diff --git a/translated_images/zh-TW/flat-nonflat.d1c8c6e2a96110c1.webp b/translated_images/zh-TW/flat-nonflat.d1c8c6e2a96110c1.webp
new file mode 100644
index 000000000..6eb5914ae
Binary files /dev/null and b/translated_images/zh-TW/flat-nonflat.d1c8c6e2a96110c1.webp differ
diff --git a/translated_images/zh-TW/full-data-predict.4f0fed16a131c8f3.webp b/translated_images/zh-TW/full-data-predict.4f0fed16a131c8f3.webp
new file mode 100644
index 000000000..c47e3901c
Binary files /dev/null and b/translated_images/zh-TW/full-data-predict.4f0fed16a131c8f3.webp differ
diff --git a/translated_images/zh-TW/full-data.a82ec9957e580e97.webp b/translated_images/zh-TW/full-data.a82ec9957e580e97.webp
new file mode 100644
index 000000000..4332bdaee
Binary files /dev/null and b/translated_images/zh-TW/full-data.a82ec9957e580e97.webp differ
diff --git a/translated_images/zh-TW/gender-bias-translate-en-tr.bfd87c45da23c085.webp b/translated_images/zh-TW/gender-bias-translate-en-tr.bfd87c45da23c085.webp
new file mode 100644
index 000000000..d934f665b
Binary files /dev/null and b/translated_images/zh-TW/gender-bias-translate-en-tr.bfd87c45da23c085.webp differ
diff --git a/translated_images/zh-TW/gender-bias-translate-en-tr.f185fd8822c2d437.webp b/translated_images/zh-TW/gender-bias-translate-en-tr.f185fd8822c2d437.webp
new file mode 100644
index 000000000..d934f665b
Binary files /dev/null and b/translated_images/zh-TW/gender-bias-translate-en-tr.f185fd8822c2d437.webp differ
diff --git a/translated_images/zh-TW/gender-bias-translate-tr-en.1f97568ba9e40e20.webp b/translated_images/zh-TW/gender-bias-translate-tr-en.1f97568ba9e40e20.webp
new file mode 100644
index 000000000..a1a13a219
Binary files /dev/null and b/translated_images/zh-TW/gender-bias-translate-tr-en.1f97568ba9e40e20.webp differ
diff --git a/translated_images/zh-TW/gender-bias-translate-tr-en.4eee7e3cecb8c70e.webp b/translated_images/zh-TW/gender-bias-translate-tr-en.4eee7e3cecb8c70e.webp
new file mode 100644
index 000000000..a1a13a219
Binary files /dev/null and b/translated_images/zh-TW/gender-bias-translate-tr-en.4eee7e3cecb8c70e.webp differ
diff --git a/translated_images/zh-TW/globe.59f26379ceb40428.webp b/translated_images/zh-TW/globe.59f26379ceb40428.webp
new file mode 100644
index 000000000..c14c59c3e
Binary files /dev/null and b/translated_images/zh-TW/globe.59f26379ceb40428.webp differ
diff --git a/translated_images/zh-TW/grid.464370ad00f3696c.webp b/translated_images/zh-TW/grid.464370ad00f3696c.webp
new file mode 100644
index 000000000..90239872a
Binary files /dev/null and b/translated_images/zh-TW/grid.464370ad00f3696c.webp differ
diff --git a/translated_images/zh-TW/heatmap.39952045da50b4eb.webp b/translated_images/zh-TW/heatmap.39952045da50b4eb.webp
new file mode 100644
index 000000000..c7c8c4064
Binary files /dev/null and b/translated_images/zh-TW/heatmap.39952045da50b4eb.webp differ
diff --git a/translated_images/zh-TW/hierarchical.bf59403aa43c8c47.webp b/translated_images/zh-TW/hierarchical.bf59403aa43c8c47.webp
new file mode 100644
index 000000000..c5cc5ba90
Binary files /dev/null and b/translated_images/zh-TW/hierarchical.bf59403aa43c8c47.webp differ
diff --git a/translated_images/zh-TW/human.e3840390a2ab7690.webp b/translated_images/zh-TW/human.e3840390a2ab7690.webp
new file mode 100644
index 000000000..35faa2269
Binary files /dev/null and b/translated_images/zh-TW/human.e3840390a2ab7690.webp differ
diff --git a/translated_images/zh-TW/hype.07183d711a17aafe.webp b/translated_images/zh-TW/hype.07183d711a17aafe.webp
new file mode 100644
index 000000000..87a9bf6a2
Binary files /dev/null and b/translated_images/zh-TW/hype.07183d711a17aafe.webp differ
diff --git a/translated_images/zh-TW/indian.2c4292002af1a1f9.webp b/translated_images/zh-TW/indian.2c4292002af1a1f9.webp
new file mode 100644
index 000000000..3236f70a2
Binary files /dev/null and b/translated_images/zh-TW/indian.2c4292002af1a1f9.webp differ
diff --git a/translated_images/zh-TW/individual-causal-what-if.00e7b86b52a083ce.webp b/translated_images/zh-TW/individual-causal-what-if.00e7b86b52a083ce.webp
new file mode 100644
index 000000000..097db79fd
Binary files /dev/null and b/translated_images/zh-TW/individual-causal-what-if.00e7b86b52a083ce.webp differ
diff --git a/translated_images/zh-TW/jack-o-lanterns.181c661a9212457d.webp b/translated_images/zh-TW/jack-o-lanterns.181c661a9212457d.webp
new file mode 100644
index 000000000..425e879b1
Binary files /dev/null and b/translated_images/zh-TW/jack-o-lanterns.181c661a9212457d.webp differ
diff --git a/translated_images/zh-TW/janitor.e4a77dd3d3e6a32e.webp b/translated_images/zh-TW/janitor.e4a77dd3d3e6a32e.webp
new file mode 100644
index 000000000..5e810155a
Binary files /dev/null and b/translated_images/zh-TW/janitor.e4a77dd3d3e6a32e.webp differ
diff --git a/translated_images/zh-TW/japanese.30260486f2a05c46.webp b/translated_images/zh-TW/japanese.30260486f2a05c46.webp
new file mode 100644
index 000000000..eae581e11
Binary files /dev/null and b/translated_images/zh-TW/japanese.30260486f2a05c46.webp differ
diff --git a/translated_images/zh-TW/july-2014.9e1f7c318ec6d5b3.webp b/translated_images/zh-TW/july-2014.9e1f7c318ec6d5b3.webp
new file mode 100644
index 000000000..433692177
Binary files /dev/null and b/translated_images/zh-TW/july-2014.9e1f7c318ec6d5b3.webp differ
diff --git a/translated_images/zh-TW/korean.4a4f0274f3d9805a.webp b/translated_images/zh-TW/korean.4a4f0274f3d9805a.webp
new file mode 100644
index 000000000..1bad55a74
Binary files /dev/null and b/translated_images/zh-TW/korean.4a4f0274f3d9805a.webp differ
diff --git a/translated_images/zh-TW/learned.ed28bcd8484b5287.webp b/translated_images/zh-TW/learned.ed28bcd8484b5287.webp
new file mode 100644
index 000000000..2a686ce38
Binary files /dev/null and b/translated_images/zh-TW/learned.ed28bcd8484b5287.webp differ
diff --git a/translated_images/zh-TW/linear-polynomial.5523c7cb6576ccab.webp b/translated_images/zh-TW/linear-polynomial.5523c7cb6576ccab.webp
new file mode 100644
index 000000000..501ca37af
Binary files /dev/null and b/translated_images/zh-TW/linear-polynomial.5523c7cb6576ccab.webp differ
diff --git a/translated_images/zh-TW/linear-results.f7c3552c85b0ed1c.webp b/translated_images/zh-TW/linear-results.f7c3552c85b0ed1c.webp
new file mode 100644
index 000000000..0cb94631a
Binary files /dev/null and b/translated_images/zh-TW/linear-results.f7c3552c85b0ed1c.webp differ
diff --git a/translated_images/zh-TW/linear-vs-logistic.ba180bf95e7ee667.webp b/translated_images/zh-TW/linear-vs-logistic.ba180bf95e7ee667.webp
new file mode 100644
index 000000000..8e9c6214b
Binary files /dev/null and b/translated_images/zh-TW/linear-vs-logistic.ba180bf95e7ee667.webp differ
diff --git a/translated_images/zh-TW/linear.a1b0760a56132551.webp b/translated_images/zh-TW/linear.a1b0760a56132551.webp
new file mode 100644
index 000000000..fe44af4f2
Binary files /dev/null and b/translated_images/zh-TW/linear.a1b0760a56132551.webp differ
diff --git a/translated_images/zh-TW/lobe.2fa0806408ef9923.webp b/translated_images/zh-TW/lobe.2fa0806408ef9923.webp
new file mode 100644
index 000000000..0e3e2b99c
Binary files /dev/null and b/translated_images/zh-TW/lobe.2fa0806408ef9923.webp differ
diff --git a/translated_images/zh-TW/logistic-linear.0f2f6bb73b3134c1.webp b/translated_images/zh-TW/logistic-linear.0f2f6bb73b3134c1.webp
new file mode 100644
index 000000000..3aa18bdcd
Binary files /dev/null and b/translated_images/zh-TW/logistic-linear.0f2f6bb73b3134c1.webp differ
diff --git a/translated_images/zh-TW/logistic.b0cba6b7db4d5789.webp b/translated_images/zh-TW/logistic.b0cba6b7db4d5789.webp
new file mode 100644
index 000000000..082998eb6
Binary files /dev/null and b/translated_images/zh-TW/logistic.b0cba6b7db4d5789.webp differ
diff --git a/translated_images/zh-TW/lpathlen.94f211521ed60940.webp b/translated_images/zh-TW/lpathlen.94f211521ed60940.webp
new file mode 100644
index 000000000..44d57cf19
Binary files /dev/null and b/translated_images/zh-TW/lpathlen.94f211521ed60940.webp differ
diff --git a/translated_images/zh-TW/lpathlen1.0534784add58d4eb.webp b/translated_images/zh-TW/lpathlen1.0534784add58d4eb.webp
new file mode 100644
index 000000000..3725aebf3
Binary files /dev/null and b/translated_images/zh-TW/lpathlen1.0534784add58d4eb.webp differ
diff --git a/translated_images/zh-TW/map.e963a6a51349425a.webp b/translated_images/zh-TW/map.e963a6a51349425a.webp
new file mode 100644
index 000000000..52c3e5939
Binary files /dev/null and b/translated_images/zh-TW/map.e963a6a51349425a.webp differ
diff --git a/translated_images/zh-TW/mape.fd87bbaf4d346846.webp b/translated_images/zh-TW/mape.fd87bbaf4d346846.webp
new file mode 100644
index 000000000..40d3f94ef
Binary files /dev/null and b/translated_images/zh-TW/mape.fd87bbaf4d346846.webp differ
diff --git a/translated_images/zh-TW/ml-fairness.ef296ebec6afc98a.webp b/translated_images/zh-TW/ml-fairness.ef296ebec6afc98a.webp
new file mode 100644
index 000000000..02dd7e915
Binary files /dev/null and b/translated_images/zh-TW/ml-fairness.ef296ebec6afc98a.webp differ
diff --git a/translated_images/zh-TW/ml-for-beginners-video-banner.63f694a100034bc6.webp b/translated_images/zh-TW/ml-for-beginners-video-banner.63f694a100034bc6.webp
new file mode 100644
index 000000000..23e378179
Binary files /dev/null and b/translated_images/zh-TW/ml-for-beginners-video-banner.63f694a100034bc6.webp differ
diff --git a/translated_images/zh-TW/ml-for-beginners.9eecb963dbfbfb32.webp b/translated_images/zh-TW/ml-for-beginners.9eecb963dbfbfb32.webp
new file mode 100644
index 000000000..ec591a473
Binary files /dev/null and b/translated_images/zh-TW/ml-for-beginners.9eecb963dbfbfb32.webp differ
diff --git a/translated_images/zh-TW/ml-history.a1bdfd4ce1f464d9.webp b/translated_images/zh-TW/ml-history.a1bdfd4ce1f464d9.webp
new file mode 100644
index 000000000..6721667d2
Binary files /dev/null and b/translated_images/zh-TW/ml-history.a1bdfd4ce1f464d9.webp differ
diff --git a/translated_images/zh-TW/ml-realworld.26ee274671615577.webp b/translated_images/zh-TW/ml-realworld.26ee274671615577.webp
new file mode 100644
index 000000000..9ecd078f2
Binary files /dev/null and b/translated_images/zh-TW/ml-realworld.26ee274671615577.webp differ
diff --git a/translated_images/zh-TW/ml-regression.4e4f70e3b3ed446e.webp b/translated_images/zh-TW/ml-regression.4e4f70e3b3ed446e.webp
new file mode 100644
index 000000000..172b7e7d8
Binary files /dev/null and b/translated_images/zh-TW/ml-regression.4e4f70e3b3ed446e.webp differ
diff --git a/translated_images/zh-TW/ml-reinforcement.94024374d63348db.webp b/translated_images/zh-TW/ml-reinforcement.94024374d63348db.webp
new file mode 100644
index 000000000..49f672c85
Binary files /dev/null and b/translated_images/zh-TW/ml-reinforcement.94024374d63348db.webp differ
diff --git a/translated_images/zh-TW/ml-timeseries.fb98d25f1013fc0c.webp b/translated_images/zh-TW/ml-timeseries.fb98d25f1013fc0c.webp
new file mode 100644
index 000000000..9ca252398
Binary files /dev/null and b/translated_images/zh-TW/ml-timeseries.fb98d25f1013fc0c.webp differ
diff --git a/translated_images/zh-TW/model-overview-dataset-cohorts.dfa463fb527a35a0.webp b/translated_images/zh-TW/model-overview-dataset-cohorts.dfa463fb527a35a0.webp
new file mode 100644
index 000000000..350ec356d
Binary files /dev/null and b/translated_images/zh-TW/model-overview-dataset-cohorts.dfa463fb527a35a0.webp differ
diff --git a/translated_images/zh-TW/model-overview-feature-cohorts.c5104d575ffd0c80.webp b/translated_images/zh-TW/model-overview-feature-cohorts.c5104d575ffd0c80.webp
new file mode 100644
index 000000000..e7937c47b
Binary files /dev/null and b/translated_images/zh-TW/model-overview-feature-cohorts.c5104d575ffd0c80.webp differ
diff --git a/translated_images/zh-TW/monnaie.606c5fa8369d5c3b.webp b/translated_images/zh-TW/monnaie.606c5fa8369d5c3b.webp
new file mode 100644
index 000000000..948d0432e
Binary files /dev/null and b/translated_images/zh-TW/monnaie.606c5fa8369d5c3b.webp differ
diff --git a/translated_images/zh-TW/mountaincar.43d56e588ce581c2.webp b/translated_images/zh-TW/mountaincar.43d56e588ce581c2.webp
new file mode 100644
index 000000000..cad1c6608
Binary files /dev/null and b/translated_images/zh-TW/mountaincar.43d56e588ce581c2.webp differ
diff --git a/translated_images/zh-TW/multinomial-ordinal.944fe02295fd6cdf.webp b/translated_images/zh-TW/multinomial-ordinal.944fe02295fd6cdf.webp
new file mode 100644
index 000000000..5b7401a26
Binary files /dev/null and b/translated_images/zh-TW/multinomial-ordinal.944fe02295fd6cdf.webp differ
diff --git a/translated_images/zh-TW/multinomial-vs-ordinal.36701b4850e37d86.webp b/translated_images/zh-TW/multinomial-vs-ordinal.36701b4850e37d86.webp
new file mode 100644
index 000000000..e9610ac8e
Binary files /dev/null and b/translated_images/zh-TW/multinomial-vs-ordinal.36701b4850e37d86.webp differ
diff --git a/translated_images/zh-TW/netron.a05f39410211915e.webp b/translated_images/zh-TW/netron.a05f39410211915e.webp
new file mode 100644
index 000000000..87654044a
Binary files /dev/null and b/translated_images/zh-TW/netron.a05f39410211915e.webp differ
diff --git a/translated_images/zh-TW/notebook.4a3ee31f396b8832.webp b/translated_images/zh-TW/notebook.4a3ee31f396b8832.webp
new file mode 100644
index 000000000..b16258185
Binary files /dev/null and b/translated_images/zh-TW/notebook.4a3ee31f396b8832.webp differ
diff --git a/translated_images/zh-TW/original.b2b15efe0ce92b87.webp b/translated_images/zh-TW/original.b2b15efe0ce92b87.webp
new file mode 100644
index 000000000..e6e88781c
Binary files /dev/null and b/translated_images/zh-TW/original.b2b15efe0ce92b87.webp differ
diff --git a/translated_images/zh-TW/overfitting.1c132d92bfd93cb6.webp b/translated_images/zh-TW/overfitting.1c132d92bfd93cb6.webp
new file mode 100644
index 000000000..5bc451390
Binary files /dev/null and b/translated_images/zh-TW/overfitting.1c132d92bfd93cb6.webp differ
diff --git a/translated_images/zh-TW/p&p.279f1c49ecd88941.webp b/translated_images/zh-TW/p&p.279f1c49ecd88941.webp
new file mode 100644
index 000000000..659f745ea
Binary files /dev/null and b/translated_images/zh-TW/p&p.279f1c49ecd88941.webp differ
diff --git a/translated_images/zh-TW/parse.d0c5bbe1106eae8f.webp b/translated_images/zh-TW/parse.d0c5bbe1106eae8f.webp
new file mode 100644
index 000000000..26c98b24a
Binary files /dev/null and b/translated_images/zh-TW/parse.d0c5bbe1106eae8f.webp differ
diff --git a/translated_images/zh-TW/parsnip.cd2ce92622976502.webp b/translated_images/zh-TW/parsnip.cd2ce92622976502.webp
new file mode 100644
index 000000000..9e703b323
Binary files /dev/null and b/translated_images/zh-TW/parsnip.cd2ce92622976502.webp differ
diff --git a/translated_images/zh-TW/peter.779730f9ba3a8a8d.webp b/translated_images/zh-TW/peter.779730f9ba3a8a8d.webp
new file mode 100644
index 000000000..a6a517271
Binary files /dev/null and b/translated_images/zh-TW/peter.779730f9ba3a8a8d.webp differ
diff --git a/translated_images/zh-TW/pie-pumpkins-scatter.d14f9804a53f927e.webp b/translated_images/zh-TW/pie-pumpkins-scatter.d14f9804a53f927e.webp
new file mode 100644
index 000000000..c606bc6ee
Binary files /dev/null and b/translated_images/zh-TW/pie-pumpkins-scatter.d14f9804a53f927e.webp differ
diff --git a/translated_images/zh-TW/pinch.1b035ec9ba7e0d40.webp b/translated_images/zh-TW/pinch.1b035ec9ba7e0d40.webp
new file mode 100644
index 000000000..d93c6a219
Binary files /dev/null and b/translated_images/zh-TW/pinch.1b035ec9ba7e0d40.webp differ
diff --git a/translated_images/zh-TW/poly-results.ee587348f0f1f60b.webp b/translated_images/zh-TW/poly-results.ee587348f0f1f60b.webp
new file mode 100644
index 000000000..6743c245c
Binary files /dev/null and b/translated_images/zh-TW/poly-results.ee587348f0f1f60b.webp differ
diff --git a/translated_images/zh-TW/polynomial.8fce4663e7283dfb.webp b/translated_images/zh-TW/polynomial.8fce4663e7283dfb.webp
new file mode 100644
index 000000000..b59fd8440
Binary files /dev/null and b/translated_images/zh-TW/polynomial.8fce4663e7283dfb.webp differ
diff --git a/translated_images/zh-TW/popular.9c48d84b3386705f.webp b/translated_images/zh-TW/popular.9c48d84b3386705f.webp
new file mode 100644
index 000000000..e921dacd9
Binary files /dev/null and b/translated_images/zh-TW/popular.9c48d84b3386705f.webp differ
diff --git a/translated_images/zh-TW/price-by-variety.744a2f9925d9bcb4.webp b/translated_images/zh-TW/price-by-variety.744a2f9925d9bcb4.webp
new file mode 100644
index 000000000..d001a164a
Binary files /dev/null and b/translated_images/zh-TW/price-by-variety.744a2f9925d9bcb4.webp differ
diff --git a/translated_images/zh-TW/problems.f7fb539ccd80608e.webp b/translated_images/zh-TW/problems.f7fb539ccd80608e.webp
new file mode 100644
index 000000000..f1b2a10da
Binary files /dev/null and b/translated_images/zh-TW/problems.f7fb539ccd80608e.webp differ
diff --git a/translated_images/zh-TW/pumpkin-classifier.562771f104ad5436.webp b/translated_images/zh-TW/pumpkin-classifier.562771f104ad5436.webp
new file mode 100644
index 000000000..9ff38fa99
Binary files /dev/null and b/translated_images/zh-TW/pumpkin-classifier.562771f104ad5436.webp differ
diff --git a/translated_images/zh-TW/pumpkins_catplot_1.c55c409b71fea2ec.webp b/translated_images/zh-TW/pumpkins_catplot_1.c55c409b71fea2ec.webp
new file mode 100644
index 000000000..7d2f63ba1
Binary files /dev/null and b/translated_images/zh-TW/pumpkins_catplot_1.c55c409b71fea2ec.webp differ
diff --git a/translated_images/zh-TW/pumpkins_catplot_2.87a354447880b388.webp b/translated_images/zh-TW/pumpkins_catplot_2.87a354447880b388.webp
new file mode 100644
index 000000000..ce8e2b2ac
Binary files /dev/null and b/translated_images/zh-TW/pumpkins_catplot_2.87a354447880b388.webp differ
diff --git a/translated_images/zh-TW/r_learners_sm.cd14eb3581a9f28d.webp b/translated_images/zh-TW/r_learners_sm.cd14eb3581a9f28d.webp
new file mode 100644
index 000000000..58e449044
Binary files /dev/null and b/translated_images/zh-TW/r_learners_sm.cd14eb3581a9f28d.webp differ
diff --git a/translated_images/zh-TW/r_learners_sm.e25fa9c205b3a3f9.webp b/translated_images/zh-TW/r_learners_sm.e25fa9c205b3a3f9.webp
new file mode 100644
index 000000000..0786da435
Binary files /dev/null and b/translated_images/zh-TW/r_learners_sm.e25fa9c205b3a3f9.webp differ
diff --git a/translated_images/zh-TW/r_learners_sm.e4a71b113ffbedfe.webp b/translated_images/zh-TW/r_learners_sm.e4a71b113ffbedfe.webp
new file mode 100644
index 000000000..0786da435
Binary files /dev/null and b/translated_images/zh-TW/r_learners_sm.e4a71b113ffbedfe.webp differ
diff --git a/translated_images/zh-TW/r_learners_sm.f9199f76f1e2e493.webp b/translated_images/zh-TW/r_learners_sm.f9199f76f1e2e493.webp
new file mode 100644
index 000000000..cc3f68429
Binary files /dev/null and b/translated_images/zh-TW/r_learners_sm.f9199f76f1e2e493.webp differ
diff --git a/translated_images/zh-TW/recipes.186acfa8ed2e8f00.webp b/translated_images/zh-TW/recipes.186acfa8ed2e8f00.webp
new file mode 100644
index 000000000..810b4d9e3
Binary files /dev/null and b/translated_images/zh-TW/recipes.186acfa8ed2e8f00.webp differ
diff --git a/translated_images/zh-TW/recipes.9ad10d8a4056bf89.webp b/translated_images/zh-TW/recipes.9ad10d8a4056bf89.webp
new file mode 100644
index 000000000..39a29ea87
Binary files /dev/null and b/translated_images/zh-TW/recipes.9ad10d8a4056bf89.webp differ
diff --git a/translated_images/zh-TW/scaled.91897dfbaa26ca4a.webp b/translated_images/zh-TW/scaled.91897dfbaa26ca4a.webp
new file mode 100644
index 000000000..6eea1acad
Binary files /dev/null and b/translated_images/zh-TW/scaled.91897dfbaa26ca4a.webp differ
diff --git a/translated_images/zh-TW/scaled.e35258ca5cd3d43f.webp b/translated_images/zh-TW/scaled.e35258ca5cd3d43f.webp
new file mode 100644
index 000000000..14cae7549
Binary files /dev/null and b/translated_images/zh-TW/scaled.e35258ca5cd3d43f.webp differ
diff --git a/translated_images/zh-TW/scatter-dayofyear-color.65790faefbb9d54f.webp b/translated_images/zh-TW/scatter-dayofyear-color.65790faefbb9d54f.webp
new file mode 100644
index 000000000..f873a284f
Binary files /dev/null and b/translated_images/zh-TW/scatter-dayofyear-color.65790faefbb9d54f.webp differ
diff --git a/translated_images/zh-TW/scatter-dayofyear.bc171c189c9fd553.webp b/translated_images/zh-TW/scatter-dayofyear.bc171c189c9fd553.webp
new file mode 100644
index 000000000..aec045037
Binary files /dev/null and b/translated_images/zh-TW/scatter-dayofyear.bc171c189c9fd553.webp differ
diff --git a/translated_images/zh-TW/scatterplot.ad8b356bcbb33be6.webp b/translated_images/zh-TW/scatterplot.ad8b356bcbb33be6.webp
new file mode 100644
index 000000000..af4b92d34
Binary files /dev/null and b/translated_images/zh-TW/scatterplot.ad8b356bcbb33be6.webp differ
diff --git a/translated_images/zh-TW/scatterplot.b6868f44cbd2051c.webp b/translated_images/zh-TW/scatterplot.b6868f44cbd2051c.webp
new file mode 100644
index 000000000..bf0ce25bc
Binary files /dev/null and b/translated_images/zh-TW/scatterplot.b6868f44cbd2051c.webp differ
diff --git a/translated_images/zh-TW/shakey.4dc17819c447c05b.webp b/translated_images/zh-TW/shakey.4dc17819c447c05b.webp
new file mode 100644
index 000000000..b8f8364ad
Binary files /dev/null and b/translated_images/zh-TW/shakey.4dc17819c447c05b.webp differ
diff --git a/translated_images/zh-TW/sigmoid.8b7ba9d095c789cf.webp b/translated_images/zh-TW/sigmoid.8b7ba9d095c789cf.webp
new file mode 100644
index 000000000..e475c7bbb
Binary files /dev/null and b/translated_images/zh-TW/sigmoid.8b7ba9d095c789cf.webp differ
diff --git a/translated_images/zh-TW/slope.f3c9d5910ddbfcf9.webp b/translated_images/zh-TW/slope.f3c9d5910ddbfcf9.webp
new file mode 100644
index 000000000..e0c38ce56
Binary files /dev/null and b/translated_images/zh-TW/slope.f3c9d5910ddbfcf9.webp differ
diff --git a/translated_images/zh-TW/solvers.5fc648618529e627.webp b/translated_images/zh-TW/solvers.5fc648618529e627.webp
new file mode 100644
index 000000000..040ade60b
Binary files /dev/null and b/translated_images/zh-TW/solvers.5fc648618529e627.webp differ
diff --git a/translated_images/zh-TW/svm.621ae7b516d678e0.webp b/translated_images/zh-TW/svm.621ae7b516d678e0.webp
new file mode 100644
index 000000000..b154a7464
Binary files /dev/null and b/translated_images/zh-TW/svm.621ae7b516d678e0.webp differ
diff --git a/translated_images/zh-TW/swarm.56d253ae80a2c0f5.webp b/translated_images/zh-TW/swarm.56d253ae80a2c0f5.webp
new file mode 100644
index 000000000..f730f9463
Binary files /dev/null and b/translated_images/zh-TW/swarm.56d253ae80a2c0f5.webp differ
diff --git a/translated_images/zh-TW/swarm_2.efeacfca536c2b57.webp b/translated_images/zh-TW/swarm_2.efeacfca536c2b57.webp
new file mode 100644
index 000000000..f671258cd
Binary files /dev/null and b/translated_images/zh-TW/swarm_2.efeacfca536c2b57.webp differ
diff --git a/translated_images/zh-TW/test-data-predict.8afc47ee7e52874f.webp b/translated_images/zh-TW/test-data-predict.8afc47ee7e52874f.webp
new file mode 100644
index 000000000..5305a0a19
Binary files /dev/null and b/translated_images/zh-TW/test-data-predict.8afc47ee7e52874f.webp differ
diff --git a/translated_images/zh-TW/thai-food.c47a7a7f9f05c218.webp b/translated_images/zh-TW/thai-food.c47a7a7f9f05c218.webp
new file mode 100644
index 000000000..1eda3cea3
Binary files /dev/null and b/translated_images/zh-TW/thai-food.c47a7a7f9f05c218.webp differ
diff --git a/translated_images/zh-TW/thai.0269dbab2e78bd38.webp b/translated_images/zh-TW/thai.0269dbab2e78bd38.webp
new file mode 100644
index 000000000..bfa56cfb8
Binary files /dev/null and b/translated_images/zh-TW/thai.0269dbab2e78bd38.webp differ
diff --git a/translated_images/zh-TW/tokenization.1641a160c66cd2d9.webp b/translated_images/zh-TW/tokenization.1641a160c66cd2d9.webp
new file mode 100644
index 000000000..9688f165f
Binary files /dev/null and b/translated_images/zh-TW/tokenization.1641a160c66cd2d9.webp differ
diff --git a/translated_images/zh-TW/train-data-predict.3c4ef4e78553104f.webp b/translated_images/zh-TW/train-data-predict.3c4ef4e78553104f.webp
new file mode 100644
index 000000000..9ac018b36
Binary files /dev/null and b/translated_images/zh-TW/train-data-predict.3c4ef4e78553104f.webp differ
diff --git a/translated_images/zh-TW/train-test.8928d14e5b91fc94.webp b/translated_images/zh-TW/train-test.8928d14e5b91fc94.webp
new file mode 100644
index 000000000..c98e7f334
Binary files /dev/null and b/translated_images/zh-TW/train-test.8928d14e5b91fc94.webp differ
diff --git a/translated_images/zh-TW/train-test.ead0cecbfc341921.webp b/translated_images/zh-TW/train-test.ead0cecbfc341921.webp
new file mode 100644
index 000000000..c98e7f334
Binary files /dev/null and b/translated_images/zh-TW/train-test.ead0cecbfc341921.webp differ
diff --git a/translated_images/zh-TW/train_progress_raw.2adfdf2daea09c59.webp b/translated_images/zh-TW/train_progress_raw.2adfdf2daea09c59.webp
new file mode 100644
index 000000000..9cb93e6e5
Binary files /dev/null and b/translated_images/zh-TW/train_progress_raw.2adfdf2daea09c59.webp differ
diff --git a/translated_images/zh-TW/train_progress_runav.c71694a8fa9ab359.webp b/translated_images/zh-TW/train_progress_runav.c71694a8fa9ab359.webp
new file mode 100644
index 000000000..46fb46ea5
Binary files /dev/null and b/translated_images/zh-TW/train_progress_runav.c71694a8fa9ab359.webp differ
diff --git a/translated_images/zh-TW/turntable.f2b86b13c53302dc.webp b/translated_images/zh-TW/turntable.f2b86b13c53302dc.webp
new file mode 100644
index 000000000..27c674f5b
Binary files /dev/null and b/translated_images/zh-TW/turntable.f2b86b13c53302dc.webp differ
diff --git a/translated_images/zh-TW/ufo.9e787f5161da9d4d.webp b/translated_images/zh-TW/ufo.9e787f5161da9d4d.webp
new file mode 100644
index 000000000..3c0347492
Binary files /dev/null and b/translated_images/zh-TW/ufo.9e787f5161da9d4d.webp differ
diff --git a/translated_images/zh-TW/unruly_data.0eedc7ced92d2d91.webp b/translated_images/zh-TW/unruly_data.0eedc7ced92d2d91.webp
new file mode 100644
index 000000000..c193a603f
Binary files /dev/null and b/translated_images/zh-TW/unruly_data.0eedc7ced92d2d91.webp differ
diff --git a/translated_images/zh-TW/violin.ffceb68923177011.webp b/translated_images/zh-TW/violin.ffceb68923177011.webp
new file mode 100644
index 000000000..533229259
Binary files /dev/null and b/translated_images/zh-TW/violin.ffceb68923177011.webp differ
diff --git a/translated_images/zh-TW/voronoi.1dc1613fb0439b95.webp b/translated_images/zh-TW/voronoi.1dc1613fb0439b95.webp
new file mode 100644
index 000000000..4a7d11723
Binary files /dev/null and b/translated_images/zh-TW/voronoi.1dc1613fb0439b95.webp differ
diff --git a/translated_images/zh-TW/web-app.4c76450cabe20036.webp b/translated_images/zh-TW/web-app.4c76450cabe20036.webp
new file mode 100644
index 000000000..50291888b
Binary files /dev/null and b/translated_images/zh-TW/web-app.4c76450cabe20036.webp differ
diff --git a/translated_images/zh-TW/wolf.a56d3d4070ca0c79.webp b/translated_images/zh-TW/wolf.a56d3d4070ca0c79.webp
new file mode 100644
index 000000000..a9f12f4bd
Binary files /dev/null and b/translated_images/zh-TW/wolf.a56d3d4070ca0c79.webp differ
diff --git a/translations/zh-HK/.co-op-translator.json b/translations/zh-HK/.co-op-translator.json
new file mode 100644
index 000000000..15b8e39a9
--- /dev/null
+++ b/translations/zh-HK/.co-op-translator.json
@@ -0,0 +1,596 @@
+{
+ "1-Introduction/1-intro-to-ML/README.md": {
+ "original_hash": "69389392fa6346e0dfa30f664b7b6fec",
+ "translation_date": "2025-09-05T09:26:21+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/1-intro-to-ML/assignment.md": {
+ "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
+ "translation_date": "2025-09-03T17:49:03+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/2-history-of-ML/README.md": {
+ "original_hash": "6a05fec147e734c3e6bfa54505648e2b",
+ "translation_date": "2025-09-05T09:27:07+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/2-history-of-ML/assignment.md": {
+ "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969",
+ "translation_date": "2025-09-03T17:53:04+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/3-fairness/README.md": {
+ "original_hash": "9a6b702d1437c0467e3c5c28d763dac2",
+ "translation_date": "2025-09-05T09:24:32+00:00",
+ "source_file": "1-Introduction/3-fairness/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/3-fairness/assignment.md": {
+ "original_hash": "dbda60e7b1fe5f18974e7858eff0004e",
+ "translation_date": "2025-09-03T17:41:16+00:00",
+ "source_file": "1-Introduction/3-fairness/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/4-techniques-of-ML/README.md": {
+ "original_hash": "9d91f3af3758fdd4569fb410575995ef",
+ "translation_date": "2025-09-05T09:25:28+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/4-techniques-of-ML/assignment.md": {
+ "original_hash": "70d65aeddc06170bc1aed5b27805f930",
+ "translation_date": "2025-09-03T17:45:29+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "cf8ecc83f28e5b98051d2179eca08e08",
+ "translation_date": "2025-09-03T17:34:47+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/1-Tools/README.md": {
+ "original_hash": "fa81d226c71d5af7a2cade31c1c92b88",
+ "translation_date": "2025-09-05T09:17:57+00:00",
+ "source_file": "2-Regression/1-Tools/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/1-Tools/assignment.md": {
+ "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a",
+ "translation_date": "2025-09-03T16:40:52+00:00",
+ "source_file": "2-Regression/1-Tools/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/1-Tools/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:41:18+00:00",
+ "source_file": "2-Regression/1-Tools/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/2-Data/README.md": {
+ "original_hash": "7c077988328ebfe33b24d07945f16eca",
+ "translation_date": "2025-09-05T09:18:49+00:00",
+ "source_file": "2-Regression/2-Data/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/2-Data/assignment.md": {
+ "original_hash": "4485a1ed4dd1b5647365e3d87456515d",
+ "translation_date": "2025-09-03T16:45:13+00:00",
+ "source_file": "2-Regression/2-Data/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/2-Data/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:45:37+00:00",
+ "source_file": "2-Regression/2-Data/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/3-Linear/README.md": {
+ "original_hash": "40e64f004f3cb50aa1d8661672d3cd92",
+ "translation_date": "2025-09-05T09:15:04+00:00",
+ "source_file": "2-Regression/3-Linear/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/3-Linear/assignment.md": {
+ "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b",
+ "translation_date": "2025-09-03T16:25:11+00:00",
+ "source_file": "2-Regression/3-Linear/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/3-Linear/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:25:36+00:00",
+ "source_file": "2-Regression/3-Linear/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/4-Logistic/README.md": {
+ "original_hash": "abf86d845c84330bce205a46b382ec88",
+ "translation_date": "2025-09-05T09:17:03+00:00",
+ "source_file": "2-Regression/4-Logistic/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/4-Logistic/assignment.md": {
+ "original_hash": "8af40209a41494068c1f42b14c0b450d",
+ "translation_date": "2025-09-03T16:35:09+00:00",
+ "source_file": "2-Regression/4-Logistic/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/4-Logistic/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:35:34+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Regression/README.md": {
+ "original_hash": "508582278dbb8edd2a8a80ac96ef416c",
+ "translation_date": "2025-09-03T16:17:40+00:00",
+ "source_file": "2-Regression/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Web-App/1-Web-App/README.md": {
+ "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c",
+ "translation_date": "2025-09-05T09:28:03+00:00",
+ "source_file": "3-Web-App/1-Web-App/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Web-App/1-Web-App/assignment.md": {
+ "original_hash": "a8e8ae10be335cbc745b75ee552317ff",
+ "translation_date": "2025-09-03T17:57:52+00:00",
+ "source_file": "3-Web-App/1-Web-App/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Web-App/README.md": {
+ "original_hash": "9836ff53cfef716ddfd70e06c5f43436",
+ "translation_date": "2025-09-03T17:53:46+00:00",
+ "source_file": "3-Web-App/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/1-Introduction/README.md": {
+ "original_hash": "aaf391d922bd6de5efba871d514c6d47",
+ "translation_date": "2025-09-05T09:31:35+00:00",
+ "source_file": "4-Classification/1-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/1-Introduction/assignment.md": {
+ "original_hash": "b2a01912beb24cfb0007f83594dba801",
+ "translation_date": "2025-09-03T18:15:58+00:00",
+ "source_file": "4-Classification/1-Introduction/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:16:24+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/2-Classifiers-1/README.md": {
+ "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
+ "translation_date": "2025-09-05T09:28:58+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/2-Classifiers-1/assignment.md": {
+ "original_hash": "de6025f96841498b0577e9d1aee18d1f",
+ "translation_date": "2025-09-03T18:05:19+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/2-Classifiers-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:05:44+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/3-Classifiers-2/README.md": {
+ "original_hash": "49047911108adc49d605cddfb455749c",
+ "translation_date": "2025-09-05T09:31:03+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/3-Classifiers-2/assignment.md": {
+ "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329",
+ "translation_date": "2025-09-03T18:12:01+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/3-Classifiers-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:12:26+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/4-Applied/README.md": {
+ "original_hash": "61bdec27ed2da8b098cd9065405d9bb0",
+ "translation_date": "2025-09-05T09:30:18+00:00",
+ "source_file": "4-Classification/4-Applied/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/4-Applied/assignment.md": {
+ "original_hash": "799ed651e2af0a7cad17c6268db11578",
+ "translation_date": "2025-09-03T18:09:09+00:00",
+ "source_file": "4-Classification/4-Applied/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Classification/README.md": {
+ "original_hash": "74e809ffd1e613a1058bbc3e9600859e",
+ "translation_date": "2025-09-03T17:59:56+00:00",
+ "source_file": "4-Classification/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/1-Visualize/README.md": {
+ "original_hash": "730225ea274c9174fe688b21d421539d",
+ "translation_date": "2025-09-05T09:21:17+00:00",
+ "source_file": "5-Clustering/1-Visualize/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/1-Visualize/assignment.md": {
+ "original_hash": "589fa015a5e7d9e67bd629f7d47b53de",
+ "translation_date": "2025-09-03T17:16:37+00:00",
+ "source_file": "5-Clustering/1-Visualize/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/1-Visualize/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T17:17:03+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/2-K-Means/README.md": {
+ "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081",
+ "translation_date": "2025-09-05T09:22:23+00:00",
+ "source_file": "5-Clustering/2-K-Means/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/2-K-Means/assignment.md": {
+ "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41",
+ "translation_date": "2025-09-03T17:20:12+00:00",
+ "source_file": "5-Clustering/2-K-Means/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/2-K-Means/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T17:20:35+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Clustering/README.md": {
+ "original_hash": "b28a3a4911584062772c537b653ebbc7",
+ "translation_date": "2025-09-03T17:02:20+00:00",
+ "source_file": "5-Clustering/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/1-Introduction-to-NLP/README.md": {
+ "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a",
+ "translation_date": "2025-09-05T09:37:29+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/1-Introduction-to-NLP/assignment.md": {
+ "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16",
+ "translation_date": "2025-09-03T19:02:55+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/2-Tasks/README.md": {
+ "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3",
+ "translation_date": "2025-09-05T09:35:22+00:00",
+ "source_file": "6-NLP/2-Tasks/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/2-Tasks/assignment.md": {
+ "original_hash": "2efc4c2aba5ed06c780c05539c492ae3",
+ "translation_date": "2025-09-03T18:50:13+00:00",
+ "source_file": "6-NLP/2-Tasks/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/3-Translation-Sentiment/README.md": {
+ "original_hash": "be03c8182982b87ced155e4e9d1438e8",
+ "translation_date": "2025-09-05T09:38:00+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/3-Translation-Sentiment/assignment.md": {
+ "original_hash": "9d2a734deb904caff310d1a999c6bd7a",
+ "translation_date": "2025-09-03T19:08:15+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T19:09:02+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T19:08:40+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/4-Hotel-Reviews-1/README.md": {
+ "original_hash": "8d32dadeda93c6fb5c43619854882ab1",
+ "translation_date": "2025-09-05T09:36:18+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/4-Hotel-Reviews-1/assignment.md": {
+ "original_hash": "bf39bceb833cd628f224941dca8041df",
+ "translation_date": "2025-09-03T18:57:49+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:58:33+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T18:58:14+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/5-Hotel-Reviews-2/README.md": {
+ "original_hash": "2c742993fe95d5bcbb2846eda3d442a1",
+ "translation_date": "2025-09-05T09:38:45+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/5-Hotel-Reviews-2/assignment.md": {
+ "original_hash": "daf144daa552da6a7d442aff6f3e77d8",
+ "translation_date": "2025-09-03T19:14:29+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T19:15:11+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T19:14:53+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/README.md": {
+ "original_hash": "1eb379dc2d0c9940b320732d16083778",
+ "translation_date": "2025-09-03T18:46:06+00:00",
+ "source_file": "6-NLP/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-NLP/data/README.md": {
+ "original_hash": "ee0670655c89e4719319764afb113624",
+ "translation_date": "2025-09-03T18:58:55+00:00",
+ "source_file": "6-NLP/data/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/1-Introduction/README.md": {
+ "original_hash": "662b509c39eee205687726636d0a8455",
+ "translation_date": "2025-09-05T09:20:03+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/1-Introduction/assignment.md": {
+ "original_hash": "d1781b0b92568ea1d119d0a198b576b4",
+ "translation_date": "2025-09-03T16:56:43+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:57:28+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/1-Introduction/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T16:57:10+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/2-ARIMA/README.md": {
+ "original_hash": "917dbf890db71a322f306050cb284749",
+ "translation_date": "2025-09-05T09:19:19+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/2-ARIMA/assignment.md": {
+ "original_hash": "1c814013e10866dfd92cdb32caaae3ac",
+ "translation_date": "2025-09-03T16:51:54+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/2-ARIMA/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T16:52:37+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/2-ARIMA/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T16:52:19+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/3-SVR/README.md": {
+ "original_hash": "482bccabe1df958496ea71a3667995cd",
+ "translation_date": "2025-09-05T09:20:37+00:00",
+ "source_file": "7-TimeSeries/3-SVR/README.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/3-SVR/assignment.md": {
+ "original_hash": "94aa2fc6154252ae30a3f3740299707a",
+ "translation_date": "2025-09-03T17:01:18+00:00",
+ "source_file": "7-TimeSeries/3-SVR/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "7-TimeSeries/README.md": {
+ "original_hash": "61342603bad8acadbc6b2e4e3aab3f66",
+ "translation_date": "2025-09-03T16:46:23+00:00",
+ "source_file": "7-TimeSeries/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/1-QLearning/README.md": {
+ "original_hash": "911efd5e595089000cb3c16fce1beab8",
+ "translation_date": "2025-09-05T09:33:22+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/1-QLearning/assignment.md": {
+ "original_hash": "68394b2102d3503882e5e914bd0ff5c1",
+ "translation_date": "2025-09-03T18:37:36+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/1-QLearning/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:38:46+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/1-QLearning/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T18:38:24+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/2-Gym/README.md": {
+ "original_hash": "107d5bb29da8a562e7ae72262d251a75",
+ "translation_date": "2025-09-05T09:34:21+00:00",
+ "source_file": "8-Reinforcement/2-Gym/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/2-Gym/assignment.md": {
+ "original_hash": "1f2b7441745eb52e25745423b247016b",
+ "translation_date": "2025-09-03T18:44:21+00:00",
+ "source_file": "8-Reinforcement/2-Gym/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/2-Gym/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-03T18:45:16+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/2-Gym/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-03T18:44:56+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/R/README.md",
+ "language_code": "zh-HK"
+ },
+ "8-Reinforcement/README.md": {
+ "original_hash": "20ca019012b1725de956681d036d8b18",
+ "translation_date": "2025-09-03T18:27:01+00:00",
+ "source_file": "8-Reinforcement/README.md",
+ "language_code": "zh-HK"
+ },
+ "9-Real-World/1-Applications/README.md": {
+ "original_hash": "83320d6b6994909e35d830cebf214039",
+ "translation_date": "2025-09-05T09:22:51+00:00",
+ "source_file": "9-Real-World/1-Applications/README.md",
+ "language_code": "zh-HK"
+ },
+ "9-Real-World/1-Applications/assignment.md": {
+ "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885",
+ "translation_date": "2025-09-03T17:27:21+00:00",
+ "source_file": "9-Real-World/1-Applications/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "9-Real-World/2-Debugging-ML-Models/README.md": {
+ "original_hash": "df2b538e8fbb3e91cf0419ae2f858675",
+ "translation_date": "2025-09-05T09:23:37+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/README.md",
+ "language_code": "zh-HK"
+ },
+ "9-Real-World/2-Debugging-ML-Models/assignment.md": {
+ "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164",
+ "translation_date": "2025-09-03T17:33:17+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "9-Real-World/README.md": {
+ "original_hash": "5e069a0ac02a9606a69946c2b3c574a9",
+ "translation_date": "2025-09-03T17:22:16+00:00",
+ "source_file": "9-Real-World/README.md",
+ "language_code": "zh-HK"
+ },
+ "AGENTS.md": {
+ "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b",
+ "translation_date": "2025-10-03T11:00:52+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "zh-HK"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-09-03T16:16:32+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "zh-HK"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda",
+ "translation_date": "2025-09-03T16:13:46+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "zh-HK"
+ },
+ "README.md": {
+ "original_hash": "da2ceed62f16a0820259556e3a873c95",
+ "translation_date": "2026-01-29T17:49:36+00:00",
+ "source_file": "README.md",
+ "language_code": "zh-HK"
+ },
+ "SECURITY.md": {
+ "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a",
+ "translation_date": "2025-09-03T16:14:48+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "zh-HK"
+ },
+ "SUPPORT.md": {
+ "original_hash": "09623d7343ff1c26ff4f198c1b2d3176",
+ "translation_date": "2025-10-03T11:44:31+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "zh-HK"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "134d8759f0e2ab886e9aa4f62362c201",
+ "translation_date": "2025-10-03T12:39:12+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "zh-HK"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "68dd06c685f6ce840e0acfa313352e7c",
+ "translation_date": "2025-09-03T17:21:23+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "zh-HK"
+ },
+ "for-teachers.md": {
+ "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8",
+ "translation_date": "2025-09-03T16:15:51+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "zh-HK"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "6d130dffca5db70d7e615f926cb1ad4c",
+ "translation_date": "2025-09-03T17:58:57+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "zh-HK"
+ },
+ "sketchnotes/LICENSE.md": {
+ "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f",
+ "translation_date": "2025-09-03T18:23:30+00:00",
+ "source_file": "sketchnotes/LICENSE.md",
+ "language_code": "zh-HK"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "a88d5918c1b9da69a40d917a0840c497",
+ "translation_date": "2025-09-03T18:16:53+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "zh-HK"
+ }
+}
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/1-intro-to-ML/README.md b/translations/zh-HK/1-Introduction/1-intro-to-ML/README.md
new file mode 100644
index 000000000..036323df8
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/1-intro-to-ML/README.md
@@ -0,0 +1,150 @@
+# 機器學習簡介
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+---
+
+[](https://youtu.be/6mSx_KJxcHI "初學者的機器學習 - 機器學習入門")
+
+> 🎥 點擊上方圖片觀看本課程的簡短視頻。
+
+歡迎來到這門針對初學者的經典機器學習課程!無論你是完全新手,還是有經驗的機器學習從業者希望重新學習某個領域,我們都很高興你能加入我們!我們希望為你的機器學習研究創造一個友好的起點,並樂於評估、回應和採納你的[反饋](https://github.com/microsoft/ML-For-Beginners/discussions)。
+
+[](https://youtu.be/h0e2HAPTGF4 "機器學習簡介")
+
+> 🎥 點擊上方圖片觀看視頻:麻省理工學院的 John Guttag 介紹機器學習
+
+---
+## 開始學習機器學習
+
+在開始學習本課程之前,你需要將你的電腦設置好,準備在本地運行筆記本。
+
+- **用這些視頻配置你的電腦**。使用以下鏈接學習[如何在系統中安裝 Python](https://youtu.be/CXZYvNRIAKM)以及[設置文本編輯器](https://youtu.be/EU8eayHWoZg)進行開發。
+- **學習 Python**。建議對[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)有基本的了解,這是一種對數據科學家非常有用的編程語言,我們在本課程中會使用它。
+- **學習 Node.js 和 JavaScript**。我們在課程中偶爾會使用 JavaScript 來構建網頁應用,因此你需要安裝 [node](https://nodejs.org) 和 [npm](https://www.npmjs.com/),以及為 Python 和 JavaScript 開發準備好 [Visual Studio Code](https://code.visualstudio.com/)。
+- **創建 GitHub 帳戶**。既然你在 [GitHub](https://github.com) 上找到了我們,你可能已經有一個帳戶了,但如果沒有,請創建一個,然後 fork 本課程以供自己使用。(也可以給我們點個星星 😊)
+- **探索 Scikit-learn**。熟悉 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html),這是一組我們在課程中引用的機器學習庫。
+
+---
+## 什麼是機器學習?
