diff --git a/.gitignore b/.gitignore index f780d576..f3823485 100644 --- a/.gitignore +++ b/.gitignore @@ -11,7 +11,7 @@ dist *.user *.userosscache *.sln.docstates - +.venv # User-specific files (MonoDevelop/Xamarin Studio) *.userprefs diff --git a/2-Regression/1-Tools/notebook.ipynb b/2-Regression/1-Tools/notebook.ipynb index e69de29b..fb4c856d 100644 --- a/2-Regression/1-Tools/notebook.ipynb +++ b/2-Regression/1-Tools/notebook.ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to my Notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n", + "\n", + "# Load the diabetes dataset\n", + "X, y = datasets.load_diabetes(return_X_y = True)\n", + "\n", + "# Print the shape of the data and the first row\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n", + "(442, 1)\n" + ] + } + ], + "source": [ + "# Extract the column at index 2\n", + "X = X[:, 2]\n", + "print(X.shape)\n", + "\n", + "# Reshape to a 2D array\n", + "X = X.reshape((-1, 1))\n", + "print(X.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the data into training and test data\n", + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create a linear regression model and train it with data\n", + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Predict using test data\n", + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOUElEQVR4nO3deVhU1RsH8O9l2BQEBFmdAdzNXamUEpVcsCwxRH+BuaVWLgWmlpalmGaaJbaYpaUtoqaglmmug6LivpT7hoooqCiLoijD+f0xzcTALPcOs9wZ3s/zzFPeOXPvmXuHue+c855zOMYYAyGEEEKInXKwdgUIIYQQQsyJgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh0iyPTp08FxHG7fvm2R44jJsGHD4O7ubu1qID09HRzHIT093dpV4aU61zI0NBQvvviiiWtExIjjOEyfPt3a1bA4MX7X2SMKdsxk4cKF4DgOHTt2NOr1f/zxB1566SX4+/vD2dkZ3t7e6NKlCz7//HMUFRWZuLaWM2zYMHAcp354eHigbdu2+Pzzz1FaWmqSYyxcuBDLli3jXf7evXuYNm0aWrVqBTc3N/j4+KBdu3ZISEjA9evXTVIne7Fs2TKN6+fq6oqgoCBERUXhyy+/RHFxsbWrqFdJSQmmT59ulUBRFaSqHk5OTmjYsCGGDBmCS5cuWbw+pKp3330XHMfhf//7n7WrYjIpKSlITk7mXT40NLTK33iTJk0wadIk3LlzR6OsKlBzcHBAdnZ2lX0VFRWhVq1a4DgO48aNU2+/fPkyOI7DvHnzjH5fQjla7Eg1zPLlyxEaGooDBw7gwoULaNy4Ma/XlZeXY8SIEVi2bBlat26NMWPGQCaTobi4GJmZmZg6dSo2btyI7du3m/kdmI+LiwuWLFkCACgoKEBqaiomTpyIgwcPYuXKldXe/8KFC1GvXj0MGzbMYNnHjx+jS5cuOHPmDIYOHYq33noL9+7dw8mTJ5GSkoKXX34ZQUFB1a6TKXXp0gUPHjyAs7Oz1eowY8YMNGjQAI8fP0Zubi7S09ORmJiIL774Ar///jvatGmjLjt16lRMnjzZanWtqKSkBElJSQCAbt26WaUOb7/9Np566ik8fvwYR44cwffff48///wT//zzj+g+a5b04MEDODpa75bEGMOKFSsQGhqKP/74A8XFxahTp47Zj2vuv4+UlBScOHECiYmJvF/Trl07TJgwAQDw8OFDHD58GMnJydi5cycOHDhQpbyLiwtWrFiBd999V2N7WlpatepuUoyY3KVLlxgAlpaWxnx9fdn06dN5v3b27NkMABs/fjwrLy+v8vz169fZp59+qncfCoWCPXjwQHC9+Zg2bRoDwG7dumXU64cOHcrc3Nw0tikUCvbkk08yACwnJ0fjOMZo2bIl69q1K6+yv/32GwPAli9fXuW5Bw8esMLCQr11r2mWLl3KALCDBw9WeW779u2sVq1aLCQkhJWUlJjkeCEhIaxPnz4m2RdjjN26dYsBYNOmTTPZPvmSy+UMAFu9erXG9i+//JIBYJ988onO1967d8/c1bPKscRkx44dDADbsWMHc3JyYsuWLbN2lUyiT58+LCQkhHd5XX9zEydOZADYuXPn1NtU39MxMTGsXbt2VV7Ts2dP1r9/fwaAjR07Vr09KyuLAWCfffaZsDdTDdSNZQbLly9H3bp10adPH8TGxmL58uW8XldSUoI5c+agZcuW+Oyzz7T24wYGBuK9997T2KZqIly+fDlatmwJFxcX/PXXXwCAefPm4ZlnnoGPjw9q1aqFsLAwrFmzpsp+K+6jWbNmcHV1RVhYGHbt2qW1rgUFBRg2bBi8vLzg6emJ4cOHo6SkhNf7rMzBwUH9K/vy5cs6y5WVleHjjz9Go0aN4OLigtDQULz//vsa3V+hoaE4efIkdu7cqW6G1fcL/uLFiwCAZ599tspzrq6u8PDwqLI9JycH/fr1g7u7O3x9fTFx4kQoFAqNMvfv38eECRMgk8ng4uKCZs2aYd68eWCMqcvExMSgQ4cOGq976aWXwHEcfv/9d/W2/fv3g+M4bNq0CYD2nJ1u3bqhVatWOHXqFCIjI1G7dm3Ur18fc+fOrVL/K1euoG/fvnBzc4Ofnx/Gjx+PzZs3VzsP6LnnnsOHH36IK1eu4Ndff1Vv15aTsHTpUjz33HPw8/ODi4sLWrRogW+//Vbnvrds2YJ27drB1dUVLVq00PqLsaCgAImJiepz3rhxY8yZMwfl5eUAlJ8tX19fAEBSUpL681ExT+TMmTOIjY2Ft7c3XF1d8eSTT2pcC0DZGpiUlIQmTZrA1dUVPj4+6Ny5M7Zu3Sr4nAHK8wYAWVlZAP47X6dOnUJ8fDzq1q2Lzp07A+D3NwAoW4inT5+OoKAg1K5dG5GRkTh16hRCQ0M1WjxV3ZI7d+7EmDFj4OfnB6lUqn5+06ZNiIiIgJubG+rUqYM+ffrg5MmTGsfKzc3F8OHDIZVK4eLigsDAQERHR2v8LR86dAhRUVGoV68eatWqhQYNGuC1117T2I+2nJ2jR4/i+eefh4eHB9zd3dG9e3fs27dPo4zqPezZswfvvPMOfH194ebmhpdffhm3bt3ifR2WL1+OFi1aIDIyEj169ND5vc337ycjIwMDBgxAcHAwXFxcIJPJMH78eDx48EBjf9r+PlTfx+vWrUOrVq3g4uKCli1bqr/XVYqLi5GYmIjQ0FC4uLjAz88PPXv2xJEjRwAovxf+/PNPXLlyRf15Dw0N5X1OKgoICAAAra1v8fHxOHbsGM6cOaPelpubix07diA+Pt6o45kadWOZwfLlyxETEwNnZ2fExcXh22+/xcGDB/HUU0/pfd3u3btRUFCAiRMnQiKRCDrmjh078Ntvv2HcuHGoV6+e+gO9YMEC9O3bF4MGDcKjR4+wcuVKDBgwABs2bECfPn009rFz506sWrUKb7/9NlxcXLBw4UL07t0bBw4cQKtWrTTKDhw4EA0aNMDs2bNx5MgRLFmyBH5+fpgzZ46gequogg4fHx+dZUaOHImffvoJsbGxmDBhAvbv34/Zs2fj9OnTWLt2LQAgOTkZb731Ftzd3fHBBx8AAPz9/XXuMyQkBADw888/Y+rUqQYTBRUKBaKiotCxY0fMmzcP27Ztw+eff45GjRph9OjRAJTN4X379oVcLseIESPQrl07bN68GZMmTUJOTg7mz58PAIiIiMD69etRVFQEDw8PMMawZ88eODg4ICMjA3379gWg/NJ0cHDQGpBVdPfuXfTu3RsxMTEYOHAg1qxZg/feew+tW7fG888/D0AZhD333HO4ceMGEhISEBAQgJSUFMjlcr375mvw4MF4//33sWXLFowaNUpnuW+//RYtW7ZE37594ejoiD/++ANjxoxBeXk5xo4dq1H2/Pnz+N///oc333wTQ4cOxdKlSzFgwAD89ddf6NmzJwDlD4WuXbsiJycHb7zxBoKDg7F3715MmTIFN27cQHJyMnx9ffHtt99i9OjRePnllxETEwMA6i63kydP4tlnn0X9+vUxefJkuLm54bfffkO/fv2QmpqKl19+GYDy5jR79myMHDkSTz/9NIqKinDo0CEcOXJEXR8hdH32BwwYgCZNmuCTTz5RB8l8/gYAYMqUKZg7dy5eeuklREVF4fjx44iKisLDhw+11mHMmDHw9fXFRx99hPv37wMAfvnlFwwdOhRRUVGYM2cOSkpK8O2336Jz5844evSo+jumf//+OHnyJN566y2Ehobi5s2b2Lp1K65evar+d69eveDr64vJkyfDy8sLly9fNtjFcfLkSURERMDDwwPvvvsunJyc8N1336Fbt27YuXNnlXzIt956C3Xr1sW0adNw+fJlJCcnY9y4cVi1apXBa1BaWorU1FR1101cXByGDx+O3Nxc9U0eEPb3s3r1apSUlGD06NHw8fHBgQMH8NVXX+HatWtYvXq1wTrt3r0baWlpGDNmDOrUqYMvv/wS/fv3x9WrV9WflTfffBNr1qzBuHHj0KJFC+Tn52P37t04ffo0OnTogA8++ACFhYW4du2a+nuHzyCLx48fqwehPHz4EEePHsUXX3yBLl26oEGDBlXKd+nSBVKpFCkpKZgxYwYAYNWqVXB3d69yn7Eai7Uh1RCHDh1iANjWrVsZY4yVl5czqVTKEhISDL52wYIFDABbt26dxvaysjJ269YtjUfFLi4AzMHBgZ08ebLKPit3Jzx69Ii1atWKPffccxrbATAA7NChQ+ptV65cYa6uruzll19Wb1M1W7722msar3/55ZeZj4+Pwfeo6gpSvY8LFy6wTz75hHEcx9q0aVPlOCrHjh1jANjIkSM19qdqWt2xY4d6m5BurJKSEtasWTMGgIWEhLBhw4axH374geXl5WmtOwA2Y8YMje3t27dnYWFh6n+vW7eOAWAzZ87UKBcbG8s4jmMXLlxgjDF28OBBBoBt3LiRMcbY33//zQCwAQMGsI4dO6pf17dvX9a+fXv1v1XdIXK5XL2ta9euDAD7+eef1dtKS0tZQEAA69+/v3rb559/XuUz9uDBA9a8efMq+9RGXzeWiqenp0Z9tXVJauvmioqKYg0bNtTYFhISwgCw1NRU9bbCwkIWGBiocYyPP/6Yubm5aTSxM8bY5MmTmUQiYVevXmWM6e/G6t69O2vdujV7+PChelt5eTl75plnWJMmTdTb2rZta1TXmuq6/fjjj+zWrVvs+vXr7M8//2ShoaGM4zj1OVWdr7i4OI3X8/0byM3NZY6Ojqxfv34a5aZPn84AsKFDh6q3qa5n586dWVlZmXp7cXEx8/LyYqNGjdLYR25uLvP09FRvv3v3rsHuiLVr1xr8zDDGqlyXfv36MWdnZ3bx4kX1tuvXr7M6deqwLl26VHkPPXr00PheHD9+PJNIJKygoEDvcRljbM2aNQwAO3/+PGOMsaKiIubq6srmz5+vUU7I34+2z/js2bMZx3HsypUr6m3a/j4AMGdnZ/V3BWOMHT9+nAFgX331lXqbp6enRveQNsZ0Y6nuBxUfzz77LLt9+7ZG2YppDRMnTmSNGzdWP/fUU0+x4cOHq98PdWPZmeXLl8Pf3x+RkZEAoM7sX7lyZZWujspUo6wqR97//PMPfH19NR75+fkaZbp27YoWLVpU2WetWrXU/3/37l0UFhYiIiJC3cxZUXh4OMLCwtT/Dg4ORnR0NDZv3lyl7m+++abGvyMiIpCfn89rpNj9+/fV76Nx48Z4//33ER4ervHLtLKNGzcCAN555x2N7apfYn/++afB42pTq1Yt7N+/H5MmTQKgbBIfMWIEAgMD8dZbb2kdIabtvVccTbNx40ZIJBK8/fbbVerKGFN3R7Vv3x7u7u7qrsKMjAxIpVIMGTIER44cQUlJCRhj2L17NyIiIgy+F3d3d7z66qvqfzs7O+Ppp5/WqNtff/2F+vXrq1uNAGV3nb5WGKHc3d0Njsqq+LksLCzE7du30bVrV1y6dAmFhYUaZYOCgtStKgDg4eGBIUOG4OjRo8jNzQWg/BUdERGBunXr4vbt2+pHjx49oFAodHbHqty5cwc7duzAwIEDUVxcrH59fn4+oqKicP78eeTk5AAAvLy8cPLkSZw/f17QeVF57bXX4Ovri6CgIPTp0wf379/HTz/9hCeffFKjXOXPGd+/ge3bt6OsrAxjxozRKPfWW2/prNOoUaM0WpO3bt2KgoICxMXFaZxPiUSCjh07qlsyatWqBWdnZ6Snp+Pu3bta9+3l5QUA2LBhAx4/fqyzDhUpFAps2bIF/fr1Q8OGDdXbAwMDER8fj927d1f5rnn99dc1WmYjIiKgUChw5coVg8dbvnw5nnzySfVAElWXXeWuLCF/PxU/4/fv38ft27fxzDPPgDGGo0ePGqxTjx490KhRI/W/27RpAw8PD42/Zy8vL+zfv9/ko0Y7duyIrVu3YuvWrdiwYQNmzZqFkydPom/fvlW64VTi4+Nx4cIFHDx4UP1fsXRhAdSNZVIKhQIrV65EZGSkuv8dUH5wPv/8c2zfvh29evXS+XpV5v+9e/c0tjdu3FidD/Dzzz/jl19+qfJabU2LgPILZubMmTh27JjGjVtbd02TJk2qbGvatClKSkpw69Ytjebc4OBgjXJ169YFoAyotOW5VOTq6oo//vgDgDKLv0GDBhp5AtpcuXIFDg4OVUa1BQQEwMvLi9cXmi6enp6YO3cu5s6diytXrmD79u2YN28evv76a3h6emLmzJkadVflfajUrVtX44v+ypUrCAoKqjKS44knnlA/DwASiQTh4eHIyMgAoAx2IiIi0LlzZygUCuzbtw/+/v64c+cOr2BHKpVWua5169bF33//rVG3Ro0aVSnHd7QgH/fu3YOfn5/eMnv27MG0adOQmZlZJdersLAQnp6eGnWrXN+mTZsCUObhBAQE4Pz58/j777+rXBuVmzdv6q3PhQsXwBjDhx9+iA8//FDnPurXr48ZM2YgOjoaTZs2RatWrdC7d28MHjxYYwSaPh999BEiIiIgkUhQr149PPHEE1rzICr/TfP9G1D9t3I5b29v9d+poWOpAjlVPlFlqr9xFxcXzJkzBxMmTIC/vz86deqEF198EUOGDFF/X3Tt2hX9+/dHUlIS5s+fj27duqFfv36Ij4+Hi4uL1v3funULJSUlaNasWZXnnnjiCZSXlyM7OxstW7ZUb9f3naRPQUEBNm7ciHHjxuHChQvq7c8++yxSU1Nx7tw59edNyN/P1atX8dFHH+H333+vUofKAb02ld+P6j1V3NfcuXMxdOhQyGQyhIWF4YUXXsCQIUM0AkRj1KtXDz169FD/u0+fPmjWrBliY2OxZMkSrYFz+/bt0bx5c6SkpMDLywsBAQE6Pz/WQMGOCe3YsQM3btzAypUrtQ6hXr58ud5gp3nz5gCAEydOIDo6Wr3d3d1d/cHbvXu31tdW/BWhosr76NKlCxYuXIjAwEA4OTlh6dKlSElJEfTeKtOVU8QqJODqe23FPyQhzD35VkhICF577TW8/PLLaNiwIZYvX64R7AjNpTKkc+fOmDVrFh4+fIiMjAx88MEH8PLyQqtWrZCRkaHON+IT7FTnmpjKtWvXUFhYqDd4unjxIrp3747mzZvjiy++gEwmg7OzMzZu3Ij58+erE4qFKC8vR8+ePasMfVVR3az0vR4AJk6ciKioKK1lVO+pS5cuuHjxItavX48tW7ZgyZIlmD9/PhYtWoSRI0carGvr1q15ff61/U0D5vkbqHws1fn45ZdfNH7kqFQMzhITE/HSSy9h3bp12Lx5Mz788EPMnj0bO3bsQPv27cFxHNasWYN9+/bhjz/+wObNm/Haa6/h888/x759+0w2Uaexn//Vq1ejtLQUn3/+OT7//PMqzy9fvlw9XQFfCoUCPXv2xJ07d/Dee++hefPmcHNzQ05ODoYNG8brM87n/QwcOBARERFYu3YttmzZgs8++wxz5sxBWlqaOk/PVLp37w4A2LVrl85Wwvj4eHz77beoU6cO/ve//8HBQTydRxTsmNDy5cvh5+eHb775pspzaWlpWLt2LRYtWqTzSywiIgKenp5YuXIlpkyZUu0PSmpqKlxdXbF582aNX1BLly7VWl5bs/y5c+dQu3Ztnb+YLSUkJATl5eU4f/68uoUEAPLy8lBQUKBONAZMczOoW7cuGjVqhBMnThhV123btlWZp0M1UqFiXSMiIvDo0SOsWLECOTk56qCmS5cu6mCnadOmepOshdbt1KlTYIxpnKeKv2irQ9XqqCtgAJQTZpaWluL333/X+PWqK0la1epSsb7nzp0DAHWSbKNGjXDv3j2DQYSuz4bql7CTkxOvQMTb2xvDhw/H8OHDce/ePXTp0gXTp0/nFewYi+/fgOq/Fy5c0Gixyc/PN9jKoaLqPvHz8+N1Pho1aoQJEyZgwoQJOH/+PNq1a4fPP/9cY1Rep06d0KlTJ8yaNQspKSkYNGgQVq5cqfWc+fr6onbt2jh79myV586cOQMHBwfIZDJe78WQ5cuXo1WrVpg2bVqV57777jukpKSogx2+fz///PMPzp07h59++glDhgxRbzd2xJ4+gYGBGDNmDMaMGYObN2+iQ4cOmDVrljrYMVVwXFZWBqBqz0NF8fHx+Oijj3Djxg2tPRDWJJ6wy8Y9ePAAaWlpePHFFxEbG1vlMW7cOBQXF1cZxlpR7dq18e677+LEiROYPHmy1l8kQn6lSyQScBynkW9z+fJlrFu3Tmv5zMxMjVye7OxsrF+/Hr169TJ5i4ZQL7zwAgBUmQn0iy++AACNjH83NzcUFBTw2u/x48e1Ln1x5coVnDp1SmszOp+6KhQKfP311xrb58+fD47jNH5xdezYEU5OTpgzZw68vb3VzfIRERHYt28fdu7cyatVh6+oqCjk5ORofA4fPnyIxYsXV3vfO3bswMcff4wGDRpg0KBBOsupPksVP8uFhYU6g/Dr169r5HMVFRXh559/Rrt27dStDgMHDkRmZiY2b95c5fUFBQXqL+ratWurt1Xk5+eHbt264bvvvsONGzeq7KPiEObK+XLu7u5o3LixyWYA14Xv30D37t3h6OhYZSh/5c+jPlFRUfDw8MAnn3yiNc9GdT5KSkqqjPBq1KgR6tSpoz4fd+/erfK91a5dOwDQec4kEgl69eqF9evXawxhz8vLQ0pKCjp37mywu5yP7Oxs7Nq1CwMHDtT6vT18+HBcuHAB+/fvB8D/70fbZ5wxhgULFlS7zioKhaJKd5ifnx+CgoI0zqubmxuvbjNDVKkHbdu21VmmUaNGSE5OxuzZs/H0009X+5imRC07JvL777+juLhYI3Gtok6dOsHX1xfLly/XOxX55MmTcfr0aXz22WfYsmUL+vfvD6lUirt37+LIkSNYvXo1/Pz84OrqarBOffr0wRdffIHevXsjPj4eN2/exDfffIPGjRtr5HGotGrVClFRURpDzwEIbsI1h7Zt22Lo0KH4/vvvUVBQgK5du+LAgQP46aef0K9fP3VCOACEhYXh22+/xcyZM9G4cWP4+fnp7DveunUrpk2bhr59+6JTp05wd3fHpUuX8OOPP6K0tNSotXpeeuklREZG4oMPPsDly5fRtm1bbNmyBevXr0diYqJG0mHt2rURFhaGffv2qefYAZQtO/fv38f9+/dNGuy88cYb+PrrrxEXF4eEhAQEBgZi+fLl6s8T31+BmzZtwpkzZ1BWVoa8vDzs2LEDW7duRUhICH7//Xe9n89evXrB2dkZL730Et544w3cu3cPixcvhp+fn9ZAo2nTphgxYgQOHjwIf39//Pjjj8jLy9MIjiZNmoTff/8dL774IoYNG4awsDDcv38f//zzD9asWYPLly+r53hp0aIFVq1ahaZNm8Lb2xutWrVCq1at8M0336Bz585o3bo1Ro0ahYYNGyIvLw+ZmZm4du0ajh8/DgBo0aIFunXrhrCwMHh7e+PQoUPq4b/mxPdvwN/fHwkJCfj888/Rt29f9O7dG8ePH8emTZtQr149XtfYw8MD3377LQYPHowOHTrglVdega+vL65evYo///wTzz77LL7++mucO3cO3bt3x8CBA9GiRQs4Ojpi7dq1yMvLwyuvvAIA+Omnn7Bw4UK8/PLLaNSoEYqLi7F48WJ4eHioAzhtZs6cia1bt6Jz584YM2YMHB0d8d1336G0tFTr/FHGSElJUU8Voc0LL7wAR0dHLF++HB07duT999O8eXM0atQIEydORE5ODjw8PJCamsq7ZY2P4uJiSKVSxMbGom3btnB3d8e2bdtw8OBBje64sLAwrFq1Cu+88w6eeuopuLu746WXXtK775ycHHWr3KNHj3D8+HF89913qFevnt5EdwBISEio/pszB4uN+7JzL730EnN1dWX379/XWWbYsGHMycmpyvA9bdauXcteeOEF5uvryxwdHZmXlxfr3Lkz++yzz6oMpUSlYX0V/fDDD6xJkybMxcWFNW/enC1dulTnUMexY8eyX3/9VV2+ffv2VYYi65pBWTX8MysrS+/74jsLsbY6Pn78mCUlJbEGDRowJycnJpPJ2JQpUzSGCjOmHB7bp08fVqdOHQZA7zD0S5cusY8++oh16tSJ+fn5MUdHR+br68v69OmjMZxdX9211bW4uJiNHz+eBQUFMScnJ9akSRP22WefaZ0Ve9KkSQwAmzNnjsb2xo0bMwAaQ28Z0z30vGXLllX2PXTo0CrDTi9dusT69OnDatWqxXx9fdmECRNYamoqA8D27dun9TypqK6z6uHs7MwCAgJYz5492YIFC1hRURGv8/P777+zNm3aMFdXVxYaGsrmzJnDfvzxxyqfIdVsrps3b2Zt2rRRf44rz0LMmPKcT5kyhTVu3Jg5OzuzevXqsWeeeYbNmzePPXr0SF1u7969LCwsjDk7O1cZ7nzx4kU2ZMgQFhAQwJycnFj9+vXZiy++yNasWaMuM3PmTPb0008zLy8vVqtWLda8eXM2a9YsjWNoo2sGZV3nS9ss5Xz/BsrKytiHH37IAgICWK1atdhzzz3HTp8+zXx8fNibb76pLmdoKgG5XM6ioqKYp6cnc3V1ZY0aNWLDhg1TT1Fx+/ZtNnbsWNa8eXPm5ubGPD09WceOHdlvv/2m3seRI0dYXFwcCw4OZi4uLszPz4+9+OKLGtNcMFZ16LnqtVFRUczd3Z3Vrl2bRUZGsr1792qU0fUetP2dVNa6dWsWHBys83nGGOvWrRvz8/Njjx8/Zozx//s5deoU69GjB3N3d2f16tVjo0aNUg8fX7p0qbqcvu/jykJCQtRTB5SWlrJJkyaxtm3bsjp16jA3NzfWtm1btnDhQo3X3Lt3j8XHxzMvLy/1FBv6VB567uDgwPz8/FhcXJzGUPiKdTc0o37l92ONoefcvxUhNRzHcRg7dqygpm5iP5KTkzF+/Hhcu3YN9evXt3Z1iBkUFBSgbt26mDlzpnrCTWIa9PcjfpSzQ0gNU3mejIcPH+K7775DkyZN6IvaTmibC0WV62OtBVDtBf392CbK2SGkhomJiUFwcDDatWuHwsJC/Prrrzhz5gzvNdyI+K1atQrLli3DCy+8AHd3d+zevRsrVqxAr169DC47QvSjvx/bRMEOITVMVFQUlixZguXLl0OhUKBFixZYuXKl3sR5YlvatGkDR0dHzJ07F0VFReqk5YpzRhHj0N+PbaKcHUIIIYTYNcrZIYQQQohdo2CHEEIIIXaNcnagXAfm+vXrqFOnjtnXXiKEEEKIaTDGUFxcjKCgIL1LLFGwA+V09KZaZ4UQQgghlpWdnQ2pVKrzeQp2APVijdnZ2SZZb4UQQggh5ldUVASZTKax6LI2FOzgv/VMPDw8KNghhBBCbIyhFBRKUCaEEEKIXaNghxBCCCF2jYIdQgghhNg