiu 📏 avaliando-o num conjunto de teste! Vamos começar por fazer previsões no conjunto de teste.\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisine.pred_class
<fct><fct>
indianthai
indianindian
indianindian
indianindian
indianindian
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho! No Tidymodels, avaliar o desempenho do modelo pode ser feito usando [yardstick](https://yardstick.tidymodels.org/) - um pacote utilizado para medir a eficácia dos modelos através de métricas de desempenho. Como fizemos na nossa aula de regressão logística, vamos começar por calcular uma matriz de confusão.\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ao lidar com várias classes, é geralmente mais intuitivo visualizar isto como um mapa de calor, assim:\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "Os quadrados mais escuros no gráfico da matriz de confusão indicam um número elevado de casos, e espera-se que consiga ver uma linha diagonal de quadrados mais escuros, indicando os casos em que o rótulo previsto e o rótulo real são iguais.\n", + "\n", + "Vamos agora calcular as estatísticas resumidas para a matriz de confusão.\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 13 × 3
.metric.estimator.estimate
<chr><chr><dbl>
accuracy multiclass0.7880435
kap multiclass0.7276583
sens macro 0.7780927
spec macro 0.9477598
ppv macro 0.7585583
npv macro 0.9460080
mcc multiclass0.7292724
j_index macro 0.7258524
bal_accuracy macro 0.8629262
detection_prevalencemacro 0.2000000
precision macro 0.7585583
recall macro 0.7780927
f_meas macro 0.7641862
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Se nos concentrarmos em algumas métricas como precisão, sensibilidade, ppv, não estamos mal para começar 🥳!\n", + "\n", + "## 4. Aprofundando\n", + "\n", + "Vamos fazer uma pergunta subtil: Que critérios são usados para decidir por um determinado tipo de cozinha como o resultado previsto?\n", + "\n", + "Bem, os algoritmos de aprendizagem automática estatística, como a regressão logística, baseiam-se em `probabilidade`; portanto, o que é realmente previsto por um classificador é uma distribuição de probabilidade sobre um conjunto de resultados possíveis. A classe com a maior probabilidade é então escolhida como o resultado mais provável para as observações dadas.\n", + "\n", + "Vamos ver isto em ação, fazendo tanto previsões de classes rígidas como probabilidades.\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 7
cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
<fct><fct><dbl><dbl><dbl><dbl><dbl>
indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Consegues explicar porque é que o modelo tem tanta certeza de que a primeira observação é tailandesa?\n", + "\n", + "## **🚀Desafio**\n", + "\n", + "Nesta lição, utilizaste os teus dados limpos para construir um modelo de machine learning capaz de prever uma cozinha nacional com base numa série de ingredientes. Dedica algum tempo a explorar as [muitas opções](https://www.tidymodels.org/find/parsnip/#models) que o Tidymodels oferece para classificar dados e [outras formas](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) de ajustar regressões multinomiais.\n", + "\n", + "#### AGRADECIMENTOS A:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontra mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) e [Jen Looper](https://www.twitter.com/jenlooper) por criarem a versão original deste módulo em Python ♥️\n", + "\n", + "
\n", + "Teria incluído algumas piadas, mas não percebo trocadilhos sobre comida 😅.\n", + "\n", + "
\n", + "\n", + "Boas aprendizagens,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Embaixador Estudante Gold da Microsoft Learn.\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..169da9e9f --- /dev/null +++ b/translations/pt-PT/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "# Construir Modelos de Classificação\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0
korean0.392231
chinese0.372872
japanese0.218825
thai0.013427
indian0.002645
\n
" + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-03T20:20:22+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/README.md b/translations/pt-PT/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..bda8452c9 --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,240 @@ +# Classificadores de culinária 2 + +Nesta segunda lição sobre classificação, vais explorar mais formas de classificar dados numéricos. Também vais aprender sobre as implicações de escolher um classificador em vez de outro. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +### Pré-requisitos + +Assumimos que completaste as lições anteriores e tens um conjunto de dados limpo na tua pasta `data`, chamado _cleaned_cuisines.csv_, na raiz desta pasta de 4 lições. + +### Preparação + +Carregámos o teu ficheiro _notebook.ipynb_ com o conjunto de dados limpo e dividimo-lo em dataframes X e y, prontos para o processo de construção do modelo. + +## Um mapa de classificação + +Anteriormente, aprendeste sobre as várias opções disponíveis para classificar dados utilizando o guia da Microsoft. O Scikit-learn oferece um guia semelhante, mas mais detalhado, que pode ajudar ainda mais a restringir os estimadores (outro termo para classificadores): + +![Mapa de ML do Scikit-learn](../../../../4-Classification/3-Classifiers-2/images/map.png) +> Dica: [visita este mapa online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) e explora os caminhos para ler a documentação. + +### O plano + +Este mapa é muito útil quando tens uma compreensão clara dos teus dados, pois podes 'percorrer' os seus caminhos até uma decisão: + +- Temos >50 amostras +- Queremos prever uma categoria +- Temos dados rotulados +- Temos menos de 100K amostras +- ✨ Podemos escolher um Linear SVC +- Se isso não funcionar, como temos dados numéricos: + - Podemos tentar um ✨ KNeighbors Classifier + - Se isso não funcionar, tentar ✨ SVC e ✨ Ensemble Classifiers + +Este é um caminho muito útil a seguir. + +## Exercício - dividir os dados + +Seguindo este caminho, devemos começar por importar algumas bibliotecas para usar. + +1. Importa as bibliotecas necessárias: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. Divide os teus dados de treino e teste: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## Classificador Linear SVC + +O clustering por Support-Vector (SVC) é um membro da família de técnicas de ML chamadas Support-Vector Machines (aprende mais sobre estas abaixo). Neste método, podes escolher um 'kernel' para decidir como agrupar os rótulos. O parâmetro 'C' refere-se à 'regularização', que regula a influência dos parâmetros. O kernel pode ser um de [vários](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC); aqui definimos como 'linear' para garantir que utilizamos o Linear SVC. A probabilidade por padrão é 'falsa'; aqui definimos como 'verdadeira' para obter estimativas de probabilidade. Definimos o estado aleatório como '0' para embaralhar os dados e obter probabilidades. + +### Exercício - aplicar um Linear SVC + +Começa por criar um array de classificadores. Vais adicionar progressivamente a este array à medida que testamos. + +1. Começa com um Linear SVC: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. Treina o teu modelo utilizando o Linear SVC e imprime um relatório: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + O resultado é bastante bom: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## Classificador K-Neighbors + +K-Neighbors faz parte da família de métodos de ML "neighbors", que podem ser usados tanto para aprendizagem supervisionada como não supervisionada. Neste método, é criado um número pré-definido de pontos e os dados são agrupados em torno desses pontos, de forma que rótulos generalizados possam ser previstos para os dados. + +### Exercício - aplicar o classificador K-Neighbors + +O classificador anterior foi bom e funcionou bem com os dados, mas talvez possamos obter uma melhor precisão. Experimenta um classificador K-Neighbors. + +1. Adiciona uma linha ao teu array de classificadores (adiciona uma vírgula após o item Linear SVC): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + O resultado é um pouco pior: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ Aprende sobre [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) + +## Classificador Support Vector + +Os classificadores Support-Vector fazem parte da família [Support-Vector Machine](https://wikipedia.org/wiki/Support-vector_machine) de métodos de ML que são usados para tarefas de classificação e regressão. Os SVMs "mapeiam exemplos de treino para pontos no espaço" para maximizar a distância entre duas categorias. Dados subsequentes são mapeados neste espaço para que a sua categoria possa ser prevista. + +### Exercício - aplicar um classificador Support Vector + +Vamos tentar obter uma precisão um pouco melhor com um classificador Support Vector. + +1. Adiciona uma vírgula após o item K-Neighbors e, em seguida, adiciona esta linha: + + ```python + 'SVC': SVC(), + ``` + + O resultado é muito bom! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ Aprende sobre [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm) + +## Classificadores Ensemble + +Vamos seguir o caminho até ao fim, mesmo que o teste anterior tenha sido muito bom. Vamos experimentar alguns 'Classificadores Ensemble', especificamente Random Forest e AdaBoost: + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +O resultado é muito bom, especialmente para Random Forest: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ Aprende sobre [Classificadores Ensemble](https://scikit-learn.org/stable/modules/ensemble.html) + +Este método de Machine Learning "combina as previsões de vários estimadores base" para melhorar a qualidade do modelo. No nosso exemplo, utilizámos Random Trees e AdaBoost. + +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), um método de média, constrói uma 'floresta' de 'árvores de decisão' com infusão de aleatoriedade para evitar overfitting. O parâmetro n_estimators é definido como o número de árvores. + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) ajusta um classificador a um conjunto de dados e, em seguida, ajusta cópias desse classificador ao mesmo conjunto de dados. Foca-se nos pesos dos itens classificados incorretamente e ajusta o ajuste para o próximo classificador corrigir. + +--- + +## 🚀Desafio + +Cada uma destas técnicas tem um grande número de parâmetros que podes ajustar. Pesquisa os parâmetros padrão de cada uma e pensa no que ajustar esses parâmetros significaria para a qualidade do modelo. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Autoestudo + +Há muito jargão nestas lições, por isso tira um momento para rever [esta lista](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) de terminologia útil! + +## Tarefa + +[Exploração de parâmetros](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/assignment.md b/translations/pt-PT/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..96ca03e5b --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,16 @@ +# Exploração de Parâmetros + +## Instruções + +Existem muitos parâmetros que são definidos por padrão ao trabalhar com estes classificadores. O Intellisense no VS Code pode ajudá-lo a explorá-los. Adote uma das Técnicas de Classificação de ML desta lição e reentreine os modelos ajustando vários valores de parâmetros. Crie um notebook explicando por que algumas alterações melhoram a qualidade do modelo enquanto outras a prejudicam. Seja detalhado na sua resposta. + +## Critérios de Avaliação + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| -------- | --------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------- | ----------------------------- | +| | Um notebook é apresentado com um classificador completamente desenvolvido e seus parâmetros ajustados, com alterações explicadas em caixas de texto | Um notebook é apresentado parcialmente ou mal explicado | Um notebook contém erros ou falhas | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/pt-PT/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..fb6e7c51f --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-03T20:27:16+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..b641c7263 --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..ebc87fa6a --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-03T20:30:42+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# Construir um modelo de classificação: Deliciosas Cozinhas Asiáticas e Indianas\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## Classificadores de culinária 2\n", + "\n", + "Nesta segunda lição sobre classificação, vamos explorar `mais formas` de classificar dados categóricos. Também aprenderemos sobre as implicações de escolher um classificador em vez de outro.\n", + "\n", + "### [**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **Pré-requisitos**\n", + "\n", + "Assumimos que você completou as lições anteriores, já que vamos utilizar alguns conceitos aprendidos anteriormente.\n", + "\n", + "Para esta lição, precisaremos dos seguintes pacotes:\n", + "\n", + "- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n", + "\n", + "- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [estrutura de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem de máquina.\n", + "\n", + "- `themis`: O [pacote themis](https://themis.tidymodels.org/) fornece passos extras de receitas para lidar com dados desbalanceados.\n", + "\n", + "Você pode instalá-los com o seguinte comando:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "Alternativamente, o script abaixo verifica se você possui os pacotes necessários para completar este módulo e os instala caso estejam ausentes.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. Um mapa de classificação**\n", + "\n", + "Na nossa [lição anterior](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1), tentámos responder à pergunta: como escolher entre vários modelos? Em grande parte, isso depende das características dos dados e do tipo de problema que queremos resolver (por exemplo, classificação ou regressão?).\n", + "\n", + "Anteriormente, aprendemos sobre as várias opções disponíveis para classificar dados utilizando o guia da Microsoft. O framework de Machine Learning em Python, Scikit-learn, oferece um guia semelhante, mas mais detalhado, que pode ajudar ainda mais a restringir os seus estimadores (outro termo para classificadores):\n", + "\n", + "

\n", + " \n", + "

\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> Dica: [visite este mapa online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) e clique ao longo do caminho para ler a documentação.\n", + ">\n", + "> O [site de referência do Tidymodels](https://www.tidymodels.org/find/parsnip/#models) também oferece uma excelente documentação sobre diferentes tipos de modelos.\n", + "\n", + "### **O plano** 🗺️\n", + "\n", + "Este mapa é muito útil quando se tem uma compreensão clara dos seus dados, pois pode 'percorrer' os seus caminhos até chegar a uma decisão:\n", + "\n", + "- Temos \\>50 amostras\n", + "\n", + "- Queremos prever uma categoria\n", + "\n", + "- Temos dados rotulados\n", + "\n", + "- Temos menos de 100K amostras\n", + "\n", + "- ✨ Podemos escolher um Linear SVC\n", + "\n", + "- Se isso não funcionar, como temos dados numéricos\n", + "\n", + " - Podemos tentar um ✨ KNeighbors Classifier\n", + "\n", + " - Se isso não funcionar, tentar ✨ SVC e ✨ Ensemble Classifiers\n", + "\n", + "Este é um caminho muito útil para seguir. Agora, vamos direto ao assunto utilizando o framework de modelagem [tidymodels](https://www.tidymodels.org/): uma coleção consistente e flexível de pacotes R desenvolvidos para incentivar boas práticas estatísticas 😊.\n", + "\n", + "## 2. Dividir os dados e lidar com conjuntos de dados desequilibrados.\n", + "\n", + "Nas nossas lições anteriores, aprendemos que havia um conjunto de ingredientes comuns entre as nossas cozinhas. Além disso, havia uma distribuição bastante desigual no número de cozinhas.\n", + "\n", + "Vamos lidar com isso da seguinte forma:\n", + "\n", + "- Eliminando os ingredientes mais comuns que criam confusão entre cozinhas distintas, usando `dplyr::select()`.\n", + "\n", + "- Utilizando uma `recipe` que pré-processa os dados para prepará-los para a modelagem, aplicando um algoritmo de `over-sampling`.\n", + "\n", + "Já vimos isso na lição anterior, então deve ser tranquilo 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### Lidar com dados desequilibrados\n", + "\n", + "Dados desequilibrados frequentemente têm efeitos negativos no desempenho do modelo. Muitos modelos funcionam melhor quando o número de observações é igual e, por isso, tendem a ter dificuldades com dados desequilibrados.\n", + "\n", + "Existem principalmente duas formas de lidar com conjuntos de dados desequilibrados:\n", + "\n", + "- adicionar observações à classe minoritária: `Over-sampling`, por exemplo, utilizando um algoritmo SMOTE que gera novos exemplos sintéticos da classe minoritária com base nos vizinhos mais próximos desses casos.\n", + "\n", + "- remover observações da classe majoritária: `Under-sampling`\n", + "\n", + "Na nossa lição anterior, demonstrámos como lidar com conjuntos de dados desequilibrados utilizando uma `recipe`. Uma recipe pode ser vista como um plano que descreve quais passos devem ser aplicados a um conjunto de dados para prepará-lo para análise. No nosso caso, queremos ter uma distribuição igual no número de nossas cozinhas para o nosso `training set`. Vamos começar!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "Agora estamos prontos para treinar modelos 👩‍💻👨‍💻!\n", + "\n", + "## 3. Para além dos modelos de regressão multinomial\n", + "\n", + "Na nossa lição anterior, analisámos os modelos de regressão multinomial. Vamos explorar alguns modelos mais flexíveis para classificação.\n", + "\n", + "### Máquinas de Vetores de Suporte\n", + "\n", + "No contexto de classificação, `Máquinas de Vetores de Suporte` são uma técnica de aprendizagem automática que tenta encontrar um *hiperplano* que \"melhor\" separa as classes. Vamos observar um exemplo simples:\n", + "\n", + "

\n", + " \n", + "

https://commons.wikimedia.org/w/index.php?curid=22877598
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ não separa as classes. H2~ separa, mas apenas com uma margem pequena. H3~ separa-as com a margem máxima.\n", + "\n", + "#### Classificador Linear de Vetores de Suporte\n", + "\n", + "O clustering de Vetores de Suporte (SVC) é uma técnica derivada da família de máquinas de Vetores de Suporte (SVM) em Aprendizagem Automática. No SVC, o hiperplano é escolhido para separar corretamente `a maioria` das observações de treino, mas `pode classificar incorretamente` algumas observações. Ao permitir que alguns pontos fiquem do lado errado, o SVM torna-se mais robusto a outliers, proporcionando assim uma melhor generalização para novos dados. O parâmetro que regula esta violação é chamado de `cost`, que tem um valor padrão de 1 (consulte `help(\"svm_poly\")`).\n", + "\n", + "Vamos criar um SVC linear definindo `degree = 1` num modelo SVM polinomial.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "Agora que capturámos os passos de pré-processamento e a especificação do modelo num *workflow*, podemos avançar e treinar o SVC linear, avaliando os resultados ao mesmo tempo. Para métricas de desempenho, vamos criar um conjunto de métricas que avalie: `accuracy`, `sensitivity`, `Positive Predicted Value` e `F Measure`.\n", + "\n", + "> `augment()` irá adicionar coluna(s) com as previsões aos dados fornecidos.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### Máquina de Vetores de Suporte\n", + "\n", + "A máquina de vetores de suporte (SVM) é uma extensão do classificador de vetores de suporte para acomodar uma fronteira não linear entre as classes. Essencialmente, as SVMs utilizam o *truque do kernel* para ampliar o espaço de características e assim se adaptar a relações não lineares entre as classes. Uma função kernel popular e extremamente flexível usada pelas SVMs é a *função de base radial.* Vamos ver como ela se comporta com os nossos dados.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "Muito melhor 🤩!\n", + "\n", + "> ✅ Por favor veja:\n", + ">\n", + "> - [*Support Vector Machines*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning with R\n", + ">\n", + "> - [*Support Vector Machines*](https://www.statlearning.com/), An Introduction to Statistical Learning with Applications in R\n", + ">\n", + "> para leitura adicional.\n", + "\n", + "### Classificadores de Vizinhos Mais Próximos\n", + "\n", + "O algoritmo *K*-nearest neighbor (KNN) prevê cada observação com base na sua *semelhança* com outras observações.\n", + "\n", + "Vamos ajustar um ao nosso conjunto de dados.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "Parece que este modelo não está a ter um desempenho muito bom. Provavelmente, alterar os argumentos do modelo (ver `help(\"nearest_neighbor\")`) irá melhorar o desempenho do modelo. Certifique-se de experimentar.\n", + "\n", + "> ✅ Por favor veja:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> para aprender mais sobre classificadores *K*-Nearest Neighbors.\n", + "\n", + "### Classificadores em ensemble\n", + "\n", + "Os algoritmos de ensemble funcionam combinando múltiplos estimadores base para produzir um modelo otimizado, seja através de:\n", + "\n", + "`bagging`: aplicação de uma *função de média* a uma coleção de modelos base\n", + "\n", + "`boosting`: construção de uma sequência de modelos que se complementam para melhorar o desempenho preditivo.\n", + "\n", + "Vamos começar por experimentar um modelo Random Forest, que constrói uma grande coleção de árvores de decisão e depois aplica uma função de média para obter um modelo geral melhor.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "Bom trabalho 👏!\n", + "\n", + "Vamos também experimentar com um modelo de Árvore Reforçada.\n", + "\n", + "Árvore Reforçada define um método de conjunto que cria uma série de árvores de decisão sequenciais, onde cada árvore depende dos resultados das árvores anteriores, numa tentativa de reduzir o erro de forma incremental. Este método foca-se nos pesos dos itens classificados incorretamente e ajusta o modelo do próximo classificador para corrigir.\n", + "\n", + "Existem diferentes formas de ajustar este modelo (veja `help(\"boost_tree\")`). Neste exemplo, vamos ajustar Árvores Reforçadas através do motor `xgboost`.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ Por favor veja:\n", + ">\n", + "> - [Machine Learning for Social Scientists](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - Explora o modelo AdaBoost, que é uma boa alternativa ao xgboost.\n", + ">\n", + "> para aprender mais sobre classificadores Ensemble.\n", + "\n", + "## 4. Extra - comparando múltiplos modelos\n", + "\n", + "Testámos vários modelos neste laboratório 🙌. Pode tornar-se cansativo ou trabalhoso criar muitos fluxos de trabalho a partir de diferentes conjuntos de pré-processadores e/ou especificações de modelos e depois calcular as métricas de desempenho uma a uma.\n", + "\n", + "Vamos ver se conseguimos resolver isso criando uma função que ajusta uma lista de fluxos de trabalho no conjunto de treino e depois retorna as métricas de desempenho com base no conjunto de teste. Vamos usar `map()` e `map_dfr()` do pacote [purrr](https://purrr.tidyverse.org/) para aplicar funções a cada elemento de uma lista.\n", + "\n", + "> As funções [`map()`](https://purrr.tidyverse.org/reference/map.html) permitem substituir muitos ciclos \"for\" por código que é mais conciso e mais fácil de ler. O melhor lugar para aprender sobre as funções [`map()`](https://purrr.tidyverse.org/reference/map.html) é o [capítulo de iteração](http://r4ds.had.co.nz/iteration.html) em R for Data Science.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "O pacote [**workflowset**](https://workflowsets.tidymodels.org/) permite aos utilizadores criar e ajustar facilmente um grande número de modelos, mas foi principalmente concebido para funcionar com técnicas de reamostragem, como a `validação cruzada`, uma abordagem que ainda iremos abordar.\n", + "\n", + "## **🚀Desafio**\n", + "\n", + "Cada uma destas técnicas tem um grande número de parâmetros que podem ser ajustados, como por exemplo `cost` em SVMs, `neighbors` em KNN, `mtry` (Preditores Selecionados Aleatoriamente) em Random Forest.\n", + "\n", + "Pesquise os parâmetros padrão de cada técnica e reflita sobre o que ajustar esses parâmetros significaria para a qualidade do modelo.\n", + "\n", + "Para saber mais sobre um modelo específico e os seus parâmetros, utilize: `help(\"model\")`, por exemplo, `help(\"rand_forest\")`.\n", + "\n", + "> Na prática, geralmente *estimamos* os *melhores valores* para estes parâmetros treinando vários modelos num `conjunto de dados simulado` e medindo o desempenho de todos esses modelos. Este processo é chamado de **otimização**.\n", + "\n", + "### [**Questionário pós-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **Revisão & Estudo Individual**\n", + "\n", + "Há muito jargão nestas lições, por isso reserve um momento para rever [esta lista](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) de terminologia útil!\n", + "\n", + "#### AGRADECIMENTOS A:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontre mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) e [Jen Looper](https://www.twitter.com/jenlooper) por criarem a versão original deste módulo em Python ♥️\n", + "\n", + "Boas aprendizagens,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Embaixador Estudante Gold da Microsoft Learn.\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..128e376a1 --- /dev/null +++ b/translations/pt-PT/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Experimente diferentes classificadores\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-03T20:27:39+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/4-Applied/README.md b/translations/pt-PT/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..58f973d19 --- /dev/null +++ b/translations/pt-PT/4-Classification/4-Applied/README.md @@ -0,0 +1,320 @@ +# Construir uma Aplicação Web de Recomendação de Culinária + +Nesta lição, vais construir um modelo de classificação utilizando algumas das técnicas que aprendeste em lições anteriores e com o delicioso conjunto de dados de culinária usado ao longo desta série. Além disso, vais criar uma pequena aplicação web para usar um modelo guardado, aproveitando o runtime web do Onnx. + +Uma das utilizações mais práticas da aprendizagem automática é a construção de sistemas de recomendação, e hoje podes dar o primeiro passo nessa direção! + +[![Apresentando esta aplicação web](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "ML Aplicada") + +> 🎥 Clica na imagem acima para ver um vídeo: Jen Looper constrói uma aplicação web usando dados de culinária classificados + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +Nesta lição vais aprender: + +- Como construir um modelo e guardá-lo como um modelo Onnx +- Como usar o Netron para inspecionar o modelo +- Como usar o teu modelo numa aplicação web para inferência + +## Construir o teu modelo + +Construir sistemas de ML aplicados é uma parte importante para aproveitar estas tecnologias nos sistemas empresariais. Podes usar modelos dentro das tuas aplicações web (e assim utilizá-los num contexto offline, se necessário) ao usar Onnx. + +Numa [lição anterior](../../3-Web-App/1-Web-App/README.md), construíste um modelo de regressão sobre avistamentos de OVNIs, "pickled" o modelo e usaste-o numa aplicação Flask. Embora esta arquitetura seja muito útil, trata-se de uma aplicação Python full-stack, e os teus requisitos podem incluir o uso de uma aplicação JavaScript. + +Nesta lição, podes construir um sistema básico baseado em JavaScript para inferência. Primeiro, no entanto, precisas de treinar um modelo e convertê-lo para uso com Onnx. + +## Exercício - treinar modelo de classificação + +Primeiro, treina um modelo de classificação usando o conjunto de dados de culinária limpo que utilizámos. + +1. Começa por importar bibliotecas úteis: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + Vais precisar de '[skl2onnx](https://onnx.ai/sklearn-onnx/)' para ajudar a converter o teu modelo Scikit-learn para o formato Onnx. + +1. Depois, trabalha com os teus dados da mesma forma que fizeste em lições anteriores, lendo um ficheiro CSV usando `read_csv()`: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. Remove as duas primeiras colunas desnecessárias e guarda os dados restantes como 'X': + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. Guarda os rótulos como 'y': + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### Iniciar a rotina de treino + +Vamos usar a biblioteca 'SVC', que tem boa precisão. + +1. Importa as bibliotecas apropriadas do Scikit-learn: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. Separa os conjuntos de treino e teste: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. Constrói um modelo de classificação SVC como fizeste na lição anterior: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. Agora, testa o teu modelo, chamando `predict()`: + + ```python + y_pred = model.predict(X_test) + ``` + +1. Imprime um relatório de classificação para verificar a qualidade do modelo: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + Como vimos antes, a precisão é boa: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### Converter o teu modelo para Onnx + +Certifica-te de fazer a conversão com o número correto de tensores. Este conjunto de dados tem 380 ingredientes listados, por isso precisas de indicar esse número em `FloatTensorType`: + +1. Converte usando um número de tensor de 380. + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. Cria o ficheiro onx e guarda-o como **model.onnx**: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > Nota, podes passar [opções](https://onnx.ai/sklearn-onnx/parameterized.html) no teu script de conversão. Neste caso, passámos 'nocl' como True e 'zipmap' como False. Como este é um modelo de classificação, tens a opção de remover ZipMap, que produz uma lista de dicionários (não necessário). `nocl` refere-se à inclusão de informações de classe no modelo. Reduz o tamanho do teu modelo ao definir `nocl` como 'True'. + +Executar o notebook completo agora irá construir um modelo Onnx e guardá-lo nesta pasta. + +## Visualizar o teu modelo + +Os modelos Onnx não são muito visíveis no Visual Studio Code, mas há um software gratuito muito bom que muitos investigadores utilizam para visualizar o modelo e garantir que foi construído corretamente. Faz o download do [Netron](https://github.com/lutzroeder/Netron) e abre o ficheiro model.onnx. Podes ver o teu modelo simples visualizado, com os seus 380 inputs e o classificador listado: + +![Visualização Netron](../../../../4-Classification/4-Applied/images/netron.png) + +Netron é uma ferramenta útil para visualizar os teus modelos. + +Agora estás pronto para usar este modelo interessante numa aplicação web. Vamos construir uma aplicação que será útil quando olhares para o teu frigorífico e tentares descobrir qual combinação de ingredientes sobrantes podes usar para cozinhar um prato específico, conforme determinado pelo teu modelo. + +## Construir uma aplicação web de recomendação + +Podes usar o teu modelo diretamente numa aplicação web. Esta arquitetura também permite que o modelo seja executado localmente e até offline, se necessário. Começa por criar um ficheiro `index.html` na mesma pasta onde guardaste o teu ficheiro `model.onnx`. + +1. Neste ficheiro _index.html_, adiciona a seguinte marcação: + + ```html + + +
+ Cuisine Matcher +
+ + ... + + + ``` + +1. Agora, dentro das tags `body`, adiciona uma pequena marcação para mostrar uma lista de caixas de seleção que refletem alguns ingredientes: + + ```html +

Check your refrigerator. What can you create?

+
+
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+
+
+ +
+ ``` + + Repara que cada caixa de seleção tem um valor. Este valor reflete o índice onde o ingrediente é encontrado de acordo com o conjunto de dados. A maçã, por exemplo, nesta lista alfabética, ocupa a quinta coluna, por isso o seu valor é '4', já que começamos a contar a partir de 0. Podes consultar a [folha de cálculo de ingredientes](../../../../4-Classification/data/ingredient_indexes.csv) para descobrir o índice de um determinado ingrediente. + + Continuando o teu trabalho no ficheiro index.html, adiciona um bloco de script onde o modelo é chamado após o último ``. + +1. Primeiro, importa o [Onnx Runtime](https://www.onnxruntime.ai/): + + ```html + + ``` + + > O Onnx Runtime é usado para permitir a execução dos teus modelos Onnx em uma ampla gama de plataformas de hardware, incluindo otimizações e uma API para uso. + +1. Uma vez que o Runtime esteja em funcionamento, podes chamá-lo: + + ```html + + ``` + +Neste código, várias coisas estão a acontecer: + +1. Criaste um array de 380 valores possíveis (1 ou 0) para serem definidos e enviados ao modelo para inferência, dependendo de se uma caixa de seleção de ingrediente está marcada. +2. Criaste um array de caixas de seleção e uma forma de determinar se foram marcadas numa função `init` que é chamada quando a aplicação começa. Quando uma caixa de seleção é marcada, o array `ingredients` é alterado para refletir o ingrediente escolhido. +3. Criaste uma função `testCheckboxes` que verifica se alguma caixa de seleção foi marcada. +4. Usas a função `startInference` quando o botão é pressionado e, se alguma caixa de seleção estiver marcada, inicias a inferência. +5. A rotina de inferência inclui: + 1. Configurar um carregamento assíncrono do modelo + 2. Criar uma estrutura Tensor para enviar ao modelo + 3. Criar 'feeds' que refletem o input `float_input` que criaste ao treinar o teu modelo (podes usar o Netron para verificar esse nome) + 4. Enviar esses 'feeds' ao modelo e aguardar uma resposta + +## Testar a tua aplicação + +Abre uma sessão de terminal no Visual Studio Code na pasta onde o teu ficheiro index.html está localizado. Certifica-te de que tens [http-server](https://www.npmjs.com/package/http-server) instalado globalmente e escreve `http-server` no prompt. Um localhost deve abrir e podes visualizar a tua aplicação web. Verifica qual culinária é recomendada com base em vários ingredientes: + +![Aplicação web de ingredientes](../../../../4-Classification/4-Applied/images/web-app.png) + +Parabéns, criaste uma aplicação web de 'recomendação' com alguns campos. Dedica algum tempo a expandir este sistema! + +## 🚀Desafio + +A tua aplicação web é muito minimalista, por isso continua a expandi-la usando ingredientes e os seus índices a partir dos dados [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv). Quais combinações de sabores funcionam para criar um prato nacional específico? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Embora esta lição tenha apenas tocado na utilidade de criar um sistema de recomendação para ingredientes alimentares, esta área de aplicações de ML é muito rica em exemplos. Lê mais sobre como estes sistemas são construídos: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## Tarefa + +[Constrói um novo sistema de recomendação](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/4-Applied/assignment.md b/translations/pt-PT/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..7f2f0f2cd --- /dev/null +++ b/translations/pt-PT/4-Classification/4-Applied/assignment.md @@ -0,0 +1,16 @@ +# Construir um recomendador + +## Instruções + +Com base nos exercícios desta lição, agora sabe como criar uma aplicação web em JavaScript utilizando Onnx Runtime e um modelo Onnx convertido. Experimente criar um novo recomendador usando dados destas lições ou obtidos de outras fontes (dê crédito, por favor). Pode criar, por exemplo, um recomendador de animais de estimação com base em vários atributos de personalidade, ou um recomendador de géneros musicais baseado no estado de espírito de uma pessoa. Seja criativo! + +## Critérios de Avaliação + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | --------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | Uma aplicação web e um notebook são apresentados, ambos bem documentados e funcionais | Um dos dois está em falta ou apresenta falhas | Ambos estão em falta ou apresentam falhas | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/4-Applied/notebook.ipynb b/translations/pt-PT/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..6793b8da2 --- /dev/null +++ b/translations/pt-PT/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-03T20:26:34+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/4-Applied/solution/notebook.ipynb b/translations/pt-PT/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..987be9d86 --- /dev/null +++ b/translations/pt-PT/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-03T20:26:56+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
cuisine
0indian
1indian
2indian
3indian
4indian
\n
" + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/4-Classification/README.md b/translations/pt-PT/4-Classification/README.md new file mode 100644 index 000000000..c7025da76 --- /dev/null +++ b/translations/pt-PT/4-Classification/README.md @@ -0,0 +1,32 @@ +# Introdução à classificação + +## Tema regional: Deliciosas culinárias asiáticas e indianas 🍜 + +Na Ásia e na Índia, as tradições culinárias são extremamente diversas e muito deliciosas! Vamos analisar dados sobre culinárias regionais para tentar entender os seus ingredientes. + +![Vendedor de comida tailandesa](../../../translated_images/pt-PT/thai-food.c47a7a7f9f05c218.webp) +> Foto por Lisheng Chang no Unsplash + +## O que irá aprender + +Nesta seção, irá aprofundar o seu estudo sobre Regressão e aprender sobre outros classificadores que pode usar para compreender melhor os dados. + +> Existem ferramentas úteis de baixo código que podem ajudá-lo a aprender a trabalhar com modelos de classificação. Experimente [Azure ML para esta tarefa](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Lições + +1. [Introdução à classificação](1-Introduction/README.md) +2. [Mais classificadores](2-Classifiers-1/README.md) +3. [Outros classificadores](3-Classifiers-2/README.md) +4. [ML aplicado: criar uma aplicação web](4-Applied/README.md) + +## Créditos + +"Introdução à classificação" foi escrito com ♥️ por [Cassie Breviu](https://www.twitter.com/cassiebreviu) e [Jen Looper](https://www.twitter.com/jenlooper) + +O conjunto de dados sobre deliciosas culinárias foi obtido de [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines). + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/README.md b/translations/pt-PT/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..03c45dc7e --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/README.md @@ -0,0 +1,338 @@ +# Introdução à Clustering + +Clustering é um tipo de [Aprendizagem Não Supervisionada](https://wikipedia.org/wiki/Unsupervised_learning) que parte do pressuposto de que um conjunto de dados não está rotulado ou que suas entradas não estão associadas a saídas predefinidas. Ele utiliza vários algoritmos para organizar dados não rotulados e fornecer agrupamentos com base nos padrões identificados nos dados. + +[![No One Like You by PSquare](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "No One Like You by PSquare") + +> 🎥 Clique na imagem acima para assistir a um vídeo. Enquanto estuda machine learning com clustering, aproveite algumas faixas de Dance Hall nigeriano - esta é uma música muito bem avaliada de 2014 por PSquare. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +### Introdução + +[Clustering](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) é muito útil para exploração de dados. Vamos ver se ele pode ajudar a descobrir tendências e padrões na forma como o público nigeriano consome música. + +✅ Reserve um momento para pensar sobre os usos do clustering. Na vida real, clustering acontece sempre que você tem uma pilha de roupa suja e precisa separar as roupas dos membros da sua família 🧦👕👖🩲. Em ciência de dados, clustering ocorre ao tentar analisar as preferências de um usuário ou determinar as características de qualquer conjunto de dados não rotulado. Clustering, de certa forma, ajuda a dar sentido ao caos, como uma gaveta de meias. + +[![Introdução ao ML](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "Introdução ao Clustering") + +> 🎥 Clique na imagem acima para assistir a um vídeo: John Guttag do MIT apresenta clustering. + +No ambiente profissional, clustering pode ser usado para determinar coisas como segmentação de mercado, identificando quais faixas etárias compram quais itens, por exemplo. Outro uso seria a detecção de anomalias, talvez para identificar fraudes em um conjunto de dados de transações com cartão de crédito. Ou você pode usar clustering para identificar tumores em um lote de exames médicos. + +✅ Pense por um momento sobre como você pode ter encontrado clustering 'na prática', em um ambiente bancário, de e-commerce ou empresarial. + +> 🎓 Curiosamente, a análise de clusters teve origem nos campos de Antropologia e Psicologia na década de 1930. Consegue imaginar como ela pode ter sido usada? + +Alternativamente, você poderia usá-lo para agrupar resultados de pesquisa - por links de compras, imagens ou avaliações, por exemplo. Clustering é útil quando você tem um grande conjunto de dados que deseja reduzir e sobre o qual deseja realizar uma análise mais detalhada, então a técnica pode ser usada para aprender sobre os dados antes de construir outros modelos. + +✅ Uma vez que seus dados estão organizados em clusters, você atribui a eles um Id de cluster, e essa técnica pode ser útil para preservar a privacidade de um conjunto de dados; você pode, em vez disso, referir-se a um ponto de dados pelo seu Id de cluster, em vez de por dados identificáveis mais reveladores. Consegue pensar em outros motivos pelos quais você preferiria usar um Id de cluster em vez de outros elementos do cluster para identificá-lo? + +Aprofunde seu entendimento sobre técnicas de clustering neste [módulo de aprendizado](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott). + +## Começando com clustering + +[Scikit-learn oferece uma ampla gama](https://scikit-learn.org/stable/modules/clustering.html) de métodos para realizar clustering. O tipo que você escolhe dependerá do seu caso de uso. De acordo com a documentação, cada método tem vários benefícios. Aqui está uma tabela simplificada dos métodos suportados pelo Scikit-learn e seus casos de uso apropriados: + +| Nome do método | Caso de uso | +| :---------------------------- | :-------------------------------------------------------------------- | +| K-Means | propósito geral, indutivo | +| Propagação de afinidade | muitos clusters desiguais, indutivo | +| Mean-shift | muitos clusters desiguais, indutivo | +| Clustering espectral | poucos clusters iguais, transdutivo | +| Clustering hierárquico Ward | muitos clusters restritos, transdutivo | +| Clustering aglomerativo | muitos clusters restritos, distâncias não euclidianas, transdutivo | +| DBSCAN | geometria não plana, clusters desiguais, transdutivo | +| OPTICS | geometria não plana, clusters desiguais com densidade variável, transdutivo | +| Misturas Gaussianas | geometria plana, indutivo | +| BIRCH | grande conjunto de dados com outliers, indutivo | + +> 🎓 Como criamos clusters tem muito a ver com como agrupamos os pontos de dados. Vamos explorar alguns vocabulários: +> +> 🎓 ['Transdutivo' vs. 'indutivo'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> Inferência transdutiva é derivada de casos de treinamento observados que mapeiam para casos de teste específicos. Inferência indutiva é derivada de casos de treinamento que mapeiam para regras gerais que só então são aplicadas aos casos de teste. +> +> Um exemplo: Imagine que você tem um conjunto de dados parcialmente rotulado. Algumas coisas são 'discos', outras 'CDs', e algumas estão em branco. Sua tarefa é fornecer rótulos para os itens em branco. Se você escolher uma abordagem indutiva, treinaria um modelo procurando por 'discos' e 'CDs', e aplicaria esses rótulos aos dados não rotulados. Essa abordagem terá dificuldade em classificar coisas que são, na verdade, 'cassetes'. Uma abordagem transdutiva, por outro lado, lida com esses dados desconhecidos de forma mais eficaz, agrupando itens semelhantes e aplicando um rótulo ao grupo. Nesse caso, os clusters podem refletir 'coisas musicais redondas' e 'coisas musicais quadradas'. +> +> 🎓 ['Geometria não plana' vs. 'plana'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> Derivado da terminologia matemática, geometria não plana vs. plana refere-se à medida de distâncias entre pontos por métodos geométricos 'planos' ([Euclidianos](https://wikipedia.org/wiki/Euclidean_geometry)) ou 'não planos' (não Euclidianos). +> +>'Plana' neste contexto refere-se à geometria Euclidiana (partes da qual são ensinadas como 'geometria plana'), e não plana refere-se à geometria não Euclidiana. O que a geometria tem a ver com machine learning? Bem, como dois campos que têm raízes na matemática, deve haver uma maneira comum de medir distâncias entre pontos em clusters, e isso pode ser feito de forma 'plana' ou 'não plana', dependendo da natureza dos dados. [Distâncias Euclidianas](https://wikipedia.org/wiki/Euclidean_distance) são medidas como o comprimento de um segmento de linha entre dois pontos. [Distâncias não Euclidianas](https://wikipedia.org/wiki/Non-Euclidean_geometry) são medidas ao longo de uma curva. Se seus dados, visualizados, parecem não existir em um plano, você pode precisar usar um algoritmo especializado para lidar com isso. +> +![Infográfico Geometria Plana vs Não Plana](../../../../5-Clustering/1-Visualize/images/flat-nonflat.png) +> Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['Distâncias'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> Clusters são definidos por sua matriz de distâncias, ou seja, as distâncias entre pontos. Essa distância pode ser medida de algumas maneiras. Clusters Euclidianos são definidos pela média dos valores dos pontos e contêm um 'centroide' ou ponto central. As distâncias são, portanto, medidas pela distância até esse centroide. Distâncias não Euclidianas referem-se a 'clustroids', o ponto mais próximo de outros pontos. Clustroids, por sua vez, podem ser definidos de várias maneiras. +> +> 🎓 ['Restrito'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [Clustering Restrito](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduz aprendizado 'semi-supervisionado' neste método não supervisionado. As relações entre pontos são marcadas como 'não pode vincular' ou 'deve vincular', então algumas regras são impostas ao conjunto de dados. +> +> Um exemplo: Se um algoritmo é liberado em um lote de dados não rotulados ou semi-rotulados, os clusters que ele produz podem ser de baixa qualidade. No exemplo acima, os clusters podem agrupar 'coisas musicais redondas', 'coisas musicais quadradas', 'coisas triangulares' e 'biscoitos'. Se forem dadas algumas restrições ou regras para seguir ("o item deve ser feito de plástico", "o item precisa ser capaz de produzir música"), isso pode ajudar a 'restringir' o algoritmo para fazer escolhas melhores. +> +> 🎓 'Densidade' +> +> Dados que são 'ruidosos' são considerados 'densos'. As distâncias entre pontos em cada um de seus clusters podem, ao serem examinadas, provar ser mais ou menos densas, ou 'aglomeradas', e assim esses dados precisam ser analisados com o método de clustering apropriado. [Este artigo](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) demonstra a diferença entre usar clustering K-Means vs. algoritmos HDBSCAN para explorar um conjunto de dados ruidoso com densidade de cluster desigual. + +## Algoritmos de clustering + +Existem mais de 100 algoritmos de clustering, e seu uso depende da natureza dos dados em questão. Vamos discutir alguns dos principais: + +- **Clustering hierárquico**. Se um objeto é classificado por sua proximidade a um objeto próximo, em vez de a um mais distante, os clusters são formados com base na distância de seus membros para outros objetos. O clustering aglomerativo do Scikit-learn é hierárquico. + + ![Infográfico Clustering Hierárquico](../../../../5-Clustering/1-Visualize/images/hierarchical.png) + > Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Clustering por centroide**. Este algoritmo popular exige a escolha de 'k', ou o número de clusters a serem formados, após o qual o algoritmo determina o ponto central de um cluster e reúne dados ao redor desse ponto. [Clustering K-means](https://wikipedia.org/wiki/K-means_clustering) é uma versão popular de clustering por centroide. O centro é determinado pela média mais próxima, daí o nome. A distância quadrada do cluster é minimizada. + + ![Infográfico Clustering por Centroide](../../../../5-Clustering/1-Visualize/images/centroid.png) + > Infográfico por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Clustering baseado em distribuição**. Baseado em modelagem estatística, clustering baseado em distribuição centra-se em determinar a probabilidade de um ponto de dados pertencer a um cluster e atribuí-lo de acordo. Métodos de mistura Gaussianas pertencem a este tipo. + +- **Clustering baseado em densidade**. Pontos de dados são atribuídos a clusters com base em sua densidade, ou seu agrupamento ao redor uns dos outros. Pontos de dados distantes do grupo são considerados outliers ou ruídos. DBSCAN, Mean-shift e OPTICS pertencem a este tipo de clustering. + +- **Clustering baseado em grade**. Para conjuntos de dados multidimensionais, uma grade é criada e os dados são divididos entre as células da grade, criando assim clusters. + +## Exercício - agrupe seus dados + +Clustering como técnica é muito auxiliado por uma boa visualização, então vamos começar visualizando nossos dados musicais. Este exercício nos ajudará a decidir qual dos métodos de clustering devemos usar de forma mais eficaz para a natureza desses dados. + +1. Abra o arquivo [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) nesta pasta. + +1. Importe o pacote `Seaborn` para uma boa visualização de dados. + + ```python + !pip install seaborn + ``` + +1. Adicione os dados das músicas do arquivo [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv). Carregue um dataframe com alguns dados sobre as músicas. Prepare-se para explorar esses dados importando as bibliotecas e exibindo os dados: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + Verifique as primeiras linhas de dados: + + | | nome | álbum | artista | género_principal_artista | data_lançamento | duração | popularidade | dançabilidade | acústica | energia | instrumentalidade | vivacidade | volume | discurso | tempo | assinatura_tempo | + | --- | ------------------------ | ---------------------------- | ------------------- | ------------------------- | ---------------- | ------- | ------------ | ------------- | -------- | ------- | ------------------ | ---------- | -------- | ---------- | ------- | ---------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | r&b alternativo | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. Obtenha algumas informações sobre o dataframe, chamando `info()`: + + ```python + df.info() + ``` + + O resultado será semelhante a: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. Verifique novamente se há valores nulos, chamando `isnull()` e verificando se a soma é 0: + + ```python + df.isnull().sum() + ``` + + Tudo certo: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. Descreva os dados: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 Se estamos a trabalhar com clustering, um método não supervisionado que não requer dados rotulados, por que estamos a mostrar estes dados com rótulos? Na fase de exploração de dados, eles são úteis, mas não são necessários para os algoritmos de clustering funcionarem. Poderíamos simplesmente remover os cabeçalhos das colunas e referir-nos aos dados pelo número da coluna. + +Observe os valores gerais dos dados. Note que a popularidade pode ser '0', o que indica músicas que não têm classificação. Vamos remover esses valores em breve. + +1. Use um gráfico de barras para descobrir os géneros mais populares: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![most popular](../../../../5-Clustering/1-Visualize/images/popular.png) + +✅ Se quiser ver mais valores principais, altere o top `[:5]` para um valor maior ou remova-o para ver todos. + +Note que, quando o género principal é descrito como 'Missing', isso significa que o Spotify não o classificou, então vamos eliminá-lo. + +1. Elimine os dados ausentes filtrando-os: + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + Agora verifique novamente os géneros: + + ![most popular](../../../../5-Clustering/1-Visualize/images/all-genres.png) + +1. De longe, os três géneros principais dominam este conjunto de dados. Vamos concentrar-nos em `afro dancehall`, `afropop` e `nigerian pop`, e adicionalmente filtrar o conjunto de dados para remover qualquer valor de popularidade igual a 0 (o que significa que não foi classificado com uma popularidade no conjunto de dados e pode ser considerado ruído para os nossos propósitos): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. Faça um teste rápido para ver se os dados têm alguma correlação particularmente forte: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlations](../../../../5-Clustering/1-Visualize/images/correlation.png) + + A única correlação forte é entre `energy` e `loudness`, o que não é muito surpreendente, dado que música alta geralmente é bastante energética. Fora isso, as correlações são relativamente fracas. Será interessante ver o que um algoritmo de clustering pode fazer com estes dados. + + > 🎓 Note que correlação não implica causalidade! Temos prova de correlação, mas não prova de causalidade. Um [site divertido](https://tylervigen.com/spurious-correlations) tem alguns visuais que enfatizam este ponto. + +Há alguma convergência neste conjunto de dados em torno da popularidade percebida de uma música e sua capacidade de dança? Um FacetGrid mostra que há círculos concêntricos que se alinham, independentemente do género. Poderia ser que os gostos nigerianos convergem a um certo nível de capacidade de dança para este género? + +✅ Experimente diferentes pontos de dados (energia, loudness, speechiness) e mais ou diferentes géneros musicais. O que consegue descobrir? Veja a tabela `df.describe()` para observar a distribuição geral dos pontos de dados. + +### Exercício - distribuição de dados + +Estes três géneros são significativamente diferentes na perceção da sua capacidade de dança, com base na sua popularidade? + +1. Examine a distribuição de dados dos nossos três géneros principais para popularidade e capacidade de dança ao longo de um eixo x e y dado. + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + Pode descobrir círculos concêntricos em torno de um ponto geral de convergência, mostrando a distribuição dos pontos. + + > 🎓 Note que este exemplo usa um gráfico KDE (Kernel Density Estimate) que representa os dados usando uma curva de densidade de probabilidade contínua. Isso permite interpretar os dados ao trabalhar com múltiplas distribuições. + + Em geral, os três géneros alinham-se vagamente em termos de sua popularidade e capacidade de dança. Determinar clusters nestes dados vagamente alinhados será um desafio: + + ![distribution](../../../../5-Clustering/1-Visualize/images/distribution.png) + +1. Crie um gráfico de dispersão: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + Um gráfico de dispersão dos mesmos eixos mostra um padrão semelhante de convergência. + + ![Facetgrid](../../../../5-Clustering/1-Visualize/images/facetgrid.png) + +Em geral, para clustering, pode usar gráficos de dispersão para mostrar clusters de dados, por isso dominar este tipo de visualização é muito útil. Na próxima lição, vamos pegar neste conjunto de dados filtrado e usar clustering k-means para descobrir grupos nestes dados que parecem sobrepor-se de formas interessantes. + +--- + +## 🚀Desafio + +Em preparação para a próxima lição, crie um gráfico sobre os vários algoritmos de clustering que pode descobrir e usar num ambiente de produção. Que tipos de problemas o clustering está a tentar resolver? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Autoestudo + +Antes de aplicar algoritmos de clustering, como aprendemos, é uma boa ideia entender a natureza do seu conjunto de dados. Leia mais sobre este tópico [aqui](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[Este artigo útil](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) explica os diferentes comportamentos de vários algoritmos de clustering, dados diferentes formatos de dados. + +## Tarefa + +[Pesquise outras visualizações para clustering](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/assignment.md b/translations/pt-PT/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..35f685b77 --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,16 @@ +# Pesquisar outras visualizações para clustering + +## Instruções + +Nesta lição, trabalhou com algumas técnicas de visualização para compreender como representar os seus dados em preparação para o clustering. Os gráficos de dispersão, em particular, são úteis para identificar grupos de objetos. Pesquise diferentes formas e diferentes bibliotecas para criar gráficos de dispersão e documente o seu trabalho num notebook. Pode usar os dados desta lição, de outras lições ou dados que obtenha por conta própria (por favor, credite a sua fonte no notebook). Plote alguns dados utilizando gráficos de dispersão e explique o que descobriu. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | ------------------------------------------------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------- | +| | Um notebook é apresentado com cinco gráficos de dispersão bem documentados | Um notebook é apresentado com menos de cinco gráficos de dispersão e está menos bem documentado | Um notebook incompleto é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/notebook.ipynb b/translations/pt-PT/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..cef1df33b --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-03T20:01:45+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/pt-PT/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..b641c7263 --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/pt-PT/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..f23b0b9d3 --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **Música Nigeriana extraída do Spotify - uma análise**\n", + "\n", + "Clustering é um tipo de [Aprendizagem Não Supervisionada](https://wikipedia.org/wiki/Unsupervised_learning) que parte do pressuposto de que um conjunto de dados não está rotulado ou que suas entradas não estão associadas a saídas predefinidas. Ele utiliza vários algoritmos para analisar dados não rotulados e fornecer agrupamentos com base nos padrões identificados nos dados.\n", + "\n", + "[**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **Introdução**\n", + "\n", + "[Clustering](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) é muito útil para explorar dados. Vamos ver se ele pode ajudar a descobrir tendências e padrões no modo como o público nigeriano consome música.\n", + "\n", + "> ✅ Reserve um minuto para pensar sobre os usos do clustering. Na vida real, clustering acontece sempre que você tem uma pilha de roupa suja e precisa separar as roupas dos membros da sua família 🧦👕👖🩲. Na ciência de dados, clustering ocorre ao tentar analisar as preferências de um usuário ou determinar as características de qualquer conjunto de dados não rotulado. Clustering, de certa forma, ajuda a dar sentido ao caos, como uma gaveta de meias.\n", + "\n", + "No ambiente profissional, clustering pode ser usado para determinar coisas como segmentação de mercado, identificando quais faixas etárias compram determinados itens, por exemplo. Outro uso seria a detecção de anomalias, talvez para identificar fraudes em um conjunto de dados de transações com cartão de crédito. Ou você pode usar clustering para identificar tumores em um lote de exames médicos.\n", + "\n", + "✅ Pense por um momento sobre como você pode ter encontrado clustering 'na prática', em um contexto bancário, de e-commerce ou empresarial.\n", + "\n", + "> 🎓 Curiosamente, a análise de clusters teve origem nos campos de Antropologia e Psicologia na década de 1930. Consegue imaginar como ela pode ter sido utilizada?\n", + "\n", + "Alternativamente, você poderia usá-lo para agrupar resultados de pesquisa - por links de compras, imagens ou avaliações, por exemplo. Clustering é útil quando você tem um grande conjunto de dados que deseja reduzir e sobre o qual deseja realizar uma análise mais detalhada, então a técnica pode ser usada para aprender sobre os dados antes de construir outros modelos.\n", + "\n", + "✅ Uma vez que seus dados estejam organizados em clusters, você atribui a eles um Id de cluster, e essa técnica pode ser útil para preservar a privacidade de um conjunto de dados; você pode, em vez disso, referir-se a um ponto de dados pelo seu Id de cluster, em vez de por dados identificáveis mais reveladores. Consegue pensar em outros motivos pelos quais você preferiria usar um Id de cluster em vez de outros elementos do cluster para identificá-lo?\n", + "\n", + "### Começando com clustering\n", + "\n", + "> 🎓 A forma como criamos clusters tem muito a ver com a maneira como agrupamos os pontos de dados. Vamos explorar alguns termos:\n", + ">\n", + "> 🎓 ['Transdutivo' vs. 'indutivo'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> Inferência transdutiva é derivada de casos de treinamento observados que mapeiam para casos de teste específicos. Inferência indutiva é derivada de casos de treinamento que mapeiam para regras gerais que só então são aplicadas aos casos de teste.\n", + ">\n", + "> Um exemplo: Imagine que você tem um conjunto de dados parcialmente rotulado. Alguns itens são 'discos', outros 'CDs', e alguns estão em branco. Sua tarefa é fornecer rótulos para os itens em branco. Se você escolher uma abordagem indutiva, treinaria um modelo procurando por 'discos' e 'CDs' e aplicaria esses rótulos aos dados não rotulados. Essa abordagem teria dificuldade em classificar itens que na verdade são 'cassetes'. Uma abordagem transdutiva, por outro lado, lida com esses dados desconhecidos de forma mais eficaz, agrupando itens semelhantes e aplicando um rótulo ao grupo. Nesse caso, os clusters poderiam refletir 'coisas musicais redondas' e 'coisas musicais quadradas'.\n", + ">\n", + "> 🎓 ['Geometria plana' vs. 'não plana'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> Derivado da terminologia matemática, geometria plana vs. não plana refere-se à medida de distâncias entre pontos por métodos geométricos 'planos' ([Euclidianos](https://wikipedia.org/wiki/Euclidean_geometry)) ou 'não planos' (não Euclidianos).\n", + ">\n", + "> 'Plano' neste contexto refere-se à geometria Euclidiana (partes da qual são ensinadas como geometria 'plana'), e 'não plano' refere-se à geometria não Euclidiana. O que a geometria tem a ver com aprendizado de máquina? Bem, como dois campos que têm raízes na matemática, deve haver uma maneira comum de medir distâncias entre pontos em clusters, e isso pode ser feito de forma 'plana' ou 'não plana', dependendo da natureza dos dados. [Distâncias Euclidianas](https://wikipedia.org/wiki/Euclidean_distance) são medidas como o comprimento de um segmento de linha entre dois pontos. [Distâncias não Euclidianas](https://wikipedia.org/wiki/Non-Euclidean_geometry) são medidas ao longo de uma curva. Se seus dados, visualizados, parecem não existir em um plano, você pode precisar usar um algoritmo especializado para lidar com eles.\n", + "\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "\n", + "> 🎓 ['Distâncias'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> Clusters são definidos por sua matriz de distâncias, ou seja, as distâncias entre pontos. Essa distância pode ser medida de algumas maneiras. Clusters Euclidianos são definidos pela média dos valores dos pontos e contêm um 'centroide' ou ponto central. As distâncias são medidas pela distância até esse centroide. Distâncias não Euclidianas referem-se a 'clustroids', o ponto mais próximo de outros pontos. Clustroids, por sua vez, podem ser definidos de várias maneiras.\n", + ">\n", + "> 🎓 ['Com restrições'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [Clustering com restrições](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduz aprendizado 'semi-supervisionado' neste método não supervisionado. As relações entre pontos são marcadas como 'não pode vincular' ou 'deve vincular', então algumas regras são impostas ao conjunto de dados.\n", + ">\n", + "> Um exemplo: Se um algoritmo é liberado em um lote de dados não rotulados ou semi-rotulados, os clusters que ele produz podem ser de baixa qualidade. No exemplo acima, os clusters podem agrupar 'coisas musicais redondas', 'coisas musicais quadradas', 'coisas triangulares' e 'biscoitos'. Se forem dadas algumas restrições ou regras para seguir (\"o item deve ser feito de plástico\", \"o item precisa ser capaz de produzir música\"), isso pode ajudar a 'restringir' o algoritmo para fazer escolhas melhores.\n", + ">\n", + "> 🎓 'Densidade'\n", + ">\n", + "> Dados que são 'ruidosos' são considerados 'densos'. As distâncias entre pontos em cada um de seus clusters podem, ao serem examinadas, ser mais ou menos densas, ou 'aglomeradas', e assim esses dados precisam ser analisados com o método de clustering apropriado. [Este artigo](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) demonstra a diferença entre usar clustering K-Means e algoritmos HDBSCAN para explorar um conjunto de dados ruidoso com densidade de cluster desigual.\n", + "\n", + "Aprofunde seu entendimento sobre técnicas de clustering neste [módulo de aprendizado](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)\n", + "\n", + "### **Algoritmos de clustering**\n", + "\n", + "Existem mais de 100 algoritmos de clustering, e seu uso depende da natureza dos dados em questão. Vamos discutir alguns dos principais:\n", + "\n", + "- **Clustering hierárquico**. Se um objeto é classificado pela sua proximidade a um objeto próximo, em vez de um mais distante, os clusters são formados com base na distância entre seus membros. O clustering hierárquico é caracterizado pela combinação repetida de dois clusters.\n", + "\n", + "\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "\n", + "- **Clustering por centroide**. Este algoritmo popular requer a escolha de 'k', ou o número de clusters a serem formados, após o qual o algoritmo determina o ponto central de um cluster e reúne dados ao redor desse ponto. [Clustering K-means](https://wikipedia.org/wiki/K-means_clustering) é uma versão popular de clustering por centroide que separa um conjunto de dados em K grupos predefinidos. O centro é determinado pela média mais próxima, daí o nome. A distância quadrada do cluster é minimizada.\n", + "\n", + "

\n", + " \n", + "

Infográfico por Dasani Madipalli
\n", + "\n", + "\n", + "\n", + "- **Clustering baseado em distribuição**. Baseado em modelagem estatística, o clustering baseado em distribuição centra-se em determinar a probabilidade de um ponto de dados pertencer a um cluster e atribuí-lo de acordo. Métodos de mistura Gaussiana pertencem a este tipo.\n", + "\n", + "- **Clustering baseado em densidade**. Pontos de dados são atribuídos a clusters com base na sua densidade, ou no agrupamento ao redor uns dos outros. Pontos de dados distantes do grupo são considerados outliers ou ruído. DBSCAN, Mean-shift e OPTICS pertencem a este tipo de clustering.\n", + "\n", + "- **Clustering baseado em grade**. Para conjuntos de dados multidimensionais, uma grade é criada e os dados são divididos entre as células da grade, criando assim clusters.\n", + "\n", + "A melhor maneira de aprender sobre clustering é experimentá-lo você mesmo, e é isso que você fará neste exercício.\n", + "\n", + "Vamos precisar de alguns pacotes para concluir este módulo. Você pode instalá-los com: `install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "Alternativamente, o script abaixo verifica se você tem os pacotes necessários para completar este módulo e os instala para você caso algum esteja faltando.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Exercício - agrupe os seus dados\n", + "\n", + "O clustering como técnica é muito beneficiado por uma boa visualização, por isso vamos começar por visualizar os nossos dados de música. Este exercício vai ajudar-nos a decidir qual dos métodos de clustering devemos usar de forma mais eficaz, tendo em conta a natureza destes dados.\n", + "\n", + "Vamos começar rapidamente importando os dados.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Às vezes, podemos querer um pouco mais de informação sobre os nossos dados. Podemos observar os `dados` e a `sua estrutura` utilizando a função [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Bom trabalho!💪\n", + "\n", + "Podemos observar que `glimpse()` fornece o número total de linhas (observações) e colunas (variáveis), seguido pelas primeiras entradas de cada variável numa linha após o nome da variável. Além disso, o *tipo de dados* da variável é apresentado imediatamente após o nome da variável dentro de `< >`.\n", + "\n", + "`DataExplorer::introduce()` pode resumir esta informação de forma organizada:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Fantástico! Acabámos de descobrir que os nossos dados não têm valores em falta.\n", + "\n", + "Enquanto estamos nisto, podemos explorar estatísticas comuns de tendência central (por exemplo, [média](https://en.wikipedia.org/wiki/Arithmetic_mean) e [mediana](https://en.wikipedia.org/wiki/Median)) e medidas de dispersão (por exemplo, [desvio padrão](https://en.wikipedia.org/wiki/Standard_deviation)) utilizando `summarytools::descr()`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Vamos analisar os valores gerais dos dados. Note que a popularidade pode ser `0`, o que indica músicas que não têm classificação. Vamos removê-las em breve.\n", + "\n", + "> 🤔 Se estamos a trabalhar com clustering, um método não supervisionado que não requer dados rotulados, por que estamos a mostrar estes dados com rótulos? Na fase de exploração de dados, eles são úteis, mas não são necessários para que os algoritmos de clustering funcionem.\n", + "\n", + "### 1. Explorar géneros populares\n", + "\n", + "Vamos descobrir os géneros mais populares 🎶 contando o número de vezes que aparecem.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Isso correu bem! Dizem que uma imagem vale mais do que mil linhas de um data frame (na verdade, ninguém diz isso 😅). Mas percebes a ideia, certo?\n", + "\n", + "Uma forma de visualizar dados categóricos (variáveis de texto ou fatores) é utilizando gráficos de barras. Vamos criar um gráfico de barras com os 10 géneros principais:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Agora é muito mais fácil identificar que temos géneros `missing` 🧐!\n", + "\n", + "> Uma boa visualização irá mostrar-lhe coisas que não esperava ou levantar novas questões sobre os dados - Hadley Wickham e Garrett Grolemund, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "Nota: quando o género principal é descrito como `Missing`, isso significa que o Spotify não o classificou, por isso vamos eliminá-lo.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "A partir da pequena exploração de dados, aprendemos que os três géneros principais dominam este conjunto de dados. Vamos concentrar-nos em `afro dancehall`, `afropop` e `nigerian pop`, e adicionalmente filtrar o conjunto de dados para remover qualquer entrada com um valor de popularidade igual a 0 (o que significa que não foi classificada com uma popularidade no conjunto de dados e pode ser considerada ruído para os nossos propósitos):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Vamos verificar se existe alguma relação linear aparente entre as variáveis numéricas no nosso conjunto de dados. Esta relação é quantificada matematicamente pelo [estatístico de correlação](https://en.wikipedia.org/wiki/Correlation).\n", + "\n", + "O estatístico de correlação é um valor entre -1 e 1 que indica a força de uma relação. Valores acima de 0 indicam uma correlação *positiva* (valores altos de uma variável tendem a coincidir com valores altos da outra), enquanto valores abaixo de 0 indicam uma correlação *negativa* (valores altos de uma variável tendem a coincidir com valores baixos da outra).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Os dados não estão fortemente correlacionados, exceto entre `energy` e `loudness`, o que faz sentido, dado que música alta geralmente é bastante energética. `Popularity` tem uma correspondência com `release date`, o que também faz sentido, já que músicas mais recentes provavelmente são mais populares. Comprimento e energia parecem ter uma correlação também.\n", + "\n", + "Será interessante ver o que um algoritmo de clustering pode fazer com esses dados!\n", + "\n", + "> 🎓 Note que correlação não implica causalidade! Temos prova de correlação, mas nenhuma prova de causalidade. Um [site divertido](https://tylervigen.com/spurious-correlations) tem alguns visuais que enfatizam este ponto.\n", + "\n", + "### 2. Explorar a distribuição dos dados\n", + "\n", + "Vamos fazer perguntas mais subtis. Os géneros são significativamente diferentes na perceção da sua capacidade de dança, com base na sua popularidade? Vamos examinar a distribuição dos dados dos nossos três principais géneros em relação à popularidade e capacidade de dança ao longo de um eixo x e y usando [gráficos de densidade](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Observamos que há círculos concêntricos que se alinham, independentemente do género. Será que os gostos nigerianos convergem a um certo nível de dançabilidade para este género?\n", + "\n", + "De forma geral, os três géneros alinham-se em termos de popularidade e dançabilidade. Determinar agrupamentos nestes dados pouco alinhados será um desafio. Vamos ver se um gráfico de dispersão pode ajudar nisso.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Um gráfico de dispersão dos mesmos eixos mostra um padrão semelhante de convergência.\n", + "\n", + "De forma geral, para clustering, pode-se usar gráficos de dispersão para mostrar agrupamentos de dados, por isso dominar este tipo de visualização é muito útil. Na próxima lição, vamos pegar estes dados filtrados e usar o clustering k-means para descobrir grupos neste conjunto de dados que parecem se sobrepor de maneiras interessantes.\n", + "\n", + "## **🚀 Desafio**\n", + "\n", + "Em preparação para a próxima lição, crie um gráfico sobre os vários algoritmos de clustering que pode descobrir e usar num ambiente de produção. Que tipos de problemas o clustering está tentando resolver?\n", + "\n", + "## [**Questionário pós-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **Revisão e Estudo Individual**\n", + "\n", + "Antes de aplicar algoritmos de clustering, como aprendemos, é uma boa ideia entender a natureza do seu conjunto de dados. Leia mais sobre este tópico [aqui](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html).\n", + "\n", + "Aprofunde o seu entendimento sobre técnicas de clustering:\n", + "\n", + "- [Treinar e Avaliar Modelos de Clustering usando Tidymodels e amigos](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **Tarefa**\n", + "\n", + "[Investigue outras visualizações para clustering](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## AGRADECIMENTOS A:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) por criar a versão original em Python deste módulo ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) por criar as ilustrações incríveis que tornam os conceitos de machine learning mais interpretáveis e fáceis de entender.\n", + "\n", + "Boas aprendizagens,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-03T20:06:44+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/pt-PT/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..b71d3b46e --- /dev/null +++ b/translations/pt-PT/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,817 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n", + "
" + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obter informações sobre o dataframe\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Olhe para os valores gerais dos dados. Note que a popularidade pode ser '0' - e há muitas linhas com esse valor\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
\n", + "
" + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remover géneros 'Missing', pois não estão classificados no Spotify\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-03T20:02:34+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/README.md b/translations/pt-PT/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..f1ff13e64 --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/README.md @@ -0,0 +1,252 @@ +# K-Means clustering + +## [Pre-lecture quiz](https://ff-quizzes.netlify.app/en/ml/) + +Nesta lição, vais aprender a criar clusters utilizando Scikit-learn e o conjunto de dados de música nigeriana que importaste anteriormente. Vamos abordar os fundamentos do K-Means para Clustering. Lembra-te de que, como aprendeste na lição anterior, existem várias formas de trabalhar com clusters e o método que utilizas depende dos teus dados. Vamos experimentar o K-Means, pois é a técnica de clustering mais comum. Vamos começar! + +Termos que vais aprender: + +- Pontuação de Silhouette +- Método do cotovelo +- Inércia +- Variância + +## Introdução + +[K-Means Clustering](https://wikipedia.org/wiki/K-means_clustering) é um método derivado do domínio do processamento de sinais. É utilizado para dividir e agrupar conjuntos de dados em 'k' clusters utilizando uma série de observações. Cada observação trabalha para agrupar um determinado ponto de dados mais próximo do seu 'média' mais próxima, ou o ponto central de um cluster. + +Os clusters podem ser visualizados como [diagramas de Voronoi](https://wikipedia.org/wiki/Voronoi_diagram), que incluem um ponto (ou 'semente') e a sua região correspondente. + +![voronoi diagram](../../../../5-Clustering/2-K-Means/images/voronoi.png) + +> Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +O processo de clustering K-Means [executa-se em três etapas](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. O algoritmo seleciona um número k de pontos centrais ao amostrar do conjunto de dados. Depois disso, ele repete: + 1. Atribui cada amostra ao centróide mais próximo. + 2. Cria novos centróides ao calcular o valor médio de todas as amostras atribuídas aos centróides anteriores. + 3. Em seguida, calcula a diferença entre os novos e os antigos centróides e repete até que os centróides se estabilizem. + +Uma desvantagem do uso do K-Means é o facto de que precisas de estabelecer 'k', ou seja, o número de centróides. Felizmente, o 'método do cotovelo' ajuda a estimar um bom valor inicial para 'k'. Vais experimentá-lo em breve. + +## Pré-requisito + +Vais trabalhar no ficheiro [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) desta lição, que inclui a importação de dados e a limpeza preliminar que fizeste na última lição. + +## Exercício - preparação + +Começa por dar outra olhada nos dados das músicas. + +1. Cria um boxplot, chamando `boxplot()` para cada coluna: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + Estes dados são um pouco ruidosos: ao observar cada coluna como um boxplot, podes ver valores atípicos. + + ![outliers](../../../../5-Clustering/2-K-Means/images/boxplots.png) + +Poderias percorrer o conjunto de dados e remover esses valores atípicos, mas isso tornaria os dados bastante reduzidos. + +1. Por agora, escolhe quais colunas vais usar para o teu exercício de clustering. Escolhe aquelas com intervalos semelhantes e codifica a coluna `artist_top_genre` como dados numéricos: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. Agora precisas de escolher quantos clusters vais segmentar. Sabes que existem 3 géneros musicais que extraímos do conjunto de dados, então vamos tentar 3: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +Vês um array impresso com clusters previstos (0, 1 ou 2) para cada linha do dataframe. + +1. Usa este array para calcular uma 'pontuação de silhouette': + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## Pontuação de Silhouette + +Procura uma pontuação de silhouette mais próxima de 1. Esta pontuação varia de -1 a 1, e se a pontuação for 1, o cluster é denso e bem separado dos outros clusters. Um valor próximo de 0 representa clusters sobrepostos com amostras muito próximas da fronteira de decisão dos clusters vizinhos. [(Fonte)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +A nossa pontuação é **0.53**, ou seja, está no meio. Isso indica que os nossos dados não são particularmente adequados para este tipo de clustering, mas vamos continuar. + +### Exercício - construir um modelo + +1. Importa `KMeans` e inicia o processo de clustering. + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + Existem algumas partes aqui que merecem explicação. + + > 🎓 range: Estas são as iterações do processo de clustering. + + > 🎓 random_state: "Determina a geração de números aleatórios para a inicialização dos centróides." [Fonte](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: "soma dos quadrados dentro do cluster" mede a distância média quadrada de todos os pontos dentro de um cluster ao centróide do cluster. [Fonte](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce). + + > 🎓 Inércia: Os algoritmos K-Means tentam escolher centróides para minimizar a 'inércia', "uma medida de quão internamente coerentes são os clusters." [Fonte](https://scikit-learn.org/stable/modules/clustering.html). O valor é adicionado à variável wcss em cada iteração. + + > 🎓 k-means++: Em [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means), podes usar a otimização 'k-means++', que "inicializa os centróides para estarem (geralmente) distantes uns dos outros, levando a resultados provavelmente melhores do que a inicialização aleatória." + +### Método do cotovelo + +Anteriormente, deduziste que, como segmentaste 3 géneros musicais, deverias escolher 3 clusters. Mas será que é mesmo o caso? + +1. Usa o 'método do cotovelo' para ter certeza. + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + Usa a variável `wcss` que construíste no passo anterior para criar um gráfico que mostra onde está a 'curvatura' no cotovelo, indicando o número ótimo de clusters. Talvez seja mesmo **3**! + + ![elbow method](../../../../5-Clustering/2-K-Means/images/elbow.png) + +## Exercício - exibir os clusters + +1. Experimenta o processo novamente, desta vez definindo três clusters, e exibe os clusters como um scatterplot: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. Verifica a precisão do modelo: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + A precisão deste modelo não é muito boa, e a forma dos clusters dá-te uma pista do porquê. + + ![clusters](../../../../5-Clustering/2-K-Means/images/clusters.png) + + Estes dados são demasiado desequilibrados, pouco correlacionados e há demasiada variância entre os valores das colunas para formar bons clusters. Na verdade, os clusters que se formam provavelmente são fortemente influenciados ou enviesados pelas três categorias de géneros que definimos acima. Foi um processo de aprendizagem! + + Na documentação do Scikit-learn, podes ver que um modelo como este, com clusters não muito bem demarcados, tem um problema de 'variância': + + ![problem models](../../../../5-Clustering/2-K-Means/images/problems.png) + > Infográfico do Scikit-learn + +## Variância + +A variância é definida como "a média das diferenças quadradas em relação à média" [(Fonte)](https://www.mathsisfun.com/data/standard-deviation.html). No contexto deste problema de clustering, refere-se a dados em que os números do nosso conjunto tendem a divergir um pouco demais da média. + +✅ Este é um ótimo momento para pensar em todas as formas de corrigir este problema. Ajustar os dados um pouco mais? Usar colunas diferentes? Utilizar um algoritmo diferente? Dica: Experimenta [escalar os teus dados](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) para normalizá-los e testar outras colunas. + +> Experimenta este '[calculador de variância](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' para entender melhor o conceito. + +--- + +## 🚀Desafio + +Passa algum tempo com este notebook, ajustando os parâmetros. Consegues melhorar a precisão do modelo ao limpar mais os dados (removendo valores atípicos, por exemplo)? Podes usar pesos para dar mais importância a determinadas amostras de dados. O que mais podes fazer para criar melhores clusters? + +Dica: Experimenta escalar os teus dados. Há código comentado no notebook que adiciona escalonamento padrão para fazer com que as colunas de dados se assemelhem mais em termos de intervalo. Vais perceber que, embora a pontuação de silhouette diminua, a 'curvatura' no gráfico do cotovelo suaviza-se. Isso acontece porque deixar os dados sem escala permite que dados com menos variância tenham mais peso. Lê mais sobre este problema [aqui](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226). + +## [Post-lecture quiz](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Dá uma olhada num Simulador de K-Means [como este](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Podes usar esta ferramenta para visualizar pontos de dados de amostra e determinar os seus centróides. Podes editar a aleatoriedade dos dados, o número de clusters e o número de centróides. Isso ajuda-te a ter uma ideia de como os dados podem ser agrupados? + +Além disso, consulta [este documento sobre K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) da Stanford. + +## Tarefa + +[Experimenta diferentes métodos de clustering](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/assignment.md b/translations/pt-PT/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..43f5a452c --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,16 @@ +# Experimente diferentes métodos de clustering + +## Instruções + +Nesta lição, aprendeste sobre o clustering K-Means. Por vezes, o K-Means não é adequado para os teus dados. Cria um notebook utilizando dados destas lições ou de outra fonte (dá crédito à fonte) e apresenta um método de clustering diferente que NÃO utilize K-Means. O que aprendeste? + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| --------- | --------------------------------------------------------------- | -------------------------------------------------------------------- | ---------------------------- | +| | Um notebook é apresentado com um modelo de clustering bem documentado | Um notebook é apresentado sem boa documentação e/ou incompleto | Trabalho incompleto é submetido | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/notebook.ipynb b/translations/pt-PT/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..19186963f --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-03T20:10:08+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comece onde terminámos na última lição, com os dados importados e filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Vamos focar apenas em 3 géneros. Talvez consigamos criar 3 clusters!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/pt-PT/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/pt-PT/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..ab084bb74 --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,640 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-03T20:16:16+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## Explore K-Means clustering usando R e princípios de dados organizados.\n", + "\n", + "### [**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "Nesta lição, vais aprender a criar clusters utilizando o pacote Tidymodels e outros pacotes do ecossistema R (vamos chamá-los de amigos 🧑‍🤝‍🧑), e o conjunto de dados de música nigeriana que importaste anteriormente. Vamos abordar os fundamentos do K-Means para Clustering. Lembra-te de que, como aprendeste na lição anterior, existem várias formas de trabalhar com clusters e o método que utilizas depende dos teus dados. Vamos experimentar o K-Means, pois é a técnica de clustering mais comum. Vamos começar!\n", + "\n", + "Termos que vais aprender:\n", + "\n", + "- Pontuação de Silhueta\n", + "\n", + "- Método do Cotovelo\n", + "\n", + "- Inércia\n", + "\n", + "- Variância\n", + "\n", + "### **Introdução**\n", + "\n", + "[K-Means Clustering](https://wikipedia.org/wiki/K-means_clustering) é um método derivado do domínio do processamento de sinais. É utilizado para dividir e agrupar conjuntos de dados em `k clusters` com base em semelhanças nas suas características.\n", + "\n", + "Os clusters podem ser visualizados como [Diagramas de Voronoi](https://wikipedia.org/wiki/Voronoi_diagram), que incluem um ponto (ou 'semente') e a sua região correspondente.\n", + "\n", + "

\n", + " \n", + "

Infográfico por Jen Looper
\n", + "\n", + "\n", + "O clustering K-Means segue os seguintes passos:\n", + "\n", + "1. O cientista de dados começa por especificar o número desejado de clusters a serem criados.\n", + "\n", + "2. Em seguida, o algoritmo seleciona aleatoriamente K observações do conjunto de dados para servir como os centros iniciais dos clusters (ou seja, os centróides).\n", + "\n", + "3. Depois, cada uma das observações restantes é atribuída ao centróide mais próximo.\n", + "\n", + "4. A seguir, a nova média de cada cluster é calculada e o centróide é movido para essa média.\n", + "\n", + "5. Agora que os centros foram recalculados, cada observação é novamente verificada para ver se pode estar mais próxima de um cluster diferente. Todos os objetos são novamente reatribuídos utilizando as médias atualizadas dos clusters. Os passos de atribuição de clusters e atualização dos centróides são repetidos iterativamente até que as atribuições de clusters deixem de mudar (ou seja, quando se alcança a convergência). Normalmente, o algoritmo termina quando cada nova iteração resulta em um movimento insignificante dos centróides e os clusters tornam-se estáticos.\n", + "\n", + "
\n", + "\n", + "> Nota que, devido à randomização das observações iniciais k utilizadas como centróides iniciais, podemos obter resultados ligeiramente diferentes cada vez que aplicamos o procedimento. Por esta razão, a maioria dos algoritmos utiliza vários *inícios aleatórios* e escolhe a iteração com o menor WCSS. Assim, é fortemente recomendado executar o K-Means com vários valores de *nstart* para evitar um *ótimo local indesejável.*\n", + "\n", + "
\n", + "\n", + "Esta curta animação utilizando a [arte](https://github.com/allisonhorst/stats-illustrations) de Allison Horst explica o processo de clustering:\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n", + "\n", + "\n", + "\n", + "Uma questão fundamental que surge no clustering é esta: como sabes quantos clusters deves separar nos teus dados? Uma desvantagem do uso do K-Means é o facto de que precisas de estabelecer `k`, ou seja, o número de `centróides`. Felizmente, o `método do cotovelo` ajuda a estimar um bom valor inicial para `k`. Vais experimentá-lo em breve.\n", + "\n", + "### \n", + "\n", + "**Pré-requisito**\n", + "\n", + "Vamos começar exatamente de onde parámos na [lição anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb), onde analisámos o conjunto de dados, fizemos várias visualizações e filtrámos o conjunto de dados para observações de interesse. Certifica-te de que o revisitas!\n", + "\n", + "Vamos precisar de alguns pacotes para completar este módulo. Podes instalá-los com: `install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "Alternativamente, o script abaixo verifica se tens os pacotes necessários para completar este módulo e instala-os para ti caso alguns estejam em falta.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "Vamos começar com tudo!\n", + "\n", + "## 1. Uma dança com dados: Reduzir aos 3 géneros musicais mais populares\n", + "\n", + "Este é um resumo do que fizemos na lição anterior. Vamos explorar e analisar alguns dados!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 Isso correu bem!\n", + "\n", + "## 2. Mais exploração de dados.\n", + "\n", + "Quão limpos estão estes dados? Vamos verificar a existência de valores atípicos utilizando boxplots. Vamos concentrar-nos em colunas numéricas com menos valores atípicos (embora seja possível limpar os valores atípicos). Os boxplots podem mostrar o intervalo dos dados e ajudar a escolher quais colunas usar. Note que os boxplots não mostram a variância, um elemento importante para dados bem agrupáveis. Por favor, veja [esta discussão](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot) para leitura adicional.\n", + "\n", + "[Boxplots](https://en.wikipedia.org/wiki/Box_plot) são usados para representar graficamente a distribuição de dados `numéricos`, então vamos começar por *selecionar* todas as colunas numéricas juntamente com os géneros musicais populares.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "Veja como o auxiliar de seleção `where` torna isso fácil 💁? Explore outras funções semelhantes [aqui](https://tidyselect.r-lib.org/).\n", + "\n", + "Como vamos criar um boxplot para cada característica numérica e queremos evitar o uso de loops, vamos reformular os nossos dados para um formato *mais longo* que nos permitirá tirar proveito de `facets` - subgráficos que exibem cada subconjunto dos dados.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "Muito mais longo! Agora é hora de alguns `ggplots`! Então, que `geom` vamos usar?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "Agora podemos ver que estes dados estão um pouco ruidosos: ao observar cada coluna como um boxplot, é possível identificar valores atípicos. Poderíamos percorrer o conjunto de dados e remover esses valores atípicos, mas isso tornaria os dados bastante reduzidos.\n", + "\n", + "Por agora, vamos escolher quais colunas utilizaremos para o nosso exercício de clustering. Vamos selecionar as colunas numéricas com intervalos semelhantes. Poderíamos codificar o `artist_top_genre` como numérico, mas vamos descartá-lo por enquanto.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. Computação de clustering k-means em R\n", + "\n", + "Podemos calcular k-means em R utilizando a função integrada `kmeans`, veja `help(\"kmeans()\")`. A função `kmeans()` aceita um data frame com todas as colunas numéricas como seu argumento principal.\n", + "\n", + "O primeiro passo ao usar clustering k-means é especificar o número de clusters (k) que serão gerados na solução final. Sabemos que existem 3 géneros musicais que extraímos do conjunto de dados, então vamos tentar com 3:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "O objeto kmeans contém várias informações que estão bem explicadas em `help(\"kmeans()\")`. Por agora, vamos concentrar-nos em algumas. Vemos que os dados foram agrupados em 3 clusters com tamanhos de 65, 110, 111. O resultado também contém os centros dos clusters (médias) para os 3 grupos ao longo das 5 variáveis.\n", + "\n", + "O vetor de clustering é a atribuição de cluster para cada observação. Vamos usar a função `augment` para adicionar a atribuição de cluster ao conjunto de dados original.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "Perfeito, acabámos de dividir o nosso conjunto de dados em 3 grupos. Então, quão bom é o nosso agrupamento 🤷? Vamos dar uma olhada no `Silhouette score`.\n", + "\n", + "### **Silhouette score**\n", + "\n", + "[A análise de Silhouette](https://en.wikipedia.org/wiki/Silhouette_(clustering)) pode ser usada para estudar a distância de separação entre os clusters resultantes. Este score varia de -1 a 1, e se o score estiver próximo de 1, o cluster é denso e bem separado dos outros clusters. Um valor próximo de 0 representa clusters sobrepostos com amostras muito próximas da fronteira de decisão dos clusters vizinhos. [fonte](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam).\n", + "\n", + "O método de silhouette médio calcula a média do silhouette das observações para diferentes valores de *k*. Um score médio de silhouette elevado indica um bom agrupamento.\n", + "\n", + "A função `silhouette` no pacote de cluster é usada para calcular a largura média do silhouette.\n", + "\n", + "> O silhouette pode ser calculado com qualquer [métrica de distância](https://en.wikipedia.org/wiki/Distance \"Distance\"), como a [distância Euclidiana](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") ou a [distância Manhattan](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\"), que discutimos na [lição anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb).\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "A nossa pontuação é **0,549**, ou seja, bem no meio. Isto indica que os nossos dados não são particularmente adequados para este tipo de agrupamento. Vamos ver se conseguimos confirmar esta suspeita visualmente. O [pacote factoextra](https://rpkgs.datanovia.com/factoextra/index.html) fornece funções (`fviz_cluster()`) para visualizar agrupamentos.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "A sobreposição nos clusters indica que os nossos dados não são particularmente adequados para este tipo de clustering, mas vamos continuar.\n", + "\n", + "## 4. Determinar o número ideal de clusters\n", + "\n", + "Uma questão fundamental que frequentemente surge no clustering K-Means é esta: sem etiquetas de classe conhecidas, como saber quantos clusters usar para separar os seus dados?\n", + "\n", + "Uma forma de tentar descobrir é usar uma amostra de dados para `criar uma série de modelos de clustering` com um número crescente de clusters (por exemplo, de 1 a 10) e avaliar métricas de clustering como o **Silhouette score.**\n", + "\n", + "Vamos determinar o número ideal de clusters calculando o algoritmo de clustering para diferentes valores de *k* e avaliando o **Within Cluster Sum of Squares** (WCSS). O total de soma de quadrados dentro do cluster (WCSS) mede a compacidade do clustering, e queremos que seja o menor possível, com valores mais baixos significando que os pontos de dados estão mais próximos.\n", + "\n", + "Vamos explorar o efeito de diferentes escolhas de `k`, de 1 a 10, neste clustering.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "Agora que temos o total da soma dos quadrados dentro dos clusters (tot.withinss) para cada algoritmo de clustering com centro *k*, utilizamos o [método do cotovelo](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) para encontrar o número ideal de clusters. O método consiste em traçar o WCSS como uma função do número de clusters e escolher o [cotovelo da curva](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Cotovelo da curva\") como o número de clusters a ser utilizado.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "O gráfico mostra uma grande redução no WCSS (ou seja, maior *coerência*) à medida que o número de clusters aumenta de um para dois, e uma redução adicional notável de dois para três clusters. Depois disso, a redução torna-se menos acentuada, resultando num `cotovelo` 💪 no gráfico por volta de três clusters. Isto é uma boa indicação de que existem dois a três clusters de pontos de dados razoavelmente bem separados.\n", + "\n", + "Podemos agora avançar e extrair o modelo de clustering onde `k = 3`:\n", + "\n", + "> `pull()`: usado para extrair uma única coluna\n", + ">\n", + "> `pluck()`: usado para indexar estruturas de dados como listas\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "Ótimo! Vamos visualizar os clusters obtidos. Que tal adicionar um pouco de interatividade usando `plotly`?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "Talvez esperássemos que cada grupo (representado por cores diferentes) tivesse géneros distintos (representados por formas diferentes).\n", + "\n", + "Vamos analisar a precisão do modelo.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "A precisão deste modelo não é má, mas também não é excelente. Pode ser que os dados não sejam adequados para o K-Means Clustering. Estes dados são demasiado desequilibrados, pouco correlacionados e há muita variância entre os valores das colunas para formar clusters eficazes. Na verdade, os clusters que se formam provavelmente são fortemente influenciados ou enviesados pelas três categorias de género que definimos acima.\n", + "\n", + "Ainda assim, foi um processo de aprendizagem interessante!\n", + "\n", + "Na documentação do Scikit-learn, pode-se ver que um modelo como este, com clusters pouco bem definidos, tem um problema de 'variância':\n", + "\n", + "

\n", + " \n", + "

Infográfico do Scikit-learn
\n", + "\n", + "\n", + "\n", + "## **Variância**\n", + "\n", + "A variância é definida como \"a média das diferenças quadradas em relação à média\" [fonte](https://www.mathsisfun.com/data/standard-deviation.html). No contexto deste problema de clustering, refere-se aos dados em que os números do nosso conjunto tendem a divergir um pouco demais da média.\n", + "\n", + "✅ Este é um ótimo momento para pensar em todas as formas de corrigir este problema. Ajustar os dados um pouco mais? Usar colunas diferentes? Utilizar um algoritmo diferente? Dica: Experimente [escalar os seus dados](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) para normalizá-los e testar outras colunas.\n", + "\n", + "> Experimente este '[calculador de variância](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' para compreender melhor o conceito.\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀Desafio**\n", + "\n", + "Dedique algum tempo a este notebook, ajustando os parâmetros. Consegue melhorar a precisão do modelo ao limpar mais os dados (removendo outliers, por exemplo)? Pode usar pesos para dar mais importância a determinadas amostras de dados. O que mais pode fazer para criar clusters melhores?\n", + "\n", + "Dica: Experimente escalar os seus dados. Há código comentado no notebook que adiciona escalonamento padrão para fazer com que as colunas de dados se assemelhem mais em termos de intervalo. Vai perceber que, embora o score de silhueta diminua, o 'cotovelo' no gráfico suaviza-se. Isto acontece porque deixar os dados sem escala permite que dados com menos variância tenham mais peso. Leia mais sobre este problema [aqui](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226).\n", + "\n", + "## [**Questionário pós-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **Revisão & Autoestudo**\n", + "\n", + "- Dê uma olhada num Simulador de K-Means [como este](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Pode usar esta ferramenta para visualizar pontos de dados de amostra e determinar os seus centróides. Pode editar a aleatoriedade dos dados, o número de clusters e o número de centróides. Isto ajuda-o a ter uma ideia de como os dados podem ser agrupados?\n", + "\n", + "- Além disso, veja [este documento sobre K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) da Stanford.\n", + "\n", + "Quer testar as suas novas competências de clustering em conjuntos de dados que se adaptam bem ao K-Means clustering? Veja:\n", + "\n", + "- [Treinar e Avaliar Modelos de Clustering](https://rpubs.com/eR_ic/clustering) usando Tidymodels e amigos\n", + "\n", + "- [Análise de Cluster K-Means](https://uc-r.github.io/kmeans_clustering), UC Business Analytics R Programming Guide\n", + "\n", + "- [Clustering K-Means com princípios de dados organizados](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **Tarefa**\n", + "\n", + "[Experimente diferentes métodos de clustering](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## AGRADECIMENTOS A:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) por criar a versão original em Python deste módulo ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontre mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "Boas aprendizagens,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Embaixador Estudante Gold da Microsoft Learn.\n", + "\n", + "

\n", + " \n", + "