+
+“機器學習”這個術語是當今最流行且最常用的術語之一。如果你對技術有一定的了解,無論你從事什麼領域,都有很大可能至少聽過一次這個術語。然而,機器學習的運作機制對大多數人來說仍然是個謎。對於機器學習初學者來說,這個主題有時可能會讓人感到不知所措。因此,了解機器學習的真正含義並通過實際例子逐步學習它是非常重要的。
+
+---
+## 熱潮曲線
+
+
+
+> Google 趨勢顯示了“機器學習”術語的近期熱潮曲線
+
+---
+## 神秘的宇宙
+
+我們生活在一個充滿迷人謎團的宇宙中。偉大的科學家如史蒂芬·霍金、阿爾伯特·愛因斯坦等人,畢生致力於尋找有意義的信息,以揭示我們周圍世界的奧秘。這是人類學習的本質:人類的孩子隨著成長逐年學習新事物,揭示他們世界的結構。
+
+---
+## 孩子的大腦
+
+孩子的大腦和感官感知周圍環境的事實,並逐漸學習生活中隱藏的模式,幫助孩子制定邏輯規則來識別已學習的模式。人類大腦的學習過程使人類成為這個世界上最複雜的生物。通過不斷發現隱藏的模式並在這些模式上進行創新,我們能夠在一生中不斷提升自己。這種學習能力和進化能力與一個名為[大腦可塑性](https://www.simplypsychology.org/brain-plasticity.html)的概念有關。表面上,我們可以在人類大腦的學習過程和機器學習的概念之間找到一些激勵性的相似之處。
+
+---
+## 人類大腦
+
+[人類大腦](https://www.livescience.com/29365-human-brain.html)從現實世界中感知事物,處理感知到的信息,做出理性決策,並根據情況執行某些行動。這就是我們所說的智能行為。當我們將智能行為過程的模擬編程到機器上時,這就被稱為人工智能(AI)。
+
+---
+## 一些術語
+
+雖然這些術語可能會混淆,但機器學習(ML)是人工智能的一個重要子集。**機器學習專注於使用專門的算法從感知到的數據中發掘有意義的信息並找到隱藏的模式,以支持理性決策過程**。
+
+---
+## AI、ML、深度學習
+
+
+
+> 一張展示 AI、ML、深度學習和數據科學之間關係的圖表。信息圖由 [Jen Looper](https://twitter.com/jenlooper) 製作,靈感來自[這張圖](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
+
+---
+## 涵蓋的概念
+
+在本課程中,我們將僅涵蓋機器學習的核心概念,這些是初學者必須了解的。我們主要使用 Scikit-learn 來教授所謂的“經典機器學習”,這是一個許多學生用來學習基礎知識的優秀庫。要理解人工智能或深度學習的更廣泛概念,扎實的機器學習基礎知識是不可或缺的,因此我們希望在此提供這些知識。
+
+---
+## 在本課程中你將學到:
+
+- 機器學習的核心概念
+- 機器學習的歷史
+- 機器學習與公平性
+- 回歸機器學習技術
+- 分類機器學習技術
+- 聚類機器學習技術
+- 自然語言處理機器學習技術
+- 時間序列預測機器學習技術
+- 強化學習
+- 機器學習的實際應用
+
+---
+## 我們不會涵蓋的內容
+
+- 深度學習
+- 神經網絡
+- 人工智能
+
+為了提供更好的學習體驗,我們將避免涉及神經網絡的複雜性、“深度學習”——使用神經網絡構建多層模型——以及人工智能,這些內容我們會在另一門課程中討論。我們還將提供即將推出的數據科學課程,專注於這個更大領域的這一方面。
+
+---
+## 為什麼要學習機器學習?
+
+從系統的角度來看,機器學習被定義為創建能夠從數據中學習隱藏模式以幫助做出智能決策的自動化系統。
+
+這種動機在某種程度上受到人類大腦如何根據外界感知到的數據學習某些事物的啟發。
+
+✅ 想一想,為什麼企業會希望使用機器學習策略,而不是創建基於硬編碼規則的引擎。
+
+---
+## 機器學習的應用
+
+機器學習的應用現在幾乎無處不在,就像我們社會中流動的數據一樣,這些數據由智能手機、連接設備和其他系統生成。考慮到最先進的機器學習算法的巨大潛力,研究人員一直在探索它們解決多維度和多學科現實問題的能力,並取得了非常積極的成果。
+
+---
+## 應用機器學習的例子
+
+**你可以用多種方式使用機器學習**:
+
+- 從患者的病史或報告中預測疾病的可能性。
+- 利用天氣數據預測天氣事件。
+- 理解文本的情感。
+- 檢測假新聞以阻止宣傳的傳播。
+
+金融、經濟、地球科學、太空探索、生物醫學工程、認知科學,甚至人文領域都已經採用機器學習來解決其領域中繁重的數據處理問題。
+
+---
+## 結論
+
+機器學習通過從現實世界或生成的數據中發現有意義的洞察來自動化模式發現的過程。它已經在商業、健康和金融應用等領域證明了自己的巨大價值。
+
+在不久的將來,了解機器學習的基礎知識將成為任何領域的人必須掌握的技能,因為它的廣泛採用。
+
+---
+# 🚀 挑戰
+
+用紙或使用像 [Excalidraw](https://excalidraw.com/) 這樣的在線應用程序,繪製你對 AI、ML、深度學習和數據科學之間差異的理解。添加一些這些技術擅長解決的問題的想法。
+
+# [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+---
+# 回顧與自學
+
+要了解更多關於如何在雲端使用機器學習算法,請參考這個[學習路徑](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)。
+
+參加一個關於機器學習基礎的[學習路徑](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)。
+
+---
+# 作業
+
+[開始學習](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/1-intro-to-ML/assignment.md b/translations/zh-HK/1-Introduction/1-intro-to-ML/assignment.md
new file mode 100644
index 000000000..eb71845a0
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/1-intro-to-ML/assignment.md
@@ -0,0 +1,14 @@
+# 開始並運行
+
+## 指引
+
+在這個不計分的作業中,你應該溫習 Python 並設置好你的環境,使其能夠運行筆記本。
+
+請參考這個 [Python 學習路徑](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott),然後通過以下這些入門影片來完成系統設置:
+
+https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/2-history-of-ML/README.md b/translations/zh-HK/1-Introduction/2-history-of-ML/README.md
new file mode 100644
index 000000000..d8240be9f
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/2-history-of-ML/README.md
@@ -0,0 +1,155 @@
+# 機器學習的歷史
+
+
+> 手繪筆記由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 提供
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+---
+
+[](https://youtu.be/N6wxM4wZ7V0 "機器學習入門 - 機器學習的歷史")
+
+> 🎥 點擊上方圖片觀看本課程的短片。
+
+在本課程中,我們將回顧機器學習和人工智能歷史上的重要里程碑。
+
+人工智能(AI)作為一個領域的歷史與機器學習的歷史密切相關,因為支撐機器學習的算法和計算進步促進了人工智能的發展。值得注意的是,雖然這些領域作為獨立的研究方向在1950年代開始成形,但重要的[算法、統計、數學、計算和技術發現](https://wikipedia.org/wiki/Timeline_of_machine_learning)早於並重疊了這一時期。事實上,人類已經思考這些問題[數百年](https://wikipedia.org/wiki/History_of_artificial_intelligence):本文討論了“思考機器”概念的歷史性智力基礎。
+
+---
+## 重要發現
+
+- 1763年、1812年 [貝葉斯定理](https://wikipedia.org/wiki/Bayes%27_theorem)及其前身。該定理及其應用是推理的基礎,描述了基於先驗知識事件發生的概率。
+- 1805年 [最小二乘法](https://wikipedia.org/wiki/Least_squares) 由法國數學家Adrien-Marie Legendre提出。該理論在我們的回歸單元中會學到,幫助進行數據擬合。
+- 1913年 [馬爾可夫鏈](https://wikipedia.org/wiki/Markov_chain),以俄羅斯數學家Andrey Markov命名,用於描述基於前一狀態的一系列可能事件。
+- 1957年 [感知器](https://wikipedia.org/wiki/Perceptron) 是一種由美國心理學家Frank Rosenblatt發明的線性分類器,為深度學習的進步奠定了基礎。
+
+---
+
+- 1967年 [最近鄰算法](https://wikipedia.org/wiki/Nearest_neighbor) 最初設計用於路徑規劃。在機器學習中,它被用於模式檢測。
+- 1970年 [反向傳播](https://wikipedia.org/wiki/Backpropagation) 用於訓練[前饋神經網絡](https://wikipedia.org/wiki/Feedforward_neural_network)。
+- 1982年 [循環神經網絡](https://wikipedia.org/wiki/Recurrent_neural_network) 是從前饋神經網絡衍生出的人工神經網絡,用於創建時間圖。
+
+✅ 做一些研究。還有哪些日期在機器學習和人工智能的歷史中具有重要意義?
+
+---
+## 1950年:思考的機器
+
+艾倫·圖靈(Alan Turing),一位真正傑出的人物,被公眾在[2019年](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)評選為20世紀最偉大的科學家,他被認為幫助奠定了“能夠思考的機器”概念的基礎。他面對反對者並努力尋求這一概念的實證證據,部分通過創建[圖靈測試](https://www.bbc.com/news/technology-18475646),你將在我們的自然語言處理課程中進一步探索。
+
+---
+## 1956年:達特茅斯夏季研究項目
+
+“達特茅斯夏季人工智能研究項目是人工智能作為一個領域的開創性事件”,並且在這裡首次提出了“人工智能”這一術語([來源](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))。
+
+> 學習的每一個方面或任何其他智能特徵都可以原則上如此精確地描述,以至於可以製造出模擬它的機器。
+
+---
+
+首席研究員、數學教授John McCarthy希望“基於這樣的猜想進行研究,即學習的每一個方面或任何其他智能特徵都可以原則上如此精確地描述,以至於可以製造出模擬它的機器。”參與者包括另一位該領域的傑出人物Marvin Minsky。
+
+該研討會被認為促進並激發了多個討論,包括“符號方法的興起、專注於有限領域的系統(早期專家系統)以及演繹系統與歸納系統之間的對比。”([來源](https://wikipedia.org/wiki/Dartmouth_workshop))。
+
+---
+## 1956年 - 1974年:“黃金時代”
+
+從1950年代到70年代中期,人們對人工智能能夠解決許多問題充滿樂觀。1967年,Marvin Minsky自信地表示:“在一代人的時間內……創造‘人工智能’的問題將基本得到解決。”(Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
+
+自然語言處理研究蓬勃發展,搜索技術得到了改進並變得更強大,“微世界”的概念被創造出來,簡單的任務可以通過簡單的語言指令完成。
+
+---
+
+研究得到了政府機構的充分資助,計算和算法方面取得了進展,智能機器的原型被製造出來。其中一些機器包括:
+
+* [Shakey機器人](https://wikipedia.org/wiki/Shakey_the_robot),它能夠智能地移動並決定如何執行任務。
+
+ 
+ > 1972年的Shakey
+
+---
+
+* Eliza,一個早期的“聊天機器人”,能夠與人交談並充當一個原始的“治療師”。你將在自然語言處理課程中學到更多關於Eliza的內容。
+
+ 
+ > Eliza的一個版本,聊天機器人
+
+---
+
+* “積木世界”是一個微世界的例子,積木可以堆疊和排序,並且可以進行教導機器做出決策的實驗。使用像[SHRDLU](https://wikipedia.org/wiki/SHRDLU)這樣的庫進行的研究推動了語言處理的進步。
+
+ [](https://www.youtube.com/watch?v=QAJz4YKUwqw "積木世界與SHRDLU")
+
+ > 🎥 點擊上方圖片觀看視頻:積木世界與SHRDLU
+
+---
+## 1974年 - 1980年:“人工智能寒冬”
+
+到70年代中期,製造“智能機器”的複雜性已被低估,而其承諾在當時的計算能力下被過度吹捧。資金枯竭,對該領域的信心減弱。一些影響信心的問題包括:
+---
+- **限制**。計算能力過於有限。
+- **組合爆炸**。隨著對計算機的要求增加,需要訓練的參數數量呈指數增長,而計算能力和性能並未同步發展。
+- **數據匱乏**。數據的匱乏阻礙了測試、開發和改進算法的過程。
+- **我們是否在問正確的問題?**。所提出的問題本身開始受到質疑。研究人員開始面臨對其方法的批評:
+ - 圖靈測試因“中文房間理論”等觀點受到質疑,該理論認為“編程一台數字計算機可能使其看似理解語言,但無法產生真正的理解。”([來源](https://plato.stanford.edu/entries/chinese-room/))
+ - 將像“治療師”ELIZA這樣的人工智能引入社會的倫理問題受到挑戰。
+
+---
+
+同時,各種人工智能思想流派開始形成。“[凌亂派與整潔派](https://wikipedia.org/wiki/Neats_and_scruffies)”的二分法逐漸建立。_凌亂派_實驗室通過不斷調整程序直到達到預期結果。_整潔派_實驗室則“專注於邏輯和正式問題解決”。ELIZA和SHRDLU是著名的_凌亂派_系統。在1980年代,隨著對機器學習系統可重現性的需求出現,_整潔派_方法逐漸占據主導地位,因為其結果更具解釋性。
+
+---
+## 1980年代 專家系統
+
+隨著該領域的發展,其對商業的益處變得更加明顯,1980年代“專家系統”的普及也隨之而來。“專家系統是人工智能(AI)軟件中最早真正成功的形式之一。”([來源](https://wikipedia.org/wiki/Expert_system))
+
+這類系統實際上是_混合型_,部分由定義業務需求的規則引擎組成,部分由利用規則系統推導新事實的推理引擎組成。
+
+這一時期也看到對神經網絡的關注逐漸增加。
+
+---
+## 1987年 - 1993年:人工智能“寒潮”
+
+專家系統硬件的專業化程度過高,導致其不幸地變得過於專業化。個人電腦的興起也與這些大型、專業化、集中化系統形成競爭。計算的民主化已經開始,並最終為現代大數據的爆炸鋪平了道路。
+
+---
+## 1993年 - 2011年
+
+這一時期為機器學習和人工智能解決早期因數據和計算能力不足而產生的問題開啟了新篇章。數據量開始迅速增加並變得更容易獲得,無論是好是壞,尤其是在2007年智能手機出現之後。計算能力呈指數增長,算法也隨之演化。該領域開始成熟,過去自由奔放的日子逐漸凝聚成一門真正的學科。
+
+---
+## 現在
+
+如今,機器學習和人工智能幾乎觸及我們生活的每一部分。這一時代呼籲我們仔細理解這些算法對人類生活的風險和潛在影響。正如微軟的Brad Smith所說:“信息技術提出了一些涉及基本人權保護的問題,比如隱私和言論自由。這些問題加重了創造這些產品的科技公司的責任。在我們看來,這些問題也呼籲政府進行深思熟慮的監管以及制定可接受使用的規範。”([來源](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/))
+
+---
+
+未來會如何仍有待觀察,但理解這些計算機系統及其運行的軟件和算法至關重要。我們希望這份課程能幫助你更好地理解,從而自己做出判斷。
+
+[](https://www.youtube.com/watch?v=mTtDfKgLm54 "深度學習的歷史")
+> 🎥 點擊上方圖片觀看視頻:Yann LeCun在這次講座中討論深度學習的歷史
+
+---
+## 🚀挑戰
+
+深入研究這些歷史時刻中的一個,了解背後的人物。這些人物非常有趣,沒有任何科學發現是在文化真空中誕生的。你發現了什麼?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+---
+## 回顧與自學
+
+以下是一些可以觀看和聆聽的內容:
+
+[這個播客中,Amy Boyd討論了人工智能的演變](http://runasradio.com/Shows/Show/739)
+
+[](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy Boyd講述人工智能的歷史")
+
+---
+
+## 作業
+
+[創建一個時間線](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/2-history-of-ML/assignment.md b/translations/zh-HK/1-Introduction/2-history-of-ML/assignment.md
new file mode 100644
index 000000000..07fe980eb
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/2-history-of-ML/assignment.md
@@ -0,0 +1,16 @@
+# 建立時間軸
+
+## 指引
+
+使用[此存庫](https://github.com/Digital-Humanities-Toolkit/timeline-builder),建立一個關於算法、數學、統計、人工智能或機器學習歷史某方面的時間軸,或者結合以上幾個主題。你可以專注於一個人物、一個想法,或者一段長時間的思想演變。請確保加入多媒體元素。
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| -------- | ----------------------------------------------- | -------------------------------------- | -------------------------------------------------------------- |
+| | 提供了一個部署好的時間軸作為 GitHub 頁面 | 程式碼不完整且未部署 | 時間軸不完整,研究不充分且未部署 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/3-fairness/README.md b/translations/zh-HK/1-Introduction/3-fairness/README.md
new file mode 100644
index 000000000..a5e1100b0
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/3-fairness/README.md
@@ -0,0 +1,161 @@
+# 使用負責任的人工智能構建機器學習解決方案
+
+
+> 草圖由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 提供
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 簡介
+
+在這個課程中,你將開始了解機器學習如何以及正在影響我們的日常生活。即使是現在,系統和模型已經參與了日常的決策任務,例如醫療診斷、貸款批准或欺詐檢測。因此,確保這些模型能夠提供值得信賴的結果是非常重要的。就像任何軟件應用程序一樣,人工智能系統可能會未達預期或產生不理想的結果。因此,理解和解釋人工智能模型的行為是至關重要的。
+
+想像一下,當你用來構建這些模型的數據缺乏某些人口統計數據(例如種族、性別、政治觀點、宗教)或不成比例地代表某些人口統計數據時會發生什麼?如果模型的輸出被解讀為偏向某些人口統計數據,又會有什麼後果?此外,當模型產生不良結果並對人們造成傷害時,會發生什麼?誰應該對人工智能系統的行為負責?這些是我們在這個課程中將探討的一些問題。
+
+在這節課中,你將:
+
+- 提高對機器學習中公平性及相關傷害的重要性的認識。
+- 熟悉探索異常值和不尋常情況以確保可靠性和安全性的實踐。
+- 理解設計包容性系統以賦能每個人的必要性。
+- 探討保護數據和個人隱私與安全的重要性。
+- 認識到採用透明化方法解釋人工智能模型行為的必要性。
+- 意識到責任感對於建立對人工智能系統的信任至關重要。
+
+## 先修要求
+
+作為先修要求,請完成“負責任人工智能原則”學習路徑,並觀看以下主題的視頻:
+
+通過以下[學習路徑](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)了解更多關於負責任人工智能的內容。
+
+[](https://youtu.be/dnC8-uUZXSc "微軟的負責任人工智能方法")
+
+> 🎥 點擊上方圖片觀看視頻:微軟的負責任人工智能方法
+
+## 公平性
+
+人工智能系統應該公平對待每個人,避免對相似群體的人產生不同的影響。例如,當人工智能系統提供醫療建議、貸款申請或就業建議時,應該對具有相似症狀、財務狀況或專業資格的人給出相同的建議。我們每個人作為人類,都帶有影響我們決策和行動的固有偏見。這些偏見可能會體現在我們用來訓練人工智能系統的數據中。有時,這種操控可能是無意的。我們往往很難有意識地知道自己何時在數據中引入了偏見。
+
+**「不公平」** 包括對某些群體(例如基於種族、性別、年齡或殘疾狀況定義的群體)的負面影響或「傷害」。主要與公平性相關的傷害可以分為以下幾類:
+
+- **分配**:例如,偏向某一性別或種族。
+- **服務質量**:如果你只針對一個特定場景訓練數據,而現實情況更為複雜,則會導致服務表現不佳。例如,一個無法感應深色皮膚的洗手液分配器。[參考](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773)
+- **貶低**:不公平地批評或標籤某事或某人。例如,一個圖像標籤技術曾經將深色皮膚的人的照片錯誤標籤為大猩猩。
+- **過度或不足代表**:某些群體在某些職業中未被看到,而任何繼續推動這種情況的服務或功能都在助長傷害。
+- **刻板印象**:將某一群體與預先分配的屬性聯繫起來。例如,英語和土耳其語之間的語言翻譯系統可能因與性別相關的刻板印象而出現不準確。
+
+
+> 翻譯成土耳其語
+
+
+> 翻譯回英語
+
+在設計和測試人工智能系統時,我們需要確保人工智能是公平的,並且不會被編程為做出偏見或歧視性的決策,這些決策是人類也被禁止做出的。保證人工智能和機器學習的公平性仍然是一個複雜的社會技術挑戰。
+
+### 可靠性與安全性
+
+為了建立信任,人工智能系統需要在正常和意外情況下保持可靠、安全和一致。了解人工智能系統在各種情況下的行為,尤其是在異常情況下的行為,是非常重要的。在構建人工智能解決方案時,需要大量關注如何處理人工智能解決方案可能遇到的各種情況。例如,自動駕駛汽車需要將人們的安全放在首位。因此,為汽車提供動力的人工智能需要考慮汽車可能遇到的所有可能情況,例如夜晚、雷暴或暴風雪、孩子橫穿馬路、寵物、道路施工等。人工智能系統能夠可靠、安全地處理廣泛條件的能力,反映了數據科學家或人工智能開發者在設計或測試系統時考慮的預見性水平。
+
+> [🎥 點擊這裡觀看視頻:](https://www.microsoft.com/videoplayer/embed/RE4vvIl)
+
+### 包容性
+
+人工智能系統應該被設計為能夠吸引並賦能每個人。在設計和實施人工智能系統時,數據科學家和人工智能開發者需要識別並解決系統中可能無意中排除某些人的潛在障礙。例如,全球有10億殘疾人士。隨著人工智能的進步,他們可以更輕鬆地獲取廣泛的信息和機會。通過解決這些障礙,可以創造創新機會,並開發出能為每個人帶來更好體驗的人工智能產品。
+
+> [🎥 點擊這裡觀看視頻:人工智能中的包容性](https://www.microsoft.com/videoplayer/embed/RE4vl9v)
+
+### 安全性與隱私
+
+人工智能系統應該是安全的,並尊重人們的隱私。如果系統威脅到人們的隱私、信息或生命,人們對其的信任就會減少。在訓練機器學習模型時,我們依賴數據來產生最佳結果。在此過程中,必須考慮數據的來源和完整性。例如,數據是用戶提交的還是公開可用的?接下來,在處理數據時,開發能夠保護機密信息並抵禦攻擊的人工智能系統至關重要。隨著人工智能的普及,保護隱私和確保重要的個人和商業信息的安全變得越來越重要和複雜。隱私和數據安全問題對於人工智能尤為重要,因為人工智能系統需要訪問數據來對人們做出準確且有根據的預測和決策。
+
+> [🎥 點擊這裡觀看視頻:人工智能中的安全性](https://www.microsoft.com/videoplayer/embed/RE4voJF)
+
+- 作為一個行業,我們在隱私和安全性方面取得了顯著進展,這在很大程度上得益於如GDPR(通用數據保護條例)等法規的推動。
+- 然而,對於人工智能系統,我們必須承認在需要更多個人數據以使系統更加個性化和有效與隱私之間的緊張關係。
+- 就像互聯網誕生時連接計算機一樣,我們也看到了與人工智能相關的安全問題數量的急劇增加。
+- 同時,我們也看到了人工智能被用於改善安全性的例子。例如,大多數現代防病毒掃描器今天都由人工智能啟發的啟發式方法驅動。
+- 我們需要確保我們的數據科學流程與最新的隱私和安全實踐和諧融合。
+
+### 透明性
+
+人工智能系統應該是可理解的。透明性的一個關鍵部分是解釋人工智能系統及其組件的行為。提高對人工智能系統的理解需要利益相關者了解它們如何以及為什麼運作,以便能夠識別潛在的性能問題、安全和隱私問題、偏見、排他性做法或意外結果。我們還認為,那些使用人工智能系統的人應該誠實並坦率地說明何時、為什麼以及如何選擇部署它們,以及它們使用的系統的局限性。例如,如果一家銀行使用人工智能系統來支持其消費者貸款決策,則需要檢查結果並了解哪些數據影響了系統的建議。隨著政府開始對各行業的人工智能進行監管,數據科學家和組織必須解釋人工智能系統是否符合監管要求,尤其是在出現不良結果時。
+
+> [🎥 點擊這裡觀看視頻:人工智能中的透明性](https://www.microsoft.com/videoplayer/embed/RE4voJF)
+
+- 由於人工智能系統非常複雜,很難理解它們的工作原理並解釋結果。
+- 這種缺乏理解影響了這些系統的管理、運營和文檔化方式。
+- 更重要的是,這種缺乏理解影響了基於這些系統產生的結果所做的決策。
+
+### 責任
+
+設計和部署人工智能系統的人必須對其系統的運作負責。責任的必要性在敏感技術(如面部識別)中尤為重要。最近,對面部識別技術的需求不斷增長,尤其是來自執法機構,他們看到了該技術在尋找失蹤兒童等用途中的潛力。然而,這些技術可能會被政府用來威脅公民的基本自由,例如,通過對特定個體進行持續監控。因此,數據科學家和組織需要對其人工智能系統對個人或社會的影響負責。
+
+[](https://www.youtube.com/watch?v=Wldt8P5V6D0 "微軟的負責任人工智能方法")
+
+> 🎥 點擊上方圖片觀看視頻:面部識別可能導致大規模監控的警告
+
+最終,作為第一代將人工智能帶入社會的世代,我們面臨的最大問題之一是如何確保計算機始終對人類負責,以及如何確保設計計算機的人對其他人負責。
+
+## 影響評估
+
+在訓練機器學習模型之前,進行影響評估以了解人工智能系統的目的、預期用途、部署地點以及與系統交互的人是非常重要的。這些評估對於評審者或測試者來說非常有幫助,因為它們可以知道在識別潛在風險和預期後果時需要考慮哪些因素。
+
+進行影響評估時的重點領域包括:
+
+* **對個人的不利影響**。意識到任何限制或要求、不支持的用途或任何已知的限制會妨礙系統性能,對於確保系統不會以可能對個人造成傷害的方式使用至關重要。
+* **數據要求**。了解系統如何以及在哪裡使用數據,使評審者能夠探索需要注意的任何數據要求(例如GDPR或HIPPA數據法規)。此外,檢查數據的來源或數量是否足夠用於訓練。
+* **影響摘要**。收集使用系統可能產生的潛在傷害清單。在機器學習生命周期中,檢查是否已緩解或解決識別出的問題。
+* **每個六大核心原則的適用目標**。評估是否達到了每個原則的目標,以及是否存在任何差距。
+
+## 使用負責任人工智能進行調試
+
+與調試軟件應用程序類似,調試人工智能系統是識別和解決系統問題的必要過程。許多因素可能導致模型未按預期或負責任地運行。大多數傳統的模型性能指標是模型性能的定量匯總,這不足以分析模型如何違反負責任人工智能原則。此外,機器學習模型是一個黑箱,難以理解其結果的驅動因素或在出錯時提供解釋。在本課程的後續部分,我們將學習如何使用負責任人工智能儀表板來幫助調試人工智能系統。該儀表板為數據科學家和人工智能開發者提供了一個全面的工具,用於執行以下操作:
+
+* **錯誤分析**。識別可能影響系統公平性或可靠性的模型錯誤分佈。
+* **模型概覽**。發現模型在數據群體中的性能差異。
+* **數據分析**。了解數據分佈並識別數據中可能導致公平性、包容性和可靠性問題的潛在偏見。
+* **模型可解釋性**。了解影響或影響模型預測的因素。這有助於解釋模型的行為,這對於透明性和責任感至關重要。
+
+## 🚀 挑戰
+
+為了防止傷害的產生,我們應該:
+
+- 確保參與系統工作的團隊成員具有多樣化的背景和觀點
+- 投資於反映我們社會多樣性的數據集
+- 在機器學習生命周期中開發更好的方法來檢測和糾正負責任人工智能問題
+
+思考一些現實生活中的場景,這些場景中模型的不可信性在模型構建和使用中顯而易見。我們還應該考慮什麼?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在這節課中,你已經學習了機器學習中公平性和不公平性概念的一些基礎知識。
+觀看這個工作坊以深入了解相關主題:
+
+- 追求負責任的人工智能:將原則付諸實踐,由 Besmira Nushi、Mehrnoosh Sameki 和 Amit Sharma 主講
+
+[](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: 建立負責任人工智能的開源框架")
+
+> 🎥 點擊上方圖片觀看影片:RAI Toolbox: 建立負責任人工智能的開源框架,由 Besmira Nushi、Mehrnoosh Sameki 和 Amit Sharma 主講
+
+此外,閱讀以下資源:
+
+- 微軟的負責任人工智能資源中心:[負責任人工智能資源 – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4)
+
+- 微軟的 FATE 研究小組:[FATE:人工智能中的公平性、問責性、透明性和倫理 - Microsoft Research](https://www.microsoft.com/research/theme/fate/)
+
+RAI 工具箱:
+
+- [負責任人工智能工具箱 GitHub 儲存庫](https://github.com/microsoft/responsible-ai-toolbox)
+
+了解 Azure Machine Learning 的工具如何確保公平性:
+
+- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
+
+## 作業
+
+[探索 RAI 工具箱](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/3-fairness/assignment.md b/translations/zh-HK/1-Introduction/3-fairness/assignment.md
new file mode 100644
index 000000000..21a7f24e4
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/3-fairness/assignment.md
@@ -0,0 +1,16 @@
+# 探索負責任人工智能工具箱
+
+## 說明
+
+在本課程中,你學習了負責任人工智能工具箱,這是一個「開源、社群驅動的項目,旨在幫助數據科學家分析和改進人工智能系統。」在這次作業中,請探索 RAI 工具箱的一個[筆記本](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb),並在報告或演示中分享你的發現。
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| -------- | ----- | ----- | -------- |
+| | 提交了一份討論 Fairlearn 系統、運行的筆記本以及運行結果結論的報告或 PowerPoint 演示文稿 | 提交了一份報告但未包含結論 | 未提交報告 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/4-techniques-of-ML/README.md b/translations/zh-HK/1-Introduction/4-techniques-of-ML/README.md
new file mode 100644
index 000000000..8d9681158
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/4-techniques-of-ML/README.md
@@ -0,0 +1,123 @@
+# 機器學習技術
+
+建立、使用和維護機器學習模型及其所需數據的過程,與許多其他開發工作流程有很大的不同。在本課中,我們將揭開這個過程的神秘面紗,並概述您需要了解的主要技術。您將學到:
+
+- 從高層次理解機器學習的基本流程。
+- 探索基本概念,例如「模型」、「預測」和「訓練數據」。
+
+## [課前小測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+[](https://youtu.be/4NGM0U2ZSHU "機器學習初學者 - 機器學習技術")
+
+> 🎥 點擊上方圖片觀看一段簡短的影片,了解本課內容。
+
+## 簡介
+
+從高層次來看,創建機器學習(ML)流程的技術包括以下幾個步驟:
+
+1. **確定問題**。大多數機器學習流程始於提出一個無法通過簡單條件程序或基於規則的引擎解答的問題。這些問題通常圍繞基於數據集合進行的預測。
+2. **收集和準備數據**。為了回答您的問題,您需要數據。數據的質量,有時還包括數量,將決定您能多好地回答最初的問題。數據可視化是這個階段的重要部分。這個階段還包括將數據分為訓練組和測試組以構建模型。
+3. **選擇訓練方法**。根據您的問題和數據的性質,您需要選擇如何訓練模型,以便最好地反映數據並對其進行準確預測。這是機器學習過程中需要專業知識且通常需要大量試驗的部分。
+4. **訓練模型**。使用訓練數據,您將使用各種算法訓練模型以識別數據中的模式。模型可能會利用內部權重,這些權重可以調整以優化某些數據部分,從而構建更好的模型。
+5. **評估模型**。使用從未見過的數據(測試數據)來檢查模型的表現。
+6. **參數調整**。根據模型的表現,您可以使用不同的參數或變量重新進行訓練,這些參數或變量控制訓練模型時所用算法的行為。
+7. **進行預測**。使用新輸入測試模型的準確性。
+
+## 該問什麼問題
+
+電腦特別擅長發現數據中的隱藏模式。這對於研究人員來說非常有用,因為他們可能有一些無法通過條件規則引擎輕鬆回答的問題。例如,針對精算任務,數據科學家可能能夠手工構建關於吸煙者與非吸煙者死亡率的規則。
+
+然而,當涉及到許多其他變量時,機器學習模型可能更有效地根據過去的健康記錄預測未來的死亡率。一個更令人愉快的例子可能是根據包括緯度、經度、氣候變化、靠近海洋的距離、噴流模式等數據,預測某地四月份的天氣。
+
+✅ 這份[簡報](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)提供了使用機器學習進行天氣分析的歷史視角。
+
+## 構建前的任務
+
+在開始構建模型之前,您需要完成幾項任務。為了測試您的問題並根據模型的預測形成假設,您需要識別並配置幾個元素。
+
+### 數據
+
+為了能夠以任何確定性回答您的問題,您需要足夠數量且類型正確的數據。在這個階段,您需要完成以下兩件事:
+
+- **收集數據**。記住上一課關於數據分析公平性的內容,謹慎收集數據。注意數據的來源、可能存在的內在偏見,並記錄其來源。
+- **準備數據**。數據準備過程包括多個步驟。如果數據來自不同來源,您可能需要整理並標準化數據。您可以通過各種方法提高數據的質量和數量,例如將字符串轉換為數字(如我們在[聚類](../../5-Clustering/1-Visualize/README.md)中所做的)。您還可以基於原始數據生成新數據(如我們在[分類](../../4-Classification/1-Introduction/README.md)中所做的)。您可以清理和編輯數據(如我們在[Web 應用](../../3-Web-App/README.md)課程之前所做的)。最後,根據您的訓練技術,您可能還需要隨機化和打亂數據。
+
+✅ 在收集和處理數據後,花點時間檢查其結構是否能幫助您解決預期問題。正如我們在[聚類](../../5-Clustering/1-Visualize/README.md)課程中發現的那樣,數據可能無法很好地完成給定任務!
+
+### 特徵與目標
+
+[特徵](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection)是數據的一個可測量屬性。在許多數據集中,它通常以列標題的形式表達,例如「日期」、「大小」或「顏色」。特徵變量通常在代碼中表示為 `X`,代表用於訓練模型的輸入變量。
+
+目標是您試圖預測的事物。目標通常在代碼中表示為 `y`,代表您試圖從數據中回答的問題。例如:在十二月,哪種**顏色**的南瓜最便宜?在舊金山,哪些街區的房地產**價格**最好?有時目標也被稱為標籤屬性。
+
+### 選擇您的特徵變量
+
+🎓 **特徵選擇與特徵提取** 如何知道在構建模型時選擇哪個變量?您可能需要通過特徵選擇或特徵提取的過程來選擇最合適的變量以構建性能最佳的模型。然而,這兩者並不相同:「特徵提取通過原始特徵的函數創建新特徵,而特徵選擇則返回特徵的子集。」([來源](https://wikipedia.org/wiki/Feature_selection))
+
+### 可視化數據
+
+數據科學家工具箱中的一個重要部分是使用 Seaborn 或 MatPlotLib 等優秀庫來可視化數據的能力。通過可視化數據,您可能會發現可以利用的隱藏相關性。您的可視化還可能幫助您發現偏見或數據不平衡(如我們在[分類](../../4-Classification/2-Classifiers-1/README.md)中發現的那樣)。
+
+### 分割數據集
+
+在訓練之前,您需要將數據集分為兩部分或更多部分,這些部分的大小不相等,但仍能很好地代表數據。
+
+- **訓練集**。這部分數據集用於訓練模型。它構成了原始數據集的大部分。
+- **測試集**。測試數據集是從原始數據中獨立提取的一組數據,用於確認構建的模型的性能。
+- **驗證集**。驗證集是一組較小的獨立數據,用於調整模型的超參數或架構以改進模型。根據數據的大小和您提出的問題,您可能不需要構建這第三組數據(如我們在[時間序列預測](../../7-TimeSeries/1-Introduction/README.md)中提到的那樣)。
+
+## 構建模型
+
+使用您的訓練數據,您的目標是使用各種算法**訓練**模型,從而構建數據的統計表示。訓練模型使其接觸數據,並讓其對發現的模式進行假設、驗證並接受或拒絕。
+
+### 決定訓練方法
+
+根據您的問題和數據的性質,您將選擇一種訓練方法。通過瀏覽[Scikit-learn 的文檔](https://scikit-learn.org/stable/user_guide.html)(我們在本課程中使用),您可以探索多種訓練模型的方法。根據您的經驗,您可能需要嘗試多種方法以構建最佳模型。您可能會經歷一個過程,數據科學家通過向模型提供未見過的數據來評估其性能,檢查準確性、偏差和其他質量問題,並選擇最適合當前任務的訓練方法。
+
+### 訓練模型
+
+有了訓練數據,您可以開始「擬合」數據以創建模型。您會注意到,在許多機器學習庫中,代碼中會出現「model.fit」——這時您將特徵變量作為值的數組(通常是 `X`)以及目標變量(通常是 `y`)傳入。
+
+### 評估模型
+
+訓練過程完成後(對於大型模型,可能需要多次迭代或「epoch」),您可以使用測試數據來評估模型的質量,檢查其性能。這些數據是原始數據的一部分,模型之前未曾分析過。您可以打印出一個關於模型質量的指標表。
+
+🎓 **模型擬合**
+
+在機器學習的背景下,模型擬合指的是模型的底層函數在嘗試分析未見過的數據時的準確性。
+
+🎓 **欠擬合**和**過擬合**是常見問題,會降低模型質量。欠擬合的模型無法很好地分析訓練數據或未見過的數據,而過擬合的模型則過於貼合訓練數據,因為它過於詳細地學習了數據的細節和噪聲。
+
+
+> 圖表由 [Jen Looper](https://twitter.com/jenlooper) 提供
+
+## 參數調整
+
+完成初步訓練後,觀察模型的質量,並考慮通過調整其「超參數」來改進模型。閱讀更多相關內容:[文檔](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)。
+
+## 預測
+
+這是您可以使用全新數據測試模型準確性的時刻。在「應用」機器學習的場景中,當您構建用於生產的網頁資產時,這個過程可能涉及收集用戶輸入(例如按下按鈕)來設置變量,並將其發送到模型進行推斷或評估。
+
+在這些課程中,您將學習如何使用這些步驟來準備、構建、測試、評估和預測——這些都是數據科學家的基本技能,隨著您的進步,您將逐步成為一名「全棧」機器學習工程師。
+
+---
+
+## 🚀挑戰
+
+繪製一個反映機器學習從業者步驟的流程圖。您認為自己目前處於哪個步驟?您預測在哪些方面會遇到困難?哪些部分對您來說似乎很容易?
+
+## [課後小測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在線搜索數據科學家討論日常工作的訪談。這裡有一個[例子](https://www.youtube.com/watch?v=Z3IjgbbCEfs)。
+
+## 作業
+
+[訪問一位數據科學家](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/4-techniques-of-ML/assignment.md b/translations/zh-HK/1-Introduction/4-techniques-of-ML/assignment.md
new file mode 100644
index 000000000..5532f4757
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/4-techniques-of-ML/assignment.md
@@ -0,0 +1,16 @@
+# 訪問數據科學家
+
+## 指引
+
+在你的公司、用戶群組、朋友或同學之間,找一位專業從事數據科學工作的人士進行訪談。撰寫一篇短文(500字),描述他們的日常工作內容。他們是專家,還是負責“全端”工作?
+
+## 評分標準
+
+| 評分標準 | 優秀表現 | 合格表現 | 需要改進 |
+| -------- | ------------------------------------------------------------------------ | ------------------------------------------------------------- | --------------------- |
+| | 提交一篇符合字數要求且有來源註明的文章,並以 .doc 文件格式呈現 | 文章來源註明不充分或字數少於要求 | 未提交文章 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/1-Introduction/README.md b/translations/zh-HK/1-Introduction/README.md
new file mode 100644
index 000000000..cd5c763f8
--- /dev/null
+++ b/translations/zh-HK/1-Introduction/README.md
@@ -0,0 +1,28 @@
+# 機器學習簡介
+
+在這部分課程中,你將了解機器學習領域的基本概念、它是什麼,以及它的歷史和研究人員使用的技術。讓我們一起探索這個嶄新的機器學習世界吧!
+
+
+> 照片由 Bill Oxford 提供,來自 Unsplash
+
+### 課程
+
+1. [機器學習簡介](1-intro-to-ML/README.md)
+1. [機器學習與人工智能的歷史](2-history-of-ML/README.md)
+1. [公平性與機器學習](3-fairness/README.md)
+1. [機器學習的技術](4-techniques-of-ML/README.md)
+
+### 致謝
+
+「機器學習簡介」由包括 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)、[Ornella Altunyan](https://twitter.com/ornelladotcom) 和 [Jen Looper](https://twitter.com/jenlooper) 在內的團隊用 ♥️ 編寫。
+
+「機器學習的歷史」由 [Jen Looper](https://twitter.com/jenlooper) 和 [Amy Boyd](https://twitter.com/AmyKateNicho) 用 ♥️ 編寫。
+
+「公平性與機器學習」由 [Tomomi Imura](https://twitter.com/girliemac) 用 ♥️ 編寫。
+
+「機器學習的技術」由 [Jen Looper](https://twitter.com/jenlooper) 和 [Chris Noring](https://twitter.com/softchris) 用 ♥️ 編寫。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/1-Tools/README.md b/translations/zh-HK/2-Regression/1-Tools/README.md
new file mode 100644
index 000000000..2024b8807
--- /dev/null
+++ b/translations/zh-HK/2-Regression/1-Tools/README.md
@@ -0,0 +1,230 @@
+# 使用 Python 和 Scikit-learn 建立回歸模型
+
+
+
+> 手繪筆記由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 提供
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+> ### [本課程亦提供 R 語言版本!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html)
+
+## 簡介
+
+在這四節課中,你將學習如何建立回歸模型。我們稍後會討論這些模型的用途。但在開始之前,請確保你已經準備好合適的工具來進行這個過程!
+
+在本課程中,你將學到如何:
+
+- 配置你的電腦以進行本地機器學習任務。
+- 使用 Jupyter notebooks。
+- 安裝並使用 Scikit-learn。
+- 通過實際操作探索線性回歸。
+
+## 安裝與配置
+
+[](https://youtu.be/-DfeD2k2Kj0 "機器學習初學者 - 配置工具以建立機器學習模型")
+
+> 🎥 點擊上方圖片觀看一段短片,了解如何配置你的電腦以進行機器學習。
+
+1. **安裝 Python**。確保你的電腦已安裝 [Python](https://www.python.org/downloads/)。Python 是進行數據科學和機器學習任務的重要工具。大多數電腦系統已經預裝了 Python。你也可以使用一些方便的 [Python 編碼包](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott),以簡化安裝過程。
+
+ 不過,某些 Python 的使用場景可能需要特定版本的軟件,因此建議使用 [虛擬環境](https://docs.python.org/3/library/venv.html) 來管理不同的版本。
+
+2. **安裝 Visual Studio Code**。確保你的電腦已安裝 Visual Studio Code。按照這些指引完成 [Visual Studio Code 的基本安裝](https://code.visualstudio.com/)。在本課程中,你將在 Visual Studio Code 中使用 Python,因此建議熟悉如何為 Python 開發 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott)。
+
+ > 透過這個 [學習模組集合](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) 來熟悉 Python。
+ >
+ > [](https://youtu.be/yyQM70vi7V8 "使用 Visual Studio Code 配置 Python")
+ >
+ > 🎥 點擊上方圖片觀看影片:在 VS Code 中使用 Python。
+
+3. **安裝 Scikit-learn**,按照 [這些指引](https://scikit-learn.org/stable/install.html) 進行安裝。由於需要使用 Python 3,建議使用虛擬環境。如果你使用的是 M1 Mac,請參考上述頁面中的特別指引。
+
+4. **安裝 Jupyter Notebook**。你需要 [安裝 Jupyter 套件](https://pypi.org/project/jupyter/)。
+
+## 你的機器學習開發環境
+
+你將使用 **notebooks** 來開發 Python 程式碼並建立機器學習模型。這種文件格式是數據科學家常用的工具,其文件副檔名為 `.ipynb`。
+
+Notebooks 是一種互動式環境,允許開發者撰寫程式碼並添加註解或文件,這對於實驗性或研究導向的項目非常有幫助。
+
+[](https://youtu.be/7E-jC8FLA2E "機器學習初學者 - 配置 Jupyter Notebooks 開始建立回歸模型")
+
+> 🎥 點擊上方圖片觀看一段短片,了解如何進行此操作。
+
+### 練習 - 使用 Notebook
+
+在此資料夾中,你會找到檔案 _notebook.ipynb_。
+
+1. 在 Visual Studio Code 中打開 _notebook.ipynb_。
+
+ Jupyter 伺服器將啟動,並使用 Python 3+。你會看到 Notebook 中可以執行的程式碼區塊。點擊類似播放按鈕的圖標即可執行程式碼區塊。
+
+2. 選擇 `md` 圖標,添加一些 Markdown,並輸入以下文字:**# Welcome to your notebook**。
+
+ 接著,添加一些 Python 程式碼。
+
+3. 在程式碼區塊中輸入 **print('hello notebook')**。
+4. 點擊箭頭執行程式碼。
+
+ 你應該會看到以下輸出:
+
+ ```output
+ hello notebook
+ ```
+
+
+
+你可以在程式碼中穿插註解,為 Notebook 添加自我文件化的功能。
+
+✅ 想一想,網頁開發者的工作環境與數據科學家的工作環境有何不同。
+
+## 開始使用 Scikit-learn
+
+現在你的本地環境已經配置好 Python,並且你對 Jupyter Notebooks 感到熟悉,接下來讓我們熟悉一下 Scikit-learn(發音為 `sci`,如 `science`)。Scikit-learn 提供了一個[廣泛的 API](https://scikit-learn.org/stable/modules/classes.html#api-ref),幫助你執行機器學習任務。
+
+根據其[官方網站](https://scikit-learn.org/stable/getting_started.html)的描述,"Scikit-learn 是一個開源的機器學習庫,支持監督式和非監督式學習。它還提供了多種工具,用於模型擬合、數據預處理、模型選擇與評估,以及其他多種實用功能。"
+
+在本課程中,你將使用 Scikit-learn 和其他工具來建立機器學習模型,執行我們所稱的「傳統機器學習」任務。我們刻意避開了神經網絡和深度學習,因為這些內容將在我們即將推出的「AI 初學者」課程中詳細介紹。
+
+Scikit-learn 使得建立模型並評估其使用變得簡單。它主要專注於處理數值數據,並包含多個現成的數據集作為學習工具。它還提供了預建模型供學生嘗試。接下來,我們將探索如何加載預打包數據並使用內建的估算器來建立第一個機器學習模型。
+
+## 練習 - 你的第一個 Scikit-learn Notebook
+
+> 本教程靈感來自 Scikit-learn 網站上的 [線性回歸範例](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py)。
+
+[](https://youtu.be/2xkXL5EUpS0 "機器學習初學者 - 在 Python 中的第一個線性回歸項目")
+
+> 🎥 點擊上方圖片觀看一段短片,了解如何進行此練習。
+
+在與本課程相關的 _notebook.ipynb_ 文件中,清空所有程式碼區塊,點擊「垃圾桶」圖標。
+
+在本節中,你將使用 Scikit-learn 中內建的一個小型糖尿病數據集進行操作。假設你想測試一種針對糖尿病患者的治療方法。機器學習模型可能幫助你根據變量的組合,確定哪些患者對治療的反應更好。即使是一個非常基本的回歸模型,當可視化時,也可能顯示出有助於組織理論臨床試驗的變量信息。
+
+✅ 回歸方法有很多種類型,選擇哪一種取決於你想要解答的問題。如果你想預測某個年齡段的人的可能身高,你會使用線性回歸,因為你尋求的是一個**數值結果**。如果你想判斷某種菜餚是否應被歸類為素食,你尋求的是一個**類別分配**,因此你會使用邏輯回歸。稍後你會學到更多關於邏輯回歸的內容。想一想,你可以向數據提出哪些問題,並考慮哪種方法更合適。
+
+讓我們開始這個任務。
+
+### 導入庫
+
+在這個任務中,我們將導入一些庫:
+
+- **matplotlib**。這是一個有用的[繪圖工具](https://matplotlib.org/),我們將用它來創建折線圖。
+- **numpy**。[numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) 是一個處理 Python 數值數據的有用庫。
+- **sklearn**。這是 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) 庫。
+
+導入一些幫助完成任務的庫。
+
+1. 輸入以下程式碼以添加導入:
+
+ ```python
+ import matplotlib.pyplot as plt
+ import numpy as np
+ from sklearn import datasets, linear_model, model_selection
+ ```
+
+ 上述程式碼中,你導入了 `matplotlib` 和 `numpy`,並從 `sklearn` 中導入了 `datasets`、`linear_model` 和 `model_selection`。`model_selection` 用於將數據分割為訓練集和測試集。
+
+### 糖尿病數據集
+
+內建的 [糖尿病數據集](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) 包含 442 條糖尿病相關的數據樣本,具有 10 個特徵變量,其中一些包括:
+
+- age:年齡(以年為單位)
+- bmi:身體質量指數
+- bp:平均血壓
+- s1 tc:T 細胞(白血球的一種類型)
+
+✅ 此數據集包含「性別」作為研究糖尿病的重要特徵變量。許多醫學數據集都包含這種類型的二元分類。想一想,這樣的分類可能如何將某些群體排除在治療之外。
+
+現在,載入 X 和 y 數據。
+
+> 🎓 記住,這是監督式學習,我們需要一個名為 'y' 的目標變量。
+
+在新的程式碼區塊中,通過調用 `load_diabetes()` 載入糖尿病數據集。輸入參數 `return_X_y=True` 表示 `X` 將是數據矩陣,而 `y` 將是回歸目標。
+
+1. 添加一些打印命令以顯示數據矩陣的形狀及其第一個元素:
+
+ ```python
+ X, y = datasets.load_diabetes(return_X_y=True)
+ print(X.shape)
+ print(X[0])
+ ```
+
+ 你得到的回應是一個元組。你將元組的前兩個值分別賦值給 `X` 和 `y`。了解更多關於[元組](https://wikipedia.org/wiki/Tuple)。
+
+ 你可以看到這些數據包含 442 條記錄,每條記錄由 10 個元素組成的數組構成:
+
+ ```text
+ (442, 10)
+ [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076
+ -0.04340085 -0.00259226 0.01990842 -0.01764613]
+ ```
+
+ ✅ 想一想數據與回歸目標之間的關係。線性回歸預測特徵 X 和目標變量 y 之間的關係。你能在文檔中找到糖尿病數據集的[目標](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset)嗎?這個數據集展示了什麼?