1CnYIIYQQYtco2CGEEEKIXaNghxBCCCF2jYIdQgghhNg1CnYIIYQQYtco2CGEEEKIXaMZlAkhxI4pFApkZGTgxo0bCAwMREREBCQSibWrRYhFUbBDCCF2Ki0tDQkJCbh27Zp6m1QqxYIFCxATE2PFmhFiWdSNRQghdigtLQ2xsbEagQ4A5OTkIDY2FmlpaVaqGSGWR8EOIYTYGYVCgYSEBDDGqjyn2paYmAiFQmHpqhFiFVYNdr799lu0adNGvdp4eHg4Nm3apH7+4cOHGDt2LHx8fODu7o7+/fsjLy9PYx9Xr15Fnz59ULt2bfj5+WHSpEkoKyuz9FshhBDRyMjIqNKiUxFjDNnZ2cjIyLBgrQixHqsGO1KpFJ9++ikOHz6MQ4cO4bnnnkN0dDROnjwJABg/fjz++OMPrF69Gjt37sT169c1+pkVCgX69OmDR48eYe/evfjpp5+wbNkyfPTRR9Z6S4QQYnU3btwwaTlCbB3HtLVzWpG3tzc+++wzxMbGwtfXFykpKYiNjQUAnDlzBk888QQyMzPRqVMnbNq0CS+++CKuX78Of39/AMCiRYvw3nvv4datW3B2duZ1zKKiInh6eqKwsBAeHh5me2+EEGIJ6enpiIyMNFhOLpejW7du5q8QIWbC9/4tmpwdhUKBlStX4v79+wgPD8fhw4fx+PFj9OjRQ12mefPmCA4ORmZmJgAgMzMTrVu3Vgc6ABAVFYWioiJ16xAhhNQ0ERERkEql4DhO6/Mcx0EmkyEiIsLCNSPEOqwe7Pzzzz9wd3eHi4sL3nzzTaxduxYtWrRAbm4unJ2d4eXlpVHe398fubm5AIDc3FyNQEf1vOo5XUpLS1FUVKTxIIQQeyGRSLBgwQIAqBLwqP6dnJxM8+2QGsPqwU6zZs1w7Ngx7N+/H6NHj8bQoUNx6tQpsx5z9uzZ8PT0VD9kMplZj0cIIZYWExODNWvWoH79+hrbpVIp1qxZQ/PskBrF6pMKOjs7o3HjxgCAsLAwHDx4EAsWLMD//vc/PHr0CAUFBRqtO3l5eQgICAAABAQE4MCBAxr7U43WUpXRZsqUKXjnnXfU/y4qKqKAhxBid2JiYhAdHU0zKJMaz+rBTmXl5eUoLS1FWFgYnJycsH37dvTv3x8AcPbsWVy9ehXh4eEAgPDwcMyaNQs3b96En58fAGDr1q3w8PBAixYtdB7DxcUFLi4u5n8zhBBiZRKJhJKQSY1n1WBnypQpeP755xEcHIzi4mKkpKQgPT0dmzdvhqenJ0aMGIF33nkH3t7e8PDwwFtvvYXw8HB06tQJANCrVy+0aNECgwcPxty5c5Gbm4upU6di7NixFMwQQgghBICVg52bN29iyJAhuHHjBjw9PdGmTRts3rwZPXv2BADMnz8fDg4O6N+/P0pLSxEVFYWFCxeqXy+RSLBhwwaMHj0a4eHhcHNzw9ChQzFjxgxrvSVCCCGEiIzo5tmxBppnhxBCCLE9NjfPDiGEEEKIOVCwQwghhBC7RsEOIYQQQuwaBTuEEEIIsWsU7BBCCCHErlGwQwghhBC7RsEOIYQQQuwaBTuEEEIIsWsU7BBCCCHErlGwQwghhBC7RsEOIYQQQuwaBTuEEEIIMYtRowCOUz7GjLFePSjYIYQQQohJ7dihDHCWLPlv27ffAteuWac+jtY5LCFEoVAgIyMDN27cQGBgICIiIiCRSKxdLVKD0WeSVFdREeDrCzx6pP350lLL1keFWnYIsYK0tDSEhoYiMjIS8fHxiIyMRGhoKNLS0qxdNVJD0WeSVNekSYCnp+5ABwAaNbJcfSqiYIcQC0tLS0NsbCyuVWrPzcnJQWxsLN1ciMXRZ5JUx759yi6refN0l+ndG1AoLFenyjjGGLPe4cWhqKgInp6eKCwshIeHh7WrQ+yYQqFAaGholZuKCsdxkEqlyMrKou4DYhH0mSTGKikBGjQAbt7UX+7yZSAkxDx14Hv/ppYdQiwoIyND500FABhjyM7ORkZGhgVrRWoy+kwSY3z8MeDmpj/QWbIEYMx8gY4QlKBMiAXduHHDpOUIqS76TBIhjh8H2rXTX6ZTJyAjA3AUUYQhoqoQYv8CAwNNWs6W0cgfcaDPJOGjtBRo0wY4d05/uTNngGbNLFMnIagbixALioiIgFQqBcdxWp/nOA4ymQwREREWrpll0cgf8bDUZ1KhUCA9PR0rVqxAeno6FNbMVhXIlutuCsnJgKur/kBn/nxll5UYAx0AACOssLCQAWCFhYXWrgqpAVJTUxnHcYzjOAZA/VBtS01NtXYVzUr1/iu+95r0/sXI3J/J1NRUJpVKNfYtlUpt4lrbct2r6+xZxpQhjO5Hs2aMlZZar458798U7DAKdojlafsClclkdv8FWlZWVuV9V765ymQyVlZWZu2q1jjm+kzacnBry3WvjsePGevY0XCgc+yYtWvK//5NQ89BQ8+JddTEnJX09HRERkYaLCeXy9GtWzfzV4hoMPVn0paHtdty3avjxx+BESP0l0lKAj76yDL1MYTv/ZsSlAmxEolEUuNu6DTyR9xM/ZkUMqxdbH8Ltlx3Y1y5AoSG6i/j7w9cugTUrm2RKpkUJSgTQiyGRv7ULLYc3Npy3YUoL1fObmwo0MnMBHJzbTPQASjYIYRYEI1Gq1lsObi15brztXo1IJEAmzfrLjN+vDJDp1Mny9XLHChnB5SzQ4glqdZhApRdASqqAGjNmjWIiYmxSt0MqYl5VtWhynvJycmBtluNmPNebLnuhuTmAoZiNGdn5ezInp6WqZOxaLkIQogoxcTEYM2aNahfv77GdqlUKupAh+YGEk4ikWDBggUAUKU1T/Xv5ORkUQYLtlx3XRgDXnnFcKCzfbtyEkGxBzpCUMsOqGWHEGuwpVYSVWtU5a9LW2iN0sWS5z8tLQ0JCQkaCb8ymQzJycmiP2+2XPeKNm4E+vTRX2bkSGDxYsvUx1T43r8p2AEFO4QQ3exxCLK2G7hUKsWCBQvMdgO3peC2Mluu+507gI+P4XK3bgH16pm/PqZGwY4AFOwQQnSxt7mB7LGVimg3ejSwaJH+MuvXA337WqY+5kA5O4QQYgL2NARZoVAgISFBa8KtaltiYmKNW/vJ3uzcCXCc/kAnNlY57NyWAx0haFJBQohdMlXXgz0NQa5pE+XVNMXFQEAAUFKiv1xODhAUZJk6iQW17BBC7I4pR07Z09xA9tRKxVdNWbF88mTAw0N/oJOSohyRVdMCHYCCHUKInVHlpFRuwcjJyUFsbKzggMeehiDbUysVHzVhuoCDB5VdVnPm6C7TvTugUABxcZarl9hQgjIoQZkQe2HOkVP2MATZnifKq8zeE7EfPACaNFF2Selz6RLQoIFl6mQNlKBMCKlxhOSkCBUTE4PLly9DLpcjJSUFcrkcWVlZNnXDtKdWKn3sPRF79mzlGlX6Ap3vvlN2WdlzoCMEJSgTQuyGuXNS7GGletUM1trm2bGlVip97DUR+59/gDZt9JcJCwP27QMc6e6ugU4HIcRu1LScFGPFxMQgOjraZifKM8TeErEfPQI6dABOntRf7tQp4IknLFMnW0PBDiHEbqhGThnKSbGFkVPmZg+tVLrYU9D7zTfAuHH6y8ybB0yYYJn62CoKdgghBtnKdPmqnJTY2FhwHKd1VXV7yEkh+tlD0HvhgjIBWZ9GjZStPS4ulqmTLaMEZUKIXtqG7/r5+WHGjBmiTPC01VXVienYciK2QgF07mw40DlyRBkQUaDDDw09Bw09J0QXXcN3VXx8fPD999+LMoCwldYoolt1r6GtTRfw00/AsGH6y3z0EZCUZJHq2ARaCFQACnYIqcrQnDUqHMdRiwkxOVOtzG4LQW92NhAcrL+Mtzdw9Srg5maZOtkKCnYEoGCHkKr4rvYNKH8t28NEdEQc7H1CQBXGlAtxbtigv9zu3cCzz1qmTraGJhUkhFSLkGG5xk7UR0hl9j4hoEpqKuDgoD/QSUhQBkQU6FQfjcYihGgldFiurcxZQsTNXicEVMnLU65Mro+DA5CfD3h5WaRKNQK17BBCtFIN3+XLFuYsIeJnbxMCqjAGDB5sONDZskU5IosCHdOiYIcQolXF4bv6cBwHmUwm6jlLiO2wpwkBVTZvVrbW/Pqr7jLDhgHl5UDPnharVo1CwQ4hRKeYmBikpqbCx8dH6/Nin7OE2B5Vi2Ll+XFUbCm4vnsX4Digd2/95W7eBJYuVZYl5kHBDiFEr5iYGOTl5SEpKQne3t4az9FEfcTUbHlCwIrGjVMOF9dn7Vpl95avr2XqVJPR0HPQ0HNC+LKFOUuIfbC1CQFVMjKALl30l4mOVgY61JJTfTYx9Hz27Nl46qmnUKdOHfj5+aFfv344e/asRplu3bqB4ziNx5tvvqlR5urVq+jTpw9q164NPz8/TJo0CWVlZZZ8K4TUCKrFI+Pi4tCtWzcKdIjZxMTE4PLly5DL5UhJSYFcLkdWVpZoA51795RJxYYCnexsYN06CnQszapDz3fu3ImxY8fiqaeeQllZGd5//3306tULp06dgluFaSJHjRqFGTNmqP9du3Zt9f8rFAr06dMHAQEB2Lt3L27cuIEhQ4bAyckJn3zyiUXfDyFiRq0yxNbYysrsU6cCs2bpL/PLL8Crr1qmPqQqUXVj3bp1C35+fti5cye6/Bsed+vWDe3atUNycrLW12zatAkvvvgirl+/Dn9/fwDAokWL8N577+HWrVtwdnY2eFzqxiL2zlRT7xNC/nP4MPDkk/rLdO0KbN8O0O8K87CJbqzKCgsLAaBKEuTy5ctRr149tGrVClOmTEFJSYn6uczMTLRu3Vod6ABAVFQUioqKcPLkSa3HKS0tRVFRkcaDEHulmnq/8kRtOTk5iI2NRVpampVqRohtevgQCA01HOhcuACkp1OgIwaiCXbKy8uRmJiIZ599Fq1atVJvj4+Px6+//gq5XI4pU6bgl19+wasV2gJzc3M1Ah0A6n/n5uZqPdbs2bPh6empfshkMjO8I0Ksr6ZMvU+IpcydC9SqBVy5orvMwoXKUVaNGlmuXkQ/0SwXMXbsWJw4cQK7d+/W2P7666+r/79169YIDAxE9+7dcfHiRTQy8pM0ZcoUvPPOO+p/FxUVUcBD7JK5pt6n/B9S05w6BbRsqb9Mu3bAgQOAk5NFqkQEEEXLzrhx47BhwwbI5XKD09N37NgRAHDhwgUAQEBAAPLy8jTKqP4doGNebhcXF3h4eGg8CLFH5ph6Py0tDaGhoYiMjER8fDwiIyMRGhpK3WHELj1+rAxiDAU6J04AR49SoCNWVg12GGMYN24c1q5dix07dqBBgwYGX3Ps2DEA/00VHh4ejn/++Qc3b95Ul9m6dSs8PDzQokULs9SbEFth6qn3Kf+H1CSLFgHOzsDx47rLfPqpssvKUDBErMuqo7HGjBmDlJQUrF+/Hs2aNVNv9/T0RK1atXDx4kWkpKTghRdegI+PD/7++2+MHz8eUqkUO3fuBKBsTm/Xrh2CgoIwd+5c5ObmYvDgwRg5ciTvoec0GovYK4VCgdDQUOTk5GjN2+E4DlKpFFlZWQa7oVT70tUtJmRfhIjZpUuG8238/R/i4kUnuLnRZ92aeN+/mRUB0PpYunQpY4yxq1evsi5dujBvb2/m4uLCGjduzCZNmsQKCws19nP58mX2/PPPs1q1arF69eqxCRMmsMePH/OuR2FhIQNQZb+E2IPU1FTGcRzjOE7j70y1LTU1ldd+5HK5zr/Zig+5XG7eN0SImZSVMdatG2PKthp9jzAGgEmlUt5/P8Q8+N6/rZqgzAw0KslkMnULjj4hISHYuHGjqapFiEWZO9k3JiYGa9as0TrPjpCp982R/0OIWCxfzmfSv1kApqr/peq+pfXhxE80o7EIqYksNdlfTEwMoqOjqxVUmTr/hxAxyMkBDIyLAccVgbEgAPc1tjPGwHEcEhMTER0dTd23IiaqGZSthXJ2iDWokn0r/wmqVnYW269FU+b/EGJtjAEvvwysX6+/XHLyUSQmdjC4P7lcbhNLW9gbm5xBmZCawhYn+5NIJFiwYAGA/wIyFdW/k5OTKdAhord+PeDgoD/QGTtWGRD5+Z3htU/qvhU3CnYIsQIhk/2JiSr/p379+hrbpVKp6FqiCKns1i3lauP9+ukvd+cO8PXXyv+n7lv7QDk7hFiBLSf7miL/hxBLYgx47TVg2TL95TZtAnr31twWEREBqVRqsPs2IiLCdBXWgWYuNx4FO4RYga3/WpRIJJSfQGzCtm1Az576ywwaBPzyi7LVpzJV921sbCw4jtMIeCzZfWupwQz2ihKUQQnKxPIo2ZcQ8yosBHx8AENpb7m5QKW1pLXSFmzIZDJB0zcYy9YGM1gS3/s3BTugYIdYh+oLDIDWX4s1+QuMkOoYPx5ITtZfZs0aoH9/Yfu1RjcSzVyuHwU7AlCwQ6zFmr8WCbE3e/cCzz6rv0yfPsAff2jvshKj9PR0REZGGixXU4e+871/U84OIVZEyb6EVN/9+0BICJCfr7/clStAcLBl6mQqtjyYARBPUjUFO4RYGSX7EmK86dOBpCT9ZZYuBYYNs0RtTM+WBzOIKamaurFA3ViEEGJrjh4FOhiY2LhzZyA9HbDlhlJbHcxgqaRqmkGZEEKI3SktBRo3NhzonDsHZGTYdqAD2ObM5WKcIZ6CHUJqKIVCgfT0dKxYsQLp6emiWpqCEG2++AJwdQUuXtRd5quvlJMINmliuXqZm63NXC7GGeIpZ4eQGsjYvnSxJBuSmuXMGeCJJ/SXadkSOHIEcHa2TJ0szZYGM4gxqZqCHUJqGF196Tk5OYiNjdX5S1FMyYakZigrA8LDgUOH9Jf7+2+gdWvL1MmabGUwgxiTqilBGZSgTGoOYycooxlciaUtXgy8/rr+MrNmAe+/b5n6EP4smVRNCcqEkCqM6UsXY7IhsV+XLysn/NMX6AQFASUlFOiIlRiTqinYIaQGMaYvXYzJhsT+lJcDPXoADRroL7d/P5CTA9SqZZl6EeOILamacnYIqUGM6UsXY7IhsS8rVwJxcfrLvPsuMGeOZepDTENMSdUU7BBSg0REREAqlRrsS4+IiFBvE2OyIbEPN24ou6T0cXNTlqtTxzJ1IqYllqRq6sYipAYxpi9dFSBVLl/xdTKZTCNAIkQfxoABAwwHOnI5cO8eBTqk+ijYIaSGEdqXLsZkQ2K7/vgDcHAA1qzRXeb115UBkQgaBIidoKHnoKHnpGYSOkGgtnl2ZDIZkpOT7W7YOU2eaHr5+UC9eobL3b4N+PiYvz7EPvC9f1OwAwp2COGrJgQBNHmi6Y0aBSxZor/Mn38CL7xgmfoQ+0HBjgAU7BBCAPFPnmhrweaOHUD37vrLvPIKkJKinFuHEKHMHuw8evQIN2/eRHl5ucb24OBgY3ZnVRTsECIe1rqhGzu7tKWIucWp8jVr2zYCQUEOePhQfwRz/TpAg/hIdfC+fzOBzp07xzp37swcHBw0HhzHMQcHB6G7E4XCwkIGgBUWFlq7KoSYXVlZGZPL5SwlJYXJ5XJWVlZm7SqppaamMqlUygCoH1KplKWmppr92HK5XOO4uh5yudzsdaksNTWVcRxXpS4cxzGO4yxyfvTVTfOazWXK9GLdj1WrrFZdYmf43r8Fz7MzbNgwODo6YsOGDQgMDNQ5HJUQIj5ibh0wdoFSUxHr5ImGluvgOA6JiYmIjo62eIuT5jXrCGCfgVdswurVDxAbS7lPxLIEd2O5ubnh8OHDaN68ubnqZHHUjUVqAjHno4ihCyk9PR2RkZEGy8nlcotOkibWev13zfIBXARgqD8qBByXbdWuQGJ/zLYQaIsWLXD79u1qVY4QYll8FvNMSEjA9u3bsWLFCqSnp1t0YU8xrL8l1skTrdnipFAokJ6ervUzobxmwwCUQH+gMwIAB+AqraNGrEZwN9acOXPw7rvv4pNPPkHr1q3h5OSk8Ty1jBAiPnyCiWvXrqFHjx7qbZbs3hJDF5Jq8sTY2FhwHKcRGFpz8kRrLdehr8uzUaMYREZ2A9BNzx72AegMoGrQTOuoEUsTHOyovgy7VxpPqOo7tuSvQUIIP8bcXCyVKwOIZ/0t1ezS2m7y1po80Zj1zITQNvpt/fr1Wrs8r127if79W/DYazMA53Q+S+uoEUsTnLOzc+dOvc937dq1WhWyBsrZIfaOb95HZZYabq3K/zB0Q7dUrofY5rNR5VsB0NriZGxAqq31pn79+nj48CHy8/MrlX4bwAIDe0zUW8baw/eJ/THb0HN7REPPib0rKytjUqlU6/BlPg9LDLdWDa+uXEcxDK8WA23D8mUymdHnRddw9qqPJgaHkgOnGeCkdz90HYk58L1/G7UQaEFBAT7//HOMHDkSI0eOxPz581FYWGjMrgghFqBvMU8+LJFjIXSB0pomJiYGly9fhlwuR0pKCuRyObKysow6L/oS1v8jAZAJfd1RAPD559shlfYE8Fi9zcfHBz6VFrii60isSXA31qFDhxAVFYVatWrh6aefBgAcPHgQDx48wJYtW9ChQwezVNScqBuL1BTaui34sOSwZrF1Idkjw92awwH8qHcfw4ZlYenSBgC0XzMAdB2J2ZltuYiIiAg0btwYixcvhqOjMr+5rKwMI0eOxKVLl7Br167q1dwKKNghNUnFG5Ofnx+GDh2K69eviyJXhljGihUrEB8fr+UZGYCrBl6di/r1u+DKldP0mSBWx/f+LXg01qFDhzQCHQBwdHTEu+++iyeffNK42hJCLEYikWi00nz55ZeiG25NzKvqaCgOwJ8AnjfwynBw3H58+eUa+kwQmyI4Z8fDwwNXr1aN/LOzs1GnTh2TVIoQYjmUK1PzaE6gGAugHPoDnS8AcJDJcugzQWyS4Jad//3vfxgxYgTmzZuHZ555BgCwZ88eTJo0CXFxcSavICHE/GJiYhAdHU05FjWERCLB9OmLMHJkH73lnJ0ZUlN3o7g4EIGBcvpMEJslONiZN28eOI7DkCFDUFZWBgBwcnLC6NGj8emnn5q8goQQy6jcvUXsE2NAfDywcqX+QGf7duC55zgAll0egxBzEJygrFJSUoKLFy8CABo1aoTatWubtGKWRAnKhJCaYONGoI/+GAcjRpRjyRKjZiUhxOLMlqCsUrt2bbRu3drYlxNCCLGQO3eAStPeaHXrFlCvHgU6xP7wCnZiYmKwbNkyeHh4GExMS0tLM0nFCCGEVN/o0cCiRfrLrF8P9O1rmfoQYg28gh1PT0/1MFRPT0+zVogQQkj17dwJGErBio0FfvsNMGJSbUJsitE5O/aEcnYIIfaiuBgICgLu3dNfLidHWY4QW8b3/i24c/bBgwcoKSlR//vKlStITk7Gli1bjKspIYQQk5gyBfDw0B/opKQoR2RRoENqEsEJytHR0YiJicGbb76JgoICPP3003B2dsbt27fxxRdfYPTo0eaoJyGEEB0OHgT+XapQp+7dgS1bAAfKPyY1kOCP/ZEjR9SLvK1ZswYBAQG4cuUKfv75Z3z55ZcmryAhRDeFQoH09HSsWLEC6enpUCgU1q6SXbDGeTXmmA8eAFKp4UDn0iVg2zYKdEjNJfijX1JSol4WYsuWLYiJiYGDgwM6deqEK1eumLyChBDt0tLSEBoaisjISMTHxyMyMhKhoaE0IrKarHFejTnm7NlA7drK3BtdvvtO2WXVoIEZKk2ILWECtW7dmi1YsIBdvXqVeXh4sL179zLGGDt06BDz9/cXujtRKCwsZABYYWGhtatCDCgrK2NyuZylpKQwuVzOysrKrF0lq0hNTWUcxzEAWh+//fabRetjL9dF13nlOI5xHMdSU1OtfswdOxhThjC6H2FhjD1+bPKqEiI6fO/fgoOd1atXMycnJ+bg4MB69uyp3v7JJ5+w3r17C9rXJ598wp588knm7u7OfH19WXR0NDtz5oxGmQcPHrAxY8Ywb29v5ubmxmJiYlhubq5GmStXrrAXXniB1apVi/n6+rKJEyeyxwL+0inYsQ2pqalMKpVq3BCkUqlZbkBiVlZWVuU8VH5IJBK2evVqi9THXq6LofPKcRyTyWQmDeSEHPPBA8NBDsDYqVMmqx4home2YIcxxm7cuMGOHDnCFAqFetv+/fvZ6dOnBe0nKiqKLV26lJ04cYIdO3aMvfDCCyw4OJjdu3dPXebNN99kMpmMbd++nR06dIh16tSJPfPMM+rny8rKWKtWrViPHj3Y0aNH2caNG1m9evXYlClTeNeDgh3xs8YvbrGSy+V6A52KD3OfF3u6LnzPq1wut/gxe/W6YTDImTfPZNUixGaYNdipfKC1a9eyUyb4OXHz5k0GgO3cuZMxxlhBQQFzcnLS+IV6+vRpBoBlZmYyxhjbuHEjc3Bw0Gjt+fbbb5mHhwcrLS3l/R4o2BEva/ziFrOUlBTewY45z4u9XRe+53Xq1KlGdddp6+ozfMynDAY5jRox9vChGU8MISLG9/4tOEF54MCB+PrrrwEo59x58sknMXDgQLRp0wapqalCd6ehsLAQAODt7Q0AOHz4MB4/fowePXqoyzRv3hzBwcHIzMwEAGRmZqJ169bw9/dXl4mKikJRURFOnjyp9TilpaUoKirSeBDxysjIwLVr13Q+zxhDdnY2MjIyLFgr6wkMDORd1pznRUzXxRSjp/ie15kzZwpOXNaVgHz+/Hkdr5BAGe8c0LvfjRuBCxcAFxdeVSekxhIc7OzatUs99Hzt2rVgjKGgoABffvklZs6caXRFysvLkZiYiGeffRatWrUCAOTm5sLZ2RleXl4aZf39/ZGbm6suUzHQUT2vek6b2bNnw9PTU/2QyWRG15uY340bN0xaztZFRERAKpXyLm+u8yKW62Kq0VOq88oJWDshJycHsbGxeo+VlpaG2NjYKoFhTk4Opk+fDh8fn0rHnAegzEBdle06zz/Pu6qE1GiCg53CwkJ1y8tff/2F/v37o3bt2ujTp4+eXymGjR07FidOnMDKlSuN3gdfU6ZMQWFhofqRnZ1t9mMS4/H9xS2kxcOWSSQSLFiwgHd5c50XMVwXfYGEoSCksornlW/Aw/5dbScxMVFra5JCoUBCQoK6nLbX/vf/LaFszZmg95h37gC7dvGqHiHkX4KDHZlMhszMTNy/fx9//fUXevXqBQC4e/cuXF1djarEuHHjsGHDBsjlco1frAEBAXj06BEKCgo0yufl5SEgIEBdJi8vr8rzque0cXFxgYeHh8aDiJehX9wcx0Emk6lbHGuCmJgY/Pbbb5BIJDrLmPu8WPu68AkkdAUhusTExGDNmjWoX78+79fo667j09WXn38HyiDnhN7jrFihbM2pW5d31Qgh/xIc7CQmJmLQoEGQSqUIDAxEt3+X1d21axdat24taF+MMYwbNw5r167Fjh070KDSzFdhYWFwcnLC9u3b1dvOnj2Lq1evIjw8HAAQHh6Of/75Bzdv3lSX2bp1Kzw8PNCiRQuhb4+IkL5f3Kp/Jycn673x26MBAwbobAm1xHmx9nUxV85QTEwMLl++DLlcjpSUFEydOpXX67R11xnuwnsfQLneEs2aKYOcV17hVQ1CiDbGZD8fPHiQpaWlseLiYvW2DRs2sN27dwvaz+jRo5mnpydLT09nN27cUD9KSkrUZd58800WHBzMduzYwQ4dOsTCw8NZeHi4+nnV0PNevXqxY8eOsb/++ov5+vrS0HM7pG0+F5lMZlPDm83B2ufFWsfnO3oqJSWlWsepzpB03a8NNTjKCmDsxo1qVZ0Qu8f3/s0xpqUNmIdHjx4hKysLjRo1gqOj4PVEAejuF1+6dCmGDRsGAHj48CEmTJiAFStWoLS0FFFRUVi4cKFGF9WVK1cwevRopKenw83NDUOHDsWnn37Ku158l4gn1qdQKJCRkYEbN24gMDAQERERNa5FRxtrnxdrHD89PR2RkZEGy8nlcnULtDEUCgVCQ0ORk5OjtcuM4zhIpVJkZWVVec/aX3sPgJveYy5aBLzxhvH1pb8RUlPwvn8LjaLu37/PXnvtNSaRSJhEImEXL15kjDE2btw4Nnv2bOFhmQhQyw4htkc1z4+uZTNMOc+PavLEysfiM3nifxMvjjHYkuPlxVh5efXqaQ+zWRPCl9nm2ZkyZQqOHz+O9PR0jYTkHj16YNWqVUJ3RwghRrFkzpCuxGWpVIo1a9YgJiZG52vDw2PAWDmAb/QeIysLuHsXEDDyXYMpR6YRYm8Ed2OFhIRg1apV6NSpE+rUqYPjx4+jYcOGuHDhAjp06GCTE/RRNxYhtistLQ0JCQkaN3mZTIbk5GS9QYgxhHYRNW4MXLyof5+zZwOTJ1e/XqGhoToTtvV1tRFiy/jevwUn29y6dQt+fn5Vtt+/f1/QZFyEEGIKMTExiI6OtkieikQi4ZX/k5ICDBpkeH8KBeAguH29KiEj06qTv0SIrRIc7Dz55JP4888/8dZbbwH4r7l4yZIl6uHghBBiSXyDEHO7exf4d85VvU6dAp54wnTHFcts1oSIleBg55NPPsHzzz+PU6dOoaysDAsWLMCpU6ewd+9e7Ny50xx1JIQQ0Xv2WWDvXv1lJk0C5s41/bHFMJs1IWImuAG1c+fOOH78OMrKytC6dWts2bIFfn5+yMzMRFhYmDnqSAghovXnn8qkYkOBzuPH5gl0AH7rpdW0WcYJqUhQsPP48WO89tpr4DgOixcvxoEDB3Dq1Cn8+uuvgmdPJoQQW3b/vjLIefFF/eUOHlQOLDdyOjJeJBIJ4uLi9JZ55ZVXKDmZ1FiCgh0nJyekpqaaqy6EEBFQKBRIT0/HihUrkJ6eLmhtqZqiXz/A3V1/mddeUwY5Tz5p/vooFAqsWLFCb5mVK1fStSQ1luBurH79+mHdunVmqAohxNrS0tIQGhqKyMhIxMfHIzIyEqGhoTRHy7927lS25qxfr7/cw4fADz9Ypk6A4dFYAIxaJ4wQeyG4YbVJkyaYMWMG9uzZg7CwMLi5aU57/vbbb5uscoQQy1FNSld56i3VpHSGJs+zZ6WlQIU5VHWSywFrDAqj0ViE6Cd4UsHKK5Nr7IzjcOnSpWpXytJoUkHzoXV6bANNSqfbqFHAkiX6y/Tta7i1x5wstU4YIWJjtkkFs7KyqlUxUnNom9lWKpViwYIFNbaFwJr0BZ40KV1Vhw/zy7cpLjacv2NuqtFYhhYrpdFYpKYywdydhFRF6/SIi6FcHOoG+U9ZmTIvx1Cg8/vvygRkawc6gGXXCSPEFgnuxnrnnXe074jj4OrqisaNGyM6OhrefKYRFQnqxjIt6hIRF125OKqb4Jo1a+Dt7U3dIFCuUTVnjv4ynToBmZmWqY9QllwnzJKoO5zowvf+LTjYiYyMxJEjR6BQKNCsWTMAwLlz5yCRSNC8eXOcPXsWHMdh9+7daNGiRfXehYVQsGNalD8gHnwDzwsXLqBRo0YGu0HsNUA9c4bf8g35+fyWg7AmewsMqDuc6MP3/i24Gys6Oho9evTA9evXcfjwYRw+fBjXrl1Dz549ERcXh5ycHHTp0gXjx4+v1hsgtqsmdYmIfU4avrk4e/furZHdIIwpu6wMBTq//KIsK/ZAB/hvnbC4uDh069bNpq8ZdYcTk2ECBQUFsZMnT1bZfuLECRYUFMQYY+zw4cPMx8dH6K6tprCwkAFghYWF1q6KXZDL5QyAwYdcLrd2VaslNTWVSaVSjfcklUpZamqqtaumlpKSwutapKSkMMa0vyeZTCaq91RRWVkZk8vlLCUlhcnlclZWVsb7tXPmMKYMYXQ/GjQwY+WtrDrnzhLKysqqfBYrPjiOYzKZTHT1JpbF9/4tONhxc3PTepOSy+XM3d2dMcbYxYsXWZ06dYTu2moo2DEt1ZcUx3F2+yWVmpqq9f1xHMc4jhNNcGBM4Cn2m6CKscHm5cuGgxyAsevXLfRGrMAWAvWa8qOJVI/Zgp34+HjWoEEDlpaWxrKzs1l2djZLS0tjDRs2ZK+++ipjjLEVK1awsLAw42puBRTsmJ4qGKgcEIgtGDCGLf3itNfA05hgs7ycMS8vw0HO119b4Q1ZkK0E6kJbJUnNZLZgp7i4mI0cOZI5OzszBwcH5uDgwJydndmoUaPYvXv3GGOMHT16lB09etSoilsDBTvmYWtdInzZ2i9Oews8jQk2v//ecJBTu7YyILJnthSo29rfGbEOswU7KsXFxez48ePs+PHjrLi42NjdiAIFO+ZjK10iQtjiL057CjyF3ARzc/l1WV28aO13ZRm2FEDYa6skMS2+92/BMyiruLu7q+fScRfDrFpElFQjQ+xJYGCgSctZQkxMDKKjo+1iSDLfUXyvvtoeOTn6y3z8MTB1qgkqZSNsaaSkaqLE2NhYcBynMSWCPY8QJOYheOh5eXk5ZsyYAU9PT4SEhCAkJAReXl74+OOPUV5ebo46EiIqqqn5Kw/RVuE4DjKZTHRT89vLkGTDQeRAAAw5OZ56SykUNSvQAWwvUI+JicGaNWtQv359je1SqbRGL0xLhBM8qeCUKVPwww8/ICkpCc8++ywAYPfu3Zg+fTpGjRqFWbNmmaWi5kSTChK+VBO2rV+/HsnJyVWerzgrMX0Rm4dqosSqEyB6Aigw+Pp//gFatTJ8DHtoBatM97lTEuvkkfZ6PUj18b5/C+0fCwwMZOvXr6+yfd26dep5dmwN5ewQPrTlvUgkErvIg7E1VZOu5QbzchIT+e9b7MOyq8PeEtZJzWa2BGUXFxd29uzZKtvPnDnDXF1dhe5OFCjYIYboG64LgCUmJtpNAratSE1NZfXqvcorAfnxY/77tIVh2dVlTwnrpGbje/8W3I3VsWNHdOzYEV9++aXG9rfeegsHDx7Evn37hOxOFKgbi+hDC5uKT0kJ4OZmuNy+fUDHjvz2WdOuM3UNEXvA9/4teDTW3Llz0adPH2zbtg3h4eEAgMzMTGRnZ2Pjxo3G15gQkeK7vlRGRobdjTwTo4EDgdWr9ZcZPBj4+Wdh+61p19keR0oSoovgYKdr1644d+4cvvnmG5w5cwaAMmN+zJgxCAoKMnkFCbE2Wxqua8+/1vfsATp3NlyupASoVUv4/m3pOhNChBEU7Dx+/Bi9e/fGokWLbHLUFSHGsJXhumlpaUhISNBonZBKpViwYIFNjwx79AhwcTFcbts2oHt3449jK9eZECKcoHl2nJyc8Pfff5urLoSIki3Mq5OWlobY2Ngq3TA5OTmIjY1FWlqalWpWPaNHGw50evdWpiFXJ9ABbOM6E0KMI3hSwVdffRU//PCDOepCiCipZnIFUOVGKIaZXBUKBRISErTOm6LalpiYCIVCYemqGe3YMYDjgEWL9JcrLAQ2bTLNMcV+nQkhxhOcs1NWVoYff/wR27ZtQ1hYGNwqDYn44osvTFY5QsRCNZOrtm6i5ORkq3YT2VNirUIBOPL4VkpLA15+2fTHF/N1JoQYT3Cwc+LECXTo0AEAcO7cOY3ndDX/EmIPxLq+lL0k1n74ITBzpv4yHToAhw+btx5ivc6EEOMJDnbkcrk56kGITRDjcF1bT6w9fx5o2tRwuVu3gHr1zF8fQJzXmRBiPEE5O6tWrcKgQYMwYMAALDLUmU4IsQhbTaxlTJmXYyjQWbpUWdZSgQ4hxP7wDna+/fZbxMXF4dChQzh//jzGjh2LSZMmmbNuhBAebDGxdv58wMHAt09QkDLIGTbMIlUihNgx3sHO119/jWnTpuHs2bM4duwYfvrpJyxcuNCcdSOE8KRKrK1fv77GdqlUilWrVsHb2xsrVqxAenq6VUdlXbumbM155x395bKzgZwcy9SJEGL/eK+NVatWLZw+fRqhoaEAgPLyctSqVQuXL18WbS4AX7Q2FrEXlWdQvn37NsaPHy+KiQYDAoC8PP1lkpOBhASLVIcQYgdMvjZWaWmpxjBzBwcHODs748GDB9WrKSHEaNqWh1Al1qalpWHgwIFV5t9RTTS4Zs0aiwQ8P/4IjBihv4yjo3KmZBrQSQgxB94tOw4ODnj99ddRu3Zt9bZvvvkGr776Kjw9PdXbbHGeHWrZIbZI3/IQ0dHRVl/B+9YtwM/PcLnz54HGjc1SBUKInTN5y06XLl1w9uxZjW3PPPMMLl26pP43zbNDiGWolofQ1Wozffp0q0402K4dcPy4/jIffQQkJZn80IQQUgXvYCc9Pd2M1SCE8GVoeQiO49Sjswwx9USDaWlA//6GyykUhkdjEUKIqQieVJAQYl18loe4c+cOr32ZanBBURFQoTdbp+PHgTZtTHJIQgjhjX5bEWJj+LbGeHt7W2SiwV69DAc648Yp58yhQIcQYg0U7BBiY/i2xiT8O4bbXBMNbtumHD21dav+co8eAV99ZfRhCCGk2ijYIUQAhUKB9PR0q07Qx3d5iA8++EDnRIPVGXb+4IEyyOnZU3+5PXuUrTlOTkYdhhBCTIb30HN7RkPPtdM2h4uYlhywNH1DvS09QZ9qNBYAjURlVQBUMZgx5XUcNAhISdFf5pVXgBUrjNo9IYQIwvv+zYywa9cuNmjQINapUyd27do1xhhjP//8M8vIyDBmd1ZXWFjIALDCwkJrV0U0UlNTmVQqZQDUD6lUylJTU61dNatITU1lHMdpnA8AjOM4xnGcVc6Ltmskk8nMUpfMTMaU7TT6HyUlJj80IYToxPf+LbhlJzU1FYMHD8agQYPwyy+/4NSpU2jYsCG+/vprbNy4ERs3bjQmOLMqatnRpGsOF22tBjWBQqHgPUEfAIu2hpm79e3xY8DZ2XC5zZuVicqEEGJJZmvZadeuHfvpp58YY4y5u7uzixcvMsYYO3LkCPP39xe6O1Gglp3/lJWVVWktQKWWDJlMxsrKyqxdVYuRy+U6z0fFR1JSkl21hiUkGG7J6d7d2rUkhNRkfO/fgufZOXv2LLp06VJlu6enJwoKCoTujogMnzlczDnzrhjxHeo9bdq0KtsqrkMVHR1tEzlQ//zDb4h4QQG/uXUIIcTaBI/GCggIwIULF6ps3717Nxo2bChoX7t27cJLL72EoKAgcByHdevWaTw/bNgwcByn8ejdu7dGmTt37mDQoEHw8PCAl5cXRowYgXv37gl9W+RffG/spp55V8yqM/Ee+7cr8PXXX0dISAgiIyMRHx+PyMhIhIaGIi0tzVTVrLbycuUoK0OBzurVynYdCnQIIbZCcLAzatQoJCQkYP/+/eA4DtevX8fy5csxceJEjB49WtC+7t+/j7Zt2+Kbb77RWaZ37964ceOG+rGi0jCPQYMG4eTJk9i6dSs2bNiAXbt24fXXXxf6tsi/+N7YTTXzri0wNNTbEMYY8vPzkZOTo7Fd1eojhoAnKQkw1MjUqpUyyPl3EBghhNgOof1j5eXlbObMmczNzU09EsXV1ZVNnTrVuA63fwFga9eu1dg2dOhQFh0drfM1p06dYgDYwYMH1ds2bdrEOI5jOTk5vI9NOTv/UeXsaBt5hBqas8PYf6OxKp8XXeeJ78Pa5/PCBX6jrPLyrFI9QgjRi+/9W3DLDsdx+OCDD3Dnzh2cOHEC+/btw61bt/Dxxx8bHXDpk56eDj8/PzRr1gyjR49Gfn6++rnMzEx4eXnhySefVG/r0aMHHBwcsH//fp37LC0tRVFRkcaDKEkkEvUikuaaedcWxcTE6JygL6kaS3ezCjlQlsSYcpRV48b6yy1Zoizr52eZehFCiDkYPYOys7MzWrRogebNm2Pbtm04ffq0KesFQNmF9fPPP2P79u2YM2cOdu7cieeff149a21ubi78Kn0LOzo6wtvbG7m5uTr3O3v2bHh6eqofMpnM5HW3Zfpu7PY47JzvrMgxMTG4fPky5HI5UlJSIJfLkZWVhQ8++KBa3VyAZXOgvvpKueL448e6y/j5KYOcESMsVi1CCDEfoU1GAwYMYF999RVjjLGSkhLWtGlT5uTkxBwdHdmaNWuMaoZiTHs3VmUXL15kANi2bdsYY4zNmjWLNW3atEo5X19ftnDhQp37efjwISssLFQ/srOzqRtLi7KyMiaXy1lKSgqTy+V22XVlqskTdXVz8X3I5XLzvMEKcnL4dVlduWL2qhBCiEmYrRtr165d6pWS165di/LychQUFODLL7/EzJkzqxV4GdKwYUPUq1dPPRosICAAN2/e1ChTVlaGO3fuICAgQOd+XFxc4OHhofEgVUkkEnTr1g1xcXHo1q2b3XVdqSZPrDzU3pjEYX2tYT4+PhZZfVyf4GCgUtWq+OwzZbgTHGzWqhBCiMUJDnYKCwvh7e0NAPjrr7/Qv39/1K5dG3369MH58+dNXsGKrl27hvz8fPVIoPDwcBQUFODw4cPqMjt27EB5eTk6duxo1roQ26ZQKJCQkFBllmjgv+HiiYmJghb61NbNdfnyZXz//fd6X2fOHKidO5XDybOz9ZcrLwcmTjRLFYgJiWEhWkJsktAmoyZNmrBVq1axe/fuMV9fX7Z9+3bGGGPHjh1jPj4+gvZVXFzMjh49yo4ePcoAsC+++IIdPXqUXblyhRUXF7OJEyeyzMxMlpWVxbZt28Y6dOjAmjRpwh4+fKjeR+/evVn79u3Z/v372e7du1mTJk1YXFycoHrQaCzLEkP3GN9ZkU3VvTRp0iQmkUg09i2RSNikSZNMsv/KiooYc3c33GV15oxZDk/MgNarI6QqvvdvwcHON998wxwdHZmXlxdr27YtUygUjDHGvvzyS9atWzdB+9J1wxk6dCgrKSlhvXr1Yr6+vszJyYmFhISwUaNGsdzcXI195Ofns7i4OObu7s48PDzY8OHDWXFxsaB6ULBjOWL5wk5JSeEV7KSkpFT7WJZeRHTyZMNBzvvvm/SQJiWGYFhsxLgQLSFiYLZghzHGDh06xNLS0jSCig0bNrDdu3cbszuro2DHMsT