Arte por @allison_horst
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/pt-PT/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..e41553eaf --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,546 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-03T20:11:14+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comece onde terminámos na última aula, com os dados importados e filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Vamos focar apenas em 3 géneros. Talvez consigamos criar 3 clusters!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "Quão limpos estão estes dados? Verifique a existência de outliers utilizando boxplots. Vamos concentrar-nos nas colunas com menos outliers (embora possa limpar os outliers). Os boxplots podem mostrar o intervalo dos dados e ajudar a escolher quais colunas utilizar. Note que os boxplots não mostram a variância, um elemento importante para dados bem agrupáveis (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "Esses números não significam muito para nós, por isso vamos obter um 'silhouette score' para verificar a precisão. A nossa pontuação está no meio.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "Use esse modelo para decidir, utilizando o Método do Cotovelo, o melhor número de clusters a construir\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "A precisão deste modelo não é má, mas também não é excelente. Pode ser que os dados não se adaptem bem ao agrupamento K-Means. Poderá tentar um método diferente.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/pt-PT/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..31a54e104 --- /dev/null +++ b/translations/pt-PT/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-03T20:12:31+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comece onde terminámos na última aula, com os dados importados e filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Vamos focar apenas em 3 géneros. Talvez consigamos criar 3 clusters!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/5-Clustering/README.md b/translations/pt-PT/5-Clustering/README.md new file mode 100644 index 000000000..bcefa827e --- /dev/null +++ b/translations/pt-PT/5-Clustering/README.md @@ -0,0 +1,33 @@ +# Modelos de clustering para aprendizagem automática + +Clustering é uma tarefa de aprendizagem automática que procura encontrar objetos semelhantes entre si e agrupá-los em grupos chamados clusters. O que diferencia o clustering de outras abordagens na aprendizagem automática é que tudo acontece de forma automática; na verdade, é justo dizer que é o oposto da aprendizagem supervisionada. + +## Tópico regional: modelos de clustering para o gosto musical do público nigeriano 🎧 + +O público diversificado da Nigéria tem gostos musicais igualmente variados. Usando dados extraídos do Spotify (inspirado por [este artigo](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)), vamos analisar algumas músicas populares na Nigéria. Este conjunto de dados inclui informações sobre o 'danceability', 'acousticness', volume, 'speechiness', popularidade e energia de várias músicas. Será interessante descobrir padrões nesses dados! + +![Um gira-discos](../../../translated_images/pt-PT/turntable.f2b86b13c53302dc.webp) + +> Foto de Marcela Laskoski no Unsplash + +Nesta série de lições, vais descobrir novas formas de analisar dados utilizando técnicas de clustering. O clustering é particularmente útil quando o teu conjunto de dados não tem etiquetas. Se tiver etiquetas, então técnicas de classificação, como as que aprendeste em lições anteriores, podem ser mais úteis. Mas, em casos onde procuras agrupar dados não etiquetados, o clustering é uma ótima forma de descobrir padrões. + +> Existem ferramentas úteis de baixo código que podem ajudar-te a aprender a trabalhar com modelos de clustering. Experimenta [Azure ML para esta tarefa](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Lições + +1. [Introdução ao clustering](1-Visualize/README.md) +2. [Clustering com K-Means](2-K-Means/README.md) + +## Créditos + +Estas lições foram escritas com 🎶 por [Jen Looper](https://www.twitter.com/jenlooper) com revisões úteis de [Rishit Dagli](https://rishit_dagli) e [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan). + +O conjunto de dados [Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) foi obtido no Kaggle, extraído do Spotify. + +Exemplos úteis de K-Means que ajudaram na criação desta lição incluem esta [exploração de íris](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), este [notebook introdutório](https://www.kaggle.com/prashant111/k-means-clustering-with-python) e este [exemplo hipotético de ONG](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering). + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/1-Introduction-to-NLP/README.md b/translations/pt-PT/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..00df8c1bc --- /dev/null +++ b/translations/pt-PT/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,170 @@ +# Introdução ao processamento de linguagem natural + +Esta lição aborda uma breve história e conceitos importantes do *processamento de linguagem natural* (PLN), um subcampo da *linguística computacional*. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Introdução + +O PLN, como é comumente conhecido, é uma das áreas mais conhecidas onde o aprendizado de máquina foi aplicado e utilizado em softwares de produção. + +✅ Consegue pensar em algum software que utiliza diariamente e que provavelmente tem algum PLN integrado? E os seus programas de processamento de texto ou as aplicações móveis que usa regularmente? + +Você aprenderá sobre: + +- **A ideia de línguas**. Como as línguas se desenvolveram e quais foram as principais áreas de estudo. +- **Definição e conceitos**. Também aprenderá definições e conceitos sobre como os computadores processam texto, incluindo análise sintática, gramática e identificação de substantivos e verbos. Há algumas tarefas de codificação nesta lição, e vários conceitos importantes são introduzidos, que você aprenderá a programar nas próximas lições. + +## Linguística computacional + +A linguística computacional é uma área de pesquisa e desenvolvimento que, ao longo de muitas décadas, estuda como os computadores podem trabalhar com línguas, compreendê-las, traduzi-las e até mesmo se comunicar com elas. O processamento de linguagem natural (PLN) é um campo relacionado, focado em como os computadores podem processar línguas "naturais", ou seja, humanas. + +### Exemplo - ditado no telemóvel + +Se alguma vez ditou algo para o seu telemóvel em vez de escrever ou fez uma pergunta a um assistente virtual, a sua fala foi convertida em texto e depois processada ou *analisada* a partir da língua que falou. As palavras-chave detectadas foram então processadas num formato que o telemóvel ou assistente pudesse compreender e agir. + +![compreensão](../../../../6-NLP/1-Introduction-to-NLP/images/comprehension.png) +> Compreensão linguística real é difícil! Imagem por [Jen Looper](https://twitter.com/jenlooper) + +### Como é que esta tecnologia é possível? + +Isto é possível porque alguém escreveu um programa de computador para o fazer. Há algumas décadas, alguns escritores de ficção científica previram que as pessoas falariam principalmente com os seus computadores, e que os computadores entenderiam sempre exatamente o que elas queriam dizer. Infelizmente, revelou-se um problema mais difícil do que muitos imaginavam e, embora hoje seja um problema muito mais bem compreendido, ainda existem desafios significativos para alcançar um processamento de linguagem natural "perfeito" no que diz respeito a compreender o significado de uma frase. Este é um problema particularmente difícil quando se trata de entender humor ou detectar emoções como sarcasmo numa frase. + +Neste momento, talvez se lembre das aulas escolares em que o professor abordava as partes da gramática numa frase. Em alguns países, os alunos aprendem gramática e linguística como uma disciplina dedicada, mas em muitos, esses tópicos estão incluídos como parte do aprendizado de uma língua: seja a sua primeira língua na escola primária (aprendendo a ler e escrever) ou talvez uma segunda língua no ensino secundário. Não se preocupe se não for um especialista em diferenciar substantivos de verbos ou advérbios de adjetivos! + +Se tem dificuldade em distinguir entre o *presente simples* e o *presente contínuo*, não está sozinho. Isso é um desafio para muitas pessoas, mesmo falantes nativos de uma língua. A boa notícia é que os computadores são muito bons em aplicar regras formais, e você aprenderá a escrever código que pode *analisar* uma frase tão bem quanto um humano. O maior desafio que examinará mais tarde é compreender o *significado* e o *sentimento* de uma frase. + +## Pré-requisitos + +Para esta lição, o principal pré-requisito é ser capaz de ler e compreender a língua desta lição. Não há problemas matemáticos ou equações para resolver. Embora o autor original tenha escrito esta lição em inglês, ela também foi traduzida para outras línguas, então pode estar a ler uma tradução. Há exemplos onde são usados vários idiomas diferentes (para comparar as diferentes regras gramaticais de diferentes línguas). Estes *não* são traduzidos, mas o texto explicativo é, então o significado deve ser claro. + +Para as tarefas de codificação, usará Python e os exemplos utilizam Python 3.8. + +Nesta seção, precisará e usará: + +- **Compreensão de Python 3**. Compreensão da linguagem de programação Python 3, esta lição utiliza entrada, loops, leitura de ficheiros e arrays. +- **Visual Studio Code + extensão**. Usaremos o Visual Studio Code e sua extensão para Python. Também pode usar um IDE de Python à sua escolha. +- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob) é uma biblioteca simplificada de processamento de texto para Python. Siga as instruções no site do TextBlob para instalá-lo no seu sistema (instale também os corpora, conforme mostrado abaixo): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 Dica: Pode executar Python diretamente em ambientes do VS Code. Consulte a [documentação](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) para mais informações. + +## Conversando com máquinas + +A história de tentar fazer os computadores entenderem a linguagem humana remonta a décadas, e um dos primeiros cientistas a considerar o processamento de linguagem natural foi *Alan Turing*. + +### O 'teste de Turing' + +Quando Turing estava a pesquisar *inteligência artificial* na década de 1950, ele considerou se um teste de conversação poderia ser dado a um humano e a um computador (via correspondência escrita) onde o humano na conversa não tivesse certeza se estava a conversar com outro humano ou com um computador. + +Se, após um certo tempo de conversa, o humano não conseguisse determinar se as respostas vinham de um computador ou não, então poderia dizer-se que o computador estava *a pensar*? + +### A inspiração - 'o jogo da imitação' + +A ideia para isso veio de um jogo de festa chamado *O Jogo da Imitação*, onde um interrogador está sozinho numa sala e tem a tarefa de determinar quais das duas pessoas (noutra sala) são homem e mulher, respetivamente. O interrogador pode enviar notas e deve tentar pensar em perguntas cujas respostas escritas revelem o género da pessoa misteriosa. Claro, os jogadores na outra sala tentam enganar o interrogador, respondendo de forma a confundir ou induzir em erro, enquanto dão a aparência de responder honestamente. + +### Desenvolvendo Eliza + +Na década de 1960, um cientista do MIT chamado *Joseph Weizenbaum* desenvolveu [*Eliza*](https://wikipedia.org/wiki/ELIZA), uma "terapeuta" computorizada que fazia perguntas ao humano e dava a impressão de entender as suas respostas. No entanto, embora Eliza pudesse analisar uma frase e identificar certos construtos gramaticais e palavras-chave para dar uma resposta razoável, não se podia dizer que *entendia* a frase. Se Eliza recebesse uma frase no formato "**Eu estou** triste", poderia reorganizar e substituir palavras na frase para formar a resposta "Há quanto tempo **você está** triste". + +Isso dava a impressão de que Eliza entendia a declaração e estava a fazer uma pergunta de seguimento, enquanto na realidade estava apenas a mudar o tempo verbal e a adicionar algumas palavras. Se Eliza não conseguisse identificar uma palavra-chave para a qual tivesse uma resposta, daria uma resposta aleatória que poderia ser aplicável a muitas declarações diferentes. Eliza podia ser facilmente enganada, por exemplo, se um utilizador escrevesse "**Você é** uma bicicleta", ela poderia responder "Há quanto tempo **eu sou** uma bicicleta?", em vez de uma resposta mais razoável. + +[![Conversando com Eliza](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "Conversando com Eliza") + +> 🎥 Clique na imagem acima para um vídeo sobre o programa original ELIZA + +> Nota: Pode ler a descrição original de [Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) publicada em 1966 se tiver uma conta ACM. Alternativamente, leia sobre Eliza na [wikipedia](https://wikipedia.org/wiki/ELIZA) + +## Exercício - programar um bot de conversação básico + +Um bot de conversação, como Eliza, é um programa que solicita a entrada do utilizador e parece entender e responder de forma inteligente. Ao contrário de Eliza, o nosso bot não terá várias regras que lhe dão a aparência de uma conversa inteligente. Em vez disso, o nosso bot terá apenas uma habilidade: manter a conversa com respostas aleatórias que possam funcionar em quase qualquer conversa trivial. + +### O plano + +Os seus passos ao construir um bot de conversação: + +1. Imprimir instruções a aconselhar o utilizador sobre como interagir com o bot +2. Iniciar um loop + 1. Aceitar a entrada do utilizador + 2. Se o utilizador pedir para sair, então sair + 3. Processar a entrada do utilizador e determinar a resposta (neste caso, a resposta é uma escolha aleatória de uma lista de possíveis respostas genéricas) + 4. Imprimir a resposta +3. Voltar ao passo 2 + +### Construindo o bot + +Vamos criar o bot a seguir. Começaremos por definir algumas frases. + +1. Crie este bot em Python com as seguintes respostas aleatórias: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + Aqui está um exemplo de saída para orientar (a entrada do utilizador está nas linhas que começam com `>`): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + Uma possível solução para a tarefa está [aqui](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) + + ✅ Pare e reflita + + 1. Acha que as respostas aleatórias poderiam "enganar" alguém a pensar que o bot realmente o entende? + 2. Que recursos o bot precisaria para ser mais eficaz? + 3. Se um bot pudesse realmente "entender" o significado de uma frase, precisaria "lembrar-se" do significado das frases anteriores numa conversa também? + +--- + +## 🚀Desafio + +Escolha um dos elementos de "pare e reflita" acima e tente implementá-lo em código ou escreva uma solução no papel usando pseudocódigo. + +Na próxima lição, aprenderá sobre várias outras abordagens para analisar linguagem natural e aprendizado de máquina. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e autoestudo + +Consulte as referências abaixo como oportunidades de leitura adicional. + +### Referências + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## Tarefa + +[Procure um bot](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/pt-PT/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..47a9b5489 --- /dev/null +++ b/translations/pt-PT/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,16 @@ +# Procure um bot + +## Instruções + +Os bots estão por toda parte. A sua tarefa: encontre um e adote-o! Pode encontrá-los em sites, em aplicações bancárias e ao telefone, por exemplo, quando liga para empresas de serviços financeiros para obter conselhos ou informações sobre contas. Analise o bot e veja se consegue confundi-lo. Se conseguir confundir o bot, por que acha que isso aconteceu? Escreva um pequeno relatório sobre a sua experiência. + +## Rubrica + +| Critérios | Exemplary | Adequado | Precisa de Melhorias | +| --------- | ------------------------------------------------------------------------------------------------------------- | ------------------------------------------- | --------------------- | +| | Uma página completa é escrita, explicando a presumida arquitetura do bot e descrevendo a sua experiência com ele | O relatório está incompleto ou não é bem pesquisado | Nenhum relatório é submetido | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/2-Tasks/README.md b/translations/pt-PT/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..18f18c0f3 --- /dev/null +++ b/translations/pt-PT/6-NLP/2-Tasks/README.md @@ -0,0 +1,219 @@ +# Tarefas e técnicas comuns de processamento de linguagem natural + +Para a maioria das tarefas de *processamento de linguagem natural*, o texto a ser processado deve ser dividido, examinado e os resultados armazenados ou cruzados com regras e conjuntos de dados. Essas tarefas permitem ao programador derivar o _significado_, a _intenção_ ou apenas a _frequência_ de termos e palavras em um texto. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +Vamos explorar técnicas comuns usadas no processamento de texto. Combinadas com aprendizagem automática, essas técnicas ajudam a analisar grandes volumes de texto de forma eficiente. Antes de aplicar ML a essas tarefas, no entanto, vamos entender os problemas enfrentados por um especialista em NLP. + +## Tarefas comuns em NLP + +Existem diferentes maneiras de analisar um texto com o qual você está trabalhando. Há tarefas que você pode realizar e, através delas, é possível compreender o texto e tirar conclusões. Normalmente, essas tarefas são realizadas em sequência. + +### Tokenização + +Provavelmente, a primeira coisa que a maioria dos algoritmos de NLP precisa fazer é dividir o texto em tokens ou palavras. Embora isso pareça simples, lidar com pontuação e delimitadores de palavras e frases em diferentes idiomas pode tornar o processo complicado. Pode ser necessário usar vários métodos para determinar as demarcações. + +![tokenização](../../../../6-NLP/2-Tasks/images/tokenization.png) +> Tokenizando uma frase de **Orgulho e Preconceito**. Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +### Embeddings + +[Word embeddings](https://wikipedia.org/wiki/Word_embedding) são uma forma de converter seus dados textuais em valores numéricos. Os embeddings são feitos de maneira que palavras com significados semelhantes ou usadas juntas fiquem agrupadas. + +![word embeddings](../../../../6-NLP/2-Tasks/images/embedding.png) +> "Tenho o maior respeito pelos seus nervos, eles são meus velhos amigos." - Word embeddings para uma frase de **Orgulho e Preconceito**. Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +✅ Experimente [esta ferramenta interessante](https://projector.tensorflow.org/) para explorar word embeddings. Ao clicar em uma palavra, aparecem clusters de palavras semelhantes: 'brinquedo' agrupa-se com 'disney', 'lego', 'playstation' e 'console'. + +### Parsing & Marcação de Partes do Discurso + +Cada palavra que foi tokenizada pode ser marcada como uma parte do discurso - substantivo, verbo ou adjetivo. A frase `a rápida raposa vermelha saltou sobre o cão castanho preguiçoso` pode ser marcada como POS, por exemplo, raposa = substantivo, saltou = verbo. + +![parsing](../../../../6-NLP/2-Tasks/images/parse.png) + +> Parsing de uma frase de **Orgulho e Preconceito**. Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +Parsing é o reconhecimento de quais palavras estão relacionadas umas às outras em uma frase - por exemplo, `a rápida raposa vermelha saltou` é uma sequência de adjetivo-substantivo-verbo que é separada da sequência `cão castanho preguiçoso`. + +### Frequência de Palavras e Frases + +Um procedimento útil ao analisar um grande corpo de texto é construir um dicionário de cada palavra ou frase de interesse e quantas vezes ela aparece. A frase `a rápida raposa vermelha saltou sobre o cão castanho preguiçoso` tem uma frequência de palavras de 2 para "a". + +Vamos analisar um texto de exemplo onde contamos a frequência de palavras. O poema The Winners de Rudyard Kipling contém o seguinte verso: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +Como as frequências de frases podem ser sensíveis ou não a maiúsculas, a frase `um amigo` tem uma frequência de 2, `o` tem uma frequência de 6 e `viaja` tem uma frequência de 2. + +### N-grams + +Um texto pode ser dividido em sequências de palavras de um comprimento definido, uma única palavra (unigrama), duas palavras (bigramas), três palavras (trigramas) ou qualquer número de palavras (n-grams). + +Por exemplo, `a rápida raposa vermelha saltou sobre o cão castanho preguiçoso` com um valor de n-gram de 2 produz os seguintes n-grams: + +1. a rápida +2. rápida raposa +3. raposa vermelha +4. vermelha saltou +5. saltou sobre +6. sobre o +7. o cão +8. cão castanho +9. castanho preguiçoso + +Pode ser mais fácil visualizar isso como uma janela deslizante sobre a frase. Aqui está para n-grams de 3 palavras, o n-gram está em negrito em cada frase: + +1. **a rápida raposa** vermelha saltou sobre o cão castanho preguiçoso +2. a **rápida raposa vermelha** saltou sobre o cão castanho preguiçoso +3. a rápida **raposa vermelha saltou** sobre o cão castanho preguiçoso +4. a rápida raposa **vermelha saltou sobre** o cão castanho preguiçoso +5. a rápida raposa vermelha **saltou sobre o** cão castanho preguiçoso +6. a rápida raposa vermelha saltou **sobre o cão** castanho preguiçoso +7. a rápida raposa vermelha saltou sobre **o cão castanho** preguiçoso +8. a rápida raposa vermelha saltou sobre o **cão castanho preguiçoso** + +![janela deslizante de n-grams](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> Valor de n-gram de 3: Infográfico por [Jen Looper](https://twitter.com/jenlooper) + +### Extração de Frases Nominais + +Na maioria das frases, há um substantivo que é o sujeito ou objeto da frase. Em inglês, muitas vezes é identificável por ter 'a', 'an' ou 'the' antes dele. Identificar o sujeito ou objeto de uma frase através da 'extração da frase nominal' é uma tarefa comum em NLP ao tentar entender o significado de uma frase. + +✅ Na frase "Não consigo fixar a hora, ou o local, ou o olhar ou as palavras, que lançaram a base. Faz muito tempo. Eu estava no meio antes de perceber que tinha começado.", consegue identificar as frases nominais? + +Na frase `a rápida raposa vermelha saltou sobre o cão castanho preguiçoso` há 2 frases nominais: **rápida raposa vermelha** e **cão castanho preguiçoso**. + +### Análise de Sentimento + +Uma frase ou texto pode ser analisado para determinar o sentimento, ou quão *positivo* ou *negativo* ele é. O sentimento é medido em *polaridade* e *objetividade/subjetividade*. A polaridade é medida de -1.0 a 1.0 (negativo a positivo) e de 0.0 a 1.0 (mais objetivo a mais subjetivo). + +✅ Mais tarde, aprenderá que existem diferentes maneiras de determinar o sentimento usando aprendizagem automática, mas uma delas é ter uma lista de palavras e frases categorizadas como positivas ou negativas por um especialista humano e aplicar esse modelo ao texto para calcular um score de polaridade. Consegue perceber como isso funcionaria em algumas circunstâncias e menos em outras? + +### Flexão + +A flexão permite que você pegue uma palavra e obtenha o singular ou plural dela. + +### Lematização + +Um *lema* é a raiz ou palavra principal de um conjunto de palavras, por exemplo, *voou*, *voa*, *voando* têm como lema o verbo *voar*. + +Existem também bases de dados úteis disponíveis para o pesquisador de NLP, como: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/) é uma base de dados de palavras, sinônimos, antônimos e muitos outros detalhes para cada palavra em vários idiomas. É incrivelmente útil ao tentar construir traduções, verificadores ortográficos ou ferramentas de linguagem de qualquer tipo. + +## Bibliotecas de NLP + +Felizmente, você não precisa construir todas essas técnicas sozinho, pois existem excelentes bibliotecas Python disponíveis que tornam o NLP muito mais acessível para desenvolvedores que não são especializados em processamento de linguagem natural ou aprendizagem automática. As próximas lições incluem mais exemplos dessas bibliotecas, mas aqui aprenderá alguns exemplos úteis para ajudá-lo na próxima tarefa. + +### Exercício - usando a biblioteca `TextBlob` + +Vamos usar uma biblioteca chamada TextBlob, pois ela contém APIs úteis para lidar com esses tipos de tarefas. TextBlob "baseia-se nos ombros gigantes do [NLTK](https://nltk.org) e [pattern](https://github.com/clips/pattern), e funciona bem com ambos." Ela possui uma quantidade considerável de ML embutida em sua API. + +> Nota: Um [Guia de Introdução](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) útil está disponível para TextBlob e é recomendado para desenvolvedores Python experientes. + +Ao tentar identificar *frases nominais*, TextBlob oferece várias opções de extratores para encontrar frases nominais. + +1. Veja o `ConllExtractor`. + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > O que está acontecendo aqui? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) é "Um extrator de frases nominais que usa chunk parsing treinado com o corpus de treinamento ConLL-2000." ConLL-2000 refere-se à Conferência de Aprendizagem Computacional de Linguagem Natural de 2000. Cada ano a conferência hospedava um workshop para resolver um problema difícil de NLP, e em 2000 foi chunking de frases nominais. Um modelo foi treinado no Wall Street Journal, com "as seções 15-18 como dados de treinamento (211727 tokens) e a seção 20 como dados de teste (47377 tokens)". Pode consultar os procedimentos usados [aqui](https://www.clips.uantwerpen.be/conll2000/chunking/) e os [resultados](https://ifarm.nl/erikt/research/np-chunking.html). + +### Desafio - melhorando seu bot com NLP + +Na lição anterior, você construiu um bot de perguntas e respostas muito simples. Agora, tornará Marvin um pouco mais simpático ao analisar sua entrada para sentimento e imprimir uma resposta que corresponda ao sentimento. Também precisará identificar uma `noun_phrase` e perguntar sobre ela. + +Os passos para construir um bot conversacional melhor: + +1. Imprimir instruções aconselhando o utilizador sobre como interagir com o bot +2. Iniciar loop + 1. Aceitar entrada do utilizador + 2. Se o utilizador pedir para sair, então sair + 3. Processar a entrada do utilizador e determinar a resposta de sentimento apropriada + 4. Se uma frase nominal for detectada no sentimento, pluralizá-la e pedir mais informações sobre esse tópico + 5. Imprimir resposta +3. Voltar ao passo 2 + +Aqui está o trecho de código para determinar o sentimento usando TextBlob. Note que há apenas quatro *gradientes* de resposta de sentimento (poderia haver mais, se desejar): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +Aqui está um exemplo de saída para orientá-lo (entrada do utilizador está nas linhas que começam com >): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +Uma possível solução para a tarefa está [aqui](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) + +✅ Verificação de Conhecimento + +1. Acha que as respostas simpáticas poderiam 'enganar' alguém a pensar que o bot realmente os compreendeu? +2. Identificar a frase nominal torna o bot mais 'crível'? +3. Por que extrair uma 'frase nominal' de uma frase seria algo útil? + +--- + +Implemente o bot na verificação de conhecimento anterior e teste-o com um amigo. Ele consegue enganá-lo? Consegue tornar seu bot mais 'crível'? + +## 🚀Desafio + +Escolha uma tarefa na verificação de conhecimento anterior e tente implementá-la. Teste o bot com um amigo. Ele consegue enganá-lo? Consegue tornar seu bot mais 'crível'? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Nas próximas lições, aprenderá mais sobre análise de sentimento. Pesquise esta técnica interessante em artigos como estes no [KDNuggets](https://www.kdnuggets.com/tag/nlp) + +## Tarefa + +[Fazer um bot responder](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/2-Tasks/assignment.md b/translations/pt-PT/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..b650e0439 --- /dev/null +++ b/translations/pt-PT/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,16 @@ +# Fazer um Bot responder + +## Instruções + +Nas lições anteriores, programaste um bot básico com quem podes conversar. Este bot dá respostas aleatórias até que digas 'adeus'. Consegues tornar as respostas um pouco menos aleatórias e fazer com que o bot responda a coisas específicas, como 'porquê' ou 'como'? Pensa um pouco sobre como o machine learning poderia tornar este tipo de trabalho menos manual à medida que expandes o teu bot. Podes usar as bibliotecas NLTK ou TextBlob para facilitar as tuas tarefas. + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| --------- | -------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | Um novo ficheiro bot.py é apresentado e documentado | Um novo ficheiro bot é apresentado, mas contém erros | Nenhum ficheiro é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/3-Translation-Sentiment/README.md b/translations/pt-PT/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..704d9d6b4 --- /dev/null +++ b/translations/pt-PT/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,191 @@ +# Tradução e análise de sentimento com ML + +Nas lições anteriores, aprendeste a construir um bot básico utilizando `TextBlob`, uma biblioteca que incorpora ML nos bastidores para realizar tarefas básicas de NLP, como a extração de frases nominais. Outro desafio importante na linguística computacional é a tradução _precisa_ de uma frase de uma língua falada ou escrita para outra. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +A tradução é um problema muito difícil, agravado pelo facto de existirem milhares de línguas, cada uma com regras gramaticais muito diferentes. Uma abordagem é converter as regras gramaticais formais de uma língua, como o inglês, numa estrutura independente de língua e, em seguida, traduzi-la convertendo-a novamente para outra língua. Esta abordagem implica os seguintes passos: + +1. **Identificação**. Identificar ou etiquetar as palavras na língua de entrada como substantivos, verbos, etc. +2. **Criar tradução**. Produzir uma tradução direta de cada palavra no formato da língua de destino. + +### Exemplo de frase, Inglês para Irlandês + +Em 'Inglês', a frase _I feel happy_ tem três palavras na seguinte ordem: + +- **sujeito** (I) +- **verbo** (feel) +- **adjetivo** (happy) + +No entanto, na língua 'Irlandesa', a mesma frase tem uma estrutura gramatical muito diferente - emoções como "*happy*" ou "*sad*" são expressas como estando *sobre* ti. + +A frase em inglês `I feel happy` em irlandês seria `Tá athas orm`. Uma tradução *literal* seria `Happy is upon me`. + +Um falante de irlandês que traduzisse para inglês diria `I feel happy`, não `Happy is upon me`, porque compreende o significado da frase, mesmo que as palavras e a estrutura da frase sejam diferentes. + +A ordem formal da frase em irlandês é: + +- **verbo** (Tá ou is) +- **adjetivo** (athas, ou happy) +- **sujeito** (orm, ou upon me) + +## Tradução + +Um programa de tradução ingênuo poderia traduzir apenas palavras, ignorando a estrutura da frase. + +✅ Se aprendeste uma segunda (ou terceira ou mais) língua como adulto, provavelmente começaste por pensar na tua língua nativa, traduzindo um conceito palavra por palavra na tua cabeça para a segunda língua e, em seguida, falando a tradução. Isto é semelhante ao que os programas de tradução ingênuos fazem. É importante ultrapassar esta fase para alcançar fluência! + +A tradução ingênua leva a traduções erradas (e às vezes hilariantes): `I feel happy` traduzido literalmente para irlandês seria `Mise bhraitheann athas`. Isso significa (literalmente) `me feel happy` e não é uma frase válida em irlandês. Mesmo que o inglês e o irlandês sejam línguas faladas em duas ilhas vizinhas, são línguas muito diferentes com estruturas gramaticais distintas. + +> Podes assistir a alguns vídeos sobre tradições linguísticas irlandesas, como [este](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### Abordagens de aprendizagem automática + +Até agora, aprendeste sobre a abordagem de regras formais para o processamento de linguagem natural. Outra abordagem é ignorar o significado das palavras e _usar aprendizagem automática para detetar padrões_. Isto pode funcionar na tradução se tiveres muitos textos (um *corpus*) ou textos (*corpora*) na língua de origem e na língua de destino. + +Por exemplo, considera o caso de *Orgulho e Preconceito*, um romance inglês bem conhecido escrito por Jane Austen em 1813. Se consultares o livro em inglês e uma tradução humana do livro em *francês*, poderias detetar frases em um que são traduzidas _idiomaticamente_ para o outro. Vais fazer isso em breve. + +Por exemplo, quando uma frase em inglês como `I have no money` é traduzida literalmente para francês, pode tornar-se `Je n'ai pas de monnaie`. "Monnaie" é um falso cognato francês complicado, pois 'money' e 'monnaie' não são sinónimos. Uma tradução melhor que um humano poderia fazer seria `Je n'ai pas d'argent`, porque transmite melhor o significado de que não tens dinheiro (em vez de 'troco', que é o significado de 'monnaie'). + +![monnaie](../../../../6-NLP/3-Translation-Sentiment/images/monnaie.png) + +> Imagem por [Jen Looper](https://twitter.com/jenlooper) + +Se um modelo de ML tiver traduções humanas suficientes para construir um modelo, pode melhorar a precisão das traduções ao identificar padrões comuns em textos que foram previamente traduzidos por falantes humanos especializados em ambas as línguas. + +### Exercício - tradução + +Podes usar `TextBlob` para traduzir frases. Experimenta a famosa primeira linha de **Orgulho e Preconceito**: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` faz um bom trabalho na tradução: "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +Pode-se argumentar que a tradução do TextBlob é muito mais precisa, de facto, do que a tradução francesa de 1932 do livro por V. Leconte e Ch. Pressoir: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +Neste caso, a tradução informada por ML faz um trabalho melhor do que o tradutor humano que está a colocar palavras desnecessárias na boca do autor original para 'clareza'. + +> O que está a acontecer aqui? E por que o TextBlob é tão bom na tradução? Bem, nos bastidores, está a usar o Google Translate, uma IA sofisticada capaz de analisar milhões de frases para prever as melhores sequências para a tarefa em questão. Não há nada manual aqui e precisas de uma conexão à internet para usar `blob.translate`. + +✅ Experimenta mais frases. Qual é melhor, ML ou tradução humana? Em que casos? + +## Análise de sentimento + +Outra área onde a aprendizagem automática pode funcionar muito bem é na análise de sentimento. Uma abordagem não baseada em ML para sentimento é identificar palavras e frases que são 'positivas' e 'negativas'. Depois, dado um novo texto, calcular o valor total das palavras positivas, negativas e neutras para identificar o sentimento geral. + +Esta abordagem é facilmente enganada, como podes ter visto na tarefa do Marvin - a frase `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` é uma frase sarcástica, de sentimento negativo, mas o algoritmo simples deteta 'great', 'wonderful', 'glad' como positivas e 'waste', 'lost' e 'dark' como negativas. O sentimento geral é influenciado por estas palavras contraditórias. + +✅ Para um momento e pensa sobre como transmitimos sarcasmo como falantes humanos. A inflexão do tom desempenha um papel importante. Experimenta dizer a frase "Well, that film was awesome" de diferentes maneiras para descobrir como a tua voz transmite significado. + +### Abordagens de ML + +A abordagem de ML seria reunir manualmente corpos de texto negativos e positivos - tweets, ou críticas de filmes, ou qualquer coisa onde o humano tenha dado uma pontuação *e* uma opinião escrita. Depois, técnicas de NLP podem ser aplicadas às opiniões e pontuações, para que padrões emerjam (por exemplo, críticas positivas de filmes tendem a ter a frase 'Oscar worthy' mais do que críticas negativas de filmes, ou críticas positivas de restaurantes dizem 'gourmet' muito mais do que 'disgusting'). + +> ⚖️ **Exemplo**: Se trabalhares no gabinete de um político e houver uma nova lei a ser debatida, os eleitores podem escrever para o gabinete com emails a favor ou contra a nova lei. Digamos que és encarregado de ler os emails e classificá-los em 2 pilhas, *a favor* e *contra*. Se houver muitos emails, podes sentir-te sobrecarregado ao tentar lê-los todos. Não seria ótimo se um bot pudesse lê-los todos por ti, compreendê-los e dizer-te em que pilha cada email pertence? +> +> Uma maneira de conseguir isso é usar Aprendizagem Automática. Treinarias o modelo com uma parte dos emails *contra* e uma parte dos emails *a favor*. O modelo tenderia a associar frases e palavras ao lado contra e ao lado a favor, *mas não entenderia nenhum dos conteúdos*, apenas que certas palavras e padrões eram mais prováveis de aparecer num email *contra* ou *a favor*. Poderias testá-lo com alguns emails que não usaste para treinar o modelo e ver se chegava à mesma conclusão que tu. Depois, uma vez satisfeito com a precisão do modelo, poderias processar emails futuros sem ter de ler cada um. + +✅ Este processo parece semelhante a processos que usaste em lições anteriores? + +## Exercício - frases sentimentais + +O sentimento é medido com uma *polaridade* de -1 a 1, significando que -1 é o sentimento mais negativo e 1 é o mais positivo. O sentimento também é medido com uma pontuação de 0 - 1 para objetividade (0) e subjetividade (1). + +Dá outra olhada em *Orgulho e Preconceito* de Jane Austen. O texto está disponível aqui no [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm). O exemplo abaixo mostra um programa curto que analisa o sentimento das primeiras e últimas frases do livro e exibe a sua polaridade de sentimento e pontuação de subjetividade/objetividade. + +Deves usar a biblioteca `TextBlob` (descrita acima) para determinar `sentiment` (não precisas de escrever o teu próprio calculador de sentimento) na seguinte tarefa. + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +Vês o seguinte output: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## Desafio - verificar polaridade de sentimento + +A tua tarefa é determinar, usando polaridade de sentimento, se *Orgulho e Preconceito* tem mais frases absolutamente positivas do que absolutamente negativas. Para esta tarefa, podes assumir que uma pontuação de polaridade de 1 ou -1 é absolutamente positiva ou negativa, respetivamente. + +**Passos:** + +1. Faz o download de uma [cópia de Orgulho e Preconceito](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) do Project Gutenberg como um ficheiro .txt. Remove os metadados no início e no fim do ficheiro, deixando apenas o texto original. +2. Abre o ficheiro em Python e extrai o conteúdo como uma string. +3. Cria um TextBlob usando a string do livro. +4. Analisa cada frase do livro num loop. + 1. Se a polaridade for 1 ou -1, armazena a frase numa lista de mensagens positivas ou negativas. +5. No final, imprime todas as frases positivas e negativas (separadamente) e o número de cada uma. + +Aqui está uma [solução de exemplo](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb). + +✅ Verificação de Conhecimento + +1. O sentimento é baseado nas palavras usadas na frase, mas o código *entende* as palavras? +2. Achas que a polaridade de sentimento é precisa, ou seja, *concordas* com as pontuações? + 1. Em particular, concordas ou discordas da polaridade **positiva** absoluta das seguintes frases? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. As próximas 3 frases foram pontuadas com um sentimento absolutamente positivo, mas, ao ler atentamente, não são frases positivas. Por que a análise de sentimento pensou que eram frases positivas? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. Concordas ou discordas da polaridade **negativa** absoluta das seguintes frases? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ Qualquer aficionado de Jane Austen entenderá que ela frequentemente usa os seus livros para criticar os aspetos mais ridículos da sociedade da Regência Inglesa. Elizabeth Bennett, a personagem principal em *Orgulho e Preconceito*, é uma observadora social perspicaz (como a autora) e a sua linguagem é frequentemente muito subtil. Até mesmo Mr. Darcy (o interesse amoroso na história) nota o uso brincalhão e provocador da linguagem por parte de Elizabeth: "I have had the pleasure of your acquaintance long enough to know that you find great enjoyment in occasionally professing opinions which in fact are not your own." + +--- + +## 🚀Desafio + +Consegues melhorar o Marvin ainda mais ao extrair outras características da entrada do utilizador? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo +Existem muitas formas de extrair sentimentos de texto. Pense nas aplicações empresariais que podem utilizar esta técnica. Reflita sobre como isso pode dar errado. Leia mais sobre sistemas empresariais sofisticados prontos para analisar sentimentos, como [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott). Teste algumas das frases de Orgulho e Preconceito acima e veja se consegue detetar nuances. + +## Tarefa + +[Licença poética](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/3-Translation-Sentiment/assignment.md b/translations/pt-PT/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..5bb8bff7c --- /dev/null +++ b/translations/pt-PT/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,16 @@ +# Licença poética + +## Instruções + +Neste [notebook](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency) pode encontrar mais de 500 poemas de Emily Dickinson previamente analisados quanto ao sentimento utilizando a análise de texto do Azure. Usando este conjunto de dados, analise-o utilizando as técnicas descritas na lição. O sentimento sugerido de um poema corresponde à decisão do serviço mais sofisticado do Azure? Porquê ou porquê não, na sua opinião? Há algo que o surpreenda? + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | ------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------ | +| | Um notebook é apresentado com uma análise sólida de uma amostra do autor | O notebook está incompleto ou não realiza a análise | Nenhum notebook é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..fceefa4cc --- /dev/null +++ b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..fceefa4cc --- /dev/null +++ b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..5d4096b02 --- /dev/null +++ b/translations/pt-PT/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-03T20:58:04+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/README.md b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..d661d229b --- /dev/null +++ b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,408 @@ +# Análise de sentimentos com avaliações de hotéis - processamento de dados + +Nesta seção, vais utilizar as técnicas das lições anteriores para realizar uma análise exploratória de dados num conjunto de dados extenso. Depois de compreender bem a utilidade das várias colunas, vais aprender: + +- como remover as colunas desnecessárias +- como calcular novos dados com base nas colunas existentes +- como guardar o conjunto de dados resultante para uso no desafio final + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +### Introdução + +Até agora aprendeste que os dados textuais são bastante diferentes dos dados numéricos. Quando o texto é escrito ou falado por humanos, pode ser analisado para encontrar padrões, frequências, sentimentos e significados. Esta lição leva-te a um conjunto de dados real com um desafio real: **[515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**, que inclui uma [licença CC0: Domínio Público](https://creativecommons.org/publicdomain/zero/1.0/). Os dados foram extraídos de Booking.com a partir de fontes públicas. O criador do conjunto de dados foi Jiashen Liu. + +### Preparação + +Vais precisar de: + +* Capacidade de executar notebooks .ipynb usando Python 3 +* pandas +* NLTK, [que deves instalar localmente](https://www.nltk.org/install.html) +* O conjunto de dados disponível no Kaggle [515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). Tem cerca de 230 MB descompactado. Faz o download para a pasta raiz `/data` associada a estas lições de NLP. + +## Análise exploratória de dados + +Este desafio assume que estás a construir um bot de recomendação de hotéis usando análise de sentimentos e pontuações de avaliações de hóspedes. O conjunto de dados que vais utilizar inclui avaliações de 1493 hotéis diferentes em 6 cidades. + +Usando Python, um conjunto de dados de avaliações de hotéis e a análise de sentimentos do NLTK, podes descobrir: + +* Quais são as palavras e frases mais frequentemente usadas nas avaliações? +* As *tags* oficiais que descrevem um hotel correlacionam-se com as pontuações das avaliações (por exemplo, há mais avaliações negativas para um hotel específico por *Famílias com crianças pequenas* do que por *Viajantes solitários*, talvez indicando que é mais adequado para *Viajantes solitários*)? +* As pontuações de sentimentos do NLTK "concordam" com a pontuação numérica do avaliador? + +#### Conjunto de dados + +Vamos explorar o conjunto de dados que descarregaste e guardaste localmente. Abre o ficheiro num editor como o VS Code ou até mesmo no Excel. + +Os cabeçalhos no conjunto de dados são os seguintes: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +Aqui estão agrupados de forma que possam ser mais fáceis de examinar: +##### Colunas do hotel + +* `Hotel_Name`, `Hotel_Address`, `lat` (latitude), `lng` (longitude) + * Usando *lat* e *lng* podes criar um mapa com Python mostrando as localizações dos hotéis (talvez codificado por cores para avaliações negativas e positivas) + * Hotel_Address não parece ser muito útil para nós, e provavelmente será substituído por um país para facilitar a ordenação e pesquisa + +**Colunas de meta-avaliação do hotel** + +* `Average_Score` + * De acordo com o criador do conjunto de dados, esta coluna é a *Pontuação média do hotel, calculada com base no último comentário do último ano*. Parece uma forma incomum de calcular a pontuação, mas são os dados extraídos, então podemos aceitá-los como estão por agora. + + ✅ Com base nas outras colunas deste conjunto de dados, consegues pensar noutra forma de calcular a pontuação média? + +* `Total_Number_of_Reviews` + * O número total de avaliações que este hotel recebeu - não está claro (sem escrever algum código) se isto se refere às avaliações no conjunto de dados. +* `Additional_Number_of_Scoring` + * Isto significa que foi dada uma pontuação de avaliação, mas o avaliador não escreveu uma avaliação positiva ou negativa. + +**Colunas de avaliação** + +- `Reviewer_Score` + - Este é um valor numérico com, no máximo, 1 casa decimal entre os valores mínimos e máximos de 2.5 e 10 + - Não é explicado porque 2.5 é a pontuação mínima possível +- `Negative_Review` + - Se um avaliador não escreveu nada, este campo terá "**No Negative**" + - Nota que um avaliador pode escrever uma avaliação positiva na coluna de avaliação negativa (por exemplo, "não há nada de mau neste hotel") +- `Review_Total_Negative_Word_Counts` + - Contagens mais altas de palavras negativas indicam uma pontuação mais baixa (sem verificar a sentimentalidade) +- `Positive_Review` + - Se um avaliador não escreveu nada, este campo terá "**No Positive**" + - Nota que um avaliador pode escrever uma avaliação negativa na coluna de avaliação positiva (por exemplo, "não há nada de bom neste hotel") +- `Review_Total_Positive_Word_Counts` + - Contagens mais altas de palavras positivas indicam uma pontuação mais alta (sem verificar a sentimentalidade) +- `Review_Date` e `days_since_review` + - Pode ser aplicada uma medida de frescura ou desatualização a uma avaliação (avaliações mais antigas podem não ser tão precisas quanto as mais recentes porque a gestão do hotel mudou, ou foram feitas renovações, ou foi adicionada uma piscina, etc.) +- `Tags` + - Estas são descritores curtos que um avaliador pode selecionar para descrever o tipo de hóspede que era (por exemplo, solitário ou família), o tipo de quarto que teve, a duração da estadia e como a avaliação foi submetida. + - Infelizmente, usar estas tags é problemático, verifica a seção abaixo que discute a sua utilidade. + +**Colunas do avaliador** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - Isto pode ser um fator num modelo de recomendação, por exemplo, se conseguires determinar que avaliadores mais prolíficos, com centenas de avaliações, eram mais propensos a serem negativos do que positivos. No entanto, o avaliador de qualquer avaliação específica não é identificado com um código único e, portanto, não pode ser ligado a um conjunto de avaliações. Existem 30 avaliadores com 100 ou mais avaliações, mas é difícil ver como isto pode ajudar o modelo de recomendação. +- `Reviewer_Nationality` + - Algumas pessoas podem pensar que certas nacionalidades são mais propensas a dar uma avaliação positiva ou negativa devido a uma inclinação nacional. Tem cuidado ao construir tais visões anedóticas nos teus modelos. Estes são estereótipos nacionais (e às vezes raciais), e cada avaliador foi um indivíduo que escreveu uma avaliação com base na sua experiência. Esta pode ter sido filtrada por muitas lentes, como as suas estadias anteriores em hotéis, a distância percorrida e o seu temperamento pessoal. Pensar que a nacionalidade foi a razão para uma pontuação de avaliação é difícil de justificar. + +##### Exemplos + +| Average Score | Total Number Reviews | Reviewer Score | Negative