+
+2. 接下來,選擇數據集的一部分進行繪圖,選擇數據集的第 3 列。你可以使用 `:` 運算符選擇所有行,然後使用索引(2)選擇第 3 列。你還可以使用 `reshape(n_rows, n_columns)` 將數據重塑為 2D 數組(繪圖所需)。如果其中一個參數為 -1,則對應的維度會自動計算。
+
+ ```python
+ X = X[:, 2]
+ X = X.reshape((-1,1))
+ ```
+
+ ✅ 隨時打印數據以檢查其形狀。
+
+3. 現在你已準備好繪製數據,可以看看機器是否能幫助確定數據集中數字之間的邏輯分界。為此,你需要將數據(X)和目標(y)分割為測試集和訓練集。Scikit-learn 提供了一種簡單的方法來完成這個操作;你可以在給定點分割測試數據。
+
+ ```python
+ X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)
+ ```
+
+4. 現在你可以訓練模型了!加載線性回歸模型,並使用 `model.fit()` 訓練 X 和 y 訓練集:
+
+ ```python
+ model = linear_model.LinearRegression()
+ model.fit(X_train, y_train)
+ ```
+
+ ✅ `model.fit()` 是你在許多機器學習庫(如 TensorFlow)中會看到的函數。
+
+5. 然後,使用測試數據創建預測,通過函數 `predict()` 完成。這將用於繪製數據組之間的分界線。
+
+ ```python
+ y_pred = model.predict(X_test)
+ ```
+
+6. 現在是時候在圖中顯示數據了。Matplotlib 是完成此任務的非常有用的工具。創建所有 X 和 y 測試數據的散點圖,並使用預測結果繪製一條線,該線位於模型數據組之間的最合適位置。
+
+ ```python
+ plt.scatter(X_test, y_test, color='black')
+ plt.plot(X_test, y_pred, color='blue', linewidth=3)
+ plt.xlabel('Scaled BMIs')
+ plt.ylabel('Disease Progression')
+ plt.title('A Graph Plot Showing Diabetes Progression Against BMI')
+ plt.show()
+ ```
+
+ 
+✅ 想一想這裡發生了什麼。一條直線穿過了許多小數據點,但它究竟在做什麼?你能否看出應該如何利用這條直線來預測一個新的、未見過的數據點應該在圖表的 y 軸上對應的位置?試著用語言描述這個模型的實際用途。
+
+恭喜你!你已經建立了你的第一個線性回歸模型,使用它進行了預測,並將結果顯示在圖表中!
+
+---
+## 🚀挑戰
+
+繪製這個數據集中的另一個變量。提示:編輯這一行:`X = X[:,2]`。根據這個數據集的目標,你能發現糖尿病作為一種疾病的進展有什麼特點?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在本教程中,你使用了簡單線性回歸,而不是單變量或多變量線性回歸。閱讀一些關於這些方法差異的資料,或者觀看[這段影片](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)。
+
+深入了解回歸的概念,並思考這種技術可以回答哪些類型的問題。參加這個[教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott)來加深你的理解。
+
+## 作業
+
+[另一個數據集](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/1-Tools/assignment.md b/translations/zh-HK/2-Regression/1-Tools/assignment.md
new file mode 100644
index 000000000..854e8a7a1
--- /dev/null
+++ b/translations/zh-HK/2-Regression/1-Tools/assignment.md
@@ -0,0 +1,18 @@
+# 使用 Scikit-learn 進行回歸分析
+
+## 指引
+
+查看 Scikit-learn 中的 [Linnerud 數據集](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud)。這個數據集有多個[目標值](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset):「它包含三個運動(數據)和三個生理(目標)變量,這些數據是從二十位中年男性在健身俱樂部收集的。」
+
+用自己的話描述如何建立一個回歸模型,繪製腰圍與完成仰臥起坐次數之間的關係。同樣,對該數據集中的其他數據點進行相同的操作。
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| ---------------------------- | --------------------------------- | ----------------------------- | -------------------------- |
+| 提交描述性段落 | 提交了一段撰寫良好的段落 | 提交了幾句簡短的句子 | 未提交任何描述 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/1-Tools/notebook.ipynb b/translations/zh-HK/2-Regression/1-Tools/notebook.ipynb
new file mode 100644
index 000000000..e69de29bb
diff --git a/translations/zh-HK/2-Regression/1-Tools/solution/Julia/README.md b/translations/zh-HK/2-Regression/1-Tools/solution/Julia/README.md
new file mode 100644
index 000000000..3b095b6c3
--- /dev/null
+++ b/translations/zh-HK/2-Regression/1-Tools/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/zh-HK/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb
new file mode 100644
index 000000000..901ca5b48
--- /dev/null
+++ b/translations/zh-HK/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb
@@ -0,0 +1,447 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {
+ "colab": {
+ "name": "lesson_1-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1",
+ "translation_date": "2025-09-03T19:43:50+00:00",
+ "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "YJUHCXqK57yz"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 回歸分析入門 - 第一課\n",
+ "\n",
+ "#### 放到實際情境中\n",
+ "\n",
+ "✅ 回歸分析方法有很多種,選擇哪一種取決於你想要解答的問題。如果你想預測某個年齡段的人可能的身高,你會使用 `線性回歸`,因為你在尋找一個**數值**。如果你想判斷某種菜式是否應該被視為純素,你在尋找一個**類別分配**,因此你會使用 `邏輯回歸`。稍後你會學到更多關於邏輯回歸的知識。試著思考一些你可以向數據提出的問題,以及哪種方法更適合回答這些問題。\n",
+ "\n",
+ "在這部分,你將使用一個[關於糖尿病的小型數據集](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)。假設你想測試一種針對糖尿病患者的治療方法。機器學習模型可能幫助你判斷哪些患者對治療的反應會更好,基於多種變數的組合。即使是一個非常基礎的回歸模型,當可視化時,也可能顯示出一些關於變數的信息,幫助你組織理論上的臨床試驗。\n",
+ "\n",
+ "既然如此,讓我們開始這項任務吧!\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 由 @allison_horst 創作的藝術作品 \n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "LWNNzfqd6feZ"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 1. 載入工具集\n",
+ "\n",
+ "在這個任務中,我們需要以下套件:\n",
+ "\n",
+ "- `tidyverse`:[tidyverse](https://www.tidyverse.org/) 是一個[由 R 套件組成的集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`:[tidymodels](https://www.tidymodels.org/) 框架是一個[套件集合](https://www.tidymodels.org/packages/),用於建模和機器學習。\n",
+ "\n",
+ "你可以使用以下指令安裝它們:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n",
+ "\n",
+ "以下的腳本會檢查你是否已安裝完成此模組所需的套件,並在缺少某些套件時為你安裝。\n"
+ ],
+ "metadata": {
+ "id": "FIo2YhO26wI9"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "source": [
+ "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n",
+ "pacman::p_load(tidyverse, tidymodels)"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Loading required package: pacman\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "id": "cIA9fz9v7Dss",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在,讓我們載入這些很棒的套件並使它們在我們目前的 R 工作環境中可用。(這只是為了說明,`pacman::p_load()` 已經為你完成了這個步驟)\n"
+ ],
+ "metadata": {
+ "id": "gpO_P_6f9WUG"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# load the core Tidyverse packages\r\n",
+ "library(tidyverse)\r\n",
+ "\r\n",
+ "# load the core Tidymodels packages\r\n",
+ "library(tidymodels)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "NLMycgG-9ezO"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 2. 糖尿病數據集\n",
+ "\n",
+ "在這個練習中,我們將運用回歸技巧,對糖尿病數據集進行預測。[糖尿病數據集](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) 包含 `442 個樣本`,包括 10 個預測特徵變數:`年齡`、`性別`、`身體質量指數`、`平均血壓`以及 `六項血清測量值`,還有一個結果變數 `y`:基線後一年疾病進展的定量測量。\n",
+ "\n",
+ "|觀察數量|442|\n",
+ "|----------------------|:---|\n",
+ "|預測變數數量|前 10 列為數值型預測變數|\n",
+ "|結果/目標|第 11 列為基線後一年疾病進展的定量測量|\n",
+ "|預測變數資訊|- 年齡(以年計算)\n",
+ "||- 性別\n",
+ "||- bmi 身體質量指數\n",
+ "||- bp 平均血壓\n",
+ "||- s1 tc,總血清膽固醇\n",
+ "||- s2 ldl,低密度脂蛋白\n",
+ "||- s3 hdl,高密度脂蛋白\n",
+ "||- s4 tch,總膽固醇 / HDL\n",
+ "||- s5 ltg,可能是血清甘油三酯水平的對數\n",
+ "||- s6 glu,血糖水平|\n",
+ "\n",
+ "> 🎓 記住,這是監督式學習,我們需要一個名為 'y' 的目標變數。\n",
+ "\n",
+ "在使用 R 操作數據之前,您需要將數據導入 R 的內存,或者建立一個 R 可以用來遠程訪問數據的連接。\n",
+ "\n",
+ "> [readr](https://readr.tidyverse.org/) 套件是 Tidyverse 的一部分,它提供了一種快速且友好的方式將矩形數據讀入 R。\n",
+ "\n",
+ "現在,讓我們加載來自以下來源 URL 的糖尿病數據集:\n",
+ "\n",
+ "此外,我們將使用 `glimpse()` 對數據進行基本檢查,並使用 `slice()` 顯示前 5 行。\n",
+ "\n",
+ "在繼續之前,讓我們介紹一個您在 R 代碼中經常會遇到的東西 🥁🥁:管道操作符 `%>%`\n",
+ "\n",
+ "管道操作符 (`%>%`) 按邏輯順序執行操作,將一個對象向前傳遞到函數或調用表達式中。您可以將管道操作符理解為代碼中的 \"然後\"。\n"
+ ],
+ "metadata": {
+ "id": "KM6iXLH996Cl"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Import the data set\r\n",
+ "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Get a glimpse and dimensions of the data\r\n",
+ "glimpse(diabetes)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Select the first 5 rows of the data\r\n",
+ "diabetes %>% \r\n",
+ " slice(1:5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "Z1geAMhM-bSP"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "`glimpse()` 告訴我們這個數據集有 442 行和 11 列,所有列的數據類型都是 `double`\n",
+ "\n",
+ " \n",
+ "\n",
+ "> glimpse() 和 slice() 是 [`dplyr`](https://dplyr.tidyverse.org/) 中的函數。Dplyr 是 Tidyverse 的一部分,是一種數據操作語法,提供了一組一致的動詞,幫助解決最常見的數據操作挑戰\n",
+ "\n",
+ " \n",
+ "\n",
+ "現在我們已經有了數據,讓我們縮小範圍到一個特徵(`bmi`),作為這次練習的目標。這需要我們選擇所需的列。那麼,我們該如何做到呢?\n",
+ "\n",
+ "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) 允許我們在數據框中*選擇*(並可選擇重新命名)列。\n"
+ ],
+ "metadata": {
+ "id": "UwjVT1Hz-c3Z"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Select predictor feature `bmi` and outcome `y`\r\n",
+ "diabetes_select <- diabetes %>% \r\n",
+ " select(c(bmi, y))\r\n",
+ "\r\n",
+ "# Print the first 5 rows\r\n",
+ "diabetes_select %>% \r\n",
+ " slice(1:10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "RDY1oAKI-m80"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 3. 訓練和測試數據\n",
+ "\n",
+ "在監督式學習中,通常會將數據*分割*成兩個子集;一個(通常較大的)用於訓練模型的集合,以及一個較小的「保留」集合,用於檢視模型的表現。\n",
+ "\n",
+ "現在我們已經準備好數據,可以看看機器是否能幫助我們在這個數據集中找出一個合理的分割方式。我們可以使用 [rsample](https://tidymodels.github.io/rsample/) 套件,這是 Tidymodels 框架的一部分,用來建立一個包含如何分割數據的資訊的物件,然後使用另外兩個 rsample 函數來提取已建立的訓練和測試集合:\n"
+ ],
+ "metadata": {
+ "id": "SDk668xK-tc3"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "set.seed(2056)\r\n",
+ "# Split 67% of the data for training and the rest for tesing\r\n",
+ "diabetes_split <- diabetes_select %>% \r\n",
+ " initial_split(prop = 0.67)\r\n",
+ "\r\n",
+ "# Extract the resulting train and test sets\r\n",
+ "diabetes_train <- training(diabetes_split)\r\n",
+ "diabetes_test <- testing(diabetes_split)\r\n",
+ "\r\n",
+ "# Print the first 3 rows of the training set\r\n",
+ "diabetes_train %>% \r\n",
+ " slice(1:10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "EqtHx129-1h-"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 4. 使用 Tidymodels 訓練線性回歸模型\n",
+ "\n",
+ "現在我們準備好訓練模型了!\n",
+ "\n",
+ "在 Tidymodels 中,你可以使用 `parsnip()` 來指定模型,並且需要定義以下三個概念:\n",
+ "\n",
+ "- 模型的**類型**區分了不同的模型,例如線性回歸、邏輯回歸、決策樹模型等等。\n",
+ "\n",
+ "- 模型的**模式**包括常見的選項,例如回歸和分類;有些模型類型支持這兩種模式,而有些則僅支持其中一種。\n",
+ "\n",
+ "- 模型的**引擎**是用來擬合模型的計算工具。通常這些是 R 套件,例如 **`\"lm\"`** 或 **`\"ranger\"`**。\n",
+ "\n",
+ "這些建模資訊會被捕捉到模型規範中,所以讓我們來建立一個吧!\n"
+ ],
+ "metadata": {
+ "id": "sBOS-XhB-6v7"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Build a linear model specification\r\n",
+ "lm_spec <- \r\n",
+ " # Type\r\n",
+ " linear_reg() %>% \r\n",
+ " # Engine\r\n",
+ " set_engine(\"lm\") %>% \r\n",
+ " # Mode\r\n",
+ " set_mode(\"regression\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Print the model specification\r\n",
+ "lm_spec"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "20OwEw20--t3"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "在模型被*指定*之後,可以使用 [`fit()`](https://parsnip.tidymodels.org/reference/fit.html) 函數來進行模型的 `估算` 或 `訓練`,通常會使用公式和一些數據。\n",
+ "\n",
+ "`y ~ .` 的意思是我們將 `y` 作為預測的量/目標,由所有的預測變數/特徵來解釋,也就是 `.`(在這個例子中,我們只有一個預測變數:`bmi`)。\n"
+ ],
+ "metadata": {
+ "id": "_oDHs89k_CJj"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Build a linear model specification\r\n",
+ "lm_spec <- linear_reg() %>% \r\n",
+ " set_engine(\"lm\") %>%\r\n",
+ " set_mode(\"regression\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Train a linear regression model\r\n",
+ "lm_mod <- lm_spec %>% \r\n",
+ " fit(y ~ ., data = diabetes_train)\r\n",
+ "\r\n",
+ "# Print the model\r\n",
+ "lm_mod"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "YlsHqd-q_GJQ"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "從模型輸出中,我們可以看到在訓練過程中學到的係數。這些係數代表最佳擬合線的係數,該線能使實際變量與預測變量之間的整體誤差降到最低。\n",
+ " \n",
+ "\n",
+ "## 5. 在測試集上進行預測\n",
+ "\n",
+ "現在我們已經訓練了一個模型,可以使用 [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) 來對測試數據集的疾病進展 y 進行預測。這將用於繪製數據組之間的分界線。\n"
+ ],
+ "metadata": {
+ "id": "kGZ22RQj_Olu"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make predictions for the test set\r\n",
+ "predictions <- lm_mod %>% \r\n",
+ " predict(new_data = diabetes_test)\r\n",
+ "\r\n",
+ "# Print out some of the predictions\r\n",
+ "predictions %>% \r\n",
+ " slice(1:5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "nXHbY7M2_aao"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "哇哦!💃🕺 我們剛剛訓練了一個模型並用它進行了預測!\n",
+ "\n",
+ "在進行預測時,tidymodels 的慣例是始終生成一個具有標準化列名的 tibble/數據框結果。這樣可以輕鬆地將原始數據和預測結果結合成一個可用的格式,用於後續操作,例如繪圖。\n",
+ "\n",
+ "`dplyr::bind_cols()` 可以高效地將多個數據框的列綁定在一起。\n"
+ ],
+ "metadata": {
+ "id": "R_JstwUY_bIs"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Combine the predictions and the original test set\r\n",
+ "results <- diabetes_test %>% \r\n",
+ " bind_cols(predictions)\r\n",
+ "\r\n",
+ "\r\n",
+ "results %>% \r\n",
+ " slice(1:5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "RybsMJR7_iI8"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 6. 繪製模型結果\n",
+ "\n",
+ "現在是時候用視覺化方式來查看結果了 📈。我們將為測試集中的所有 `y` 和 `bmi` 值創建一個散點圖,然後使用預測結果在模型的數據分組之間繪製一條最合適的線。\n",
+ "\n",
+ "R 有多種繪圖系統,但 `ggplot2` 是其中最優雅且最具靈活性的。它允許你通過**組合獨立的組件**來構建圖表。\n"
+ ],
+ "metadata": {
+ "id": "XJbYbMZW_n_s"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Set a theme for the plot\r\n",
+ "theme_set(theme_light())\r\n",
+ "# Create a scatter plot\r\n",
+ "results %>% \r\n",
+ " ggplot(aes(x = bmi)) +\r\n",
+ " # Add a scatter plot\r\n",
+ " geom_point(aes(y = y), size = 1.6) +\r\n",
+ " # Add a line plot\r\n",
+ " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "R9tYp3VW_sTn"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "✅ 想一想這裡發生了什麼。一條直線穿過許多小數據點,但它究竟在做什麼?你能否看出如何利用這條直線來預測一個新的、未見過的數據點應該如何與圖表的 y 軸產生關係?試著用語言描述這個模型的實際用途。\n",
+ "\n",
+ "恭喜你!你已經建立了你的第一個線性回歸模型,使用它進行了預測,並在圖表中展示了結果!\n"
+ ],
+ "metadata": {
+ "id": "zrPtHIxx_tNI"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/1-Tools/solution/notebook.ipynb b/translations/zh-HK/2-Regression/1-Tools/solution/notebook.ipynb
new file mode 100644
index 000000000..ef2b431d6
--- /dev/null
+++ b/translations/zh-HK/2-Regression/1-Tools/solution/notebook.ipynb
@@ -0,0 +1,677 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 線性回歸分析糖尿病數據集 - 第1課\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "導入所需的庫\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from sklearn import datasets, linear_model, model_selection\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "載入糖尿病數據集,分為 `X` 數據和 `y` 特徵\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(442, 10)\n",
+ "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n",
+ " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n"
+ ]
+ }
+ ],
+ "source": [
+ "X, y = datasets.load_diabetes(return_X_y=True)\n",
+ "print(X.shape)\n",
+ "print(X[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "只選擇一個功能作為此練習的目標\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(442,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Selecting the 3rd feature\n",
+ "X = X[:, 2]\n",
+ "print(X.shape)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(442, 1)\n",
+ "[[ 0.06169621]\n",
+ " [-0.05147406]\n",
+ " [ 0.04445121]\n",
+ " [-0.01159501]\n",
+ " [-0.03638469]\n",
+ " [-0.04069594]\n",
+ " [-0.04716281]\n",
+ " [-0.00189471]\n",
+ " [ 0.06169621]\n",
+ " [ 0.03906215]\n",
+ " [-0.08380842]\n",
+ " [ 0.01750591]\n",
+ " [-0.02884001]\n",
+ " [-0.00189471]\n",
+ " [-0.02560657]\n",
+ " [-0.01806189]\n",
+ " [ 0.04229559]\n",
+ " [ 0.01211685]\n",
+ " [-0.0105172 ]\n",
+ " [-0.01806189]\n",
+ " [-0.05686312]\n",
+ " [-0.02237314]\n",
+ " [-0.00405033]\n",
+ " [ 0.06061839]\n",
+ " [ 0.03582872]\n",
+ " [-0.01267283]\n",
+ " [-0.07734155]\n",
+ " [ 0.05954058]\n",
+ " [-0.02129532]\n",
+ " [-0.00620595]\n",
+ " [ 0.04445121]\n",
+ " [-0.06548562]\n",
+ " [ 0.12528712]\n",
+ " [-0.05039625]\n",
+ " [-0.06332999]\n",
+ " [-0.03099563]\n",
+ " [ 0.02289497]\n",
+ " [ 0.01103904]\n",
+ " [ 0.07139652]\n",
+ " [ 0.01427248]\n",
+ " [-0.00836158]\n",
+ " [-0.06764124]\n",
+ " [-0.0105172 ]\n",
+ " [-0.02345095]\n",
+ " [ 0.06816308]\n",
+ " [-0.03530688]\n",
+ " [-0.01159501]\n",
+ " [-0.0730303 ]\n",
+ " [-0.04177375]\n",
+ " [ 0.01427248]\n",
+ " [-0.00728377]\n",
+ " [ 0.0164281 ]\n",
+ " [-0.00943939]\n",
+ " [-0.01590626]\n",
+ " [ 0.0250506 ]\n",
+ " [-0.04931844]\n",
+ " [ 0.04121778]\n",
+ " [-0.06332999]\n",
+ " [-0.06440781]\n",
+ " [-0.02560657]\n",
+ " [-0.00405033]\n",
+ " [ 0.00457217]\n",
+ " [-0.00728377]\n",
+ " [-0.0374625 ]\n",
+ " [-0.02560657]\n",
+ " [-0.02452876]\n",
+ " [-0.01806189]\n",
+ " [-0.01482845]\n",
+ " [-0.02991782]\n",
+ " [-0.046085 ]\n",
+ " [-0.06979687]\n",
+ " [ 0.03367309]\n",
+ " [-0.00405033]\n",
+ " [-0.02021751]\n",
+ " [ 0.00241654]\n",
+ " [-0.03099563]\n",
+ " [ 0.02828403]\n",
+ " [-0.03638469]\n",
+ " [-0.05794093]\n",
+ " [-0.0374625 ]\n",
+ " [ 0.01211685]\n",
+ " [-0.02237314]\n",
+ " [-0.03530688]\n",
+ " [ 0.00996123]\n",
+ " [-0.03961813]\n",
+ " [ 0.07139652]\n",
+ " [-0.07518593]\n",
+ " [-0.00620595]\n",
+ " [-0.04069594]\n",
+ " [-0.04824063]\n",
+ " [-0.02560657]\n",
+ " [ 0.0519959 ]\n",
+ " [ 0.00457217]\n",
+ " [-0.06440781]\n",
+ " [-0.01698407]\n",
+ " [-0.05794093]\n",
+ " [ 0.00996123]\n",
+ " [ 0.08864151]\n",
+ " [-0.00512814]\n",
+ " [-0.06440781]\n",
+ " [ 0.01750591]\n",
+ " [-0.04500719]\n",
+ " [ 0.02828403]\n",
+ " [ 0.04121778]\n",
+ " [ 0.06492964]\n",
+ " [-0.03207344]\n",
+ " [-0.07626374]\n",
+ " [ 0.04984027]\n",
+ " [ 0.04552903]\n",
+ " [-0.00943939]\n",
+ " [-0.03207344]\n",
+ " [ 0.00457217]\n",
+ " [ 0.02073935]\n",
+ " [ 0.01427248]\n",
+ " [ 0.11019775]\n",
+ " [ 0.00133873]\n",
+ " [ 0.05846277]\n",
+ " [-0.02129532]\n",
+ " [-0.0105172 ]\n",
+ " [-0.04716281]\n",
+ " [ 0.00457217]\n",
+ " [ 0.01750591]\n",
+ " [ 0.08109682]\n",
+ " [ 0.0347509 ]\n",
+ " [ 0.02397278]\n",
+ " [-0.00836158]\n",
+ " [-0.06117437]\n",
+ " [-0.00189471]\n",
+ " [-0.06225218]\n",
+ " [ 0.0164281 ]\n",
+ " [ 0.09618619]\n",
+ " [-0.06979687]\n",
+ " [-0.02129532]\n",
+ " [-0.05362969]\n",
+ " [ 0.0433734 ]\n",
+ " [ 0.05630715]\n",
+ " [-0.0816528 ]\n",
+ " [ 0.04984027]\n",
+ " [ 0.11127556]\n",
+ " [ 0.06169621]\n",
+ " [ 0.01427248]\n",
+ " [ 0.04768465]\n",
+ " [ 0.01211685]\n",
+ " [ 0.00564998]\n",
+ " [ 0.04660684]\n",
+ " [ 0.12852056]\n",
+ " [ 0.05954058]\n",
+ " [ 0.09295276]\n",
+ " [ 0.01535029]\n",
+ " [-0.00512814]\n",
+ " [ 0.0703187 ]\n",
+ " [-0.00405033]\n",
+ " [-0.00081689]\n",
+ " [-0.04392938]\n",
+ " [ 0.02073935]\n",
+ " [ 0.06061839]\n",
+ " [-0.0105172 ]\n",
+ " [-0.03315126]\n",
+ " [-0.06548562]\n",
+ " [ 0.0433734 ]\n",
+ " [-0.06225218]\n",
+ " [ 0.06385183]\n",
+ " [ 0.03043966]\n",
+ " [ 0.07247433]\n",
+ " [-0.0191397 ]\n",
+ " [-0.06656343]\n",
+ " [-0.06009656]\n",
+ " [ 0.06924089]\n",
+ " [ 0.05954058]\n",
+ " [-0.02668438]\n",
+ " [-0.02021751]\n",
+ " [-0.046085 ]\n",
+ " [ 0.07139652]\n",
+ " [-0.07949718]\n",
+ " [ 0.00996123]\n",
+ " [-0.03854032]\n",
+ " [ 0.01966154]\n",
+ " [ 0.02720622]\n",
+ " [-0.00836158]\n",
+ " [-0.01590626]\n",
+ " [ 0.00457217]\n",
+ " [-0.04285156]\n",
+ " [ 0.00564998]\n",
+ " [-0.03530688]\n",
+ " [ 0.02397278]\n",
+ " [-0.01806189]\n",
+ " [ 0.04229559]\n",
+ " [-0.0547075 ]\n",
+ " [-0.00297252]\n",
+ " [-0.06656343]\n",
+ " [-0.01267283]\n",
+ " [-0.04177375]\n",
+ " [-0.03099563]\n",
+ " [-0.00512814]\n",
+ " [-0.05901875]\n",
+ " [ 0.0250506 ]\n",
+ " [-0.046085 ]\n",
+ " [ 0.00349435]\n",
+ " [ 0.05415152]\n",
+ " [-0.04500719]\n",
+ " [-0.05794093]\n",
+ " [-0.05578531]\n",
+ " [ 0.00133873]\n",
+ " [ 0.03043966]\n",
+ " [ 0.00672779]\n",
+ " [ 0.04660684]\n",
+ " [ 0.02612841]\n",
+ " [ 0.04552903]\n",
+ " [ 0.04013997]\n",
+ " [-0.01806189]\n",
+ " [ 0.01427248]\n",
+ " [ 0.03690653]\n",
+ " [ 0.00349435]\n",
+ " [-0.07087468]\n",
+ " [-0.03315126]\n",
+ " [ 0.09403057]\n",
+ " [ 0.03582872]\n",
+ " [ 0.03151747]\n",
+ " [-0.06548562]\n",
+ " [-0.04177375]\n",
+ " [-0.03961813]\n",
+ " [-0.03854032]\n",
+ " [-0.02560657]\n",
+ " [-0.02345095]\n",
+ " [-0.06656343]\n",
+ " [ 0.03259528]\n",
+ " [-0.046085 ]\n",
+ " [-0.02991782]\n",
+ " [-0.01267283]\n",
+ " [-0.01590626]\n",
+ " [ 0.07139652]\n",
+ " [-0.03099563]\n",
+ " [ 0.00026092]\n",
+ " [ 0.03690653]\n",
+ " [ 0.03906215]\n",
+ " [-0.01482845]\n",
+ " [ 0.00672779]\n",
+ " [-0.06871905]\n",
+ " [-0.00943939]\n",
+ " [ 0.01966154]\n",
+ " [ 0.07462995]\n",
+ " [-0.00836158]\n",
+ " [-0.02345095]\n",
+ " [-0.046085 ]\n",
+ " [ 0.05415152]\n",
+ " [-0.03530688]\n",
+ " [-0.03207344]\n",
+ " [-0.0816528 ]\n",
+ " [ 0.04768465]\n",
+ " [ 0.06061839]\n",
+ " [ 0.05630715]\n",
+ " [ 0.09834182]\n",
+ " [ 0.05954058]\n",
+ " [ 0.03367309]\n",
+ " [ 0.05630715]\n",
+ " [-0.06548562]\n",
+ " [ 0.16085492]\n",
+ " [-0.05578531]\n",
+ " [-0.02452876]\n",
+ " [-0.03638469]\n",
+ " [-0.00836158]\n",
+ " [-0.04177375]\n",
+ " [ 0.12744274]\n",
+ " [-0.07734155]\n",
+ " [ 0.02828403]\n",
+ " [-0.02560657]\n",
+ " [-0.06225218]\n",
+ " [-0.00081689]\n",
+ " [ 0.08864151]\n",
+ " [-0.03207344]\n",
+ " [ 0.03043966]\n",
+ " [ 0.00888341]\n",
+ " [ 0.00672779]\n",
+ " [-0.02021751]\n",
+ " [-0.02452876]\n",
+ " [-0.01159501]\n",
+ " [ 0.02612841]\n",
+ " [-0.05901875]\n",
+ " [-0.03638469]\n",
+ " [-0.02452876]\n",
+ " [ 0.01858372]\n",
+ " [-0.0902753 ]\n",
+ " [-0.00512814]\n",
+ " [-0.05255187]\n",
+ " [-0.02237314]\n",
+ " [-0.02021751]\n",
+ " [-0.0547075 ]\n",
+ " [-0.00620595]\n",
+ " [-0.01698407]\n",
+ " [ 0.05522933]\n",
+ " [ 0.07678558]\n",
+ " [ 0.01858372]\n",
+ " [-0.02237314]\n",
+ " [ 0.09295276]\n",
+ " [-0.03099563]\n",
+ " [ 0.03906215]\n",
+ " [-0.06117437]\n",
+ " [-0.00836158]\n",
+ " [-0.0374625 ]\n",
+ " [-0.01375064]\n",
+ " [ 0.07355214]\n",
+ " [-0.02452876]\n",
+ " [ 0.03367309]\n",
+ " [ 0.0347509 ]\n",
+ " [-0.03854032]\n",
+ " [-0.03961813]\n",
+ " [-0.00189471]\n",
+ " [-0.03099563]\n",
+ " [-0.046085 ]\n",
+ " [ 0.00133873]\n",
+ " [ 0.06492964]\n",
+ " [ 0.04013997]\n",
+ " [-0.02345095]\n",
+ " [ 0.05307371]\n",
+ " [ 0.04013997]\n",
+ " [-0.02021751]\n",
+ " [ 0.01427248]\n",
+ " [-0.03422907]\n",
+ " [ 0.00672779]\n",
+ " [ 0.00457217]\n",
+ " [ 0.03043966]\n",
+ " [ 0.0519959 ]\n",
+ " [ 0.06169621]\n",
+ " [-0.00728377]\n",
+ " [ 0.00564998]\n",
+ " [ 0.05415152]\n",
+ " [-0.00836158]\n",
+ " [ 0.114509 ]\n",
+ " [ 0.06708527]\n",
+ " [-0.05578531]\n",
+ " [ 0.03043966]\n",
+ " [-0.02560657]\n",
+ " [ 0.10480869]\n",
+ " [-0.00620595]\n",
+ " [-0.04716281]\n",
+ " [-0.04824063]\n",
+ " [ 0.08540807]\n",
+ " [-0.01267283]\n",
+ " [-0.03315126]\n",
+ " [-0.00728377]\n",
+ " [-0.01375064]\n",
+ " [ 0.05954058]\n",
+ " [ 0.02181716]\n",
+ " [ 0.01858372]\n",
+ " [-0.01159501]\n",
+ " [-0.00297252]\n",
+ " [ 0.01750591]\n",
+ " [-0.02991782]\n",
+ " [-0.02021751]\n",
+ " [-0.05794093]\n",
+ " [ 0.06061839]\n",
+ " [-0.04069594]\n",
+ " [-0.07195249]\n",
+ " [-0.05578531]\n",
+ " [ 0.04552903]\n",
+ " [-0.00943939]\n",
+ " [-0.03315126]\n",
+ " [ 0.04984027]\n",
+ " [-0.08488624]\n",
+ " [ 0.00564998]\n",
+ " [ 0.02073935]\n",
+ " [-0.00728377]\n",
+ " [ 0.10480869]\n",
+ " [-0.02452876]\n",
+ " [-0.00620595]\n",
+ " [-0.03854032]\n",
+ " [ 0.13714305]\n",
+ " [ 0.17055523]\n",
+ " [ 0.00241654]\n",
+ " [ 0.03798434]\n",
+ " [-0.05794093]\n",
+ " [-0.00943939]\n",
+ " [-0.02345095]\n",
+ " [-0.0105172 ]\n",
+ " [-0.03422907]\n",
+ " [-0.00297252]\n",
+ " [ 0.06816308]\n",
+ " [ 0.00996123]\n",
+ " [ 0.00241654]\n",
+ " [-0.03854032]\n",
+ " [ 0.02612841]\n",
+ " [-0.08919748]\n",
+ " [ 0.06061839]\n",
+ " [-0.02884001]\n",
+ " [-0.02991782]\n",
+ " [-0.0191397 ]\n",
+ " [-0.04069594]\n",
+ " [ 0.01535029]\n",
+ " [-0.02452876]\n",
+ " [ 0.00133873]\n",
+ " [ 0.06924089]\n",
+ " [-0.06979687]\n",
+ " [-0.02991782]\n",
+ " [-0.046085 ]\n",
+ " [ 0.01858372]\n",
+ " [ 0.00133873]\n",
+ " [-0.03099563]\n",
+ " [-0.00405033]\n",
+ " [ 0.01535029]\n",
+ " [ 0.02289497]\n",
+ " [ 0.04552903]\n",
+ " [-0.04500719]\n",
+ " [-0.03315126]\n",
+ " [ 0.097264 ]\n",
+ " [ 0.05415152]\n",
+ " [ 0.12313149]\n",
+ " [-0.08057499]\n",
+ " [ 0.09295276]\n",
+ " [-0.05039625]\n",
+ " [-0.01159501]\n",
+ " [-0.0277622 ]\n",
+ " [ 0.05846277]\n",
+ " [ 0.08540807]\n",
+ " [-0.00081689]\n",
+ " [ 0.00672779]\n",
+ " [ 0.00888341]\n",
+ " [ 0.08001901]\n",
+ " [ 0.07139652]\n",
+ " [-0.02452876]\n",
+ " [-0.0547075 ]\n",
+ " [-0.03638469]\n",
+ " [ 0.0164281 ]\n",
+ " [ 0.07786339]\n",
+ " [-0.03961813]\n",
+ " [ 0.01103904]\n",
+ " [-0.04069594]\n",
+ " [-0.03422907]\n",
+ " [ 0.00564998]\n",
+ " [ 0.08864151]\n",
+ " [-0.03315126]\n",
+ " [-0.05686312]\n",
+ " [-0.03099563]\n",
+ " [ 0.05522933]\n",
+ " [-0.06009656]\n",
+ " [ 0.00133873]\n",
+ " [-0.02345095]\n",
+ " [-0.07410811]\n",
+ " [ 0.01966154]\n",
+ " [-0.01590626]\n",
+ " [-0.01590626]\n",
+ " [ 0.03906215]\n",
+ " [-0.0730303 ]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Reshaping to get a 2D array\n",
+ "X = X.reshape(-1, 1)\n",
+ "print(X.shape)\n",
+ "print(X)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "將 `X` 和 `y` 的訓練數據和測試數據分開\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "選擇模型並使用訓練數據進行擬合\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LinearRegression()"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model = linear_model.LinearRegression()\n",
+ "model.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "使用測試數據預測一條線\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_pred = model.predict(X_test)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "顯示結果於圖表中\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(X_test, y_test, color='black')\n",
+ "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.1"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "16ff1a974f6e4348e869e4a7d366b86a",
+ "translation_date": "2025-09-03T19:39:59+00:00",
+ "source_file": "2-Regression/1-Tools/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/README.md b/translations/zh-HK/2-Regression/2-Data/README.md
new file mode 100644
index 000000000..c87eaa669
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/README.md
@@ -0,0 +1,217 @@
+# 使用 Scikit-learn 建立回歸模型:準備及視覺化數據
+
+
+
+資訊圖表由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 製作
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+> ### [本課程提供 R 版本!](../../../../2-Regression/2-Data/solution/R/lesson_2.html)
+
+## 簡介
+
+現在你已經準備好使用 Scikit-learn 開始建立機器學習模型,接下來可以開始向數據提出問題。在處理數據並應用機器學習解決方案時,了解如何提出正確的問題以充分發揮數據的潛力是非常重要的。
+
+在本課程中,你將學到:
+
+- 如何為模型建立準備數據。
+- 如何使用 Matplotlib 進行數據視覺化。
+
+## 向數據提出正確的問題
+
+你需要回答的問題將決定你使用哪種類型的機器學習算法。而你得到答案的質量將很大程度上取決於數據的性質。
+
+看看本課程提供的[數據](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)。你可以在 VS Code 中打開這個 .csv 文件。快速瀏覽後可以看到有空白值以及字符串和數字數據的混合。還有一個奇怪的名為 "Package" 的列,其中的數據混合了 "sacks"、"bins" 和其他值。事實上,這些數據有點混亂。
+
+[](https://youtu.be/5qGjczWTrDQ "機器學習初學者 - 如何分析和清理數據集")
+
+> 🎥 點擊上方圖片觀看一段短片,了解如何準備本課程的數據。
+
+事實上,很少能直接獲得完全準備好的數據集來建立機器學習模型。在本課程中,你將學習如何使用標準 Python 庫準備原始數據集。你還將學習各種視覺化數據的技術。
+
+## 案例研究:'南瓜市場'
+
+在此文件夾中,你會在根目錄的 `data` 文件夾中找到一個名為 [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) 的 .csv 文件,其中包含 1757 行有關南瓜市場的數據,按城市分組。這是從美國農業部發布的[特殊作物終端市場標準報告](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)中提取的原始數據。
+
+### 準備數據
+
+這些數據屬於公共領域。它可以從 USDA 網站下載,按城市分成多個文件。為了避免過多的文件,我們已將所有城市數據合併到一個電子表格中,因此我們已經對數據進行了一些_準備_。接下來,讓我們仔細看看這些數據。
+
+### 南瓜數據 - 初步結論
+
+你對這些數據有什麼觀察?你可能已經注意到這些數據混合了字符串、數字、空白值和一些奇怪的值。
+
+使用回歸技術,你可以向這些數據提出什麼問題?例如:"預測某個月份出售的南瓜價格"。再次查看數據,你需要進行一些更改以創建適合此任務的數據結構。
+
+## 練習 - 分析南瓜數據
+
+讓我們使用 [Pandas](https://pandas.pydata.org/)(名稱代表 `Python Data Analysis`),這是一個非常有用的工具,用於整理數據,來分析和準備這些南瓜數據。
+
+### 首先,檢查是否有缺失日期
+
+你需要首先檢查是否有缺失日期:
+
+1. 將日期轉換為月份格式(這些是美國日期,格式為 `MM/DD/YYYY`)。
+2. 提取月份到新列。
+
+在 Visual Studio Code 中打開 _notebook.ipynb_ 文件,並將電子表格導入到新的 Pandas dataframe 中。
+
+1. 使用 `head()` 函數查看前五行。
+
+ ```python
+ import pandas as pd
+ pumpkins = pd.read_csv('../data/US-pumpkins.csv')
+ pumpkins.head()
+ ```
+
+ ✅ 你會使用什麼函數來查看最後五行?
+
+1. 檢查當前 dataframe 中是否有缺失數據:
+
+ ```python
+ pumpkins.isnull().sum()
+ ```
+
+ 有缺失數據,但可能對當前任務影響不大。
+
+1. 為了使 dataframe 更易於操作,使用 `loc` 函數選擇你需要的列。`loc` 函數從原始 dataframe 中提取一組行(作為第一個參數)和列(作為第二個參數)。以下表達式中的 `:` 表示 "所有行"。
+
+ ```python
+ columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']
+ pumpkins = pumpkins.loc[:, columns_to_select]
+ ```
+
+### 第二步,確定南瓜的平均價格
+
+思考如何確定某個月份南瓜的平均價格。你會選擇哪些列來完成這項任務?提示:你需要 3 列。
+
+解決方案:取 `Low Price` 和 `High Price` 列的平均值來填充新的 Price 列,並將 Date 列轉換為僅顯示月份。幸運的是,根據上述檢查,日期和價格沒有缺失數據。
+
+1. 要計算平均值,添加以下代碼:
+
+ ```python
+ price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2
+
+ month = pd.DatetimeIndex(pumpkins['Date']).month
+
+ ```
+
+ ✅ 隨時使用 `print(month)` 打印任何數據以進行檢查。
+
+2. 現在,將轉換後的數據複製到新的 Pandas dataframe 中:
+
+ ```python
+ new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})
+ ```
+
+ 打印出你的 dataframe,將顯示一個乾淨整潔的數據集,你可以用它來建立新的回歸模型。
+
+### 等等!這裡有些奇怪的地方
+
+如果你查看 `Package` 列,南瓜的銷售配置有很多不同的方式。有些按 "1 1/9 bushel" 測量,有些按 "1/2 bushel" 測量,有些按南瓜個數,有些按磅數,有些按寬度不同的大箱子銷售。
+
+> 南瓜似乎很難一致地稱重
+
+深入研究原始數據,發現 `Unit of Sale` 為 "EACH" 或 "PER BIN" 的項目,其 `Package` 類型也為每英寸、每箱或 "each"。南瓜似乎很難一致地稱重,因此讓我們通過選擇 `Package` 列中包含字符串 "bushel" 的南瓜來進行篩選。
+
+1. 在文件頂部的初始 .csv 導入下添加篩選器:
+
+ ```python
+ pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]
+ ```
+
+ 如果現在打印數據,你會看到只有大約 415 行數據包含按 bushel 銷售的南瓜。
+
+### 等等!還有一件事需要做
+
+你是否注意到每行的 bushel 數量不同?你需要標準化定價,以顯示每 bushel 的價格,因此需要進行一些數學運算來標準化。
+
+1. 在創建 new_pumpkins dataframe 的代碼塊後添加以下行:
+
+ ```python
+ new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)
+
+ new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)
+ ```
+
+✅ 根據 [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308),bushel 的重量取決於農產品的類型,因為它是一種體積測量。"例如,一 bushel 的番茄應該重 56 磅... 葉子和綠色蔬菜佔用更多空間但重量較輕,因此一 bushel 的菠菜僅重 20 磅。" 這一切都相當複雜!我們不需要進行 bushel 到磅的轉換,而是按 bushel 定價。然而,所有這些對南瓜 bushel 的研究表明,了解數據的性質是多麼重要!
+
+現在,你可以根據 bushel 測量分析每單位的定價。如果你再打印一次數據,你會看到它已經標準化。
+
+✅ 你是否注意到按半 bushel 銷售的南瓜非常昂貴?你能找出原因嗎?提示:小南瓜比大南瓜更昂貴,可能是因為每 bushel 的小南瓜數量更多,而大南瓜的空心部分佔用了更多空間。
+
+## 視覺化策略
+
+數據科學家的部分角色是展示他們正在處理的數據的質量和性質。為此,他們通常會創建有趣的視覺化,例如圖表、折線圖和柱狀圖,展示數據的不同方面。通過這種方式,他們能夠以視覺方式展示關係和差距,這些通常很難發現。
+
+[](https://youtu.be/SbUkxH6IJo0 "機器學習初學者 - 如何使用 Matplotlib 視覺化數據")
+
+> 🎥 點擊上方圖片觀看一段短片,了解如何視覺化本課程的數據。
+
+視覺化還可以幫助確定最適合數據的機器學習技術。例如,似乎遵循一條線的散點圖表明該數據非常適合線性回歸練習。
+
+一個在 Jupyter notebooks 中表現良好的數據視覺化庫是 [Matplotlib](https://matplotlib.org/)(你在上一課中也見過)。
+
+> 在[這些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)中獲得更多數據視覺化的經驗。
+
+## 練習 - 嘗試使用 Matplotlib
+
+嘗試創建一些基本的圖表來顯示你剛剛創建的新 dataframe。一個基本的折線圖會顯示什麼?
+
+1. 在文件頂部的 Pandas 導入下導入 Matplotlib:
+
+ ```python
+ import matplotlib.pyplot as plt
+ ```
+
+1. 重新運行整個 notebook 以刷新。
+1. 在 notebook 底部添加一個單元格,將數據繪製為框圖:
+
+ ```python
+ price = new_pumpkins.Price
+ month = new_pumpkins.Month
+ plt.scatter(price, month)
+ plt.show()
+ ```
+
+ 
+
+ 這是一個有用的圖表嗎?有什麼讓你感到驚訝嗎?
+
+ 它並不是特別有用,因為它只是顯示了某個月份的數據點分佈。
+
+### 讓它更有用
+
+要讓圖表顯示有用的數據,通常需要以某種方式對數據進行分組。讓我們嘗試創建一個圖表,其中 y 軸顯示月份,數據展示數據的分佈。
+
+1. 添加一個單元格以創建分組柱狀圖:
+
+ ```python
+ new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')
+ plt.ylabel("Pumpkin Price")
+ ```
+
+ 
+
+ 這是一個更有用的數據視覺化!它似乎表明南瓜的最高價格出現在九月和十月。這符合你的預期嗎?為什麼?
+
+---
+
+## 🚀挑戰
+
+探索 Matplotlib 提供的不同類型的視覺化。哪些類型最適合回歸問題?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+看看數據視覺化的多種方式。列出可用的各種庫,並記下哪些庫最適合特定類型的任務,例如 2D 視覺化與 3D 視覺化。你發現了什麼?
+
+## 作業
+
+[探索視覺化](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/assignment.md b/translations/zh-HK/2-Regression/2-Data/assignment.md
new file mode 100644
index 000000000..edab21bab
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/assignment.md
@@ -0,0 +1,14 @@
+# 探索視覺化
+
+有多種不同的庫可用於數據視覺化。在本課程中使用南瓜數據,利用 matplotlib 和 seaborn 在範例筆記本中創建一些視覺化。哪些庫更容易使用?
+
+## 評分標準
+
+| 標準 | 卓越 | 合格 | 需要改進 |
+| -------- | --------- | -------- | ----------------- |
+| | 提交了一個包含兩個探索/視覺化的筆記本 | 提交了一個包含一個探索/視覺化的筆記本 | 未提交筆記本 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/notebook.ipynb b/translations/zh-HK/2-Regression/2-Data/notebook.ipynb
new file mode 100644
index 000000000..3159e86cd
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/notebook.ipynb
@@ -0,0 +1,46 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3-final"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3",
+ "language": "python"
+ },
+ "coopTranslator": {
+ "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7",
+ "translation_date": "2025-09-03T19:44:46+00:00",
+ "source_file": "2-Regression/2-Data/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/solution/Julia/README.md b/translations/zh-HK/2-Regression/2-Data/solution/Julia/README.md
new file mode 100644
index 000000000..cbb4dd199
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原文文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/zh-HK/2-Regression/2-Data/solution/R/lesson_2-R.ipynb
new file mode 100644
index 000000000..bce2d0668
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/solution/R/lesson_2-R.ipynb
@@ -0,0 +1,668 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {
+ "colab": {
+ "name": "lesson_2-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "f3c335f9940cfd76528b3ef918b9b342",
+ "translation_date": "2025-09-03T19:51:16+00:00",
+ "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 建立回歸模型:準備和視覺化數據\n",
+ "\n",
+ "## **南瓜的線性回歸 - 第二課**\n",
+ "#### 簡介\n",
+ "\n",
+ "現在你已經準備好使用 Tidymodels 和 Tidyverse 開始構建機器學習模型,你可以開始向數據提出問題了。在處理數據並應用機器學習解決方案時,理解如何提出正確的問題以充分發掘數據集的潛力是非常重要的。\n",
+ "\n",
+ "在這一課中,你將學習:\n",
+ "\n",
+ "- 如何為模型構建準備數據。\n",
+ "\n",
+ "- 如何使用 `ggplot2` 進行數據視覺化。\n",
+ "\n",
+ "你需要回答的問題將決定你會使用哪種類型的機器學習算法。而你得到的答案質量將在很大程度上取決於數據的性質。\n",
+ "\n",
+ "讓我們通過一個實際練習來看看這一點。\n",
+ "\n",
+ "\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "Pg5aexcOPqAZ"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 1. 匯入南瓜數據並召喚 Tidyverse\n",
+ "\n",
+ "我們需要以下套件來進行本課的數據處理:\n",
+ "\n",
+ "- `tidyverse`:[tidyverse](https://www.tidyverse.org/) 是一個[集合的 R 套件](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "你可以使用以下指令安裝:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\"))`\n",
+ "\n",
+ "以下的腳本會檢查你是否擁有完成此模組所需的套件,並在缺少某些套件時為你安裝它們。\n"
+ ],
+ "metadata": {
+ "id": "dc5WhyVdXAjR"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n",
+ "pacman::p_load(tidyverse)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "GqPYUZgfXOBt"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在,讓我們啟動一些套件並載入為本課提供的[數據](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)!\n"
+ ],
+ "metadata": {
+ "id": "kvjDTPDSXRr2"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load the core Tidyverse packages\n",
+ "library(tidyverse)\n",
+ "\n",
+ "# Import the pumpkins data\n",
+ "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n",
+ "\n",
+ "\n",
+ "# Get a glimpse and dimensions of the data\n",
+ "glimpse(pumpkins)\n",
+ "\n",
+ "\n",
+ "# Print the first 50 rows of the data set\n",
+ "pumpkins %>% \n",
+ " slice_head(n =50)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "VMri-t2zXqgD"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "一個快速的 `glimpse()` 可以立即顯示數據中有空白值,並且混合了字串(`chr`)和數值數據(`dbl`)。`Date` 是字元類型,還有一個奇怪的欄位叫做 `Package`,其中的數據混合了 `sacks`、`bins` 和其他值。事實上,這份數據有點混亂 😤。\n",
+ "\n",
+ "其實,直接獲得一份完全準備好用來建立機器學習模型的數據集並不常見。但不用擔心,在這節課中,你將學習如何使用標準的 R 函式庫來準備一份原始數據集 🧑🔧。你還會學到各種技術來視覺化數據。📈📊\n",
+ " \n",
+ "\n",
+ "> 溫故知新:管道運算符(`%>%`)通過將一個對象向前傳遞到函數或調用表達式中,按邏輯順序執行操作。你可以把管道運算符理解為在程式碼中表示「然後」的意思。\n"
+ ],
+ "metadata": {
+ "id": "REWcIv9yX29v"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 2. 檢查遺漏數據\n",
+ "\n",
+ "數據科學家最常遇到的問題之一就是不完整或遺漏的數據。R 用特殊的哨兵值 `NA`(Not Available)來表示遺漏或未知的值。\n",
+ "\n",
+ "那麼我們如何知道數據框中是否包含遺漏值呢?\n",
+ " \n",
+ "- 一個直接的方法是使用 R 的基礎函數 `anyNA`,它會返回邏輯對象 `TRUE` 或 `FALSE`\n"
+ ],
+ "metadata": {
+ "id": "Zxfb3AM5YbUe"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "pumpkins %>% \n",
+ " anyNA()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "G--DQutAYltj"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "太好了,似乎有些數據遺失了!這是一個不錯的起點。\n",
+ "\n",
+ "- 另一種方法是使用函數 `is.na()`,它會以邏輯值 `TRUE` 指出哪些單個欄位元素是遺失的。\n"
+ ],
+ "metadata": {
+ "id": "mU-7-SB6YokF"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "pumpkins %>% \n",
+ " is.na() %>% \n",
+ " head(n = 7)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "W-DxDOR4YxSW"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "好吧,已完成工作,但像這樣的大型數據框,要逐行逐列檢查會非常低效,幾乎不可能😴。\n",
+ "\n",
+ "- 一個更直觀的方法是計算每列的缺失值總和:\n"
+ ],
+ "metadata": {
+ "id": "xUWxipKYY0o7"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "pumpkins %>% \n",
+ " is.na() %>% \n",
+ " colSums()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "ZRBWV6P9ZArL"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "更好!雖然有些數據缺失,但可能對當前的任務影響不大。讓我們看看進一步的分析會帶來什麼結果。\n",
+ "\n",
+ "> 除了豐富的套件和函數,R 還擁有非常完善的文件說明。例如,可以使用 `help(colSums)` 或 `?colSums` 來了解更多有關該函數的資訊。\n"
+ ],
+ "metadata": {
+ "id": "9gv-crB6ZD1Y"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 3. Dplyr:資料操作的語法\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "o4jLY5-VZO2C"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "[`dplyr`](https://dplyr.tidyverse.org/),是 Tidyverse 中的一個套件,提供了一套一致的數據操作語法,包含一系列動詞,幫助你解決最常見的數據操作挑戰。在本節中,我們將探討一些 dplyr 的動詞! \n",
+ " \n"
+ ],
+ "metadata": {
+ "id": "i5o33MQBZWWw"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### dplyr::select()\n",
+ "\n",
+ "`select()` 是 `dplyr` 套件中的一個函數,用於幫助你選擇要保留或排除的欄位。\n",
+ "\n",
+ "為了讓你的資料框更容易處理,可以使用 `select()` 刪除一些欄位,只保留你需要的欄位。\n",
+ "\n",
+ "例如,在這個練習中,我們的分析將涉及 `Package`、`Low Price`、`High Price` 和 `Date` 這些欄位。讓我們選擇這些欄位。\n"
+ ],
+ "metadata": {
+ "id": "x3VGMAGBZiUr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Select desired columns\n",
+ "pumpkins <- pumpkins %>% \n",
+ " select(Package, `Low Price`, `High Price`, Date)\n",
+ "\n",
+ "\n",
+ "# Print data set\n",
+ "pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "F_FgxQnVZnM0"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### dplyr::mutate()\n",
+ "\n",
+ "`mutate()` 是 `dplyr` 套件中的一個函數,用於創建或修改欄位,同時保留現有的欄位。\n",
+ "\n",
+ "`mutate` 的一般結構如下:\n",
+ "\n",
+ "`data %>% mutate(new_column_name = what_it_contains)`\n",
+ "\n",
+ "讓我們使用 `Date` 欄位來試試 `mutate`,進行以下操作:\n",
+ "\n",
+ "1. 將日期(目前是字元類型)轉換為月份格式(這些是美國日期格式,因此格式為 `MM/DD/YYYY`)。\n",
+ "\n",
+ "2. 從日期中提取月份到一個新欄位。\n",
+ "\n",
+ "在 R 中,[lubridate](https://lubridate.tidyverse.org/) 套件讓處理日期時間數據變得更簡單。因此,我們可以使用 `dplyr::mutate()`、`lubridate::mdy()` 和 `lubridate::month()` 來完成上述目標。我們可以刪除 Date 欄位,因為在後續操作中不再需要它。\n"
+ ],
+ "metadata": {
+ "id": "2KKo0Ed9Z1VB"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load lubridate\n",
+ "library(lubridate)\n",
+ "\n",
+ "pumpkins <- pumpkins %>% \n",
+ " # Convert the Date column to a date object\n",
+ " mutate(Date = mdy(Date)) %>% \n",
+ " # Extract month from Date\n",
+ " mutate(Month = month(Date)) %>% \n",
+ " # Drop Date column\n",
+ " select(-Date)\n",
+ "\n",
+ "# View the first few rows\n",
+ "pumpkins %>% \n",
+ " slice_head(n = 7)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "5joszIVSZ6xe"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "哇哦!🤩\n",
+ "\n",
+ "接下來,我們來新增一個名為 `Price` 的新欄位,代表南瓜的平均價格。現在,讓我們取 `Low Price` 和 `High Price` 欄位的平均值來填充新的 Price 欄位。\n"
+ ],
+ "metadata": {
+ "id": "nIgLjNMCZ-6Y"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Create a new column Price\n",
+ "pumpkins <- pumpkins %>% \n",
+ " mutate(Price = (`Low Price` + `High Price`)/2)\n",
+ "\n",
+ "# View the first few rows of the data\n",
+ "pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "Zo0BsqqtaJw2"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "耶!💪\n",
+ "\n",
+ "「等等!」你可能在快速瀏覽整個數據集後,用 `View(pumpkins)` 說道,「這裡有點奇怪!」🤔\n",
+ "\n",
+ "如果你查看 `Package` 欄位,南瓜是以許多不同的方式出售的。有些是以 `1 1/9 蒲式耳` 的單位出售,有些是以 `1/2 蒲式耳` 的單位出售,有些是按南瓜個數出售,有些是按重量(磅)出售,還有些是以不同寬度的大箱子出售。\n",
+ "\n",
+ "讓我們來驗證一下:\n"
+ ],
+ "metadata": {
+ "id": "p77WZr-9aQAR"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Verify the distinct observations in Package column\n",
+ "pumpkins %>% \n",
+ " distinct(Package)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "XISGfh0IaUy6"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "太棒了!👏\n",
+ "\n",
+ "南瓜似乎很難穩定地稱重,所以我們可以篩選出在 `Package` 欄位中包含 *bushel* 字串的南瓜,並將這些南瓜放入一個新的資料框 `new_pumpkins` 中。\n"
+ ],
+ "metadata": {
+ "id": "7sMjiVujaZxY"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### dplyr::filter() 和 stringr::str_detect()\n",
+ "\n",
+ "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html):建立一個數據子集,只包含符合條件的**行**,在此例中,`Package`列中包含 *bushel* 字串的南瓜。\n",
+ "\n",
+ "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html):檢測字串中是否存在某個模式。\n",
+ "\n",
+ "[`stringr`](https://github.com/tidyverse/stringr) 套件提供簡單的函數,用於常見的字串操作。\n"
+ ],
+ "metadata": {
+ "id": "L8Qfcs92ageF"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Retain only pumpkins with \"bushel\"\n",
+ "new_pumpkins <- pumpkins %>% \n",
+ " filter(str_detect(Package, \"bushel\"))\n",
+ "\n",
+ "# Get the dimensions of the new data\n",
+ "dim(new_pumpkins)\n",
+ "\n",
+ "# View a few rows of the new data\n",
+ "new_pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "hy_SGYREampd"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "你可以看到我們已經篩選到大約415行左右的數據,這些數據包含以蒲式耳計算的南瓜。🤩 \n"
+ ],
+ "metadata": {
+ "id": "VrDwF031avlR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### dplyr::case_when()\n",
+ "\n",
+ "**但等等!還有一件事要做**\n",
+ "\n",
+ "你有沒有注意到每行的蒲式耳數量都不同?你需要將價格標準化,顯示每蒲式耳的價格,而不是每 1 1/9 或 1/2 蒲式耳的價格。是時候做一些數學運算來標準化了。\n",
+ "\n",
+ "我們將使用 [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) 函數根據一些條件來*變更* Price 列。`case_when` 允許你向量化多個 `if_else()` 語句。\n"
+ ],
+ "metadata": {
+ "id": "mLpw2jH4a0tx"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Convert the price if the Package contains fractional bushel values\n",
+ "new_pumpkins <- new_pumpkins %>% \n",
+ " mutate(Price = case_when(\n",
+ " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n",
+ " str_detect(Package, \"1/2\") ~ Price/(1/2),\n",
+ " TRUE ~ Price))\n",
+ "\n",
+ "# View the first few rows of the data\n",
+ "new_pumpkins %>% \n",
+ " slice_head(n = 30)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "P68kLVQmbM6I"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在,我們可以根據每蒲式耳的測量來分析單位價格。不過,這些對南瓜蒲式耳的研究,正好說明了「了解數據的本質」是多麼`重要`!\n",
+ "\n",
+ "> ✅ 根據 [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) 的說法,蒲式耳的重量取決於農產品的種類,因為這是一種體積的測量方式。「例如,一蒲式耳的番茄應該重56磅……葉類和綠色蔬菜佔據更多空間但重量較輕,所以一蒲式耳的菠菜只有20磅。」這一切都相當複雜!我們不如別費心去做蒲式耳到磅的轉換,而是直接按蒲式耳定價。不過,這些對南瓜蒲式耳的研究,正好說明了了解數據的本質是多麼重要!\n",
+ "\n",
+ "> ✅ 你有沒有注意到,按半蒲式耳出售的南瓜非常昂貴?你能猜出原因嗎?提示:小南瓜比大南瓜貴得多,可能是因為每蒲式耳裡小南瓜的數量多得多,這是由於一個大而中空的派南瓜佔用了更多未使用的空間。\n"
+ ],
+ "metadata": {
+ "id": "pS2GNPagbSdb"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在,最後為了冒險的樂趣 💁♀️,我們將「Month」欄位移到第一個位置,也就是在「Package」欄位之前。\n",
+ "\n",
+ "`dplyr::relocate()` 用於更改欄位的位置。\n"
+ ],
+ "metadata": {
+ "id": "qql1SowfbdnP"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Create a new data frame new_pumpkins\n",
+ "new_pumpkins <- new_pumpkins %>% \n",
+ " relocate(Month, .before = Package)\n",
+ "\n",
+ "new_pumpkins %>% \n",
+ " slice_head(n = 7)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "JJ1x6kw8bixF"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "做得好!👌 現在你擁有一個乾淨整潔的數據集,可以用來建立你的新回歸模型! \n"
+ ],
+ "metadata": {
+ "id": "y8TJ0Za_bn5Y"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 4. 使用 ggplot2 進行數據視覺化\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 資訊圖表由 Dasani Madipalli 製作 \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "有一句*智慧*的名言是這樣說的:\n",
+ "\n",
+ "> 「簡單的圖表比任何其他工具都能為數據分析師帶來更多的信息。」 --- John Tukey\n",
+ "\n",
+ "數據科學家的其中一個角色是展示他們所處理數據的質量和特性。為了達到這個目的,他們通常會創建有趣的視覺化圖表,例如散點圖、折線圖和柱狀圖,來展示數據的不同方面。透過這種方式,他們能夠以視覺化的方式展示數據中難以察覺的關係和差距。\n",
+ "\n",
+ "視覺化還可以幫助確定最適合數據的機器學習技術。例如,一個看起來沿著直線分佈的散點圖表明該數據非常適合進行線性回歸分析。\n",
+ "\n",
+ "R 提供了多種繪製圖表的系統,而 [`ggplot2`](https://ggplot2.tidyverse.org/index.html) 是其中最優雅且最靈活的一種。`ggplot2` 允許你通過**組合獨立的組件**來構建圖表。\n",
+ "\n",
+ "讓我們從一個簡單的散點圖開始,展示 Price 和 Month 這兩列數據。\n",
+ "\n",
+ "在這個例子中,我們將從 [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html) 開始,提供一個數據集和美學映射(使用 [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)),然後添加一個層(例如 [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html))來繪製散點圖。\n"
+ ],
+ "metadata": {
+ "id": "mYSH6-EtbvNa"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Set a theme for the plots\n",
+ "theme_set(theme_light())\n",
+ "\n",
+ "# Create a scatter plot\n",
+ "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n",
+ "p + geom_point()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "g2YjnGeOcLo4"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "這是一個有用的圖表嗎 🤷?有什麼讓你感到驚訝的地方嗎?\n",
+ "\n",
+ "它並不特別有用,因為它只是顯示你的數據在某個月份中的分佈點。\n"
+ ],
+ "metadata": {
+ "id": "Ml7SDCLQcPvE"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### **如何令其更有用?**\n",
+ "\n",
+ "要讓圖表顯示有用的數據,通常需要以某種方式對數據進行分組。例如,在我們的情況下,找出每個月南瓜的平均價格可以提供更多有關數據底層模式的洞察。這引導我們進一步了解 **dplyr**:\n",
+ "\n",
+ "#### `dplyr::group_by() %>% summarize()`\n",
+ "\n",
+ "在 R 中,分組聚合可以輕鬆地通過以下方式計算:\n",
+ "\n",
+ "`dplyr::group_by() %>% summarize()`\n",
+ "\n",
+ "- `dplyr::group_by()` 將分析單位從整個數據集更改為個別分組,例如按月分組。\n",
+ "\n",
+ "- `dplyr::summarize()` 創建一個新的數據框,其中每個分組變量有一列,以及每個指定的摘要統計有一列。\n",
+ "\n",
+ "例如,我們可以使用 `dplyr::group_by() %>% summarize()` 將南瓜根據 **Month** 列進行分組,然後找出每個月的 **平均價格**。\n"
+ ],
+ "metadata": {
+ "id": "jMakvJZIcVkh"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Find the average price of pumpkins per month\r\n",
+ "new_pumpkins %>%\r\n",
+ " group_by(Month) %>% \r\n",
+ " summarise(mean_price = mean(Price))"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "6kVSUa2Bcilf"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "簡潔!✨\n",
+ "\n",
+ "像月份這類的分類特徵,用柱狀圖來表示會更好 📊。負責繪製柱狀圖的圖層是 `geom_bar()` 和 `geom_col()`。查看 `?geom_bar` 以了解更多資訊。\n",
+ "\n",
+ "讓我們來試試吧!\n"
+ ],
+ "metadata": {
+ "id": "Kds48GUBcj3W"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Find the average price of pumpkins per month then plot a bar chart\r\n",
+ "new_pumpkins %>%\r\n",
+ " group_by(Month) %>% \r\n",
+ " summarise(mean_price = mean(Price)) %>% \r\n",
+ " ggplot(aes(x = Month, y = mean_price)) +\r\n",
+ " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n",
+ " ylab(\"Pumpkin Price\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "VNbU1S3BcrxO"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "🤩🤩這是一個更有用的數據可視化!看起來南瓜的最高價格出現在九月和十月。這是否符合你的預期?為什麼符合或不符合?\n",
+ "\n",
+ "恭喜你完成了第二課 👏!你已經為模型構建準備好了數據,然後通過可視化發掘了更多的洞察!\n"
+ ],
+ "metadata": {
+ "id": "zDm0VOzzcuzR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/2-Data/solution/notebook.ipynb b/translations/zh-HK/2-Regression/2-Data/solution/notebook.ipynb
new file mode 100644
index 000000000..911ede54a
--- /dev/null
+++ b/translations/zh-HK/2-Regression/2-Data/solution/notebook.ipynb
@@ -0,0 +1,437 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " City Name \n",
+ " Type \n",
+ " Package \n",
+ " Variety \n",
+ " Sub Variety \n",
+ " Grade \n",
+ " Date \n",
+ " Low Price \n",
+ " High Price \n",
+ " Mostly Low \n",
+ " ... \n",
+ " Unit of Sale \n",
+ " Quality \n",
+ " Condition \n",
+ " Appearance \n",
+ " Storage \n",
+ " Crop \n",
+ " Repack \n",
+ " Trans Mode \n",
+ " Unnamed: 24 \n",
+ " Unnamed: 25 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 70 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 1 1/9 bushel cartons \n",
+ " PIE TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 71 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 1 1/9 bushel cartons \n",
+ " PIE TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 72 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 1 1/9 bushel cartons \n",
+ " PIE TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 10/1/16 \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 73 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 1 1/9 bushel cartons \n",
+ " PIE TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 10/1/16 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 74 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 1 1/9 bushel cartons \n",
+ " PIE TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 10/8/16 \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Name Type Package Variety Sub Variety Grade \\\n",
+ "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n",
+ "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n",
+ "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n",
+ "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n",
+ "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n",
+ "\n",
+ " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n",
+ "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n",
+ "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n",
+ "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n",
+ "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n",
+ "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n",
+ "\n",
+ " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n",
+ "70 NaN NaN NaN NaN N NaN NaN \n",
+ "71 NaN NaN NaN NaN N NaN NaN \n",
+ "72 NaN NaN NaN NaN N NaN NaN \n",
+ "73 NaN NaN NaN NaN N NaN NaN \n",
+ "74 NaN NaN NaN NaN N NaN NaN \n",
+ "\n",
+ " Unnamed: 25 \n",
+ "70 NaN \n",
+ "71 NaN \n",
+ "72 NaN \n",
+ "73 NaN \n",
+ "74 NaN \n",
+ "\n",
+ "[5 rows x 26 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n",
+ "\n",
+ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
+ "\n",
+ "pumpkins.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "City Name 0\n",
+ "Type 406\n",
+ "Package 0\n",
+ "Variety 0\n",
+ "Sub Variety 167\n",
+ "Grade 415\n",
+ "Date 0\n",
+ "Low Price 0\n",
+ "High Price 0\n",
+ "Mostly Low 24\n",
+ "Mostly High 24\n",
+ "Origin 0\n",
+ "Origin District 396\n",
+ "Item Size 114\n",
+ "Color 145\n",
+ "Environment 415\n",
+ "Unit of Sale 404\n",
+ "Quality 415\n",
+ "Condition 415\n",
+ "Appearance 415\n",
+ "Storage 415\n",
+ "Crop 415\n",
+ "Repack 0\n",
+ "Trans Mode 415\n",
+ "Unnamed: 24 415\n",
+ "Unnamed: 25 391\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pumpkins.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Month Package Low Price High Price Price\n",
+ "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n",
+ "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n",
+ "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n",
+ "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n",
+ "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n",
+ "... ... ... ... ... ...\n",
+ "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n",
+ "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n",
+ "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n",
+ "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n",
+ "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n",
+ "\n",
+ "[415 rows x 5 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "# A set of new columns for a new dataframe. Filter out nonmatching columns\n",
+ "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n",
+ "pumpkins = pumpkins.loc[:, columns_to_select]\n",
+ "\n",
+ "# Get an average between low and high price for the base pumpkin price\n",
+ "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
+ "\n",
+ "# Convert the date to its month only\n",
+ "month = pd.DatetimeIndex(pumpkins['Date']).month\n",
+ "\n",
+ "# Create a new dataframe with this basic data\n",
+ "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n",
+ "\n",
+ "# Convert the price if the Package contains fractional bushel values\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n",
+ "\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n",
+ "\n",
+ "print(new_pumpkins)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "price = new_pumpkins.Price\n",
+ "month = new_pumpkins.Month\n",
+ "plt.scatter(price, month)\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0, 0.5, 'Pumpkin Price')"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n",
+ "plt.ylabel(\"Pumpkin Price\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.7.0 64-bit ('3.7')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.1"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "95726f0b8283628d5356a4f8eb8b4b76",
+ "translation_date": "2025-09-03T19:45:04+00:00",
+ "source_file": "2-Regression/2-Data/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/README.md b/translations/zh-HK/2-Regression/3-Linear/README.md
new file mode 100644
index 000000000..ef84215bb
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/README.md
@@ -0,0 +1,373 @@
+# 使用 Scikit-learn 建立回歸模型:四種回歸方法
+
+
+> 資訊圖表由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 製作
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+> ### [本課程也提供 R 版本!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html)
+### 簡介
+
+到目前為止,你已經透過南瓜價格數據集的樣本數據了解了什麼是回歸,並使用 Matplotlib 進行了可視化。
+
+現在,你準備深入了解機器學習中的回歸。雖然可視化可以幫助你理解數據,但機器學習的真正力量來自於 _訓練模型_。模型基於歷史數據進行訓練,能夠自動捕捉數據之間的依賴關係,並幫助你預測模型未曾見過的新數據的結果。
+
+在本課程中,你將深入了解兩種回歸方法:_基本線性回歸_ 和 _多項式回歸_,以及這些技術背後的一些數學原理。這些模型將幫助我們根據不同的輸入數據預測南瓜的價格。
+
+[](https://youtu.be/CRxFT8oTDMg "機器學習初學者 - 理解線性回歸")
+
+> 🎥 點擊上方圖片觀看線性回歸的簡短視頻概述。
+
+> 在整個課程中,我們假設學生的數學知識有限,並努力使內容對來自其他領域的學生易於理解,因此請留意筆記、🧮 數學提示、圖表以及其他學習工具以幫助理解。
+
+### 前置條件
+
+到目前為止,你應該已熟悉我們正在研究的南瓜數據的結構。你可以在本課程的 _notebook.ipynb_ 文件中找到預加載和預清理的數據。在文件中,南瓜的價格以每蒲式耳顯示在一個新的數據框中。請確保你能在 Visual Studio Code 的內核中運行這些筆記本。
+
+### 準備工作
+
+提醒一下,你正在加載這些數據以便提出問題:
+
+- 什麼時候是購買南瓜的最佳時機?
+- 我可以預期一箱迷你南瓜的價格是多少?
+- 我應該購買半蒲式耳籃子還是 1 1/9 蒲式耳的箱子?
+
+讓我們繼續深入挖掘這些數據。
+
+在上一課中,你創建了一個 Pandas 數據框,並用原始數據集的一部分填充它,將價格標準化為每蒲式耳。然而,通過這樣做,你只能收集到大約 400 個數據點,而且僅限於秋季月份。
+
+查看本課程附帶的筆記本中預加載的數據。數據已預加載,並繪製了一個初步的散點圖以顯示月份數據。也許通過進一步清理數據,我們可以更詳細地了解數據的性質。
+
+## 線性回歸線
+
+正如你在第一課中所學,線性回歸的目標是能夠繪製一條線以:
+
+- **顯示變量關係**。顯示變量之間的關係
+- **進行預測**。準確預測新數據點在該線上的位置
+
+通常使用 **最小二乘回歸** 來繪製這種類型的線。'最小二乘' 的意思是回歸線周圍的所有數據點的距離平方後相加。理想情況下,最終的總和應該盡可能小,因為我們希望誤差數量低,即 `最小二乘`。
+
+我們這樣做是因為我們希望建模一條線,使其與所有數據點的累積距離最小。我們還會在相加之前對項進行平方,因為我們關心的是其大小而不是方向。
+
+> **🧮 數學展示**
+>
+> 這條線,稱為 _最佳擬合線_,可以用 [一個方程](https://en.wikipedia.org/wiki/Simple_linear_regression) 表示:
+>
+> ```
+> Y = a + bX
+> ```
+>
+> `X` 是 '解釋變量',`Y` 是 '依賴變量'。線的斜率是 `b`,而 `a` 是 y 截距,指的是當 `X = 0` 時 `Y` 的值。
+>
+>
+>
+> 首先,計算斜率 `b`。資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+>
+> 換句話說,參考我們南瓜數據的原始問題:"根據月份預測每蒲式耳南瓜的價格",`X` 代表價格,`Y` 代表銷售月份。
+>
+>
+>
+> 計算 Y 的值。如果你支付大約 $4,那一定是四月!資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+>
+> 計算這條線的數學必須展示線的斜率,這也取決於截距,即當 `X = 0` 時 `Y` 的位置。
+>
+> 你可以在 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 網站上觀察這些值的計算方法。也可以訪問 [這個最小二乘計算器](https://www.mathsisfun.com/data/least-squares-calculator.html) 來查看數值如何影響線。
+
+## 相關性
+
+另一個需要理解的術語是 **相關係數**,即給定 X 和 Y 變量之間的相關性。使用散點圖,你可以快速可視化這個係數。數據點整齊排列成一條線的圖表具有高相關性,而數據點在 X 和 Y 之間隨意分佈的圖表則具有低相關性。
+
+一個好的線性回歸模型應該使用最小二乘回歸方法,並且回歸線的相關係數應該接近 1(而非 0)。
+
+✅ 運行本課程附帶的筆記本,查看月份與價格的散點圖。根據你的視覺解讀,南瓜銷售的月份與價格之間的數據是否具有高或低相關性?如果你使用更精細的度量(例如 *一年中的天數*,即自年初以來的天數),結果是否會有所改變?
+
+在下面的代碼中,我們假設已清理數據,並獲得了一個名為 `new_pumpkins` 的數據框,類似於以下內容:
+
+ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price
+---|-------|-----------|---------|------|---------|-----------|------------|-------
+70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364
+71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636
+72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636
+73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545
+74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364
+
+> 清理數據的代碼可在 [`notebook.ipynb`](../../../../2-Regression/3-Linear/notebook.ipynb) 中找到。我們執行了與上一課相同的清理步驟,並使用以下表達式計算了 `DayOfYear` 列:
+
+```python
+day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)
+```
+
+現在你已經了解了線性回歸背後的數學原理,讓我們建立一個回歸模型,看看是否可以預測哪種南瓜包裝的價格最划算。想要為節日南瓜田購買南瓜的人可能需要這些信息,以便優化南瓜包裝的購買。
+
+## 尋找相關性
+
+[](https://youtu.be/uoRq-lW2eQo "機器學習初學者 - 尋找相關性:線性回歸的關鍵")
+
+> 🎥 點擊上方圖片觀看相關性的簡短視頻概述。
+
+從上一課中,你可能已經看到不同月份的平均價格如下所示:
+
+
+
+這表明應該存在某種相關性,我們可以嘗試訓練線性回歸模型來預測 `Month` 與 `Price` 或 `DayOfYear` 與 `Price` 之間的關係。以下是顯示後者關係的散點圖:
+
+
+
+讓我們使用 `corr` 函數檢查是否存在相關性:
+
+```python
+print(new_pumpkins['Month'].corr(new_pumpkins['Price']))
+print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))
+```
+
+看起來相關性非常小,`Month` 為 -0.15,`DayOfYear` 為 -0.17,但可能存在另一個重要的關係。看起來不同的南瓜品種對價格的影響更大。為了確認這一假設,讓我們使用不同的顏色繪製每個南瓜品種。通過向 `scatter` 繪圖函數傳遞 `ax` 參數,我們可以將所有點繪製在同一圖表上:
+
+```python
+ax=None
+colors = ['red','blue','green','yellow']
+for i,var in enumerate(new_pumpkins['Variety'].unique()):
+ df = new_pumpkins[new_pumpkins['Variety']==var]
+ ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)
+```
+
+
+
+我們的調查表明,品種對整體價格的影響比實際銷售日期更大。我們可以通過柱狀圖看到這一點:
+
+```python
+new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
+```
+
+
+
+讓我們暫時只關注一種南瓜品種,即 'pie type',看看日期對價格有什麼影響:
+
+```python
+pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
+pie_pumpkins.plot.scatter('DayOfYear','Price')
+```
+
+
+如果我們現在使用 `corr` 函數計算 `Price` 與 `DayOfYear` 的相關性,我們會得到類似 `-0.27` 的結果——這意味著訓練一個預測模型是有意義的。
+
+> 在訓練線性回歸模型之前,確保數據清理是很重要的。線性回歸對缺失值的處理效果不佳,因此有必要刪除所有空單元格:
+
+```python
+pie_pumpkins.dropna(inplace=True)
+pie_pumpkins.info()
+```
+
+另一種方法是用相應列的平均值填充這些空值。
+
+## 簡單線性回歸
+
+[](https://youtu.be/e4c_UP2fSjg "機器學習初學者 - 使用 Scikit-learn 進行線性和多項式回歸")
+
+> 🎥 點擊上方圖片觀看線性和多項式回歸的簡短視頻概述。
+
+為了訓練我們的線性回歸模型,我們將使用 **Scikit-learn** 庫。
+
+```python
+from sklearn.linear_model import LinearRegression
+from sklearn.metrics import mean_squared_error
+from sklearn.model_selection import train_test_split
+```
+
+首先,我們將輸入值(特徵)和預期輸出(標籤)分離到不同的 numpy 陣列中:
+
+```python
+X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)
+y = pie_pumpkins['Price']
+```
+
+> 注意,我們需要對輸入數據進行 `reshape`,以便線性回歸包能正確理解它。線性回歸需要一個 2D 陣列作為輸入,其中陣列的每一行對應於輸入特徵的向量。在我們的情況下,由於我們只有一個輸入——我們需要一個形狀為 N×1 的陣列,其中 N 是數據集的大小。
+
+接著,我們需要將數據分為訓練集和測試集,以便在訓練後驗證模型:
+
+```python
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
+```
+
+最後,訓練實際的線性回歸模型只需要兩行代碼。我們定義 `LinearRegression` 對象,並使用 `fit` 方法將其擬合到數據上:
+
+```python
+lin_reg = LinearRegression()
+lin_reg.fit(X_train,y_train)
+```
+
+`LinearRegression` 對象在 `fit` 後包含所有回歸係數,可以通過 `.coef_` 屬性訪問。在我們的情況下,只有一個係數,應該大約是 `-0.017`。這意味著價格似乎隨時間略有下降,但幅度不大,每天大約下降 2 美分。我們還可以使用 `lin_reg.intercept_` 訪問回歸線與 Y 軸的交點——在我們的情況下,大約是 `21`,表示年初的價格。
+
+為了查看模型的準確性,我們可以在測試數據集上預測價格,然後測量預測值與預期值的接近程度。這可以使用均方誤差(MSE)指標完成,均方誤差是所有預期值與預測值之間平方差的平均值。
+
+```python
+pred = lin_reg.predict(X_test)
+
+mse = np.sqrt(mean_squared_error(y_test,pred))
+print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
+```
+我們的錯誤似乎集中在兩個點上,約佔 17%。表現不太理想。另一個衡量模型質量的指標是 **決定係數**,可以通過以下方式獲得:
+
+```python
+score = lin_reg.score(X_train,y_train)
+print('Model determination: ', score)
+```
+如果值為 0,表示模型未考慮輸入數據,並充當*最差的線性預測器*,即僅僅是結果的平均值。值為 1 則表示我們可以完美地預測所有期望的輸出。在我們的情況下,決定係數約為 0.06,這相當低。
+
+我們還可以繪製測試數據與回歸線,以更好地了解回歸在我們的情況下是如何工作的:
+
+```python
+plt.scatter(X_test,y_test)
+plt.plot(X_test,pred)
+```
+
+
+
+## 多項式回歸
+
+另一種線性回歸是多項式回歸。有時候,變量之間存在線性關係,例如南瓜的體積越大,價格越高;但有時候這些關係無法用平面或直線來表示。
+
+✅ 這裡有[一些更多的例子](https://online.stat.psu.edu/stat501/lesson/9/9.8),展示了可以使用多項式回歸的數據。
+
+再看看日期與價格之間的關係。這個散點圖看起來是否一定要用直線來分析?價格是否可能波動?在這種情況下,你可以嘗試使用多項式回歸。
+
+✅ 多項式是可能包含一個或多個變量和係數的數學表達式。
+
+多項式回歸會創建一條曲線,以更好地擬合非線性數據。在我們的情況下,如果在輸入數據中加入平方的 `DayOfYear` 變量,我們應該能用一條拋物線來擬合數據,該拋物線在一年中的某個點會有一個最低值。
+
+Scikit-learn 提供了一個有用的 [pipeline API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline),可以將不同的數據處理步驟結合在一起。**管道**是一系列的**估算器**。在我們的情況下,我們將創建一個管道,首先向模型添加多項式特徵,然後訓練回歸:
+
+```python
+from sklearn.preprocessing import PolynomialFeatures
+from sklearn.pipeline import make_pipeline
+
+pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
+
+pipeline.fit(X_train,y_train)
+```
+
+使用 `PolynomialFeatures(2)` 表示我們將包含輸入數據中的所有二次多項式。在我們的情況下,這僅意味著 `DayOfYear`2 ,但如果有兩個輸入變量 X 和 Y,這將添加 X2 、XY 和 Y2 。如果需要,我們也可以使用更高次的多項式。
+
+管道可以像原始的 `LinearRegression` 對象一樣使用,例如我們可以 `fit` 管道,然後使用 `predict` 獲得預測結果。以下是顯示測試數據和近似曲線的圖表:
+
+
+
+使用多項式回歸,我們可以獲得稍低的 MSE 和稍高的決定係數,但提升並不顯著。我們需要考慮其他特徵!
+
+> 你可以看到南瓜價格最低點大約出現在萬聖節附近。你如何解釋這一現象?
+
+🎃 恭喜!你剛剛創建了一個可以幫助預測南瓜派價格的模型。你可能可以對所有南瓜類型重複相同的過程,但這樣會很繁瑣。現在讓我們學習如何在模型中考慮南瓜品種!
+
+## 類別特徵
+
+在理想情況下,我們希望能夠使用同一模型來預測不同南瓜品種的價格。然而,`Variety` 列與 `Month` 等列有所不同,因為它包含非數值值。這類列被稱為**類別特徵**。
+
+[](https://youtu.be/DYGliioIAE0 "初學者的機器學習 - 使用線性回歸進行類別特徵預測")
+
+> 🎥 點擊上方圖片觀看有關使用類別特徵的簡短視頻概述。
+
+以下是平均價格如何隨品種變化的圖表:
+
+
+
+為了考慮品種,我們首先需要將其轉換為數值形式,或者**編碼**。有幾種方法可以做到:
+
+* 簡單的**數值編碼**會建立一個不同品種的表,然後用表中的索引替換品種名稱。這對於線性回歸來說不是最好的方法,因為線性回歸會將索引的實際數值加到結果中,並乘以某個係數。在我們的情況下,索引號與價格之間的關係顯然是非線性的,即使我們確保索引按某種特定方式排序。
+* **獨熱編碼**會用 4 個不同的列替換 `Variety` 列,每個列代表一個品種。如果某行屬於某品種,該列會包含 `1`,否則為 `0`。這意味著線性回歸中會有四個係數,每個南瓜品種一個,負責該品種的“起始價格”(或“附加價格”)。
+
+以下代碼展示了如何對品種進行獨熱編碼:
+
+```python
+pd.get_dummies(new_pumpkins['Variety'])
+```
+
+ ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE
+----|-----------|-----------|--------------------------|----------
+70 | 0 | 0 | 0 | 1
+71 | 0 | 0 | 0 | 1
+... | ... | ... | ... | ...
+1738 | 0 | 1 | 0 | 0
+1739 | 0 | 1 | 0 | 0
+1740 | 0 | 1 | 0 | 0
+1741 | 0 | 1 | 0 | 0
+1742 | 0 | 1 | 0 | 0
+
+要使用獨熱編碼的品種作為輸入訓練線性回歸,我們只需要正確初始化 `X` 和 `y` 數據:
+
+```python
+X = pd.get_dummies(new_pumpkins['Variety'])
+y = new_pumpkins['Price']
+```
+
+其餘代碼與我們之前用於訓練線性回歸的代碼相同。如果你嘗試一下,你會發現均方誤差差不多,但我們的決定係數大幅提高(約 77%)。為了獲得更準確的預測,我們可以考慮更多的類別特徵,以及數值特徵,例如 `Month` 或 `DayOfYear`。要獲得一個大的特徵數組,我們可以使用 `join`:
+
+```python
+X = pd.get_dummies(new_pumpkins['Variety']) \
+ .join(new_pumpkins['Month']) \
+ .join(pd.get_dummies(new_pumpkins['City'])) \
+ .join(pd.get_dummies(new_pumpkins['Package']))
+y = new_pumpkins['Price']
+```
+
+這裡我們還考慮了 `City` 和 `Package` 類型,這使得 MSE 降至 2.84(10%),決定係數提高到 0.94!