0hW2plh1LrjV24AC/BGQxxw5iCYbFhNarI0Q3s616bo9o1XPzE7JyuCUSoVX1ycnJ0Zq3Y6r6pKenIzIy0mA5uVxu9FpjDx4ATZsCepY0AwBcugQ0aGDUISxClTBe+XqokrvtcdoDPizxGSLEVvG9fwteCBRQJgr//vvvuHr1Kh49eqTx3BdffGHMLomdE9sCo6rJE2NjY8FxnMYN1pSTJ5p7rbHZs4H339df5rvvALGvoGIoYZzjOCQmJiI6OtruRgUaQuvVEVJ9goOd7du3o2/fvmjYsCHOnDmDVq1a4fLly2CMoUOHDuaoI7EDYvzCVg0XT0hI0AjEpFIpkpOTTdKKYK61xk6cAFq31l8mLAzYtw9wNOonjWWJLRgWE1qvjpDqE/w1OGXKFEycOBFJSUmoU6cOUlNT4efnh0GDBlVZkZwQFbF+YcfExCA6OhoZGRm4ceMGAgMDERERYbLWA9Uiooa6y/jOs/P4MdChgzLY0efUKeCJJ4ypcfUoFAqjzqUYg2GxMPVniJAaSWgykLu7O7tw4QJjjDEvLy924sQJxphy6HlISIjQ3YkCJSibX01eYFTfIqJCErO/+cZw8vG8eWZ+M3pUJ7nY0lMB2BpTfYYIsTdmm0HZzc1NnacTGBiIixcvqp+7ffu24GCL1Aw1eYHR6q41duGCcmLAsWN1l2nUCHj4EJgwwRQ1Fq66s1GrWi+sPdO0WNW09eoIMTXBo7H69euHPn36YNSoUZg4cSLWr1+PYcOGIS0tDXXr1sW2bdvMVVezodFYlpOWllYlR0Ymk5ksR0bMhHbxKBRAt27A7t3693vkCNC+vWnrKoSpRtqpAiYAWhPG6aZufDchIfaK7/1bcLBz6dIl3Lt3D23atMH9+/cxYcIE7N27F02aNMEXX3yBkJCQalfe0ijYsQzVF3VOTg5u3boFX19f1K9f3+pf2GK8gfz8MzB0qP4yH30EJCVZpj76mHJodE0Ohgkhwplt6HnDhg3V/+/m5oZFixYZV0NiUmK8YVek7SYmlUqxYMECq9ZTX72scXO9dg2QyfSX8fEBrlwB3NyMO4apPyumTC42d8I4IaSGMiYh6O7du2zx4sVs8uTJLD8/nzHG2OHDh9m1a9eM2Z3V2XqCsthnnRXTzMlirVd5OWMvvWQ4Abm6k5Sb47NCycWEEGsx23IRx48fZ76+vqxx48bM0dGRXbx4kTHG2AcffMAGDx5sXG2tzJaDHTHdsLUR61T3YqpXWprhICchofrHMddnpSaPtCOEWJfZRmO98847GDZsGM6fPw9XV1f19hdeeAG7du0SujtSDYZmnQWAxMREKBQKS1dNTchkcZYkhnrdvKkcZaWvt8zBAbh7F/j8cwXS09OxYsUKpKenC76m5vys1OSRdoQQ2yA42Dl48CDeeOONKtvr16+P3Nxck1SK8COGG7YhYp0szpr1YgwYPBjw99dfbssW5YisHTvSEBoaisjISMTHxyMyMhKhoaEGh3NXZO7Piq6h0fXq1UNCQgK8vb2tGnQTQmo2wcGOi4sLioqKqmw/d+4cfH19TVIpwo9YA4mKxDpzsrXqtWWLsrXm1191lxk6FCgvB3r2rP78NSqW+KzExMTg8uXLkMvlSExMRL169XDr1i0kJycbFaARQoipCA52+vbtixkzZuDx48cAlM3UV69exXvvvYf+/fubvIJEN7EGEhWJdbI4S9fr7l1ll1VUlKGSfujbNw0cZ9quJ0t9ViQSCe7cuYMFCxZUmWRUaIBGCCEmIzQZqKCggPXo0YN5eXkxiUTCZDIZc3JyYl26dGH37t0TujtRsNUEZVtJDBXrVPeWqte4cYYTkIHoKtfMlKOcLPVZEVPiNyHE/pktQdnT0xNbt27Fhg0b8OWXX2LcuHHYuHEjdu7cCTdjJ/4gRrGVxFCxTnUfHR2N6dOno27dumap1+7dytacr7/WV2odAA7AegCauTOm7Hqy1GfFFvLICKlIoahe8j+xEaaIrO7evWuK3ViNrbbsqGibO0Umk1l92HllqtaKlJQUJpfLrfrrXts58/b2ZklJSdWuV3ExY15efFpz6utsAVGdI13PV3wImb/G3J+VlJQUXnWeOnUqte4QqxP7HGXEMLPNs/Ppp5+ylStXqv89YMAA5uDgwIKCgtixY8eE11QEbD3YYUxcgYTYmXNuoqlT+QQ5g3gFMObqejLnZ4VvgEY3FWJtYp+jjPBjtmAnNDSU7dmzhzHG2JYtW5iXlxfbvHkzGzFiBOvZs6dxtbUyewh2CD/myik5fNhwkNO1K2OlpcICGLHmO+liKECzhfdA7B/lltkPs+Xs5ObmQvbv4j0bNmzAwIED0atXL7z77rs4ePCg0N0RYlGmzil5+BBo0AAIC9Nf7sIFID0dcHYWljsj1nwnXfTlBlXGRDLxJal5KLes5hEc7NStWxfZ2dkAgL/++gs9evQAoPxw0BcWETOFQoHt27fzKssn6fezz4BatYDLl3WXWbhQ2a7TqNF/24QGMBXnr0lJSYFcLkdWVpboAh0VXe9PG7qpEGuwhTnKiGkJXvU8JiYG8fHxaNKkCfLz8/H8888DAI4ePYrGjRubvIKEmIK21c310TffzOnTQIsW+l/frh1w4ADg5KT9eaGre0skEnTr1o1X3S3B0Mrpqvc3ffp0zJw50+D+6KZCLMkW5igjpiU42Jk/fz5CQ0ORnZ2NuXPnwt3dHYDyy2rMmDEmryAh1aWahVjVbaIPx3GQSqVaJxN8/Bh4+mng2DH9+zhxAmjZ0nC9xBbA8KUtcJRKpViwYIFGa5NEIkH37t15BTt0UyGWpJpUNCcnR+v3gr7vAWKbOMbnDmDnioqK4OnpicLCQnh4eFi7OsSEFAoFQkNDebXoqHJMtHUlLVoEjB6t//Wffgq8957RVbUJugJHXedOdf4N3VSysrLMPh+UodYoY8sS26T6LAPQ+Gzq+x4g4sP7/s0n23n9+vXs0aNH6v/X97BFNBrLfgkZCq1tvpmLFw2PsgoJYezBA+u8P0sydgSLtUeUlZWVsaSkJObt7c1r6DvNvVJz2MocZUQ3kw495ziO5eXlqf9f18PBwaH6NbcCCnbslzGT3JWVlbHt2+WsRYtcg4HOwYNWfoMWVJ1JDq11U0lNTWU+Pj68h77T3Cs1D81RZtv43r955eyUl5dr/X9CxI5vLkj37t0hkUiQlpaGUaPkuHPnK73l338fmDXLFDW0HdUZwSI0IdsUDOVqMcbAcRwSExMRHR0NAHoXXq1Ylrq07Iet5s4RYQQnKBNiS4QkIi5evBGvvx4DQHc/vacncO0a8G9efo1S3REslryp6FsxviJWaeg737lX6OZIiG0RNM9OeXk5fvzxR7z44oto1aoVWrdujb59++Lnn3/mNdKFEEvjswDm/PnJ6N/fAa+//oLeffn5xSI/X1EjAx3gv8BR12SBHMdBJpOJYgSLoUnjKrtx4wbNvUKIHeMd7DDG0LdvX4wcORI5OTlo3bo1WrZsiStXrmDYsGF4+eWXzVlPQoymbxK/997bg9jYGKxfr2+2368BcLh5M7VGT35nqZXTTUFoQBIYGEhzrxBix3h3Yy1btgy7du3C9u3bERkZqfHcjh070K9fP/z8888YMmSIyStJSHVVzhmpXTsY/fo9i08/NfTKugAK1P+yp1/1xgyvVgWO2ubZSU5OFs1QXSEBScXWKJp7hRD7xHuenV69euG5557D5MmTtT7/ySefYOfOndi8ebNJK2gJNM+OcLY6DwljwGuvAcuWGSrZG0DVz7JcLreLfA2+EwPqus5iv/6G5vepKDU1Vf2eae4VQmyLSefZYYwxf39/dvToUZ3PHzlyhPn7+/PdnajQ0HNhbHUekm3bDM+ZA/xi96sg8x1ebavXWUXX/D6qh4+PD+95dmjuFULEyaTz7DDGmJOTE7t+/brO53NycpizszP/GooIBTv82eI8JAUFjDk6Gg50fvhhg1Unv7MEvhMDrl692uauszbaAhcfHx+WlJSkN3CluVcIsQ1879+8u7EkEglyc3Ph6+ur9fm8vDwEBQXZ5Mrn1I3Fj6GlFyw59T9f48cDycn6yyQmZiA6WoGIiAisX7++SveOTCYTVT5KdaSnp1fJudPG19cXt27d0vqcGK4zLf1ACAH43795JygzxjBs2DC4uLhofb60tFR4LYlNMTScl4loHpLMTOCZZ/SXcXXdhocPeyI5WRkQqXJWLl++bLc3R74J1roCHcD615lvvpEKTRpHCOEd7AwdOtRgGRqJZd+sOQ8J31/n9+8DoaHA7duG9hiChw+vamzJyclBbGysXSehmnLYdHWvszEtLrpmRa4J144QUg1m71CzAZSzw0911kaqDr6JstOmGc7L+fFHhVGLWdoLVc6OrqRdjuOYr6+v2a+zMcnPxi5ESgixXyZPULZnFOzww+dGaeqbDZ+E6KNHDQc5nTszVlZmvYBNTAytQv7bb7+Z9Tobm+RO144QUhnf+7eg5SJIzWbpGXT1rW/EGANjzvjf/9qjfXv9+zl3DsjIACQS63bFiYW+GaVV3UCjRo3SObEewO86KxQKpKenY8WKFUhPT4dCoTB4TQEgMTFR60AHunaEEGNRsEME4XOjNBX9CdGJAB6irKyBztd/9ZWyXadJk/+20ZIASjExMbh8+TLkcjlSUlIgl8uRlZUFAAgNDcW0adO0vo7vdU5LS0NoaCgiIyMRHx+PyMhIhIaGYtasWbyT3Cuja0cIMRbvoef2jIaeC2eJ4bwrVqxAfHx8pa1NAZzV+7qWLYEjRwBn56rPGZpZVwzDqq1FV/KvSlJSEj744AOjk4g5juO9YHBKSgri4uI0ttG1I4RUxvf+TS07xCiq4bxxcXHo1q2bWW4umr/QJQAOwFCg8/ffwIkT2gMdwLYWs7Qkfd1LgPLcLFmyRO/r09PTsXz5crzxxht6u6n40NY6Q9eOEGIsCnaIaEVEREAqlQIYAaAMwFM6y86apeyyat3a8H4t2RVnK4TMoVRZxS6rV199FbcNj/vXieM4jYU5K6NrRwgxBu95dgixtOxsCa5dy9Zbxtv7Aa5dq4VatYTtu/Iq6PY2eaBQxib/Gur60qdytxbf1hm6doQQoSjYMTOaql648nIgKgrYtk1/uU8/leO99wwvfaCLLc2sa+7PkTHJv4a6vvRJSkrC4sWLq8yCzHdZDlu6doQQETDDsHebY655dmx91WhrWLnS8Jw5r7xypUZNHGeJz5ExcyjxnfdG135osU1CSHXRpIICmCPYscXVwa3p+nXDQY6bG2NFRdauqWVZ8nNkaLLBysdKSUkRHOjQZ58QYko0qaAVVWfitJqGMWDAACAoSH85uRy4dw+oU8f0ddA2+Z0pypqiXpb8HAlN/hU6nw0lERNCrMYCgZfombplx9hp7Wtas/4ffxhuzXn9dfPWQUgXkaW7Ja21PALfzyHfdbZ+/fXXGvF5JoRYHnVjCWDqYIdv835KSor6NTUpv+f2bcNBDsBYfr556yGki8ga3ZLGfI4sTWjXFyGEmJJNdGPt2rULL730EoKCgsBxHNatW6fxPGMMH330EQIDA1GrVi306NED58+f1yhz584dDBo0CB4eHvDy8sKIESNw7949C76LqoSObFEN3608z0lOTg5iY2ORlpZm8jpay+uvA/Xq6S/z55/KcMfb23z1ENJFZK1uSVtYHoHmvSGE2ATzx126bdy4kX3wwQcsLS2NAWBr167VeP7TTz9lnp6ebN26dez48eOsb9++rEGDBuzBgwfqMr1792Zt27Zl+/btYxkZGaxx48YsLi5OUD1M3bIjZGSLqqy2cpXL2rIdO/iMsmKsvNwy9RHSRWTN7iRLrzJfnbrWpC5YQog42Fw3VuVgp7y8nAUEBLDPPvtMva2goIC5uLiwFStWMMYYO3XqFAPADh48qC6zadMmxnEcy8nJ4X1sc47GMtS8b60bqaUUFjLm6mo40Ll+3bL1EtJFZM3uJOomIoQQ3WyiG0ufrKws5ObmokePHuptnp6e6NixIzIzMwEAmZmZ8PLywpNPPqku06NHDzg4OGD//v06911aWoqioiKNh6nxbd43duZaWzBpEuDpCTx8qLvMqlXKcMfSPTFCuojM3Z2kb4SXrs9R3bp1MX36dERHRxt1TEIIqUlEG+zk5uYCAPz9/TW2+/v7q5/Lzc2Fn5+fxvOOjo7w9vZWl9Fm9uzZ8PT0VD9kMpmJa68UExODy5cvQy6XIyUlBXK5HFlZWRp5DGLOyzB2mPX+/QDHAfPm6S7TuzegUAADB