Review | Positive Review | Tags | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | Este não é atualmente um hotel, mas um local de construção. Fui aterrorizado desde cedo pela manhã e durante todo o dia com ruídos de construção inaceitáveis enquanto descansava após uma longa viagem e trabalhava no quarto. Pessoas estavam a trabalhar o dia todo, ou seja, com martelos pneumáticos nos quartos adjacentes. Pedi para mudar de quarto, mas não havia nenhum quarto silencioso disponível. Para piorar, fui cobrado em excesso. Fiz o check-out à noite, pois tinha um voo muito cedo e recebi uma fatura apropriada. Um dia depois, o hotel fez outra cobrança sem o meu consentimento, acima do preço reservado. É um lugar terrível. Não te castigues reservando aqui. | Nada. Lugar terrível. Fica longe. | Viagem de negócios. Casal. Quarto duplo standard. Ficou 2 noites. | + +Como podes ver, este hóspede não teve uma estadia feliz neste hotel. O hotel tem uma boa pontuação média de 7.8 e 1945 avaliações, mas este avaliador deu-lhe 2.5 e escreveu 115 palavras sobre como a sua estadia foi negativa. Se não escreveu nada na coluna Positive_Review, podes deduzir que não houve nada positivo, mas ainda assim escreveu 7 palavras de aviso. Se apenas contássemos palavras em vez do significado ou sentimento das palavras, poderíamos ter uma visão distorcida da intenção do avaliador. Estranhamente, a sua pontuação de 2.5 é confusa, porque se a estadia no hotel foi tão má, por que dar qualquer ponto? Investigando o conjunto de dados de perto, vais ver que a pontuação mínima possível é 2.5, não 0. A pontuação máxima possível é 10. + +##### Tags + +Como mencionado acima, à primeira vista, a ideia de usar `Tags` para categorizar os dados faz sentido. Infelizmente, estas tags não são padronizadas, o que significa que num dado hotel, as opções podem ser *Single room*, *Twin room* e *Double room*, mas no próximo hotel, são *Deluxe Single Room*, *Classic Queen Room* e *Executive King Room*. Podem ser a mesma coisa, mas há tantas variações que a escolha torna-se: + +1. Tentar alterar todos os termos para um único padrão, o que é muito difícil, porque não está claro qual seria o caminho de conversão em cada caso (por exemplo, *Classic single room* mapeia para *Single room*, mas *Superior Queen Room with Courtyard Garden or City View* é muito mais difícil de mapear) + +1. Podemos adotar uma abordagem de NLP e medir a frequência de certos termos como *Solo*, *Business Traveller* ou *Family with young kids* conforme se aplicam a cada hotel, e incluir isso na recomendação + +As tags geralmente (mas nem sempre) são um único campo contendo uma lista de 5 a 6 valores separados por vírgulas alinhados a *Tipo de viagem*, *Tipo de hóspedes*, *Tipo de quarto*, *Número de noites* e *Tipo de dispositivo em que a avaliação foi submetida*. No entanto, como alguns avaliadores não preenchem cada campo (podem deixar um em branco), os valores nem sempre estão na mesma ordem. + +Como exemplo, considera *Tipo de grupo*. Existem 1025 possibilidades únicas neste campo na coluna `Tags`, e infelizmente apenas algumas delas referem-se a um grupo (algumas são o tipo de quarto, etc.). Se filtrares apenas as que mencionam família, os resultados contêm muitos resultados do tipo *Family room*. Se incluíres o termo *with*, ou seja, contares os valores *Family with*, os resultados são melhores, com mais de 80.000 dos 515.000 resultados contendo a frase "Family with young children" ou "Family with older children". + +Isto significa que a coluna tags não é completamente inútil para nós, mas será necessário algum trabalho para torná-la útil. + +##### Pontuação média do hotel + +Existem algumas peculiaridades ou discrepâncias no conjunto de dados que não consigo entender, mas são ilustradas aqui para que estejas ciente delas ao construir os teus modelos. Se conseguires descobrir, por favor, avisa-nos na seção de discussão! + +O conjunto de dados tem as seguintes colunas relacionadas à pontuação média e ao número de avaliações: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +O único hotel com mais avaliações neste conjunto de dados é *Britannia International Hotel Canary Wharf* com 4789 avaliações de um total de 515.000. Mas se olharmos para o valor `Total_Number_of_Reviews` deste hotel, é 9086. Podes deduzir que há muitas mais pontuações sem avaliações, então talvez devêssemos adicionar o valor da coluna `Additional_Number_of_Scoring`. Esse valor é 2682, e adicioná-lo a 4789 dá-nos 7471, que ainda está 1615 abaixo do `Total_Number_of_Reviews`. + +Se considerares a coluna `Average_Score`, podes deduzir que é a média das avaliações no conjunto de dados, mas a descrição do Kaggle é "*Pontuação média do hotel, calculada com base no último comentário do último ano*". Isso não parece muito útil, mas podemos calcular a nossa própria média com base nas pontuações das avaliações no conjunto de dados. Usando o mesmo hotel como exemplo, a pontuação média do hotel é dada como 7.1, mas a pontuação calculada (pontuação média do avaliador *no* conjunto de dados) é 6.8. Isto é próximo, mas não o mesmo valor, e só podemos supor que as pontuações dadas nas avaliações `Additional_Number_of_Scoring` aumentaram a média para 7.1. Infelizmente, sem forma de testar ou provar essa suposição, é difícil usar ou confiar em `Average_Score`, `Additional_Number_of_Scoring` e `Total_Number_of_Reviews` quando são baseados em, ou referem-se a, dados que não temos. + +Para complicar ainda mais, o hotel com o segundo maior número de avaliações tem uma pontuação média calculada de 8.12 e a `Average_Score` do conjunto de dados é 8.1. Esta pontuação correta é uma coincidência ou o primeiro hotel é uma discrepância? + +Na possibilidade de que estes hotéis possam ser um caso isolado, e que talvez a maioria dos valores se alinhem (mas alguns não por alguma razão), vamos escrever um pequeno programa a seguir para explorar os valores no conjunto de dados e determinar o uso correto (ou não uso) dos valores. +> 🚨 Uma nota de precaução +> +> Ao trabalhar com este conjunto de dados, irá escrever código que calcula algo a partir do texto sem ter de ler ou analisar o texto diretamente. Esta é a essência do NLP, interpretar significado ou sentimento sem que seja necessário um humano fazê-lo. No entanto, é possível que acabe por ler algumas das críticas negativas. Recomendo que não o faça, porque não é necessário. Algumas delas são disparatadas ou irrelevantes, como críticas negativas a hotéis do tipo "O tempo não estava bom", algo que está fora do controlo do hotel, ou de qualquer pessoa. Mas há também um lado sombrio em algumas críticas. Por vezes, as críticas negativas são racistas, sexistas ou preconceituosas em relação à idade. Isto é lamentável, mas esperado num conjunto de dados extraído de um site público. Alguns utilizadores deixam críticas que podem ser consideradas de mau gosto, desconfortáveis ou perturbadoras. É melhor deixar que o código avalie o sentimento do que lê-las e ficar incomodado. Dito isto, é uma minoria que escreve tais coisas, mas elas existem na mesma. +## Exercício - Exploração de dados +### Carregar os dados + +Já chega de examinar os dados visualmente, agora vais escrever algum código e obter respostas! Esta secção utiliza a biblioteca pandas. A tua primeira tarefa é garantir que consegues carregar e ler os dados CSV. A biblioteca pandas tem um carregador rápido de CSV, e o resultado é colocado num dataframe, como nas lições anteriores. O CSV que estamos a carregar tem mais de meio milhão de linhas, mas apenas 17 colunas. O pandas oferece muitas formas poderosas de interagir com um dataframe, incluindo a capacidade de realizar operações em cada linha. + +A partir daqui, nesta lição, haverá trechos de código e algumas explicações sobre o código, bem como discussões sobre o significado dos resultados. Usa o _notebook.ipynb_ incluído para o teu código. + +Vamos começar por carregar o ficheiro de dados que vais utilizar: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +Agora que os dados estão carregados, podemos realizar algumas operações sobre eles. Mantém este código no topo do teu programa para a próxima parte. + +## Explorar os dados + +Neste caso, os dados já estão *limpos*, o que significa que estão prontos para trabalhar e não têm caracteres noutras línguas que possam causar problemas a algoritmos que esperam apenas caracteres em inglês. + +✅ Poderás ter de trabalhar com dados que requerem algum processamento inicial para os formatar antes de aplicar técnicas de NLP, mas não desta vez. Se tivesses de o fazer, como lidarias com caracteres não ingleses? + +Tira um momento para garantir que, uma vez carregados os dados, consegues explorá-los com código. É muito fácil querer focar nas colunas `Negative_Review` e `Positive_Review`. Elas estão preenchidas com texto natural para os teus algoritmos de NLP processarem. Mas espera! Antes de mergulhares no NLP e na análise de sentimentos, deves seguir o código abaixo para verificar se os valores fornecidos no conjunto de dados correspondem aos valores que calculas com pandas. + +## Operações no dataframe + +A primeira tarefa nesta lição é verificar se as seguintes afirmações estão corretas, escrevendo algum código que examine o dataframe (sem o alterar). + +> Tal como em muitas tarefas de programação, há várias formas de completar isto, mas um bom conselho é fazê-lo da forma mais simples e fácil possível, especialmente se for mais fácil de entender quando voltares a este código no futuro. Com dataframes, há uma API abrangente que frequentemente terá uma forma eficiente de fazer o que precisas. + +Trata as seguintes perguntas como tarefas de codificação e tenta respondê-las sem olhar para a solução. + +1. Imprime a *forma* do dataframe que acabaste de carregar (a forma é o número de linhas e colunas). +2. Calcula a contagem de frequência para as nacionalidades dos revisores: + 1. Quantos valores distintos existem na coluna `Reviewer_Nationality` e quais são eles? + 2. Qual é a nacionalidade de revisor mais comum no conjunto de dados (imprime o país e o número de revisões)? + 3. Quais são as 10 nacionalidades mais frequentes e a sua contagem de frequência? +3. Qual foi o hotel mais revisado para cada uma das 10 nacionalidades de revisores mais frequentes? +4. Quantas revisões existem por hotel (contagem de frequência de hotel) no conjunto de dados? +5. Embora exista uma coluna `Average_Score` para cada hotel no conjunto de dados, também podes calcular uma pontuação média (obtendo a média de todas as pontuações dos revisores no conjunto de dados para cada hotel). Adiciona uma nova coluna ao teu dataframe com o cabeçalho `Calc_Average_Score` que contém essa média calculada. +6. Algum hotel tem o mesmo valor (arredondado a 1 casa decimal) para `Average_Score` e `Calc_Average_Score`? + 1. Tenta escrever uma função Python que receba uma Série (linha) como argumento e compare os valores, imprimindo uma mensagem quando os valores não forem iguais. Depois usa o método `.apply()` para processar cada linha com a função. +7. Calcula e imprime quantas linhas têm valores "No Negative" na coluna `Negative_Review`. +8. Calcula e imprime quantas linhas têm valores "No Positive" na coluna `Positive_Review`. +9. Calcula e imprime quantas linhas têm valores "No Positive" na coluna `Positive_Review` **e** valores "No Negative" na coluna `Negative_Review`. + +### Respostas em código + +1. Imprime a *forma* do dataframe que acabaste de carregar (a forma é o número de linhas e colunas). + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. Calcula a contagem de frequência para as nacionalidades dos revisores: + + 1. Quantos valores distintos existem na coluna `Reviewer_Nationality` e quais são eles? + 2. Qual é a nacionalidade de revisor mais comum no conjunto de dados (imprime o país e o número de revisões)? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. Quais são as 10 nacionalidades mais frequentes e a sua contagem de frequência? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. Qual foi o hotel mais revisado para cada uma das 10 nacionalidades de revisores mais frequentes? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. Quantas revisões existem por hotel (contagem de frequência de hotel) no conjunto de dados? + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + Podes notar que os resultados *contados no conjunto de dados* não correspondem ao valor em `Total_Number_of_Reviews`. Não está claro se este valor no conjunto de dados representa o número total de revisões que o hotel teve, mas nem todas foram recolhidas, ou algum outro cálculo. `Total_Number_of_Reviews` não é usado no modelo devido a esta falta de clareza. + +5. Embora exista uma coluna `Average_Score` para cada hotel no conjunto de dados, também podes calcular uma pontuação média (obtendo a média de todas as pontuações dos revisores no conjunto de dados para cada hotel). Adiciona uma nova coluna ao teu dataframe com o cabeçalho `Calc_Average_Score` que contém essa média calculada. Imprime as colunas `Hotel_Name`, `Average_Score` e `Calc_Average_Score`. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + Podes também questionar-te sobre o valor de `Average_Score` e porque é que às vezes é diferente da pontuação média calculada. Como não podemos saber porque é que alguns dos valores coincidem, mas outros têm uma diferença, é mais seguro, neste caso, usar as pontuações das revisões que temos para calcular a média nós mesmos. Dito isto, as diferenças são geralmente muito pequenas. Aqui estão os hotéis com a maior diferença entre a média do conjunto de dados e a média calculada: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + Com apenas 1 hotel tendo uma diferença de pontuação maior que 1, significa que provavelmente podemos ignorar a diferença e usar a pontuação média calculada. + +6. Calcula e imprime quantas linhas têm valores "No Negative" na coluna `Negative_Review`. + +7. Calcula e imprime quantas linhas têm valores "No Positive" na coluna `Positive_Review`. + +8. Calcula e imprime quantas linhas têm valores "No Positive" na coluna `Positive_Review` **e** valores "No Negative" na coluna `Negative_Review`. + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## Outra forma + +Outra forma de contar itens sem Lambdas, e usar sum para contar as linhas: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + Podes ter notado que há 127 linhas que têm ambos os valores "No Negative" e "No Positive" nas colunas `Negative_Review` e `Positive_Review`, respetivamente. Isso significa que o revisor deu ao hotel uma pontuação numérica, mas optou por não escrever uma revisão positiva ou negativa. Felizmente, isto é uma pequena quantidade de linhas (127 de 515738, ou 0,02%), então provavelmente não vai enviesar o nosso modelo ou resultados numa direção particular, mas talvez não esperasses que um conjunto de dados de revisões tivesse linhas sem revisões, por isso vale a pena explorar os dados para descobrir linhas como esta. + +Agora que exploraste o conjunto de dados, na próxima lição vais filtrar os dados e adicionar alguma análise de sentimentos. + +--- +## 🚀Desafio + +Esta lição demonstra, como vimos em lições anteriores, quão importante é entender os teus dados e as suas peculiaridades antes de realizar operações sobre eles. Dados baseados em texto, em particular, requerem uma análise cuidadosa. Explora vários conjuntos de dados ricos em texto e vê se consegues descobrir áreas que poderiam introduzir enviesamento ou sentimentos distorcidos num modelo. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Segue [este percurso de aprendizagem sobre NLP](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) para descobrir ferramentas que podes experimentar ao construir modelos baseados em fala e texto. + +## Tarefa + +[NLTK](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..dd210e519 --- /dev/null +++ b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,10 @@ +# NLTK + +## Instruções + +NLTK é uma biblioteca bem conhecida para uso em linguística computacional e NLP. Aproveite esta oportunidade para ler o '[livro do NLTK](https://www.nltk.org/book/)' e experimentar os seus exercícios. Nesta tarefa não avaliada, terá a oportunidade de conhecer esta biblioteca mais a fundo. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..fceefa4cc --- /dev/null +++ b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..91db36129 --- /dev/null +++ b/translations/pt-PT/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-03T20:57:46+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/README.md b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..542ce5d0d --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,380 @@ +# Análise de sentimentos com avaliações de hotéis + +Agora que exploraste o conjunto de dados em detalhe, é hora de filtrar as colunas e usar técnicas de NLP no conjunto de dados para obter novos insights sobre os hotéis. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +### Operações de Filtragem e Análise de Sentimentos + +Como provavelmente já reparaste, o conjunto de dados tem alguns problemas. Algumas colunas estão preenchidas com informações inúteis, outras parecem incorretas. Mesmo que estejam corretas, não é claro como foram calculadas, e as respostas não podem ser verificadas de forma independente pelos teus próprios cálculos. + +## Exercício: mais um pouco de processamento de dados + +Limpa os dados um pouco mais. Adiciona colunas que serão úteis mais tarde, altera os valores em outras colunas e elimina certas colunas completamente. + +1. Processamento inicial de colunas + + 1. Elimina `lat` e `lng` + + 2. Substitui os valores de `Hotel_Address` pelos seguintes valores (se o endereço contiver o nome da cidade e do país, altera para apenas a cidade e o país). + + Estas são as únicas cidades e países no conjunto de dados: + + Amesterdão, Países Baixos + + Barcelona, Espanha + + Londres, Reino Unido + + Milão, Itália + + Paris, França + + Viena, Áustria + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + Agora podes consultar dados a nível de país: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | Amesterdão, Países Baixos | 105 | + | Barcelona, Espanha | 211 | + | Londres, Reino Unido | 400 | + | Milão, Itália | 162 | + | Paris, França | 458 | + | Viena, Áustria | 158 | + +2. Processar colunas de meta-avaliação dos hotéis + + 1. Elimina `Additional_Number_of_Scoring` + + 1. Substitui `Total_Number_of_Reviews` pelo número total de avaliações para aquele hotel que estão realmente no conjunto de dados + + 1. Substitui `Average_Score` pela nossa própria pontuação calculada + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. Processar colunas de avaliação + + 1. Elimina `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` e `days_since_review` + + 2. Mantém `Reviewer_Score`, `Negative_Review` e `Positive_Review` como estão + + 3. Mantém `Tags` por agora + + - Faremos algumas operações adicionais de filtragem nas tags na próxima seção e depois as tags serão eliminadas + +4. Processar colunas de avaliadores + + 1. Elimina `Total_Number_of_Reviews_Reviewer_Has_Given` + + 2. Mantém `Reviewer_Nationality` + +### Colunas de Tags + +A coluna `Tag` é problemática, pois é uma lista (em formato de texto) armazenada na coluna. Infelizmente, a ordem e o número de subsecções nesta coluna nem sempre são os mesmos. É difícil para um humano identificar as frases corretas de interesse, porque há 515.000 linhas e 1427 hotéis, e cada um tem opções ligeiramente diferentes que um avaliador poderia escolher. É aqui que o NLP se destaca. Podes analisar o texto e encontrar as frases mais comuns, e contá-las. + +Infelizmente, não estamos interessados em palavras isoladas, mas em frases compostas (por exemplo, *Viagem de negócios*). Executar um algoritmo de distribuição de frequência de frases compostas em tantos dados (6762646 palavras) poderia levar um tempo extraordinário, mas sem olhar para os dados, pareceria que isso é uma despesa necessária. É aqui que a análise exploratória de dados é útil, porque já viste uma amostra das tags como `[' Viagem de negócios ', ' Viajante sozinho ', ' Quarto individual ', ' Ficou 5 noites ', ' Enviado de um dispositivo móvel ']`, podes começar a perguntar se é possível reduzir drasticamente o processamento que tens de fazer. Felizmente, é - mas primeiro precisas seguir alguns passos para determinar as tags de interesse. + +### Filtragem de tags + +Lembra-te de que o objetivo do conjunto de dados é adicionar sentimentos e colunas que te ajudem a escolher o melhor hotel (para ti ou talvez para um cliente que te encarregue de criar um bot de recomendação de hotéis). Precisas perguntar-te se as tags são úteis ou não no conjunto de dados final. Aqui está uma interpretação (se precisasses do conjunto de dados para outros fins, tags diferentes poderiam permanecer/ser excluídas da seleção): + +1. O tipo de viagem é relevante e deve permanecer +2. O tipo de grupo de hóspedes é importante e deve permanecer +3. O tipo de quarto, suíte ou estúdio em que o hóspede ficou é irrelevante (todos os hotéis têm basicamente os mesmos quartos) +4. O dispositivo no qual a avaliação foi enviada é irrelevante +5. O número de noites que o avaliador ficou *poderia* ser relevante se atribuísses estadias mais longas a gostar mais do hotel, mas é um pouco forçado e provavelmente irrelevante + +Em resumo, **mantém 2 tipos de tags e remove as outras**. + +Primeiro, não queres contar as tags até que estejam num formato melhor, o que significa remover os colchetes e aspas. Podes fazer isso de várias maneiras, mas queres a mais rápida, pois pode levar muito tempo para processar muitos dados. Felizmente, o pandas tem uma maneira fácil de realizar cada um desses passos. + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +Cada tag torna-se algo como: `Viagem de negócios, Viajante sozinho, Quarto individual, Ficou 5 noites, Enviado de um dispositivo móvel`. + +A seguir, encontramos um problema. Algumas avaliações, ou linhas, têm 5 colunas, outras 3, outras 6. Isso é resultado de como o conjunto de dados foi criado e difícil de corrigir. Queres obter uma contagem de frequência de cada frase, mas elas estão em ordens diferentes em cada avaliação, então a contagem pode estar errada e um hotel pode não receber uma tag atribuída que merecia. + +Em vez disso, vais usar a ordem diferente a nosso favor, porque cada tag é composta por várias palavras, mas também separada por uma vírgula! A maneira mais simples de fazer isso é criar 6 colunas temporárias com cada tag inserida na coluna correspondente à sua ordem na tag. Podes então fundir as 6 colunas numa grande coluna e executar o método `value_counts()` na coluna resultante. Ao imprimir isso, verás que havia 2428 tags únicas. Aqui está uma pequena amostra: + +| Tag | Contagem | +| ------------------------------ | -------- | +| Viagem de lazer | 417778 | +| Enviado de um dispositivo móvel| 307640 | +| Casal | 252294 | +| Ficou 1 noite | 193645 | +| Ficou 2 noites | 133937 | +| Viajante sozinho | 108545 | +| Ficou 3 noites | 95821 | +| Viagem de negócios | 82939 | +| Grupo | 65392 | +| Família com crianças pequenas | 61015 | +| Ficou 4 noites | 47817 | +| Quarto duplo | 35207 | +| Quarto duplo padrão | 32248 | +| Quarto duplo superior | 31393 | +| Família com crianças mais velhas| 26349 | +| Quarto duplo deluxe | 24823 | +| Quarto duplo ou twin | 22393 | +| Ficou 5 noites | 20845 | +| Quarto duplo ou twin padrão | 17483 | +| Quarto duplo clássico | 16989 | +| Quarto duplo ou twin superior | 13570 | +| 2 quartos | 12393 | + +Algumas das tags comuns como `Enviado de um dispositivo móvel` não são úteis para nós, então pode ser inteligente removê-las antes de contar a ocorrência de frases, mas é uma operação tão rápida que podes deixá-las e ignorá-las. + +### Remover tags de duração da estadia + +Remover estas tags é o passo 1, reduzindo ligeiramente o número total de tags a serem consideradas. Nota que não as removes do conjunto de dados, apenas escolhes removê-las da consideração como valores a contar/manter no conjunto de dados de avaliações. + +| Duração da estadia | Contagem | +| ------------------ | -------- | +| Ficou 1 noite | 193645 | +| Ficou 2 noites | 133937 | +| Ficou 3 noites | 95821 | +| Ficou 4 noites | 47817 | +| Ficou 5 noites | 20845 | +| Ficou 6 noites | 9776 | +| Ficou 7 noites | 7399 | +| Ficou 8 noites | 2502 | +| Ficou 9 noites | 1293 | +| ... | ... | + +Há uma enorme variedade de quartos, suítes, estúdios, apartamentos e assim por diante. Todos significam mais ou menos a mesma coisa e não são relevantes para ti, então remove-os da consideração. + +| Tipo de quarto | Contagem | +| ------------------------------- | -------- | +| Quarto duplo | 35207 | +| Quarto duplo padrão | 32248 | +| Quarto duplo superior | 31393 | +| Quarto duplo deluxe | 24823 | +| Quarto duplo ou twin | 22393 | +| Quarto duplo ou twin padrão | 17483 | +| Quarto duplo clássico | 16989 | +| Quarto duplo ou twin superior | 13570 | + +Finalmente, e isto é encantador (porque não exigiu muito processamento), ficarás com as seguintes tags *úteis*: + +| Tag | Contagem | +| --------------------------------------------- | -------- | +| Viagem de lazer | 417778 | +| Casal | 252294 | +| Viajante sozinho | 108545 | +| Viagem de negócios | 82939 | +| Grupo (combinado com Viajantes com amigos) | 67535 | +| Família com crianças pequenas | 61015 | +| Família com crianças mais velhas | 26349 | +| Com um animal de estimação | 1405 | + +Poderias argumentar que `Viajantes com amigos` é o mesmo que `Grupo` mais ou menos, e seria justo combinar os dois como acima. O código para identificar as tags corretas está no [notebook de Tags](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb). + +O passo final é criar novas colunas para cada uma destas tags. Depois, para cada linha de avaliação, se a coluna `Tag` corresponder a uma das novas colunas, adiciona um 1, caso contrário, adiciona um 0. O resultado final será uma contagem de quantos avaliadores escolheram este hotel (em agregado) para, por exemplo, negócios vs lazer, ou para levar um animal de estimação, e esta é uma informação útil ao recomendar um hotel. + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### Salvar o ficheiro + +Finalmente, salva o conjunto de dados como está agora com um novo nome. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## Operações de Análise de Sentimentos + +Nesta última seção, vais aplicar análise de sentimentos às colunas de avaliação e salvar os resultados num conjunto de dados. + +## Exercício: carregar e salvar os dados filtrados + +Nota que agora estás a carregar o conjunto de dados filtrado que foi salvo na seção anterior, **não** o conjunto de dados original. + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### Remover palavras irrelevantes + +Se fosses executar a Análise de Sentimentos nas colunas de Avaliação Negativa e Avaliação Positiva, poderia levar muito tempo. Testado num portátil de teste poderoso com CPU rápida, levou 12 - 14 minutos dependendo da biblioteca de sentimentos usada. Esse é um tempo (relativamente) longo, então vale a pena investigar se isso pode ser acelerado. + +Remover palavras irrelevantes, ou palavras comuns em inglês que não alteram o sentimento de uma frase, é o primeiro passo. Ao removê-las, a análise de sentimentos deve ser mais rápida, mas não menos precisa (já que as palavras irrelevantes não afetam o sentimento, mas sim desaceleram a análise). + +A avaliação negativa mais longa tinha 395 palavras, mas após remover as palavras irrelevantes, ficou com 195 palavras. + +Remover as palavras irrelevantes também é uma operação rápida, removê-las de 2 colunas de avaliação em mais de 515.000 linhas levou 3,3 segundos no dispositivo de teste. Pode levar um pouco mais ou menos tempo para ti, dependendo da velocidade do CPU do teu dispositivo, RAM, se tens um SSD ou não, e alguns outros fatores. A relativa rapidez da operação significa que, se melhorar o tempo de análise de sentimentos, então vale a pena fazer. + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### Realizar análise de sentimentos + +Agora deves calcular a análise de sentimentos para ambas as colunas de avaliação negativa e positiva, e armazenar o resultado em 2 novas colunas. O teste da análise de sentimentos será compará-lo com a pontuação do avaliador para a mesma avaliação. Por exemplo, se a análise de sentimentos indicar que a avaliação negativa teve um sentimento de 1 (sentimento extremamente positivo) e um sentimento de 1 na avaliação positiva, mas o avaliador deu ao hotel a pontuação mais baixa possível, então ou o texto da avaliação não corresponde à pontuação, ou o analisador de sentimentos não conseguiu reconhecer o sentimento corretamente. Deves esperar que algumas pontuações de sentimentos estejam completamente erradas, e muitas vezes isso será explicável, por exemplo, a avaliação pode ser extremamente sarcástica: "Claro que ADOREI dormir num quarto sem aquecimento" e o analisador de sentimentos pensa que isso é um sentimento positivo, mesmo que um humano ao ler saiba que é sarcasmo. +NLTK fornece diferentes analisadores de sentimento para aprender, e você pode substituí-los e verificar se o sentimento é mais ou menos preciso. A análise de sentimento VADER é utilizada aqui. + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, junho de 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +Mais tarde, no seu programa, quando estiver pronto para calcular o sentimento, pode aplicá-lo a cada avaliação da seguinte forma: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +Isso leva aproximadamente 120 segundos no meu computador, mas pode variar em cada máquina. Se quiser imprimir os resultados e verificar se o sentimento corresponde à avaliação: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +A última coisa a fazer com o ficheiro antes de utilizá-lo no desafio é salvá-lo! Também deve considerar reorganizar todas as suas novas colunas para que sejam fáceis de trabalhar (para um humano, é uma mudança estética). + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +Deve executar todo o código do [notebook de análise](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) (depois de ter executado [o notebook de filtragem](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) para gerar o ficheiro Hotel_Reviews_Filtered.csv). + +Para recapitular, os passos são: + +1. O ficheiro do conjunto de dados original **Hotel_Reviews.csv** é explorado na lição anterior com [o notebook de exploração](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) +2. Hotel_Reviews.csv é filtrado pelo [notebook de filtragem](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb), resultando em **Hotel_Reviews_Filtered.csv** +3. Hotel_Reviews_Filtered.csv é processado pelo [notebook de análise de sentimento](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb), resultando em **Hotel_Reviews_NLP.csv** +4. Utilize Hotel_Reviews_NLP.csv no Desafio de NLP abaixo + +### Conclusão + +Quando começou, tinha um conjunto de dados com colunas e informações, mas nem tudo podia ser verificado ou utilizado. Explorou os dados, filtrou o que não precisava, converteu etiquetas em algo útil, calculou as suas próprias médias, adicionou algumas colunas de sentimento e, com sorte, aprendeu coisas interessantes sobre o processamento de texto natural. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Desafio + +Agora que tem o seu conjunto de dados analisado para sentimento, veja se consegue usar estratégias que aprendeu neste currículo (talvez clustering?) para determinar padrões relacionados ao sentimento. + +## Revisão e Estudo Individual + +Faça [este módulo do Learn](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) para aprender mais e usar diferentes ferramentas para explorar o sentimento em texto. + +## Tarefa + +[Experimente um conjunto de dados diferente](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..e125d5455 --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,16 @@ +# Experimente um conjunto de dados diferente + +## Instruções + +Agora que aprendeu a usar o NLTK para atribuir sentimento a texto, experimente um conjunto de dados diferente. Provavelmente precisará realizar algum processamento de dados, por isso crie um notebook e documente o seu raciocínio. O que descobre? + +## Critérios de Avaliação + +| Critérios | Exemplar | Adequado | Necessita Melhorar | +| --------- | ---------------------------------------------------------------------------------------------------------------- | ----------------------------------------- | ---------------------- | +| | Um notebook completo e um conjunto de dados são apresentados com células bem documentadas explicando como o sentimento é atribuído | O notebook carece de boas explicações | O notebook apresenta falhas | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..b55b30b9d --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-03T20:58:24+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..1e7423b12 --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-03T20:58:41+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..3d265f9a3 --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-03T20:58:56+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/README.md b/translations/pt-PT/6-NLP/README.md new file mode 100644 index 000000000..1a050de1e --- /dev/null +++ b/translations/pt-PT/6-NLP/README.md @@ -0,0 +1,29 @@ +# Introdução ao processamento de linguagem natural + +O processamento de linguagem natural (PLN) é a capacidade de um programa de computador entender a linguagem humana tal como é falada e escrita — referida como linguagem natural. É um componente da inteligência artificial (IA). O PLN existe há mais de 50 anos e tem raízes no campo da linguística. Todo o campo é direcionado a ajudar as máquinas a compreender e processar a linguagem humana. Isso pode ser usado para realizar tarefas como correção ortográfica ou tradução automática. Tem uma variedade de aplicações no mundo real em diversos campos, incluindo pesquisa médica, motores de busca e inteligência empresarial. + +## Tópico regional: Línguas e literatura europeias e hotéis românticos da Europa ❤️ + +Nesta seção do currículo, será introduzido um dos usos mais difundidos do aprendizado de máquina: o processamento de linguagem natural (PLN). Derivado da linguística computacional, esta categoria de inteligência artificial é a ponte entre humanos e máquinas através de comunicação por voz ou texto. + +Nestes módulos, aprenderemos os fundamentos do PLN construindo pequenos bots conversacionais para entender como o aprendizado de máquina ajuda a tornar essas conversas cada vez mais 'inteligentes'. Você viajará no tempo, conversando com Elizabeth Bennett e Mr. Darcy do clássico romance de Jane Austen, **Orgulho e Preconceito**, publicado em 1813. Depois, aprofundará seus conhecimentos aprendendo sobre análise de sentimentos através de avaliações de hotéis na Europa. + +![Livro Orgulho e Preconceito e chá](../../../translated_images/pt-PT/p&p.279f1c49ecd88941.webp) +> Foto por Elaine Howlin no Unsplash + +## Aulas + +1. [Introdução ao processamento de linguagem natural](1-Introduction-to-NLP/README.md) +2. [Tarefas e técnicas comuns de PLN](2-Tasks/README.md) +3. [Tradução e análise de sentimentos com aprendizado de máquina](3-Translation-Sentiment/README.md) +4. [Preparando os seus dados](4-Hotel-Reviews-1/README.md) +5. [NLTK para análise de sentimentos](5-Hotel-Reviews-2/README.md) + +## Créditos + +Estas aulas de processamento de linguagem natural foram escritas com ☕ por [Stephen Howell](https://twitter.com/Howell_MSFT) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/6-NLP/data/README.md b/translations/pt-PT/6-NLP/data/README.md new file mode 100644 index 000000000..d83d9470a --- /dev/null +++ b/translations/pt-PT/6-NLP/data/README.md @@ -0,0 +1,6 @@ +Descarregue os dados de avaliação do hotel para esta pasta. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/README.md b/translations/pt-PT/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..c8e0ba749 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,190 @@ +# Introdução à previsão de séries temporais + +![Resumo de séries temporais em um sketchnote](../../../../sketchnotes/ml-timeseries.png) + +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +Nesta lição e na próxima, vais aprender um pouco sobre previsão de séries temporais, uma parte interessante e valiosa do repertório de um cientista de ML que é um pouco menos conhecida do que outros tópicos. A previsão de séries temporais é como uma espécie de "bola de cristal": com base no desempenho passado de uma variável, como o preço, podes prever o seu valor potencial futuro. + +[![Introdução à previsão de séries temporais](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "Introdução à previsão de séries temporais") + +> 🎥 Clica na imagem acima para ver um vídeo sobre previsão de séries temporais + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +É um campo útil e interessante com valor real para os negócios, dado a sua aplicação direta em problemas de preços, inventário e questões de cadeia de abastecimento. Embora técnicas de aprendizagem profunda tenham começado a ser usadas para obter mais insights e prever melhor o desempenho futuro, a previsão de séries temporais continua a ser um campo amplamente informado por técnicas clássicas de ML. + +> O currículo útil de séries temporais da Penn State pode ser encontrado [aqui](https://online.stat.psu.edu/stat510/lesson/1) + +## Introdução + +Suponha que geres uma rede de parquímetros inteligentes que fornecem dados sobre a frequência e duração de uso ao longo do tempo. + +> E se pudesses prever, com base no desempenho passado do parquímetro, o seu valor futuro de acordo com as leis de oferta e procura? + +Prever com precisão quando agir para alcançar o teu objetivo é um desafio que pode ser abordado com previsão de séries temporais. Não seria agradável para as pessoas serem cobradas mais em horários de pico quando procuram um lugar para estacionar, mas seria uma forma eficaz de gerar receita para limpar as ruas! + +Vamos explorar alguns dos tipos de algoritmos de séries temporais e começar um notebook para limpar e preparar alguns dados. Os dados que vais analisar foram retirados da competição de previsão GEFCom2014. Consistem em 3 anos de valores horários de carga elétrica e temperatura entre 2012 e 2014. Dado os padrões históricos de carga elétrica e temperatura, podes prever valores futuros de carga elétrica. + +Neste exemplo, vais aprender a prever um passo temporal à frente, usando apenas dados históricos de carga. Antes de começar, no entanto, é útil entender o que está a acontecer nos bastidores. + +## Algumas definições + +Ao encontrar o termo "séries temporais", precisas de entender o seu uso em vários contextos diferentes. + +🎓 **Séries temporais** + +Em matemática, "uma série temporal é uma série de pontos de dados indexados (ou listados ou representados graficamente) em ordem temporal. Mais comumente, uma série temporal é uma sequência tomada em pontos sucessivos igualmente espaçados no tempo." Um exemplo de série temporal é o valor de fecho diário do [Dow Jones Industrial Average](https://wikipedia.org/wiki/Time_series). O uso de gráficos de séries temporais e modelagem estatística é frequentemente encontrado em processamento de sinais, previsão do tempo, previsão de terremotos e outros campos onde eventos ocorrem e pontos de dados podem ser representados ao longo do tempo. + +🎓 **Análise de séries temporais** + +A análise de séries temporais é a análise dos dados de séries temporais mencionados acima. Os dados de séries temporais podem assumir formas distintas, incluindo "séries temporais interrompidas", que detectam padrões na evolução de uma série temporal antes e depois de um evento interruptor. O tipo de análise necessário para a série temporal depende da natureza dos dados. Os dados de séries temporais podem assumir a forma de séries de números ou caracteres. + +A análise a ser realizada utiliza uma variedade de métodos, incluindo domínio de frequência e domínio temporal, linear e não linear, entre outros. [Saiba mais](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) sobre as várias formas de analisar este tipo de dados. + +🎓 **Previsão de séries temporais** + +A previsão de séries temporais é o uso de um modelo para prever valores futuros com base em padrões exibidos por dados previamente recolhidos à medida que ocorreram no passado. Embora seja possível usar modelos de regressão para explorar dados de séries temporais, com índices temporais como variáveis x num gráfico, esses dados são melhor analisados usando tipos especiais de modelos. + +Os dados de séries temporais são uma lista de observações ordenadas, diferente de dados que podem ser analisados por regressão linear. O mais comum é o ARIMA, um acrónimo que significa "Autoregressive Integrated Moving Average". + +[Modelos ARIMA](https://online.stat.psu.edu/stat510/lesson/1/1.1) "relacionam o valor presente de uma série com valores passados e erros de previsão passados." Eles são mais apropriados para analisar dados no domínio temporal, onde os dados são ordenados ao longo do tempo. + +> Existem vários tipos de modelos ARIMA, sobre os quais podes aprender [aqui](https://people.duke.edu/~rnau/411arim.htm) e que vais abordar na próxima lição. + +Na próxima lição, vais construir um modelo ARIMA usando [Séries Temporais Univariadas](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm), que se concentram numa variável que muda o seu valor ao longo do tempo. Um exemplo deste tipo de dados é [este conjunto de dados](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) que regista a concentração mensal de CO2 no Observatório Mauna Loa: + +| CO2 | YearMonth | Year | Month | +| :-----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ Identifica a variável que muda ao longo do tempo neste conjunto de dados. + +## Características dos dados de séries temporais a considerar + +Ao observar dados de séries temporais, podes notar que eles possuem [certas características](https://online.stat.psu.edu/stat510/lesson/1/1.1) que precisas levar em conta e mitigar para entender melhor os seus padrões. Se considerares os dados de séries temporais como potencialmente fornecendo um "sinal" que desejas analisar, essas características podem ser vistas como "ruído". Muitas vezes, será necessário reduzir esse "ruído" compensando algumas dessas características usando técnicas estatísticas. + +Aqui estão alguns conceitos que deves conhecer para trabalhar com séries temporais: + +🎓 **Tendências** + +Tendências são definidas como aumentos e diminuições mensuráveis ao longo do tempo. [Lê mais](https://machinelearningmastery.com/time-series-trends-in-python). No contexto de séries temporais, trata-se de como usar e, se necessário, remover tendências da tua série temporal. + +🎓 **[Sazonalidade](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +Sazonalidade é definida como flutuações periódicas, como picos de vendas durante as férias, por exemplo. [Dá uma olhada](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) em como diferentes tipos de gráficos exibem sazonalidade nos dados. + +🎓 **Outliers** + +Outliers são valores que estão muito distantes da variância padrão dos dados. + +🎓 **Ciclo de longo prazo** + +Independentemente da sazonalidade, os dados podem exibir um ciclo de longo prazo, como uma recessão económica que dura mais de um ano. + +🎓 **Variância constante** + +Ao longo do tempo, alguns dados exibem flutuações constantes, como o uso de energia durante o dia e a noite. + +🎓 **Mudanças abruptas** + +Os dados podem exibir uma mudança abrupta que pode precisar de análise adicional. O encerramento repentino de negócios devido à COVID, por exemplo, causou mudanças nos dados. + +✅ Aqui está um [exemplo de gráfico de séries temporais](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) mostrando o gasto diário em moeda dentro de um jogo ao longo de alguns anos. Consegues identificar alguma das características listadas acima nesses dados? + +![Gasto em moeda no jogo](../../../../7-TimeSeries/1-Introduction/images/currency.png) + +## Exercício - começando com dados de uso de energia + +Vamos começar a criar um modelo de séries temporais para prever o uso futuro de energia com base no uso passado. + +> Os dados neste exemplo foram retirados da competição de previsão GEFCom2014. Consistem em 3 anos de valores horários de carga elétrica e temperatura entre 2012 e 2014. +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli e Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, julho-setembro, 2016. + +1. Na pasta `working` desta lição, abre o ficheiro _notebook.ipynb_. Começa por adicionar bibliotecas que te ajudarão a carregar e visualizar os dados. + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + Nota que estás a usar os ficheiros da pasta `common` incluída, que configuram o teu ambiente e tratam do download dos dados. + +2. Em seguida, examina os dados como um dataframe chamando `load_data()` e `head()`: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + Podes ver que há duas colunas representando data e carga: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. Agora, representa os dados graficamente chamando `plot()`: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![gráfico de energia](../../../../7-TimeSeries/1-Introduction/images/energy-plot.png) + +4. Agora, representa graficamente a primeira semana de julho de 2014, fornecendo-a como entrada para o `energy` no padrão `[data inicial]:[data final]`: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![julho](../../../../7-TimeSeries/1-Introduction/images/july-2014.png) + + Um gráfico bonito! Dá uma olhada nesses gráficos e vê se consegues determinar alguma das características listadas acima. O que podemos concluir ao visualizar os dados? + +Na próxima lição, vais criar um modelo ARIMA para fazer algumas previsões. + +--- + +## 🚀Desafio + +Faz uma lista de todas as indústrias e áreas de estudo que consegues pensar que poderiam beneficiar da previsão de séries temporais. Consegues pensar numa aplicação dessas técnicas nas artes? Em Econometria? Ecologia? Retalho? Indústria? Finanças? Onde mais? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Autoestudo + +Embora não os abordemos aqui, redes neurais são por vezes usadas para melhorar os métodos clássicos de previsão de séries temporais. Lê mais sobre isso [neste artigo](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) + +## Tarefa + +[Visualiza mais séries temporais](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/assignment.md b/translations/pt-PT/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..602f1cdf8 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,16 @@ +# Visualizar mais Séries Temporais + +## Instruções + +Você começou a aprender sobre Previsão de Séries Temporais ao observar o tipo de dados que requerem este modelo especial. Já visualizou alguns dados relacionados à energia. Agora, procure outros dados que possam se beneficiar da Previsão de Séries Temporais. Encontre três exemplos (experimente [Kaggle](https://kaggle.com) e [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)) e crie um notebook para visualizá-los. Anote quaisquer características especiais que eles apresentem (sazonalidade, mudanças abruptas ou outras tendências) no notebook. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita Melhorias | +| --------- | ----------------------------------------------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------- | +| | Três conjuntos de dados são plotados e explicados no notebook | Dois conjuntos de dados são plotados e explicados no notebook | Poucos conjuntos de dados são plotados ou explicados no notebook ou os dados apresentados são insuficientes | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..fceefa4cc --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..0200c3f0c --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,170 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Configuração de Dados\n", + "\n", + "Neste notebook, demonstramos como:\n", + "- configurar dados de séries temporais para este módulo\n", + "- visualizar os dados\n", + "\n", + "Os dados deste exemplo foram retirados da competição de previsão GEFCom2014. Consistem em 3 anos de valores horários de carga elétrica e temperatura entre 2012 e 2014.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli e Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julho-setembro, 2016.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Carregar os dados do csv para um dataframe do Pandas\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n
" + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trace todos os dados de carga disponíveis (janeiro de 2012 a dezembro de 2014)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-03T19:56:20+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/pt-PT/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..ac8893f82 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,63 @@ +{ + "cells": [ + { + "source": [ + "# Configuração de Dados\n", + "\n", + "Neste notebook, demonstramos como:\n", + "\n", + "configurar dados de séries temporais para este módulo \n", + "visualizar os dados \n", + "Os dados deste exemplo foram retirados da competição de previsão GEFCom2014. Consistem em 3 anos de valores horários de carga elétrica e temperatura entre 2012 e 2014.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli e Rob J. Hyndman, \"Previsão probabilística de energia: Competição Global de Previsão de Energia 2014 e além\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julho-setembro, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-03T19:57:04+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/README.md b/translations/pt-PT/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..d33f734fb --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,396 @@ +# Previsão de séries temporais com ARIMA + +Na lição anterior, aprendeste um pouco sobre previsão de séries temporais e carregaste um conjunto de dados que mostra as flutuações da carga elétrica ao longo de um período de tempo. + +[![Introdução ao ARIMA](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "Introdução ao ARIMA") + +> 🎥 Clica na imagem acima para um vídeo: Uma breve introdução aos modelos ARIMA. O exemplo é feito em R, mas os conceitos são universais. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Introdução + +Nesta lição, vais descobrir uma forma específica de construir modelos com [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average). Os modelos ARIMA são particularmente adequados para ajustar dados que apresentam [não-estacionaridade](https://wikipedia.org/wiki/Stationary_process). + +## Conceitos gerais + +Para trabalhar com ARIMA, há alguns conceitos que precisas de conhecer: + +- 🎓 **Estacionaridade**. No contexto estatístico, estacionaridade refere-se a dados cuja distribuição não muda ao longo do tempo. Dados não estacionários, por outro lado, apresentam flutuações devido a tendências que precisam ser transformadas para serem analisadas. A sazonalidade, por exemplo, pode introduzir flutuações nos dados e pode ser eliminada através de um processo de 'diferença sazonal'. + +- 🎓 **[Diferença](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. Diferençar os dados, novamente no contexto estatístico, refere-se ao processo de transformar dados não estacionários para torná-los estacionários, removendo sua tendência não constante. "A diferença remove as mudanças no nível de uma série temporal, eliminando tendência e sazonalidade e, consequentemente, estabilizando a média da série temporal." [Artigo de Shixiong et al](https://arxiv.org/abs/1904.07632) + +## ARIMA no contexto de séries temporais + +Vamos explorar as partes do ARIMA para entender melhor como ele nos ajuda a modelar séries temporais e a fazer previsões. + +- **AR - de AutoRegressivo**. Modelos autorregressivos, como o nome sugere, olham 'para trás' no tempo para analisar valores anteriores nos teus dados e fazer suposições sobre eles. Esses valores anteriores são chamados de 'lags'. Um exemplo seria dados que mostram vendas mensais de lápis. O total de vendas de cada mês seria considerado uma 'variável em evolução' no conjunto de dados. Este modelo é construído como "a variável de interesse em evolução é regredida em seus próprios valores defasados (ou seja, valores anteriores)." [wikipedia](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - de Integrado**. Ao contrário dos modelos semelhantes 'ARMA', o 'I' em ARIMA refere-se ao seu aspeto *[integrado](https://wikipedia.org/wiki/Order_of_integration)*. Os dados são 'integrados' quando passos de diferença são aplicados para eliminar a não-estacionaridade. + +- **MA - de Média Móvel**. O aspeto de [média móvel](https://wikipedia.org/wiki/Moving-average_model) deste modelo refere-se à variável de saída que é determinada observando os valores atuais e passados dos lags. + +Resumindo: o ARIMA é usado para ajustar um modelo o mais próximo possível da forma especial dos dados de séries temporais. + +## Exercício - construir um modelo ARIMA + +Abre a pasta [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) nesta lição e encontra o ficheiro [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb). + +1. Executa o notebook para carregar a biblioteca Python `statsmodels`; vais precisar dela para os modelos ARIMA. + +1. Carrega as bibliotecas necessárias. + +1. Agora, carrega mais algumas bibliotecas úteis para a plotagem de dados: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. Carrega os dados do ficheiro `/data/energy.csv` para um dataframe do Pandas e dá uma olhada: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. Plota todos os dados de energia disponíveis de janeiro de 2012 a dezembro de 2014. Não deverá haver surpresas, pois já vimos esses dados na última lição: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + Agora, vamos construir um modelo! + +### Criar conjuntos de treino e teste + +Agora que os teus dados estão carregados, podes separá-los em conjuntos de treino e teste. Vais treinar o teu modelo no conjunto de treino. Como de costume, após o modelo ter terminado o treino, vais avaliar a sua precisão usando o conjunto de teste. É necessário garantir que o conjunto de teste cobre um período posterior ao conjunto de treino para garantir que o modelo não obtenha informações de períodos futuros. + +1. Aloca um período de dois meses, de 1 de setembro a 31 de outubro de 2014, para o conjunto de treino. O conjunto de teste incluirá o período de dois meses de 1 de novembro a 31 de dezembro de 2014: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + Como estes dados refletem o consumo diário de energia, há um forte padrão sazonal, mas o consumo é mais semelhante ao consumo de dias mais recentes. + +1. Visualiza as diferenças: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![dados de treino e teste](../../../../7-TimeSeries/2-ARIMA/images/train-test.png) + + Portanto, usar uma janela de tempo relativamente pequena para treinar os dados deve ser suficiente. + + > Nota: Como a função que usamos para ajustar o modelo ARIMA utiliza validação in-sample durante o ajuste, omitiremos os dados de validação. + +### Preparar os dados para treino + +Agora, precisas de preparar os dados para o treino, realizando filtragem e escalonamento dos dados. Filtra o teu conjunto de dados para incluir apenas os períodos de tempo e colunas necessários, e escala os dados para garantir que estejam no intervalo 0,1. + +1. Filtra o conjunto de dados original para incluir apenas os períodos de tempo mencionados por conjunto e apenas a coluna necessária 'load', além da data: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + Podes ver a forma dos dados: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. Escala os dados para estarem no intervalo (0, 1). + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. Visualiza os dados originais vs. os dados escalados: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![original](../../../../7-TimeSeries/2-ARIMA/images/original.png) + + > Os dados originais + + ![escalado](../../../../7-TimeSeries/2-ARIMA/images/scaled.png) + + > Os dados escalados + +1. Agora que calibraste os dados escalados, podes escalar os dados de teste: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### Implementar ARIMA + +É hora de implementar o ARIMA! Agora vais usar a biblioteca `statsmodels` que instalaste anteriormente. + +Agora precisas de seguir vários passos: + + 1. Define o modelo chamando `SARIMAX()` e passando os parâmetros do modelo: parâmetros p, d e q, e parâmetros P, D e Q. + 2. Prepara o modelo para os dados de treino chamando a função `fit()`. + 3. Faz previsões chamando a função `forecast()` e especificando o número de passos (o `horizon`) a prever. + +> 🎓 Para que servem todos esses parâmetros? Num modelo ARIMA, há 3 parâmetros usados para ajudar a modelar os principais aspetos de uma série temporal: sazonalidade, tendência e ruído. Esses parâmetros são: + +`p`: o parâmetro associado ao aspeto autorregressivo do modelo, que incorpora valores *passados*. +`d`: o parâmetro associado à parte integrada do modelo, que afeta a quantidade de *diferença* (🎓 lembra-te da diferença 👆?) a aplicar a uma série temporal. +`q`: o parâmetro associado à parte de média móvel do modelo. + +> Nota: Se os teus dados tiverem um aspeto sazonal - como este tem -, usamos um modelo ARIMA sazonal (SARIMA). Nesse caso, precisas de usar outro conjunto de parâmetros: `P`, `D` e `Q`, que descrevem as mesmas associações que `p`, `d` e `q`, mas correspondem aos componentes sazonais do modelo. + +1. Começa por definir o teu valor de horizonte preferido. Vamos tentar 3 horas: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + Selecionar os melhores valores para os parâmetros de um modelo ARIMA pode ser desafiador, pois é algo subjetivo e demorado. Podes considerar usar uma função `auto_arima()` da [biblioteca `pyramid`](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html). + +1. Por agora, tenta algumas seleções manuais para encontrar um bom modelo. + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + Uma tabela de resultados é exibida. + +Construíste o teu primeiro modelo! Agora precisamos de encontrar uma forma de avaliá-lo. + +### Avaliar o teu modelo + +Para avaliar o teu modelo, podes realizar a chamada validação `walk forward`. Na prática, os modelos de séries temporais são re-treinados sempre que novos dados ficam disponíveis. Isso permite que o modelo faça a melhor previsão em cada passo de tempo. + +Começando no início da série temporal, usando esta técnica, treina o modelo no conjunto de treino. Depois, faz uma previsão para o próximo passo de tempo. A previsão é avaliada em relação ao valor conhecido. O conjunto de treino é então expandido para incluir o valor conhecido e o processo é repetido. + +> Nota: Deves manter a janela do conjunto de treino fixa para um treino mais eficiente, de modo que, sempre que adicionares uma nova observação ao conjunto de treino, removes a observação do início do conjunto. + +Este processo fornece uma estimativa mais robusta de como o modelo irá desempenhar-se na prática. No entanto, tem o custo computacional de criar tantos modelos. Isso é aceitável se os dados forem pequenos ou se o modelo for simples, mas pode ser um problema em escala. + +A validação walk-forward é o padrão ouro para avaliação de modelos de séries temporais e é recomendada para os teus próprios projetos. + +1. Primeiro, cria um ponto de dados de teste para cada passo do HORIZON. + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + Os dados são deslocados horizontalmente de acordo com o seu ponto de horizonte. + +1. Faz previsões nos teus dados de teste usando esta abordagem de janela deslizante num loop do tamanho do comprimento dos dados de teste: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + Podes observar o treino a ocorrer: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. Compara as previsões com a carga real: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + Saída + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + Observa a previsão dos dados horários em comparação com a carga real. Quão precisa é esta previsão? + +### Verificar a precisão do modelo + +Verifica a precisão do teu modelo testando o seu erro percentual absoluto médio (MAPE) em todas as previsões. +> **🧮 Mostra-me os cálculos** +> +> ![MAPE](../../../../7-TimeSeries/2-ARIMA/images/mape.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) é utilizado para mostrar a precisão das previsões como uma razão definida pela fórmula acima. A diferença entre o valor real e o previsto é dividida pelo valor real. "O valor absoluto deste cálculo é somado para cada ponto previsto no tempo e dividido pelo número de pontos ajustados n." [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. Exprimir a equação em código: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. Calcular o MAPE de um passo: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + MAPE da previsão de um passo: 0.5570581332313952 % + +1. Imprimir o MAPE da previsão de múltiplos passos: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + Um número baixo é o ideal: considere que uma previsão com um MAPE de 10 está errada em 10%. + +1. Mas, como sempre, é mais fácil visualizar este tipo de medição de precisão, então vamos representá-lo graficamente: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![um modelo de séries temporais](../../../../7-TimeSeries/2-ARIMA/images/accuracy.png) + +🏆 Um gráfico muito bom, mostrando um modelo com boa precisão. Excelente trabalho! + +--- + +## 🚀Desafio + +Explore as formas de testar a precisão de um modelo de séries temporais. Abordamos o MAPE nesta lição, mas existem outros métodos que poderia usar? Pesquise sobre eles e anote-os. Um documento útil pode ser encontrado [aqui](https://otexts.com/fpp2/accuracy.html) + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Esta lição aborda apenas os fundamentos da previsão de séries temporais com ARIMA. Dedique algum tempo para aprofundar o seu conhecimento explorando [este repositório](https://microsoft.github.io/forecasting/) e os seus vários tipos de modelos para aprender outras formas de construir modelos de séries temporais. + +## Tarefa + +[Um novo modelo ARIMA](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/assignment.md b/translations/pt-PT/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..9cdc34a0e --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,16 @@ +# Um novo modelo ARIMA + +## Instruções + +Agora que já construiu um modelo ARIMA, crie um novo com dados frescos (experimente um destes [conjuntos de dados da Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Documente o seu trabalho num notebook, visualize os dados e o seu modelo, e teste a sua precisão utilizando o MAPE. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------- | ----------------------------------- | +| | Um notebook é apresentado com um novo modelo ARIMA construído, testado e explicado com visualizações e precisão declarada. | O notebook apresentado não está documentado ou contém erros | Um notebook incompleto é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..ddc2cdc43 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..43422a136 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..190cae753 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1122 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli e Rob J. Hyndman, \"Previsão probabilística de energia: Competição Global de Previsão de Energia 2014 e além\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julho-setembro, 2016.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Instalar Dependências\n", + "Comece por instalar algumas das dependências necessárias. Estas bibliotecas, com as respetivas versões, são conhecidas por funcionarem com esta solução:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002,698.00
2012-01-01 01:00:002,558.00
2012-01-01 02:00:002,444.00
2012-01-01 03:00:002,402.00
2012-01-01 04:00:002,403.00
2012-01-01 05:00:002,453.00
2012-01-01 06:00:002,560.00
2012-01-01 07:00:002,719.00
2012-01-01 08:00:002,916.00
2012-01-01 09:00:003,105.00
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Trace todos os dados de carga disponíveis (janeiro de 2012 a dezembro de 2014)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Criar conjuntos de dados de treino e teste\n", + "\n", + "### Dividir os dados em treino e teste\n", + "\n", + "Para avaliar o desempenho do modelo, é importante dividir os dados em dois conjuntos: treino e teste. O conjunto de treino é usado para ajustar o modelo, enquanto o conjunto de teste é usado para verificar a sua precisão.\n", + "\n", + "[!TIP] Certifique-se de que os dados estão bem misturados antes de os dividir, especialmente se houver algum tipo de ordenação nos dados originais.\n", + "\n", + "### Exemplo de divisão de dados\n", + "\n", + "Aqui está um exemplo de como dividir os dados utilizando @@INLINE_CODE_1@@:\n", + "\n", + "```python\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Dividir os dados em treino e teste\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "```\n", + "\n", + "[!NOTE] O parâmetro @@INLINE_CODE_2@@ garante que a divisão seja reproduzível.\n", + "\n", + "### Escolher a proporção de divisão\n", + "\n", + "A proporção de divisão entre treino e teste pode variar dependendo do tamanho do conjunto de dados e do objetivo do modelo. Uma divisão comum é 80% para treino e 20% para teste. No entanto, para conjuntos de dados muito grandes, pode ser suficiente usar 90% para treino e 10% para teste.\n", + "\n", + "[!CAUTION] Certifique-se de que o conjunto de teste é suficientemente grande para fornecer uma avaliação confiável do modelo.\n", + "\n", + "### Validar os dados divididos\n", + "\n", + "Depois de dividir os dados, é uma boa prática verificar as dimensões dos conjuntos de treino e teste para garantir que a divisão foi feita corretamente:\n", + "\n", + "```python\n", + "print(f\"Tamanho do conjunto de treino: {len(X_train)}\")\n", + "print(f\"Tamanho do conjunto de teste: {len(X_test)}\")\n", + "```\n", + "\n", + "[!IMPORTANT] Nunca utilize os dados de teste durante o treino do modelo. Isso pode levar a resultados enganosos e a um modelo que não generaliza bem.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:000.10
2014-11-01 01:00:000.07
2014-11-01 02:00:000.05
2014-11-01 03:00:000.04
2014-11-01 04:00:000.06
2014-11-01 05:00:000.10
2014-11-01 06:00:000.19
2014-11-01 07:00:000.31
2014-11-01 08:00:000.40
2014-11-01 09:00:000.48
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Original vs dados escalados:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Vamos também escalar os dados de teste\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-12-30 00:00:000.33
2014-12-30 01:00:000.29
2014-12-30 02:00:000.27
2014-12-30 03:00:000.27
2014-12-30 04:00:000.30
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Crie um ponto de dados de teste para cada passo do HORIZON.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
loadload+1load+2
2014-12-30 00:00:000.330.290.27
2014-12-30 01:00:000.290.270.27
2014-12-30 02:00:000.270.270.30
2014-12-30 03:00:000.270.300.41
2014-12-30 04:00:000.300.410.57
\n", + "
" + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "Compare as previsões com a carga real\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestamphpredictionactual
02014-12-30 00:00:00t+13,008.743,023.00
12014-12-30 01:00:00t+12,955.532,935.00
22014-12-30 02:00:00t+12,900.172,899.00
32014-12-30 03:00:00t+12,917.692,886.00
42014-12-30 04:00:00t+12,946.992,963.00
\n", + "
" + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Calcular o **erro percentual absoluto médio (MAPE)** para todas as previsões\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Trace as previsões vs os valores reais para a primeira semana do conjunto de teste\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-03T19:53:51+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/pt-PT/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..e2ff6d9d7 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-03T19:55:35+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli e Rob J. Hyndman, \"Previsão probabilística de energia: Competição Global de Previsão de Energia 2014 e além\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julho-setembro, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/3-SVR/README.md b/translations/pt-PT/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..2ad865ac9 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,384 @@ +# Previsão de Séries Temporais com Support Vector Regressor + +Na lição anterior, aprendeste a usar o modelo ARIMA para fazer previsões de séries temporais. Agora vais explorar o modelo Support Vector Regressor, que é um modelo de regressão utilizado para prever dados contínuos. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Introdução + +Nesta lição, vais descobrir uma forma específica de construir modelos com [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) para regressão, ou **SVR: Support Vector Regressor**. + +### SVR no contexto de séries temporais [^1] + +Antes de compreender a importância do SVR na previsão de séries temporais, aqui estão alguns conceitos importantes que precisas de saber: + +- **Regressão:** Técnica de aprendizagem supervisionada para prever valores contínuos a partir de um conjunto de entradas. A ideia é ajustar uma curva (ou linha) no espaço de características que tenha o maior número de pontos de dados. [Clica aqui](https://en.wikipedia.org/wiki/Regression_analysis) para mais informações. +- **Support Vector Machine (SVM):** Um tipo de modelo de aprendizagem supervisionada usado para classificação, regressão e deteção de outliers. O modelo é um hiperplano no espaço de características, que no caso de classificação atua como uma fronteira, e no caso de regressão atua como a linha de melhor ajuste. No SVM, uma função Kernel é geralmente usada para transformar o conjunto de dados para um espaço com maior número de dimensões, de forma a torná-los mais facilmente separáveis. [Clica aqui](https://en.wikipedia.org/wiki/Support-vector_machine) para mais informações sobre SVMs. +- **Support Vector Regressor (SVR):** Um tipo de SVM, que encontra a linha de melhor ajuste (que no caso de SVM é um hiperplano) com o maior número de pontos de dados. + +### Porquê SVR? [^1] + +Na última lição aprendeste sobre o ARIMA, que é um método estatístico linear muito bem-sucedido para prever dados de séries temporais. No entanto, em muitos casos, os dados de séries temporais apresentam *não-linearidade*, que não pode ser mapeada por modelos lineares. Nestes casos, a capacidade do SVM de considerar a não-linearidade nos dados para tarefas de regressão torna o SVR bem-sucedido na previsão de séries temporais. + +## Exercício - construir um modelo SVR + +Os primeiros passos para a preparação dos dados são os mesmos da lição anterior sobre [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA). + +Abre a pasta [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) nesta lição e encontra o ficheiro [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb). [^2] + +1. Executa o notebook e importa as bibliotecas necessárias: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. Carrega os dados do ficheiro `/data/energy.csv` para um dataframe do Pandas e analisa-os: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. Faz o gráfico de todos os dados de energia disponíveis de janeiro de 2012 a dezembro de 2014: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![dados completos](../../../../7-TimeSeries/3-SVR/images/full-data.png) + + Agora, vamos construir o nosso modelo SVR. + +### Criar conjuntos de treino e teste + +Agora que os dados estão carregados, podes separá-los em conjuntos de treino e teste. Depois vais remodelar os dados para criar um conjunto de dados baseado em passos temporais, que será necessário para o SVR. Vais treinar o teu modelo no conjunto de treino. Após o modelo terminar o treino, vais avaliar a sua precisão no conjunto de treino, no conjunto de teste e depois no conjunto de dados completo para ver o desempenho geral. É importante garantir que o conjunto de teste cobre um período posterior ao conjunto de treino para assegurar que o modelo não obtém informações de períodos futuros [^2] (uma situação conhecida como *Overfitting*). + +1. Aloca um período de dois meses de 1 de setembro a 31 de outubro de 2014 para o conjunto de treino. O conjunto de teste incluirá o período de dois meses de 1 de novembro a 31 de dezembro de 2014: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. Visualiza as diferenças: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![dados de treino e teste](../../../../7-TimeSeries/3-SVR/images/train-test.png) + +### Preparar os dados para treino + +Agora, precisas de preparar os dados para treino, realizando filtragem e escalonamento dos dados. Filtra o conjunto de dados para incluir apenas os períodos de tempo e colunas necessários, e faz o escalonamento para garantir que os dados são projetados no intervalo 0,1. + +1. Filtra o conjunto de dados original para incluir apenas os períodos de tempo mencionados por conjunto e apenas a coluna necessária 'load' mais a data: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. Escalona os dados de treino para estarem no intervalo (0, 1): [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. Agora, escalona os dados de teste: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### Criar dados com passos temporais [^1] + +Para o SVR, transformas os dados de entrada para a forma `[batch, timesteps]`. Assim, remodelas os `train_data` e `test_data` existentes de forma a que haja uma nova dimensão que se refere aos passos temporais. + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +Para este exemplo, usamos `timesteps = 5`. Assim, as entradas para o modelo são os dados dos primeiros 4 passos temporais, e a saída será os dados do 5º passo temporal. + +```python +timesteps=5 +``` + +Converter os dados de treino para tensor 2D usando list comprehension aninhada: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +Converter os dados de teste para tensor 2D: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +Selecionar entradas e saídas dos dados de treino e teste: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### Implementar SVR [^1] + +Agora, é hora de implementar o SVR. Para saber mais sobre esta implementação, podes consultar [esta documentação](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html). Para a nossa implementação, seguimos estes passos: + + 1. Define o modelo chamando `SVR()` e passando os hiperparâmetros do modelo: kernel, gamma, c e epsilon + 2. Prepara o modelo para os dados de treino chamando a função `fit()` + 3. Faz previsões chamando a função `predict()` + +Agora criamos um modelo SVR. Aqui usamos o [kernel RBF](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel), e definimos os hiperparâmetros gamma, C e epsilon como 0.5, 10 e 0.05 respetivamente. + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### Ajustar o modelo aos dados de treino [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### Fazer previsões com o modelo [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +Construíste o teu SVR! Agora precisamos de avaliá-lo. + +### Avaliar o modelo [^1] + +Para avaliação, primeiro vamos escalonar os dados de volta para a escala original. Depois, para verificar o desempenho, vamos fazer o gráfico da série temporal original e prevista, e também imprimir o resultado do MAPE. + +Escalona os dados previstos e originais: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### Verificar o desempenho do modelo nos dados de treino e teste [^1] + +Extraímos os timestamps do conjunto de dados para mostrar no eixo x do nosso gráfico. Nota que estamos a usar os primeiros ```timesteps-1``` valores como entrada para a primeira saída, então os timestamps para a saída começarão depois disso. + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +Faz o gráfico das previsões para os dados de treino: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![previsão dos dados de treino](../../../../7-TimeSeries/3-SVR/images/train-data-predict.png) + +Imprime o MAPE para os dados de treino + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +Faz o gráfico das previsões para os dados de teste + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![previsão dos dados de teste](../../../../7-TimeSeries/3-SVR/images/test-data-predict.png) + +Imprime o MAPE para os dados de teste + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 Obtiveste um resultado muito bom no conjunto de dados de teste! + +### Verificar o desempenho do modelo no conjunto de dados completo [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![previsão dos dados completos](../../../../7-TimeSeries/3-SVR/images/full-data-predict.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 Gráficos muito bons, mostrando um modelo com boa precisão. Excelente trabalho! + +--- + +## 🚀Desafio + +- Tenta ajustar os hiperparâmetros (gamma, C, epsilon) ao criar o modelo e avalia os dados para ver qual conjunto de hiperparâmetros dá os melhores resultados nos dados de teste. Para saber mais sobre estes hiperparâmetros, podes consultar o documento [aqui](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel). +- Experimenta usar diferentes funções kernel para o modelo e analisa os seus desempenhos no conjunto de dados. Um documento útil pode ser encontrado [aqui](https://scikit-learn.org/stable/modules/svm.html#kernel-functions). +- Tenta usar diferentes valores para `timesteps` para o modelo olhar para trás e fazer previsões. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão & Estudo Individual + +Esta lição foi para introduzir a aplicação de SVR na previsão de séries temporais. Para saber mais sobre SVR, podes consultar [este blog](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/). Esta [documentação sobre scikit-learn](https://scikit-learn.org/stable/modules/svm.html) fornece uma explicação mais abrangente sobre SVMs em geral, [SVRs](https://scikit-learn.org/stable/modules/svm.html#regression) e também outros detalhes de implementação, como as diferentes [funções kernel](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) que podem ser usadas e os seus parâmetros. + +## Tarefa + +[Um novo modelo SVR](assignment.md) + +## Créditos + +[^1]: O texto, código e saída nesta seção foram contribuídos por [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) +[^2]: O texto, código e saída nesta seção foram retirados de [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/3-SVR/assignment.md b/translations/pt-PT/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..000524e35 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,18 @@ +# Um novo modelo SVR + +## Instruções [^1] + +Agora que já construiu um modelo SVR, crie um novo com dados frescos (experimente um destes [conjuntos de dados da Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Documente o seu trabalho num notebook, visualize os dados e o seu modelo, e teste a sua precisão utilizando gráficos apropriados e MAPE. Experimente também ajustar os diferentes hiperparâmetros e usar valores diferentes para os timesteps. + +## Rubrica [^1] + +| Critérios | Exemplar | Adequado | Necessita Melhorias | +| --------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | Um notebook é apresentado com um modelo SVR construído, testado e explicado com visualizações e precisão declarada. | O notebook apresentado não está documentado ou contém erros. | Um notebook incompleto é apresentado | + +[^1]: O texto nesta seção foi baseado na [tarefa de ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/pt-PT/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..9affad2d7 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1019 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Neste caderno, demonstramos como:\n", + "\n", + "- preparar dados de séries temporais 2D para treinar um modelo de regressão SVM\n", + "- implementar SVR utilizando o kernel RBF\n", + "- avaliar o modelo utilizando gráficos e MAPE\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importar módulos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Carregar dados\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Agora, precisa preparar os dados para treino, realizando a filtragem e a escalagem dos seus dados.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escalone os dados para estarem no intervalo (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:000.101611
2014-11-01 01:00:000.065801
2014-11-01 02:00:000.046106
2014-11-01 03:00:000.042525
2014-11-01 04:00:000.059087
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-12-30 00:00:000.329454
2014-12-30 01:00:000.290063
2014-12-30 02:00:000.273948
2014-12-30 03:00:000.268129
2014-12-30 04:00:000.302596
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Para o nosso SVR, transformamos os dados de entrada para terem a forma `[batch, timesteps]`. Assim, remodelamos os dados existentes `train_data` e `test_data` de modo a que haja uma nova dimensão que se refere aos timesteps. No nosso exemplo, consideramos `timesteps = 5`. Assim, as entradas para o modelo são os dados dos primeiros 4 timesteps, e a saída será os dados do 5º timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Fazer previsão do modelo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Previsão do conjunto de dados completo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-03T19:58:23+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/pt-PT/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..d0c793358 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,695 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Neste caderno, demonstramos como:\n", + "\n", + "- preparar dados de séries temporais 2D para treinar um modelo de regressão SVM \n", + "- implementar SVR utilizando o kernel RBF \n", + "- avaliar o modelo utilizando gráficos e MAPE \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importar módulos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Carregar dados\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Agora, precisa preparar os dados para treino, realizando a filtragem e a escalagem dos seus dados.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escalone os dados para estarem no intervalo (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Para o nosso SVR, transformamos os dados de entrada para terem a forma `[batch, timesteps]`. Assim, remodelamos os dados existentes `train_data` e `test_data` de modo a que haja uma nova dimensão que se refere aos timesteps. No nosso exemplo, consideramos `timesteps = 5`. Assim, as entradas para o modelo são os dados dos primeiros 4 timesteps, e a saída será os dados do 5º timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Fazer previsão do modelo\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Previsão do conjunto de dados completo\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-03T20:00:30+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/pt-PT/7-TimeSeries/README.md b/translations/pt-PT/7-TimeSeries/README.md new file mode 100644 index 000000000..a53cd6561 --- /dev/null +++ b/translations/pt-PT/7-TimeSeries/README.md @@ -0,0 +1,28 @@ +# Introdução à previsão de séries temporais + +O que é previsão de séries temporais? Trata-se de prever eventos futuros analisando tendências do passado. + +## Tema regional: consumo mundial de eletricidade ✨ + +Nestes dois módulos, será introduzido o conceito de previsão de séries temporais, uma área um pouco menos conhecida do machine learning, mas que é extremamente valiosa para aplicações na indústria e nos negócios, entre outros campos. Embora redes neurais possam ser usadas para aumentar a utilidade desses modelos, vamos estudá-los no contexto do machine learning clássico, já que esses modelos ajudam a prever o desempenho futuro com base no passado. + +O nosso foco regional é o consumo de eletricidade no mundo, um conjunto de dados interessante para aprender a prever o consumo futuro de energia com base nos padrões de carga do passado. É possível perceber como este tipo de previsão pode ser extremamente útil em ambientes empresariais. + +![rede elétrica](../../../translated_images/pt-PT/electric-grid.0c21d5214db09ffa.webp) + +Foto de [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) de torres elétricas numa estrada em Rajasthan no [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) + +## Módulos + +1. [Introdução à previsão de séries temporais](1-Introduction/README.md) +2. [Construção de modelos ARIMA para séries temporais](2-ARIMA/README.md) +3. [Construção de um Support Vector Regressor para previsão de séries temporais](3-SVR/README.md) + +## Créditos + +"A introdução à previsão de séries temporais" foi escrita com ⚡️ por [Francesca Lazzeri](https://twitter.com/frlazzeri) e [Jen Looper](https://twitter.com/jenlooper). Os notebooks foram publicados pela primeira vez online no [repositório "Deep Learning For Time Series" da Azure](https://github.com/Azure/DeepLearningForTimeSeriesForecasting), originalmente escrito por Francesca Lazzeri. O módulo sobre SVR foi escrito por [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD). + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/README.md b/translations/pt-PT/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..b5a01950d --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,247 @@ +# Introdução ao Aprendizado por Reforço e Q-Learning + +![Resumo do reforço em aprendizagem de máquina em um sketchnote](../../../../sketchnotes/ml-reinforcement.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +O aprendizado por reforço envolve três conceitos importantes: o agente, alguns estados e um conjunto de ações por estado. Ao executar uma ação em um estado específico, o agente recebe uma recompensa. Imagine novamente o jogo de computador Super Mario. Você é o Mario, está em um nível do jogo, ao lado de um precipício. Acima de você há uma moeda. Você, sendo o Mario, em um nível do jogo, em uma posição específica... esse é o seu estado. Mover um passo para a direita (uma ação) fará com que você caia no precipício, o que lhe dará uma pontuação numérica baixa. No entanto, pressionar o botão de salto permitirá que você marque um ponto e continue vivo. Esse é um resultado positivo e deve lhe conceder uma pontuação numérica positiva. + +Usando aprendizado por reforço e um simulador (o jogo), você pode aprender a jogar para maximizar a recompensa, que é permanecer vivo e marcar o máximo de pontos possível. + +[![Introdução ao Aprendizado por Reforço](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 Clique na imagem acima para ouvir Dmitry falar sobre Aprendizado por Reforço + +## [Quiz pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Pré-requisitos e Configuração + +Nesta lição, vamos experimentar algum código em Python. Você deve ser capaz de executar o código do Jupyter Notebook desta lição, seja no seu computador ou em algum lugar na nuvem. + +Você pode abrir [o notebook da lição](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) e seguir esta lição para construir. + +> **Nota:** Se você estiver abrindo este código na nuvem, também precisará buscar o arquivo [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), que é usado no código do notebook. Adicione-o ao mesmo diretório que o notebook. + +## Introdução + +Nesta lição, vamos explorar o mundo de **[Pedro e o Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)**, inspirado por um conto musical de fadas de um compositor russo, [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). Usaremos **Aprendizado por Reforço** para permitir que Pedro explore seu ambiente, recolha maçãs saborosas e evite encontrar o lobo. + +**Aprendizado por Reforço** (RL) é uma técnica de aprendizado que nos permite aprender um comportamento ideal de um **agente** em algum **ambiente** ao realizar muitos experimentos. Um agente nesse ambiente deve ter algum **objetivo**, definido por uma **função de recompensa**. + +## O ambiente + +Para simplificar, vamos considerar o mundo de Pedro como um tabuleiro quadrado de tamanho `largura` x `altura`, como este: + +![Ambiente de Pedro](../../../../8-Reinforcement/1-QLearning/images/environment.png) + +Cada célula neste tabuleiro pode ser: + +* **chão**, onde Pedro e outras criaturas podem caminhar. +* **água**, onde obviamente não se pode caminhar. +* uma **árvore** ou **grama**, um lugar onde se pode descansar. +* uma **maçã**, que representa algo que Pedro ficaria feliz em encontrar para se alimentar. +* um **lobo**, que é perigoso e deve ser evitado. + +Há um módulo Python separado, [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), que contém o código para trabalhar com este ambiente. Como este código não é importante para entender nossos conceitos, vamos importar o módulo e usá-lo para criar o tabuleiro de exemplo (bloco de código 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +Este código deve imprimir uma imagem do ambiente semelhante à acima. + +## Ações e política + +No nosso exemplo, o objetivo de Pedro seria encontrar uma maçã, enquanto evita o lobo e outros obstáculos. Para isso, ele pode essencialmente andar por aí até encontrar uma maçã. + +Portanto, em qualquer posição, ele pode escolher entre uma das seguintes ações: cima, baixo, esquerda e direita. + +Definiremos essas ações como um dicionário e as mapearemos para pares de mudanças de coordenadas correspondentes. Por exemplo, mover para a direita (`R`) corresponderia ao par `(1,0)`. (bloco de código 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +Resumindo, a estratégia e o objetivo deste cenário são os seguintes: + +- **A estratégia**, do nosso agente (Pedro) é definida por uma chamada **política**. Uma política é uma função que retorna a ação em qualquer estado dado. No nosso caso, o estado do problema é representado pelo tabuleiro, incluindo a posição atual do jogador. + +- **O objetivo**, do aprendizado por reforço é eventualmente aprender uma boa política que nos permita resolver o problema de forma eficiente. No entanto, como base, vamos considerar a política mais simples chamada **caminhada aleatória**. + +## Caminhada aleatória + +Vamos primeiro resolver nosso problema implementando uma estratégia de caminhada aleatória. Com a caminhada aleatória, escolheremos aleatoriamente a próxima ação entre as ações permitidas, até chegarmos à maçã (bloco de código 3). + +1. Implemente a caminhada aleatória com o código abaixo: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + A chamada para `walk` deve retornar o comprimento do caminho correspondente, que pode variar de uma execução para outra. + +1. Execute o experimento de caminhada várias vezes (digamos, 100) e imprima as estatísticas resultantes (bloco de código 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + Note que o comprimento médio de um caminho é em torno de 30-40 passos, o que é bastante, dado que a distância média até a maçã mais próxima é em torno de 5-6 passos. + + Você também pode ver como é o movimento de Pedro durante a caminhada aleatória: + + ![Caminhada Aleatória de Pedro](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## Função de recompensa + +Para tornar nossa política mais inteligente, precisamos entender quais movimentos são "melhores" que outros. Para isso, precisamos definir nosso objetivo. + +O objetivo pode ser definido em termos de uma **função de recompensa**, que retornará algum valor de pontuação para cada estado. Quanto maior o número, melhor a função de recompensa. (bloco de código 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +Uma coisa interessante sobre funções de recompensa é que, na maioria dos casos, *só recebemos uma recompensa substancial no final do jogo*. Isso significa que nosso algoritmo deve, de alguma forma, lembrar os "bons" passos que levam a uma recompensa positiva no final e aumentar sua importância. Da mesma forma, todos os movimentos que levam a resultados ruins devem ser desencorajados. + +## Q-Learning + +O algoritmo que discutiremos aqui é chamado **Q-Learning**. Neste algoritmo, a política é definida por uma função (ou uma estrutura de dados) chamada **Q-Table**. Ela registra a "qualidade" de cada uma das ações em um estado dado. + +É chamada de Q-Table porque muitas vezes é conveniente representá-la como uma tabela ou matriz multidimensional. Como nosso tabuleiro tem dimensões `largura` x `altura`, podemos representar a Q-Table usando um array numpy com formato `largura` x `altura` x `len(actions)`: (bloco de código 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +Observe que inicializamos todos os valores da Q-Table com um valor igual, no nosso caso - 0.25. Isso corresponde à política de "caminhada aleatória", porque todos os movimentos em cada estado são igualmente bons. Podemos passar a Q-Table para a função `plot` para visualizar a tabela no tabuleiro: `m.plot(Q)`. + +![Ambiente de Pedro](../../../../8-Reinforcement/1-QLearning/images/env_init.png) + +No centro de cada célula há uma "seta" que indica a direção preferida de movimento. Como todas as direções são iguais, um ponto é exibido. + +Agora precisamos executar a simulação, explorar nosso ambiente e aprender uma melhor distribuição de valores da Q-Table, o que nos permitirá encontrar o caminho para a maçã muito mais rapidamente. + +## Essência do Q-Learning: Equação de Bellman + +Uma vez que começamos a nos mover, cada ação terá uma recompensa correspondente, ou seja, teoricamente podemos selecionar a próxima ação com base na maior recompensa imediata. No entanto, na maioria dos estados, o movimento não alcançará nosso objetivo de chegar à maçã, e assim não podemos decidir imediatamente qual direção é melhor. + +> Lembre-se de que não é o resultado imediato que importa, mas sim o resultado final, que obteremos no final da simulação. + +Para levar em conta essa recompensa atrasada, precisamos usar os princípios de **[programação dinâmica](https://en.wikipedia.org/wiki/Dynamic_programming)**, que nos permitem pensar sobre nosso problema de forma recursiva. + +Suponha que estamos agora no estado *s*, e queremos nos mover para o próximo estado *s'*. Ao fazer isso, receberemos a recompensa imediata *r(s,a)*, definida pela função de recompensa, mais alguma recompensa futura. Se supusermos que nossa Q-Table reflete corretamente a "atratividade" de cada ação, então no estado *s'* escolheremos uma ação *a* que corresponda ao valor máximo de *Q(s',a')*. Assim, a melhor recompensa futura possível que poderíamos obter no estado *s* será definida como `max` + +## Verificar a política + +Como a Q-Table lista a "atratividade" de cada ação em cada estado, é bastante fácil utilizá-la para definir a navegação eficiente no nosso mundo. No caso mais simples, podemos selecionar a ação correspondente ao valor mais alto da Q-Table: (bloco de código 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> Se experimentares o código acima várias vezes, podes notar que, por vezes, ele "fica preso", e precisas de pressionar o botão STOP no notebook para o interromper. Isto acontece porque podem existir situações em que dois estados "apontam" um para o outro em termos de valor ótimo de Q-Value, caso em que o agente acaba por se mover entre esses estados indefinidamente. + +## 🚀Desafio + +> **Tarefa 1:** Modifica a função `walk` para limitar o comprimento máximo do caminho a um certo número de passos (por exemplo, 100), e observa o código acima retornar este valor ocasionalmente. + +> **Tarefa 2:** Modifica a função `walk` para que não volte aos locais onde já esteve anteriormente. Isto evitará que o `walk` entre em loop, no entanto, o agente ainda pode acabar "preso" num local do qual não consegue escapar. + +## Navegação + +Uma política de navegação melhor seria aquela que utilizámos durante o treino, que combina exploração e aproveitamento. Nesta política, selecionamos cada ação com uma certa probabilidade, proporcional aos valores na Q-Table. Esta estratégia pode ainda resultar no agente voltar a uma posição que já explorou, mas, como podes ver no código abaixo, resulta num caminho médio muito curto até ao local desejado (lembra-te que `print_statistics` executa a simulação 100 vezes): (bloco de código 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +Depois de executar este código, deverás obter um comprimento médio de caminho muito menor do que antes, na faixa de 3-6. + +## Investigar o processo de aprendizagem + +Como mencionámos, o processo de aprendizagem é um equilíbrio entre exploração e aproveitamento do conhecimento adquirido sobre a estrutura do espaço do problema. Vimos que os resultados da aprendizagem (a capacidade de ajudar um agente a encontrar um caminho curto até ao objetivo) melhoraram, mas também é interessante observar como o comprimento médio do caminho se comporta durante o processo de aprendizagem: + +## Resumo das aprendizagens: + +- **O comprimento médio do caminho aumenta**. O que vemos aqui é que, inicialmente, o comprimento médio do caminho aumenta. Isto provavelmente deve-se ao facto de que, quando não sabemos nada sobre o ambiente, é mais provável ficarmos presos em estados desfavoráveis, como água ou lobos. À medida que aprendemos mais e começamos a usar esse conhecimento, conseguimos explorar o ambiente por mais tempo, mas ainda não sabemos muito bem onde estão as maçãs. + +- **O comprimento do caminho diminui, à medida que aprendemos mais**. Quando aprendemos o suficiente, torna-se mais fácil para o agente alcançar o objetivo, e o comprimento do caminho começa a diminuir. No entanto, ainda estamos abertos à exploração, por isso frequentemente desviamos do melhor caminho e exploramos novas opções, tornando o caminho mais longo do que o ideal. + +- **O comprimento aumenta abruptamente**. O que também observamos neste gráfico é que, em determinado momento, o comprimento aumentou abruptamente. Isto indica a natureza estocástica do processo, e que podemos, em algum momento, "estragar" os coeficientes da Q-Table ao sobrescrevê-los com novos valores. Isto idealmente deve ser minimizado ao diminuir a taxa de aprendizagem (por exemplo, no final do treino, ajustamos os valores da Q-Table apenas por um valor pequeno). + +No geral, é importante lembrar que o sucesso e a qualidade do processo de aprendizagem dependem significativamente de parâmetros, como a taxa de aprendizagem, a diminuição da taxa de aprendizagem e o fator de desconto. Estes são frequentemente chamados de **hiperparâmetros**, para distingui-los dos **parâmetros**, que otimizamos durante o treino (por exemplo, os coeficientes da Q-Table). O processo de encontrar os melhores valores de hiperparâmetros é chamado de **otimização de hiperparâmetros**, e merece um tópico à parte. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Trabalho +[Um Mundo Mais Realista](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/assignment.md b/translations/pt-PT/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..38f8561fa --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,32 @@ +# Um Mundo Mais Realista + +Na nossa situação, Peter conseguia mover-se quase sem se cansar ou sentir fome. Num mundo mais realista, ele teria de sentar-se e descansar de vez em quando, além de alimentar-se. Vamos tornar o nosso mundo mais realista, implementando as seguintes regras: + +1. Ao mover-se de um lugar para outro, Peter perde **energia** e ganha **fadiga**. +2. Peter pode recuperar energia ao comer maçãs. +3. Peter pode livrar-se da fadiga descansando debaixo de uma árvore ou na relva (ou seja, ao caminhar para uma localização no tabuleiro com uma árvore ou relva - campo verde). +4. Peter precisa encontrar e matar o lobo. +5. Para matar o lobo, Peter precisa ter certos níveis de energia e fadiga; caso contrário, ele perde a batalha. + +## Instruções + +Use o [notebook.ipynb](notebook.ipynb) original como ponto de partida para a sua solução. + +Modifique a função de recompensa acima de acordo com as regras do jogo, execute o algoritmo de aprendizagem por reforço para aprender a melhor estratégia para vencer o jogo e compare os resultados da caminhada aleatória com o seu algoritmo em termos de número de jogos ganhos e perdidos. + +> **Note**: No seu novo mundo, o estado é mais complexo e, além da posição do humano, também inclui os níveis de fadiga e energia. Pode optar por representar o estado como uma tupla (Tabuleiro, energia, fadiga), ou definir uma classe para o estado (também pode derivá-la de `Board`), ou até modificar a classe original `Board` dentro de [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py). + +Na sua solução, mantenha o código responsável pela estratégia de caminhada aleatória e compare os resultados do seu algoritmo com a caminhada aleatória no final. + +> **Note**: Pode ser necessário ajustar os hiperparâmetros para que funcione, especialmente o número de épocas. Como o sucesso no jogo (lutar contra o lobo) é um evento raro, pode esperar um tempo de treino muito mais longo. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita Melhorar | +| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | Um notebook é apresentado com a definição das novas regras do mundo, o algoritmo de Q-Learning e algumas explicações textuais. O Q-Learning consegue melhorar significativamente os resultados em comparação com a caminhada aleatória. | Um notebook é apresentado, o Q-Learning é implementado e melhora os resultados em comparação com a caminhada aleatória, mas não significativamente; ou o notebook está mal documentado e o código não está bem estruturado. | Alguma tentativa de redefinir as regras do mundo foi feita, mas o algoritmo de Q-Learning não funciona, ou a função de recompensa não está totalmente definida. | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/pt-PT/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..21f7f0804 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,412 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-03T20:44:28+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro e o Lobo: Introdução ao Aprendizado por Reforço\n", + "\n", + "Neste tutorial, vamos aprender como aplicar aprendizado por reforço a um problema de busca de caminhos. O cenário é inspirado no conto musical [Pedro e o Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) do compositor russo [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). É uma história sobre o jovem pioneiro Pedro, que corajosamente sai de casa para a clareira da floresta para perseguir um lobo. Vamos treinar algoritmos de aprendizado de máquina que ajudarão Pedro a explorar a área ao redor e construir um mapa de navegação otimizado.\n", + "\n", + "Primeiro, vamos importar um conjunto de bibliotecas úteis:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Visão Geral do Aprendizagem por Reforço\n", + "\n", + "**Aprendizagem por Reforço** (RL) é uma técnica de aprendizagem que nos permite aprender o comportamento ideal de um **agente** em um determinado **ambiente** através da realização de muitos experimentos. Um agente neste ambiente deve ter algum **objetivo**, definido por uma **função de recompensa**.\n", + "\n", + "## O Ambiente\n", + "\n", + "Para simplificar, vamos considerar o mundo de Peter como um tabuleiro quadrado de tamanho `width` x `height`. Cada célula neste tabuleiro pode ser:\n", + "* **chão**, onde Peter e outras criaturas podem caminhar\n", + "* **água**, onde obviamente não se pode caminhar\n", + "* **uma árvore** ou **relva** - um lugar onde se pode descansar\n", + "* **uma maçã**, que representa algo que Peter ficaria feliz em encontrar para se alimentar\n", + "* **um lobo**, que é perigoso e deve ser evitado\n", + "\n", + "Para trabalhar com o ambiente, vamos definir uma classe chamada `Board`. Para não sobrecarregar demasiado este notebook, movemos todo o código relacionado ao funcionamento do tabuleiro para um módulo separado chamado `rlboard`, que iremos importar agora. Pode consultar este módulo para obter mais detalhes sobre os aspectos internos da implementação.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Vamos agora criar um tabuleiro aleatório e ver como fica:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## Ações e Política\n", + "\n", + "No nosso exemplo, o objetivo de Peter seria encontrar uma maçã, enquanto evita o lobo e outros obstáculos. Defina essas ações como um dicionário e associe-as a pares de alterações correspondentes de coordenadas.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "A estratégia do nosso agente (Peter) é definida por uma chamada **política**. Vamos considerar a política mais simples chamada **caminhada aleatória**.\n", + "\n", + "## Caminhada aleatória\n", + "\n", + "Vamos primeiro resolver o nosso problema implementando uma estratégia de caminhada aleatória.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## Função de Recompensa\n", + "\n", + "Para tornar a nossa política mais inteligente, precisamos compreender quais movimentos são \"melhores\" do que outros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Q-Learning\n", + "\n", + "Construa uma Q-Table, ou matriz multidimensional. Como o nosso tabuleiro tem dimensões `width` x `height`, podemos representar a Q-Table por um array numpy com a forma `width` x `height` x `len(actions)`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Passe a Q-Table para a função `plot` para visualizar a tabela no tabuleiro:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Essência do Q-Learning: Equação de Bellman e Algoritmo de Aprendizagem\n", + "\n", + "Escreva um pseudocódigo para o nosso algoritmo de aprendizagem:\n", + "\n", + "* Inicializar a Q-Table Q com números iguais para todos os estados e ações\n", + "* Definir a taxa de aprendizagem $\\alpha\\leftarrow 1$\n", + "* Repetir a simulação várias vezes\n", + " 1. Começar numa posição aleatória\n", + " 1. Repetir\n", + " 1. Selecionar uma ação $a$ no estado $s$\n", + " 2. Executar a ação, movendo-se para um novo estado $s'$\n", + " 3. Se encontrarmos uma condição de fim de jogo ou se o total de recompensas for muito baixo - sair da simulação \n", + " 4. Calcular a recompensa $r$ no novo estado\n", + " 5. Atualizar a Função Q de acordo com a equação de Bellman: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Atualizar a recompensa total e diminuir $\\alpha$.