+
+## 整合所有內容
+
+為了創建最佳模型,我們可以使用上述示例中的綜合數據(獨熱編碼的類別特徵 + 數值特徵)以及多項式回歸。以下是完整代碼供你參考:
+
+```python
+# set up training data
+X = pd.get_dummies(new_pumpkins['Variety']) \
+ .join(new_pumpkins['Month']) \
+ .join(pd.get_dummies(new_pumpkins['City'])) \
+ .join(pd.get_dummies(new_pumpkins['Package']))
+y = new_pumpkins['Price']
+
+# make train-test split
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
+
+# setup and train the pipeline
+pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
+pipeline.fit(X_train,y_train)
+
+# predict results for test data
+pred = pipeline.predict(X_test)
+
+# calculate MSE and determination
+mse = np.sqrt(mean_squared_error(y_test,pred))
+print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
+
+score = pipeline.score(X_train,y_train)
+print('Model determination: ', score)
+```
+
+這應該能讓我們的決定係數達到接近 97%,MSE=2.23(約 8% 的預測誤差)。
+
+| 模型 | MSE | 決定係數 |
+|-------|-----|---------------|
+| `DayOfYear` 線性 | 2.77 (17.2%) | 0.07 |
+| `DayOfYear` 多項式 | 2.73 (17.0%) | 0.08 |
+| `Variety` 線性 | 5.24 (19.7%) | 0.77 |
+| 所有特徵線性 | 2.84 (10.5%) | 0.94 |
+| 所有特徵多項式 | 2.23 (8.25%) | 0.97 |
+
+🏆 做得好!你在一節課中創建了四個回歸模型,並將模型質量提高到 97%。在回歸的最後一部分中,你將學習如何使用邏輯回歸來確定類別。
+
+---
+
+## 🚀挑戰
+
+在此筆記本中測試幾個不同的變量,看看相關性如何影響模型準確性。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在本課中,我們學習了線性回歸。還有其他重要的回歸類型。閱讀有關逐步回歸、嶺回歸、套索回歸和彈性網回歸技術的資料。一門值得學習的課程是 [斯坦福統計學習課程](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)。
+
+## 作業
+
+[建立模型](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/assignment.md b/translations/zh-HK/2-Regression/3-Linear/assignment.md
new file mode 100644
index 000000000..6af9913a5
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/assignment.md
@@ -0,0 +1,16 @@
+# 建立回歸模型
+
+## 指引
+
+在這節課中,你已學習如何使用線性回歸和多項式回歸來建立模型。運用這些知識,尋找一個數據集或使用 Scikit-learn 的內建數據集來建立一個全新的模型。在你的筆記本中解釋你選擇該技術的原因,並展示你的模型準確性。如果模型不準確,請解釋原因。
+
+## 評分標準
+
+| 評分標準 | 卓越表現 | 合格表現 | 需要改進 |
+| -------- | ------------------------------------------------------------ | -------------------------- | ----------------------------- |
+| | 提供完整的筆記本並附有詳細記錄的解決方案 | 解決方案不完整 | 解決方案有缺陷或存在錯誤 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/notebook.ipynb b/translations/zh-HK/2-Regression/3-Linear/notebook.ipynb
new file mode 100644
index 000000000..0e5398bdc
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/notebook.ipynb
@@ -0,0 +1,128 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 南瓜定價\n",
+ "\n",
+ "載入所需的庫和數據集。將數據轉換為包含部分數據的數據框:\n",
+ "\n",
+ "- 只選取按蒲式耳定價的南瓜\n",
+ "- 將日期轉換為月份\n",
+ "- 計算價格為高價和低價的平均值\n",
+ "- 將價格轉換為按蒲式耳數量定價\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from datetime import datetime\n",
+ "\n",
+ "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
+ "\n",
+ "pumpkins.head()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
+ "\n",
+ "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n",
+ "pumpkins = pumpkins.loc[:, columns_to_select]\n",
+ "\n",
+ "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
+ "\n",
+ "month = pd.DatetimeIndex(pumpkins['Date']).month\n",
+ "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n",
+ "\n",
+ "new_pumpkins = pd.DataFrame(\n",
+ " {'Month': month, \n",
+ " 'DayOfYear' : day_of_year, \n",
+ " 'Variety': pumpkins['Variety'], \n",
+ " 'City': pumpkins['City Name'], \n",
+ " 'Package': pumpkins['Package'], \n",
+ " 'Low Price': pumpkins['Low Price'],\n",
+ " 'High Price': pumpkins['High Price'], \n",
+ " 'Price': price})\n",
+ "\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n",
+ "\n",
+ "new_pumpkins.head()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "基本散佈圖提醒我們,我們只有八月至十二月的月份數據。我們可能需要更多數據才能以線性方式得出結論。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "plt.scatter('Month','Price',data=new_pumpkins)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "plt.scatter('DayOfYear','Price',data=new_pumpkins)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3-final"
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "b032d371c75279373507f003439a577e",
+ "translation_date": "2025-09-03T19:16:33+00:00",
+ "source_file": "2-Regression/3-Linear/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/solution/Julia/README.md b/translations/zh-HK/2-Regression/3-Linear/solution/Julia/README.md
new file mode 100644
index 000000000..f21ae0b03
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/zh-HK/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb
new file mode 100644
index 000000000..dc063d129
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb
@@ -0,0 +1,1086 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {
+ "colab": {
+ "name": "lesson_3-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "5015d65d61ba75a223bfc56c273aa174",
+ "translation_date": "2025-09-03T19:27:58+00:00",
+ "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "EgQw8osnsUV-"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 南瓜定價的線性回歸與多項式回歸 - 第三課\n",
+ "\n",
+ " \n",
+ " 資訊圖表由 Dasani Madipalli 製作 \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "#### 簡介\n",
+ "\n",
+ "到目前為止,你已經透過我們將在本課中使用的南瓜定價數據集,探索了回歸分析的概念,並使用 `ggplot2` 將其可視化。💪\n",
+ "\n",
+ "現在,你已準備好更深入地了解機器學習中的回歸分析。在本課中,你將學習兩種類型的回歸分析:*基本線性回歸* 和 *多項式回歸*,以及這些技術背後的一些數學原理。\n",
+ "\n",
+ "> 在整個課程中,我們假設學生的數學知識有限,並致力於讓來自其他領域的學生也能輕鬆理解。因此,請留意筆記、🧮 提示、圖表和其他學習工具,幫助你更好地掌握內容。\n",
+ "\n",
+ "#### 準備工作\n",
+ "\n",
+ "提醒一下,你正在載入這些數據以便對其進行分析並提出問題。\n",
+ "\n",
+ "- 什麼時候是購買南瓜的最佳時機?\n",
+ "\n",
+ "- 一箱迷你南瓜的價格大約是多少?\n",
+ "\n",
+ "- 我應該購買半蒲式耳籃裝的還是 1 1/9 蒲式耳箱裝的?讓我們繼續深入挖掘這些數據。\n",
+ "\n",
+ "在上一課中,你創建了一個 `tibble`(一種現代化的數據框架),並用部分原始數據集填充它,將價格標準化為以蒲式耳為單位。然而,這樣做後,你只能收集到大約 400 個數據點,並且僅限於秋季月份。也許通過進一步清理數據,我們可以獲得更多細節?我們拭目以待吧... 🕵️♀️\n",
+ "\n",
+ "為了完成這項任務,我們需要以下套件:\n",
+ "\n",
+ "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個 [R 套件集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個 [套件集合](https://www.tidymodels.org/packages/),用於建模和機器學習。\n",
+ "\n",
+ "- `janitor`: [janitor 套件](https://github.com/sfirke/janitor) 提供了一些簡單的小工具,用於檢查和清理髒數據。\n",
+ "\n",
+ "- `corrplot`: [corrplot 套件](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) 提供了一種可視化相關矩陣的工具,支持自動變量重排序,以幫助發現變量之間隱藏的模式。\n",
+ "\n",
+ "你可以通過以下方式安裝這些套件:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n",
+ "\n",
+ "以下腳本將檢查你是否已安裝完成本模組所需的套件,並在缺少時自動為你安裝。\n"
+ ],
+ "metadata": {
+ "id": "WqQPS1OAsg3H"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n",
+ "\n",
+ "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "tA4C2WN3skCf",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "我們稍後會載入這些很棒的套件,並將它們在我們當前的 R 工作環境中啟用。(這只是為了說明,`pacman::p_load()` 已經幫你完成了這件事)\n",
+ "\n",
+ "## 1. 線性回歸線\n",
+ "\n",
+ "正如你在第一課中學到的,線性回歸的目標是能夠繪製一條*最佳擬合線*,以便:\n",
+ "\n",
+ "- **展示變數之間的關係**。顯示變數之間的關聯性。\n",
+ "\n",
+ "- **進行預測**。準確預測新數據點在這條線上的位置。\n",
+ "\n",
+ "為了繪製這種類型的線,我們使用一種稱為**最小平方法**的統計技術。`最小平方法`的意思是,將回歸線周圍的所有數據點的誤差平方後相加。理想情況下,這個最終的總和應該越小越好,因為我們希望誤差數值越低越好,也就是`最小平方`。因此,最佳擬合線就是使平方誤差總和最小的那條線——這就是*最小平方法回歸*名稱的由來。\n",
+ "\n",
+ "我們這樣做是因為我們希望建模出一條與所有數據點的累積距離最小的線。我們在相加之前對誤差進行平方,因為我們關注的是誤差的大小,而不是方向。\n",
+ "\n",
+ "> **🧮 數學公式展示**\n",
+ ">\n",
+ "> 這條線,稱為*最佳擬合線*,可以用[一個方程式](https://en.wikipedia.org/wiki/Simple_linear_regression)來表示:\n",
+ ">\n",
+ "> Y = a + bX\n",
+ ">\n",
+ "> `X` 是「`解釋變數`或`預測變數`」。`Y` 是「`應變數`或`結果變數`」。`b` 是線的斜率,而 `a` 是 y 截距,表示當 `X = 0` 時 `Y` 的值。\n",
+ ">\n",
+ "\n",
+ "> \n",
+ " 圖解由 Jen Looper 提供\n",
+ ">\n",
+ "> 首先,計算斜率 `b`。\n",
+ ">\n",
+ "> 換句話說,參考我們南瓜數據的原始問題:「根據月份預測每蒲式耳南瓜的價格」,`X` 代表價格,`Y` 代表銷售月份。\n",
+ ">\n",
+ "> \n",
+ " 圖解由 Jen Looper 提供\n",
+ "> \n",
+ "> 計算 Y 的值。如果你支付大約 4 美元,那應該是四月!\n",
+ ">\n",
+ "> 計算這條線的數學公式必須展示線的斜率,而這也取決於截距,或者說當 `X = 0` 時 `Y` 的位置。\n",
+ ">\n",
+ "> 你可以在 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 網站上觀察這些值的計算方法。還可以訪問[這個最小平方法計算器](https://www.mathsisfun.com/data/least-squares-calculator.html),觀察數值如何影響這條線。\n",
+ "\n",
+ "不那麼可怕吧?🤓\n",
+ "\n",
+ "#### 相關性\n",
+ "\n",
+ "還有一個需要理解的術語是給定 X 和 Y 變數之間的**相關係數**。使用散點圖,你可以快速地可視化這個係數。數據點整齊排列成一條線的圖表具有高相關性,而數據點在 X 和 Y 之間隨意分佈的圖表則具有低相關性。\n",
+ "\n",
+ "一個好的線性回歸模型應該是使用最小平方法回歸線,並且具有高(接近 1 而非 0)的相關係數的模型。\n"
+ ],
+ "metadata": {
+ "id": "cdX5FRpvsoP5"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## **2. 與數據共舞:建立用於建模的數據框**\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "WdUKXk7Bs8-V"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "載入所需的庫和數據集。將數據轉換為包含部分數據的數據框:\n",
+ "\n",
+ "- 只選擇以蒲式耳定價的南瓜\n",
+ "\n",
+ "- 將日期轉換為月份\n",
+ "\n",
+ "- 計算價格為高價和低價的平均值\n",
+ "\n",
+ "- 將價格轉換為反映按蒲式耳數量定價\n",
+ "\n",
+ "> 我們在[上一課](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb)中已經涵蓋了這些步驟。\n"
+ ],
+ "metadata": {
+ "id": "fMCtu2G2s-p8"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load the core Tidyverse packages\n",
+ "library(tidyverse)\n",
+ "library(lubridate)\n",
+ "\n",
+ "# Import the pumpkins data\n",
+ "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n",
+ "\n",
+ "\n",
+ "# Get a glimpse and dimensions of the data\n",
+ "glimpse(pumpkins)\n",
+ "\n",
+ "\n",
+ "# Print the first 50 rows of the data set\n",
+ "pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "ryMVZEEPtERn"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "在純粹冒險的精神下,讓我們探索 [`janitor package`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor),它提供了簡單的函數來檢查和清理髒數據。例如,讓我們看看我們數據的列名稱:\n"
+ ],
+ "metadata": {
+ "id": "xcNxM70EtJjb"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Return column names\n",
+ "pumpkins %>% \n",
+ " names()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "5XtpaIigtPfW"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "🤔 我們可以做得更好。讓我們通過使用 `janitor::clean_names` 將這些列名稱轉換為 [snake_case](https://en.wikipedia.org/wiki/Snake_case) 規範,並將它們命名為 `friendR`。想了解更多關於此函數的信息:`?clean_names`\n"
+ ],
+ "metadata": {
+ "id": "IbIqrMINtSHe"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Clean names to the snake_case convention\n",
+ "pumpkins <- pumpkins %>% \n",
+ " clean_names(case = \"snake\")\n",
+ "\n",
+ "# Return column names\n",
+ "pumpkins %>% \n",
+ " names()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "a2uYvclYtWvX"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "非常整潔 🧹!現在,像上一課一樣,用 `dplyr` 與數據共舞吧!💃\n"
+ ],
+ "metadata": {
+ "id": "HfhnuzDDtaDd"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Select desired columns\n",
+ "pumpkins <- pumpkins %>% \n",
+ " select(variety, city_name, package, low_price, high_price, date)\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Extract the month from the dates to a new column\n",
+ "pumpkins <- pumpkins %>%\n",
+ " mutate(date = mdy(date),\n",
+ " month = month(date)) %>% \n",
+ " select(-date)\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Create a new column for average Price\n",
+ "pumpkins <- pumpkins %>% \n",
+ " mutate(price = (low_price + high_price)/2)\n",
+ "\n",
+ "\n",
+ "# Retain only pumpkins with the string \"bushel\"\n",
+ "new_pumpkins <- pumpkins %>% \n",
+ " filter(str_detect(string = package, pattern = \"bushel\"))\n",
+ "\n",
+ "\n",
+ "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n",
+ "new_pumpkins <- new_pumpkins %>% \n",
+ " mutate(price = case_when(\n",
+ " str_detect(package, \"1 1/9\") ~ price/(1.1),\n",
+ " str_detect(package, \"1/2\") ~ price*2,\n",
+ " TRUE ~ price))\n",
+ "\n",
+ "# Relocate column positions\n",
+ "new_pumpkins <- new_pumpkins %>% \n",
+ " relocate(month, .before = variety)\n",
+ "\n",
+ "\n",
+ "# Display the first 5 rows\n",
+ "new_pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "X0wU3gQvtd9f"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "做得好!👌 現在你擁有一個乾淨整潔的數據集,可以用來建立新的回歸模型!\n",
+ "\n",
+ "要來個散點圖嗎?\n"
+ ],
+ "metadata": {
+ "id": "UpaIwaxqth82"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Set theme\n",
+ "theme_set(theme_light())\n",
+ "\n",
+ "# Make a scatter plot of month and price\n",
+ "new_pumpkins %>% \n",
+ " ggplot(mapping = aes(x = month, y = price)) +\n",
+ " geom_point(size = 1.6)\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "DXgU-j37tl5K"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "散佈圖提醒我們,目前只有八月至十二月的月份數據。可能需要更多數據才能以線性方式得出結論。\n",
+ "\n",
+ "讓我們再次查看我們的建模數據:\n"
+ ],
+ "metadata": {
+ "id": "Ve64wVbwtobI"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Display first 5 rows\n",
+ "new_pumpkins %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "HFQX2ng1tuSJ"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "如果我們想根據屬於字符類型的 `city` 或 `package` 欄位來預測南瓜的 `price`,該怎麼辦?或者更簡單地說,我們如何找到例如 `package` 和 `price` 之間的相關性(這需要兩個輸入都是數值型)?🤷🤷\n",
+ "\n",
+ "機器學習模型在處理數值特徵時效果最佳,而不是文本值,因此通常需要將分類特徵轉換為數值表示。\n",
+ "\n",
+ "這意味著我們需要找到一種方法來重新格式化我們的預測變數,使其更容易被模型有效使用,這個過程被稱為 `特徵工程`。\n"
+ ],
+ "metadata": {
+ "id": "7hsHoxsStyjJ"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 3. 使用 recipes 👩🍳👨🍳 預處理建模數據\n",
+ "\n",
+ "將預測值重新格式化,使其更容易被模型有效使用的活動被稱為 `特徵工程`。\n",
+ "\n",
+ "不同的模型有不同的預處理需求。例如,最小二乘法需要 `編碼分類變數`,例如月份、品種和城市名稱。這簡單地涉及將包含 `分類值` 的列 `轉換` 為一個或多個 `數值列`,以取代原始列。\n",
+ "\n",
+ "例如,假設你的數據包含以下分類特徵:\n",
+ "\n",
+ "| 城市 |\n",
+ "|:-------:|\n",
+ "| 丹佛 |\n",
+ "| 奈洛比 |\n",
+ "| 東京 |\n",
+ "\n",
+ "你可以應用 *序數編碼*,為每個類別替換一個唯一的整數值,如下所示:\n",
+ "\n",
+ "| 城市 |\n",
+ "|:----:|\n",
+ "| 0 |\n",
+ "| 1 |\n",
+ "| 2 |\n",
+ "\n",
+ "這就是我們將對數據進行的操作!\n",
+ "\n",
+ "在本節中,我們將探索另一個令人驚嘆的 Tidymodels 套件:[recipes](https://tidymodels.github.io/recipes/) - 它旨在幫助你在訓練模型之前預處理數據。其核心是一個 recipe 對象,定義了應該對數據集應用哪些步驟,以使其準備好進行建模。\n",
+ "\n",
+ "現在,讓我們創建一個 recipe,通過為預測列中的所有觀測值替換唯一的整數來準備數據進行建模:\n"
+ ],
+ "metadata": {
+ "id": "AD5kQbcvt3Xl"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Specify a recipe\n",
+ "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n",
+ " step_integer(all_predictors(), zero_based = TRUE)\n",
+ "\n",
+ "\n",
+ "# Print out the recipe\n",
+ "pumpkins_recipe"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "BNaFKXfRt9TU"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "太棒了!👏 我們剛剛創建了第一個配方,指定了一個結果(價格)及其相應的預測變數,並且所有的預測變數列都應該被編碼為一組整數 🙌!讓我們快速拆解一下:\n",
+ "\n",
+ "- 使用公式調用 `recipe()` 告訴配方變數的*角色*,並以 `new_pumpkins` 數據作為參考。例如,`price` 列被分配為 `outcome` 角色,而其餘的列則被分配為 `predictor` 角色。\n",
+ "\n",
+ "- `step_integer(all_predictors(), zero_based = TRUE)` 指定所有的預測變數應該被轉換為一組整數,編號從 0 開始。\n",
+ "\n",
+ "我們相信你可能會有這樣的想法:「這太酷了!!但如果我需要確認這些配方是否真的按照我的預期運作呢?🤔」\n",
+ "\n",
+ "這是一個很棒的想法!你看,一旦你的配方被定義,你可以估算實際預處理數據所需的參數,然後提取處理後的數據。通常使用 Tidymodels 時不需要這樣做(我們稍後會看到常規方法 -> `workflows`),但當你想進行某種檢查以確認配方是否符合預期時,這會非常有用。\n",
+ "\n",
+ "為此,你需要另外兩個動詞:`prep()` 和 `bake()`。一如既往,我們的小 R 朋友由 [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) 創作的插圖會幫助你更好地理解!\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 創作 \n"
+ ],
+ "metadata": {
+ "id": "KEiO0v7kuC9O"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "[`prep()`](https://recipes.tidymodels.org/reference/prep.html):從訓練集估算所需的參數,這些參數可以稍後應用到其他數據集。例如,對於某個預測變數列,哪個觀察值會被分配為整數 0、1、2 等。\n",
+ "\n",
+ "[`bake()`](https://recipes.tidymodels.org/reference/bake.html):使用已準備好的配方,並將操作應用到任何數據集。\n",
+ "\n",
+ "話雖如此,讓我們準備並應用配方,真正確認在底層,預測變數列會先被編碼,然後再進行模型擬合。\n"
+ ],
+ "metadata": {
+ "id": "Q1xtzebuuTCP"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Prep the recipe\n",
+ "pumpkins_prep <- prep(pumpkins_recipe)\n",
+ "\n",
+ "# Bake the recipe to extract a preprocessed new_pumpkins data\n",
+ "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n",
+ "\n",
+ "# Print out the baked data set\n",
+ "baked_pumpkins %>% \n",
+ " slice_head(n = 10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "FGBbJbP_uUUn"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Woo-hoo!🥳 處理過的數據 `baked_pumpkins` 的所有預測變數都已編碼,這確認了我們所定義的預處理步驟(即我們的配方)確實能如預期般運作。雖然這讓你閱讀起來更困難,但對於 Tidymodels 來說卻更加容易理解!花點時間找出哪個觀察值已被映射到對應的整數。\n",
+ "\n",
+ "另外值得一提的是,`baked_pumpkins` 是一個可以進行計算的數據框。\n",
+ "\n",
+ "例如,我們可以嘗試在你的數據中找到兩個點之間的良好相關性,以便可能構建一個好的預測模型。我們將使用函數 `cor()` 來完成這項工作。輸入 `?cor()` 來了解更多有關該函數的信息。\n"
+ ],
+ "metadata": {
+ "id": "1dvP0LBUueAW"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Find the correlation between the city_name and the price\n",
+ "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n",
+ "\n",
+ "# Find the correlation between the package and the price\n",
+ "cor(baked_pumpkins$package, baked_pumpkins$price)\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "3bQzXCjFuiSV"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "事實證明,城市與價格之間的相關性相當弱。然而,包裝與其價格之間的相關性稍微好一些。這是合理的,對吧?通常來說,生產箱越大,價格就越高。\n",
+ "\n",
+ "既然如此,我們也可以嘗試使用 `corrplot` 套件來視覺化所有欄位的相關性矩陣。\n"
+ ],
+ "metadata": {
+ "id": "BToPWbgjuoZw"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load the corrplot package\n",
+ "library(corrplot)\n",
+ "\n",
+ "# Obtain correlation matrix\n",
+ "corr_mat <- cor(baked_pumpkins %>% \n",
+ " # Drop columns that are not really informative\n",
+ " select(-c(low_price, high_price)))\n",
+ "\n",
+ "# Make a correlation plot between the variables\n",
+ "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "ZwAL3ksmutVR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "🤩🤩 好得多。\n",
+ "\n",
+ "現在可以問這些數據的一個好問題是:'`我可以預期某個南瓜包裝的價格是多少?`' 讓我們直接開始吧!\n",
+ "\n",
+ "> 注意:當你使用 **`new_data = NULL`** 烘焙(**`bake()`**)已準備好的配方 **`pumpkins_prep`** 時,你會提取處理過的(即編碼過的)訓練數據。如果你有另一個數據集,例如測試集,並希望查看配方如何預處理它,你只需使用 **`new_data = test_set`** 烘焙 **`pumpkins_prep`** 即可。\n",
+ "\n",
+ "## 4. 建立線性回歸模型\n",
+ "\n",
+ "
\n",
+ " \n",
+ " Dasani Madipalli 的資訊圖表 \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "YqXjLuWavNxW"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在我們已經建立了一個配方,並確認數據會被適當地預處理,接下來讓我們建立一個回歸模型來回答這個問題:`我可以預期某個南瓜包裝的價格是多少?`\n",
+ "\n",
+ "#### 使用訓練集訓練線性回歸模型\n",
+ "\n",
+ "如你可能已經猜到,*price* 列是 `結果` 變數,而 *package* 列是 `預測` 變數。\n",
+ "\n",
+ "為了完成這項工作,我們首先將數據分割成 80% 的訓練集和 20% 的測試集,然後定義一個配方,將預測變數列編碼為一組整數,接著建立模型規範。我們不會準備和烘焙配方,因為我們已經知道它會按預期預處理數據。\n"
+ ],
+ "metadata": {
+ "id": "Pq0bSzCevW-h"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "set.seed(2056)\n",
+ "# Split the data into training and test sets\n",
+ "pumpkins_split <- new_pumpkins %>% \n",
+ " initial_split(prop = 0.8)\n",
+ "\n",
+ "\n",
+ "# Extract training and test data\n",
+ "pumpkins_train <- training(pumpkins_split)\n",
+ "pumpkins_test <- testing(pumpkins_split)\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Create a recipe for preprocessing the data\n",
+ "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n",
+ " step_integer(all_predictors(), zero_based = TRUE)\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Create a linear model specification\n",
+ "lm_spec <- linear_reg() %>% \n",
+ " set_engine(\"lm\") %>% \n",
+ " set_mode(\"regression\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "CyoEh_wuvcLv"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "做得好!現在我們已經有了一個食譜和一個模型規範,接下來我們需要找到一種方法,將它們打包成一個物件。這個物件將會先對數據進行預處理(在背後執行 prep + bake),然後基於預處理後的數據來訓練模型,並且還能支持潛在的後處理操作。這樣是不是讓你更安心了呢!🤩\n",
+ "\n",
+ "在 Tidymodels 中,這個方便的物件叫做 [`workflow`](https://workflows.tidymodels.org/),它能輕鬆地保存你的建模組件!這就像我們在 *Python* 中所說的 *pipelines*。\n",
+ "\n",
+ "那麼,讓我們把所有東西打包到一個 workflow 裡吧!📦\n"
+ ],
+ "metadata": {
+ "id": "G3zF_3DqviFJ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Hold modelling components in a workflow\n",
+ "lm_wf <- workflow() %>% \n",
+ " add_recipe(lm_pumpkins_recipe) %>% \n",
+ " add_model(lm_spec)\n",
+ "\n",
+ "# Print out the workflow\n",
+ "lm_wf"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "T3olroU3v-WX"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "順帶一提,工作流程可以像模型一樣進行適配或訓練。\n"
+ ],
+ "metadata": {
+ "id": "zd1A5tgOwEPX"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Train the model\n",
+ "lm_wf_fit <- lm_wf %>% \n",
+ " fit(data = pumpkins_train)\n",
+ "\n",
+ "# Print the model coefficients learned \n",
+ "lm_wf_fit"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "NhJagFumwFHf"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "從模型輸出中,我們可以看到訓練過程中學到的係數。這些係數代表最佳擬合線的係數,該線能讓實際值與預測值之間的整體誤差降到最低。\n",
+ "\n",
+ "#### 使用測試集評估模型表現\n",
+ "\n",
+ "是時候看看模型的表現如何了 📏!我們該怎麼做呢?\n",
+ "\n",
+ "現在模型已經完成訓練,我們可以使用 `parsnip::predict()` 為測試集進行預測。接著,我們可以將這些預測值與實際標籤值進行比較,以評估模型的表現是否良好(或者不良!)。\n",
+ "\n",
+ "首先,讓我們為測試集進行預測,然後將這些預測結果與測試集的欄位結合起來。\n"
+ ],
+ "metadata": {
+ "id": "_4QkGtBTwItF"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make predictions for the test set\n",
+ "predictions <- lm_wf_fit %>% \n",
+ " predict(new_data = pumpkins_test)\n",
+ "\n",
+ "\n",
+ "# Bind predictions to the test set\n",
+ "lm_results <- pumpkins_test %>% \n",
+ " select(c(package, price)) %>% \n",
+ " bind_cols(predictions)\n",
+ "\n",
+ "\n",
+ "# Print the first ten rows of the tibble\n",
+ "lm_results %>% \n",
+ " slice_head(n = 10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "UFZzTG0gwTs9"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "你剛剛訓練了一個模型並用它進行了預測!🔮 它表現如何呢?讓我們來評估模型的表現吧!\n",
+ "\n",
+ "在 Tidymodels 中,我們使用 `yardstick::metrics()` 來完成這項工作!對於線性回歸,我們主要關注以下指標:\n",
+ "\n",
+ "- `均方根誤差 (RMSE)`: [MSE](https://en.wikipedia.org/wiki/Mean_squared_error) 的平方根。這是一個絕對指標,單位與標籤一致(在這個例子中是南瓜的價格)。數值越小,模型越好(簡單來說,它代表了預測錯誤的平均價格!)\n",
+ "\n",
+ "- `決定係數 (通常稱為 R-squared 或 R2)`: 一個相對指標,數值越高,模型的擬合效果越好。基本上,這個指標表示模型能解釋多少預測值與實際標籤值之間的差異。\n"
+ ],
+ "metadata": {
+ "id": "0A5MjzM7wW9M"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Evaluate performance of linear regression\n",
+ "metrics(data = lm_results,\n",
+ " truth = price,\n",
+ " estimate = .pred)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "reJ0UIhQwcEH"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "模型表現下降了。讓我們試試看能否透過視覺化包裝與價格的散點圖,並使用模型的預測結果疊加最佳擬合線,來獲得更好的指標。\n",
+ "\n",
+ "這意味著我們需要準備並處理測試集,以便對包裝欄位進行編碼,然後將其與模型的預測結果結合起來。\n"
+ ],
+ "metadata": {
+ "id": "fdgjzjkBwfWt"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Encode package column\n",
+ "package_encode <- lm_pumpkins_recipe %>% \n",
+ " prep() %>% \n",
+ " bake(new_data = pumpkins_test) %>% \n",
+ " select(package)\n",
+ "\n",
+ "\n",
+ "# Bind encoded package column to the results\n",
+ "lm_results <- lm_results %>% \n",
+ " bind_cols(package_encode %>% \n",
+ " rename(package_integer = package)) %>% \n",
+ " relocate(package_integer, .after = package)\n",
+ "\n",
+ "\n",
+ "# Print new results data frame\n",
+ "lm_results %>% \n",
+ " slice_head(n = 5)\n",
+ "\n",
+ "\n",
+ "# Make a scatter plot\n",
+ "lm_results %>% \n",
+ " ggplot(mapping = aes(x = package_integer, y = price)) +\n",
+ " geom_point(size = 1.6) +\n",
+ " # Overlay a line of best fit\n",
+ " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n",
+ " xlab(\"package\")\n",
+ " \n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "R0nw719lwkHE"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "很好!如你所見,線性回歸模型並未能很好地概括包裝與其對應價格之間的關係。\n",
+ "\n",
+ "🎃 恭喜你!你剛剛創建了一個可以幫助預測幾種南瓜價格的模型。你的節日南瓜田將會非常美麗。但你可能可以創建一個更好的模型!\n",
+ "\n",
+ "## 5. 建立多項式回歸模型\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 資訊圖表由 Dasani Madipalli 製作 \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "HOCqJXLTwtWI"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "有時候,我們的數據可能並非呈線性關係,但我們仍然希望能夠預測結果。多項式回歸可以幫助我們針對更複雜的非線性關係進行預測。\n",
+ "\n",
+ "舉例來說,南瓜數據集中包裝與價格之間的關係。有時候,變量之間可能存在線性關係——例如南瓜的體積越大,價格越高——但有時候這些關係無法用平面或直線來表示。\n",
+ "\n",
+ "> ✅ 這裡有[更多例子](https://online.stat.psu.edu/stat501/lesson/9/9.8),展示了哪些數據可以使用多項式回歸\n",
+ ">\n",
+ "> 再看看之前圖表中品種與價格之間的關係。這個散點圖看起來是否一定要用直線來分析?可能不是。在這種情況下,你可以嘗試使用多項式回歸。\n",
+ ">\n",
+ "> ✅ 多項式是可能包含一個或多個變量和係數的數學表達式\n",
+ "\n",
+ "#### 使用訓練集訓練多項式回歸模型\n",
+ "\n",
+ "多項式回歸會創建一條*曲線*,以更好地擬合非線性數據。\n",
+ "\n",
+ "讓我們看看多項式模型是否能在預測中表現得更好。我們將遵循與之前類似的步驟:\n",
+ "\n",
+ "- 創建一個配方,指定數據預處理步驟,使其準備好進行建模,例如:編碼預測變量並計算*n*次多項式\n",
+ "\n",
+ "- 建立模型規範\n",
+ "\n",
+ "- 將配方和模型規範打包到工作流程中\n",
+ "\n",
+ "- 通過擬合工作流程來創建模型\n",
+ "\n",
+ "- 評估模型在測試數據上的表現\n",
+ "\n",
+ "讓我們開始吧!\n"
+ ],
+ "metadata": {
+ "id": "VcEIpRV9wzYr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Specify a recipe\r\n",
+ "poly_pumpkins_recipe <-\r\n",
+ " recipe(price ~ package, data = pumpkins_train) %>%\r\n",
+ " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n",
+ " step_poly(all_predictors(), degree = 4)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Create a model specification\r\n",
+ "poly_spec <- linear_reg() %>% \r\n",
+ " set_engine(\"lm\") %>% \r\n",
+ " set_mode(\"regression\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Bundle recipe and model spec into a workflow\r\n",
+ "poly_wf <- workflow() %>% \r\n",
+ " add_recipe(poly_pumpkins_recipe) %>% \r\n",
+ " add_model(poly_spec)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Create a model\r\n",
+ "poly_wf_fit <- poly_wf %>% \r\n",
+ " fit(data = pumpkins_train)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Print learned model coefficients\r\n",
+ "poly_wf_fit\r\n",
+ "\r\n",
+ " "
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "63n_YyRXw3CC"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#### 評估模型表現\n",
+ "\n",
+ "👏👏你已經建立了一個多項式模型,現在讓我們在測試集上進行預測吧!\n"
+ ],
+ "metadata": {
+ "id": "-LHZtztSxDP0"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make price predictions on test data\r\n",
+ "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n",
+ " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n",
+ " relocate(.pred, .after = last_col())\r\n",
+ "\r\n",
+ "\r\n",
+ "# Print the results\r\n",
+ "poly_results %>% \r\n",
+ " slice_head(n = 10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "YUFpQ_dKxJGx"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Woo-hoo,讓我們使用 `yardstick::metrics()` 評估模型在 test_set 上的表現。\n"
+ ],
+ "metadata": {
+ "id": "qxdyj86bxNGZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "metrics(data = poly_results, truth = price, estimate = .pred)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "8AW5ltkBxXDm"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "🤩🤩 表現大幅提升。\n",
+ "\n",
+ "`rmse` 從大約 7 降至大約 3,這表示實際價格與預測價格之間的誤差減少。你可以*大致*理解為平均來說,錯誤的預測大約相差 \\$3。`rsq` 從大約 0.4 增加到 0.8。\n",
+ "\n",
+ "所有這些指標都顯示多項式模型的表現遠勝於線性模型。幹得好!\n",
+ "\n",
+ "讓我們看看能否將這些視覺化!\n"
+ ],
+ "metadata": {
+ "id": "6gLHNZDwxYaS"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Bind encoded package column to the results\r\n",
+ "poly_results <- poly_results %>% \r\n",
+ " bind_cols(package_encode %>% \r\n",
+ " rename(package_integer = package)) %>% \r\n",
+ " relocate(package_integer, .after = package)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Print new results data frame\r\n",
+ "poly_results %>% \r\n",
+ " slice_head(n = 5)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Make a scatter plot\r\n",
+ "poly_results %>% \r\n",
+ " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n",
+ " geom_point(size = 1.6) +\r\n",
+ " # Overlay a line of best fit\r\n",
+ " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n",
+ " xlab(\"package\")\r\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "A83U16frxdF1"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "你可以看到一條更符合你數據的曲線!🤩\n",
+ "\n",
+ "你可以通過向 `geom_smooth` 傳遞一個多項式公式來使曲線更加平滑,例如:\n"
+ ],
+ "metadata": {
+ "id": "4U-7aHOVxlGU"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make a scatter plot\r\n",
+ "poly_results %>% \r\n",
+ " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n",
+ " geom_point(size = 1.6) +\r\n",
+ " # Overlay a line of best fit\r\n",
+ " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n",
+ " xlab(\"package\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "5vzNT0Uexm-w"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "就像一條流暢的曲線!🤩\n",
+ "\n",
+ "以下是如何進行新的預測:\n"
+ ],
+ "metadata": {
+ "id": "v9u-wwyLxq4G"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make a hypothetical data frame\r\n",
+ "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n",
+ "\r\n",
+ "# Make predictions using linear model\r\n",
+ "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n",
+ "\r\n",
+ "# Make predictions using polynomial model\r\n",
+ "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n",
+ "\r\n",
+ "# Return predictions in a list\r\n",
+ "list(\"linear model prediction\" = lm_pred, \r\n",
+ " \"polynomial model prediction\" = poly_pred)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "jRPSyfQGxuQv"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "`polynomial model` 的預測確實合理,根據 `price` 和 `package` 的散點圖來看!而且,如果這個模型比之前的模型更好,基於相同的數據,你需要為這些更昂貴的南瓜預算做好準備!\n",
+ "\n",
+ "🏆 做得好!你在一節課中建立了兩個回歸模型。在回歸的最後一部分,你將學習如何使用邏輯回歸來判定分類。\n",
+ "\n",
+ "## **🚀挑戰**\n",
+ "\n",
+ "在這個筆記本中測試幾個不同的變數,看看相關性如何影響模型的準確性。\n",
+ "\n",
+ "## [**課後測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n",
+ "\n",
+ "## **回顧與自學**\n",
+ "\n",
+ "在這節課中,我們學習了線性回歸。還有其他重要的回歸類型。閱讀有關逐步回歸、嶺回歸、套索回歸和彈性網技術的資料。一門很好的課程是 [Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)。\n",
+ "\n",
+ "如果你想了解更多如何使用出色的 Tidymodels 框架,請查看以下資源:\n",
+ "\n",
+ "- Tidymodels 網站:[開始使用 Tidymodels](https://www.tidymodels.org/start/)\n",
+ "\n",
+ "- Max Kuhn 和 Julia Silge,[*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n",
+ "\n",
+ "###### **感謝:**\n",
+ "\n",
+ "[Allison Horst](https://twitter.com/allison_horst?lang=en) 創作了令人驚嘆的插圖,使 R 更加友好和吸引人。可以在她的 [畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 中找到更多插圖。\n"
+ ],
+ "metadata": {
+ "id": "8zOLOWqMxzk5"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/3-Linear/solution/notebook.ipynb b/translations/zh-HK/2-Regression/3-Linear/solution/notebook.ipynb
new file mode 100644
index 000000000..88453d707
--- /dev/null
+++ b/translations/zh-HK/2-Regression/3-Linear/solution/notebook.ipynb
@@ -0,0 +1,1111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 南瓜定價的線性回歸與多項式回歸 - 第三課\n",
+ "\n",
+ "載入所需的庫和數據集。將數據轉換為包含數據子集的數據框:\n",
+ "\n",
+ "- 只選取按蒲式耳定價的南瓜\n",
+ "- 將日期轉換為月份\n",
+ "- 計算價格為高價與低價的平均值\n",
+ "- 將價格轉換為按蒲式耳數量計算的價格\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 167,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " City Name \n",
+ " Type \n",
+ " Package \n",
+ " Variety \n",
+ " Sub Variety \n",
+ " Grade \n",
+ " Date \n",
+ " Low Price \n",
+ " High Price \n",
+ " Mostly Low \n",
+ " ... \n",
+ " Unit of Sale \n",
+ " Quality \n",
+ " Condition \n",
+ " Appearance \n",
+ " Storage \n",
+ " Crop \n",
+ " Repack \n",
+ " Trans Mode \n",
+ " Unnamed: 24 \n",
+ " Unnamed: 25 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 4/29/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 5/6/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 11/5/16 \n",
+ " 90.0 \n",
+ " 100.0 \n",
+ " 90.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Name Type Package Variety Sub Variety Grade Date \\\n",
+ "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
+ "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
+ "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
+ "\n",
+ " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
+ "0 270.0 280.0 270.0 ... NaN NaN NaN \n",
+ "1 270.0 280.0 270.0 ... NaN NaN NaN \n",
+ "2 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "3 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "4 90.0 100.0 90.0 ... NaN NaN NaN \n",
+ "\n",
+ " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
+ "0 NaN NaN NaN E NaN NaN NaN \n",
+ "1 NaN NaN NaN E NaN NaN NaN \n",
+ "2 NaN NaN NaN N NaN NaN NaN \n",
+ "3 NaN NaN NaN N NaN NaN NaN \n",
+ "4 NaN NaN NaN N NaN NaN NaN \n",
+ "\n",
+ "[5 rows x 26 columns]"
+ ]
+ },
+ "execution_count": 167,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from datetime import datetime\n",
+ "\n",
+ "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n",
+ "pumpkins.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 168,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Month \n",
+ " DayOfYear \n",
+ " Variety \n",
+ " City \n",
+ " Package \n",
+ " Low Price \n",
+ " High Price \n",
+ " Price \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 70 \n",
+ " 9 \n",
+ " 267 \n",
+ " PIE TYPE \n",
+ " BALTIMORE \n",
+ " 1 1/9 bushel cartons \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " 13.636364 \n",
+ " \n",
+ " \n",
+ " 71 \n",
+ " 9 \n",
+ " 267 \n",
+ " PIE TYPE \n",
+ " BALTIMORE \n",
+ " 1 1/9 bushel cartons \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " 16.363636 \n",
+ " \n",
+ " \n",
+ " 72 \n",
+ " 10 \n",
+ " 274 \n",
+ " PIE TYPE \n",
+ " BALTIMORE \n",
+ " 1 1/9 bushel cartons \n",
+ " 18.0 \n",
+ " 18.0 \n",
+ " 16.363636 \n",
+ " \n",
+ " \n",
+ " 73 \n",
+ " 10 \n",
+ " 274 \n",
+ " PIE TYPE \n",
+ " BALTIMORE \n",
+ " 1 1/9 bushel cartons \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 15.454545 \n",
+ " \n",
+ " \n",
+ " 74 \n",
+ " 10 \n",
+ " 281 \n",
+ " PIE TYPE \n",
+ " BALTIMORE \n",
+ " 1 1/9 bushel cartons \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " 13.636364 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Month DayOfYear Variety City Package Low Price \\\n",
+ "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n",
+ "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n",
+ "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n",
+ "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n",
+ "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n",
+ "\n",
+ " High Price Price \n",
+ "70 15.0 13.636364 \n",
+ "71 18.0 16.363636 \n",
+ "72 18.0 16.363636 \n",
+ "73 17.0 15.454545 \n",
+ "74 15.0 13.636364 "
+ ]
+ },
+ "execution_count": 168,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
+ "\n",
+ "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n",
+ "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n",
+ "\n",
+ "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
+ "\n",
+ "month = pd.DatetimeIndex(pumpkins['Date']).month\n",
+ "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n",
+ "\n",
+ "new_pumpkins = pd.DataFrame(\n",
+ " {'Month': month, \n",
+ " 'DayOfYear' : day_of_year, \n",
+ " 'Variety': pumpkins['Variety'], \n",
+ " 'City': pumpkins['City Name'], \n",
+ " 'Package': pumpkins['Package'], \n",
+ " 'Low Price': pumpkins['Low Price'],\n",
+ " 'High Price': pumpkins['High Price'], \n",
+ " 'Price': price})\n",
+ "\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n",
+ "\n",
+ "new_pumpkins.head()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "散佈圖提醒我們,我們只有八月至十二月的月份數據。我們可能需要更多數據才能以線性方式得出結論。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 169,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 169,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "new_pumpkins.plot.scatter('Month','Price')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 170,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 170,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "new_pumpkins.plot.scatter('DayOfYear','Price')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 171,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "-0.14878293554077535\n",
+ "-0.16673322492745407\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n",
+ "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "看起來相關性相當小,但存在一些其他更重要的關係——因為上圖中的價格點似乎有幾個明顯的群集。讓我們製作一個圖表來顯示不同的南瓜品種:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 172,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax=None\n",
+ "colors = ['red','blue','green','yellow']\n",
+ "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n",
+ " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 173,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 173,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 174,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "-0.2669192282197318\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 174,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n",
+ "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n",
+ "pie_pumpkins.plot.scatter('DayOfYear','Price')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 線性回歸\n",
+ "\n",
+ "我們將使用 Scikit Learn 來訓練線性回歸模型:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n",
+ "from sklearn.model_selection import train_test_split"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 176,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean error: 2.77 (17.2%)\n"
+ ]
+ }
+ ],
+ "source": [
+ "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n",
+ "y = pie_pumpkins['Price']\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
+ "lin_reg = LinearRegression()\n",
+ "lin_reg.fit(X_train,y_train)\n",
+ "\n",
+ "pred = lin_reg.predict(X_test)\n",
+ "\n",
+ "mse = np.sqrt(mean_squared_error(y_test,pred))\n",
+ "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 177,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 177,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(X_test,y_test)\n",
+ "plt.plot(X_test,pred)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "可以從線性回歸係數中確定直線的斜率:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 178,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([-0.01751876]), 21.133734359909326)"
+ ]
+ },
+ "execution_count": 178,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lin_reg.coef_, lin_reg.intercept_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 179,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([16.64893156])"
+ ]
+ },
+ "execution_count": 179,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Pumpkin price on programmer's day\n",
+ "\n",
+ "lin_reg.predict([[256]])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 多項式回歸\n",
+ "\n",
+ "有時候,特徵與結果之間的關係本質上是非線性的。例如,南瓜的價格可能在冬季(月份=1,2)較高,然後在夏季(月份=5-7)下降,接著再次上升。線性回歸無法準確捕捉這種關係。\n",
+ "\n",
+ "在這種情況下,我們可以考慮添加額外的特徵。一個簡單的方法是使用來自輸入特徵的多項式,這樣就會形成**多項式回歸**。在 Scikit Learn 中,我們可以使用管道自動預先計算多項式特徵:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 180,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean error: 2.73 (17.0%)\n",
+ "Model determination: 0.07639977655280217\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 180,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn.pipeline import make_pipeline\n",
+ "\n",
+ "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n",
+ "\n",
+ "pipeline.fit(X_train,y_train)\n",
+ "\n",
+ "pred = pipeline.predict(X_test)\n",
+ "\n",
+ "mse = np.sqrt(mean_squared_error(y_test,pred))\n",
+ "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n",
+ "\n",
+ "score = pipeline.score(X_train,y_train)\n",
+ "print('Model determination: ', score)\n",
+ "\n",
+ "plt.scatter(X_test,y_test)\n",
+ "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 編碼品種\n",
+ "\n",
+ "在理想的情況下,我們希望能夠使用同一個模型來預測不同南瓜品種的價格。為了考慮品種,我們首先需要將其轉換為數字形式,或者稱為**編碼**。有幾種方法可以做到:\n",
+ "\n",
+ "* 簡單的數字編碼,這種方法會建立一個不同品種的表格,然後用該表格中的索引來替換品種名稱。這對於線性回歸來說並不是最好的方法,因為線性回歸會考慮索引的數值,而這些數值可能與價格並沒有數字上的相關性。\n",
+ "* 獨熱編碼(One-hot encoding),這種方法會將 `Variety` 欄位替換為4個不同的欄位,每個品種對應一個欄位。如果某一行屬於某個品種,該欄位的值為1,否則為0。\n",
+ "\n",
+ "以下的程式碼展示了如何對品種進行獨熱編碼:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " FAIRYTALE \n",
+ " MINIATURE \n",
+ " MIXED HEIRLOOM VARIETIES \n",
+ " PIE TYPE \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 70 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 71 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 72 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 73 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 74 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1738 \n",
+ " 0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1739 \n",
+ " 0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1740 \n",
+ " 0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1741 \n",
+ " 0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 0 \n",
+ " 1 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
415 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n",
+ "70 0 0 0 1\n",
+ "71 0 0 0 1\n",
+ "72 0 0 0 1\n",
+ "73 0 0 0 1\n",
+ "74 0 0 0 1\n",
+ "... ... ... ... ...\n",
+ "1738 0 1 0 0\n",
+ "1739 0 1 0 0\n",
+ "1740 0 1 0 0\n",
+ "1741 0 1 0 0\n",
+ "1742 0 1 0 0\n",
+ "\n",
+ "[415 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 181,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.get_dummies(new_pumpkins['Variety'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 品種的線性回歸\n",
+ "\n",
+ "我們現在將使用與上面相同的程式碼,但這次我們將使用我們的單熱編碼品種作為輸入,而不是 `DayOfYear`:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = pd.get_dummies(new_pumpkins['Variety'])\n",
+ "y = new_pumpkins['Price']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 183,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean error: 5.24 (19.7%)\n",
+ "Model determination: 0.774085281105197\n"
+ ]
+ }
+ ],
+ "source": [
+ "def run_linear_regression(X,y):\n",
+ " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
+ " lin_reg = LinearRegression()\n",
+ " lin_reg.fit(X_train,y_train)\n",
+ "\n",
+ " pred = lin_reg.predict(X_test)\n",
+ "\n",
+ " mse = np.sqrt(mean_squared_error(y_test,pred))\n",
+ " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n",
+ "\n",
+ " score = lin_reg.score(X_train,y_train)\n",
+ " print('Model determination: ', score)\n",
+ "\n",
+ "run_linear_regression(X,y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "我們也可以以相同的方式嘗試使用其他功能,並將它們與數值功能結合,例如 `Month` 或 `DayOfYear`:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean error: 2.84 (10.5%)\n",
+ "Model determination: 0.9401096672643048\n"
+ ]
+ }
+ ],
+ "source": [
+ "X = pd.get_dummies(new_pumpkins['Variety']) \\\n",
+ " .join(new_pumpkins['Month']) \\\n",
+ " .join(pd.get_dummies(new_pumpkins['City'])) \\\n",
+ " .join(pd.get_dummies(new_pumpkins['Package']))\n",
+ "y = new_pumpkins['Price']\n",
+ "\n",
+ "run_linear_regression(X,y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 多項式回歸\n",
+ "\n",
+ "多項式回歸亦可用於已進行獨熱編碼的分類特徵。訓練多項式回歸的程式碼基本上與我們之前看到的相同。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean error: 2.23 (8.25%)\n",
+ "Model determination: 0.9652870784724543\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn.pipeline import make_pipeline\n",
+ "\n",
+ "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
+ "\n",
+ "pipeline.fit(X_train,y_train)\n",
+ "\n",
+ "pred = pipeline.predict(X_test)\n",
+ "\n",
+ "mse = np.sqrt(mean_squared_error(y_test,pred))\n",
+ "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n",
+ "\n",
+ "score = pipeline.score(X_train,y_train)\n",
+ "print('Model determination: ', score)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.7.0 64-bit ('3.7')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.5"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "d77bd89ae7e79780c68c58bab91f13f8",
+ "translation_date": "2025-09-03T19:18:47+00:00",
+ "source_file": "2-Regression/3-Linear/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/README.md b/translations/zh-HK/2-Regression/4-Logistic/README.md
new file mode 100644
index 000000000..9ba464e27
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/README.md
@@ -0,0 +1,403 @@
+# 使用邏輯回歸預測分類
+
+
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+> ### [本課程提供 R 版本!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html)
+
+## 簡介
+
+在這最後一課關於回歸的課程中,我們將探討邏輯回歸,這是基本的 _經典_ 機器學習技術之一。你可以使用這種技術來發現模式並預測二元分類。例如:這顆糖果是巧克力還是不是?這種疾病是否具有傳染性?這位顧客是否會選擇這個產品?
+
+在本課程中,你將學到:
+
+- 一個新的數據視覺化庫
+- 邏輯回歸的技術
+
+✅ 在這個 [學習模組](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) 中加深對這種回歸類型的理解
+
+## 前置條件
+
+在之前的南瓜數據中,我們已經足夠熟悉它,並意識到有一個二元分類可以使用:`Color`。
+
+讓我們建立一個邏輯回歸模型來預測,根據一些變數,_某個南瓜可能的顏色_(橙色 🎃 或白色 👻)。
+
+> 為什麼我們在回歸課程中討論二元分類?僅僅是語言上的方便,因為邏輯回歸實際上是[一種分類方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression),儘管它是基於線性的。在下一組課程中了解其他分類數據的方法。
+
+## 定義問題
+
+對於我們的目的,我們將其表述為二元分類:'白色' 或 '非白色'。我們的數據集中還有一個 '條紋' 類別,但它的樣本數量很少,因此我們不會使用它。即使我們移除數據集中的空值,它也會消失。
+
+> 🎃 有趣的事實:我們有時會稱白色南瓜為 '鬼南瓜'。它們不太容易雕刻,因此不像橙色南瓜那麼受歡迎,但它們看起來很酷!所以我們也可以將問題重新表述為:'鬼南瓜' 或 '非鬼南瓜'。👻
+
+## 關於邏輯回歸
+
+邏輯回歸與之前學過的線性回歸在幾個重要方面有所不同。
+
+[](https://youtu.be/KpeCT6nEpBY "初學者的機器學習 - 理解邏輯回歸用於分類")
+
+> 🎥 點擊上方圖片觀看邏輯回歸的簡短視頻概述。
+
+### 二元分類
+
+邏輯回歸不提供與線性回歸相同的功能。前者提供關於二元分類("白色或非白色")的預測,而後者能夠預測連續值,例如根據南瓜的產地和收穫時間,_價格將上漲多少_。
+
+
+> 資訊圖表由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供
+
+### 其他分類
+
+邏輯回歸還有其他類型,包括多項式和序數:
+
+- **多項式**:涉及多個類別,例如 "橙色、白色和條紋"。
+- **序數**:涉及有序的類別,適合我們希望按邏輯順序排列結果,例如南瓜按有限數量的大小排序(迷你、小、中、大、特大、超大)。
+
+
+
+### 變數不需要相關
+
+還記得線性回歸在變數相關性更高時效果更好嗎?邏輯回歸則相反——變數不需要相關性。這適用於我們的數據,因為它的相關性較弱。
+
+### 需要大量乾淨的數據
+
+如果使用更多數據,邏輯回歸將提供更準確的結果;我們的小型數據集並不適合這項任務,因此請記住這一點。
+
+[](https://youtu.be/B2X4H9vcXTs "初學者的機器學習 - 邏輯回歸的數據分析與準備")
+
+✅ 思考哪些類型的數據適合邏輯回歸
+
+## 練習 - 整理數據
+
+首先,稍微清理一下數據,刪除空值並選擇部分列:
+
+1. 添加以下代碼:
+
+ ```python
+
+ columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']
+ pumpkins = full_pumpkins.loc[:, columns_to_select]
+
+ pumpkins.dropna(inplace=True)
+ ```
+
+ 你可以隨時查看新的數據框:
+
+ ```python
+ pumpkins.info
+ ```
+
+### 視覺化 - 類別圖
+
+到目前為止,你已經在 [起始筆記本](../../../../2-Regression/4-Logistic/notebook.ipynb) 中載入了南瓜數據,並清理了它以保留包含一些變數(包括 `Color`)的數據集。讓我們使用不同的庫 [Seaborn](https://seaborn.pydata.org/index.html) 在筆記本中視覺化數據框。Seaborn 是基於之前使用的 Matplotlib。
+
+Seaborn 提供了一些很棒的方式來視覺化數據。例如,你可以比較每個 `Variety` 和 `Color` 的數據分佈,使用類別圖。
+
+1. 使用 `catplot` 函數創建這樣的圖,使用南瓜數據 `pumpkins`,並為每個南瓜類別(橙色或白色)指定顏色映射:
+
+ ```python
+ import seaborn as sns
+
+ palette = {
+ 'ORANGE': 'orange',
+ 'WHITE': 'wheat',
+ }
+
+ sns.catplot(
+ data=pumpkins, y="Variety", hue="Color", kind="count",
+ palette=palette,
+ )
+ ```
+
+ 
+
+ 通過觀察數據,你可以看到 `Color` 數據與 `Variety` 的關係。
+
+ ✅ 根據這個類別圖,你能想到哪些有趣的探索?