5qosgKp1t2qvKCkSsU1moSUFariulLx8fGIjIxEaGioRp6W6nOUlJQE738Tme7cuYNp06ZVKUsIIUQLC7U0GYRK3Vh79uxhANj1Sv0bAwYMYAMHDmSMMTZr1izWtGnTKvvy9fVlCxcu1Hmshw8fssLCQvUjOzvb5N1YfIk1L8OY0WH37zMWEGC4y+ryZQu+ET2EdBGZoztJ7KPBCCFE7Gy+GysgIAAAkJeXp7E9Ly9P/VxAQABu3ryp8XxZWRnu3LmjLqONi4sLPDw8NB7WIpFIsGDBAgCo0nLAd2FEUzNmdNisWYCbG6CnQQ1LlijDnZAQU9fYOEJGEpl61JEtjAYjhBC7YYHAixfoSFCeN2+eelthYaHWBOVDhw6py2zevFkUCcpCR6doa0mRyWQW/8UudHTY8eOGW3I6dmTs8WOLvg1BdF0rbdtNNerIFkaDEUKI2PG9f1t11fN79+7hwoUL6n9nZWXh2LFj8Pb2RnBwMBITEzFz5kw0adIEDRo0wIcffoigoCD069cPAPDEE0+gd+/eGDVqFBYtWoTHjx9j3LhxeOWVVxBkaP0BM0pLS0NCQkKVFZ0XLFigswUgJiYG0dHRVl8hPSMjo0qLTkWMMWRnZ2PHjt14++2uOHNG//7OnAGaNTNxJU1M2wraxlxDIcyRmG6LSeyEEGIRlom9tNP1i3Xo0KGMMWXrzocffsj8/f2Zi4sL6969Ozt79qzGPvLz81lcXBxzd3dnHh4ebPjw4ay4uFhQPUzZsmPruRX8hlmPM9iaM3++td+J8SxxDallhxBCqo/v/ZtjTEsiQA1TVFQET09PFBYWVit/R6FQIDQ0VGfLCMdxkEqlyMrKsniLDV/p6emIjIzU8WxjAOd1PKfUrBnw99+As7PJq2YRlrqGquPk5ORozcWpeBwAvMuK9XNFCCHmwPf+LdoEZVvEtwsoIyPDgrUSRvswawmAvTAU6Bw7puy2Emugw2covaWuoZDEdDEmsRPbZ+zUEoTYIgp2TMgeJgisemMdCqAMQLjO1yQlKTuv2ra1SBU18P3C5jOfDWDZa2jN0WBiRjdh8+P790CI3TB7h5oNMFXOjj3lVixatNFgXo6/v3JuHWvhOxeQkBwcc1xDQyO4hIzwsvc1qIyZ34kIY+t5hYRUZHNrY1mTqYIdsU4QKIRCwdjzzxseTp6Zad168v3CFjqU3tTXkG7e/NFN2PxqysLDpOagYEcAc4zGssWFG1evNhzkjB9v7VoK+8I2pqXGVNeQbt780U3YMuyp9ZkQxuxgBmVbZYu5FXl5yrWsBgzQXcbZGSgoAL74wvz1MZSzISSJ2JgcHFNcQ5r1WBh7SO63BfaQV0iIMaw6qaC9EssEgYYwBgwaBKxYob/c9u3Ac8/x26dCoajW++YzmZ+QL2xjF1qt7jUUcvOuPKFhTUQ3YcsQ88LDhJgTBTtmom1WXjHZtAl44QX9ZUaOBBYv5r/P6s46rFqTq3JriGpNLlWripAvbNVQekNz1Ghbsbw615Bu3sLQTdgyqvP3QIhNM3N3mk0wx9pYYpWfbzgvB2Ds1i1h+61ufoqQnA2hScTWyKOi3Ahh7CG531bYcl4hIZVRgrIANSXYefNNw0HO+vXC92uK5FKhwYHQL2xLL7RKN2/h6CZsOWJZeJiQ6qJgRwB7D3Z27jQc5PTvz1h5ufbXG5rbxdhWjIr7nTp1Kq99pKSkqF8v9Avb0nPUpKam6n0v1bmx2Ot8O3QTthx7/QyRmsUmVj0n5lVcDAQFAffu6S+Xk6Msp42pE4b17ZePijkbQpOIxZ5HxZe5V2S3JltJ7rcH9vL3QAgvFgq+RM0eW3amTDHcmlOhkUQrvnk4xnZB8XlNxWPaUrePueaNobl7CCHkP7TquQCmWvVcDA4eBJ5+Wn+Z7t2BLVsABz2zLAlZ/Rvgvyq3qqyQFh3VYpdinadIG/2rx/9HLpfz/nVtqRXZCSHEVtCq5zXMgweATGY40Ll0Cdi2TX+gAwibJ0bIqtyG9quNmCdk1MVUQ88rTrD41Vdf0cR7hBBiBMrZsQNz5gCTJ+sv8913wOuv89ufQqHA9u3beZVV3axVsw5ryyVJTk4WnN8zdepUtGjRwmZzNkwxb4yxeU00dw8hhGiiYMeGnTwJtGqlv0xYGLBvH+DI80oLvcEKTRjmGwR0797dppMnqzt5m64JFvmgifcIIUQT5ezA9nJ2Hj8GOnQATpzQX+7UKeCJJ/jvV8gN1tj8EFXeCZ/8Hn37re6yFJagOp8ANN6roRwkQ7k5ulDODiGkpqGcHTu1cKFyUU59gc68ecrxVkICHX0LV1ZWOQ9HCCH5PbqkpaUhNDQUkZGRiI+PR2RkJEJDQ5GWliaoLuZm7IKixuQ1VeeaEEKI3TPfgDDbYQtDzy9cMDyUvFEjxh4+NG7/fIePw0STvBk7eZwtDr0WOnlbSkqKoGH5promhBBia2jouQBi7sZSKIDISMDQAJsjR4D27Y0/zvLly/Hqq68aLPf+++9jxowZJmk9qNwV9cwzz2Dv3r06u6aEDocXezeXLnyHrc+fPx/+/v429/4IIcRU+N6/KUFZxH75BRgyRH+Zjz4CkpKqf6xbt27xKufr62uym2rFGVzT0tLQqFEjvbMC8x0OP2vWLCxevNhmZxjmm9z81ltvUYBDCCE8UM6OCF27BnCc/kDH21u5DIQpAh1AGcSYspwQqkTeyoFMTk4OYmNj1bk4fIdUT5s2zeC+xMwUeU2EEEL+Q8GOiDAG9O2rnBxQn927gfx8wM3NdMeunERb3XJ86UuMVm1LTEyEQqGo1pDqyvsSO2OTmwkhhFRFOTsQR87O2rWAoftX795n8d57N8ySn8FnuLNMJtM5rNnYoeBCllWIiIjQO2ydr23btqF79+5Gv96SbGGIPSGEWAsNPbcRN28qu6z0BzoKAF7466/mZhtmreo6qdxtosJxnM6uk+oMBReyrAKf7h0+BgwYYPburIrLPKSnp0OhUODRo0dITk7GW2+9heTkZDx69MjgflR5TXFxcejWrRsFOoQQYgyzjgmzEdYYel5eztjgwYaHkwM9LTrMWuiQ8OoOBRe6Yrq+OiYlJQkarm2uodra6ufu7s4cHBw0tkkkEjZp0iSz1IFYltDpBQghpsH3/k3BDrN8sLN5s+EgZ8gQBatfX6rzRs1xHJPJZGb5UuX7xV1WVlblpi60jqp9aAuY9O1DWx0N7avyw8fHx+TnT1fwp+9BAY9t0xbcSqVSmveIEAvge/+mbiwLKihQdllFRekvd/MmMHz4LuTkWGeFa75dJ0JWRtd3LFONPKq4Lz7y8/ORnp7Ou3xF2rqphMxCXdEXX3zBq0uLiA/fkYSEEOuiYMdCEhKAunX1l1m7Vtmu4+srLJfFWkxVR6Ejj/TlCKn2VadOHV51MybY0XX8WbNmCV7mAVAGTgsXLhT8OmJdQkYSEkKsiyYVNLPduwEdC1urRUcrA52KDRt8h1lbc4VrU9aRz4rpgO7FSlW/pFXB0eHDh/HJJ5/wfzM86Tv+tGnTjN7vxYsXq1s10bH3kWRCWjZVk2cSQqzEzN1pNsEcOTsKBWNSqeHcnOxs7a83NpfFkixdRyE5Qtu2beOVL7Nt2zaTHb86j/nz55vkHIlFTchj4buGWUpKirWrSojdopwdK5s1SzkTsi6//KIMd6RS7c/bwiy6lq6j0F/SPj4+evfn4+Mj6Be3MauR8yGRSDBmzBiT79daakoeiy20vhJClCjYMZM//tC+vWtXoKwM4LHmpihn0a2cmBsdHW2xOgqdk+f777/XW27RokWCAjEh+VFC5v1555134OzszLu8mNWkPBbVGmb65qaSyWSIMNSPTQgxOwp2zKRLl6rbLlwA0tMBIQ0dMTExuHz5MuRyOVJSUiCXy5GVlWWVQEdXYi4AdR1//fVXzJ8/H7Nnz4a3t7dJb2pCf0nHxMQgNTUVUh3NZ+PHjxfUysD3+ElJSbyX1Zg4cSLmzp3Luw5iZ4oRerbCFlpfCSH/skCXmuiZI2enpISxb79l7IMPGEtLM9lurYbP5IHa8jS8vb1ZUlKSeh6c6ky8ZmyO0G+//aazvJDJGYUcn2/OUMXJEu1BTcxjEToRJyHEdGhSQQGsMYOyLeGTGOzj46N3Mj13d3fm4+NT7YRVVdBV+Vi6AhdTTHxozPFr4k2fMeNmxLYHNIMyIdZBwY4AFOzox/cGJvRh7LIXQn5Jm+Pmy+f4NfmmL/ZRhIQQ+8H3/k3z7BCDzDVxIWMMHMchMTER0dHRvHMb+M7JA5hnckY+x1clr+paoZ3jOEilUrtLXlXlscTGxoLjOI33TnkshBBroWCHGGTOobPMyInXVEtaGGKu4cGGjm/tm741J/RTjSJMSEjQSFaWSqVITk62SnI9IaRm45i2n501TFFRETw9PVFYWAgPDw9rV0d0FAoFQkNDdbZSmEJKSgri4uJMvl9DdVe1sGRlZZklGEhLS6ty05fJZGa96Ws7plQqxYIFCywaaNj7DMqEEOvje/+mYAcU7PChmigOQJVWCsYYfHx8kJ+fb/T+5XK52abU11d3AGafs8iSN31dy1lY6r0SQoglUbAjAAU7/OhrpQCg9SZriLlbVlSs0cJiaapWLF3z3FjqXBNCiKVQsCOAPQc7pm5V0Le/tLQ0vP7667xbeCzd2mDv3Srp6emIjIw0WM6crWiEEGJJfO/flKBsx8yRu6EvMVc1SmnWrFlYsGAB7ty5o35OtU5VxUDI0gmrfJOabZU5Rp4RQog9oJYd2GfLjrVzN7S1ogCw65YVa6OWHSIm9t6SSsSBurEEsLdgh3I3aiZrjzwjREUsIwKJ/eN7/6aFQO1QTVqMkfyHFqYkYqBqVa78HZSTk4PY2FhBi+8SYioU7NghS+RuKBQKpKenY8WKFUhPTzfp6uakKr7nWzWhX+VV16VSKQ07J2anUCiQkJCgtWVRtS0xMZG+L4jFUYKyHTLXrMEq9tpELdYcA6HnW8hyGoSYkpBWZcobIxZlstW4bJhYFwI1diVlcy7GqFr1W9s+jVnUUyy0Le5pzKrs5qiXPZ5vYp9SUlJ4LYCbkpJi7aoSO8H3/k3dWCKVlpaG0NBQREZGIj4+HpGRkQgNDeXV322u3A17baIWa46BvZ5vYr/M3apMiNEsEHgZbdq0aVV+ETRr1kz9/IMHD9iYMWOYt7c3c3NzYzExMSw3N1fwccTWsmOqX/PaWitkMpnRrQFyuZzXrza5XG7U/q1B1Qqm671UpxWsuuzxfBP7Zs5WZUK0sZuWnZYtW+LGjRvqx+7du9XPjR8/Hn/88QdWr16NnTt34vr16zadMwKY9td8TEwMLl++DLlcjpSUFMjlcmRlZRl9juxx0jprjFzjm2xsj+eb2DcaEUjESvQJyo6OjggICKiyvbCwED/88ANSUlLw3HPPAQCWLl2KJ554Avv27UOnTp0sXVWTMHWCn75Zg4Um5NpjE7WlAwohycb2eL6J/VONCNT2ObenteiIbRF9y8758+cRFBSEhg0bYtCgQbh69SoA4PDhw3j8+DF69OihLtu8eXMEBwcjMzPTWtWtNkvdfI3JCYqIiIBUKq3yi02F4zjIZDL1bMnmZKqh75YMKITmBonpfBMihKlblQmpNgt0qRlt48aN7LfffmPHjx9nf/31FwsPD2fBwcGsqKiILV++nDk7O1d5zVNPPcXeffddvft9+PAhKywsVD+ys7NFk7NjiTyN6uQEqV5b+fWWHB1kypFTlsoxMDY3SAznmxBCxIpvzo6og53K7t69yzw8PNiSJUuqFexoS3wWS7Bj7puvKRJyTZ34LIQ5hmJbIqCoThBrzfNNCCFiZjcJyhV5eXmhadOmuHDhAgICAvDo0SMUFBRolMnLy9Oa41PRlClTUFhYqH5kZ2ebsdbCmDvBzxQJudZqojbXUGxLzDpcne5J6hIghJDqEX2CckX37t3DxYsXMXjwYISFhcHJyQnbt29H//79AQBnz57F1atXER4ernc/Li4ucHFxsUSVjWLOBD9T5QTpS3w2F3POzmruWYermxtkjfNNCCH2QtTBzsSJE/HSSy8hJCQE169fx7Rp0yCRSBAXFwdPT0+MGDEC77zzDry9veHh4YG33noL4eHhNjsSqyJz3XxteYSPuZO3zRlQqJKNDa1ITsnGhBBieqIOdq5du4a4uDjk5+fD19cXnTt3xr59++Dr6wsAmD9/PhwcHNC/f3+UlpYiKioKCxcutHKtTcccN19bvunacqCm6p6MjY0Fx3Ea557mHyGEEPPimLY7Xg1TVFQET09PFBYWwsPDw9rVMTvVEGgAWm+6Yl0dW6FQIDQ01GCglpWVpRE0iGmBT23z7MhkMpp/hBBCjMD3/m1TCcrENCyRkGsOxiRvV2eNMXOgZGNCCLE8atlBzWvZURFTi4cQfFtHVC1YlT/iYm/BIoQQwg/f+zcFO6i5wY6lmTK4MrQvVZeXrtFburq8CCGE2A6+929RJygT+yFkTSg+DCVvm3OYOiGEENtCOTvE7ISuCWUKtGI4IYQQFQp2iCBCF+A016zHhtjyMHVCCCGmRcEO4c2YkU2mWJ7CGLRiOCGEEBUKdggvxnZFWas7ydxrjBFCCLEdFOwQg6rTFWXN7iRbnU+IEEKIadHQc9DQc0PS09MRGRlpsJxcLq8yssnYWY9NyVbnEyKEEKIfDT0nJlOdrigxrAlFK4YTQkjNRt1YxKDqdkVRdxIhhBBrom4sUDeWIabqiqLuJEIIIaZE3VjEZEzVFUXdSYQQQqyBurEIL9QVRQghxFZRNxaoG0sI6ooihBAiFtSNRcyCuqIIIYTYGurGIoQQQohdo2CHEEIIIXaNgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdoxmUAfXClkVFRVauCSGEEEL4Ut23Da18RcEOgOLiYgCATCazck0IIYQQIlRxcTE8PT11Pk8LgQIoLy/H9evXUadOHRQXF0MmkyE7O5sWBbWyoqIiuhYiQddCPOhaiAddC+tjjKG4uBhBQUFwcNCdmUMtOwAcHBwglUoBABzHAQA8PDzowysSdC3Eg66FeNC1EA+6Ftalr0VHhRKUCSGEEGLXKNghhBBCiF2jYKcSFxcXTJs2DS4uLtauSo1H10I86FqIB10L8aBrYTsoQZkQQgghdo1adgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2LUaF+zcuXMHgwYNgoeHB7y8vDBixAjcu3dP72u+//57dOvWDR4eHuA4DgUFBSbZb01nzDl7+PAhxo4dCx8fH7i7u6N///7Iy8vTKMNxXJXHypUrzflWbNI333yD0NBQuLq6omPHjjhw4IDe8qtXr0bz5s3h6uqK1q1bY+PGjRrPM8bw0UcfITAwELVq1UKPHj1w/vx5c74Fu2HqazFs2LAqfwO9e/c251uwG0KuxcmTJ9G/f3+EhoaC4zgkJydXe5/ETFgN07t3b9a2bVu2b98+lpGRwRo3bszi4uL0vmb+/Pls9uzZbPbs2QwAu3v3rkn2W9MZc87efPNNJpPJ2Pbt29mhQ4dYp06d2DPPPKNRBgBbunQpu3Hjhvrx4MEDc74Vm7Ny5Urm7OzMfvzxR3by5Ek2atQo5uXlxfLy8rSW37NnD5NIJGzu3Lns1KlTbOrUqczJyYn9888/6jKffvop8/T0ZOvWrWPHjx9nffv2ZQ0aNKBzb4A5rsXQoUNZ7969Nf4G7ty5Y6m3ZLOEXosDBw6wiRMnshUrVrCAgAA2f/78au+TmEeNCnZOnTrFALCDBw+qt23atIlxHMdycnIMvl4ul2sNdqq735rImHNWUFDAnJyc2OrVq9XbTp8+zQCwzMxM9TYAbO3atWaruz14+umn2dixY9X/VigULCgoiM2ePVtr+YEDB7I+ffpobOvYsSN74403GGOMlZeXs4CAAPbZZ5+pny8oKGAuLi5sxYoVZngH9sPU14IxZbATHR1tlvraM6HXoqKQkBCtwU519klMp0Z1Y2VmZsLLywtPPvmkeluPHj3g4OCA/fv3i26/9syYc3b48GE8fvwYPXr0UG9r3rw5goODkZmZqVF27NixqFevHp5++mn8+OOPYDSdlNqjR49w+PBhjfPo4OCAHj16VDmPKpmZmRrlASAqKkpdPisrC7m5uRplPD090bFjR537JOa5Firp6enw8/NDs2bNMHr0aOTn55v+DdgRY66FNfZJjFOjFgLNzc2Fn5+fxjZHR0d4e3sjNzdXdPu1Z8acs9zcXDg7O8PLy0tju7+/v8ZrZsyYgeeeew61a9fGli1bMGbMGNy7dw9vv/22yd+HLbp9+zYUCgX8/f01tvv7++PMmTNaX5Obm6u1vOq8q/6rrwypyhzXAgB69+6NmJgYNGjQABcvXsT777+P559/HpmZmZBIJKZ/I3bAmGthjX0S49hFsDN58mTMmTNHb5nTp09bqDY1mxiuxYcffqj+//bt2+P+/fv47LPPKNghNcYrr7yi/v/WrVujTZs2aNSoEdLT09G9e3cr1owQ67CLYGfChAkYNmyY3jINGzZEQEAAbt68qbG9rKwMd+7cQUBAgNHHN9d+bZE5r0VAQAAePXqEgoICjdadvLw8vee5Y8eO+Pjjj1FaWkpr2ACoV68eJBJJlVFs+s5jQECA3vKq/+bl5SEwMFCjTLt27UxYe/tijmuhTcOGDVGvXj1cuHCBgh0djLkW1tgnMY5d5Oz4+vqiefPmeh/Ozs4IDw9HQUEBDh8+rH7tjh07UF5ejo4dOxp9fHPt1xaZ81qEhYXByckJ27dvV287e/Ysrl69ivDwcJ11OnbsGOrWrUuBzr+cnZ0RFhamcR7Ly8uxfft2necxPDxcozwAbN26VV2+QYMGCAgI0ChTVFSE/fv36702NZ05roU2165dQ35+vkYgSjQZcy2ssU9iJGtnSFta7969Wfv27dn+/fvZ7t27WZMmTTSGO1+7do01a9aM7d+/X73txo0b7OjRo2zx4sUMANu1axc7evQoy8/P571fUpUx1+LNN99kwcHBbMeOHezQoUMsPDychYeHq5///fff2eLFi9k///zDzp8/zxYuXMhq167NPvroI4u+N7FbuXIlc3FxYcuWLWOnTp1ir7/+OvPy8mK5ubmMMcYGDx7MJk+erC6/Z88e5ujoyObNm8dOnz7Npk2bpnXouZeXF1u/fj37+++/WXR0NA0958HU16K4uJhNnDiRZWZmsqysLLZt2zbWoUMH1qRJE/bw4UOrvEdbIfRalJaWsqNHj7KjR4+ywMBANnHiRHb06FF2/vx53vskllHjgp38/HwWFxfH3N3dmYeHBxs+fDgrLi5WP5+VlcUAMLlcrt42bdo0BqDKY+nSpbz3S6oy5lo8ePCAjRkzhtWtW5fVrl2bvfzyy+zGjRvq5zdt2sTatWvH3N3dmZubG2vbti1btGgRUygUlnxrNuGrr75iwcHBzNnZmT399NNs37596ue6du3Khg4dqlH+t99+Y02bNmXOzs6sZcuW7M8//9R4vry8nH344YfM39+fubi4sO7du7OzZ89a4q3YPFNei5KSEtarVy/m6+vLnJycWEhICBs1ahTdXHkSci1U31GVH127duW9T2IZHGM0JpcQQggh9ssucnYIIYQQQnShYIcQQgghdo2CHUIIIYTYNQp2CCGEEGLXKNghhBBCiF2jYIcQQgghdo2CHUIIIYTYNQp2CCGi161bNyQmJlZrH8uWLdNYU40QUnNQsEMIqZZbt25h9OjRCA4OhouLCwICAhAVFYU9e/ZYu2qCcRynfjg6OiI4OBjvvPMOSktL1WWWLVsGjuPwxBNPVHn96tWrwXEcQkNDNcpTkEWIddnFqueEEOvp378/Hj16hJ9++gkNGzZEXl4etm/fjvz8fGtXzShLly5F79698fjxYxw/fhzDhw+Hm5sbPv74Y3UZNzc33Lx5E5mZmRoLOv7www8IDg62RrUJIXpQyw4hxGgFBQXIyMjAnDlzEBkZiZCQEDz99NOYMmUK+vbtq1HujTfegL+/P1xdXdGqVSts2LABAJCfn4+4uDjUr18ftWvXRuvWrbFixQq9xy0tLcXEiRNRv359uLm5oWPHjkhPT9cos2zZMgQHB6N27dp4+eWXeQdfXl5eCAgIgEwmw4svvojo6GgcOXJEo4yjoyPi4+Px448/qrddu3YN6enpiI+P17v/48ePIzIyEnXq1IGHhwfCwsJw6NAhXnUjhBiHgh1CiNHc3d3h7u6OdevWaXT1VFReXo7nn38ee/bswa+//opTp07h008/hUQiAQA8fPgQYWFh+PPPP3HixAm8/vrrGDx4MA4cOKDzuOPGjUNmZiZWrlyJv//+GwMGDEDv3r1x/vx5AMD+/fsxYsQIjBs3DseOHUNkZCRmzpwp+P2dO3cOO3bsQMeOHas899prr+G3335DSUkJAGVw1bt3b/j7++vd56BBgyCVSnHw4EEcPnwYkydPhpOTk+C6EUIEsPZKpIQQ27ZmzRpWt25d5urqyp555hk2ZcoUdvz4cfXzmzdvZg4ODoJWQO/Tpw+bMGGC+t9du3ZlCQkJjDHGrly5wiQSCcvJydF4Tffu3dmUKVMYY4zFxcWxF154QeP5//3vf8zT01PvcQEwV1dX5ubmxlxcXBgA9uKLL7JHjx6pyyxdulS9n3bt2rGffvqJlZeXs0aNGrH169ez+fPns5CQEK3lGWOsTp06bNmyZTzPBCHEFKhlhxBSLf3798f169fx+++/o3fv3khPT0eHDh2wbNkyAMCxY8cglUrRtGlTra9XKBT4+OOP0bp1a3h7e8Pd3R2bN2/G1atXtZb/559/oFAo0LRpU3XLkru7O3bu3ImLFy8CAE6fPl2lNaZibo0+8+fPx7Fjx3D8+HFs2LAB586dw+DBg7WWfe2117B06VLs3LkT9+/fxwsvvGBw/++88w5GjhyJHj164NNPP1XXmRBiPhTsEEKqzdXVFT179sSHH36IvXv3YtiwYZg2bRoAoFatWnpf+9lnn2HBggV47733IJfLcezYMURFReHRo0day9+7dw8SiQSHDx/GsWPH1I/Tp09jwYIF1X4vAQEBaNy4MZo1a4Y+ffogKSkJq1atwoULF6qUHTRoEPbt24fp06dj8ODBcHQ0POZj+vTpOHnyJPr06YMdO3agRYsWWLt2bbXrTQjRjYIdQojJtWjRAvfv3wcAtGnTBteuXcO5c+e0lt2zZw+io6Px6quvom3btmjYsKHOsgDQvn17KBQK3Lx5E40bN9Z4BAQEAACeeOIJ7N+/X+N1+/btM+q9qHKLHjx4UOU5b29v9O3bFzt37sRrr73Ge59NmzbF+PHjsWXLFsTExGDp0qVG1Y0Qwg8FO4QQo+Xn5+O5557Dr7/+ir///htZWVlYvXo15s6di+joaABA165d0aVLF/Tv3x9bt25FVlYWNm3ahL/++gsA0KRJE2zduhV79+7F6dOn8cYbbyAvL0/nMZs2bYpBgwZhyJAhSEtLQ1ZWFg4cOIDZs2fjzz//BAC8/fbb+OuvvzBv3jycP38eX3/9tfp4hhQUFCA3NxfXr1/Hzp07MWPGDDRt2lTrvDqAMjH59u3baN68ucF9P3jwAOPGjUN6ejquXLmCPXv24ODBgzr3TQgxDQp2CCFGc3d3R8eOHTF//nx06dIFrVq1wocffohRo0bh66+/VpdLTU3FU089hbi4OLRo0QLvvvsuFAoFAGDq1Kno0KEDoqKi0K1bNwQEBKBfv356j7t06VIMGTIEEyZMQLNmzdCvXz8cPHhQPcdNp06dsHjxYixYsABt27bFli1bMHXqVF7vafjw4QgMDIRUKkVcXBxatmyJTZs26eyiqlWrFnx8fHjtWyKRID8/H0OGDEHTpk0xcOBAPP/880hKSuL1ekKIcTjGGLN2JQghhBBCzIVadgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2DUKdgghhBBi1yjYIYQQQohdo2CHEEIIIXaNgh1CCCGE2LX/A+2/FWupSzeQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create a scatter plot\n", + "plt.scatter(X_test, y_test, color='black')\n", + "\n", + "# Plot the predictions\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "\n", + "# Add labels and a title\n", + "plt.xlabel('Scaled BMIs')\n", + "plt.ylabel('Disease Progression')\n", + "plt.title('A Graph Plot Showing Diabetes Progression Against BMI')\n", + "\n", + "# Display plot\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}