\n", + "\n", + "## Explorar vs. Explorar\n", + "\n", + "A melhor abordagem é equilibrar entre exploração e exploração. À medida que aprendemos mais sobre o nosso ambiente, estaremos mais propensos a seguir o caminho ótimo, no entanto, escolhendo o caminho inexplorado de vez em quando.\n", + "\n", + "## Implementação em Python\n", + "\n", + "Agora estamos prontos para implementar o algoritmo de aprendizagem. Antes disso, também precisamos de uma função que converta números arbitrários na Q-Table num vetor de probabilidades para as ações correspondentes:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "Adicionamos uma pequena quantidade de `eps` ao vetor original para evitar divisão por 0 no caso inicial, quando todos os componentes do vetor são idênticos.\n", + "\n", + "O algoritmo de aprendizagem que iremos executar durante 5000 experiências, também chamadas de **épocas**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "Após executar este algoritmo, a Q-Table deverá ser atualizada com valores que definem a atratividade de diferentes ações em cada etapa. Visualize a tabela aqui:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Verificar a Política\n", + "\n", + "Como a Q-Table lista a \"atratividade\" de cada ação em cada estado, é bastante fácil utilizá-la para definir a navegação eficiente no nosso mundo. No caso mais simples, podemos simplesmente selecionar a ação correspondente ao valor mais alto na Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "Se tentar o código acima várias vezes, pode notar que, por vezes, ele simplesmente \"fica preso\", e é necessário pressionar o botão STOP no notebook para interrompê-lo.\n", + "\n", + "> **Tarefa 1:** Modifique a função `walk` para limitar o comprimento máximo do caminho a um certo número de passos (por exemplo, 100), e observe o código acima retornar este valor ocasionalmente.\n", + "\n", + "> **Tarefa 2:** Modifique a função `walk` para que não volte aos locais onde já esteve anteriormente. Isto evitará que o `walk` entre em ciclos, no entanto, o agente ainda pode acabar \"encurralado\" num local do qual não consegue escapar.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## Exercício\n", + "## Um mundo mais realista de Pedro e o Lobo\n", + "\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..561d7008d --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..78c72d7f1 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..2f7c52361 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,478 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-03T20:51:58+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro e o Lobo: Ambiente Realista\n", + "\n", + "Na nossa situação, Pedro conseguia deslocar-se quase sem se cansar ou sentir fome. Num mundo mais realista, ele teria de sentar-se e descansar de vez em quando, além de alimentar-se. Vamos tornar o nosso mundo mais realista, implementando as seguintes regras:\n", + "\n", + "1. Ao deslocar-se de um lugar para outro, Pedro perde **energia** e ganha algum **cansaço**.\n", + "2. Pedro pode recuperar energia ao comer maçãs.\n", + "3. Pedro pode livrar-se do cansaço descansando debaixo de uma árvore ou na relva (ou seja, ao caminhar para uma localização no tabuleiro com uma árvore ou relva - campo verde).\n", + "4. Pedro precisa encontrar e matar o lobo.\n", + "5. Para matar o lobo, Pedro precisa ter certos níveis de energia e cansaço; caso contrário, ele perde a batalha.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## Definir estado\n", + "\n", + "Nas novas regras do jogo, precisamos acompanhar a energia e a fadiga em cada estado do tabuleiro. Assim, iremos criar um objeto `state` que irá conter todas as informações necessárias sobre o estado atual do problema, incluindo o estado do tabuleiro, os níveis atuais de energia e fadiga, e se podemos derrotar o lobo enquanto estamos no estado terminal:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Função de Recompensa\n", + "\n", + "A função de recompensa é uma parte essencial do sistema de aprendizagem por reforço. Ela define como o agente avalia as suas ações e orienta o comportamento em direção ao objetivo desejado.\n", + "\n", + "### Objetivo da Função de Recompensa\n", + "\n", + "O objetivo principal da função de recompensa é incentivar o agente a tomar ações que maximizem o retorno total ao longo do tempo. Isto é feito atribuindo valores positivos ou negativos às ações, dependendo do impacto que elas têm no progresso em direção ao objetivo.\n", + "\n", + "### Estrutura da Função de Recompensa\n", + "\n", + "A função de recompensa pode ser definida de várias formas, dependendo do problema específico. Aqui estão alguns exemplos comuns:\n", + "\n", + "- **Recompensa baseada em desempenho**: O agente recebe uma recompensa proporcional ao sucesso de uma ação. Por exemplo, em um jogo, o agente pode ganhar pontos por atingir um objetivo.\n", + "- **Recompensa baseada em penalidades**: Penalidades são aplicadas para desencorajar comportamentos indesejados. Por exemplo, o agente pode perder pontos por cometer erros.\n", + "- **Recompensa combinada**: Combina recompensas e penalidades para criar um equilíbrio entre incentivo e correção.\n", + "\n", + "### Considerações ao Projetar a Função de Recompensa\n", + "\n", + "- **Clareza**: Certifique-se de que a função de recompensa seja fácil de entender e interpretar pelo agente.\n", + "- **Equilíbrio**: Evite recompensas excessivamente altas ou baixas, pois isso pode levar a comportamentos extremos ou apatia.\n", + "- **Alinhamento com o objetivo**: A função de recompensa deve refletir diretamente os objetivos do sistema.\n", + "\n", + "### Exemplos de Funções de Recompensa\n", + "\n", + "Aqui estão alguns exemplos de como uma função de recompensa pode ser implementada:\n", + "\n", + "#### Exemplo 1: Recompensa Simples\n", + "\n", + "```python\n", + "def reward_function(action):\n", + " if action == \"success\":\n", + " return 10\n", + " elif action == \"failure\":\n", + " return -5\n", + " else:\n", + " return 0\n", + "```\n", + "\n", + "#### Exemplo 2: Recompensa Baseada em Distância\n", + "\n", + "```python\n", + "def reward_function(distance_to_goal):\n", + " if distance_to_goal == 0:\n", + " return 100\n", + " else:\n", + " return -distance_to_goal\n", + "```\n", + "\n", + "### Melhoria da Função de Recompensa\n", + "\n", + "A função de recompensa pode ser ajustada e melhorada com base no desempenho do agente. Monitorar o comportamento do agente e realizar testes pode ajudar a identificar áreas onde a função de recompensa pode ser refinada.\n", + "\n", + "### Conclusão\n", + "\n", + "A função de recompensa é um componente crítico para orientar o comportamento do agente em sistemas de aprendizagem por reforço. Um design cuidadoso e iterativo pode garantir que o agente aprenda de forma eficaz e alcance os objetivos desejados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Algoritmo Q-Learning\n", + "\n", + "O algoritmo de aprendizagem em si permanece praticamente inalterado, apenas usamos `state` em vez de apenas a posição do tabuleiro.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Resultados\n", + "\n", + "Vamos ver se conseguimos treinar o Peter para enfrentar o lobo!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "Agora vemos muito menos casos de afogamento, mas o Peter ainda não consegue sempre matar o lobo. Tente experimentar e veja se consegue melhorar este resultado ajustando os hiperparâmetros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..a816338d3 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-03T20:48:36+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro e o Lobo: Introdução ao Aprendizado por Reforço\n", + "\n", + "Neste tutorial, vamos aprender como aplicar aprendizado por reforço a um problema de busca de caminhos. O cenário é inspirado no conto musical [Pedro e o Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) do compositor russo [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). É uma história sobre o jovem pioneiro Pedro, que corajosamente sai de casa para a clareira da floresta para perseguir o lobo. Vamos treinar algoritmos de aprendizado de máquina que ajudarão Pedro a explorar a área ao redor e construir um mapa de navegação ideal.\n", + "\n", + "Primeiro, vamos importar algumas bibliotecas úteis:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Visão Geral do Aprendizado por Reforço\n", + "\n", + "**Aprendizado por Reforço** (RL) é uma técnica de aprendizado que nos permite aprender o comportamento ideal de um **agente** em um determinado **ambiente** através da realização de muitos experimentos. Um agente nesse ambiente deve ter algum **objetivo**, definido por uma **função de recompensa**.\n", + "\n", + "## O Ambiente\n", + "\n", + "Para simplificar, vamos considerar o mundo de Peter como um tabuleiro quadrado de tamanho `width` x `height`. Cada célula nesse tabuleiro pode ser:\n", + "* **terra**, onde Peter e outras criaturas podem caminhar\n", + "* **água**, onde obviamente não se pode caminhar\n", + "* **uma árvore** ou **relva** - um lugar onde se pode descansar\n", + "* **uma maçã**, que representa algo que Peter ficaria feliz em encontrar para se alimentar\n", + "* **um lobo**, que é perigoso e deve ser evitado\n", + "\n", + "Para trabalhar com o ambiente, vamos definir uma classe chamada `Board`. Para não sobrecarregar este notebook, movemos todo o código relacionado ao tabuleiro para um módulo separado chamado `rlboard`, que agora vamos importar. Você pode olhar dentro desse módulo para obter mais detalhes sobre os aspectos internos da implementação.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "Vamos agora criar um tabuleiro aleatório e ver como fica:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## Ações e Política\n", + "\n", + "No nosso exemplo, o objetivo de Peter seria encontrar uma maçã, enquanto evita o lobo e outros obstáculos. Para isso, ele pode essencialmente andar até encontrar uma maçã. Assim, em qualquer posição, ele pode escolher entre uma das seguintes ações: cima, baixo, esquerda e direita. Vamos definir essas ações como um dicionário e mapeá-las para pares de alterações correspondentes nas coordenadas. Por exemplo, mover para a direita (`R`) corresponderia ao par `(1,0)`.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "A estratégia do nosso agente (Peter) é definida por uma chamada **política**. Vamos considerar a política mais simples chamada **caminhada aleatória**.\n", + "\n", + "## Caminhada aleatória\n", + "\n", + "Vamos começar por resolver o nosso problema implementando uma estratégia de caminhada aleatória.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "Vamos realizar a experiência de passeio aleatório várias vezes e ver o número médio de passos dados:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Função de Recompensa\n", + "\n", + "Para tornar a nossa política mais inteligente, precisamos compreender quais movimentos são \"melhores\" do que outros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Aprendizagem Q\n", + "\n", + "Construa uma Q-Table, ou uma matriz multidimensional. Como o nosso tabuleiro tem dimensões `width` x `height`, podemos representar a Q-Table por um array numpy com a forma `width` x `height` x `len(actions)`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Passe a Q-Table para a função de plotagem para visualizar a tabela no tabuleiro:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Essência do Q-Learning: Equação de Bellman e Algoritmo de Aprendizagem\n", + "\n", + "Escreva um pseudo-código para o nosso algoritmo de aprendizagem:\n", + "\n", + "* Inicializar a Tabela Q (Q-Table) com valores iguais para todos os estados e ações\n", + "* Definir a taxa de aprendizagem $\\alpha\\leftarrow 1$\n", + "* Repetir a simulação várias vezes\n", + " 1. Começar numa posição aleatória\n", + " 1. Repetir\n", + " 1. Selecionar uma ação $a$ no estado $s$\n", + " 2. Executar a ação movendo-se para um novo estado $s'$\n", + " 3. Se encontrarmos uma condição de fim de jogo ou se o total de recompensas for muito baixo - sair da simulação \n", + " 4. Calcular a recompensa $r$ no novo estado\n", + " 5. Atualizar a Função Q de acordo com a equação de Bellman: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Atualizar a recompensa total e diminuir $\\alpha$.\n", + "\n", + "## Explorar vs. Explorar\n", + "\n", + "A melhor abordagem é equilibrar entre exploração e exploração. À medida que aprendemos mais sobre o nosso ambiente, estaremos mais inclinados a seguir o caminho ótimo, no entanto, escolher o caminho inexplorado de vez em quando.\n", + "\n", + "## Implementação em Python\n", + "\n", + "Agora estamos prontos para implementar o algoritmo de aprendizagem. Antes disso, também precisamos de uma função que converta números arbitrários na Tabela Q (Q-Table) num vetor de probabilidades para as ações correspondentes:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "Adicionamos uma pequena quantidade de `eps` ao vetor original para evitar divisão por 0 no caso inicial, quando todos os componentes do vetor são idênticos.\n", + "\n", + "O algoritmo de aprendizagem que iremos executar durante 5000 experiências, também chamadas de **épocas**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "Após executar este algoritmo, a Q-Table deverá ser atualizada com valores que definem a atratividade de diferentes ações em cada etapa. Visualize a tabela aqui:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Verificar a Política\n", + "\n", + "Como a Q-Table lista a \"atratividade\" de cada ação em cada estado, é bastante fácil utilizá-la para definir a navegação eficiente no nosso mundo. No caso mais simples, podemos simplesmente selecionar a ação correspondente ao valor mais alto na Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "Se tentar o código acima várias vezes, pode notar que, por vezes, ele simplesmente \"fica preso\", e é necessário pressionar o botão STOP no notebook para interrompê-lo.\n", + "\n", + "> **Tarefa 1:** Modifique a função `walk` para limitar o comprimento máximo do caminho a um certo número de passos (por exemplo, 100), e observe o código acima retornar este valor ocasionalmente.\n", + "\n", + "> **Tarefa 2:** Modifique a função `walk` para que não volte aos locais onde já esteve anteriormente. Isto evitará que o `walk` entre em ciclos, no entanto, o agente ainda pode acabar \"encurralado\" num local do qual não consegue escapar.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "O que observamos aqui é que, inicialmente, o comprimento médio do percurso aumentou. Isto provavelmente deve-se ao facto de, quando não sabemos nada sobre o ambiente, é mais provável que fiquemos presos em estados desfavoráveis, como água ou lobos. À medida que aprendemos mais e começamos a usar esse conhecimento, conseguimos explorar o ambiente por mais tempo, mas ainda não sabemos bem onde estão as maçãs.\n", + "\n", + "Quando aprendemos o suficiente, torna-se mais fácil para o agente alcançar o objetivo, e o comprimento do percurso começa a diminuir. No entanto, ainda estamos abertos à exploração, o que significa que frequentemente nos desviamos do melhor caminho e exploramos novas opções, tornando o percurso mais longo do que o ideal.\n", + "\n", + "O que também observamos neste gráfico é que, em determinado momento, o comprimento aumentou abruptamente. Isto indica a natureza estocástica do processo e que, em algum momento, podemos \"estragar\" os coeficientes da Q-Table ao substituí-los por novos valores. Idealmente, isto deve ser minimizado ao reduzir a taxa de aprendizagem (ou seja, no final do treino ajustamos os valores da Q-Table apenas por um valor pequeno).\n", + "\n", + "De forma geral, é importante lembrar que o sucesso e a qualidade do processo de aprendizagem dependem significativamente de parâmetros como a taxa de aprendizagem, a redução da taxa de aprendizagem e o fator de desconto. Estes são frequentemente chamados de **hiperparâmetros**, para distingui-los dos **parâmetros** que otimizamos durante o treino (por exemplo, os coeficientes da Q-Table). O processo de encontrar os melhores valores para os hiperparâmetros é chamado de **otimização de hiperparâmetros**, e merece um tópico à parte.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## Exercício\n", + "#### Um Mundo Mais Realista de Pedro e o Lobo\n", + "\n", + "Na nossa situação, Pedro conseguia deslocar-se quase sem se cansar ou sentir fome. Num mundo mais realista, ele precisa de se sentar e descansar de vez em quando, além de se alimentar. Vamos tornar o nosso mundo mais realista implementando as seguintes regras:\n", + "\n", + "1. Ao mover-se de um lugar para outro, Pedro perde **energia** e ganha alguma **fadiga**.\n", + "2. Pedro pode ganhar mais energia ao comer maçãs.\n", + "3. Pedro pode livrar-se da fadiga descansando debaixo da árvore ou na relva (ou seja, ao caminhar para uma localização no tabuleiro com uma árvore ou relva - campo verde).\n", + "4. Pedro precisa encontrar e matar o lobo.\n", + "5. Para matar o lobo, Pedro precisa ter certos níveis de energia e fadiga, caso contrário, perde a batalha.\n", + "\n", + "Modifique a função de recompensa acima de acordo com as regras do jogo, execute o algoritmo de aprendizagem por reforço para aprender a melhor estratégia para vencer o jogo e compare os resultados da caminhada aleatória com o seu algoritmo em termos de número de jogos ganhos e perdidos.\n", + "\n", + "> **Note**: Pode ser necessário ajustar os hiperparâmetros para que funcione, especialmente o número de épocas. Como o sucesso do jogo (lutar contra o lobo) é um evento raro, pode esperar um tempo de treino muito mais longo.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/README.md b/translations/pt-PT/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..a86a33147 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,324 @@ +## Pré-requisitos + +Nesta lição, utilizaremos uma biblioteca chamada **OpenAI Gym** para simular diferentes **ambientes**. Pode executar o código desta lição localmente (por exemplo, no Visual Studio Code), caso em que a simulação será aberta numa nova janela. Ao executar o código online, poderá precisar de fazer alguns ajustes, conforme descrito [aqui](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7). + +## OpenAI Gym + +Na lição anterior, as regras do jogo e o estado foram definidos pela classe `Board`, que criámos nós mesmos. Aqui, utilizaremos um **ambiente de simulação** especial, que simulará a física por trás do equilíbrio do poste. Um dos ambientes de simulação mais populares para treinar algoritmos de aprendizagem por reforço é chamado de [Gym](https://gym.openai.com/), mantido pela [OpenAI](https://openai.com/). Com este Gym, podemos criar diferentes **ambientes**, desde simulações de CartPole até jogos de Atari. + +> **Nota**: Pode ver outros ambientes disponíveis no OpenAI Gym [aqui](https://gym.openai.com/envs/#classic_control). + +Primeiro, vamos instalar o Gym e importar as bibliotecas necessárias (bloco de código 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## Exercício - inicializar um ambiente de CartPole + +Para trabalhar com o problema de equilíbrio do CartPole, precisamos de inicializar o ambiente correspondente. Cada ambiente está associado a: + +- **Espaço de observação**, que define a estrutura da informação que recebemos do ambiente. No problema do CartPole, recebemos a posição do poste, a velocidade e outros valores. + +- **Espaço de ação**, que define as ações possíveis. No nosso caso, o espaço de ação é discreto e consiste em duas ações: **esquerda** e **direita**. (bloco de código 2) + +1. Para inicializar, escreva o seguinte código: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +Para ver como o ambiente funciona, vamos executar uma simulação curta de 100 passos. Em cada passo, fornecemos uma das ações a serem realizadas - nesta simulação, selecionamos aleatoriamente uma ação do `action_space`. + +1. Execute o código abaixo e veja o resultado. + + ✅ Lembre-se de que é preferível executar este código numa instalação local de Python! (bloco de código 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + Deve ver algo semelhante a esta imagem: + + ![CartPole sem equilíbrio](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. Durante a simulação, precisamos de obter observações para decidir como agir. Na verdade, a função step retorna as observações atuais, uma função de recompensa e um indicador `done` que indica se faz sentido continuar a simulação ou não: (bloco de código 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + No notebook, verá algo semelhante a isto: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + O vetor de observação retornado em cada passo da simulação contém os seguintes valores: + - Posição do carrinho + - Velocidade do carrinho + - Ângulo do poste + - Taxa de rotação do poste + +1. Obtenha os valores mínimos e máximos desses números: (bloco de código 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + Também pode notar que o valor de recompensa em cada passo da simulação é sempre 1. Isto acontece porque o nosso objetivo é sobreviver o maior tempo possível, ou seja, manter o poste numa posição razoavelmente vertical pelo maior período de tempo. + + ✅ Na verdade, a simulação do CartPole é considerada resolvida se conseguirmos obter uma recompensa média de 195 ao longo de 100 tentativas consecutivas. + +## Discretização do estado + +No Q-Learning, precisamos de construir uma Q-Table que define o que fazer em cada estado. Para isso, o estado precisa de ser **discreto**, ou seja, deve conter um número finito de valores discretos. Assim, precisamos de alguma forma **discretizar** as nossas observações, mapeando-as para um conjunto finito de estados. + +Existem algumas formas de fazer isto: + +- **Dividir em intervalos**. Se conhecemos o intervalo de um determinado valor, podemos dividir este intervalo em vários **bins** e substituir o valor pelo número do bin ao qual pertence. Isto pode ser feito usando o método [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) do numpy. Neste caso, saberemos exatamente o tamanho do estado, pois dependerá do número de bins que selecionarmos para a digitalização. + +✅ Podemos usar interpolação linear para trazer os valores para um intervalo finito (por exemplo, de -20 a 20) e, em seguida, converter os números em inteiros arredondando-os. Isto dá-nos um pouco menos de controlo sobre o tamanho do estado, especialmente se não conhecermos os intervalos exatos dos valores de entrada. Por exemplo, no nosso caso, 2 dos 4 valores não têm limites superiores/inferiores, o que pode resultar num número infinito de estados. + +No nosso exemplo, utilizaremos a segunda abordagem. Como poderá notar mais tarde, apesar de os limites superiores/inferiores não estarem definidos, esses valores raramente assumem valores fora de certos intervalos finitos, tornando os estados com valores extremos muito raros. + +1. Aqui está a função que irá receber a observação do nosso modelo e produzir um tuplo de 4 valores inteiros: (bloco de código 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. Vamos também explorar outro método de discretização usando bins: (bloco de código 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. Agora, execute uma simulação curta e observe esses valores discretos do ambiente. Sinta-se à vontade para experimentar tanto `discretize` quanto `discretize_bins` e veja se há alguma diferença. + + ✅ `discretize_bins` retorna o número do bin, que é baseado em 0. Assim, para valores da variável de entrada próximos de 0, retorna o número do meio do intervalo (10). Em `discretize`, não nos preocupámos com o intervalo dos valores de saída, permitindo que sejam negativos, e assim os valores do estado não são deslocados, e 0 corresponde a 0. (bloco de código 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ Descomente a linha que começa com `env.render` se quiser ver como o ambiente é executado. Caso contrário, pode executá-lo em segundo plano, o que é mais rápido. Utilizaremos esta execução "invisível" durante o nosso processo de Q-Learning. + +## Estrutura da Q-Table + +Na lição anterior, o estado era um simples par de números de 0 a 8, e assim era conveniente representar a Q-Table por um tensor numpy com uma forma de 8x8x2. Se utilizarmos a discretização por bins, o tamanho do nosso vetor de estado também será conhecido, então podemos usar a mesma abordagem e representar o estado por um array com a forma 20x20x10x10x2 (aqui 2 é a dimensão do espaço de ação, e as primeiras dimensões correspondem ao número de bins que selecionámos para cada um dos parâmetros no espaço de observação). + +No entanto, às vezes as dimensões precisas do espaço de observação não são conhecidas. No caso da função `discretize`, nunca podemos ter certeza de que o nosso estado permanece dentro de certos limites, porque alguns dos valores originais não têm limites. Assim, utilizaremos uma abordagem ligeiramente diferente e representaremos a Q-Table por um dicionário. + +1. Use o par *(state,action)* como chave do dicionário, e o valor corresponderá ao valor da entrada na Q-Table. (bloco de código 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + Aqui também definimos uma função `qvalues()`, que retorna uma lista de valores da Q-Table para um determinado estado que corresponde a todas as ações possíveis. Se a entrada não estiver presente na Q-Table, retornaremos 0 como padrão. + +## Vamos começar o Q-Learning + +Agora estamos prontos para ensinar o Peter a equilibrar! + +1. Primeiro, vamos definir alguns hiperparâmetros: (bloco de código 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + Aqui, `alpha` é a **taxa de aprendizagem**, que define até que ponto devemos ajustar os valores atuais da Q-Table em cada passo. Na lição anterior, começámos com 1 e depois reduzimos `alpha` para valores mais baixos durante o treino. Neste exemplo, manteremos constante apenas por simplicidade, e pode experimentar ajustar os valores de `alpha` mais tarde. + + `gamma` é o **fator de desconto**, que mostra até que ponto devemos priorizar a recompensa futura em relação à recompensa atual. + + `epsilon` é o **fator de exploração/exploração**, que determina se devemos preferir explorar ou explorar. No nosso algoritmo, em `epsilon` por cento dos casos, selecionaremos a próxima ação de acordo com os valores da Q-Table, e no restante dos casos executaremos uma ação aleatória. Isto permitirá explorar áreas do espaço de busca que nunca vimos antes. + + ✅ Em termos de equilíbrio - escolher uma ação aleatória (exploração) seria como um empurrão aleatório na direção errada, e o poste teria de aprender a recuperar o equilíbrio desses "erros". + +### Melhorar o algoritmo + +Podemos também fazer duas melhorias ao nosso algoritmo da lição anterior: + +- **Calcular a recompensa cumulativa média**, ao longo de várias simulações. Iremos imprimir o progresso a cada 5000 iterações e calcularemos a média da recompensa cumulativa nesse período de tempo. Isto significa que, se obtivermos mais de 195 pontos, podemos considerar o problema resolvido, com qualidade ainda maior do que o necessário. + +- **Calcular o resultado cumulativo médio máximo**, `Qmax`, e armazenaremos a Q-Table correspondente a esse resultado. Quando executar o treino, notará que, às vezes, o resultado cumulativo médio começa a cair, e queremos manter os valores da Q-Table que correspondem ao melhor modelo observado durante o treino. + +1. Colete todas as recompensas cumulativas em cada simulação no vetor `rewards` para posterior plotagem. (bloco de código 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +O que pode notar a partir desses resultados: + +- **Perto do nosso objetivo**. Estamos muito próximos de alcançar o objetivo de obter 195 recompensas cumulativas ao longo de 100+ execuções consecutivas da simulação, ou podemos até ter alcançado! Mesmo que obtenhamos números menores, ainda não sabemos, porque calculamos a média ao longo de 5000 execuções, e apenas 100 execuções são necessárias no critério formal. + +- **Recompensa começa a cair**. Às vezes, a recompensa começa a cair, o que significa que podemos "destruir" valores já aprendidos na Q-Table com os que pioram a situação. + +Esta observação é mais claramente visível se plotarmos o progresso do treino. + +## Plotar o progresso do treino + +Durante o treino, coletámos o valor da recompensa cumulativa em cada uma das iterações no vetor `rewards`. Aqui está como fica quando o plotamos contra o número de iterações: + +```python +plt.plot(rewards) +``` + +![progresso bruto](../../../../8-Reinforcement/2-Gym/images/train_progress_raw.png) + +A partir deste gráfico, não é possível dizer nada, porque, devido à natureza do processo de treino estocástico, a duração das sessões de treino varia muito. Para dar mais sentido a este gráfico, podemos calcular a **média móvel** ao longo de uma série de experimentos, digamos 100. Isto pode ser feito convenientemente usando `np.convolve`: (bloco de código 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![progresso do treino](../../../../8-Reinforcement/2-Gym/images/train_progress_runav.png) + +## Variar os hiperparâmetros + +Para tornar o treino mais estável, faz sentido ajustar alguns dos nossos hiperparâmetros durante o treino. Em particular: + +- **Para a taxa de aprendizagem**, `alpha`, podemos começar com valores próximos de 1 e depois ir reduzindo o parâmetro. Com o tempo, obteremos boas probabilidades na Q-Table e, assim, devemos ajustá-las ligeiramente, e não sobrescrever completamente com novos valores. + +- **Aumentar epsilon**. Podemos querer aumentar o `epsilon` lentamente, para explorar menos e explorar mais. Provavelmente faz sentido começar com um valor mais baixo de `epsilon` e aumentar até quase 1. +> **Tarefa 1**: Experimente alterar os valores dos hiperparâmetros e veja se consegue obter uma recompensa cumulativa mais alta. Está a conseguir ultrapassar 195? +> **Tarefa 2**: Para resolver formalmente o problema, é necessário alcançar uma recompensa média de 195 ao longo de 100 execuções consecutivas. Meça isso durante o treino e certifique-se de que o problema foi resolvido formalmente! + +## Ver o resultado em ação + +Seria interessante ver como o modelo treinado se comporta. Vamos executar a simulação e seguir a mesma estratégia de seleção de ações usada durante o treino, amostrando de acordo com a distribuição de probabilidade na Q-Table: (bloco de código 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +Deverá aparecer algo como isto: + +![um cartpole equilibrado](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀Desafio + +> **Tarefa 3**: Aqui, estávamos a usar a cópia final da Q-Table, que pode não ser a melhor. Lembre-se de que armazenámos a Q-Table com melhor desempenho na variável `Qbest`! Experimente o mesmo exemplo com a Q-Table de melhor desempenho, copiando `Qbest` para `Q`, e veja se nota alguma diferença. + +> **Tarefa 4**: Aqui, não estávamos a selecionar a melhor ação em cada passo, mas sim a amostrar com a correspondente distribuição de probabilidade. Faria mais sentido selecionar sempre a melhor ação, com o valor mais alto na Q-Table? Isto pode ser feito utilizando a função `np.argmax` para descobrir o número da ação correspondente ao maior valor na Q-Table. Implemente esta estratégia e veja se melhora o equilíbrio. + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Tarefa +[Treinar um Mountain Car](assignment.md) + +## Conclusão + +Aprendemos agora como treinar agentes para alcançar bons resultados apenas fornecendo-lhes uma função de recompensa que define o estado desejado do jogo e dando-lhes a oportunidade de explorar inteligentemente o espaço de busca. Aplicámos com sucesso o algoritmo de Q-Learning em casos de ambientes discretos e contínuos, mas com ações discretas. + +É importante também estudar situações em que o estado das ações é contínuo e quando o espaço de observação é muito mais complexo, como a imagem do ecrã de um jogo Atari. Nestes problemas, muitas vezes é necessário usar técnicas de aprendizagem automática mais avançadas, como redes neuronais, para alcançar bons resultados. Esses tópicos mais avançados serão abordados no nosso próximo curso de IA mais avançado. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/assignment.md b/translations/pt-PT/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..c245d1096 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,48 @@ +# Treinar Carro na Montanha + +[OpenAI Gym](http://gym.openai.com) foi projetado de forma que todos os ambientes fornecem a mesma API - ou seja, os mesmos métodos `reset`, `step` e `render`, e as mesmas abstrações de **espaço de ação** e **espaço de observação**. Assim, deve ser possível adaptar os mesmos algoritmos de aprendizagem por reforço a diferentes ambientes com mudanças mínimas no código. + +## Um Ambiente de Carro na Montanha + +O [ambiente Mountain Car](https://gym.openai.com/envs/MountainCar-v0/) contém um carro preso num vale: + +O objetivo é sair do vale e capturar a bandeira, realizando em cada passo uma das seguintes ações: + +| Valor | Significado | +|---|---| +| 0 | Acelerar para a esquerda | +| 1 | Não acelerar | +| 2 | Acelerar para a direita | + +O principal truque deste problema, no entanto, é que o motor do carro não é forte o suficiente para escalar a montanha numa única tentativa. Portanto, a única maneira de ter sucesso é dirigir para frente e para trás para ganhar impulso. + +O espaço de observação consiste em apenas dois valores: + +| Num | Observação | Min | Max | +|-----|--------------|-----|-----| +| 0 | Posição do carro | -1.2| 0.6 | +| 1 | Velocidade do carro | -0.07 | 0.07 | + +O sistema de recompensa para o carro na montanha é bastante peculiar: + + * Uma recompensa de 0 é atribuída se o agente alcançar a bandeira (posição = 0.5) no topo da montanha. + * Uma recompensa de -1 é atribuída se a posição do agente for menor que 0.5. + +O episódio termina se a posição do carro for maior que 0.5 ou se o comprimento do episódio for superior a 200. + +## Instruções + +Adapte o nosso algoritmo de aprendizagem por reforço para resolver o problema do carro na montanha. Comece com o código existente no [notebook.ipynb](notebook.ipynb), substitua o ambiente, altere as funções de discretização de estado e tente fazer o algoritmo existente treinar com modificações mínimas no código. Otimize o resultado ajustando os hiperparâmetros. + +> **Nota**: É provável que seja necessário ajustar os hiperparâmetros para que o algoritmo converja. + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita Melhorias | +| -------- | --------- | -------- | ------------------- | +| | O algoritmo de Q-Learning foi adaptado com sucesso a partir do exemplo CartPole, com modificações mínimas no código, sendo capaz de resolver o problema de capturar a bandeira em menos de 200 passos. | Um novo algoritmo de Q-Learning foi adotado da Internet, mas está bem documentado; ou o algoritmo existente foi adotado, mas não alcança os resultados desejados. | O estudante não conseguiu adotar nenhum algoritmo com sucesso, mas deu passos substanciais em direção à solução (implementou discretização de estado, estrutura de dados da Q-Table, etc.) | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/notebook.ipynb b/translations/pt-PT/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..8fa068a78 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,392 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-03T20:54:11+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinagem no CartPole\n", + "\n", + "> **Problema**: Se o Pedro quer escapar do lobo, ele precisa ser capaz de se mover mais rápido do que ele. Vamos ver como o Pedro pode aprender a patinar, em particular, a manter o equilíbrio, utilizando Q-Learning.\n", + "\n", + "Primeiro, vamos instalar o gym e importar as bibliotecas necessárias:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## Criar um ambiente cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Para ver como o ambiente funciona, vamos executar uma simulação curta de 100 passos.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Durante a simulação, precisamos obter observações para decidir como agir. Na verdade, a função `step` devolve-nos as observações atuais, a função de recompensa e a bandeira `done` que indica se faz sentido continuar a simulação ou não:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Podemos obter o valor mínimo e máximo desses números:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "Vamos também explorar outro método de discretização usando intervalos:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "Vamos agora executar uma breve simulação e observar esses valores discretos do ambiente.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "A partir deste gráfico, não é possível determinar nada, porque devido à natureza do processo de treino estocástico, a duração das sessões de treino varia bastante. Para dar mais sentido a este gráfico, podemos calcular a **média móvel** ao longo de uma série de experiências, digamos 100. Isto pode ser feito convenientemente usando `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## Variando os Hiperparâmetros e Observando o Resultado na Prática\n", + "\n", + "Agora seria interessante ver como o modelo treinado se comporta. Vamos executar a simulação, seguindo a mesma estratégia de seleção de ações utilizada durante o treino: amostragem de acordo com a distribuição de probabilidades na Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## Guardar o resultado num GIF animado\n", + "\n", + "Se quiser impressionar os seus amigos, pode enviar-lhes a imagem animada do poste de equilíbrio em formato GIF. Para isso, podemos usar `env.render` para produzir um fotograma de imagem e, em seguida, guardar esses fotogramas num GIF animado utilizando a biblioteca PIL:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/pt-PT/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..31cc88894 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/solution/R/README.md b/translations/pt-PT/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..fceefa4cc --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,6 @@ + + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/pt-PT/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..e05e67102 --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,524 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-03T20:56:26+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "pt" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinagem no CartPole\n", + "\n", + "> **Problema**: Se o Pedro quer escapar do lobo, ele precisa ser capaz de se mover mais rápido do que ele. Vamos ver como o Pedro pode aprender a patinar, em particular, a manter o equilíbrio, utilizando Q-Learning.\n", + "\n", + "Primeiro, vamos instalar o gym e importar as bibliotecas necessárias:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## Criar um ambiente de cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "Para ver como o ambiente funciona, vamos executar uma simulação curta de 100 passos.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "Durante a simulação, precisamos obter observações para decidir como agir. Na verdade, a função `step` retorna-nos as observações atuais, a função de recompensa e a bandeira `done` que indica se faz sentido continuar a simulação ou não:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "Podemos obter o valor mínimo e máximo desses números:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "Vamos também explorar outro método de discretização usando intervalos:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "Vamos agora executar uma breve simulação e observar esses valores discretos do ambiente.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "A partir deste gráfico, não é possível determinar nada, porque devido à natureza do processo de treino estocástico, a duração das sessões de treino varia bastante. Para dar mais sentido a este gráfico, podemos calcular a **média móvel** ao longo de uma série de experiências, digamos 100. Isto pode ser feito convenientemente usando `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## Variar os Hiperparâmetros e Ver o Resultado em Ação\n", + "\n", + "Agora seria interessante ver como o modelo treinado se comporta. Vamos executar a simulação, seguindo a mesma estratégia de seleção de ações utilizada durante o treino: amostragem de acordo com a distribuição de probabilidades na Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## Guardar o resultado num GIF animado\n", + "\n", + "Se quiser impressionar os seus amigos, pode enviar-lhes a imagem animada do poste de equilíbrio em formato GIF. Para fazer isso, podemos usar `env.render` para produzir um frame de imagem e, em seguida, guardar esses frames num GIF animado utilizando a biblioteca PIL:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/8-Reinforcement/README.md b/translations/pt-PT/8-Reinforcement/README.md new file mode 100644 index 000000000..8bf4da7ed --- /dev/null +++ b/translations/pt-PT/8-Reinforcement/README.md @@ -0,0 +1,58 @@ +# Introdução ao aprendizado por reforço + +O aprendizado por reforço, RL, é considerado um dos paradigmas básicos de aprendizado de máquina, ao lado do aprendizado supervisionado e não supervisionado. RL trata de decisões: tomar as decisões certas ou, pelo menos, aprender com elas. + +Imagine que você tem um ambiente simulado, como o mercado de ações. O que acontece se você impuser uma determinada regulamentação? Isso terá um efeito positivo ou negativo? Se algo negativo acontecer, você precisa aceitar esse _reforço negativo_, aprender com ele e mudar de rumo. Se o resultado for positivo, você deve construir sobre esse _reforço positivo_. + +![peter e o lobo](../../../translated_images/pt-PT/peter.779730f9ba3a8a8d.webp) + +> Peter e seus amigos precisam escapar do lobo faminto! Imagem por [Jen Looper](https://twitter.com/jenlooper) + +## Tópico regional: Peter e o Lobo (Rússia) + +[Peter e o Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) é um conto musical escrito por um compositor russo [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). É uma história sobre o jovem pioneiro Peter, que corajosamente sai de casa para a clareira da floresta para perseguir o lobo. Nesta seção, treinaremos algoritmos de aprendizado de máquina que ajudarão Peter: + +- **Explorar** a área ao redor e construir um mapa de navegação ideal. +- **Aprender** a usar um skate e equilibrar-se nele, para se mover mais rapidamente. + +[![Peter e o Lobo](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 Clique na imagem acima para ouvir Peter e o Lobo de Prokofiev + +## Aprendizado por reforço + +Nas seções anteriores, você viu dois exemplos de problemas de aprendizado de máquina: + +- **Supervisionado**, onde temos conjuntos de dados que sugerem soluções de exemplo para o problema que queremos resolver. [Classificação](../4-Classification/README.md) e [regressão](../2-Regression/README.md) são tarefas de aprendizado supervisionado. +- **Não supervisionado**, no qual não temos dados de treinamento rotulados. O principal exemplo de aprendizado não supervisionado é [Agrupamento](../5-Clustering/README.md). + +Nesta seção, apresentaremos um novo tipo de problema de aprendizado que não requer dados de treinamento rotulados. Existem vários tipos de problemas desse tipo: + +- **[Aprendizado semi-supervisionado](https://wikipedia.org/wiki/Semi-supervised_learning)**, onde temos muitos dados não rotulados que podem ser usados para pré-treinar o modelo. +- **[Aprendizado por reforço](https://wikipedia.org/wiki/Reinforcement_learning)**, no qual um agente aprende como se comportar realizando experimentos em algum ambiente simulado. + +### Exemplo - jogo de computador + +Suponha que você queira ensinar um computador a jogar um jogo, como xadrez ou [Super Mario](https://wikipedia.org/wiki/Super_Mario). Para que o computador jogue, precisamos que ele preveja qual movimento fazer em cada estado do jogo. Embora isso possa parecer um problema de classificação, não é - porque não temos um conjunto de dados com estados e ações correspondentes. Embora possamos ter alguns dados, como partidas de xadrez existentes ou gravações de jogadores jogando Super Mario, é provável que esses dados não cubram suficientemente um número grande de estados possíveis. + +Em vez de procurar dados existentes do jogo, o **Aprendizado por Reforço** (RL) baseia-se na ideia de *fazer o computador jogar* muitas vezes e observar o resultado. Assim, para aplicar o Aprendizado por Reforço, precisamos de duas coisas: + +- **Um ambiente** e **um simulador** que nos permitam jogar muitas vezes. Este simulador definiria todas as regras do jogo, bem como os estados e ações possíveis. + +- **Uma função de recompensa**, que nos diria quão bem nos saímos durante cada movimento ou partida. + +A principal diferença entre outros tipos de aprendizado de máquina e RL é que, no RL, normalmente não sabemos se ganhamos ou perdemos até terminarmos o jogo. Assim, não podemos dizer se um determinado movimento isolado é bom ou não - só recebemos uma recompensa no final do jogo. E nosso objetivo é projetar algoritmos que nos permitam treinar um modelo em condições incertas. Aprenderemos sobre um algoritmo de RL chamado **Q-learning**. + +## Lições + +1. [Introdução ao aprendizado por reforço e Q-Learning](1-QLearning/README.md) +2. [Usando um ambiente de simulação Gym](2-Gym/README.md) + +## Créditos + +"Introdução ao Aprendizado por Reforço" foi escrito com ♥️ por [Dmitry Soshnikov](http://soshnikov.com) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/9-Real-World/1-Applications/README.md b/translations/pt-PT/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..e37bdcd1b --- /dev/null +++ b/translations/pt-PT/9-Real-World/1-Applications/README.md @@ -0,0 +1,148 @@ +# Pós-escrito: Aprendizagem automática no mundo real + +![Resumo da aprendizagem automática no mundo real em um sketchnote](../../../../sketchnotes/ml-realworld.