+
+### 數據預處理:特徵和標籤編碼
+
+我們的南瓜數據集包含所有列的字符串值。對人類來說,處理類別數據是直觀的,但對機器來說並非如此。機器學習算法更適合處理數字。因此,編碼是數據預處理階段中非常重要的一步,因為它使我們能夠將類別數據轉換為數字數據,而不丟失任何信息。良好的編碼有助於建立良好的模型。
+
+對於特徵編碼,有兩種主要的編碼器:
+
+1. 序數編碼器:適合序數變數,即類別變數,其數據遵循邏輯順序,例如數據集中的 `Item Size` 列。它創建一個映射,使每個類別由一個數字表示,該數字是列中類別的順序。
+
+ ```python
+ from sklearn.preprocessing import OrdinalEncoder
+
+ item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]
+ ordinal_features = ['Item Size']
+ ordinal_encoder = OrdinalEncoder(categories=item_size_categories)
+ ```
+
+2. 類別編碼器:適合名義變數,即類別變數,其數據不遵循邏輯順序,例如數據集中除 `Item Size` 外的所有特徵。它是一種獨熱編碼,這意味著每個類別由一個二進制列表示:如果南瓜屬於該 `Variety`,則編碼變數等於 1,否則為 0。
+
+ ```python
+ from sklearn.preprocessing import OneHotEncoder
+
+ categorical_features = ['City Name', 'Package', 'Variety', 'Origin']
+ categorical_encoder = OneHotEncoder(sparse_output=False)
+ ```
+
+接著,使用 `ColumnTransformer` 將多個編碼器合併到一個步驟中,並應用到適當的列。
+
+```python
+ from sklearn.compose import ColumnTransformer
+
+ ct = ColumnTransformer(transformers=[
+ ('ord', ordinal_encoder, ordinal_features),
+ ('cat', categorical_encoder, categorical_features)
+ ])
+
+ ct.set_output(transform='pandas')
+ encoded_features = ct.fit_transform(pumpkins)
+```
+
+另一方面,為了編碼標籤,我們使用 scikit-learn 的 `LabelEncoder` 類,這是一個工具類,用於將標籤標準化,使其僅包含 0 到 n_classes-1(此處為 0 和 1)之間的值。
+
+```python
+ from sklearn.preprocessing import LabelEncoder
+
+ label_encoder = LabelEncoder()
+ encoded_label = label_encoder.fit_transform(pumpkins['Color'])
+```
+
+一旦我們編碼了特徵和標籤,就可以將它們合併到新的數據框 `encoded_pumpkins` 中。
+
+```python
+ encoded_pumpkins = encoded_features.assign(Color=encoded_label)
+```
+
+✅ 使用序數編碼器處理 `Item Size` 列有哪些優勢?
+
+### 分析變數之間的關係
+
+現在我們已經對數據進行了預處理,可以分析特徵和標籤之間的關係,以了解模型在給定特徵的情況下預測標籤的能力。
+
+分析這類關係的最佳方式是繪製數據。我們將再次使用 Seaborn 的 `catplot` 函數,視覺化 `Item Size`、`Variety` 和 `Color` 之間的關係。為了更好地繪製數據,我們將使用編碼後的 `Item Size` 列和未編碼的 `Variety` 列。
+
+```python
+ palette = {
+ 'ORANGE': 'orange',
+ 'WHITE': 'wheat',
+ }
+ pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']
+
+ g = sns.catplot(
+ data=pumpkins,
+ x="Item Size", y="Color", row='Variety',
+ kind="box", orient="h",
+ sharex=False, margin_titles=True,
+ height=1.8, aspect=4, palette=palette,
+ )
+ g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6))
+ g.set_titles(row_template="{row_name}")
+```
+
+
+
+### 使用 swarm plot
+
+由於 `Color` 是二元分類(白色或非白色),它需要一種[專門的視覺化方法](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar)。還有其他方法可以視覺化此分類與其他變數的關係。
+
+你可以使用 Seaborn 圖表並排視覺化變數。
+
+1. 嘗試使用 'swarm' 圖來顯示值的分佈:
+
+ ```python
+ palette = {
+ 0: 'orange',
+ 1: 'wheat'
+ }
+ sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette)
+ ```
+
+ 
+
+**注意**:上述代碼可能會產生警告,因為 Seaborn 無法在 swarm 圖中表示如此多的數據點。一種可能的解決方案是減小標記的大小,使用 'size' 參數。然而,請注意這會影響圖表的可讀性。
+
+> **🧮 數學解析**
+>
+> 邏輯回歸依賴於 '最大似然' 的概念,使用 [S 型函數](https://wikipedia.org/wiki/Sigmoid_function)。在圖表上,S 型函數看起來像一個 'S' 形。它接受一個值並將其映射到 0 和 1 之間。其曲線也被稱為 '邏輯曲線'。公式如下:
+>
+> 
+>
+> 其中 S 型函數的中點位於 x 的 0 點,L 是曲線的最大值,k 是曲線的陡度。如果函數的結果大於 0.5,該標籤將被分配為二元選擇的 '1' 類別。如果不是,則分配為 '0' 類別。
+
+## 建立模型
+
+在 Scikit-learn 中建立二元分類模型非常簡單。
+
+[](https://youtu.be/MmZS2otPrQ8 "初學者的機器學習 - 使用邏輯回歸進行數據分類")
+
+> 🎥 點擊上方圖片觀看建立線性回歸模型的簡短視頻概述
+
+1. 選擇你想在分類模型中使用的變數,並使用 `train_test_split()` 分割訓練集和測試集:
+
+ ```python
+ from sklearn.model_selection import train_test_split
+
+ X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]
+ y = encoded_pumpkins['Color']
+
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
+
+ ```
+
+2. 現在你可以通過調用 `fit()` 使用訓練數據訓練模型,並打印出結果:
+
+ ```python
+ from sklearn.metrics import f1_score, classification_report
+ from sklearn.linear_model import LogisticRegression
+
+ model = LogisticRegression()
+ model.fit(X_train, y_train)
+ predictions = model.predict(X_test)
+
+ print(classification_report(y_test, predictions))
+ print('Predicted labels: ', predictions)
+ print('F1-score: ', f1_score(y_test, predictions))
+ ```
+
+ 查看模型的得分板。考慮到你只有大約 1000 行數據,結果還不錯:
+
+ ```output
+ precision recall f1-score support
+
+ 0 0.94 0.98 0.96 166
+ 1 0.85 0.67 0.75 33
+
+ accuracy 0.92 199
+ macro avg 0.89 0.82 0.85 199
+ weighted avg 0.92 0.92 0.92 199
+
+ Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
+ 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
+ 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
+ 0 0 0 1 0 0 0 0 0 0 0 0 1 1]
+ F1-score: 0.7457627118644068
+ ```
+
+## 通過混淆矩陣更好地理解模型
+
+雖然你可以通過打印上述項目獲得得分板報告[術語](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report),但使用[混淆矩陣](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix)可能更容易理解模型的表現。
+
+> 🎓 '[混淆矩陣](https://wikipedia.org/wiki/Confusion_matrix)'(或 '錯誤矩陣')是一個表格,用於表達模型的真陽性與假陽性以及真陰性與假陰性,從而衡量預測的準確性。
+
+1. 要使用混淆矩陣,調用 `confusion_matrix()`:
+
+ ```python
+ from sklearn.metrics import confusion_matrix
+ confusion_matrix(y_test, predictions)
+ ```
+
+ 查看模型的混淆矩陣:
+
+ ```output
+ array([[162, 4],
+ [ 11, 22]])
+ ```
+
+在 Scikit-learn 中,混淆矩陣的行(軸 0)是實際標籤,列(軸 1)是預測標籤。
+
+| | 0 | 1 |
+| :---: | :---: | :---: |
+| 0 | TN | FP |
+| 1 | FN | TP |
+
+這裡發生了什麼?假設我們的模型被要求在兩個二元分類中對南瓜進行分類,分類為 '白色' 和 '非白色'。
+
+- 如果模型預測南瓜為非白色,且實際屬於 '非白色' 類別,我們稱之為真陰性,顯示在左上角。
+- 如果模型預測南瓜為白色,且實際屬於 '非白色' 類別,我們稱之為假陰性,顯示在左下角。
+- 如果模型預測南瓜為非白色,且實際屬於 '白色' 類別,我們稱之為假陽性,顯示在右上角。
+- 如果模型預測南瓜為白色,且實際屬於 '白色' 類別,我們稱之為真陽性,顯示在右下角。
+
+如你所料,真陽性和真陰性的數量越多,假陽性和假陰性的數量越少,模型的表現就越好。
+混淆矩陣如何與精確度和召回率相關?記住,上面列出的分類報告顯示了精確度(0.85)和召回率(0.67)。
+
+精確度 = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461
+
+召回率 = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666
+
+✅ 問:根據混淆矩陣,模型表現如何? 答:不錯;有相當多的真陰性,但也有一些假陰性。
+
+讓我們再次回顧之前看到的術語,並結合混淆矩陣中 TP/TN 和 FP/FN 的映射來理解:
+
+🎓 精確度:TP/(TP + FP) 從檢索的實例中,相關實例的比例(例如,哪些標籤被正確標記)
+
+🎓 召回率:TP/(TP + FN) 從所有相關實例中,檢索到的比例,不論是否正確標記
+
+🎓 f1-score:(2 * 精確度 * 召回率)/(精確度 + 召回率) 精確度和召回率的加權平均值,最佳為 1,最差為 0
+
+🎓 支援:每個標籤被檢索到的次數
+
+🎓 準確率: (TP + TN)/(TP + TN + FP + FN) 標籤正確預測的百分比
+
+🎓 宏平均:每個標籤的未加權平均值計算,不考慮標籤的不平衡
+
+🎓 加權平均:每個標籤的平均值計算,考慮標籤的不平衡,並根據其支援(每個標籤的真實實例數量)進行加權
+
+✅ 你能想到如果想減少假陰性,應該關注哪個指標嗎?
+
+## 可視化此模型的 ROC 曲線
+
+[](https://youtu.be/GApO575jTA0 "初學者的機器學習 - 使用 ROC 曲線分析邏輯回歸性能")
+
+> 🎥 點擊上方圖片觀看關於 ROC 曲線的簡短視頻概述
+
+讓我們進行另一個可視化,來查看所謂的 "ROC" 曲線:
+
+```python
+from sklearn.metrics import roc_curve, roc_auc_score
+import matplotlib
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+y_scores = model.predict_proba(X_test)
+fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])
+
+fig = plt.figure(figsize=(6, 6))
+plt.plot([0, 1], [0, 1], 'k--')
+plt.plot(fpr, tpr)
+plt.xlabel('False Positive Rate')
+plt.ylabel('True Positive Rate')
+plt.title('ROC Curve')
+plt.show()
+```
+
+使用 Matplotlib 繪製模型的 [接收者操作特徵曲線](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) 或 ROC。ROC 曲線通常用於查看分類器的輸出,從真陽性與假陽性的角度分析。"ROC 曲線通常在 Y 軸上顯示真陽性率,在 X 軸上顯示假陽性率。" 因此,曲線的陡峭程度以及曲線與中線之間的空間很重要:你希望曲線快速向上並超越中線。在我們的例子中,起初有一些假陽性,然後曲線正確地向上並超越中線:
+
+
+
+最後,使用 Scikit-learn 的 [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) 計算實際的 "曲線下面積" (AUC):
+
+```python
+auc = roc_auc_score(y_test,y_scores[:,1])
+print(auc)
+```
+結果是 `0.9749908725812341`。由於 AUC 的範圍是 0 到 1,你希望分數越高越好,因為一個模型如果能 100% 正確地進行預測,其 AUC 將為 1;在這個例子中,模型表現 _相當不錯_。
+
+在未來的分類課程中,你將學習如何迭代以改進模型的分數。但目前,恭喜你!你已完成這些回歸課程!
+
+---
+## 🚀挑戰
+
+關於邏輯回歸還有很多值得探索的內容!但最好的學習方式是進行實驗。找一個適合此類分析的數據集並用它建立模型。你學到了什麼?提示:試試 [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) 找一些有趣的數據集。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+閱讀 [這篇來自 Stanford 的論文](https://web.stanford.edu/~jurafsky/slp3/5.pdf) 的前幾頁,了解邏輯回歸的一些實際用途。思考哪些任務更適合我們到目前為止所學的回歸類型。哪種方法效果最好?
+
+## 作業
+
+[重試此回歸](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/assignment.md b/translations/zh-HK/2-Regression/4-Logistic/assignment.md
new file mode 100644
index 000000000..bb51ada43
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/assignment.md
@@ -0,0 +1,16 @@
+# 重試一些回歸
+
+## 指引
+
+在課堂中,你使用了南瓜數據的一部分。現在,回到原始數據,嘗試使用所有清理和標準化後的數據來建立一個邏輯回歸模型。
+
+## 評分標準
+
+| 評分標準 | 卓越表現 | 合格表現 | 需要改進 |
+| -------- | -------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- |
+| | 提交了一個包含詳細解釋且表現良好的模型的筆記本 | 提交了一個包含最低限度表現的模型的筆記本 | 提交了一個表現不佳的模型或未提交任何模型的筆記本 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/notebook.ipynb b/translations/zh-HK/2-Regression/4-Logistic/notebook.ipynb
new file mode 100644
index 000000000..3fa99d477
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/notebook.ipynb
@@ -0,0 +1,269 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 南瓜品種與顏色\n",
+ "\n",
+ "載入所需的庫和數據集。將數據轉換為包含部分數據的數據框:\n",
+ "\n",
+ "讓我們來看看顏色與品種之間的關係\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " City Name \n",
+ " Type \n",
+ " Package \n",
+ " Variety \n",
+ " Sub Variety \n",
+ " Grade \n",
+ " Date \n",
+ " Low Price \n",
+ " High Price \n",
+ " Mostly Low \n",
+ " ... \n",
+ " Unit of Sale \n",
+ " Quality \n",
+ " Condition \n",
+ " Appearance \n",
+ " Storage \n",
+ " Crop \n",
+ " Repack \n",
+ " Trans Mode \n",
+ " Unnamed: 24 \n",
+ " Unnamed: 25 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 4/29/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 5/6/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 11/5/16 \n",
+ " 90.0 \n",
+ " 100.0 \n",
+ " 90.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Name Type Package Variety Sub Variety Grade Date \\\n",
+ "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
+ "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
+ "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
+ "\n",
+ " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
+ "0 270.0 280.0 270.0 ... NaN NaN NaN \n",
+ "1 270.0 280.0 270.0 ... NaN NaN NaN \n",
+ "2 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "3 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "4 90.0 100.0 90.0 ... NaN NaN NaN \n",
+ "\n",
+ " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
+ "0 NaN NaN NaN E NaN NaN NaN \n",
+ "1 NaN NaN NaN E NaN NaN NaN \n",
+ "2 NaN NaN NaN N NaN NaN NaN \n",
+ "3 NaN NaN NaN N NaN NaN NaN \n",
+ "4 NaN NaN NaN N NaN NaN NaN \n",
+ "\n",
+ "[5 rows x 26 columns]"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
+ "\n",
+ "full_pumpkins.head()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.1"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "dee08c2b49057b0de8b6752c4dbca368",
+ "translation_date": "2025-09-03T19:30:10+00:00",
+ "source_file": "2-Regression/4-Logistic/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/solution/Julia/README.md b/translations/zh-HK/2-Regression/4-Logistic/solution/Julia/README.md
new file mode 100644
index 000000000..3b095b6c3
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/zh-HK/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb
new file mode 100644
index 000000000..fe19a9463
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb
@@ -0,0 +1,685 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 建立邏輯迴歸模型 - 第四課\n",
+ "\n",
+ "\n",
+ "\n",
+ "#### **[課前測驗](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n",
+ "\n",
+ "#### 介紹\n",
+ "\n",
+ "在這最後一課關於迴歸的課程中,我們將探討邏輯迴歸,這是基本的*經典*機器學習技術之一。你可以使用這種技術來發現模式並預測二元分類。例如:這顆糖果是巧克力還是不是?這種疾病是否具有傳染性?這位顧客是否會選擇這個產品?\n",
+ "\n",
+ "在這課中,你將學到:\n",
+ "\n",
+ "- 邏輯迴歸的技術\n",
+ "\n",
+ "✅ 在這個 [學習模組](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott) 中深入了解如何使用這種類型的迴歸。\n",
+ "\n",
+ "## 先決條件\n",
+ "\n",
+ "在使用南瓜數據後,我們已經足夠熟悉它,並意識到有一個二元分類可以使用:`Color`。\n",
+ "\n",
+ "讓我們建立一個邏輯迴歸模型,根據一些變數來預測*某個南瓜可能的顏色*(橙色 🎃 或白色 👻)。\n",
+ "\n",
+ "> 為什麼我們在迴歸課程中討論二元分類?僅僅是出於語言上的方便,因為邏輯迴歸[實際上是一種分類方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression),儘管它是基於線性的。在下一組課程中,了解其他分類數據的方法。\n",
+ "\n",
+ "在這課中,我們需要以下套件:\n",
+ "\n",
+ "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個[由 R 套件組成的集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個[由套件組成的集合](https://www.tidymodels.org/packages/),用於建模和機器學習。\n",
+ "\n",
+ "- `janitor`: [janitor 套件](https://github.com/sfirke/janitor) 提供了一些簡單的工具,用於檢查和清理髒數據。\n",
+ "\n",
+ "- `ggbeeswarm`: [ggbeeswarm 套件](https://github.com/eclarke/ggbeeswarm) 提供了使用 ggplot2 創建蜜蜂群圖的方式。\n",
+ "\n",
+ "你可以通過以下方式安裝它們:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n",
+ "\n",
+ "或者,下面的腳本會檢查你是否已安裝完成此模組所需的套件,並在缺少時為你安裝。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n",
+ "\n",
+ "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## **定義問題**\n",
+ "\n",
+ "在我們的情境中,我們會將問題表達為二元分類:「白色」或「非白色」。在我們的數據集中還有一個「條紋」類別,但由於該類別的樣本數量很少,我們不會使用它。無論如何,當我們從數據集中移除空值後,它就會消失。\n",
+ "\n",
+ "> 🎃 有趣的小知識,我們有時會稱白色南瓜為「幽靈」南瓜。它們不太容易雕刻,因此不像橙色南瓜那麼受歡迎,但它們看起來很酷!所以我們也可以將問題重新表述為:「幽靈」或「非幽靈」。👻\n",
+ "\n",
+ "## **關於邏輯回歸**\n",
+ "\n",
+ "邏輯回歸與之前學過的線性回歸有幾個重要的不同之處。\n",
+ "\n",
+ "#### **二元分類**\n",
+ "\n",
+ "邏輯回歸不提供與線性回歸相同的功能。前者提供對「二元類別」(例如「橙色或非橙色」)的預測,而後者則能預測「連續值」,例如根據南瓜的產地和收穫時間,*價格會上漲多少*。\n",
+ "\n",
+ "\n",
+ "\n",
+ "### 其他分類方式\n",
+ "\n",
+ "邏輯回歸還有其他類型,包括多項式和序列式:\n",
+ "\n",
+ "- **多項式**,涉及多於一個類別,例如「橙色、白色和條紋」。\n",
+ "\n",
+ "- **序列式**,涉及有序的類別,適合我們希望按邏輯順序排列結果的情況,例如南瓜按有限的大小(迷你、小、中、大、特大、超大)排序。\n",
+ "\n",
+ "\n",
+ "\n",
+ "#### **變數不需要相關**\n",
+ "\n",
+ "還記得線性回歸在變數相關性更高時效果更好嗎?邏輯回歸則相反——變數不需要相關性。這適用於我們的數據,因為它的相關性相對較弱。\n",
+ "\n",
+ "#### **需要大量乾淨的數據**\n",
+ "\n",
+ "如果使用更多數據,邏輯回歸會提供更準確的結果;我們的小型數據集並不適合這項任務,因此請記住這一點。\n",
+ "\n",
+ "✅ 思考哪些類型的數據適合邏輯回歸\n",
+ "\n",
+ "## 練習 - 整理數據\n",
+ "\n",
+ "首先,稍微清理一下數據,刪除空值並選擇部分欄位:\n",
+ "\n",
+ "1. 添加以下程式碼:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Load the core tidyverse packages\n",
+ "library(tidyverse)\n",
+ "\n",
+ "# Import the data and clean column names\n",
+ "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n",
+ " clean_names()\n",
+ "\n",
+ "# Select desired columns\n",
+ "pumpkins_select <- pumpkins %>% \n",
+ " select(c(city_name, package, variety, origin, item_size, color)) \n",
+ "\n",
+ "# Drop rows containing missing values and encode color as factor (category)\n",
+ "pumpkins_select <- pumpkins_select %>% \n",
+ " drop_na() %>% \n",
+ " mutate(color = factor(color))\n",
+ "\n",
+ "# View the first few rows\n",
+ "pumpkins_select %>% \n",
+ " slice_head(n = 5)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "你可以隨時使用 [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 函數來快速查看你的新數據框,如下所示:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "pumpkins_select %>% \n",
+ " glimpse()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "讓我們確認一下,我們確實是在處理一個二元分類問題:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Subset distinct observations in outcome column\n",
+ "pumpkins_select %>% \n",
+ " distinct(color)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 視覺化 - 類別圖\n",
+ "現在你已經再次載入南瓜數據並進行清理,保留了一個包含幾個變數(包括顏色)的數據集。讓我們使用 ggplot 庫在筆記本中視覺化這個數據框。\n",
+ "\n",
+ "ggplot 庫提供了一些很棒的方法來視覺化你的數據。例如,你可以在類別圖中比較每個品種和顏色的數據分佈。\n",
+ "\n",
+ "1. 使用 geombar 函數創建這樣的圖表,使用我們的南瓜數據,並為每個南瓜類別(橙色或白色)指定顏色映射:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Specify colors for each value of the hue variable\n",
+ "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n",
+ "\n",
+ "# Create the bar plot\n",
+ "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n",
+ " geom_bar(position = \"dodge\") +\n",
+ " scale_fill_manual(values = palette) +\n",
+ " labs(y = \"Variety\", fill = \"Color\") +\n",
+ " theme_minimal()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "透過觀察數據,你可以看到顏色數據與品種之間的關係。\n",
+ "\n",
+ "✅ 根據這個分類圖,你能想到哪些有趣的探索方向?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 數據預處理:特徵編碼\n",
+ "\n",
+ "我們的南瓜數據集包含所有欄位的字串值。對人類來說,處理分類數據是直觀的,但對機器來說並非如此。機器學習算法更擅長處理數字型數據。因此,編碼是數據預處理階段中非常重要的一步,因為它能夠將分類數據轉換為數字數據,同時不丟失任何信息。良好的編碼有助於建立良好的模型。\n",
+ "\n",
+ "特徵編碼主要有兩種編碼器:\n",
+ "\n",
+ "1. **序數編碼器**:適合處理序數變量,即具有邏輯順序的分類變量,例如我們數據集中的 `item_size` 欄位。它會創建一個映射,使每個類別用一個數字表示,這個數字是該類別在欄位中的順序。\n",
+ "\n",
+ "2. **分類編碼器**:適合處理名義變量,即沒有邏輯順序的分類變量,例如我們數據集中除了 `item_size` 以外的所有特徵。這是一種獨熱編碼(one-hot encoding),意思是每個類別都用一個二進制欄位表示:如果南瓜屬於該品種,編碼變量等於 1,否則為 0。\n",
+ "\n",
+ "Tidymodels 提供了一個非常方便的套件:[recipes](https://recipes.tidymodels.org/)——一個用於數據預處理的套件。我們將定義一個 `recipe`,指定所有預測欄位應編碼為一組整數,使用 `prep` 來估算所需的數量和統計數據,最後使用 `bake` 將計算應用到新數據上。\n",
+ "\n",
+ "> 通常情況下,recipes 通常用作建模的預處理器,它定義了應對數據集應用哪些步驟以使其準備好進行建模。在這種情況下,**強烈建議**使用 `workflow()`,而不是手動使用 prep 和 bake 來估算 recipe。我們稍後會看到這些內容。\n",
+ ">\n",
+ "> 不過,目前我們使用 recipes + prep + bake 來指定應對數據集應用哪些步驟以使其準備好進行數據分析,然後提取應用步驟後的預處理數據。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Preprocess and extract data to allow some data analysis\n",
+ "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n",
+ " # Define ordering for item_size column\n",
+ " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n",
+ " # Convert factors to numbers using the order defined above (Ordinal encoding)\n",
+ " step_integer(item_size, zero_based = F) %>%\n",
+ " # Encode all other predictors using one hot encoding\n",
+ " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n",
+ " prep(data = pumpkin_select) %>%\n",
+ " bake(new_data = NULL)\n",
+ "\n",
+ "# Display the first few rows of preprocessed data\n",
+ "baked_pumpkins %>% \n",
+ " slice_head(n = 5)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "✅ 使用序數編碼器處理 Item Size 欄位有什麼優勢?\n",
+ "\n",
+ "### 分析變數之間的關係\n",
+ "\n",
+ "現在我們已經完成了數據的預處理,可以分析特徵與標籤之間的關係,以了解模型在給定特徵的情況下預測標籤的能力。進行這類分析的最佳方法是繪製數據圖表。 \n",
+ "我們將再次使用 ggplot 的 geom_boxplot_ 函數,以分類圖的形式可視化 Item Size、Variety 和 Color 之間的關係。為了更好地繪製數據,我們將使用已編碼的 Item Size 欄位以及未編碼的 Variety 欄位。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Define the color palette\n",
+ "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n",
+ "\n",
+ "# We need the encoded Item Size column to use it as the x-axis values in the plot\n",
+ "pumpkins_select_plot<-pumpkins_select\n",
+ "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n",
+ "\n",
+ "# Create the grouped box plot\n",
+ "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n",
+ " geom_boxplot() +\n",
+ " facet_grid(variety ~ ., scales = \"free_x\") +\n",
+ " scale_fill_manual(values = palette) +\n",
+ " labs(x = \"Item Size\", y = \"\") +\n",
+ " theme_minimal() +\n",
+ " theme(strip.text = element_text(size = 12)) +\n",
+ " theme(axis.text.x = element_text(size = 10)) +\n",
+ " theme(axis.title.x = element_text(size = 12)) +\n",
+ " theme(axis.title.y = element_blank()) +\n",
+ " theme(legend.position = \"bottom\") +\n",
+ " guides(fill = guide_legend(title = \"Color\")) +\n",
+ " theme(panel.spacing = unit(0.5, \"lines\"))+\n",
+ " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### 使用群集圖\n",
+ "\n",
+ "由於 Color 是一個二元分類(白色或非白色),因此需要「[專門的方法](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf)」來進行可視化。\n",
+ "\n",
+ "嘗試使用 `群集圖` 來展示顏色在 item_size 上的分佈。\n",
+ "\n",
+ "我們將使用 [ggbeeswarm 套件](https://github.com/eclarke/ggbeeswarm),該套件提供使用 ggplot2 創建蜜蜂群樣式圖的方法。蜜蜂群圖是一種將原本會重疊的點排列在彼此旁邊的繪圖方式。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Create beeswarm plots of color and item_size\n",
+ "baked_pumpkins %>% \n",
+ " mutate(color = factor(color)) %>% \n",
+ " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n",
+ " geom_quasirandom() +\n",
+ " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n",
+ " theme(legend.position = \"none\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "現在我們已經了解顏色的二元分類與更大尺寸組別之間的關係,接下來讓我們探討如何使用邏輯回歸來判斷南瓜可能的顏色。\n",
+ "\n",
+ "## 建立模型\n",
+ "\n",
+ "選擇您想用於分類模型的變數,並將數據分成訓練集和測試集。[rsample](https://rsample.tidymodels.org/) 是 Tidymodels 中的一個套件,提供高效的數據分割和重抽樣基礎設施:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Split data into 80% for training and 20% for testing\n",
+ "set.seed(2056)\n",
+ "pumpkins_split <- pumpkins_select %>% \n",
+ " initial_split(prop = 0.8)\n",
+ "\n",
+ "# Extract the data in each split\n",
+ "pumpkins_train <- training(pumpkins_split)\n",
+ "pumpkins_test <- testing(pumpkins_split)\n",
+ "\n",
+ "# Print out the first 5 rows of the training set\n",
+ "pumpkins_train %>% \n",
+ " slice_head(n = 5)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "🙌 我們現在準備透過將訓練特徵與訓練標籤(顏色)配對來訓練模型。\n",
+ "\n",
+ "我們會先建立一個配方,指定在模型化之前需要對數據進行的預處理步驟,例如:將分類變數編碼為一組整數。就像 `baked_pumpkins` 一樣,我們會建立一個 `pumpkins_recipe`,但不會進行 `prep` 和 `bake`,因為這些步驟會被整合到工作流程中,稍後幾個步驟你就會看到。\n",
+ "\n",
+ "在 Tidymodels 中有很多方法可以指定邏輯回歸模型。請參考 `?logistic_reg()`。目前,我們會透過預設的 `stats::glm()` 引擎來指定邏輯回歸模型。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Create a recipe that specifies preprocessing steps for modelling\n",
+ "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n",
+ " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n",
+ " step_integer(item_size, zero_based = F) %>% \n",
+ " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n",
+ "\n",
+ "# Create a logistic model specification\n",
+ "log_reg <- logistic_reg() %>% \n",
+ " set_engine(\"glm\") %>% \n",
+ " set_mode(\"classification\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "現在我們已經有了一個配方和模型規範,我們需要找到一種方法將它們結合成一個物件,這個物件首先會對數據進行預處理(在幕後進行準備和烘焙),然後在預處理後的數據上擬合模型,並且還能支持潛在的後處理活動。\n",
+ "\n",
+ "在 Tidymodels 中,這個方便的物件叫做 [`workflow`](https://workflows.tidymodels.org/),它能方便地保存你的建模組件。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Bundle modelling components in a workflow\n",
+ "log_reg_wf <- workflow() %>% \n",
+ " add_recipe(pumpkins_recipe) %>% \n",
+ " add_model(log_reg)\n",
+ "\n",
+ "# Print out the workflow\n",
+ "log_reg_wf\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "在工作流程*指定*後,可以使用[`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html)函數來`訓練`模型。工作流程會估算配方並在訓練前預處理數據,因此我們不需要手動使用prep和bake來完成這些步驟。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Train the model\n",
+ "wf_fit <- log_reg_wf %>% \n",
+ " fit(data = pumpkins_train)\n",
+ "\n",
+ "# Print the trained workflow\n",
+ "wf_fit\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "模型訓練完成後,會顯示訓練過程中學到的係數。\n",
+ "\n",
+ "現在我們已經使用訓練數據訓練了模型,可以利用 [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) 對測試數據進行預測。讓我們先用模型來預測測試集的標籤以及每個標籤的概率。當概率大於 0.5 時,預測類別為 `WHITE`,否則為 `ORANGE`。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Make predictions for color and corresponding probabilities\n",
+ "results <- pumpkins_test %>% select(color) %>% \n",
+ " bind_cols(wf_fit %>% \n",
+ " predict(new_data = pumpkins_test)) %>%\n",
+ " bind_cols(wf_fit %>%\n",
+ " predict(new_data = pumpkins_test, type = \"prob\"))\n",
+ "\n",
+ "# Compare predictions\n",
+ "results %>% \n",
+ " slice_head(n = 10)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "非常好!這提供了一些關於邏輯迴歸如何運作的深入理解。\n",
+ "\n",
+ "### 透過混淆矩陣更好地理解\n",
+ "\n",
+ "將每個預測值與其對應的「真實值」進行比較並不是判斷模型預測效果的高效方法。幸運的是,Tidymodels 還有一些其他的技巧:[`yardstick`](https://yardstick.tidymodels.org/)——一個用於通過性能指標衡量模型效果的套件。\n",
+ "\n",
+ "與分類問題相關的一個性能指標是[`混淆矩陣`](https://wikipedia.org/wiki/Confusion_matrix)。混淆矩陣描述了一個分類模型的表現如何。混淆矩陣統計了模型在每個類別中正確分類的例子數量。在我們的例子中,它會顯示有多少橙色南瓜被正確分類為橙色,以及有多少白色南瓜被正確分類為白色;混淆矩陣還會顯示有多少被分類到了**錯誤**的類別。\n",
+ "\n",
+ "[`conf_mat()`](https://tidymodels.github.io/yardstick/reference/conf_mat.html) 是 yardstick 中的一個函數,用於計算觀察值和預測值類別的交叉統計表。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Confusion matrix for prediction results\n",
+ "conf_mat(data = results, truth = color, estimate = .pred_class)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "讓我們來解讀混淆矩陣。我們的模型需要將南瓜分類為兩個二元類別,類別 `white` 和類別 `not-white`。\n",
+ "\n",
+ "- 如果你的模型預測南瓜是白色,而它在現實中屬於類別「white」,我們稱之為 `true positive`,顯示在左上角的數字。\n",
+ "\n",
+ "- 如果你的模型預測南瓜不是白色,而它在現實中屬於類別「white」,我們稱之為 `false negative`,顯示在左下角的數字。\n",
+ "\n",
+ "- 如果你的模型預測南瓜是白色,而它在現實中屬於類別「not-white」,我們稱之為 `false positive`,顯示在右上角的數字。\n",
+ "\n",
+ "- 如果你的模型預測南瓜不是白色,而它在現實中屬於類別「not-white」,我們稱之為 `true negative`,顯示在右下角的數字。\n",
+ "\n",
+ "| 真實值 |\n",
+ "|:-----:|\n",
+ "\n",
+ "| | | |\n",
+ "|---------------|--------|-------|\n",
+ "| **預測值** | WHITE | ORANGE |\n",
+ "| WHITE | TP | FP |\n",
+ "| ORANGE | FN | TN |\n",
+ "\n",
+ "正如你可能猜到的,理想情況是擁有更多的 `true positive` 和 `true negative`,以及更少的 `false positive` 和 `false negative`,這意味著模型的表現更好。\n",
+ "\n",
+ "混淆矩陣非常有用,因為它衍生出其他指標,幫助我們更好地評估分類模型的性能。讓我們來看看其中一些指標:\n",
+ "\n",
+ "🎓 精確度 (Precision): `TP/(TP + FP)` 定義為被預測為正確的樣本中實際正確的比例。也稱為 [正確預測值](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\")。\n",
+ "\n",
+ "🎓 召回率 (Recall): `TP/(TP + FN)` 定義為實際正確的樣本中被正確預測的比例。也稱為 `敏感度`。\n",
+ "\n",
+ "🎓 特異性 (Specificity): `TN/(TN + FP)` 定義為實際為負樣本中被正確預測為負的比例。\n",
+ "\n",
+ "🎓 準確率 (Accuracy): `TP + TN/(TP + TN + FP + FN)` 樣本中被正確預測的標籤所佔的百分比。\n",
+ "\n",
+ "🎓 F 值 (F Measure): 精確度和召回率的加權平均值,最佳值為 1,最差值為 0。\n",
+ "\n",
+ "讓我們來計算這些指標吧!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Combine metric functions and calculate them all at once\n",
+ "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n",
+ "eval_metrics(data = results, truth = color, estimate = .pred_class)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 視覺化此模型的ROC曲線\n",
+ "\n",
+ "讓我們進行另一個視覺化,來看看所謂的[`ROC曲線`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic):\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Make a roc_curve\n",
+ "results %>% \n",
+ " roc_curve(color, .pred_ORANGE) %>% \n",
+ " autoplot()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "ROC 曲線通常用來觀察分類器的輸出,分析其真陽性與假陽性的表現。ROC 曲線通常在 Y 軸顯示「真陽性率」/敏感度,而在 X 軸顯示「假陽性率」/1-特異性。因此,曲線的陡峭程度以及曲線與中線之間的距離非常重要:理想的曲線應該快速向上並超越中線。在我們的例子中,起初會有一些假陽性,然後曲線正確地向上並超越中線。\n",
+ "\n",
+ "最後,我們使用 `yardstick::roc_auc()` 來計算實際的曲線下面積 (AUC)。AUC 的一種解釋方式是,模型將隨機正例排在隨機負例之前的概率。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "r"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Calculate area under curve\n",
+ "results %>% \n",
+ " roc_auc(color, .pred_ORANGE)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "結果約為 `0.975`。由於 AUC 的範圍是 0 到 1,你希望分數越高越好,因為一個模型如果能 100% 正確地進行預測,其 AUC 將為 1;在這個例子中,模型表現*相當不錯*。\n",
+ "\n",
+ "在未來的分類課程中,你將學習如何提升模型的分數(例如在這個案例中處理不平衡數據)。\n",
+ "\n",
+ "## 🚀挑戰\n",
+ "\n",
+ "關於邏輯回歸還有很多內容可以探索!但最好的學習方式是親自嘗試。找一個適合這類分析的數據集,並用它建立一個模型。你學到了什麼?提示:可以試試 [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) 上有趣的數據集。\n",
+ "\n",
+ "## 回顧與自學\n",
+ "\n",
+ "閱讀 [這篇來自 Stanford 的論文](https://web.stanford.edu/~jurafsky/slp3/5.pdf) 的前幾頁,了解邏輯回歸的一些實際應用。思考哪些任務更適合我們到目前為止所學的不同回歸類型。哪一種方法效果最好?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": "",
+ "kernelspec": {
+ "display_name": "R",
+ "langauge": "R",
+ "name": "ir"
+ },
+ "language_info": {
+ "codemirror_mode": "r",
+ "file_extension": ".r",
+ "mimetype": "text/x-r-source",
+ "name": "R",
+ "pygments_lexer": "r",
+ "version": "3.4.1"
+ },
+ "coopTranslator": {
+ "original_hash": "feaf125f481a89c468fa115bf2aed580",
+ "translation_date": "2025-09-03T19:37:37+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/zh-HK/2-Regression/4-Logistic/solution/notebook.ipynb
new file mode 100644
index 000000000..fc78c9fc3
--- /dev/null
+++ b/translations/zh-HK/2-Regression/4-Logistic/solution/notebook.ipynb
@@ -0,0 +1,1255 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 邏輯迴歸 - 第四課\n",
+ "\n",
+ "載入所需的庫和數據集。將數據轉換為包含部分數據的數據框:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " City Name \n",
+ " Type \n",
+ " Package \n",
+ " Variety \n",
+ " Sub Variety \n",
+ " Grade \n",
+ " Date \n",
+ " Low Price \n",
+ " High Price \n",
+ " Mostly Low \n",
+ " ... \n",
+ " Unit of Sale \n",
+ " Quality \n",
+ " Condition \n",
+ " Appearance \n",
+ " Storage \n",
+ " Crop \n",
+ " Repack \n",
+ " Trans Mode \n",
+ " Unnamed: 24 \n",
+ " Unnamed: 25 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 4/29/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 5/6/17 \n",
+ " 270.0 \n",
+ " 280.0 \n",
+ " 270.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " E \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 9/24/16 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " 160.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BALTIMORE \n",
+ " NaN \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " NaN \n",
+ " NaN \n",
+ " 11/5/16 \n",
+ " 90.0 \n",
+ " 100.0 \n",
+ " 90.0 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " N \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Name Type Package Variety Sub Variety Grade Date \n",
+ "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n",
+ "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
+ "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
+ "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
+ "\n",
+ " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n",
+ "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n",
+ "1 270.0 280.0 270.0 ... NaN NaN NaN \n",
+ "2 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "3 160.0 160.0 160.0 ... NaN NaN NaN \n",
+ "4 90.0 100.0 90.0 ... NaN NaN NaN \n",
+ "\n",
+ " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
+ "0 NaN NaN NaN E NaN NaN NaN \n",
+ "1 NaN NaN NaN E NaN NaN NaN \n",
+ "2 NaN NaN NaN N NaN NaN NaN \n",
+ "3 NaN NaN NaN N NaN NaN NaN \n",
+ "4 NaN NaN NaN N NaN NaN NaN \n",
+ "\n",
+ "[5 rows x 26 columns]"
+ ]
+ },
+ "execution_count": 63,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n",
+ "\n",
+ "full_pumpkins.head()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " City Name \n",
+ " Package \n",
+ " Variety \n",
+ " Origin \n",
+ " Item Size \n",
+ " Color \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BALTIMORE \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " DELAWARE \n",
+ " med \n",
+ " ORANGE \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BALTIMORE \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " VIRGINIA \n",
+ " med \n",
+ " ORANGE \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BALTIMORE \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " MARYLAND \n",
+ " lge \n",
+ " ORANGE \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " BALTIMORE \n",
+ " 24 inch bins \n",
+ " HOWDEN TYPE \n",
+ " MARYLAND \n",
+ " lge \n",
+ " ORANGE \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " BALTIMORE \n",
+ " 36 inch bins \n",
+ " HOWDEN TYPE \n",
+ " MARYLAND \n",
+ " med \n",
+ " ORANGE \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " City Name Package Variety Origin Item Size Color\n",
+ "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n",
+ "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n",
+ "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n",
+ "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n",
+ "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE"
+ ]
+ },
+ "execution_count": 64,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Select the columns we want to use\n",
+ "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n",
+ "pumpkins = full_pumpkins.loc[:, columns_to_select]\n",
+ "\n",
+ "# Drop rows with missing values\n",
+ "pumpkins.dropna(inplace=True)\n",
+ "\n",
+ "pumpkins.head()"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 讓我們來看看我們的數據!\n",
+ "\n",
+ "透過使用 Seaborn 進行視覺化\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import seaborn as sns\n",
+ "# Specify colors for each values of the hue variable\n",
+ "palette = {\n",
+ " 'ORANGE': 'orange',\n",
+ " 'WHITE': 'wheat',\n",
+ "}\n",
+ "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n",
+ "sns.catplot(\n",
+ " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n",
+ " palette=palette, \n",
+ ")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 數據預處理\n",
+ "\n",
+ "讓我們對特徵和標籤進行編碼,以便更好地繪製數據並訓練模型\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n",
+ " dtype=object)"
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Let's look at the different values of the 'Item Size' column\n",
+ "pumpkins['Item Size'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import OrdinalEncoder\n",
+ "# Encode the 'Item Size' column using ordinal encoding\n",
+ "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n",
+ "ordinal_features = ['Item Size']\n",
+ "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import OneHotEncoder\n",
+ "# Encode all the other features using one-hot encoding\n",
+ "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n",
+ "categorical_encoder = OneHotEncoder(sparse_output=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " ord__Item Size \n",
+ " cat__City Name_ATLANTA \n",
+ " cat__City Name_BALTIMORE \n",
+ " cat__City Name_BOSTON \n",
+ " cat__City Name_CHICAGO \n",
+ " cat__City Name_COLUMBIA \n",
+ " cat__City Name_DALLAS \n",
+ " cat__City Name_DETROIT \n",
+ " cat__City Name_LOS ANGELES \n",
+ " cat__City Name_MIAMI \n",
+ " ... \n",
+ " cat__Origin_MICHIGAN \n",
+ " cat__Origin_NEW JERSEY \n",
+ " cat__Origin_NEW YORK \n",
+ " cat__Origin_NORTH CAROLINA \n",
+ " cat__Origin_OHIO \n",
+ " cat__Origin_PENNSYLVANIA \n",
+ " cat__Origin_TENNESSEE \n",
+ " cat__Origin_TEXAS \n",
+ " cat__Origin_VERMONT \n",
+ " cat__Origin_VIRGINIA \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 48 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n",
+ "2 1.0 0.0 1.0 \\\n",
+ "3 1.0 0.0 1.0 \n",
+ "4 3.0 0.0 1.0 \n",
+ "5 3.0 0.0 1.0 \n",
+ "6 1.0 0.0 1.0 \n",
+ "\n",
+ " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n",
+ "2 0.0 ... 0.0 0.0 \\\n",
+ "3 0.0 ... 0.0 0.0 \n",
+ "4 0.0 ... 0.0 0.0 \n",
+ "5 0.0 ... 0.0 0.0 \n",
+ "6 0.0 ... 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_VERMONT cat__Origin_VIRGINIA \n",
+ "2 0.0 0.0 \n",
+ "3 0.0 1.0 \n",
+ "4 0.0 0.0 \n",
+ "5 0.0 0.0 \n",
+ "6 0.0 0.0 \n",
+ "\n",
+ "[5 rows x 48 columns]"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.compose import ColumnTransformer\n",
+ "ct = ColumnTransformer(transformers=[\n",
+ " ('ord', ordinal_encoder, ordinal_features),\n",
+ " ('cat', categorical_encoder, categorical_features)\n",
+ " ])\n",
+ "# Get the encoded features as a pandas DataFrame\n",
+ "ct.set_output(transform='pandas')\n",
+ "encoded_features = ct.fit_transform(pumpkins)\n",
+ "encoded_features.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " ord__Item Size \n",
+ " cat__City Name_ATLANTA \n",
+ " cat__City Name_BALTIMORE \n",
+ " cat__City Name_BOSTON \n",
+ " cat__City Name_CHICAGO \n",
+ " cat__City Name_COLUMBIA \n",
+ " cat__City Name_DALLAS \n",
+ " cat__City Name_DETROIT \n",
+ " cat__City Name_LOS ANGELES \n",
+ " cat__City Name_MIAMI \n",
+ " ... \n",
+ " cat__Origin_NEW JERSEY \n",
+ " cat__Origin_NEW YORK \n",
+ " cat__Origin_NORTH CAROLINA \n",
+ " cat__Origin_OHIO \n",
+ " cat__Origin_PENNSYLVANIA \n",
+ " cat__Origin_TENNESSEE \n",
+ " cat__Origin_TEXAS \n",
+ " cat__Origin_VERMONT \n",
+ " cat__Origin_VIRGINIA \n",
+ " Color \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 49 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n",
+ "2 1.0 0.0 1.0 \\\n",
+ "3 1.0 0.0 1.0 \n",
+ "4 3.0 0.0 1.0 \n",
+ "5 3.0 0.0 1.0 \n",
+ "6 1.0 0.0 1.0 \n",
+ "\n",
+ " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n",
+ "2 0.0 ... 0.0 0.0 \\\n",
+ "3 0.0 ... 0.0 0.0 \n",
+ "4 0.0 ... 0.0 0.0 \n",
+ "5 0.0 ... 0.0 0.0 \n",
+ "6 0.0 ... 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n",
+ "2 0.0 0.0 0.0 \\\n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "5 0.0 0.0 0.0 \n",
+ "6 0.0 0.0 0.0 \n",
+ "\n",
+ " cat__Origin_VIRGINIA Color \n",
+ "2 0.0 0 \n",
+ "3 1.0 0 \n",
+ "4 0.0 0 \n",
+ "5 0.0 0 \n",
+ "6 0.0 0 \n",
+ "\n",
+ "[5 rows x 49 columns]"
+ ]
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "# Encode the 'Color' column using label encoding\n",
+ "label_encoder = LabelEncoder()\n",
+ "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n",
+ "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n",
+ "encoded_pumpkins.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['ORANGE', 'WHITE']"
+ ]
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Let's look at the mapping between the encoded values and the original values\n",
+ "list(label_encoder.inverse_transform([0, 1]))"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "palette = {\n",
+ " 'ORANGE': 'orange',\n",
+ " 'WHITE': 'wheat',\n",
+ "}\n",
+ "# We need the encoded Item Size column to use it as the x-axis values in the plot\n",
+ "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n",
+ "\n",
+ "g = sns.catplot(\n",
+ " data=pumpkins,\n",
+ " x=\"Item Size\", y=\"Color\", row='Variety',\n",
+ " kind=\"box\", orient=\"h\",\n",
+ " sharex=False, margin_titles=True,\n",
+ " height=1.8, aspect=4, palette=palette,\n",
+ ")\n",
+ "# Defining axis labels \n",
+ "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n",
+ "g.set_titles(row_template=\"{row_name}\")\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import warnings\n",
+ "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n",
+ "import warnings\n",
+ "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n",
+ "\n",
+ "palette = {\n",
+ " 0: 'orange',\n",
+ " 1: 'wheat'\n",
+ "}\n",
+ "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**注意**:忽視警告並不是最佳做法,應盡量避免。警告通常包含有用的信息,幫助我們改進代碼並解決問題。 \n",
+ "我們忽視這個特定警告的原因是為了保證圖表的可讀性。使用縮小的標記尺寸繪製所有數據點,同時保持調色板顏色的一致性,會導致視覺效果不清晰。\n"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "# X is the encoded features\n",
+ "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n",
+ "# y is the encoded label\n",
+ "y = encoded_pumpkins['Color']\n",
+ "\n",
+ "# Split the data into training and test sets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.94 0.98 0.96 166\n",
+ " 1 0.85 0.67 0.75 33\n",
+ "\n",
+ " accuracy 0.92 199\n",
+ " macro avg 0.89 0.82 0.85 199\n",
+ "weighted avg 0.92 0.92 0.92 199\n",
+ "\n",
+ "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n",
+ " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n",
+ " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n",
+ " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n",
+ "F1-score: 0.7457627118644068\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import f1_score, classification_report \n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "\n",
+ "# Train a logistic regression model on the pumpkin dataset\n",
+ "model = LogisticRegression()\n",
+ "model.fit(X_train, y_train)\n",
+ "predictions = model.predict(X_test)\n",
+ "\n",
+ "# Evaluate the model and print the results\n",
+ "print(classification_report(y_test, predictions))\n",
+ "print('Predicted labels: ', predictions)\n",
+ "print('F1-score: ', f1_score(y_test, predictions))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[162, 4],\n",
+ " [ 11, 22]])"
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import confusion_matrix\n",
+ "confusion_matrix(y_test, predictions)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import roc_curve, roc_auc_score\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "y_scores = model.predict_proba(X_test)\n",
+ "# calculate ROC curve\n",
+ "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n",
+ "\n",
+ "# plot ROC curve\n",
+ "fig = plt.figure(figsize=(6, 6))\n",
+ "# Plot the diagonal 50% line\n",
+ "plt.plot([0, 1], [0, 1], 'k--')\n",
+ "# Plot the FPR and TPR achieved by our model\n",
+ "plt.plot(fpr, tpr)\n",
+ "plt.xlabel('False Positive Rate')\n",
+ "plt.ylabel('True Positive Rate')\n",
+ "plt.title('ROC Curve')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.9749908725812341\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Calculate AUC score\n",
+ "auc = roc_auc_score(y_test,y_scores[:,1])\n",
+ "print(auc)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.16"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "vscode": {
+ "interpreter": {
+ "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "ef50cc584e0b79412610cc7da15e1f86",
+ "translation_date": "2025-09-03T19:31:12+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/2-Regression/README.md b/translations/zh-HK/2-Regression/README.md
new file mode 100644
index 000000000..d612b4a76
--- /dev/null
+++ b/translations/zh-HK/2-Regression/README.md
@@ -0,0 +1,45 @@
+# 機器學習中的回歸模型
+## 區域主題:北美南瓜價格的回歸模型 🎃
+
+在北美,南瓜經常被雕刻成恐怖的臉孔,用於慶祝萬聖節。讓我們一起探索這些迷人的蔬菜吧!
+
+
+> 圖片由 Beth Teutschmann 提供,來自 Unsplash
+
+## 你將學到什麼
+
+[](https://youtu.be/5QnJtDad4iQ "回歸介紹影片 - 點擊觀看!")
+> 🎥 點擊上方圖片觀看本課程的快速介紹影片
+
+本節課程將涵蓋機器學習背景下的回歸類型。回歸模型可以幫助確定變量之間的_關係_。這種類型的模型可以預測長度、溫度或年齡等值,從而在分析數據點時揭示變量之間的關聯。
+
+在這系列課程中,你將了解線性回歸和邏輯回歸之間的區別,以及在什麼情況下應該選擇其中一種。
+
+[](https://youtu.be/XA3OaoW86R8 "機器學習初學者 - 機器學習回歸模型介紹")
+
+> 🎥 點擊上方圖片觀看回歸模型的簡短介紹影片。
+
+在這組課程中,你將學會如何開始機器學習任務,包括配置 Visual Studio Code 來管理筆記本,這是數據科學家常用的環境。你將了解 Scikit-learn,一個用於機器學習的庫,並在本章中構建你的第一個模型,重點放在回歸模型上。
+
+> 有一些實用的低代碼工具可以幫助你學習如何使用回歸模型。試試 [Azure ML 完成這項任務](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
+
+### 課程
+
+1. [工具介紹](1-Tools/README.md)
+2. [數據管理](2-Data/README.md)
+3. [線性回歸與多項式回歸](3-Linear/README.md)
+4. [邏輯回歸](4-Logistic/README.md)
+
+---
+### 鳴謝
+
+"回歸模型的機器學習" 由 [Jen Looper](https://twitter.com/jenlooper) 用 ♥️ 編寫
+
+♥️ 測驗貢獻者包括:[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) 和 [Ornella Altunyan](https://twitter.com/ornelladotcom)
+
+南瓜數據集由 [Kaggle 上的這個項目](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) 提供建議,其數據來源於美國農業部發布的 [特種作物終端市場標準報告](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)。我們根據品種添加了一些關於顏色的數據點以使分佈正常化。這些數據屬於公共領域。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/3-Web-App/1-Web-App/README.md b/translations/zh-HK/3-Web-App/1-Web-App/README.md
new file mode 100644
index 000000000..e6eff6083
--- /dev/null
+++ b/translations/zh-HK/3-Web-App/1-Web-App/README.md
@@ -0,0 +1,350 @@
+# 建立一個使用機器學習模型的網頁應用程式
+
+在這節課中,你將使用一個非常特別的數據集來訓練機器學習模型:_過去一個世紀的UFO目擊事件_,數據來源於NUFORC的資料庫。
+
+你將學習:
+
+- 如何將訓練好的模型進行“pickle”處理
+- 如何在Flask應用程式中使用該模型
+
+我們將繼續使用筆記本來清理數據並訓練模型,但你可以更進一步,探索如何在“真實世界”中使用模型:例如在網頁應用程式中。
+
+為了做到這一點,你需要使用Flask來建立一個網頁應用程式。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 建立應用程式
+
+有多種方法可以建立網頁應用程式來使用機器學習模型。你的網頁架構可能會影響模型的訓練方式。想像一下,你在一家公司工作,數據科學團隊已經訓練了一個模型,他們希望你在應用程式中使用該模型。
+
+### 考慮事項
+
+你需要問自己許多問題:
+
+- **是網頁應用程式還是移動應用程式?** 如果你正在建立移動應用程式或需要在物聯網(IoT)環境中使用模型,你可以使用 [TensorFlow Lite](https://www.tensorflow.org/lite/) 並在Android或iOS應用程式中使用該模型。
+- **模型將存放在哪裡?** 是在雲端還是本地?
+- **離線支援。** 應用程式是否需要離線運作?
+- **使用什麼技術訓練模型?** 選擇的技術可能會影響你需要使用的工具。
+ - **使用TensorFlow。** 如果你使用TensorFlow訓練模型,該生態系統提供了將TensorFlow模型轉換為網頁應用程式使用的能力,例如使用 [TensorFlow.js](https://www.tensorflow.org/js/)。
+ - **使用PyTorch。** 如果你使用像 [PyTorch](https://pytorch.org/) 這樣的庫來建立模型,你可以選擇將其導出為 [ONNX](https://onnx.ai/)(開放神經網絡交換格式),以便在使用 [Onnx Runtime](https://www.onnxruntime.ai/) 的JavaScript網頁應用程式中使用。這種選項將在未來的課程中探索,適用於使用Scikit-learn訓練的模型。
+ - **使用Lobe.ai或Azure Custom Vision。** 如果你使用像 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) 這樣的機器學習SaaS(軟件即服務)系統來訓練模型,這類軟件提供了多平台導出模型的方法,包括建立一個定制的API,供你的線上應用程式在雲端查詢。
+
+你還可以建立一個完整的Flask網頁應用程式,該應用程式可以在網頁瀏覽器中自行訓練模型。這也可以在JavaScript環境中使用TensorFlow.js來完成。
+
+對於我們的目的,由於我們一直在使用基於Python的筆記本,讓我們來探索如何將訓練好的模型從筆記本導出為Python建立的網頁應用程式可讀的格式。
+
+## 工具
+
+完成這項任務,你需要兩個工具:Flask和Pickle,它們都在Python上運行。
+
+✅ [Flask](https://palletsprojects.com/p/flask/) 是什麼?由其創建者定義為“微框架”,Flask提供了使用Python和模板引擎建立網頁的基本功能。查看 [這個學習模組](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) 來練習使用Flask建立應用程式。
+
+✅ [Pickle](https://docs.python.org/3/library/pickle.html) 是什麼?Pickle 🥒 是一個Python模組,用於序列化和反序列化Python物件結構。當你對模型進行“pickle”處理時,你會將其結構序列化或扁平化,以便在網頁上使用。注意:Pickle本身並不安全,因此如果被要求“un-pickle”文件時要小心。Pickle文件的後綴是 `.pkl`。
+
+## 練習 - 清理數據
+
+在這節課中,你將使用來自 [NUFORC](https://nuforc.org)(全國UFO報告中心)的80,000個UFO目擊事件數據。這些數據包含一些有趣的UFO目擊描述,例如:
+
+- **長描述範例。** “一束光照在夜晚的草地上,一名男子從光束中走出,跑向德州儀器的停車場。”
+- **短描述範例。** “燈光追著我們。”
+
+[ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) 試算表包含有關目擊事件的 `city`、`state` 和 `country`,物體的 `shape` 以及其 `latitude` 和 `longitude` 的欄位。
+
+在這節課提供的空白 [notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb) 中:
+
+1. 像之前的課程一樣,導入 `pandas`、`matplotlib` 和 `numpy`,並導入UFO試算表。你可以查看一個數據集範例:
+
+ ```python
+ import pandas as pd
+ import numpy as np
+
+ ufos = pd.read_csv('./data/ufos.csv')
+ ufos.head()
+ ```
+
+1. 將UFO數據轉換為一個小型數據框,並重新命名欄位。檢查 `Country` 欄位中的唯一值。
+
+ ```python
+ ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})
+
+ ufos.Country.unique()
+ ```
+
+1. 現在,你可以通過刪除任何空值並僅導入1-60秒之間的目擊事件來減少需要處理的數據量:
+
+ ```python
+ ufos.dropna(inplace=True)
+
+ ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]
+
+ ufos.info()
+ ```
+
+1. 導入Scikit-learn的 `LabelEncoder` 庫,將國家的文字值轉換為數字:
+
+ ✅ LabelEncoder 按字母順序編碼數據
+
+ ```python
+ from sklearn.preprocessing import LabelEncoder
+
+ ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])
+
+ ufos.head()
+ ```
+
+ 你的數據應該看起來像這樣:
+
+ ```output
+ Seconds Country Latitude Longitude
+ 2 20.0 3 53.200000 -2.916667
+ 3 20.0 4 28.978333 -96.645833
+ 14 30.0 4 35.823889 -80.253611
+ 23 60.0 4 45.582778 -122.352222
+ 24 3.0 3 51.783333 -0.783333
+ ```
+
+## 練習 - 建立模型
+
+現在你可以準備通過將數據分為訓練和測試組來訓練模型。
+
+1. 選擇三個特徵作為你的X向量,y向量將是 `Country`。你希望能夠輸入 `Seconds`、`Latitude` 和 `Longitude`,並返回一個國家ID。
+
+ ```python
+ from sklearn.model_selection import train_test_split
+
+ Selected_features = ['Seconds','Latitude','Longitude']
+
+ X = ufos[Selected_features]
+ y = ufos['Country']
+
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
+ ```
+
+1. 使用邏輯回歸訓練你的模型:
+
+ ```python
+ from sklearn.metrics import accuracy_score, classification_report
+ from sklearn.linear_model import LogisticRegression
+ model = LogisticRegression()
+ model.fit(X_train, y_train)
+ predictions = model.predict(X_test)
+
+ print(classification_report(y_test, predictions))
+ print('Predicted labels: ', predictions)
+ print('Accuracy: ', accuracy_score(y_test, predictions))
+ ```
+
+準確率不錯 **(約95%)**,這並不意外,因為 `Country` 和 `Latitude/Longitude` 是相關的。
+
+你建立的模型並不算非常革命性,因為你應該能夠從 `Latitude` 和 `Longitude` 推斷出 `Country`,但這是一個很好的練習,嘗試從清理過的原始數據中訓練模型,導出模型,然後在網頁應用程式中使用它。
+
+## 練習 - 將模型進行“pickle”處理
+
+現在,是時候對你的模型進行 _pickle_ 處理了!你可以用幾行代碼完成這個操作。一旦完成 _pickle_ 處理,載入你的Pickle模型並用一個包含秒數、緯度和經度的樣本數據陣列進行測試,
+
+```python
+import pickle
+model_filename = 'ufo-model.pkl'
+pickle.dump(model, open(model_filename,'wb'))
+
+model = pickle.load(open('ufo-model.pkl','rb'))
+print(model.predict([[50,44,-12]]))
+```
+
+模型返回 **'3'**,這是英國的國家代碼。太神奇了!👽
+
+## 練習 - 建立Flask應用程式
+
+現在你可以建立一個Flask應用程式來調用你的模型並以更具視覺吸引力的方式返回類似結果。
+
+1. 首先在 _notebook.ipynb_ 文件旁邊建立一個名為 **web-app** 的資料夾,該資料夾中存放你的 _ufo-model.pkl_ 文件。
+
+1. 在該資料夾中建立三個子資料夾:**static**,其中包含一個名為 **css** 的資料夾,以及 **templates**。你現在應該有以下文件和目錄:
+
+ ```output
+ web-app/
+ static/
+ css/
+ templates/
+ notebook.ipynb
+ ufo-model.pkl
+ ```
+
+ ✅ 參考解決方案資料夾以查看完成的應用程式
+
+1. 在 _web-app_ 資料夾中建立第一個文件 **requirements.txt**。像JavaScript應用程式中的 _package.json_ 一樣,這個文件列出了應用程式所需的依賴項。在 **requirements.txt** 中添加以下行:
+
+ ```text
+ scikit-learn
+ pandas
+ numpy
+ flask
+ ```
+
+1. 現在,通過導航到 _web-app_ 運行此文件:
+
+ ```bash
+ cd web-app
+ ```
+
+1. 在終端中輸入 `pip install`,以安裝 _requirements.txt_ 中列出的庫:
+
+ ```bash
+ pip install -r requirements.txt
+ ```
+
+1. 現在,你可以建立另外三個文件來完成應用程式:
+
+ 1. 在根目錄建立 **app.py**。
+ 2. 在 _templates_ 資料夾中建立 **index.html**。
+ 3. 在 _static/css_ 資料夾中建立 **styles.css**。
+
+1. 在 _styles.css_ 文件中添加一些樣式:
+
+ ```css
+ body {
+ width: 100%;
+ height: 100%;
+ font-family: 'Helvetica';
+ background: black;
+ color: #fff;
+ text-align: center;
+ letter-spacing: 1.4px;
+ font-size: 30px;
+ }
+
+ input {
+ min-width: 150px;
+ }
+
+ .grid {
+ width: 300px;
+ border: 1px solid #2d2d2d;
+ display: grid;
+ justify-content: center;
+ margin: 20px auto;
+ }
+
+ .box {
+ color: #fff;
+ background: #2d2d2d;
+ padding: 12px;
+ display: inline-block;
+ }
+ ```
+
+1. 接下來,建立 _index.html_ 文件:
+
+ ```html
+
+
+
+
+ 🛸 UFO Appearance Prediction! 👽
+
+
+
+
+
+
+
+
+
According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?
+
+
+
+
{{ prediction_text }}
+
+
+
+
+
+
+
+ ```
+
+ 查看此文件中的模板語法。注意變數周圍的“大括號”語法,例如預測文字:`{{}}`。還有一個表單,它將預測結果發送到 `/predict` 路由。
+
+ 最後,你準備好建立驅動模型消耗和預測顯示的Python文件:
+
+1. 在 `app.py` 中添加:
+
+ ```python
+ import numpy as np
+ from flask import Flask, request, render_template
+ import pickle
+
+ app = Flask(__name__)
+
+ model = pickle.load(open("./ufo-model.pkl", "rb"))
+
+
+ @app.route("/")
+ def home():
+ return render_template("index.html")
+
+
+ @app.route("/predict", methods=["POST"])
+ def predict():
+
+ int_features = [int(x) for x in request.form.values()]
+ final_features = [np.array(int_features)]
+ prediction = model.predict(final_features)
+
+ output = prediction[0]
+
+ countries = ["Australia", "Canada", "Germany", "UK", "US"]
+
+ return render_template(
+ "index.html", prediction_text="Likely country: {}".format(countries[output])
+ )
+
+
+ if __name__ == "__main__":
+ app.run(debug=True)
+ ```
+
+ > 💡 提示:當你在使用Flask運行網頁應用程式時添加 [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode),你對應用程式所做的任何更改都會立即反映,而無需重新啟動伺服器。注意!不要在生產應用程式中啟用此模式。
+
+如果你運行 `python app.py` 或 `python3 app.py` - 你的網頁伺服器將在本地啟動,你可以填寫一個簡短的表單來獲得關於UFO目擊地點的答案!
+
+在此之前,查看 `app.py` 的各部分:
+
+1. 首先,載入依賴項並啟動應用程式。
+1. 然後,導入模型。
+1. 接著,在主路由上渲染 index.html。
+
+在 `/predict` 路由上,當表單提交時會發生以下幾件事:
+
+1. 表單變數被收集並轉換為numpy陣列。然後它們被發送到模型並返回預測結果。
+2. 我們希望顯示的國家代碼被重新渲染為可讀的文字,並將該值發送回 index.html,在模板中渲染。
+
+以這種方式使用模型,結合Flask和Pickle模型,相對簡單。最困難的是理解必須發送到模型的數據形狀,以獲得預測結果。這完全取決於模型的訓練方式。這個模型需要輸入三個數據點才能獲得預測結果。
+
+在專業環境中,你可以看到訓練模型的人和在網頁或移動應用程式中使用模型的人之間良好的溝通是多麼重要。在我們的情況下,只有一個人,那就是你!
+
+---
+
+## 🚀 挑戰
+
+與其在筆記本中工作並將模型導入Flask應用程式,你可以直接在Flask應用程式中訓練模型!嘗試將筆記本中的Python代碼轉換為在應用程式內的 `train` 路由上訓練模型,可能是在清理數據之後。追求這種方法的優缺點是什麼?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+有許多方法可以建立網頁應用程式來使用機器學習模型。列出你可以使用JavaScript或Python建立網頁應用程式以利用機器學習的方法。考慮架構:模型應該保留在應用程式中還是存放在雲端?如果是後者,你將如何訪問它?繪製一個應用機器學習的網頁解決方案架構模型。
+
+## 作業
+
+[嘗試不同的模型](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人工作業翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/3-Web-App/1-Web-App/assignment.md b/translations/zh-HK/3-Web-App/1-Web-App/assignment.md
new file mode 100644
index 000000000..37b8de541
--- /dev/null
+++ b/translations/zh-HK/3-Web-App/1-Web-App/assignment.md
@@ -0,0 +1,16 @@
+# 嘗試不同的模型
+
+## 指引
+
+現在你已經使用訓練過的回歸模型建立了一個網頁應用程式,請使用之前回歸課程中的其中一個模型重新製作這個網頁應用程式。你可以保持原有的風格,或者設計成不同的樣式以反映南瓜數據。請注意更改輸入以符合模型的訓練方法。
+
+## 評分標準
+
+| 評分標準 | 卓越表現 | 合格表現 | 需要改進 |
+| ------------------------ | ------------------------------------------------------- | ------------------------------------------------------- | ------------------------------------ |
+| | 網頁應用程式正常運行並已部署至雲端 | 網頁應用程式存在缺陷或出現意外結果 | 網頁應用程式無法正常運作 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/3-Web-App/1-Web-App/notebook.ipynb b/translations/zh-HK/3-Web-App/1-Web-App/notebook.ipynb
new file mode 100644
index 000000000..e69de29bb
diff --git a/translations/zh-HK/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/zh-HK/3-Web-App/1-Web-App/solution/notebook.ipynb
new file mode 100644
index 000000000..a867dc796
--- /dev/null
+++ b/translations/zh-HK/3-Web-App/1-Web-App/solution/notebook.ipynb
@@ -0,0 +1,267 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "5fa2e8f4584c78250ca9729b46562ceb",
+ "translation_date": "2025-09-03T20:19:43+00:00",
+ "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " datetime city state country shape \\\n",
+ "0 10/10/1949 20:30 san marcos tx us cylinder \n",
+ "1 10/10/1949 21:00 lackland afb tx NaN light \n",
+ "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n",
+ "3 10/10/1956 21:00 edna tx us circle \n",
+ "4 10/10/1960 20:00 kaneohe hi us light \n",
+ "\n",
+ " duration (seconds) duration (hours/min) \\\n",
+ "0 2700.0 45 minutes \n",
+ "1 7200.0 1-2 hrs \n",
+ "2 20.0 20 seconds \n",
+ "3 20.0 1/2 hour \n",
+ "4 900.0 15 minutes \n",
+ "\n",
+ " comments date posted latitude \\\n",
+ "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n",
+ "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n",
+ "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n",
+ "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n",
+ "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n",
+ "\n",
+ " longitude \n",
+ "0 -97.941111 \n",
+ "1 -98.581082 \n",
+ "2 -2.916667 \n",
+ "3 -96.645833 \n",
+ "4 -157.803611 "
+ ],
+ "text/html": "\n\n
\n \n \n \n datetime \n city \n state \n country \n shape \n duration (seconds) \n duration (hours/min) \n comments \n date posted \n latitude \n longitude \n \n \n \n \n 0 \n 10/10/1949 20:30 \n san marcos \n tx \n us \n cylinder \n 2700.0 \n 45 minutes \n This event took place in early fall around 194... \n 4/27/2004 \n 29.883056 \n -97.941111 \n \n \n 1 \n 10/10/1949 21:00 \n lackland afb \n tx \n NaN \n light \n 7200.0 \n 1-2 hrs \n 1949 Lackland AFB, TX. Lights racing acros... \n 12/16/2005 \n 29.384210 \n -98.581082 \n \n \n 2 \n 10/10/1955 17:00 \n chester (uk/england) \n NaN \n gb \n circle \n 20.0 \n 20 seconds \n Green/Orange circular disc over Chester, En... \n 1/21/2008 \n 53.200000 \n -2.916667 \n \n \n 3 \n 10/10/1956 21:00 \n edna \n tx \n us \n circle \n 20.0 \n 1/2 hour \n My older brother and twin sister were leaving ... \n 1/17/2004 \n 28.978333 \n -96.645833 \n \n \n 4 \n 10/10/1960 20:00 \n kaneohe \n hi \n us \n light \n 900.0 \n 15 minutes \n AS a Marine 1st Lt. flying an FJ4B fighter/att... \n 1/22/2004 \n 21.418056 \n -157.803611 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 23
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "ufos = pd.read_csv('../data/ufos.csv')\n",
+ "ufos.head()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 24
+ }
+ ],
+ "source": [
+ "\n",
+ "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n",
+ "\n",
+ "ufos.Country.unique()\n",
+ "\n",
+ "# 0 au, 1 ca, 2 de, 3 gb, 4 us"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "ufos.dropna(inplace=True)\n",
+ "\n",
+ "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n",
+ "\n",
+ "ufos.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Seconds Country Latitude Longitude\n",
+ "2 20.0 3 53.200000 -2.916667\n",
+ "3 20.0 4 28.978333 -96.645833\n",
+ "14 30.0 4 35.823889 -80.253611\n",
+ "23 60.0 4 45.582778 -122.352222\n",
+ "24 3.0 3 51.783333 -0.783333"
+ ],
+ "text/html": "\n\n
\n \n \n \n Seconds \n Country \n Latitude \n Longitude \n \n \n \n \n 2 \n 20.0 \n 3 \n 53.200000 \n -2.916667 \n \n \n 3 \n 20.0 \n 4 \n 28.978333 \n -96.645833 \n \n \n 14 \n 30.0 \n 4 \n 35.823889 \n -80.253611 \n \n \n 23 \n 60.0 \n 4 \n 45.582778 \n -122.352222 \n \n \n 24 \n 3.0 \n 3 \n 51.783333 \n -0.783333 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 26
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "\n",
+ "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n",
+ "\n",
+ "ufos.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "Selected_features = ['Seconds','Latitude','Longitude']\n",
+ "\n",
+ "X = ufos[Selected_features]\n",
+ "y = ufos['Country']\n",
+ "\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
+ " \"this warning.\", FutureWarning)\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 41\n",
+ " 1 1.00 0.02 0.05 250\n",
+ " 2 0.00 0.00 0.00 8\n",
+ " 3 0.94 1.00 0.97 131\n",
+ " 4 0.95 1.00 0.97 4743\n",
+ "\n",
+ " accuracy 0.95 5173\n",
+ " macro avg 0.78 0.60 0.60 5173\n",
+ "weighted avg 0.95 0.95 0.93 5173\n",
+ "\n",
+ "Predicted labels: [4 4 4 ... 3 4 4]\n",
+ "Accuracy: 0.9512855209742895\n",
+ "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n",
+ " 'precision', 'predicted', average, warn_for)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.metrics import accuracy_score, classification_report \n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "model = LogisticRegression()\n",
+ "model.fit(X_train, y_train)\n",
+ "predictions = model.predict(X_test)\n",
+ "\n",
+ "print(classification_report(y_test, predictions))\n",
+ "print('Predicted labels: ', predictions)\n",
+ "print('Accuracy: ', accuracy_score(y_test, predictions))\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[3]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import pickle\n",
+ "model_filename = 'ufo-model.pkl'\n",
+ "pickle.dump(model, open(model_filename,'wb'))\n",
+ "\n",
+ "model = pickle.load(open('ufo-model.pkl','rb'))\n",
+ "print(model.predict([[50,44,-12]]))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/3-Web-App/README.md b/translations/zh-HK/3-Web-App/README.md
new file mode 100644
index 000000000..dab366cda
--- /dev/null
+++ b/translations/zh-HK/3-Web-App/README.md
@@ -0,0 +1,26 @@
+# 建立一個網頁應用程式來使用你的機器學習模型
+
+在這部分課程中,你將學習一個應用機器學習的主題:如何將你的 Scikit-learn 模型保存為一個檔案,並在網頁應用程式中使用它進行預測。當模型保存好後,你將學習如何在使用 Flask 建立的網頁應用程式中使用它。首先,你會使用一些關於 UFO 目擊事件的數據來建立模型!接著,你會建立一個網頁應用程式,讓你輸入秒數、緯度和經度值,來預測哪個國家報告了看到 UFO。
+
+
+
+照片由 Michael Herren 提供,來自 Unsplash
+
+## 課程
+
+1. [建立網頁應用程式](1-Web-App/README.md)
+
+## 致謝
+
+"建立網頁應用程式" 由 [Jen Looper](https://twitter.com/jenlooper) 用 ♥️ 撰寫。
+
+♥️ 測驗由 Rohan Raj 撰寫。
+
+數據集來源於 [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings)。
+
+網頁應用程式架構部分參考了 [這篇文章](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) 和 [這個倉庫](https://github.com/abhinavsagar/machine-learning-deployment),由 Abhinav Sagar 提供。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/README.md b/translations/zh-HK/4-Classification/1-Introduction/README.md
new file mode 100644
index 000000000..046eeeba6
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/README.md
@@ -0,0 +1,304 @@
+# 分類簡介
+
+在這四節課中,你將探索經典機器學習的一個核心主題——_分類_。我們將使用一個關於亞洲和印度美食的數據集,逐步了解各種分類算法的應用。希望你已經準備好大快朵頤了!
+
+
+
+> 在這些課程中慶祝泛亞洲美食!圖片由 [Jen Looper](https://twitter.com/jenlooper) 提供
+
+分類是一種[監督式學習](https://wikipedia.org/wiki/Supervised_learning),與回歸技術有許多相似之處。如果機器學習的核心是通過數據集來預測事物的值或名稱,那麼分類通常分為兩類:_二元分類_和_多類分類_。
+
+[](https://youtu.be/eg8DJYwdMyg "分類簡介")
+
+> 🎥 點擊上方圖片觀看影片:麻省理工學院的 John Guttag 介紹分類
+
+記住:
+
+- **線性回歸** 幫助你預測變量之間的關係,並準確預測新數據點在該線性關係中的位置。例如,你可以預測 _南瓜在九月和十二月的價格_。
+- **邏輯回歸** 幫助你發現「二元類別」:在這個價格範圍內,_這個南瓜是橙色還是非橙色_?
+
+分類使用各種算法來確定數據點的標籤或類別。讓我們使用這些美食數據,看看是否可以通過觀察一組食材來判斷其美食的來源。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+> ### [本課程提供 R 版本!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html)
+
+### 簡介
+
+分類是機器學習研究者和數據科學家的一項基本活動。從基本的二元值分類(「這封電子郵件是垃圾郵件還是非垃圾郵件?」),到使用計算機視覺進行複雜的圖像分類和分割,能夠將數據分成類別並提出問題始終是非常有用的。
+
+用更科學的方式來描述這個過程,你的分類方法會創建一個預測模型,使你能夠將輸入變量與輸出變量之間的關係進行映射。
+
+
+
+> 二元分類與多類分類問題,供分類算法處理。信息圖由 [Jen Looper](https://twitter.com/jenlooper) 提供
+
+在開始清理數據、可視化數據以及為機器學習任務準備數據之前,讓我們先了解一下機器學習分類數據的各種方式。
+
+分類源於[統計學](https://wikipedia.org/wiki/Statistical_classification),使用經典機器學習技術可以利用特徵,例如 `smoker`、`weight` 和 `age`,來判斷_患某種疾病的可能性_。作為一種類似於你之前進行的回歸練習的監督式學習技術,你的數據是有標籤的,機器學習算法使用這些標籤來分類和預測數據集的類別(或「特徵」),並將它們分配到某個組或結果中。
+
+✅ 花點時間想像一個關於美食的數據集。一個多類模型能回答什麼問題?一個二元模型能回答什麼問題?如果你想判斷某種美食是否可能使用葫蘆巴葉呢?如果你想知道,假如收到一袋包含八角、洋薊、花椰菜和辣根的雜貨,你是否能做出一道典型的印度菜?
+
+[](https://youtu.be/GuTeDbaNoEU "瘋狂的神秘籃子")
+
+> 🎥 點擊上方圖片觀看影片。節目《Chopped》的整個主題是「神秘籃子」,廚師必須用隨機選擇的食材做出一道菜。機器學習模型肯定能幫上忙!
+
+## 你好,分類器
+
+我們想要從這個美食數據集中提出的問題實際上是一個**多類問題**,因為我們有多個潛在的國家美食可以選擇。給定一批食材,這些數據會屬於哪一類?
+
+Scikit-learn 提供了多種不同的算法來分類數據,具體取決於你想解決的問題類型。在接下來的兩節課中,你將學習其中幾種算法。
+
+## 練習 - 清理並平衡數據
+
+在開始這個項目之前的第一項任務是清理並**平衡**你的數據,以獲得更好的結果。從此文件夾根目錄中的空白 _notebook.ipynb_ 文件開始。
+
+第一件事是安裝 [imblearn](https://imbalanced-learn.org/stable/)。這是一個 Scikit-learn 套件,可以幫助你更好地平衡數據(稍後你會了解更多關於這項任務的內容)。
+
+1. 要安裝 `imblearn`,運行 `pip install`,如下所示:
+
+ ```python
+ pip install imblearn
+ ```
+
+1. 導入需要的包以導入數據並可視化數據,還需要從 `imblearn` 導入 `SMOTE`。
+
+ ```python
+ import pandas as pd
+ import matplotlib.pyplot as plt
+ import matplotlib as mpl
+ import numpy as np
+ from imblearn.over_sampling import SMOTE
+ ```
+
+ 現在你已準備好接下來導入數據。
+
+1. 下一步是導入數據:
+
+ ```python
+ df = pd.read_csv('../data/cuisines.csv')
+ ```
+
+ 使用 `read_csv()` 會讀取 csv 文件 _cusines.csv_ 的內容並將其放入變量 `df`。
+
+1. 檢查數據的形狀:
+
+ ```python
+ df.head()
+ ```
+
+ 前五行看起來像這樣:
+
+ ```output
+ | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
+ | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
+ | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+ | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+ | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+ | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+ | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
+ ```
+
+1. 通過調用 `info()` 獲取有關此數據的信息:
+
+ ```python
+ df.info()
+ ```
+
+ 你的輸出類似於:
+
+ ```output
+
+ RangeIndex: 2448 entries, 0 to 2447
+ Columns: 385 entries, Unnamed: 0 to zucchini
+ dtypes: int64(384), object(1)
+ memory usage: 7.2+ MB
+ ```
+
+## 練習 - 了解美食
+
+現在工作開始變得更有趣了。讓我們探索每種美食的數據分佈。
+
+1. 通過調用 `barh()` 將數據繪製為條形圖:
+
+ ```python
+ df.cuisine.value_counts().plot.barh()
+ ```
+
+ 
+
+ 美食的數量是有限的,但數據分佈是不均勻的。你可以修正它!在修正之前,先多探索一下。
+
+1. 找出每種美食的數據量並打印出來:
+
+ ```python
+ thai_df = df[(df.cuisine == "thai")]
+ japanese_df = df[(df.cuisine == "japanese")]
+ chinese_df = df[(df.cuisine == "chinese")]
+ indian_df = df[(df.cuisine == "indian")]
+ korean_df = df[(df.cuisine == "korean")]
+
+ print(f'thai df: {thai_df.shape}')
+ print(f'japanese df: {japanese_df.shape}')
+ print(f'chinese df: {chinese_df.shape}')
+ print(f'indian df: {indian_df.shape}')
+ print(f'korean df: {korean_df.shape}')
+ ```
+
+ 輸出如下所示:
+
+ ```output
+ thai df: (289, 385)
+ japanese df: (320, 385)
+ chinese df: (442, 385)
+ indian df: (598, 385)
+ korean df: (799, 385)
+ ```
+
+## 探索食材
+
+現在你可以深入挖掘數據,了解每種美食的典型食材。你應該清理掉那些在美食之間造成混淆的重複數據,因此讓我們了解這個問題。
+
+1. 在 Python 中創建一個函數 `create_ingredient()`,用於創建食材數據框。此函數將首先刪除一個無用的列,並根據食材的數量進行排序:
+
+ ```python
+ def create_ingredient_df(df):
+ ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')
+ ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]
+ ingredient_df = ingredient_df.sort_values(by='value', ascending=False,
+ inplace=False)
+ return ingredient_df
+ ```
+
+ 現在你可以使用該函數來了解每種美食前十名最受歡迎的食材。
+
+1. 調用 `create_ingredient()` 並通過調用 `barh()` 繪製圖表:
+
+ ```python
+ thai_ingredient_df = create_ingredient_df(thai_df)
+ thai_ingredient_df.head(10).plot.barh()
+ ```
+
+ 
+
+1. 對日本數據執行相同操作:
+
+ ```python
+ japanese_ingredient_df = create_ingredient_df(japanese_df)
+ japanese_ingredient_df.head(10).plot.barh()
+ ```
+
+ 
+
+1. 現在是中國食材:
+
+ ```python
+ chinese_ingredient_df = create_ingredient_df(chinese_df)
+ chinese_ingredient_df.head(10).plot.barh()
+ ```
+
+ 
+
+1. 繪製印度食材:
+
+ ```python
+ indian_ingredient_df = create_ingredient_df(indian_df)
+ indian_ingredient_df.head(10).plot.barh()
+ ```
+
+ 
+
+1. 最後,繪製韓國食材:
+
+ ```python
+ korean_ingredient_df = create_ingredient_df(korean_df)
+ korean_ingredient_df.head(10).plot.barh()
+ ```
+
+ 
+
+1. 現在,通過調用 `drop()` 刪除那些在不同美食之間造成混淆的最常見食材:
+
+ 每個人都喜歡米飯、大蒜和薑!
+
+ ```python
+ feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)
+ labels_df = df.cuisine #.unique()
+ feature_df.head()
+ ```
+
+## 平衡數據集
+
+現在你已清理了數據,使用 [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html)——「合成少數類別過採樣技術」——來平衡數據。
+
+1. 調用 `fit_resample()`,此策略通過插值生成新樣本。
+
+ ```python
+ oversample = SMOTE()
+ transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)
+ ```
+
+ 通過平衡數據,你在分類時會獲得更好的結果。想想二元分類。如果你的大部分數據屬於一個類別,機器學習模型會更頻繁地預測該類別,僅僅因為它有更多的數據。平衡數據可以消除這種不平衡。
+
+1. 現在你可以檢查每個食材的標籤數量:
+
+ ```python
+ print(f'new label count: {transformed_label_df.value_counts()}')
+ print(f'old label count: {df.cuisine.value_counts()}')
+ ```
+
+ 你的輸出如下所示:
+
+ ```output
+ new label count: korean 799
+ chinese 799
+ indian 799
+ japanese 799
+ thai 799
+ Name: cuisine, dtype: int64
+ old label count: korean 799
+ indian 598
+ chinese 442
+ japanese 320
+ thai 289
+ Name: cuisine, dtype: int64
+ ```
+
+ 數據現在乾淨、平衡,而且非常美味!
+
+1. 最後一步是將平衡後的數據,包括標籤和特徵,保存到一個新的數據框中,並導出到文件中:
+
+ ```python
+ transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')
+ ```
+
+1. 你可以通過使用 `transformed_df.head()` 和 `transformed_df.info()` 再次查看數據。保存此數據的副本以供未來課程使用:
+
+ ```python
+ transformed_df.head()
+ transformed_df.info()
+ transformed_df.to_csv("../data/cleaned_cuisines.csv")
+ ```
+
+ 此新鮮的 CSV 現在可以在根數據文件夾中找到。
+
+---
+
+## 🚀挑戰
+
+此課程包含幾個有趣的數據集。瀏覽 `data` 文件夾,看看是否有適合二元或多類分類的數據集?你會向這些數據集提出什麼問題?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+探索 SMOTE 的 API。它最適合用於哪些用例?它解決了哪些問題?