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +Neste currículo, aprendeste várias formas de preparar dados para treino e criar modelos de aprendizagem automática. Construíste uma série de modelos clássicos de regressão, clustering, classificação, processamento de linguagem natural e séries temporais. Parabéns! Agora, talvez te perguntes para que serve tudo isto... quais são as aplicações reais destes modelos? + +Embora a inteligência artificial (IA), que geralmente utiliza aprendizagem profunda, tenha atraído muita atenção na indústria, ainda existem aplicações valiosas para modelos clássicos de aprendizagem automática. É provável que já utilizes algumas destas aplicações no teu dia a dia! Nesta lição, vais explorar como oito indústrias e domínios de especialização utilizam estes tipos de modelos para tornar as suas aplicações mais eficientes, fiáveis, inteligentes e valiosas para os utilizadores. + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## 💰 Finanças + +O setor financeiro oferece muitas oportunidades para a aprendizagem automática. Muitos problemas nesta área podem ser modelados e resolvidos com ML. + +### Deteção de fraude com cartões de crédito + +Aprendemos sobre [k-means clustering](../../5-Clustering/2-K-Means/README.md) anteriormente no curso, mas como pode ser usado para resolver problemas relacionados com fraude em cartões de crédito? + +O k-means clustering é útil numa técnica de deteção de fraude chamada **deteção de outliers**. Outliers, ou desvios nas observações de um conjunto de dados, podem indicar se um cartão de crédito está a ser usado de forma normal ou se algo incomum está a acontecer. Como mostrado no artigo abaixo, é possível organizar dados de cartões de crédito usando um algoritmo de k-means clustering e atribuir cada transação a um cluster com base no grau de anomalia. Depois, é possível avaliar os clusters mais arriscados para identificar transações fraudulentas versus legítimas. +[Referência](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### Gestão de património + +Na gestão de património, um indivíduo ou empresa gere investimentos em nome dos seus clientes. O objetivo é sustentar e aumentar o património a longo prazo, sendo essencial escolher investimentos que tenham um bom desempenho. + +Uma forma de avaliar o desempenho de um investimento é através da regressão estatística. [A regressão linear](../../2-Regression/1-Tools/README.md) é uma ferramenta valiosa para compreender como um fundo se comporta em relação a um benchmark. Também é possível determinar se os resultados da regressão são estatisticamente significativos ou o impacto que teriam nos investimentos de um cliente. Podes expandir ainda mais a análise utilizando regressão múltipla, onde fatores de risco adicionais são considerados. Para um exemplo de como isto funciona para um fundo específico, consulta o artigo abaixo sobre avaliação de desempenho de fundos usando regressão. +[Referência](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 Educação + +O setor da educação também é uma área muito interessante para a aplicação de ML. Existem problemas intrigantes a resolver, como detetar fraudes em testes ou ensaios, ou gerir preconceitos, intencionais ou não, no processo de correção. + +### Prever o comportamento dos estudantes + +A [Coursera](https://coursera.com), uma plataforma de cursos online, tem um excelente blog técnico onde discute várias decisões de engenharia. Neste estudo de caso, traçaram uma linha de regressão para explorar a correlação entre uma baixa classificação NPS (Net Promoter Score) e a retenção ou desistência de um curso. +[Referência](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### Mitigação de preconceitos + +O [Grammarly](https://grammarly.com), um assistente de escrita que verifica erros ortográficos e gramaticais, utiliza sistemas sofisticados de [processamento de linguagem natural](../../6-NLP/README.md) nos seus produtos. Publicaram um estudo de caso interessante no seu blog técnico sobre como lidaram com preconceitos de género na aprendizagem automática, tema que aprendeste na nossa [lição introdutória sobre justiça](../../1-Introduction/3-fairness/README.md). +[Referência](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 Retalho + +O setor do retalho pode beneficiar imenso do uso de ML, desde a criação de uma melhor jornada do cliente até à gestão otimizada de inventário. + +### Personalização da jornada do cliente + +Na Wayfair, uma empresa que vende artigos para o lar, ajudar os clientes a encontrar os produtos certos para os seus gostos e necessidades é fundamental. Neste artigo, os engenheiros da empresa descrevem como utilizam ML e NLP para "apresentar os resultados certos aos clientes". Notavelmente, o seu motor de intenção de consulta foi construído para usar extração de entidades, treino de classificadores, extração de ativos e opiniões, e etiquetagem de sentimentos em avaliações de clientes. Este é um caso clássico de como o NLP funciona no retalho online. +[Referência](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### Gestão de inventário + +Empresas inovadoras e ágeis como a [StitchFix](https://stitchfix.com), um serviço de caixas de roupa por assinatura, dependem fortemente de ML para recomendações e gestão de inventário. As suas equipas de estilistas trabalham em conjunto com as equipas de merchandising. Por exemplo: "um dos nossos cientistas de dados experimentou um algoritmo genético e aplicou-o ao vestuário para prever o sucesso de uma peça de roupa que ainda não existe. Apresentámos isso à equipa de merchandising, que agora pode usar isso como uma ferramenta." +[Referência](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 Saúde + +O setor da saúde pode aproveitar o ML para otimizar tarefas de investigação e também problemas logísticos, como readmissões hospitalares ou a contenção de doenças. + +### Gestão de ensaios clínicos + +A toxicidade em ensaios clínicos é uma grande preocupação para os fabricantes de medicamentos. Quanta toxicidade é tolerável? Neste estudo, a análise de vários métodos de ensaios clínicos levou ao desenvolvimento de uma nova abordagem para prever os resultados dos ensaios. Especificamente, foi possível usar random forest para produzir um [classificador](../../4-Classification/README.md) capaz de distinguir entre grupos de medicamentos. +[Referência](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### Gestão de readmissões hospitalares + +Os cuidados hospitalares são dispendiosos, especialmente quando os pacientes precisam de ser readmitidos. Este artigo discute uma empresa que utiliza ML para prever o potencial de readmissão usando [clustering](../../5-Clustering/README.md). Estes clusters ajudam os analistas a "descobrir grupos de readmissões que podem partilhar uma causa comum". +[Referência](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### Gestão de doenças + +A recente pandemia destacou como a aprendizagem automática pode ajudar a conter a propagação de doenças. Neste artigo, reconheces o uso de ARIMA, curvas logísticas, regressão linear e SARIMA. "Este trabalho é uma tentativa de calcular a taxa de propagação deste vírus e, assim, prever mortes, recuperações e casos confirmados, para que possamos estar melhor preparados e sobreviver." +[Referência](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 Ecologia e Tecnologia Verde + +A natureza e a ecologia consistem em muitos sistemas sensíveis onde a interação entre animais e o meio ambiente é crucial. É importante medir estes sistemas com precisão e agir adequadamente se algo acontecer, como um incêndio florestal ou uma queda na população animal. + +### Gestão florestal + +Aprendeste sobre [Reinforcement Learning](../../8-Reinforcement/README.md) em lições anteriores. Pode ser muito útil para prever padrões na natureza. Em particular, pode ser usado para monitorizar problemas ecológicos como incêndios florestais e a propagação de espécies invasoras. No Canadá, um grupo de investigadores utilizou Reinforcement Learning para construir modelos de dinâmica de incêndios florestais a partir de imagens de satélite. Usando um inovador "processo de propagação espacial (SSP)", imaginaram um incêndio florestal como "o agente em qualquer célula da paisagem". "O conjunto de ações que o fogo pode tomar de uma localização em qualquer momento inclui propagar-se para norte, sul, leste, oeste ou não se propagar." +[Referência](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### Monitorização de movimentos de animais + +Embora a aprendizagem profunda tenha revolucionado o rastreamento visual de movimentos de animais (podes criar o teu próprio [rastreador de ursos polares](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) aqui), as técnicas clássicas de ML ainda têm o seu lugar nesta tarefa. + +Sensores para rastrear movimentos de animais de quinta e IoT utilizam este tipo de processamento visual, mas técnicas mais básicas de ML são úteis para pré-processar dados. Por exemplo, neste artigo, as posturas de ovelhas foram monitorizadas e analisadas usando vários algoritmos de classificação. Podes reconhecer a curva ROC na página 335. +[Referência](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ Gestão de Energia + +Nas nossas lições sobre [previsão de séries temporais](../../7-TimeSeries/README.md), abordámos o conceito de parquímetros inteligentes para gerar receita para uma cidade com base na compreensão da oferta e da procura. Este artigo discute em detalhe como clustering, regressão e previsão de séries temporais foram combinados para ajudar a prever o uso futuro de energia na Irlanda, com base em medições inteligentes. +[Referência](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 Seguros + +O setor de seguros é outro setor que utiliza ML para construir e otimizar modelos financeiros e atuariais viáveis. + +### Gestão de volatilidade + +A MetLife, uma fornecedora de seguros de vida, é transparente sobre como analisa e mitiga a volatilidade nos seus modelos financeiros. Neste artigo, vais notar visualizações de classificação binária e ordinal. Também vais encontrar visualizações de previsão. +[Referência](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 Artes, Cultura e Literatura + +Nas artes, por exemplo no jornalismo, existem muitos problemas interessantes. Detetar notícias falsas é um grande desafio, pois já foi provado que influenciam a opinião pública e até derrubam democracias. Os museus também podem beneficiar do uso de ML em tudo, desde encontrar ligações entre artefactos até ao planeamento de recursos. + +### Deteção de notícias falsas + +Detetar notícias falsas tornou-se um jogo de gato e rato nos meios de comunicação atuais. Neste artigo, os investigadores sugerem que um sistema combinando várias das técnicas de ML que estudámos pode ser testado e o melhor modelo implementado: "Este sistema baseia-se no processamento de linguagem natural para extrair características dos dados e, em seguida, essas características são usadas para treinar classificadores de aprendizagem automática como Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD) e Logistic Regression (LR)." +[Referência](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +Este artigo mostra como combinar diferentes domínios de ML pode produzir resultados interessantes que ajudam a impedir a disseminação de notícias falsas e os danos que podem causar; neste caso, o foco foi a propagação de rumores sobre tratamentos para a COVID que incitaram violência. + +### ML em Museus + +Os museus estão à beira de uma revolução em IA, onde catalogar e digitalizar coleções e encontrar ligações entre artefactos está a tornar-se mais fácil à medida que a tecnologia avança. Projetos como o [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) estão a ajudar a desvendar os mistérios de coleções inacessíveis, como os Arquivos do Vaticano. Mas o aspeto comercial dos museus também beneficia de modelos de ML. + +Por exemplo, o Art Institute of Chicago construiu modelos para prever os interesses do público e quando irão visitar exposições. O objetivo é criar experiências de visita individualizadas e otimizadas sempre que o utilizador visita o museu. "Durante o ano fiscal de 2017, o modelo previu a frequência e as receitas de bilheteira com uma precisão de 1%, diz Andrew Simnick, vice-presidente sénior do Art Institute." +[Referência](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 Marketing + +### Segmentação de clientes + +As estratégias de marketing mais eficazes segmentam os clientes de diferentes formas com base em vários agrupamentos. Neste artigo, são discutidas as utilizações de algoritmos de Clustering para apoiar o marketing diferenciado. O marketing diferenciado ajuda as empresas a melhorar o reconhecimento da marca, alcançar mais clientes e gerar mais receitas. +[Referência](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 Desafio + +Identifica outro setor que beneficie de algumas das técnicas que aprendeste neste currículo e descobre como utiliza ML. +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Revisão e Autoestudo + +A equipa de ciência de dados da Wayfair tem vários vídeos interessantes sobre como utilizam ML na sua empresa. Vale a pena [dar uma vista de olhos](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)! + +## Tarefa + +[Uma caça ao tesouro de ML](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/9-Real-World/1-Applications/assignment.md b/translations/pt-PT/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..2edb8763b --- /dev/null +++ b/translations/pt-PT/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,18 @@ +# Uma Caça ao Tesouro de ML + +## Instruções + +Nesta lição, aprendeste sobre muitos casos de uso reais que foram resolvidos utilizando ML clássico. Embora o uso de aprendizagem profunda, novas técnicas e ferramentas em IA, e o aproveitamento de redes neurais tenham ajudado a acelerar a produção de ferramentas para ajudar nestes setores, o ML clássico utilizando as técnicas deste currículo ainda tem um grande valor. + +Neste exercício, imagina que estás a participar num hackathon. Usa o que aprendeste no currículo para propor uma solução utilizando ML clássico para resolver um problema num dos setores discutidos nesta lição. Cria uma apresentação onde discutas como vais implementar a tua ideia. Pontos extra se conseguires reunir dados de exemplo e construir um modelo de ML para apoiar o teu conceito! + +## Rubrica + +| Critério | Exemplar | Adequado | Necessita de Melhorias | +| -------- | ------------------------------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | É apresentada uma apresentação em PowerPoint - bônus por construir um modelo | É apresentada uma apresentação básica e não inovadora | O trabalho está incompleto | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/README.md b/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..786cd1653 --- /dev/null +++ b/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,174 @@ +# Pós-escrito: Depuração de Modelos de Machine Learning usando componentes do painel de IA Responsável + +## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) + +## Introdução + +O machine learning impacta as nossas vidas diariamente. A IA está a integrar-se em alguns dos sistemas mais importantes que nos afetam como indivíduos e como sociedade, desde a saúde, finanças, educação e emprego. Por exemplo, sistemas e modelos estão envolvidos em tarefas de tomada de decisão diária, como diagnósticos médicos ou deteção de fraude. Consequentemente, os avanços na IA, juntamente com a sua adoção acelerada, estão a ser acompanhados por expectativas sociais em evolução e regulamentações crescentes em resposta. Continuamos a observar áreas onde os sistemas de IA não correspondem às expectativas; expõem novos desafios; e os governos estão a começar a regulamentar soluções de IA. Por isso, é essencial que estes modelos sejam analisados para fornecer resultados justos, confiáveis, inclusivos, transparentes e responsáveis para todos. + +Neste currículo, iremos explorar ferramentas práticas que podem ser usadas para avaliar se um modelo apresenta problemas relacionados com IA responsável. As técnicas tradicionais de depuração de machine learning tendem a basear-se em cálculos quantitativos, como precisão agregada ou perda média de erro. Imagine o que pode acontecer quando os dados que está a usar para construir esses modelos carecem de certos grupos demográficos, como raça, género, visão política, religião, ou representam desproporcionalmente esses grupos demográficos. E quando a saída do modelo é interpretada de forma a favorecer um grupo demográfico? Isso pode introduzir uma representação excessiva ou insuficiente desses grupos sensíveis, resultando em problemas de justiça, inclusão ou confiabilidade no modelo. Outro fator é que os modelos de machine learning são considerados caixas pretas, o que dificulta a compreensão e explicação do que impulsiona as previsões de um modelo. Todos estes são desafios enfrentados por cientistas de dados e desenvolvedores de IA quando não possuem ferramentas adequadas para depurar e avaliar a justiça ou confiabilidade de um modelo. + +Nesta lição, irá aprender a depurar os seus modelos usando: + +- **Análise de Erros**: identificar onde na distribuição dos seus dados o modelo apresenta taxas de erro elevadas. +- **Visão Geral do Modelo**: realizar análises comparativas entre diferentes coortes de dados para descobrir disparidades nas métricas de desempenho do modelo. +- **Análise de Dados**: investigar onde pode haver representação excessiva ou insuficiente nos seus dados que podem enviesar o modelo para favorecer um grupo demográfico em detrimento de outro. +- **Importância das Features**: compreender quais features estão a impulsionar as previsões do modelo a nível global ou local. + +## Pré-requisito + +Como pré-requisito, reveja [Ferramentas de IA Responsável para desenvolvedores](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) + +> ![Gif sobre Ferramentas de IA Responsável](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## Análise de Erros + +As métricas tradicionais de desempenho de modelos usadas para medir a precisão são, na maioria das vezes, cálculos baseados em previsões corretas versus incorretas. Por exemplo, determinar que um modelo é preciso 89% das vezes com uma perda de erro de 0.001 pode ser considerado um bom desempenho. No entanto, os erros nem sempre estão distribuídos uniformemente no seu conjunto de dados subjacente. Pode obter uma pontuação de precisão de 89% no modelo, mas descobrir que existem diferentes regiões nos seus dados onde o modelo falha 42% das vezes. As consequências desses padrões de falha em certos grupos de dados podem levar a problemas de justiça ou confiabilidade. É essencial compreender as áreas onde o modelo está a ter um bom desempenho ou não. As regiões de dados onde há um número elevado de imprecisões no modelo podem revelar-se um grupo demográfico importante. + +![Analisar e depurar erros do modelo](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png) + +O componente de Análise de Erros no painel de IA Responsável ilustra como as falhas do modelo estão distribuídas entre vários coortes com uma visualização em árvore. Isto é útil para identificar features ou áreas onde há uma taxa de erro elevada no seu conjunto de dados. Ao ver de onde vêm a maioria das imprecisões do modelo, pode começar a investigar a causa raiz. Também pode criar coortes de dados para realizar análises. Esses coortes de dados ajudam no processo de depuração para determinar porque o desempenho do modelo é bom num coorte, mas apresenta erros noutro. + +![Análise de Erros](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png) + +Os indicadores visuais no mapa de árvore ajudam a localizar as áreas problemáticas mais rapidamente. Por exemplo, quanto mais escuro for o tom de vermelho num nó da árvore, maior será a taxa de erro. + +O mapa de calor é outra funcionalidade de visualização que os utilizadores podem usar para investigar a taxa de erro usando uma ou duas features para encontrar contribuintes para os erros do modelo em todo o conjunto de dados ou coortes. + +![Mapa de Calor da Análise de Erros](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png) + +Use a análise de erros quando precisar de: + +* Obter uma compreensão profunda de como as falhas do modelo estão distribuídas num conjunto de dados e em várias dimensões de entrada e features. +* Dividir as métricas de desempenho agregadas para descobrir automaticamente coortes com erros e informar os seus passos de mitigação direcionados. + +## Visão Geral do Modelo + +Avaliar o desempenho de um modelo de machine learning requer uma compreensão holística do seu comportamento. Isto pode ser alcançado ao rever mais de uma métrica, como taxa de erro, precisão, recall, precisão ou MAE (Erro Absoluto Médio), para encontrar disparidades entre as métricas de desempenho. Uma métrica de desempenho pode parecer ótima, mas imprecisões podem ser expostas noutra métrica. Além disso, comparar as métricas para disparidades em todo o conjunto de dados ou coortes ajuda a esclarecer onde o modelo está a ter um bom desempenho ou não. Isto é especialmente importante para observar o desempenho do modelo entre features sensíveis versus insensíveis (por exemplo, raça, género ou idade de pacientes) para descobrir potenciais injustiças que o modelo possa ter. Por exemplo, descobrir que o modelo é mais impreciso num coorte que possui features sensíveis pode revelar potenciais injustiças no modelo. + +O componente Visão Geral do Modelo do painel de IA Responsável ajuda não apenas a analisar as métricas de desempenho da representação de dados num coorte, mas também dá aos utilizadores a capacidade de comparar o comportamento do modelo entre diferentes coortes. + +![Coortes de conjunto de dados - visão geral do modelo no painel de IA Responsável](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png) + +A funcionalidade de análise baseada em features do componente permite que os utilizadores reduzam subgrupos de dados dentro de uma feature específica para identificar anomalias a um nível granular. Por exemplo, o painel possui inteligência integrada para gerar automaticamente coortes para uma feature selecionada pelo utilizador (ex., *"tempo_no_hospital < 3"* ou *"tempo_no_hospital >= 7"*). Isto permite que o utilizador isole uma feature específica de um grupo de dados maior para ver se é um influenciador chave dos resultados errados do modelo. + +![Coortes de features - visão geral do modelo no painel de IA Responsável](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png) + +O componente Visão Geral do Modelo suporta duas classes de métricas de disparidade: + +**Disparidade no desempenho do modelo**: Estes conjuntos de métricas calculam a disparidade (diferença) nos valores da métrica de desempenho selecionada entre subgrupos de dados. Aqui estão alguns exemplos: + +* Disparidade na taxa de precisão +* Disparidade na taxa de erro +* Disparidade na precisão +* Disparidade no recall +* Disparidade no erro absoluto médio (MAE) + +**Disparidade na taxa de seleção**: Esta métrica contém a diferença na taxa de seleção (previsão favorável) entre subgrupos. Um exemplo disso é a disparidade nas taxas de aprovação de empréstimos. A taxa de seleção refere-se à fração de pontos de dados em cada classe classificados como 1 (em classificação binária) ou à distribuição de valores de previsão (em regressão). + +## Análise de Dados + +> "Se torturar os dados o suficiente, eles confessarão qualquer coisa" - Ronald Coase + +Esta afirmação parece extrema, mas é verdade que os dados podem ser manipulados para apoiar qualquer conclusão. Tal manipulação pode, por vezes, acontecer de forma não intencional. Como humanos, todos temos preconceitos, e é frequentemente difícil saber conscientemente quando estamos a introduzir preconceitos nos dados. Garantir justiça na IA e no machine learning continua a ser um desafio complexo. + +Os dados são um grande ponto cego para as métricas tradicionais de desempenho de modelos. Pode ter pontuações de precisão elevadas, mas isso nem sempre reflete o preconceito subjacente nos dados que pode estar no seu conjunto de dados. Por exemplo, se um conjunto de dados de funcionários tem 27% de mulheres em posições executivas numa empresa e 73% de homens no mesmo nível, um modelo de IA de publicidade de emprego treinado com esses dados pode direcionar principalmente um público masculino para posições de nível sénior. Ter este desequilíbrio nos dados enviesou a previsão do modelo para favorecer um género. Isto revela um problema de justiça onde há preconceito de género no modelo de IA. + +O componente de Análise de Dados no painel de IA Responsável ajuda a identificar áreas onde há representação excessiva ou insuficiente no conjunto de dados. Ajuda os utilizadores a diagnosticar a causa raiz de erros e problemas de justiça introduzidos por desequilíbrios nos dados ou falta de representação de um grupo de dados específico. Isto dá aos utilizadores a capacidade de visualizar conjuntos de dados com base em resultados previstos e reais, grupos de erros e features específicas. Por vezes, descobrir um grupo de dados sub-representado também pode revelar que o modelo não está a aprender bem, daí as imprecisões elevadas. Ter um modelo com preconceito nos dados não é apenas um problema de justiça, mas mostra que o modelo não é inclusivo ou confiável. + +![Componente de Análise de Dados no painel de IA Responsável](../../../../9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png) + +Use a análise de dados quando precisar de: + +* Explorar as estatísticas do seu conjunto de dados selecionando diferentes filtros para dividir os seus dados em diferentes dimensões (também conhecidos como coortes). +* Compreender a distribuição do seu conjunto de dados entre diferentes coortes e grupos de features. +* Determinar se as suas descobertas relacionadas com justiça, análise de erros e causalidade (derivadas de outros componentes do painel) são resultado da distribuição do seu conjunto de dados. +* Decidir em quais áreas coletar mais dados para mitigar erros que surgem de problemas de representação, ruído de rótulos, ruído de features, preconceito de rótulos e fatores semelhantes. + +## Interpretabilidade do Modelo + +Os modelos de machine learning tendem a ser caixas pretas. Compreender quais features de dados chave impulsionam a previsão de um modelo pode ser desafiador. É importante fornecer transparência sobre porque um modelo faz uma determinada previsão. Por exemplo, se um sistema de IA prevê que um paciente diabético está em risco de ser readmitido num hospital em menos de 30 dias, deve ser capaz de fornecer dados de suporte que levaram à sua previsão. Ter indicadores de suporte traz transparência para ajudar os clínicos ou hospitais a tomar decisões bem informadas. Além disso, ser capaz de explicar porque um modelo fez uma previsão para um paciente individual permite responsabilidade com regulamentos de saúde. Quando está a usar modelos de machine learning de formas que afetam a vida das pessoas, é crucial compreender e explicar o que influencia o comportamento de um modelo. A explicabilidade e interpretabilidade do modelo ajudam a responder a perguntas em cenários como: + +* Depuração do modelo: Por que o meu modelo cometeu este erro? Como posso melhorar o meu modelo? +* Colaboração humano-IA: Como posso compreender e confiar nas decisões do modelo? +* Conformidade regulatória: O meu modelo cumpre os requisitos legais? + +O componente Importância das Features do painel de IA Responsável ajuda a depurar e obter uma compreensão abrangente de como um modelo faz previsões. Também é uma ferramenta útil para profissionais de machine learning e tomadores de decisão explicarem e mostrarem evidências das features que influenciam o comportamento do modelo para conformidade regulatória. Em seguida, os utilizadores podem explorar explicações globais e locais para validar quais features impulsionam a previsão do modelo. As explicações globais listam as principais features que afetaram a previsão geral do modelo. As explicações locais mostram quais features levaram à previsão do modelo para um caso individual. A capacidade de avaliar explicações locais também é útil na depuração ou auditoria de um caso específico para compreender e interpretar melhor porque um modelo fez uma previsão precisa ou imprecisa. + +![Componente Importância das Features no painel de IA Responsável](../../../../9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png) + +* Explicações globais: Por exemplo, quais features afetam o comportamento geral de um modelo de readmissão hospitalar para diabetes? +* Explicações locais: Por exemplo, porque foi previsto que um paciente diabético com mais de 60 anos e hospitalizações anteriores seria readmitido ou não readmitido num hospital dentro de 30 dias? + +No processo de depuração ao examinar o desempenho de um modelo entre diferentes coortes, a Importância das Features mostra o nível de impacto que uma feature tem entre os coortes. Ajuda a revelar anomalias ao comparar o nível de influência que a feature tem em impulsionar previsões erradas do modelo. O componente Importância das Features pode mostrar quais valores numa feature influenciaram positivamente ou negativamente o resultado do modelo. Por exemplo, se um modelo fez uma previsão imprecisa, o componente dá-lhe a capacidade de aprofundar e identificar quais features ou valores de features impulsionaram a previsão. Este nível de detalhe ajuda não apenas na depuração, mas também fornece transparência e responsabilidade em situações de auditoria. Finalmente, o componente pode ajudá-lo a identificar problemas de justiça. Para ilustrar, se uma feature sensível como etnia ou género é altamente influente em impulsionar a previsão do modelo, isso pode ser um sinal de preconceito de raça ou género no modelo. + +![Importância das features](../../../../9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png) + +Use a interpretabilidade quando precisar de: + +* Determinar quão confiáveis são as previsões do seu sistema de IA ao compreender quais features são mais importantes para as previsões. +* Abordar a depuração do seu modelo ao compreendê-lo primeiro e identificar se o modelo está a usar features saudáveis ou apenas correlações falsas. +* Descobrir potenciais fontes de injustiça ao compreender se o modelo está a basear previsões em features sensíveis ou em features altamente correlacionadas com elas. +* Construir confiança do utilizador nas decisões do modelo ao gerar explicações locais para ilustrar os seus resultados. +* Completar uma auditoria regulatória de um sistema de IA para validar modelos e monitorizar o impacto das decisões do modelo nas pessoas. + +## Conclusão + +Todos os componentes do painel de IA Responsável são ferramentas práticas para ajudá-lo a construir modelos de machine learning que sejam menos prejudiciais e mais confiáveis para a sociedade. Melhoram a prevenção de ameaças aos direitos humanos; discriminação ou exclusão de certos grupos de oportunidades de vida; e o risco de danos físicos ou psicológicos. Também ajudam a construir confiança nas decisões do modelo ao gerar explicações locais para ilustrar os seus resultados. Alguns dos potenciais danos podem ser classificados como: + +- **Alocação**, se um género ou etnia, por exemplo, for favorecido em detrimento de outro. +- **Qualidade do serviço**. Se treinar os dados para um cenário específico, mas a realidade for muito mais complexa, isso leva a um serviço de desempenho inferior. +- **Estereotipagem**. Associar um determinado grupo a atributos pré-atribuídos. +- **Denigração**. Criticar injustamente e rotular algo ou alguém. +- **Representação excessiva ou insuficiente**. A ideia é que um determinado grupo não seja visto em uma certa profissão, e qualquer serviço ou função que continue a promover isso está a contribuir para o problema. + +### Azure RAI dashboard + +[Azure RAI dashboard](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) é construído com ferramentas de código aberto desenvolvidas por instituições académicas e organizações líderes, incluindo a Microsoft, que são fundamentais para cientistas de dados e desenvolvedores de IA compreenderem melhor o comportamento dos modelos, descobrirem e mitigarem problemas indesejáveis nos modelos de IA. + +- Aprenda a usar os diferentes componentes consultando a [documentação do RAI dashboard.](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) + +- Veja alguns [notebooks de exemplo do RAI dashboard](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) para depurar cenários de IA mais responsáveis no Azure Machine Learning. + +--- +## 🚀 Desafio + +Para evitar que vieses estatísticos ou de dados sejam introduzidos desde o início, devemos: + +- ter uma diversidade de origens e perspetivas entre as pessoas que trabalham nos sistemas +- investir em conjuntos de dados que reflitam a diversidade da nossa sociedade +- desenvolver melhores métodos para detetar e corrigir vieses quando eles ocorrem + +Pense em cenários da vida real onde a injustiça é evidente na construção e utilização de modelos. O que mais devemos considerar? + +## [Questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) +## Revisão e Autoestudo + +Nesta lição, aprendeu algumas ferramentas práticas para incorporar IA responsável em machine learning. + +Veja este workshop para aprofundar os tópicos: + +- Responsible AI Dashboard: Uma solução completa para operacionalizar IA responsável na prática, por Besmira Nushi e Mehrnoosh Sameki + +[![Responsible AI Dashboard: Uma solução completa para operacionalizar IA responsável na prática](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "Responsible AI Dashboard: Uma solução completa para operacionalizar IA responsável na prática") + +> 🎥 Clique na imagem acima para ver o vídeo: Responsible AI Dashboard: Uma solução completa para operacionalizar IA responsável na prática, por Besmira Nushi e Mehrnoosh Sameki + +Consulte os seguintes materiais para aprender mais sobre IA responsável e como construir modelos mais confiáveis: + +- Ferramentas do RAI dashboard da Microsoft para depurar modelos de ML: [Recursos de ferramentas de IA responsável](https://aka.ms/rai-dashboard) + +- Explore o toolkit de IA responsável: [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- Centro de recursos de IA responsável da Microsoft: [Recursos de IA Responsável – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Grupo de pesquisa FATE da Microsoft: [FATE: Justiça, Responsabilidade, Transparência e Ética em IA - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## Tarefa + +[Explore o RAI dashboard](assignment.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..3605ce591 --- /dev/null +++ b/translations/pt-PT/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,16 @@ +# Explorar o painel de Responsible AI (RAI) + +## Instruções + +Nesta lição, aprendeste sobre o painel RAI, um conjunto de componentes construídos com ferramentas "open-source" para ajudar os cientistas de dados a realizar análises de erros, exploração de dados, avaliação de imparcialidade, interpretabilidade de modelos, avaliações contrafactuais/what-if e análise causal em sistemas de IA. Para esta tarefa, explora alguns dos [notebooks](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) de exemplo do painel RAI e relata as tuas descobertas num artigo ou apresentação. + +## Rubrica + +| Critérios | Exemplar | Adequado | Necessita de Melhorias | +| --------- | -------- | -------- | ---------------------- | +| | Um artigo ou apresentação em PowerPoint é apresentado, discutindo os componentes do painel RAI, o notebook que foi executado e as conclusões obtidas a partir da sua execução | Um artigo é apresentado sem conclusões | Nenhum artigo é apresentado | + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/9-Real-World/README.md b/translations/pt-PT/9-Real-World/README.md new file mode 100644 index 000000000..ac4382afb --- /dev/null +++ b/translations/pt-PT/9-Real-World/README.md @@ -0,0 +1,23 @@ +# Pós-escrito: Aplicações reais de aprendizagem automática clássica + +Nesta secção do currículo, será apresentado a algumas aplicações reais de aprendizagem automática clássica. Pesquisámos na internet para encontrar artigos e documentos técnicos sobre aplicações que utilizaram estas estratégias, evitando redes neuronais, aprendizagem profunda e IA tanto quanto possível. Descubra como a aprendizagem automática é utilizada em sistemas empresariais, aplicações ecológicas, finanças, artes e cultura, entre outros. + +![chess](../../../translated_images/pt-PT/chess.e704a268781bdad8.webp) + +> Foto por Alexis Fauvet em Unsplash + +## Aula + +1. [Aplicações Reais de Aprendizagem Automática](1-Applications/README.md) +2. [Depuração de Modelos de Aprendizagem Automática usando componentes do painel de IA Responsável](2-Debugging-ML-Models/README.md) + +## Créditos + +"Aplicações Reais" foi escrito por uma equipa de pessoas, incluindo [Jen Looper](https://twitter.com/jenlooper) e [Ornella Altunyan](https://twitter.com/ornelladotcom). + +"Depuração de Modelos de Aprendizagem Automática usando componentes do painel de IA Responsável" foi escrito por [Ruth Yakubu](https://twitter.com/ruthieyakubu) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/AGENTS.md b/translations/pt-PT/AGENTS.md new file mode 100644 index 000000000..f6c3c40ca --- /dev/null +++ b/translations/pt-PT/AGENTS.md @@ -0,0 +1,336 @@ +# AGENTS.md + +## Visão Geral do Projeto + +Este é o **Machine Learning para Principiantes**, um currículo abrangente de 12 semanas e 26 lições que cobre conceitos clássicos de machine learning utilizando Python (principalmente com Scikit-learn) e R. O repositório foi concebido como um recurso de aprendizagem autodidata, com projetos práticos, questionários e tarefas. Cada lição explora conceitos de ML através de dados reais provenientes de várias culturas e regiões do mundo. + +Componentes principais: +- **Conteúdo Educacional**: 26 lições que abrangem introdução ao ML, regressão, classificação, clustering, NLP, séries temporais e aprendizagem por reforço +- **Aplicação de Questionários**: Aplicação de questionários baseada em Vue.js com avaliações antes e depois das lições +- **Suporte Multilíngue**: Traduções automáticas para mais de 40 idiomas via GitHub Actions +- **Suporte a Duas Linguagens**: Lições disponíveis tanto em Python (notebooks Jupyter) quanto em R (ficheiros R Markdown) +- **Aprendizagem Baseada em Projetos**: Cada tópico inclui projetos práticos e tarefas + +## Estrutura do Repositório + +``` +ML-For-Beginners/ +├── 1-Introduction/ # ML basics, history, fairness, techniques +├── 2-Regression/ # Regression models with Python/R +├── 3-Web-App/ # Flask web app for ML model deployment +├── 4-Classification/ # Classification algorithms +├── 5-Clustering/ # Clustering techniques +├── 6-NLP/ # Natural Language Processing +├── 7-TimeSeries/ # Time series forecasting +├── 8-Reinforcement/ # Reinforcement learning +├── 9-Real-World/ # Real-world ML applications +├── quiz-app/ # Vue.js quiz application +├── translations/ # Auto-generated translations +└── sketchnotes/ # Visual learning aids +``` + +Cada pasta de lição geralmente contém: +- `README.md` - Conteúdo principal da lição +- `notebook.ipynb` - Notebook Jupyter em Python +- `solution/` - Código de solução (versões em Python e R) +- `assignment.md` - Exercícios práticos +- `images/` - Recursos visuais + +## Comandos de Configuração + +### Para Lições em Python + +A maioria das lições utiliza notebooks Jupyter. Instale as dependências necessárias: + +```bash +# Install Python 3.8+ if not already installed +python --version + +# Install Jupyter +pip install jupyter + +# Install common ML libraries +pip install scikit-learn pandas numpy matplotlib seaborn + +# For specific lessons, check lesson-specific requirements +# Example: Web App lesson +pip install flask +``` + +### Para Lições em R + +As lições em R estão nas pastas `solution/R/` como ficheiros `.rmd` ou `.ipynb`: + +```bash +# Install R and required packages +# In R console: +install.packages(c("tidyverse", "tidymodels", "caret")) +``` + +### Para a Aplicação de Questionários + +A aplicação de questionários é uma aplicação Vue.js localizada no diretório `quiz-app/`: + +```bash +cd quiz-app +npm install +``` + +### Para o Site de Documentação + +Para executar a documentação localmente: + +```bash +# Install Docsify +npm install -g docsify-cli + +# Serve from repository root +docsify serve + +# Access at http://localhost:3000 +``` + +## Fluxo de Trabalho de Desenvolvimento + +### Trabalhar com Notebooks de Lição + +1. Navegue até ao diretório da lição (ex.: `2-Regression/1-Tools/`) +2. Abra o notebook Jupyter: + ```bash + jupyter notebook notebook.ipynb + ``` +3. Trabalhe no conteúdo e nos exercícios da lição +4. Consulte as soluções na pasta `solution/` se necessário + +### Desenvolvimento em Python + +- As lições utilizam bibliotecas padrão de ciência de dados em Python +- Notebooks Jupyter para aprendizagem interativa +- Código de solução disponível na pasta `solution/` de cada lição + +### Desenvolvimento em R + +- As lições em R estão no formato `.rmd` (R Markdown) +- Soluções localizadas em subdiretórios `solution/R/` +- Utilize RStudio ou Jupyter com kernel R para executar os notebooks em R + +### Desenvolvimento da Aplicação de Questionários + +```bash +cd quiz-app + +# Start development server +npm run serve +# Access at http://localhost:8080 + +# Build for production +npm run build + +# Lint and fix files +npm run lint +``` + +## Instruções de Teste + +### Teste da Aplicação de Questionários + +```bash +cd quiz-app + +# Lint code +npm run lint + +# Build to verify no errors +npm run build +``` + +**Nota**: Este é principalmente um repositório de currículo educacional. Não há testes automatizados para o conteúdo das lições. A validação é feita através de: +- Conclusão dos exercícios das lições +- Execução bem-sucedida das células dos notebooks +- Verificação dos resultados contra as soluções esperadas + +## Diretrizes de Estilo de Código + +### Código em Python +- Siga as diretrizes de estilo PEP 8 +- Utilize nomes de variáveis claros e descritivos +- Inclua comentários para operações complexas +- Os notebooks Jupyter devem conter células markdown explicando os conceitos + +### JavaScript/Vue.js (Aplicação de Questionários) +- Siga o guia de estilo Vue.js +- Configuração ESLint em `quiz-app/package.json` +- Execute `npm run lint` para verificar e corrigir automaticamente problemas + +### Documentação +- Os ficheiros markdown devem ser claros e bem estruturados +- Inclua exemplos de código em blocos de código delimitados +- Utilize links relativos para referências internas +- Siga as convenções de formatação existentes + +## Construção e Implementação + +### Implementação da Aplicação de Questionários + +A aplicação de questionários pode ser implementada no Azure Static Web Apps: + +1. **Pré-requisitos**: + - Conta Azure + - Repositório GitHub (já bifurcado) + +2. **Implementar no Azure**: + - Crie um recurso Azure Static Web App + - Conecte ao repositório GitHub + - Defina a localização da aplicação: `/quiz-app` + - Defina a localização de saída: `dist` + - O Azure cria automaticamente o workflow do GitHub Actions + +3. **Workflow do GitHub Actions**: + - Ficheiro de workflow criado em `.github/workflows/azure-static-web-apps-*.yml` + - Constrói e implementa automaticamente ao fazer push para a branch principal + +### PDF da Documentação + +Gerar PDF a partir da documentação: + +```bash +npm install +npm run convert +``` + +## Fluxo de Trabalho de Tradução + +**Importante**: As traduções são automatizadas via GitHub Actions utilizando o Co-op Translator. + +- As traduções são geradas automaticamente quando alterações são feitas na branch `main` +- **NÃO traduza o conteúdo manualmente** - o sistema trata disso +- Workflow definido em `.github/workflows/co-op-translator.yml` +- Utiliza serviços Azure AI/OpenAI para tradução +- Suporta mais de 40 idiomas + +## Diretrizes de Contribuição + +### Para Contribuidores de Conteúdo + +1. **Bifurque o repositório** e crie uma branch de funcionalidade +2. **Faça alterações no conteúdo das lições** se estiver a adicionar/atualizar lições +3. **Não modifique ficheiros traduzidos** - eles são gerados automaticamente +4. **Teste o seu código** - certifique-se de que todas as células dos notebooks são executadas com sucesso +5. **Verifique se os links e imagens** funcionam corretamente +6. **Submeta um pull request** com uma descrição clara + +### Diretrizes para Pull Requests + +- **Formato do título**: `[Seção] Breve descrição das alterações` + - Exemplo: `[Regression] Corrigir erro na lição 5` + - Exemplo: `[Quiz-App] Atualizar dependências` +- **Antes de submeter**: + - Certifique-se de que todas as células dos notebooks são executadas sem erros + - Execute `npm run lint` se estiver a modificar quiz-app + - Verifique a formatação markdown + - Teste quaisquer novos exemplos de código +- **O PR deve incluir**: + - Descrição das alterações + - Razão para as alterações + - Capturas de ecrã se houver alterações na interface +- **Código de Conduta**: Siga o [Código de Conduta de Código Aberto da Microsoft](CODE_OF_CONDUCT.md) +- **CLA**: Será necessário assinar o Acordo de Licença de Contribuidor + +## Estrutura das Lições + +Cada lição segue um padrão consistente: + +1. **Questionário pré-aula** - Testar conhecimento inicial +2. **Conteúdo da lição** - Instruções e explicações escritas +3. **Demonstrações de código** - Exemplos práticos em notebooks +4. **Verificações de conhecimento** - Confirmar compreensão ao longo da lição +5. **Desafio** - Aplicar conceitos de forma independente +6. **Tarefa** - Prática estendida +7. **Questionário pós-aula** - Avaliar resultados de aprendizagem + +## Referência de Comandos Comuns + +```bash +# Python/Jupyter +jupyter notebook # Start Jupyter server +jupyter notebook notebook.ipynb # Open specific notebook +pip install -r requirements.txt # Install dependencies (where available) + +# Quiz App +cd quiz-app +npm install # Install dependencies +npm run serve # Development server +npm run build # Production build +npm run lint # Lint and fix + +# Documentation +docsify serve # Serve documentation locally +npm run convert # Generate PDF + +# Git workflow +git checkout -b feature/my-change # Create feature branch +git add . # Stage changes +git commit -m "Description" # Commit changes +git push origin feature/my-change # Push to remote +``` + +## Recursos Adicionais + +- **Coleção Microsoft Learn**: [Módulos de ML para Principiantes](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) +- **Aplicação de Questionários**: [Questionários online](https://ff-quizzes.netlify.app/en/ml/) +- **Fórum de Discussão**: [Discussões no GitHub](https://github.com/microsoft/ML-For-Beginners/discussions) +- **Tutoriais em Vídeo**: [Playlist no YouTube](https://aka.ms/ml-beginners-videos) + +## Tecnologias Principais + +- **Python**: Linguagem principal para lições de ML (Scikit-learn, Pandas, NumPy, Matplotlib) +- **R**: Implementação alternativa utilizando tidyverse, tidymodels, caret +- **Jupyter**: Notebooks interativos para lições em Python +- **R Markdown**: Documentos para lições em R +- **Vue.js 3**: Framework da aplicação de questionários +- **Flask**: Framework de aplicação web para implementação de modelos de ML +- **Docsify**: Gerador de sites de documentação +- **GitHub Actions**: CI/CD e traduções automatizadas + +## Considerações de Segurança + +- **Sem segredos no código**: Nunca comprometa chaves de API ou credenciais +- **Dependências**: Mantenha os pacotes npm e pip atualizados +- **Entrada do utilizador**: Exemplos de aplicações web Flask incluem validação básica de entrada +- **Dados sensíveis**: Os conjuntos de dados de exemplo são públicos e não sensíveis + +## Resolução de Problemas + +### Notebooks Jupyter + +- **Problemas com o kernel**: Reinicie o kernel se as células ficarem pendentes: Kernel → Reiniciar +- **Erros de importação**: Certifique-se de que todos os pacotes necessários estão instalados com pip +- **Problemas de caminho**: Execute os notebooks a partir do diretório onde estão localizados + +### Aplicação de Questionários + +- **npm install falha**: Limpe a cache do npm: `npm cache clean --force` +- **Conflitos de porta**: Altere a porta com: `npm run serve -- --port 8081` +- **Erros de construção**: Elimine `node_modules` e reinstale: `rm -rf node_modules && npm install` + +### Lições em R + +- **Pacote não encontrado**: Instale com: `install.packages("nome-do-pacote")` +- **Renderização de RMarkdown**: Certifique-se de que o pacote rmarkdown está instalado +- **Problemas com o kernel**: Pode ser necessário instalar IRkernel para Jupyter + +## Notas Específicas do Projeto + +- Este é principalmente um **currículo de aprendizagem**, não código de produção +- O foco está em **compreender conceitos de ML** através de prática prática +- Os exemplos de código priorizam **clareza em vez de otimização** +- A maioria das lições é **autossuficiente** e pode ser concluída de forma independente +- **Soluções fornecidas**, mas os alunos devem tentar os exercícios primeiro +- O repositório utiliza **Docsify** para documentação web sem etapa de construção +- **Sketchnotes** fornecem resumos visuais dos conceitos +- **Suporte multilíngue** torna o conteúdo acessível globalmente + +--- + +**Aviso**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/CODE_OF_CONDUCT.md b/translations/pt-PT/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..a0e09d644 --- /dev/null +++ b/translations/pt-PT/CODE_OF_CONDUCT.md @@ -0,0 +1,14 @@ +# Código de Conduta de Código Aberto da Microsoft + +Este projeto adotou o [Código de Conduta de Código Aberto da Microsoft](https://opensource.microsoft.com/codeofconduct/). + +Recursos: + +- [Código de Conduta de Código Aberto da Microsoft](https://opensource.microsoft.com/codeofconduct/) +- [FAQ do Código de Conduta da Microsoft](https://opensource.microsoft.com/codeofconduct/faq/) +- Contacte [opencode@microsoft.com](mailto:opencode@microsoft.com) para questões ou preocupações + +--- + +**Aviso de Responsabilidade**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/CONTRIBUTING.md b/translations/pt-PT/CONTRIBUTING.md new file mode 100644 index 000000000..a40652a65 --- /dev/null +++ b/translations/pt-PT/CONTRIBUTING.md @@ -0,0 +1,15 @@ +# Contribuir + +Este projeto acolhe contribuições e sugestões. A maioria das contribuições requer que concorde com um Acordo de Licença de Contribuidor (CLA), declarando que tem o direito de, e realmente concede-nos, os direitos para usar a sua contribuição. Para mais detalhes, visite https://cla.microsoft.com. + +> Importante: ao traduzir texto neste repositório, certifique-se de que não utiliza tradução automática. Vamos verificar as traduções através da comunidade, por isso, só se ofereça para traduzir em línguas nas quais é proficiente. + +Quando submeter um pull request, um CLA-bot determinará automaticamente se precisa de fornecer um CLA e decorará o PR de forma apropriada (por exemplo, etiqueta, comentário). Basta seguir as instruções fornecidas pelo bot. Só precisará de fazer isto uma vez em todos os repositórios que utilizam o nosso CLA. + +Este projeto adotou o [Código de Conduta de Código Aberto da Microsoft](https://opensource.microsoft.com/codeofconduct/). +Para mais informações, consulte as [Perguntas Frequentes sobre o Código de Conduta](https://opensource.microsoft.com/codeofconduct/faq/) ou contacte [opencode@microsoft.com](mailto:opencode@microsoft.com) para quaisquer questões ou comentários adicionais. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/PyTorch_Fundamentals.ipynb b/translations/pt-PT/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..62a56f8fe --- /dev/null +++ b/translations/pt-PT/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-03T19:15:37+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "pt" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Tipos de Dados Tensoriais\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/pt-PT/README.md b/translations/pt-PT/README.md new file mode 100644 index 000000000..7a6931de8 --- /dev/null +++ b/translations/pt-PT/README.md @@ -0,0 +1,222 @@ +[![Licença GitHub](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![Contribuidores GitHub](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![Problemas GitHub](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![Pedidos de Pull GitHub](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Bem-vindos](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![Observadores GitHub](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![Bifurcações GitHub](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![Estrelas GitHub](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 Suporte Multilíngue + +#### Suportado via GitHub Action (Automatizado & Sempre Atualizado) + + +[Árabe](../ar/README.md) | [Bengali](../bn/README.md) | [Búlgaro](../bg/README.md) | [Birmanês (Myanmar)](../my/README.md) | [Chinês (Simplificado)](../zh-CN/README.md) | [Chinês (Tradicional, Hong Kong)](../zh-HK/README.md) | [Chinês (Tradicional, Macau)](../zh-MO/README.md) | [Chinês (Tradicional, Taiwan)](../zh-TW/README.md) | [Croata](../hr/README.md) | [Checo](../cs/README.md) | [Dinamarquês](../da/README.md) | [Holandês](../nl/README.md) | [Estónio](../et/README.md) | [Finlandês](../fi/README.md) | [Francês](../fr/README.md) | [Alemão](../de/README.md) | [Grego](../el/README.md) | [Hebraico](../he/README.md) | [Hindi](../hi/README.md) | [Húngaro](../hu/README.md) | [Indonésio](../id/README.md) | [Italiano](../it/README.md) | [Japonês](../ja/README.md) | [Canarim (Kannada)](../kn/README.md) | [Coreano](../ko/README.md) | [Lituano](../lt/README.md) | [Malaio](../ms/README.md) | [Malaiala](../ml/README.md) | [Marata](../mr/README.md) | [Nepali](../ne/README.md) | [Pidgin Nigeriano](../pcm/README.md) | [Norueguês](../no/README.md) | [Persa (Farsi)](../fa/README.md) | [Polaco](../pl/README.md) | [Português (Brasil)](../pt-BR/README.md) | [Português (Portugal)](./README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romeno](../ro/README.md) | [Russo](../ru/README.md) | [Sérvio (Cirílico)](../sr/README.md) | [Eslovaco](../sk/README.md) | [Esloveno](../sl/README.md) | [Espanhol](../es/README.md) | [Suaíli](../sw/README.md) | [Sueco](../sv/README.md) | [Tagalo (Filipino)](../tl/README.md) | [Tâmil](../ta/README.md) | [Telugu](../te/README.md) | [Tailandês](../th/README.md) | [Turco](../tr/README.md) | [Ucraniano](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamita](../vi/README.md) + +> **Prefere Clonar Localmente?** + +> Este repositório inclui mais de 50 traduções de idiomas, o que aumenta significativamente o tamanho de download. Para clonar sem traduções, utilize o sparse checkout: +> ```bash +> git clone --filter=blob:none --sparse https://github.com/microsoft/ML-For-Beginners.git +> cd ML-For-Beginners +> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images' +> ``` +> Isto oferece tudo o que precisa para completar o curso com um download muito mais rápido. + + +#### Junte-se à Nossa Comunidade + +[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) + +Temos uma série Discord de aprendizagem com IA em curso, saiba mais e junte-se a nós em [Série Aprender com IA](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Receberá dicas e truques de como usar o GitHub Copilot para Ciência de Dados. + +![Série Aprender com IA](../../translated_images/pt-PT/3.9b58fd8d6c373c20.webp) + +# Aprendizagem Automática para Iniciantes - Um Currículo + +> 🌍 Viaje pelo mundo enquanto exploramos Aprendizagem Automática por meio das culturas do mundo 🌍 + +Os Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de 12 semanas e 26 lições, inteiramente sobre **Aprendizagem Automática**. Neste currículo, irá aprender sobre o que por vezes é chamado de **aprendizagem automática clássica**, utilizando principalmente a biblioteca Scikit-learn e evitando o deep learning, que é abordado no nosso [currículo AI para Iniciantes](https://aka.ms/ai4beginners). Combine estas lições com o nosso ['Currículo de Ciência de Dados para Iniciantes'](https://aka.ms/ds4beginners), também! + +Viaje connosco pelo mundo enquanto aplicamos estas técnicas clássicas a dados de várias regiões do mundo. Cada lição inclui questionários pré e pós-lição, instruções escritas para completar a lição, uma solução, uma tarefa, e mais. A nossa pedagogia baseada em projetos permite-lhe aprender enquanto constrói, uma forma comprovada para as novas competências "fixarem". + +**✍️ Um grande obrigado aos nossos autores** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu e Amy Boyd + +**🎨 Também agradecemos aos nossos ilustradores** Tomomi Imura, Dasani Madipalli e Jen Looper + +**🙏 Um agradecimento especial 🙏 aos nossos autores, revisores e contribuintes de conteúdo Microsoft Student Ambassador**, nomeadamente Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila e Snigdha Agarwal + +**🤩 Gratidão extra aos Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi e Vidushi Gupta pelas nossas lições em R!** + +# Começando + +Siga estes passos: +1. **Fazer Fork do Repositório**: Clique no botão "Fork" no canto superior direito desta página. +2. **Clonar o Repositório**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [encontre todos os recursos adicionais para este curso na nossa coleção Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +> 🔧 **Precisa de ajuda?** Consulte o nosso [Guia de Solução de Problemas](TROUBLESHOOTING.md) para soluções comuns de instalação, configuração e execução das lições. + +**[Estudantes](https://aka.ms/student-page)**, para usar este currículo, façam fork de todo o repositório para a vossa conta GitHub e completem os exercícios sozinhos ou em grupo: + +- Comecem com um questionário pré-aula. +- Leiam a aula e completem as atividades, pausando e refletindo em cada verificação de conhecimento. +- Tente criar os projetos compreendendo as lições em vez de apenas executar o código da solução; no entanto, esse código está disponível nas pastas `/solution` em cada lição orientada a projetos. +- Façam o questionário pós-aula. +- Completem o desafio. +- Completem a tarefa. +- Após completar um grupo de lições, visitem o [Fórum de Discussão](https://github.com/microsoft/ML-For-Beginners/discussions) e "aprendam em voz alta" preenchendo a rubric PAT apropriada. Um 'PAT' é uma Ferramenta de Avaliação de Progresso que é uma rubric que preenche para aprofundar o seu aprendizado. Pode também reagir a outros PATs para aprendermos juntos. + +> Para estudo adicional, recomendamos seguir estes módulos e percursos de aprendizagem do [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott). + +**Professores**, incluímos algumas [sugestões](for-teachers.md) sobre como usar este currículo. + +--- + +## Vídeos explicativos + +Algumas lições estão disponíveis em formato de vídeo curto. Pode encontrá-los embutidos nas lições, ou na [playlist ML para iniciantes no canal Microsoft Developer do YouTube](https://aka.ms/ml-beginners-videos) clicando na imagem abaixo. + +[![Banner ML para iniciantes](../../translated_images/pt-PT/ml-for-beginners-video-banner.63f694a100034bc6.webp)](https://aka.ms/ml-beginners-videos) + +--- + +## Conheça a Equipa + +[![Vídeo promocional](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif por** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 Clique na imagem acima para um vídeo sobre o projeto e as pessoas que o criaram! + +--- + +## Pedagogia + +Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que é prático **baseado em projetos** e que inclui **questionários frequentes**. Além disso, este currículo tem um **tema** comum que lhe dá coerência. + +Garantindo que o conteúdo está alinhado com projetos, o processo torna-se mais envolvente para os estudantes e a retenção de conceitos será aumentada. Além disso, um questionário de baixo risco antes da aula define a intenção do estudante para aprender um tópico, enquanto um segundo questionário após a aula assegura maior retenção. Este currículo foi desenhado para ser flexível e divertido, e pode ser feito na totalidade ou em parte. Os projetos começam pequenos e tornam-se progressivamente mais complexos até ao fim do ciclo de 12 semanas. Este currículo inclui também um posfácio sobre aplicações reais da Aprendizagem Automática, que pode ser usado como crédito extra ou como base para discussão. + +> Encontre as nossas [Regras de Conduta](CODE_OF_CONDUCT.md), [Contribuições](CONTRIBUTING.md), [Tradução](TRANSLATIONS.md) e [Resolução de Problemas](TROUBLESHOOTING.md). Agradecemos o seu feedback construtivo! + +## Cada lição inclui + +- esboço opcional +- vídeo suplementar opcional +- vídeo explicativo (em algumas lições apenas) +- [questionário pré-aula](https://ff-quizzes.netlify.app/en/ml/) +- aula escrita +- para lições baseadas em projeto, guias passo a passo sobre como construir o projeto +- verificações de conhecimento +- um desafio +- leitura suplementar +- tarefa +- [questionário pós-aula](https://ff-quizzes.netlify.app/en/ml/) + +> **Uma nota sobre idiomas**: Estas lições são principalmente escritas em Python, mas muitas também estão disponíveis em R. Para completar uma lição em R, vá à pasta `/solution` e procure as lições em R. Estas incluem uma extensão .rmd que representa um ficheiro **R Markdown**, que pode ser definido simplesmente como uma incorporação de `blocos de código` (de R ou outras linguagens) e um `cabeçalho YAML` (que orienta como formatar saídas como PDF) num `documento Markdown`. Como tal, serve como um excelente framework de autor para ciência de dados, pois permite combinar o seu código, a sua saída e os seus pensamentos ao permitir que os escreva em Markdown. Além disso, os documentos R Markdown podem ser renderizados para formatos de saída como PDF, HTML ou Word. +> **Uma nota sobre os questionários**: Todos os questionários estão contidos na [pasta da aplicação de questionários](../../quiz-app), para um total de 52 questionários com três perguntas cada. Eles estão ligados nas lições mas a aplicação de questionários pode ser executada localmente; siga as instruções na pasta `quiz-app` para alojar localmente ou implementar no Azure. + +| Número da Lição | Tema | Agrupamento da Lição | Objetivos de Aprendizagem | Lição Ligada | Autor | +| :-------------: | :-----------------------------------------------------------: | :------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------: | +| 01 | Introdução ao aprendizado de máquina | [Introdução](1-Introduction/README.md) | Aprender os conceitos básicos por trás do aprendizado de máquina | [Lição](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | A História do aprendizado de máquina | [Introdução](1-Introduction/README.md) | Conhecer a história subjacente a esta área | [Lição](1-Introduction/2-history-of-ML/README.md) | Jen e Amy | +| 03 | Justiça e aprendizado de máquina | [Introdução](1-Introduction/README.md) | Quais são as questões filosóficas importantes sobre justiça que os estudantes devem considerar ao construir e aplicar modelos de AM? | [Lição](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | Técnicas para aprendizado de máquina | [Introdução](1-Introduction/README.md) | Que técnicas os investigadores de AM usam para construir modelos de AM? | [Lição](1-Introduction/4-techniques-of-ML/README.md) | Chris e Jen | +| 05 | Introdução à regressão | [Regressão](2-Regression/README.md) | Começar com Python e Scikit-learn para modelos de regressão | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau | +| 06 | Preços das abóboras na América do Norte 🎃 | [Regressão](2-Regression/README.md) | Visualizar e limpar dados em preparação para AM | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau | +| 07 | Preços das abóboras na América do Norte 🎃 | [Regressão](2-Regression/README.md) | Construir modelos de regressão linear e polinomial | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen e Dmitry • Eric Wanjau | +| 08 | Preços das abóboras na América do Norte 🎃 | [Regressão](2-Regression/README.md) | Construir um modelo de regressão logística | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau | +| 09 | Uma Aplicação Web 🔌 | [Aplicação Web](3-Web-App/README.md) | Construir uma aplicação web para usar o seu modelo treinado | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | Introdução à classificação | [Classificação](4-Classification/README.md) | Limpar, preparar e visualizar os seus dados; introdução à classificação | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen e Cassie • Eric Wanjau | +| 11 | Culinárias deliciosas asiáticas e indianas 🍜 | [Classificação](4-Classification/README.md) | Introdução a classificadores | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen e Cassie • Eric Wanjau | +| 12 | Culinárias deliciosas asiáticas e indianas 🍜 | [Classificação](4-Classification/README.md) | Mais classificadores | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen e Cassie • Eric Wanjau | +| 13 | Culinárias deliciosas asiáticas e indianas 🍜 | [Classificação](4-Classification/README.md) | Construir uma aplicação web recomendadora usando o seu modelo | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | Introdução a agrupamentos | [Agrupamento](5-Clustering/README.md) | Limpar, preparar e visualizar os seus dados; introdução a agrupamentos | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau | +| 15 | Explorar gostos musicais nigerianos 🎧 | [Agrupamento](5-Clustering/README.md) | Explorar o método de agrupamentos K-Means | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau | +| 16 | Introdução ao processamento de linguagem natural ☕️ | [Processamento de linguagem natural](6-NLP/README.md) | Aprenda o básico sobre PLN construindo um bot simples | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | Tarefas comuns de PLN ☕️ | [Processamento de linguagem natural](6-NLP/README.md) | Aprofunde os seus conhecimentos de PLN compreendendo as tarefas comuns necessárias ao lidar com estruturas linguísticas | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | Tradução e análise de sentimento ♥️ | [Processamento de linguagem natural](6-NLP/README.md) | Tradução e análise de sentimento com Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | Hotéis românticos da Europa ♥️ | [Processamento de linguagem natural](6-NLP/README.md) | Análise de sentimento com avaliações de hotéis 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | Hotéis românticos da Europa ♥️ | [Processamento de linguagem natural](6-NLP/README.md) | Análise de sentimento com avaliações de hotéis 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | Introdução à previsão de séries temporais | [Séries temporais](7-TimeSeries/README.md) | Introdução à previsão de séries temporais | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ Consumo mundial de energia ⚡️ - previsão de séries temporais com ARIMA | [Séries temporais](7-TimeSeries/README.md) | Previsão de séries temporais com ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ Consumo mundial de energia ⚡️ - previsão de séries temporais com SVR | [Séries temporais](7-TimeSeries/README.md) | Previsão de séries temporais com Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | Introdução ao aprendizado por reforço | [Aprendizado por reforço](8-Reinforcement/README.md) | Introdução ao aprendizado por reforço com Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | Ajude o Peter a evitar o lobo! 🐺 | [Aprendizado por reforço](8-Reinforcement/README.md) | Aprendizado por reforço com Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Posfácio | Cenários e aplicações reais de AM | [AM no Mundo Real](9-Real-World/README.md) | Aplicações interessantes e reveladoras do AM clássico | [Lição](9-Real-World/1-Applications/README.md) | Equipa | +| Posfácio | Depuração de modelos de AM usando painel RAI | [AM no Mundo Real](9-Real-World/README.md) | Depuração de modelos de Aprendizado de Máquina usando componentes do painel Responsible AI | [Lição](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [encontre todos os recursos adicionais para este curso na nossa coleção Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## Acesso Offline + +Pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local, e depois na pasta raiz deste repositório, digite `docsify serve`. O website será servido na porta 3000 no seu localhost: `localhost:3000`. + +## PDFs + +Encontre um pdf do currículo com links [aqui](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf). + + +## 🎒 Outros Cursos + +A nossa equipa produz outros cursos! Veja: + + +### LangChain +[![LangChain4j para Iniciantes](https://img.shields.io/badge/LangChain4j%20for%20Beginners-22C55E?style=for-the-badge&&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchain4j-for-beginners) +[![LangChain.js para Iniciantes](https://img.shields.io/badge/LangChain.js%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin) + +--- + +### Azure / Edge / MCP / Agentes +[![AZD para Iniciantes](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) +[![Edge AI para Iniciantes](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![MCP para Iniciantes](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) +[![Agentes de IA para Iniciantes](https://img.shields.io/badge/AI%20Agents%20for%20Beginners-00C49A?style=for-the-badge&labelColor=E5E7EB&color=00C49A)](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst) + +--- + +### Série de IA Generativa +[![IA Generativa para Iniciantes](https://img.shields.io/badge/Generative%20AI%20for%20Beginners-8B5CF6?style=for-the-badge&labelColor=E5E7EB&color=8B5CF6)](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![IA Generativa (.NET)](https://img.shields.io/badge/Generative%20AI%20(.NET)-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst) +[![IA Generativa (Java)](https://img.shields.io/badge/Generative%20AI%20(Java)-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst) +[![IA Generativa (JavaScript)](https://img.shields.io/badge/Generative%20AI%20(JavaScript)-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst) + +--- + +### Aprendizagem Central +[![ML para Iniciantes](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) +[![Ciência de Dados para Iniciantes](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) +[![IA para Iniciantes](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) +[![Cibersegurança para Iniciantes](https://img.shields.io/badge/Cybersecurity%20for%20Beginners-F97316?style=for-the-badge&labelColor=E5E7EB&color=F97316)](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung) +[![Desenvolvimento Web para Iniciantes](https://img.shields.io/badge/Web%20Dev%20for%20Beginners-EC4899?style=for-the-badge&labelColor=E5E7EB&color=EC4899)](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst) +[![IoT para Iniciantes](https://img.shields.io/badge/IoT%20for%20Beginners-14B8A6?style=for-the-badge&labelColor=E5E7EB&color=14B8A6)](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst) +[![Desenvolvimento XR para Iniciantes](https://img.shields.io/badge/XR%20Development%20for%20Beginners-38BDF8?style=for-the-badge&labelColor=E5E7EB&color=38BDF8)](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst) + +--- + +### Série Copilot +[![Copilot para Programação Emparelhada de IA](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) +[![Copilot para C#/.NET](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) +[![Aventura Copilot](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) + + +## Obter Ajuda + +Se ficar bloqueado ou tiver alguma questão sobre a criação de aplicações de IA. Junte-se a outros estudantes e desenvolvedores experientes em discussões sobre MCP. É uma comunidade de apoio onde as perguntas são bem-vindas e o conhecimento é partilhado livremente. + +[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) + +Se tiver feedback sobre o produto ou erros durante a criação, visite: + +[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) + +--- + + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos por garantir a precisão, tenha em atenção que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autorizada. Para informações críticas, recomenda-se a tradução profissional humana. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. + \ No newline at end of file diff --git a/translations/pt-PT/SECURITY.md b/translations/pt-PT/SECURITY.md new file mode 100644 index 000000000..9c3f1edb4 --- /dev/null +++ b/translations/pt-PT/SECURITY.md @@ -0,0 +1,42 @@ +## Segurança + +A Microsoft leva a segurança dos seus produtos e serviços de software muito a sério, incluindo todos os repositórios de código fonte geridos através das nossas organizações no GitHub, que incluem [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) e [as nossas organizações no GitHub](https://opensource.microsoft.com/). + +Se acredita ter encontrado uma vulnerabilidade de segurança em qualquer repositório pertencente à Microsoft que se enquadre na [definição de vulnerabilidade de segurança da Microsoft](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott), por favor reporte-a conforme descrito abaixo. + +## Reportar Problemas de Segurança + +**Por favor, não reporte vulnerabilidades de segurança através de problemas públicos no GitHub.** + +Em vez disso, reporte-as ao Microsoft Security Response Center (MSRC) em [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report). + +Se preferir enviar sem iniciar sessão, envie um email para [secure@microsoft.com](mailto:secure@microsoft.com). Se possível, encripte a sua mensagem com a nossa chave PGP; pode descarregá-la na [página da chave PGP do Microsoft Security Response Center](https://www.microsoft.com/en-us/msrc/pgp-key-msrc). + +Deverá receber uma resposta dentro de 24 horas. Se, por algum motivo, não receber, por favor envie um email de seguimento para garantir que recebemos a sua mensagem original. Informações adicionais podem ser encontradas em [microsoft.com/msrc](https://www.microsoft.com/msrc). + +Por favor, inclua as informações solicitadas abaixo (tanto quanto possível) para nos ajudar a compreender melhor a natureza e o alcance do possível problema: + + * Tipo de problema (ex.: buffer overflow, SQL injection, cross-site scripting, etc.) + * Caminhos completos dos ficheiros fonte relacionados com a manifestação do problema + * A localização do código fonte afetado (tag/branch/commit ou URL direto) + * Qualquer configuração especial necessária para reproduzir o problema + * Instruções passo-a-passo para reproduzir o problema + * Código de prova de conceito ou de exploração (se possível) + * Impacto do problema, incluindo como um atacante poderia explorar o problema + +Estas informações ajudarão a agilizar a triagem do seu relatório. + +Se estiver a reportar para um programa de recompensas por bugs, relatórios mais completos podem contribuir para uma recompensa maior. Por favor, visite a página do [Programa de Recompensas por Bugs da Microsoft](https://microsoft.com/msrc/bounty) para mais detalhes sobre os nossos programas ativos. + +## Idiomas Preferidos + +Preferimos que todas as comunicações sejam feitas em inglês. + +## Política + +A Microsoft segue o princípio de [Divulgação Coordenada de Vulnerabilidades](https://www.microsoft.com/en-us/msrc/cvd). + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/SUPPORT.md b/translations/pt-PT/SUPPORT.md new file mode 100644 index 000000000..5f8a04870 --- /dev/null +++ b/translations/pt-PT/SUPPORT.md @@ -0,0 +1,20 @@ +# Suporte +## Como reportar problemas e obter ajuda + +Antes de reportar um problema, consulte o nosso [Guia de Resolução de Problemas](TROUBLESHOOTING.md) para soluções para problemas comuns relacionados com instalação, configuração e execução das lições. + +Este projeto utiliza GitHub Issues para acompanhar erros e pedidos de funcionalidades. Por favor, pesquise os problemas existentes antes de criar novos para evitar duplicados. Para novos problemas, reporte o seu erro ou pedido de funcionalidade como um novo Issue. + +Para obter ajuda e esclarecer dúvidas sobre o uso deste projeto, pode também: +- Consultar o [Guia de Resolução de Problemas](TROUBLESHOOTING.md) +- Visitar o nosso [canal de Discussões no Discord #ml-for-beginners](https://aka.ms/foundry/discord) +- Reportar um problema + +## Política de Suporte da Microsoft + +O suporte para este repositório está limitado aos recursos listados acima. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/TROUBLESHOOTING.md b/translations/pt-PT/TROUBLESHOOTING.md new file mode 100644 index 000000000..972658c1f --- /dev/null +++ b/translations/pt-PT/TROUBLESHOOTING.md @@ -0,0 +1,601 @@ +# Guia de Resolução de Problemas + +Este guia ajuda a resolver problemas comuns ao trabalhar com o currículo de Machine Learning para Iniciantes. Se não encontrar uma solução aqui, consulte as nossas [Discussões no Discord](https://aka.ms/foundry/discord) ou [abra um problema](https://github.com/microsoft/ML-For-Beginners/issues). + +## Índice + +- [Problemas de Instalação](../..) +- [Problemas com o Jupyter Notebook](../..) +- [Problemas com Pacotes Python](../..) +- [Problemas com o Ambiente R](../..) +- [Problemas com a Aplicação de Questionários](../..) +- [Problemas com Dados e Caminhos de Ficheiros](../..) +- [Mensagens de Erro Comuns](../..) +- [Problemas de Desempenho](../..) +- [Ambiente e Configuração](../..) + +--- + +## Problemas de Instalação + +### Instalação do Python + +**Problema**: `python: command not found` + +**Solução**: +1. Instale o Python 3.8 ou superior a partir de [python.org](https://www.python.org/downloads/) +2. Verifique a instalação: `python --version` ou `python3 --version` +3. No macOS/Linux, pode ser necessário usar `python3` em vez de `python` + +**Problema**: Múltiplas versões do Python a causar conflitos + +**Solução**: +```bash +# Use virtual environments to isolate projects +python -m venv ml-env + +# Activate virtual environment +# On Windows: +ml-env\Scripts\activate +# On macOS/Linux: +source ml-env/bin/activate +``` + +### Instalação do Jupyter + +**Problema**: `jupyter: command not found` + +**Solução**: +```bash +# Install Jupyter +pip install jupyter + +# Or with pip3 +pip3 install jupyter + +# Verify installation +jupyter --version +``` + +**Problema**: O Jupyter não abre no navegador + +**Solução**: +```bash +# Try specifying the browser +jupyter notebook --browser=chrome + +# Or copy the URL with token from terminal and paste in browser manually +# Look for: http://localhost:8888/?token=... +``` + +### Instalação do R + +**Problema**: Os pacotes R não instalam + +**Solução**: +```r +# Ensure you have the latest R version +# Install packages with dependencies +install.packages(c("tidyverse", "tidymodels", "caret"), dependencies = TRUE) + +# If compilation fails, try installing binary versions +install.packages("package-name", type = "binary") +``` + +**Problema**: IRkernel não está disponível no Jupyter + +**Solução**: +```r +# In R console +install.packages('IRkernel') +IRkernel::installspec(user = TRUE) +``` + +--- + +## Problemas com o Jupyter Notebook + +### Problemas com o Kernel + +**Problema**: O kernel continua a falhar ou reiniciar + +**Solução**: +1. Reinicie o kernel: `Kernel → Restart` +2. Limpe a saída e reinicie: `Kernel → Restart & Clear Output` +3. Verifique problemas de memória (consulte [Problemas de Desempenho](../..)) +4. Tente executar as células individualmente para identificar o código problemático + +**Problema**: Kernel Python errado selecionado + +**Solução**: +1. Verifique o kernel atual: `Kernel → Change Kernel` +2. Selecione a versão correta do Python +3. Se o kernel estiver ausente, crie-o: +```bash +python -m ipykernel install --user --name=ml-env +``` + +**Problema**: O kernel não inicia + +**Solução**: +```bash +# Reinstall ipykernel +pip uninstall ipykernel +pip install ipykernel + +# Register the kernel again +python -m ipykernel install --user +``` + +### Problemas com Células do Notebook + +**Problema**: As células estão a executar, mas não mostram saída + +**Solução**: +1. Verifique se a célula ainda está a executar (procure o indicador `[*]`) +2. Reinicie o kernel e execute todas as células: `Kernel → Restart & Run All` +3. Verifique o console do navegador para erros de JavaScript (F12) + +**Problema**: Não é possível executar células - sem resposta ao clicar em "Run" + +**Solução**: +1. Verifique se o servidor Jupyter ainda está a executar no terminal +2. Atualize a página do navegador +3. Feche e reabra o notebook +4. Reinicie o servidor Jupyter + +--- + +## Problemas com Pacotes Python + +### Erros de Importação + +**Problema**: `ModuleNotFoundError: No module named 'sklearn'` + +**Solução**: +```bash +pip install scikit-learn + +# Common ML packages for this course +pip install scikit-learn pandas numpy matplotlib seaborn +``` + +**Problema**: `ImportError: cannot import name 'X' from 'sklearn'` + +**Solução**: +```bash +# Update scikit-learn to latest version +pip install --upgrade scikit-learn + +# Check version +python -c "import sklearn; print(sklearn.__version__)" +``` + +### Conflitos de Versão + +**Problema**: Erros de incompatibilidade de versão de pacotes + +**Solução**: +```bash +# Create a new virtual environment +python -m venv fresh-env +source fresh-env/bin/activate # or fresh-env\Scripts\activate on Windows + +# Install packages fresh +pip install jupyter scikit-learn pandas numpy matplotlib seaborn + +# If specific version needed +pip install scikit-learn==1.3.0 +``` + +**Problema**: `pip install` falha com erros de permissão + +**Solução**: +```bash +# Install for current user only +pip install --user package-name + +# Or use virtual environment (recommended) +python -m venv venv +source venv/bin/activate +pip install package-name +``` + +### Problemas ao Carregar Dados + +**Problema**: `FileNotFoundError` ao carregar ficheiros CSV + +**Solução**: +```python +import os +# Check current working directory +print(os.getcwd()) + +# Use relative paths from notebook location +df = pd.read_csv('../../data/filename.csv') + +# Or use absolute paths +df = pd.read_csv('/full/path/to/data/filename.csv') +``` + +--- + +## Problemas com o Ambiente R + +### Instalação de Pacotes + +**Problema**: A instalação de pacotes falha com erros de compilação + +**Solução**: +```r +# Install binary version (Windows/macOS) +install.packages("package-name", type = "binary") + +# Update R to latest version if packages require it +# Check R version +R.version.string + +# Install system dependencies (Linux) +# For Ubuntu/Debian, in terminal: +# sudo apt-get install r-base-dev +``` + +**Problema**: `tidyverse` não instala + +**Solução**: +```r +# Install dependencies first +install.packages(c("rlang", "vctrs", "pillar")) + +# Then install tidyverse +install.packages("tidyverse") + +# Or install components individually +install.packages(c("dplyr", "ggplot2", "tidyr", "readr")) +``` + +### Problemas com RMarkdown + +**Problema**: O RMarkdown não renderiza + +**Solução**: +```r +# Install/update rmarkdown +install.packages("rmarkdown") + +# Install pandoc if needed +install.packages("pandoc") + +# For PDF output, install tinytex +install.packages("tinytex") +tinytex::install_tinytex() +``` + +--- + +## Problemas com a Aplicação de Questionários + +### Construção e Instalação + +**Problema**: `npm install` falha + +**Solução**: +```bash +# Clear npm cache +npm cache clean --force + +# Remove node_modules and package-lock.json +rm -rf node_modules package-lock.json + +# Reinstall +npm install + +# If still fails, try with legacy peer deps +npm install --legacy-peer-deps +``` + +**Problema**: Porta 8080 já está em uso + +**Solução**: +```bash +# Use different port +npm run serve -- --port 8081 + +# Or find and kill process using port 8080 +# On Linux/macOS: +lsof -ti:8080 | xargs kill -9 + +# On Windows: +netstat -ano | findstr :8080 +taskkill /PID /F +``` + +### Erros de Construção + +**Problema**: `npm run build` falha + +**Solução**: +```bash +# Check Node.js version (should be 14+) +node --version + +# Update Node.js if needed +# Then clean install +rm -rf node_modules package-lock.json +npm install +npm run build +``` + +**Problema**: Erros de linting impedem a construção + +**Solução**: +```bash +# Fix auto-fixable issues +npm run lint -- --fix + +# Or temporarily disable linting in build +# (not recommended for production) +``` + +--- + +## Problemas com Dados e Caminhos de Ficheiros + +### Problemas com Caminhos + +**Problema**: Ficheiros de dados não encontrados ao executar notebooks + +**Solução**: +1. **Execute sempre os notebooks a partir do diretório onde estão localizados** + ```bash + cd /path/to/lesson/folder + jupyter notebook + ``` + +2. **Verifique os caminhos relativos no código** + ```python + # Correct path from notebook location + df = pd.read_csv('../data/filename.csv') + + # Not from your terminal location + ``` + +3. **Use caminhos absolutos, se necessário** + ```python + import os + base_path = os.path.dirname(os.path.abspath(__file__)) + data_path = os.path.join(base_path, 'data', 'filename.csv') + ``` + +### Ficheiros de Dados em Falta + +**Problema**: Ficheiros de conjuntos de dados estão em falta + +**Solução**: +1. Verifique se os dados deveriam estar no repositório - a maioria dos conjuntos de dados está incluída +2. Algumas lições podem exigir o download de dados - consulte o README da lição +3. Certifique-se de que puxou as alterações mais recentes: + ```bash + git pull origin main + ``` + +--- + +## Mensagens de Erro Comuns + +### Erros de Memória + +**Erro**: `MemoryError` ou kernel falha ao processar dados + +**Solução**: +```python +# Load data in chunks +for chunk in pd.read_csv('large_file.csv', chunksize=10000): + process(chunk) + +# Or read only needed columns +df = pd.read_csv('file.csv', usecols=['col1', 'col2']) + +# Free memory when done +del large_dataframe +import gc +gc.collect() +``` + +### Avisos de Convergência + +**Aviso**: `ConvergenceWarning: Maximum number of iterations reached` + +**Solução**: +```python +from sklearn.linear_model import LogisticRegression + +# Increase max iterations +model = LogisticRegression(max_iter=1000) + +# Or scale your features first +from sklearn.preprocessing import StandardScaler +scaler = StandardScaler() +X_scaled = scaler.fit_transform(X) +``` + +### Problemas com Gráficos + +**Problema**: Gráficos não aparecem no Jupyter + +**Solução**: +```python +# Enable inline plotting +%matplotlib inline + +# Import pyplot +import matplotlib.pyplot as plt + +# Show plot explicitly +plt.plot(data) +plt.show() +``` + +**Problema**: Gráficos do Seaborn aparecem diferentes ou geram erros + +**Solução**: +```python +import warnings +warnings.filterwarnings('ignore', category=UserWarning) + +# Update to compatible version +# pip install --upgrade seaborn matplotlib +``` + +### Erros de Unicode/Codificação + +**Problema**: `UnicodeDecodeError` ao ler ficheiros + +**Solução**: +```python +# Specify encoding explicitly +df = pd.read_csv('file.csv', encoding='utf-8') + +# Or try different encoding +df = pd.read_csv('file.csv', encoding='latin-1') + +# For errors='ignore' to skip problematic characters +df = pd.read_csv('file.csv', encoding='utf-8', errors='ignore') +``` + +--- + +## Problemas de Desempenho + +### Execução Lenta de Notebooks + +**Problema**: Notebooks muito lentos para executar + +**Solução**: +1. **Reinicie o kernel para liberar memória**: `Kernel → Restart` +2. **Feche notebooks não utilizados** para liberar recursos +3. **Use amostras de dados menores para testes**: + ```python + # Work with subset during development + df_sample = df.sample(n=1000) + ``` +4. **Faça o perfil do seu código** para encontrar gargalos: + ```python + %time operation() # Time single operation + %timeit operation() # Time with multiple runs + ``` + +### Uso Elevado de Memória + +**Problema**: Sistema a ficar sem memória + +**Solução**: +```python +# Check memory usage +df.info(memory_usage='deep') + +# Optimize data types +df['column'] = df['column'].astype('int32') # Instead of int64 + +# Drop unnecessary columns +df = df[['col1', 'col2']] # Keep only needed columns + +# Process in batches +for batch in np.array_split(df, 10): + process(batch) +``` + +--- + +## Ambiente e Configuração + +### Problemas com Ambientes Virtuais + +**Problema**: Ambiente virtual não ativa + +**Solução**: +```bash +# Windows +python -m venv venv +venv\Scripts\activate.bat + +# macOS/Linux +python3 -m venv venv +source venv/bin/activate + +# Check if activated (should show venv name in prompt) +which python # Should point to venv python +``` + +**Problema**: Pacotes instalados, mas não encontrados no notebook + +**Solução**: +```bash +# Ensure notebook uses the correct kernel +# Install ipykernel in your venv +pip install ipykernel +python -m ipykernel install --user --name=ml-env --display-name="Python (ml-env)" + +# In Jupyter: Kernel → Change Kernel → Python (ml-env) +``` + +### Problemas com Git + +**Problema**: Não é possível puxar as alterações mais recentes - conflitos de merge + +**Solução**: +```bash +# Stash your changes +git stash + +# Pull latest +git pull origin main + +# Reapply your changes +git stash pop + +# If conflicts, resolve manually or: +git checkout --theirs path/to/file # Take remote version +git checkout --ours path/to/file # Keep your version +``` + +### Integração com o VS Code + +**Problema**: Notebooks Jupyter não abrem no VS Code + +**Solução**: +1. Instale a extensão Python no VS Code +2. Instale a extensão Jupyter no VS Code +3. Selecione o interpretador Python correto: `Ctrl+Shift+P` → "Python: Select Interpreter" +4. Reinicie o VS Code + +--- + +## Recursos Adicionais + +- **Discussões no Discord**: [Faça perguntas e partilhe soluções no canal #ml-for-beginners](https://aka.ms/foundry/discord) +- **Microsoft Learn**: [Módulos de ML para Iniciantes](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) +- **Tutoriais em Vídeo**: [Playlist no YouTube](https://aka.ms/ml-beginners-videos) +- **Rastreador de Problemas**: [Reporte bugs](https://github.com/microsoft/ML-For-Beginners/issues) + +--- + +## Ainda com Problemas? + +Se tentou as soluções acima e ainda está a enfrentar problemas: + +1. **Pesquise problemas existentes**: [GitHub Issues](https://github.com/microsoft/ML-For-Beginners/issues) +2. **Verifique discussões no Discord**: [Discussões no Discord](https://aka.ms/foundry/discord) +3. **Abra um novo problema**: Inclua: + - O seu sistema operativo e versão + - Versão do Python/R + - Mensagem de erro (stack trace completo) + - Passos para reproduzir o problema + - O que já tentou + +Estamos aqui para ajudar! 🚀 + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte autoritativa. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/docs/_sidebar.md b/translations/pt-PT/docs/_sidebar.md new file mode 100644 index 000000000..b852a215a --- /dev/null +++ b/translations/pt-PT/docs/_sidebar.md @@ -0,0 +1,48 @@ +- Introdução + - [Introdução ao Aprendizado Automático](../1-Introduction/1-intro-to-ML/README.md) + - [História do Aprendizado Automático](../1-Introduction/2-history-of-ML/README.md) + - [Aprendizado Automático e Justiça](../1-Introduction/3-fairness/README.md) + - [Técnicas de Aprendizado Automático](../1-Introduction/4-techniques-of-ML/README.md) + +- Regressão + - [Ferramentas Essenciais](../2-Regression/1-Tools/README.md) + - [Dados](../2-Regression/2-Data/README.md) + - [Regressão Linear](../2-Regression/3-Linear/README.md) + - [Regressão Logística](../2-Regression/4-Logistic/README.md) + +- Criar uma Aplicação Web + - [Aplicação Web](../3-Web-App/1-Web-App/README.md) + +- Classificação + - [Introdução à Classificação](../4-Classification/1-Introduction/README.md) + - [Classificadores 1](../4-Classification/2-Classifiers-1/README.md) + - [Classificadores 2](../4-Classification/3-Classifiers-2/README.md) + - [Aprendizado Automático Aplicado](../4-Classification/4-Applied/README.md) + +- Agrupamento + - [Visualizar os seus Dados](../5-Clustering/1-Visualize/README.md) + - [K-Means](../5-Clustering/2-K-Means/README.md) + +- Processamento de Linguagem Natural (NLP) + - [Introdução ao NLP](../6-NLP/1-Introduction-to-NLP/README.md) + - [Tarefas de NLP](../6-NLP/2-Tasks/README.md) + - [Tradução e Sentimento](../6-NLP/3-Translation-Sentiment/README.md) + - [Avaliações de Hotéis 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [Avaliações de Hotéis 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- Previsão de Séries Temporais + - [Introdução à Previsão de Séries Temporais](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- Aprendizado por Reforço + - [Q-Learning](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- Aprendizado Automático no Mundo Real + - [Aplicações](../9-Real-World/1-Applications/README.md) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/for-teachers.md b/translations/pt-PT/for-teachers.md new file mode 100644 index 000000000..ca26a482a --- /dev/null +++ b/translations/pt-PT/for-teachers.md @@ -0,0 +1,28 @@ +## Para Educadores + +Gostaria de usar este currículo na sua sala de aula? Fique à vontade! + +Na verdade, pode utilizá-lo diretamente no GitHub, através do GitHub Classroom. + +Para isso, faça um fork deste repositório. Vai precisar criar um repositório para cada aula, então será necessário extrair cada pasta para um repositório separado. Dessa forma, [GitHub Classroom](https://classroom.github.com/classrooms) poderá identificar cada aula individualmente. + +Estas [instruções completas](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) irão ajudá-lo a configurar a sua sala de aula. + +## Utilizar o repositório como está + +Se preferir usar este repositório no formato atual, sem recorrer ao GitHub Classroom, isso também é possível. Apenas precisará comunicar aos seus alunos qual aula devem trabalhar em conjunto. + +Num formato online (Zoom, Teams ou outro), pode criar salas de grupo para os questionários e orientar os alunos para que estejam prontos para aprender. Depois, convide os alunos a realizar os questionários e submeter as respostas como 'issues' num momento específico. Pode fazer o mesmo com os trabalhos, caso deseje que os alunos colaborem de forma aberta. + +Se preferir um formato mais privado, peça aos seus alunos para fazerem fork do currículo, aula por aula, para os seus próprios repositórios GitHub como repositórios privados, e conceda-lhe acesso. Assim, poderão completar os questionários e trabalhos de forma privada e submetê-los através de issues no repositório da sua sala de aula. + +Existem várias formas de fazer isto funcionar num formato de sala de aula online. Por favor, informe-nos sobre o que funciona melhor para si! + +## Partilhe connosco a sua opinião! + +Queremos que este currículo funcione para si e para os seus alunos. Por favor, envie-nos o seu [feedback](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u). + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante ter em conta que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/quiz-app/README.md b/translations/pt-PT/quiz-app/README.md new file mode 100644 index 000000000..97be6b0a3 --- /dev/null +++ b/translations/pt-PT/quiz-app/README.md @@ -0,0 +1,118 @@ +# Questionários + +Estes questionários são os questionários pré e pós-aula para o currículo de ML em https://aka.ms/ml-beginners + +## Configuração do projeto + +``` +npm install +``` + +### Compilar e recarregar automaticamente para desenvolvimento + +``` +npm run serve +``` + +### Compilar e minimizar para produção + +``` +npm run build +``` + +### Verificar e corrigir ficheiros + +``` +npm run lint +``` + +### Personalizar configuração + +Consulte [Referência de Configuração](https://cli.vuejs.org/config/). + +Créditos: Agradecimentos à versão original desta aplicação de questionários: https://github.com/arpan45/simple-quiz-vue + +## Implementação no Azure + +Aqui está um guia passo a passo para ajudar a começar: + +1. Faça um fork de um repositório GitHub +Certifique-se de que o código da sua aplicação web estático está no seu repositório GitHub. Faça um fork deste repositório. + +2. Crie uma Aplicação Web Estática no Azure +- Crie uma [conta Azure](http://azure.microsoft.com) +- Acesse o [portal Azure](https://portal.azure.com) +- Clique em “Criar um recurso” e procure por “Aplicação Web Estática”. +- Clique em “Criar”. + +3. Configure a Aplicação Web Estática +- Básico: + - Subscrição: Selecione a sua subscrição Azure. + - Grupo de Recursos: Crie um novo grupo de recursos ou utilize um existente. + - Nome: Forneça um nome para a sua aplicação web estática. + - Região: Escolha a região mais próxima dos seus utilizadores. + +- #### Detalhes de Implementação: + - Fonte: Selecione “GitHub”. + - Conta GitHub: Autorize o Azure a aceder à sua conta GitHub. + - Organização: Selecione a sua organização GitHub. + - Repositório: Escolha o repositório que contém a sua aplicação web estática. + - Branch: Selecione a branch da qual deseja implementar. + +- #### Detalhes de Construção: + - Predefinições de Construção: Escolha o framework com o qual a sua aplicação foi construída (por exemplo, React, Angular, Vue, etc.). + - Localização da Aplicação: Especifique a pasta que contém o código da sua aplicação (por exemplo, / se estiver na raiz). + - Localização da API: Caso tenha uma API, especifique a sua localização (opcional). + - Localização de Saída: Especifique a pasta onde o output da construção é gerado (por exemplo, build ou dist). + +4. Rever e Criar +Revise as suas configurações e clique em “Criar”. O Azure configurará os recursos necessários e criará um workflow de GitHub Actions no seu repositório. + +5. Workflow de GitHub Actions +O Azure criará automaticamente um ficheiro de workflow de GitHub Actions no seu repositório (.github/workflows/azure-static-web-apps-.yml). Este workflow irá gerir o processo de construção e implementação. + +6. Monitorizar a Implementação +Acesse o separador “Actions” no seu repositório GitHub. +Deverá ver um workflow em execução. Este workflow irá construir e implementar a sua aplicação web estática no Azure. +Assim que o workflow for concluído, a sua aplicação estará ativa no URL fornecido pelo Azure. + +### Exemplo de Ficheiro de Workflow + +Aqui está um exemplo de como o ficheiro de workflow de GitHub Actions pode parecer: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### Recursos Adicionais +- [Documentação de Aplicações Web Estáticas no Azure](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [Documentação de GitHub Actions](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/sketchnotes/LICENSE.md b/translations/pt-PT/sketchnotes/LICENSE.md new file mode 100644 index 000000000..f0c239c33 --- /dev/null +++ b/translations/pt-PT/sketchnotes/LICENSE.md @@ -0,0 +1,111 @@ +Direitos, então o banco de dados em que Você incluiu os conteúdos deve ser licenciado sob a mesma licença que esta Licença Pública; + + c. Você não pode oferecer ou impor quaisquer termos ou condições adicionais ou diferentes, ou aplicar Medidas Tecnológicas Eficazes ao banco de dados que restrinjam o exercício dos direitos concedidos sob esta Licença Pública. + +Seção 5 -- Isenção de Garantias e Limitação de Responsabilidade. + + a. Salvo conforme expressamente estabelecido nesta Licença Pública, na medida máxima permitida pela lei aplicável, o Licenciador oferece o Material Licenciado "como está" e "conforme disponível", e não faz representações ou garantias de qualquer tipo em relação ao Material Licenciado, seja expressa, implícita, estatutária ou de outra forma, incluindo, sem limitação, garantias de título, comerciabilidade, adequação a um propósito específico, não violação, ou ausência de defeitos latentes ou outros defeitos, precisão, ou a presença ou ausência de erros, sejam ou não detectáveis. Quando as isenções de garantias não forem permitidas integralmente, esta isenção pode não se aplicar a Você. + + b. Na medida máxima permitida pela lei aplicável, em nenhuma circunstância o Licenciador será responsável por qualquer teoria jurídica (incluindo, sem limitação, negligência) por quaisquer perdas, custos, despesas ou danos diretos, indiretos, especiais, punitivos, exemplares, incidentais, consequenciais ou outros decorrentes desta Licença Pública ou do uso do Material Licenciado, mesmo que o Licenciador tenha sido avisado da possibilidade de tais perdas, custos, despesas ou danos. Onde uma limitação de responsabilidade não for permitida integralmente, esta limitação pode não se aplicar a Você. + + c. A isenção de garantias e limitação de responsabilidade estabelecidas nesta Seção 5 devem ser interpretadas de forma a limitar o escopo da isenção e limitação ao máximo permitido pela lei aplicável. + +Seção 6 -- Termo e Rescisão. + + a. Este termo da Licença Pública começa quando Você aceita os Direitos Licenciados e continua enquanto os Direitos Autorais e Direitos Similares aplicáveis ao Material Licenciado permanecerem em vigor. No entanto, se Você não cumprir as condições desta Licença Pública, Seus direitos sob esta Licença Pública terminam automaticamente. + + b. Quando Seu direito de usar o Material Licenciado tiver terminado sob a Seção 6(a), ele será restabelecido: + + 1. automaticamente a partir da data em que a violação for corrigida, desde que seja dentro de 30 dias após Você ter tomado conhecimento da violação; ou + + 2. mediante notificação do Licenciador. + + Para evitar dúvidas, esta Seção 6(b) não afeta quaisquer direitos do Licenciador de buscar reparação por violações desta Licença Pública. + + c. Para evitar dúvidas, o Licenciador também pode oferecer o Material Licenciado sob termos ou condições separadas ou cessar a distribuição do Material Licenciado a qualquer momento; no entanto, fazer isso não encerra esta Licença Pública. + + d. As Seções 1, 5, 6, 7 e 8 sobrevivem à rescisão desta Licença Pública. + +Seção 7 -- Outras Condições. + + a. O Licenciador não será vinculado por quaisquer termos adicionais ou diferentes que Você oferecer. Qualquer tentativa de impor termos adicionais ou diferentes será considerada uma oferta de contrato separada que o Licenciador pode aceitar ou recusar a seu exclusivo critério. + + b. Se qualquer disposição desta Licença Pública for considerada inválida ou inexequível, isso não afetará a validade ou exequibilidade das disposições restantes desta Licença Pública. + + c. Nenhuma renúncia por parte do Licenciador de qualquer condição ou falha em cumprir qualquer condição desta Licença Pública será considerada uma renúncia de qualquer falha subsequente em cumprir a mesma condição ou qualquer outra condição. + +Seção 8 -- Interpretação. + + a. Para evitar dúvidas, esta Licença Pública não reduz, limita, restringe ou impõe condições ao uso do Material Licenciado que seja permitido sob exceções e limitações aos Direitos Autorais e Direitos Similares aplicáveis. + + b. Quando o Material Licenciado for uma base de dados ou parte de uma base de dados sujeita a Direitos de Base de Dados Sui Generis, esta Licença Pública será interpretada de forma a ser aplicável ao máximo permitido pela lei aplicável. + + c. Esta Licença Pública não deve ser interpretada como uma limitação ou renúncia de quaisquer direitos que não sejam Direitos Autorais e Direitos Similares aplicáveis ao Material Licenciado. + +Creative Commons Corporation não é parte desta Licença Pública e não oferece qualquer garantia em relação ao Material Licenciado. +Direitos, então a base de dados na qual Você possui Direitos de Base de Dados Sui Generis (mas não os seus conteúdos individuais) é Material Adaptado, + +incluindo para os propósitos da Secção 3(b); e +c. Você deve cumprir as condições da Secção 3(a) se Compartilhar toda ou uma parte substancial dos conteúdos da base de dados. + +Para evitar dúvidas, esta Secção 4 complementa e não substitui as suas obrigações sob esta Licença Pública onde os Direitos Licenciados incluem outros Direitos de Autor e Direitos Similares. + +--- + +Secção 5 -- Exclusão de Garantias e Limitação de Responsabilidade. + +a. SALVO SE O LICENCIADOR ASSUMIR SEPARADAMENTE, NA MEDIDA DO POSSÍVEL, O LICENCIADOR OFERECE O MATERIAL LICENCIADO TAL COMO ESTÁ E TAL COMO DISPONÍVEL, E NÃO FAZ REPRESENTAÇÕES OU GARANTIAS DE QUALQUER TIPO RELATIVAS AO MATERIAL LICENCIADO, SEJAM EXPRESSAS, IMPLÍCITAS, LEGAIS OU OUTRAS. ISTO INCLUI, SEM LIMITAÇÃO, GARANTIAS DE TITULARIDADE, COMERCIALIZAÇÃO, ADEQUAÇÃO A UM PROPÓSITO ESPECÍFICO, NÃO INFRAÇÃO, AUSÊNCIA DE DEFEITOS LATENTES OU OUTROS, PRECISÃO, OU A PRESENÇA OU AUSÊNCIA DE ERROS, SEJAM OU NÃO CONHECIDOS OU DETECTÁVEIS. ONDE EXCLUSÕES DE GARANTIAS NÃO SÃO PERMITIDAS TOTAL OU PARCIALMENTE, ESTA EXCLUSÃO PODE NÃO SE APLICAR A VOCÊ. + +b. NA MEDIDA DO POSSÍVEL, EM NENHUMA CIRCUNSTÂNCIA O LICENCIADOR SERÁ RESPONSÁVEL PERANTE VOCÊ SOB QUALQUER TEORIA LEGAL (INCLUINDO, SEM LIMITAÇÃO, NEGLIGÊNCIA) OU DE OUTRA FORMA POR QUAISQUER PERDAS DIRETAS, ESPECIAIS, INDIRETAS, INCIDENTAIS, CONSEQUENCIAIS, PUNITIVAS, EXEMPLARES OU OUTROS DANOS, CUSTOS, DESPESAS OU PREJUÍZOS DECORRENTES DESTA LICENÇA PÚBLICA OU DO USO DO MATERIAL LICENCIADO, MESMO QUE O LICENCIADOR TENHA SIDO INFORMADO DA POSSIBILIDADE DE TAIS PERDAS, CUSTOS, DESPESAS OU DANOS. ONDE UMA LIMITAÇÃO DE RESPONSABILIDADE NÃO É PERMITIDA TOTAL OU PARCIALMENTE, ESTA LIMITAÇÃO PODE NÃO SE APLICAR A VOCÊ. + +c. A exclusão de garantias e a limitação de responsabilidade acima devem ser interpretadas de forma que, na medida do possível, mais se aproximem de uma exclusão absoluta e renúncia de toda responsabilidade. + +--- + +Secção 6 -- Duração e Rescisão. + +a. Esta Licença Pública aplica-se durante o período dos Direitos de Autor e Direitos Similares licenciados aqui. No entanto, se Você não cumprir esta Licença Pública, os seus direitos sob esta Licença Pública terminam automaticamente. + +b. Quando o seu direito de usar o Material Licenciado tiver sido rescindido sob a Secção 6(a), ele será restabelecido: + +1. automaticamente na data em que a violação for corrigida, desde que seja corrigida dentro de 30 dias após a sua descoberta da violação; ou +2. mediante restabelecimento expresso pelo Licenciador. + +Para evitar dúvidas, esta Secção 6(b) não afeta qualquer direito que o Licenciador possa ter de buscar reparações pelas suas violações desta Licença Pública. + +c. Para evitar dúvidas, o Licenciador também pode oferecer o Material Licenciado sob termos ou condições separadas ou parar de distribuir o Material Licenciado a qualquer momento; no entanto, isso não terminará esta Licença Pública. + +d. As Secções 1, 5, 6, 7 e 8 sobrevivem à rescisão desta Licença Pública. + +--- + +Secção 7 -- Outros Termos e Condições. + +a. O Licenciador não será vinculado por quaisquer termos ou condições adicionais ou diferentes comunicados por Você, salvo se expressamente acordado. + +b. Quaisquer arranjos, entendimentos ou acordos relativos ao Material Licenciado não declarados aqui são separados e independentes dos termos e condições desta Licença Pública. + +--- + +Secção 8 -- Interpretação. + +a. Para evitar dúvidas, esta Licença Pública não reduz, limita, restringe ou impõe condições sobre qualquer uso do Material Licenciado que possa ser legalmente feito sem permissão sob esta Licença Pública. + +b. Na medida do possível, se qualquer disposição desta Licença Pública for considerada inexequível, ela será automaticamente reformada na medida mínima necessária para torná-la exequível. Se a disposição não puder ser reformada, ela será separada desta Licença Pública sem afetar a exequibilidade dos termos e condições restantes. + +c. Nenhum termo ou condição desta Licença Pública será renunciado e nenhuma falha em cumprir será consentida, salvo se expressamente acordado pelo Licenciador. + +d. Nada nesta Licença Pública constitui ou pode ser interpretado como uma limitação ou renúncia de quaisquer privilégios e imunidades que se aplicam ao Licenciador ou a Você, incluindo em relação aos processos legais de qualquer jurisdição ou autoridade. + +--- + +======================================================================= + +A Creative Commons não é parte das suas licenças públicas. Não obstante, a Creative Commons pode optar por aplicar uma das suas licenças públicas ao material que publica e, nesses casos, será considerada o “Licenciador”. O texto das licenças públicas da Creative Commons é dedicado ao domínio público sob a Dedicação ao Domínio Público CC0. Exceto para o propósito limitado de indicar que o material é compartilhado sob uma licença pública da Creative Commons ou conforme permitido pelas políticas da Creative Commons publicadas em creativecommons.org/policies, a Creative Commons não autoriza o uso da marca "Creative Commons" ou qualquer outra marca ou logótipo da Creative Commons sem o seu consentimento prévio por escrito, incluindo, sem limitação, em conexão com quaisquer modificações não autorizadas de qualquer uma das suas licenças públicas ou quaisquer outros arranjos, entendimentos ou acordos relativos ao uso do material licenciado. Para evitar dúvidas, este parágrafo não faz parte das licenças públicas. + +A Creative Commons pode ser contactada em creativecommons.org. + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file diff --git a/translations/pt-PT/sketchnotes/README.md b/translations/pt-PT/sketchnotes/README.md new file mode 100644 index 000000000..f1ad6e762 --- /dev/null +++ b/translations/pt-PT/sketchnotes/README.md @@ -0,0 +1,12 @@ +Todas as sketchnotes do currículo podem ser descarregadas aqui. + +🖨 Para impressão em alta resolução, as versões TIFF estão disponíveis neste [repositório](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff). + +🎨 Criado por: [Tomomi Imura](https://github.com/girliemac) (Twitter: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**Aviso Legal**: +Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, é importante notar que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes da utilização desta tradução. \ No newline at end of file