+
+## 作業
+
+[探索分類方法](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/assignment.md b/translations/zh-HK/4-Classification/1-Introduction/assignment.md
new file mode 100644
index 000000000..dec69787f
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/assignment.md
@@ -0,0 +1,16 @@
+# 探索分類方法
+
+## 指引
+
+在 [Scikit-learn 文件](https://scikit-learn.org/stable/supervised_learning.html) 中,你會找到大量用於分類數據的方法。請在這些文件中進行一個小型尋寶活動:你的目標是尋找分類方法,並將其與本課程中的一個數據集、一個可以提出的問題,以及一個分類技術進行匹配。創建一個電子表格或 .doc 文件中的表格,並解釋該數據集如何與分類算法配合使用。
+
+## 評分標準
+
+| 評分標準 | 卓越 | 合格 | 需要改進 |
+| -------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| | 提交了一份文件,概述了5種算法及其分類技術。概述解釋清晰且詳細。 | 提交了一份文件,概述了3種算法及其分類技術。概述解釋清晰且詳細。 | 提交了一份文件,概述少於3種算法及其分類技術,且概述既不清晰也不詳細。 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/notebook.ipynb b/translations/zh-HK/4-Classification/1-Introduction/notebook.ipynb
new file mode 100644
index 000000000..9838e7f5f
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/notebook.ipynb
@@ -0,0 +1,39 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "d544ef384b7ba73757d830a72372a7f2",
+ "translation_date": "2025-09-03T20:33:41+00:00",
+ "source_file": "4-Classification/1-Introduction/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原文文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/solution/Julia/README.md b/translations/zh-HK/4-Classification/1-Introduction/solution/Julia/README.md
new file mode 100644
index 000000000..f1727ea7c
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/zh-HK/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb
new file mode 100644
index 000000000..b86bcc7d4
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb
@@ -0,0 +1,720 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {
+ "colab": {
+ "name": "lesson_10-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": []
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "2621e24705e8100893c9bf84e0fc8aef",
+ "translation_date": "2025-09-03T20:41:29+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 建立分類模型:美味的亞洲和印度美食\n"
+ ],
+ "metadata": {
+ "id": "ItETB4tSFprR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 分類簡介:清理、準備和視覺化數據\n",
+ "\n",
+ "在這四節課中,你將探索經典機器學習的一個基本重點——*分類*。我們將使用一個關於亞洲和印度各種美食的數據集,逐步了解如何使用不同的分類算法。希望你已經準備好大快朵頤了!\n",
+ "\n",
+ "\n",
+ " \n",
+ " 在這些課程中一起慶祝泛亞洲美食吧!圖片由 Jen Looper 提供 \n",
+ "\n",
+ "分類是一種[監督式學習](https://wikipedia.org/wiki/Supervised_learning),與回歸技術有許多相似之處。在分類中,你訓練一個模型來預測某個項目屬於哪個`類別`。如果說機器學習是通過數據集來預測值或名稱,那麼分類通常分為兩類:*二元分類*和*多類分類*。\n",
+ "\n",
+ "請記住:\n",
+ "\n",
+ "- **線性回歸**幫助你預測變量之間的關係,並準確預測新數據點在該線性關係中的位置。例如,你可以預測南瓜在九月和十二月的價格。\n",
+ "\n",
+ "- **邏輯回歸**幫助你發現「二元類別」:在這個價格範圍內,*這個南瓜是橙色還是不是橙色*?\n",
+ "\n",
+ "分類使用各種算法來確定數據點的標籤或類別。讓我們使用這個美食數據集,看看通過觀察一組食材,是否可以確定其美食的來源。\n",
+ "\n",
+ "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n",
+ "\n",
+ "### **簡介**\n",
+ "\n",
+ "分類是機器學習研究人員和數據科學家的基本活動之一。從基本的二元值分類(「這封郵件是垃圾郵件還是不是?」),到使用計算機視覺進行的複雜圖像分類和分割,能夠將數據分類並對其進行提問始終是非常有用的。\n",
+ "\n",
+ "用更科學的方式來描述這個過程,你的分類方法會創建一個預測模型,幫助你將輸入變量與輸出變量之間的關係映射出來。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 分類算法處理的二元與多類問題。信息圖由 Jen Looper 提供 \n",
+ "\n",
+ "在開始清理數據、可視化數據並為機器學習任務準備數據之前,讓我們先了解一下機器學習如何用於分類數據的各種方式。\n",
+ "\n",
+ "分類源於[統計學](https://wikipedia.org/wiki/Statistical_classification),使用經典機器學習進行分類時,會利用特徵(例如`smoker`、`weight`和`age`)來確定*患某種疾病的可能性*。作為一種與之前進行的回歸練習類似的監督式學習技術,你的數據是帶標籤的,機器學習算法使用這些標籤來分類和預測數據集的類別(或「特徵」),並將它們分配到某個組或結果中。\n",
+ "\n",
+ "✅ 花點時間想像一個關於美食的數據集。一個多類模型能回答什麼問題?一個二元模型能回答什麼問題?如果你想確定某種美食是否可能使用葫蘆巴,該怎麼辦?如果你想知道,假如收到一袋包含八角、洋薊、花椰菜和辣根的雜貨,你是否能做出一道典型的印度菜呢?\n",
+ "\n",
+ "### **你好,分類器**\n",
+ "\n",
+ "我們想要從這個美食數據集中提出的問題實際上是一個**多類問題**,因為我們有多個潛在的國家美食類別可供選擇。給定一組食材,這些數據會屬於哪一類?\n",
+ "\n",
+ "Tidymodels 提供了多種算法來分類數據,具體取決於你想解決的問題類型。在接下來的兩節課中,你將學習其中幾種算法。\n",
+ "\n",
+ "#### **前置要求**\n",
+ "\n",
+ "在這節課中,我們需要以下套件來清理、準備和可視化數據:\n",
+ "\n",
+ "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個[由 R 套件組成的集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個[建模和機器學習的套件集合](https://www.tidymodels.org/packages/)。\n",
+ "\n",
+ "- `DataExplorer`: [DataExplorer 套件](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html)旨在簡化和自動化探索性數據分析(EDA)過程和報告生成。\n",
+ "\n",
+ "- `themis`: [themis 套件](https://themis.tidymodels.org/) 提供了處理不平衡數據的額外 Recipes 步驟。\n",
+ "\n",
+ "你可以通過以下方式安裝它們:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n",
+ "\n",
+ "或者,以下腳本會檢查你是否已安裝完成本模組所需的套件,並在缺失時為你安裝。\n"
+ ],
+ "metadata": {
+ "id": "ri5bQxZ-Fz_0"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n",
+ "\r\n",
+ "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "KIPxa4elGAPI"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "我們稍後會載入這些很棒的套件,並使它們在我們目前的 R 工作環境中可用。(這只是為了說明,`pacman::p_load()` 已經為你完成了這個步驟)\n"
+ ],
+ "metadata": {
+ "id": "YkKAxOJvGD4C"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 練習 - 清理及平衡你的數據\n",
+ "\n",
+ "在開始這個項目之前,第一項任務是清理並**平衡**你的數據,以獲得更好的結果。\n",
+ "\n",
+ "來認識一下這些數據吧!🕵️\n"
+ ],
+ "metadata": {
+ "id": "PFkQDlk0GN5O"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Import data\r\n",
+ "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n",
+ "\r\n",
+ "# View the first 5 rows\r\n",
+ "df %>% \r\n",
+ " slice_head(n = 5)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "Qccw7okxGT0S"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "有趣!看來第一列是一種 `id` 列。我們來了解更多關於這些數據的信息。\n"
+ ],
+ "metadata": {
+ "id": "XrWnlgSrGVmR"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Basic information about the data\r\n",
+ "df %>%\r\n",
+ " introduce()\r\n",
+ "\r\n",
+ "# Visualize basic information above\r\n",
+ "df %>% \r\n",
+ " plot_intro(ggtheme = theme_light())"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "4UcGmxRxGieA"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "從輸出中,我們可以立即看到我們有 `2448` 行和 `385` 列,並且沒有缺失值。我們還有一個離散欄位,*cuisine*。\n",
+ "\n",
+ "## 練習 - 了解菜系\n",
+ "\n",
+ "現在工作開始變得更有趣了。讓我們探索每種菜系的數據分佈。\n"
+ ],
+ "metadata": {
+ "id": "AaPubl__GmH5"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Count observations per cuisine\r\n",
+ "df %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " arrange(n)\r\n",
+ "\r\n",
+ "# Plot the distribution\r\n",
+ "theme_set(theme_light())\r\n",
+ "df %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n",
+ " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n",
+ " ylab(\"cuisine\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "FRsBVy5eGrrv"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "有各種不同的菜系,但數據的分佈並不平均。你可以改變這種情況!在此之前,先進一步探索一下。\n",
+ "\n",
+ "接下來,讓我們將每種菜系分配到各自的 tibble,並找出每種菜系的數據量(行數和列數)。\n",
+ "\n",
+ "> [tibble](https://tibble.tidyverse.org/) 是一種現代化的數據框。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n"
+ ],
+ "metadata": {
+ "id": "vVvyDb1kG2in"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Create individual tibble for the cuisines\r\n",
+ "thai_df <- df %>% \r\n",
+ " filter(cuisine == \"thai\")\r\n",
+ "japanese_df <- df %>% \r\n",
+ " filter(cuisine == \"japanese\")\r\n",
+ "chinese_df <- df %>% \r\n",
+ " filter(cuisine == \"chinese\")\r\n",
+ "indian_df <- df %>% \r\n",
+ " filter(cuisine == \"indian\")\r\n",
+ "korean_df <- df %>% \r\n",
+ " filter(cuisine == \"korean\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Find out how much data is available per cuisine\r\n",
+ "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n",
+ " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n",
+ " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n",
+ " \"indian_df:\", dim(indian_df), \"\\n\",\r\n",
+ " \"korean_df:\", dim(korean_df))"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "0TvXUxD3G8Bk"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## **練習 - 使用 dplyr 探索不同菜系的主要食材**\n",
+ "\n",
+ "現在你可以深入研究數據,了解每種菜系的典型食材。你需要清理一些重複的數據,這些數據可能會在菜系之間造成混淆,因此讓我們來了解這個問題。\n",
+ "\n",
+ "在 R 中創建一個名為 `create_ingredient()` 的函數,該函數會返回一個食材的數據框。這個函數將首先刪除一個無用的列,然後根據食材的數量進行排序。\n",
+ "\n",
+ "R 中函數的基本結構如下:\n",
+ "\n",
+ "`myFunction <- function(arglist){`\n",
+ "\n",
+ "**`...`**\n",
+ "\n",
+ "**`return`**`(value)`\n",
+ "\n",
+ "`}`\n",
+ "\n",
+ "可以在[這裡](https://skirmer.github.io/presentations/functions_with_r.html#1)找到一個簡潔的 R 函數入門介紹。\n",
+ "\n",
+ "讓我們直接開始吧!我們將使用 [dplyr 動詞](https://dplyr.tidyverse.org/),這些動詞我們在之前的課程中已經學過。以下是回顧:\n",
+ "\n",
+ "- `dplyr::select()`: 幫助你選擇要保留或排除的**列**。\n",
+ "\n",
+ "- `dplyr::pivot_longer()`: 幫助你將數據“拉長”,增加行數並減少列數。\n",
+ "\n",
+ "- `dplyr::group_by()` 和 `dplyr::summarise()`: 幫助你找到不同組的統計摘要,並將它們放入一個整齊的表格中。\n",
+ "\n",
+ "- `dplyr::filter()`: 創建一個僅包含滿足條件的行的數據子集。\n",
+ "\n",
+ "- `dplyr::mutate()`: 幫助你創建或修改列。\n",
+ "\n",
+ "查看這個由 Allison Horst 製作的[充滿藝術感的 learnr 教程](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome),它介紹了一些在 dplyr *(Tidyverse 的一部分)* 中非常有用的數據整理函數。\n"
+ ],
+ "metadata": {
+ "id": "K3RF5bSCHC76"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Creates a functions that returns the top ingredients by class\r\n",
+ "\r\n",
+ "create_ingredient <- function(df){\r\n",
+ " \r\n",
+ " # Drop the id column which is the first colum\r\n",
+ " ingredient_df = df %>% select(-1) %>% \r\n",
+ " # Transpose data to a long format\r\n",
+ " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n",
+ " # Find the top most ingredients for a particular cuisine\r\n",
+ " group_by(ingredients) %>% \r\n",
+ " summarise(n_instances = sum(count)) %>% \r\n",
+ " filter(n_instances != 0) %>% \r\n",
+ " # Arrange by descending order\r\n",
+ " arrange(desc(n_instances)) %>% \r\n",
+ " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n",
+ " \r\n",
+ " \r\n",
+ " return(ingredient_df)\r\n",
+ "} # End of function"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "uB_0JR82HTPa"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在我們可以使用這個函數來了解按菜系分類的十大最受歡迎食材。讓我們用 `thai_df` 試試看吧。\n"
+ ],
+ "metadata": {
+ "id": "h9794WF8HWmc"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Call create_ingredient and display popular ingredients\r\n",
+ "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n",
+ "\r\n",
+ "thai_ingredient_df %>% \r\n",
+ " slice_head(n = 10)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "agQ-1HrcHaEA"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "在上一節中,我們使用了 `geom_col()`,現在讓我們看看如何使用 `geom_bar` 來製作柱狀圖。使用 `?geom_bar` 了解更多資訊。\n"
+ ],
+ "metadata": {
+ "id": "kHu9ffGjHdcX"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Make a bar chart for popular thai cuisines\r\n",
+ "thai_ingredient_df %>% \r\n",
+ " slice_head(n = 10) %>% \r\n",
+ " ggplot(aes(x = n_instances, y = ingredients)) +\r\n",
+ " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n",
+ " xlab(\"\") + ylab(\"\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "fb3Bx_3DHj6e"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "RHP_xgdkHnvM"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Get popular ingredients for Japanese cuisines and make bar chart\r\n",
+ "create_ingredient(df = japanese_df) %>% \r\n",
+ " slice_head(n = 10) %>%\r\n",
+ " ggplot(aes(x = n_instances, y = ingredients)) +\r\n",
+ " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n",
+ " xlab(\"\") + ylab(\"\")\r\n"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "019v8F0XHrRU"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "關於中國菜呢?\n"
+ ],
+ "metadata": {
+ "id": "iIGM7vO8Hu3v"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Get popular ingredients for Chinese cuisines and make bar chart\r\n",
+ "create_ingredient(df = chinese_df) %>% \r\n",
+ " slice_head(n = 10) %>%\r\n",
+ " ggplot(aes(x = n_instances, y = ingredients)) +\r\n",
+ " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n",
+ " xlab(\"\") + ylab(\"\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "lHd9_gd2HyzU"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "ir8qyQbNH1c7"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Get popular ingredients for Indian cuisines and make bar chart\r\n",
+ "create_ingredient(df = indian_df) %>% \r\n",
+ " slice_head(n = 10) %>%\r\n",
+ " ggplot(aes(x = n_instances, y = ingredients)) +\r\n",
+ " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n",
+ " xlab(\"\") + ylab(\"\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "ApukQtKjH5FO"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "最後,繪製韓國食材。\n"
+ ],
+ "metadata": {
+ "id": "qv30cwY1H-FM"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Get popular ingredients for Korean cuisines and make bar chart\r\n",
+ "create_ingredient(df = korean_df) %>% \r\n",
+ " slice_head(n = 10) %>%\r\n",
+ " ggplot(aes(x = n_instances, y = ingredients)) +\r\n",
+ " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n",
+ " xlab(\"\") + ylab(\"\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "lumgk9cHIBie"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "從數據可視化中,我們現在可以使用 `dplyr::select()` 去掉那些在不同菜系之間容易引起混淆的最常見食材。\n",
+ "\n",
+ "大家都喜歡米飯、大蒜和薑!\n"
+ ],
+ "metadata": {
+ "id": "iO4veMXuIEta"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Drop id column, rice, garlic and ginger from our original data set\r\n",
+ "df_select <- df %>% \r\n",
+ " select(-c(1, rice, garlic, ginger))\r\n",
+ "\r\n",
+ "# Display new data set\r\n",
+ "df_select %>% \r\n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "iHJPiG6rIUcK"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 使用食譜預處理數據 👩🍳👨🍳 - 處理不平衡數據 ⚖️\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n",
+ "\n",
+ "既然這節課是關於烹飪,我們需要將 `recipes` 放到合適的背景中。\n",
+ "\n",
+ "Tidymodels 提供了另一個非常方便的套件:`recipes`——一個用於預處理數據的套件。\n"
+ ],
+ "metadata": {
+ "id": "kkFd-JxdIaL6"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "讓我們再次看看我們菜式的分佈情況。\n"
+ ],
+ "metadata": {
+ "id": "6l2ubtTPJAhY"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Distribution of cuisines\r\n",
+ "old_label_count <- df_select %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " arrange(desc(n))\r\n",
+ "\r\n",
+ "old_label_count"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "1e-E9cb7JDVi"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "如你所見,菜式的數量分佈非常不均衡。韓國菜的數量幾乎是泰國菜的三倍。不均衡的數據通常會對模型的表現產生負面影響。試想一個二元分類問題,如果你的大部分數據都屬於某一個類別,機器學習模型就會更頻繁地預測該類別,僅僅因為它有更多的數據可供學習。平衡數據可以修正任何偏斜的數據,幫助消除這種不均衡。許多模型在觀測數量相等時表現最佳,因此在處理不均衡數據時往往會遇到困難。\n",
+ "\n",
+ "處理不均衡數據集主要有兩種方法:\n",
+ "\n",
+ "- 為少數類別添加觀測值:`過採樣`,例如使用 SMOTE 演算法\n",
+ "\n",
+ "- 從多數類別移除觀測值:`欠採樣`\n",
+ "\n",
+ "現在讓我們演示如何使用 `recipe` 來處理不均衡數據集。`recipe` 可以被視為一個藍圖,描述了應該對數據集應用哪些步驟,以使其準備好進行數據分析。\n"
+ ],
+ "metadata": {
+ "id": "soAw6826JKx9"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load themis package for dealing with imbalanced data\r\n",
+ "library(themis)\r\n",
+ "\r\n",
+ "# Create a recipe for preprocessing data\r\n",
+ "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n",
+ " step_smote(cuisine)\r\n",
+ "\r\n",
+ "cuisines_recipe"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "HS41brUIJVJy"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "讓我們逐步了解預處理的步驟。\n",
+ "\n",
+ "- 使用公式調用 `recipe()` 時,會根據 `df_select` 數據作為參考,告訴 recipe 變數的*角色*。例如,`cuisine` 列被分配了 `outcome` 角色,而其他列則被分配了 `predictor` 角色。\n",
+ "\n",
+ "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) 創建了一個 recipe 步驟的*規範*,使用這些案例的最近鄰居合成生成少數類別的新樣本。\n",
+ "\n",
+ "現在,如果我們想查看預處理後的數據,就需要使用 [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) 和 [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) 來處理我們的 recipe。\n",
+ "\n",
+ "`prep()`:從訓練集估算所需的參數,這些參數可以稍後應用到其他數據集。\n",
+ "\n",
+ "`bake()`:使用已準備好的 recipe,並將操作應用到任何數據集。\n"
+ ],
+ "metadata": {
+ "id": "Yb-7t7XcJaC8"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Prep and bake the recipe\r\n",
+ "preprocessed_df <- cuisines_recipe %>% \r\n",
+ " prep() %>% \r\n",
+ " bake(new_data = NULL) %>% \r\n",
+ " relocate(cuisine)\r\n",
+ "\r\n",
+ "# Display data\r\n",
+ "preprocessed_df %>% \r\n",
+ " slice_head(n = 5)\r\n",
+ "\r\n",
+ "# Quick summary stats\r\n",
+ "preprocessed_df %>% \r\n",
+ " introduce()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "9QhSgdpxJl44"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在讓我們檢查我們的菜式分佈,並將其與不平衡的數據進行比較。\n"
+ ],
+ "metadata": {
+ "id": "dmidELh_LdV7"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Distribution of cuisines\r\n",
+ "new_label_count <- preprocessed_df %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " arrange(desc(n))\r\n",
+ "\r\n",
+ "list(new_label_count = new_label_count,\r\n",
+ " old_label_count = old_label_count)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "aSh23klBLwDz"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "好棒!數據既乾淨又平衡,簡直美味可口 😋!\n",
+ "\n",
+ "> 通常,配方(recipe)通常用作建模的預處理器,定義了需要對數據集進行哪些步驟以準備好進行建模。在這種情況下,通常會使用 `workflow()`(正如我們在之前的課程中已經看到的),而不是手動估算配方。\n",
+ ">\n",
+ "> 因此,當使用 tidymodels 時,通常不需要使用 **`prep()`** 和 **`bake()`** 來處理配方,但這些函數在工具箱中是非常有用的,可以用來確認配方是否按照預期運行,就像我們的情況一樣。\n",
+ ">\n",
+ "> 當你使用 **`new_data = NULL`** 來 **`bake()`** 一個已準備好的配方時,你會得到在定義配方時提供的數據,但這些數據已經經過了預處理步驟。\n",
+ "\n",
+ "現在讓我們保存一份這些數據的副本,以便在未來的課程中使用:\n"
+ ],
+ "metadata": {
+ "id": "HEu80HZ8L7ae"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Save preprocessed data\r\n",
+ "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "id": "cBmCbIgrMOI6"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "這個新的 CSV 現在可以在根目錄的資料夾中找到。\n",
+ "\n",
+ "**🚀挑戰**\n",
+ "\n",
+ "這份課程包含多個有趣的數據集。深入探索 `data` 資料夾,看看是否有任何數據集適合用於二元或多類別分類?你會對這些數據集提出什麼問題?\n",
+ "\n",
+ "## [**課後測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n",
+ "\n",
+ "## **回顧與自學**\n",
+ "\n",
+ "- 查看 [themis 套件](https://github.com/tidymodels/themis)。我們還可以使用哪些其他技術來處理不平衡數據?\n",
+ "\n",
+ "- Tidy models [參考網站](https://www.tidymodels.org/start/)。\n",
+ "\n",
+ "- H. Wickham 和 G. Grolemund,[*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/)。\n",
+ "\n",
+ "#### 特別感謝:\n",
+ "\n",
+ "[`Allison Horst`](https://twitter.com/allison_horst/) 創作了令人驚嘆的插圖,使 R 更加親切和吸引人。可以在她的 [畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 中找到更多插圖。\n",
+ "\n",
+ "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 創作了這個模組的原始 Python 版本 ♥️\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n"
+ ],
+ "metadata": {
+ "id": "WQs5621pMGwf"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/zh-HK/4-Classification/1-Introduction/solution/notebook.ipynb
new file mode 100644
index 000000000..267629dea
--- /dev/null
+++ b/translations/zh-HK/4-Classification/1-Introduction/solution/notebook.ipynb
@@ -0,0 +1,710 @@
+{
+ "cells": [
+ {
+ "source": [
+ "# 美味的亞洲及印度料理\n",
+ "\n",
+ "## 簡介\n",
+ "亞洲和印度料理以其豐富的風味和多樣的食材而聞名。無論是辛辣的咖喱還是清淡的蒸餃,每道菜都能帶來獨特的味覺享受。\n",
+ "\n",
+ "[!NOTE] 本指南旨在幫助您探索一些最受歡迎的亞洲及印度料理。\n",
+ "\n",
+ "## 亞洲料理\n",
+ "### 中國菜\n",
+ "中國菜以其多樣化的烹飪技術和食材而聞名。以下是一些經典菜式:\n",
+ "- **宮保雞丁**:辣味雞肉搭配花生和蔬菜。\n",
+ "- **北京烤鴨**:外皮酥脆,肉質鮮嫩。\n",
+ "- **麻婆豆腐**:香辣豆腐搭配豬肉碎。\n",
+ "\n",
+ "### 日本菜\n",
+ "日本菜注重食材的原味和簡約的烹飪方式。以下是一些受歡迎的菜式:\n",
+ "- **壽司**:新鮮魚生搭配醋飯。\n",
+ "- **拉麵**:濃郁的湯底搭配麵條和配料。\n",
+ "- **天婦羅**:酥脆的炸蔬菜和海鮮。\n",
+ "\n",
+ "### 泰國菜\n",
+ "泰國菜以其酸、甜、辣的平衡風味而著稱。以下是一些必試的菜式:\n",
+ "- **冬蔭功湯**:酸辣蝦湯。\n",
+ "- **泰式炒河粉**:甜辣的炒麵搭配蛋和蝦。\n",
+ "- **綠咖喱**:濃郁的椰奶咖喱搭配雞肉或蔬菜。\n",
+ "\n",
+ "## 印度料理\n",
+ "印度料理以其濃郁的香料和多樣的菜式而聞名。以下是一些經典印度菜:\n",
+ "- **黃油雞**:濃郁的番茄奶油咖喱搭配嫩滑的雞肉。\n",
+ "- **印度烤餅(Naan)**:搭配咖喱的烤麵餅。\n",
+ "- **香料羊肉(Rogan Josh)**:慢煮羊肉搭配香料。\n",
+ "\n",
+ "[!TIP] 嘗試搭配不同的配菜,例如米飯或印度薄餅,來提升整體的用餐體驗。\n",
+ "\n",
+ "## 結論\n",
+ "亞洲和印度料理提供了無窮的選擇,無論您喜歡辛辣、甜美還是清淡的口味,都能找到適合您的菜式。探索這些美味的料理,讓您的味蕾展開一場冒險之旅!\n",
+ "\n",
+ "[!IMPORTANT] 請記得根據自己的飲食偏好和過敏情況選擇合適的菜式。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "source": [
+ "安裝 Imblearn,這將啟用 SMOTE。這是一個 Scikit-learn 套件,可在執行分類時幫助處理不平衡數據。(https://imbalanced-learn.org/stable/)\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n",
+ "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n",
+ "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n",
+ "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n",
+ "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n",
+ "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n",
+ "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
+ "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install imblearn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib as mpl\n",
+ "import numpy as np\n",
+ "from imblearn.over_sampling import SMOTE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('../../data/cuisines.csv')"
+ ]
+ },
+ {
+ "source": [
+ "此數據集包括385列,表示來自特定菜系的各種菜系中的所有種類的食材。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
+ "0 65 indian 0 0 0 0 0 \n",
+ "1 66 indian 1 0 0 0 0 \n",
+ "2 67 indian 0 0 0 0 0 \n",
+ "3 68 indian 0 0 0 0 0 \n",
+ "4 69 indian 0 0 0 0 0 \n",
+ "\n",
+ " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 385 columns]"
+ ],
+ "text/html": "
\n\n
\n \n \n \n Unnamed: 0 \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 65 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 66 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 67 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 68 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 69 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 385 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "korean 799\n",
+ "indian 598\n",
+ "chinese 442\n",
+ "japanese 320\n",
+ "thai 289\n",
+ "Name: cuisine, dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ],
+ "source": [
+ "df.cuisine.value_counts()"
+ ]
+ },
+ {
+ "source": [
+ "顯示菜式於柱狀圖中\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "df.cuisine.value_counts().plot.barh()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "thai_df = df[(df.cuisine == \"thai\")]\n",
+ "japanese_df = df[(df.cuisine == \"japanese\")]\n",
+ "chinese_df = df[(df.cuisine == \"chinese\")]\n",
+ "indian_df = df[(df.cuisine == \"indian\")]\n",
+ "korean_df = df[(df.cuisine == \"korean\")]\n",
+ "\n",
+ "print(f'thai df: {thai_df.shape}')\n",
+ "print(f'japanese df: {japanese_df.shape}')\n",
+ "print(f'chinese df: {chinese_df.shape}')\n",
+ "print(f'indian df: {indian_df.shape}')\n",
+ "print(f'korean df: {korean_df.shape}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def create_ingredient_df(df):\n",
+ " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n",
+ " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n",
+ " # drop ingredients that have a 0 sum\n",
+ " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n",
+ " # sort df\n",
+ " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n",
+ " return ingredient_df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 10
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "thai_ingredient_df = create_ingredient_df(thai_df)\r\n",
+ "thai_ingredient_df.head(10).plot.barh()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 11
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n",
+ "japanese_ingredient_df.head(10).plot.barh()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n",
+ "chinese_ingredient_df.head(10).plot.barh()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "indian_ingredient_df = create_ingredient_df(indian_df)\r\n",
+ "indian_ingredient_df.head(10).plot.barh()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "korean_ingredient_df = create_ingredient_df(korean_df)\r\n",
+ "korean_ingredient_df.head(10).plot.barh()"
+ ]
+ },
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 15
+ }
+ ],
+ "source": [
+ "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n",
+ "labels_df = df.cuisine #.unique()\n",
+ "feature_df.head()\n"
+ ]
+ },
+ {
+ "source": [
+ "使用 SMOTE 過採樣平衡數據至最高類別。詳情請參閱:https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "oversample = SMOTE()\n",
+ "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'new label count: {transformed_label_df.value_counts()}')\r\n",
+ "print(f'old label count: {df.cuisine.value_counts()}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ],
+ "source": [
+ "transformed_feature_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " cuisine almond angelica anise anise_seed apple apple_brandy \\\n",
+ "0 indian 0 0 0 0 0 0 \n",
+ "1 indian 1 0 0 0 0 0 \n",
+ "2 indian 0 0 0 0 0 0 \n",
+ "3 indian 0 0 0 0 0 0 \n",
+ "4 indian 0 0 0 0 0 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "3990 thai 0 0 0 0 0 0 \n",
+ "3991 thai 0 0 0 0 0 0 \n",
+ "3992 thai 0 0 0 0 0 0 \n",
+ "3993 thai 0 0 0 0 0 0 \n",
+ "3994 thai 0 0 0 0 0 0 \n",
+ "\n",
+ " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "3990 0 0 0 ... 0 0 0 \n",
+ "3991 0 0 0 ... 0 0 0 \n",
+ "3992 0 0 0 ... 0 0 0 \n",
+ "3993 0 0 0 ... 0 0 0 \n",
+ "3994 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "3990 0 0 0 0 0 0 0 \n",
+ "3991 0 0 0 0 0 0 0 \n",
+ "3992 0 0 0 0 0 0 0 \n",
+ "3993 0 0 0 0 0 0 0 \n",
+ "3994 0 0 0 0 0 0 0 \n",
+ "\n",
+ "[3995 rows x 381 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n \n \n 3990 \n thai \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3991 \n thai \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3992 \n thai \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3993 \n thai \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3994 \n thai \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n
\n
3995 rows × 381 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 19
+ }
+ ],
+ "source": [
+ "# export transformed data to new df for classification\n",
+ "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n",
+ "transformed_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "transformed_df.info()"
+ ]
+ },
+ {
+ "source": [
+ "保存檔案以供日後使用\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "1da12ed6d238756959b8de9cac2a35a2",
+ "translation_date": "2025-09-03T20:35:14+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/README.md b/translations/zh-HK/4-Classification/2-Classifiers-1/README.md
new file mode 100644
index 000000000..7c483d244
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/README.md
@@ -0,0 +1,244 @@
+# 美食分類器 1
+
+在這節課中,你將使用上一節課保存的數據集,這是一個關於美食的平衡且乾淨的數據集。
+
+你將使用這個數據集和多種分類器來_根據一組食材預測特定的國家美食_。在此過程中,你將更深入了解算法如何用於分類任務。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+# 準備工作
+
+假設你已完成[第一課](../1-Introduction/README.md),請確保在根目錄 `/data` 文件夾中存在一個 _cleaned_cuisines.csv_ 文件,供這四節課使用。
+
+## 練習 - 預測國家美食
+
+1. 在本課的 _notebook.ipynb_ 文件夾中,導入該文件以及 Pandas 庫:
+
+ ```python
+ import pandas as pd
+ cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv")
+ cuisines_df.head()
+ ```
+
+ 數據看起來像這樣:
+
+| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
+| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
+| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
+
+
+1. 現在,導入更多的庫:
+
+ ```python
+ from sklearn.linear_model import LogisticRegression
+ from sklearn.model_selection import train_test_split, cross_val_score
+ from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
+ from sklearn.svm import SVC
+ import numpy as np
+ ```
+
+1. 將 X 和 y 坐標分成兩個數據框進行訓練。`cuisine` 可以作為標籤數據框:
+
+ ```python
+ cuisines_label_df = cuisines_df['cuisine']
+ cuisines_label_df.head()
+ ```
+
+ 它看起來像這樣:
+
+ ```output
+ 0 indian
+ 1 indian
+ 2 indian
+ 3 indian
+ 4 indian
+ Name: cuisine, dtype: object
+ ```
+
+1. 使用 `drop()` 刪除 `Unnamed: 0` 列和 `cuisine` 列。將剩餘的數據保存為可訓練的特徵:
+
+ ```python
+ cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
+ cuisines_feature_df.head()
+ ```
+
+ 你的特徵看起來像這樣:
+
+| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
+| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: |
+| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
+
+現在你已準備好訓練你的模型!
+
+## 選擇分類器
+
+現在你的數據已清理並準備好訓練,你需要決定使用哪種算法來完成任務。
+
+Scikit-learn 將分類歸類為監督學習,在這個類別中,你會發現許多分類方法。[種類繁多](https://scikit-learn.org/stable/supervised_learning.html)可能會讓人一開始感到困惑。以下方法都包括分類技術:
+
+- 線性模型
+- 支持向量機
+- 隨機梯度下降
+- 最近鄰
+- 高斯過程
+- 決策樹
+- 集成方法(投票分類器)
+- 多類和多輸出算法(多類多標籤分類,多類多輸出分類)
+
+> 你也可以使用[神經網絡來分類數據](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification),但這超出了本課的範圍。
+
+### 選擇哪個分類器?
+
+那麼,應該選擇哪個分類器呢?通常,通過嘗試多種分類器並尋找良好的結果是一種測試方法。Scikit-learn 提供了一個[並排比較](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),在一個創建的數據集上比較 KNeighbors、SVC 兩種方式、GaussianProcessClassifier、DecisionTreeClassifier、RandomForestClassifier、MLPClassifier、AdaBoostClassifier、GaussianNB 和 QuadraticDiscrinationAnalysis,並以可視化方式展示結果:
+
+
+> 圖片來自 Scikit-learn 的文檔
+
+> AutoML 可以通過在雲端運行這些比較來解決這個問題,幫助你選擇最適合你的數據的算法。試試看[這裡](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)
+
+### 更好的方法
+
+比隨意猜測更好的方法是遵循這份可下載的[機器學習速查表](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)。在這裡,我們發現針對我們的多類問題,我們有一些選擇:
+
+
+> 微軟算法速查表的一部分,詳細介紹了多類分類選項
+
+✅ 下載這份速查表,打印出來,掛在牆上!
+
+### 推理
+
+讓我們看看是否可以根據我們的限制推理出不同的方法:
+
+- **神經網絡太重**。考慮到我們的數據集雖然乾淨但規模較小,以及我們通過筆記本本地運行訓練的事實,神經網絡對於這項任務來說太過繁重。
+- **不使用二類分類器**。我們不使用二類分類器,因此排除了一對多(one-vs-all)。
+- **決策樹或邏輯回歸可能有效**。決策樹可能有效,或者多類數據的邏輯回歸也可以。
+- **多類增強決策樹解決不同問題**。多類增強決策樹最適合非參數任務,例如設計排名的任務,因此對我們來說並不適用。
+
+### 使用 Scikit-learn
+
+我們將使用 Scikit-learn 來分析數據。然而,在 Scikit-learn 中有許多方法可以使用邏輯回歸。看看[可傳遞的參數](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。
+
+基本上有兩個重要的參數 - `multi_class` 和 `solver` - 我們需要指定,當我們要求 Scikit-learn 執行邏輯回歸時。`multi_class` 值應用某種行為。solver 的值是使用哪種算法。並非所有 solver 都可以與所有 `multi_class` 值配對。
+
+根據文檔,在多類情況下,訓練算法:
+
+- **使用一對多(OvR)方案**,如果 `multi_class` 選項設置為 `ovr`
+- **使用交叉熵損失**,如果 `multi_class` 選項設置為 `multinomial`。(目前 `multinomial` 選項僅支持 ‘lbfgs’、‘sag’、‘saga’ 和 ‘newton-cg’ solver。)
+
+> 🎓 這裡的“方案”可以是 'ovr'(一對多)或 'multinomial'。由於邏輯回歸實際上是為支持二類分類而設計的,這些方案使其能更好地處理多類分類任務。[來源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/)
+
+> 🎓 'solver' 被定義為“用於優化問題的算法”。[來源](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。
+
+Scikit-learn 提供了這張表格來解釋 solver 如何處理不同數據結構帶來的挑戰:
+
+
+
+## 練習 - 分割數據
+
+我們可以專注於邏輯回歸作為我們的第一次訓練嘗試,因為你在上一節課中剛剛學習了它。
+通過調用 `train_test_split()` 將數據分為訓練和測試組:
+
+```python
+X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
+```
+
+## 練習 - 應用邏輯回歸
+
+由於你正在使用多類情況,你需要選擇使用什麼_方案_以及設置什麼_solver_。使用 LogisticRegression,設置多類選項並使用 **liblinear** solver 進行訓練。
+
+1. 創建一個邏輯回歸,將 multi_class 設置為 `ovr`,solver 設置為 `liblinear`:
+
+ ```python
+ lr = LogisticRegression(multi_class='ovr',solver='liblinear')
+ model = lr.fit(X_train, np.ravel(y_train))
+
+ accuracy = model.score(X_test, y_test)
+ print ("Accuracy is {}".format(accuracy))
+ ```
+
+ ✅ 嘗試使用其他 solver,例如 `lbfgs`,它通常設置為默認值
+> 注意,當需要將數據展平時,可以使用 Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 函數。
+準確度超過 **80%**!
+
+1. 你可以透過測試第 50 行數據來查看此模型的效果:
+
+ ```python
+ print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')
+ print(f'cuisine: {y_test.iloc[50]}')
+ ```
+
+ 結果會顯示如下:
+
+ ```output
+ ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object')
+ cuisine: indian
+ ```
+
+ ✅ 嘗試不同的行數並檢查結果
+
+1. 更深入地分析,你可以檢查此預測的準確度:
+
+ ```python
+ test= X_test.iloc[50].values.reshape(-1, 1).T
+ proba = model.predict_proba(test)
+ classes = model.classes_
+ resultdf = pd.DataFrame(data=proba, columns=classes)
+
+ topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])
+ topPrediction.head()
+ ```
+
+ 結果顯示 - 印度菜是模型的最佳猜測,且概率相當高:
+
+ | | 0 |
+ | -------: | -------: |
+ | indian | 0.715851 |
+ | chinese | 0.229475 |
+ | japanese | 0.029763 |
+ | korean | 0.017277 |
+ | thai | 0.007634 |
+
+ ✅ 你能解釋為什麼模型非常確定這是印度菜嗎?
+
+1. 通過打印分類報告獲取更多細節,就像你在回歸課程中所做的一樣:
+
+ ```python
+ y_pred = model.predict(X_test)
+ print(classification_report(y_test,y_pred))
+ ```
+
+ | | precision | recall | f1-score | support |
+ | ------------ | --------- | ------ | -------- | ------- |
+ | chinese | 0.73 | 0.71 | 0.72 | 229 |
+ | indian | 0.91 | 0.93 | 0.92 | 254 |
+ | japanese | 0.70 | 0.75 | 0.72 | 220 |
+ | korean | 0.86 | 0.76 | 0.81 | 242 |
+ | thai | 0.79 | 0.85 | 0.82 | 254 |
+ | accuracy | 0.80 | 1199 | | |
+ | macro avg | 0.80 | 0.80 | 0.80 | 1199 |
+ | weighted avg | 0.80 | 0.80 | 0.80 | 1199 |
+
+## 🚀挑戰
+
+在本課中,你使用清理過的數據建立了一個機器學習模型,該模型可以根據一系列食材預測國家菜系。花些時間閱讀 Scikit-learn 提供的多種分類數據選項。深入了解 "solver" 的概念,理解其背後的運作原理。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+深入了解邏輯回歸背後的數學原理:[這篇課程](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)
+## 作業
+
+[研究 solvers](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原文文件作為權威來源。對於關鍵資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/assignment.md b/translations/zh-HK/4-Classification/2-Classifiers-1/assignment.md
new file mode 100644
index 000000000..f9a701f76
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/assignment.md
@@ -0,0 +1,15 @@
+# 研究解決方案
+## 指引
+
+在這節課中,你學習了各種解決方案,它們將算法與機器學習過程結合,創建準確的模型。請回顧課堂中列出的解決方案,並選擇其中兩個。用自己的話比較和對比這兩個解決方案。它們解決的是什麼類型的問題?它們如何處理不同的數據結構?為什麼你會選擇其中一個而不是另一個?
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| -------- | --------------------------------------------------------------------------------------------- | ---------------------------------------------- | ---------------------------- |
+| | 提交了一份 .doc 文件,包含兩段文字,每段分別對兩個解決方案進行深入比較。 | 提交了一份 .doc 文件,但僅包含一段文字 | 作業未完成 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/zh-HK/4-Classification/2-Classifiers-1/notebook.ipynb
new file mode 100644
index 000000000..a228a385c
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/notebook.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "68829b06b4dcd512d3327849191f4d7f",
+ "translation_date": "2025-09-03T20:20:05+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [
+ "# 建立分類模型\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/Julia/README.md
new file mode 100644
index 000000000..3b095b6c3
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb
new file mode 100644
index 000000000..235bae99e
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb
@@ -0,0 +1,1298 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {
+ "colab": {
+ "name": "lesson_11-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2",
+ "translation_date": "2025-09-03T20:25:26+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 建立分類模型:美味的亞洲和印度美食\n"
+ ],
+ "metadata": {
+ "id": "zs2woWv_HoE8"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 美食分類器 1\n",
+ "\n",
+ "在這節課中,我們將探索多種分類器,*根據一組食材來預測特定的國家美食。* 同時,我們也會學習如何利用算法進行分類任務。\n",
+ "\n",
+ "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n",
+ "\n",
+ "### **準備工作**\n",
+ "\n",
+ "這節課是基於我們的[上一節課](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb),在那節課中我們:\n",
+ "\n",
+ "- 使用關於亞洲和印度各種美食的數據集進行了簡單的分類介紹 😋。\n",
+ "\n",
+ "- 探索了一些 [dplyr 動詞](https://dplyr.tidyverse.org/) 來準備和清理數據。\n",
+ "\n",
+ "- 使用 ggplot2 創建了漂亮的可視化圖表。\n",
+ "\n",
+ "- 演示了如何通過使用 [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) 預處理不平衡數據。\n",
+ "\n",
+ "- 演示了如何 `prep` 和 `bake` 我們的 recipe,以確認它能如預期運作。\n",
+ "\n",
+ "#### **先決條件**\n",
+ "\n",
+ "在這節課中,我們需要以下套件來清理、準備和可視化數據:\n",
+ "\n",
+ "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個 [R 套件集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個 [套件集合](https://www.tidymodels.org/packages),用於建模和機器學習。\n",
+ "\n",
+ "- `themis`: [themis 套件](https://themis.tidymodels.org/) 提供了額外的 Recipes 步驟,用於處理不平衡數據。\n",
+ "\n",
+ "- `nnet`: [nnet 套件](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 提供了估算具有單一隱藏層的前饋神經網絡以及多項式邏輯回歸模型的功能。\n",
+ "\n",
+ "你可以通過以下方式安裝它們:\n"
+ ],
+ "metadata": {
+ "id": "iDFOb3ebHwQC"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n",
+ "\n",
+ "或者,以下腳本會檢查你是否已安裝完成此模組所需的套件,若未安裝,則會自動為你安裝。\n"
+ ],
+ "metadata": {
+ "id": "4V85BGCjII7F"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "source": [
+ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n",
+ "\r\n",
+ "pacman::p_load(tidyverse, tidymodels, themis, here)"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Loading required package: pacman\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "an5NPyyKIKNR",
+ "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 1. 將數據分成訓練集和測試集\n",
+ "\n",
+ "我們先從上一課的一些步驟開始。\n",
+ "\n",
+ "### 使用 `dplyr::select()` 移除最常見的食材,這些食材容易在不同菜系之間造成混淆。\n",
+ "\n",
+ "人人都愛米飯、大蒜和薑!\n"
+ ],
+ "metadata": {
+ "id": "0ax9GQLBINVv"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "source": [
+ "# Load the original cuisines data\r\n",
+ "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n",
+ "\r\n",
+ "# Drop id column, rice, garlic and ginger from our original data set\r\n",
+ "df_select <- df %>% \r\n",
+ " select(-c(1, rice, garlic, ginger)) %>%\r\n",
+ " # Encode cuisine column as categorical\r\n",
+ " mutate(cuisine = factor(cuisine))\r\n",
+ "\r\n",
+ "# Display new data set\r\n",
+ "df_select %>% \r\n",
+ " slice_head(n = 5)\r\n",
+ "\r\n",
+ "# Display distribution of cuisines\r\n",
+ "df_select %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " arrange(desc(n))"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "New names:\n",
+ "* `` -> ...1\n",
+ "\n",
+ "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n",
+ "\n",
+ "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n",
+ "\u001b[1mDelimiter:\u001b[22m \",\"\n",
+ "\u001b[31mchr\u001b[39m (1): cuisine\n",
+ "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n",
+ "\n",
+ "\n",
+ "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n",
+ "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
+ "1 indian 0 0 0 0 0 0 0 0 \n",
+ "2 indian 1 0 0 0 0 0 0 0 \n",
+ "3 indian 0 0 0 0 0 0 0 0 \n",
+ "4 indian 0 0 0 0 0 0 0 0 \n",
+ "5 indian 0 0 0 0 0 0 0 0 \n",
+ " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
+ "1 0 ⋯ 0 0 0 0 0 0 \n",
+ "2 0 ⋯ 0 0 0 0 0 0 \n",
+ "3 0 ⋯ 0 0 0 0 0 0 \n",
+ "4 0 ⋯ 0 0 0 0 0 0 \n",
+ "5 0 ⋯ 0 0 0 0 0 0 \n",
+ " yam yeast yogurt zucchini\n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "5 0 0 1 0 "
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 381\n",
+ "\n",
+ "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n",
+ "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
+ "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 381\n",
+ "\\begin{tabular}{lllllllllllllllllllll}\n",
+ " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
+ " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
+ "\\hline\n",
+ "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 381 \n",
+ "\n",
+ "\tcuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "\t<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ⋯ <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> \n",
+ " \n",
+ "\n",
+ "\tindian 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tindian 1 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tindian 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tindian 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tindian 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 1 0 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine n \n",
+ "1 korean 799\n",
+ "2 indian 598\n",
+ "3 chinese 442\n",
+ "4 japanese 320\n",
+ "5 thai 289"
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 2\n",
+ "\n",
+ "| cuisine <fct> | n <int> |\n",
+ "|---|---|\n",
+ "| korean | 799 |\n",
+ "| indian | 598 |\n",
+ "| chinese | 442 |\n",
+ "| japanese | 320 |\n",
+ "| thai | 289 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 2\n",
+ "\\begin{tabular}{ll}\n",
+ " cuisine & n\\\\\n",
+ " & \\\\\n",
+ "\\hline\n",
+ "\t korean & 799\\\\\n",
+ "\t indian & 598\\\\\n",
+ "\t chinese & 442\\\\\n",
+ "\t japanese & 320\\\\\n",
+ "\t thai & 289\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 2 \n",
+ "\n",
+ "\tcuisine n \n",
+ "\t<fct> <int> \n",
+ " \n",
+ "\n",
+ "\tkorean 799 \n",
+ "\tindian 598 \n",
+ "\tchinese 442 \n",
+ "\tjapanese 320 \n",
+ "\tthai 289 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 735
+ },
+ "id": "jhCrrH22IWVR",
+ "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "太好了!現在是時候將數據分割成70%用於訓練,30%用於測試。我們還會在分割數據時應用「分層」技術,以「保持每種菜系的比例」在訓練和驗證數據集中。\n",
+ "\n",
+ "[rsample](https://rsample.tidymodels.org/) 是 Tidymodels 中的一個套件,提供高效數據分割和重抽樣的基礎設施:\n"
+ ],
+ "metadata": {
+ "id": "AYTjVyajIdny"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "source": [
+ "# Load the core Tidymodels packages into R session\r\n",
+ "library(tidymodels)\r\n",
+ "\r\n",
+ "# Create split specification\r\n",
+ "set.seed(2056)\r\n",
+ "cuisines_split <- initial_split(data = df_select,\r\n",
+ " strata = cuisine,\r\n",
+ " prop = 0.7)\r\n",
+ "\r\n",
+ "# Extract the data in each split\r\n",
+ "cuisines_train <- training(cuisines_split)\r\n",
+ "cuisines_test <- testing(cuisines_split)\r\n",
+ "\r\n",
+ "# Print the number of cases in each split\r\n",
+ "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n",
+ " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n",
+ "\r\n",
+ "# Display the first few rows of the training set\r\n",
+ "cuisines_train %>% \r\n",
+ " slice_head(n = 5)\r\n",
+ "\r\n",
+ "\r\n",
+ "# Display distribution of cuisines in the training set\r\n",
+ "cuisines_train %>% \r\n",
+ " count(cuisine) %>% \r\n",
+ " arrange(desc(n))"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Training cases: 1712\n",
+ "Test cases: 736"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
+ "1 chinese 0 0 0 0 0 0 0 0 \n",
+ "2 chinese 0 0 0 0 0 0 0 0 \n",
+ "3 chinese 0 0 0 0 0 0 0 0 \n",
+ "4 chinese 0 0 0 0 0 0 0 0 \n",
+ "5 chinese 0 0 0 0 0 0 0 0 \n",
+ " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
+ "1 0 ⋯ 0 0 0 0 1 0 \n",
+ "2 0 ⋯ 0 0 0 0 1 0 \n",
+ "3 0 ⋯ 0 0 0 0 0 0 \n",
+ "4 0 ⋯ 0 0 0 0 0 0 \n",
+ "5 0 ⋯ 0 0 0 0 0 0 \n",
+ " yam yeast yogurt zucchini\n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "5 0 0 0 0 "
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 381\n",
+ "\n",
+ "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n",
+ "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
+ "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 381\n",
+ "\\begin{tabular}{lllllllllllllllllllll}\n",
+ " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
+ " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
+ "\\hline\n",
+ "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 381 \n",
+ "\n",
+ "\tcuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "\t<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ⋯ <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> \n",
+ " \n",
+ "\n",
+ "\tchinese 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 1 0 0 0 0 0 \n",
+ "\tchinese 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 1 0 0 0 0 0 \n",
+ "\tchinese 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tchinese 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ "\tchinese 0 0 0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine n \n",
+ "1 korean 559\n",
+ "2 indian 418\n",
+ "3 chinese 309\n",
+ "4 japanese 224\n",
+ "5 thai 202"
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 2\n",
+ "\n",
+ "| cuisine <fct> | n <int> |\n",
+ "|---|---|\n",
+ "| korean | 559 |\n",
+ "| indian | 418 |\n",
+ "| chinese | 309 |\n",
+ "| japanese | 224 |\n",
+ "| thai | 202 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 2\n",
+ "\\begin{tabular}{ll}\n",
+ " cuisine & n\\\\\n",
+ " & \\\\\n",
+ "\\hline\n",
+ "\t korean & 559\\\\\n",
+ "\t indian & 418\\\\\n",
+ "\t chinese & 309\\\\\n",
+ "\t japanese & 224\\\\\n",
+ "\t thai & 202\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 2 \n",
+ "\n",
+ "\tcuisine n \n",
+ "\t<fct> <int> \n",
+ " \n",
+ "\n",
+ "\tkorean 559 \n",
+ "\tindian 418 \n",
+ "\tchinese 309 \n",
+ "\tjapanese 224 \n",
+ "\tthai 202 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 535
+ },
+ "id": "w5FWIkEiIjdN",
+ "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 2. 處理不平衡數據\n",
+ "\n",
+ "正如你可能已經注意到,在原始數據集以及我們的訓練集裡,菜式的數量分佈非常不均衡。韓國菜的數量幾乎是泰國菜的三倍。不平衡數據通常會對模型的表現產生負面影響。許多模型在觀測數量相等時表現最佳,因此在面對不平衡數據時往往會遇到困難。\n",
+ "\n",
+ "處理不平衡數據集主要有兩種方法:\n",
+ "\n",
+ "- 為少數類別添加觀測值:`過採樣`,例如使用 SMOTE 演算法,該演算法通過使用這些案例的最近鄰居合成生成少數類別的新樣本。\n",
+ "\n",
+ "- 從多數類別中移除觀測值:`欠採樣`\n",
+ "\n",
+ "在之前的課程中,我們演示了如何使用 `recipe` 來處理不平衡數據集。`recipe` 可以被視為一種藍圖,描述了應該對數據集應用哪些步驟以使其準備好進行數據分析。在我們的情況下,我們希望在 `訓練集` 中實現菜式數量的均衡分佈。讓我們直接開始吧!\n"
+ ],
+ "metadata": {
+ "id": "daBi9qJNIwqW"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "source": [
+ "# Load themis package for dealing with imbalanced data\r\n",
+ "library(themis)\r\n",
+ "\r\n",
+ "# Create a recipe for preprocessing training data\r\n",
+ "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n",
+ " step_smote(cuisine)\r\n",
+ "\r\n",
+ "# Print recipe\r\n",
+ "cuisines_recipe"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Data Recipe\n",
+ "\n",
+ "Inputs:\n",
+ "\n",
+ " role #variables\n",
+ " outcome 1\n",
+ " predictor 380\n",
+ "\n",
+ "Operations:\n",
+ "\n",
+ "SMOTE based on cuisine"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 200
+ },
+ "id": "Az6LFBGxI1X0",
+ "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "你當然可以先確認(使用 prep 和 bake)這個食譜是否如你所期望地運作——所有標籤為 `559` 的菜式觀察數據。\n",
+ "\n",
+ "由於我們將使用這個食譜作為建模的預處理器,一個 `workflow()` 會幫我們完成所有的準備和烘焙工作,因此我們不需要手動估算這個食譜。\n",
+ "\n",
+ "現在我們準備好訓練模型了 👩💻👨💻!\n",
+ "\n",
+ "## 3. 選擇你的分類器\n",
+ "\n",
+ "\n",
+ " \n",
+ " 插畫由 @allison_horst 提供 \n"
+ ],
+ "metadata": {
+ "id": "NBL3PqIWJBBB"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在我們需要決定使用哪種算法來完成這項工作 🤔。\n",
+ "\n",
+ "在 Tidymodels 中,[`parsnip package`](https://parsnip.tidymodels.org/index.html) 提供了一個一致的介面,用於在不同的引擎(套件)中使用模型。請參閱 parsnip 的文檔以探索[模型類型與引擎](https://www.tidymodels.org/find/parsnip/#models)及其對應的[模型參數](https://www.tidymodels.org/find/parsnip/#model-args)。一開始看起來種類繁多,令人眼花繚亂。例如,以下方法都包含分類技術:\n",
+ "\n",
+ "- C5.0 規則型分類模型\n",
+ "\n",
+ "- 靈活判別模型\n",
+ "\n",
+ "- 線性判別模型\n",
+ "\n",
+ "- 正則化判別模型\n",
+ "\n",
+ "- 邏輯回歸模型\n",
+ "\n",
+ "- 多項式回歸模型\n",
+ "\n",
+ "- 樸素貝葉斯模型\n",
+ "\n",
+ "- 支援向量機\n",
+ "\n",
+ "- 最近鄰居法\n",
+ "\n",
+ "- 決策樹\n",
+ "\n",
+ "- 集成方法\n",
+ "\n",
+ "- 神經網絡\n",
+ "\n",
+ "這個列表還可以繼續延伸!\n",
+ "\n",
+ "### **選擇哪個分類器?**\n",
+ "\n",
+ "那麼,應該選擇哪個分類器呢?通常,嘗試多種方法並尋找效果良好的結果是一種測試方式。\n",
+ "\n",
+ "> AutoML 可以巧妙地解決這個問題,通過在雲端運行這些比較,幫助您選擇最適合您數據的算法。試試看 [這裡](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n",
+ "\n",
+ "此外,分類器的選擇取決於我們的問題。例如,當結果可以分為`多於兩個類別`時,就像我們的情況一樣,您必須使用`多類別分類算法`而不是`二元分類算法`。\n",
+ "\n",
+ "### **更好的方法**\n",
+ "\n",
+ "比隨意猜測更好的方法是參考這份可下載的[機器學習備忘單](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)。在這裡,我們發現,針對我們的多類別問題,我們有一些選擇:\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 微軟算法備忘單的一部分,詳細介紹了多類別分類選項 \n"
+ ],
+ "metadata": {
+ "id": "a6DLAZ3vJZ14"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### **推理**\n",
+ "\n",
+ "讓我們嘗試根據現有的限制來推敲不同的解決方法:\n",
+ "\n",
+ "- **深度神經網絡太過繁重**。考慮到我們的數據集雖然乾淨但規模有限,以及我們是在本地筆記本中進行訓練,深度神經網絡對於這項任務來說過於繁重。\n",
+ "\n",
+ "- **不使用二分類器**。我們不使用二分類器,因此排除了 one-vs-all 的方法。\n",
+ "\n",
+ "- **決策樹或邏輯回歸可能有效**。決策樹可能有效,或者對於多分類數據可以使用多項式回歸/多分類邏輯回歸。\n",
+ "\n",
+ "- **多分類提升決策樹解決的是不同的問題**。多分類提升決策樹最適合非參數任務,例如設計用於建立排名的任務,因此對我們來說並不適用。\n",
+ "\n",
+ "此外,通常在嘗試更複雜的機器學習模型(例如集成方法)之前,先建立最簡單的模型來了解情況是個好主意。因此,在這節課中,我們將從 `多項式回歸` 模型開始。\n",
+ "\n",
+ "> 邏輯回歸是一種用於結果變量是分類(或名義)時的技術。對於二元邏輯回歸,結果變量的數量是兩個,而對於多項式邏輯回歸,結果變量的數量超過兩個。請參閱 [進階回歸方法](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) 以了解更多。\n",
+ "\n",
+ "## 4. 訓練並評估多項式邏輯回歸模型\n",
+ "\n",
+ "在 Tidymodels 中,`parsnip::multinom_reg()` 定義了一個使用線性預測器來通過多項分佈預測多分類數據的模型。請參閱 `?multinom_reg()` 了解可以用來擬合此模型的不同方法/引擎。\n",
+ "\n",
+ "在這個例子中,我們將通過默認的 [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 引擎來擬合多項式回歸模型。\n",
+ "\n",
+ "> 我隨機選擇了一個 `penalty` 的值。選擇此值有更好的方法,例如使用 `重抽樣` 和 `調整` 模型,我們稍後會討論。\n",
+ ">\n",
+ "> 如果您想了解更多有關如何調整模型超參數的內容,請參閱 [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/)。\n"
+ ],
+ "metadata": {
+ "id": "gWMsVcbBJemu"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "source": [
+ "# Create a multinomial regression model specification\r\n",
+ "mr_spec <- multinom_reg(penalty = 1) %>% \r\n",
+ " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n",
+ " set_mode(\"classification\")\r\n",
+ "\r\n",
+ "# Print model specification\r\n",
+ "mr_spec"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Multinomial Regression Model Specification (classification)\n",
+ "\n",
+ "Main Arguments:\n",
+ " penalty = 1\n",
+ "\n",
+ "Engine-Specific Arguments:\n",
+ " MaxNWts = 2086\n",
+ "\n",
+ "Computational engine: nnet \n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 166
+ },
+ "id": "Wq_fcyQiJvfG",
+ "outputId": "c30449c7-3864-4be7-f810-72a003743e2d"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "做得好 🥳!現在我們已經有了一個食譜和模型規格,我們需要找到一種方法將它們整合成一個物件,這個物件首先會對數據進行預處理,然後在預處理後的數據上擬合模型,並且還能支持潛在的後處理活動。在 Tidymodels 中,這個方便的物件叫做 [`workflow`](https://workflows.tidymodels.org/),它能方便地保存你的建模組件!這就像我們在 *Python* 中所說的 *pipelines*。\n",
+ "\n",
+ "那麼,讓我們把所有東西整合到一個 workflow 中吧!📦\n"
+ ],
+ "metadata": {
+ "id": "NlSbzDfgJ0zh"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "source": [
+ "# Bundle recipe and model specification\r\n",
+ "mr_wf <- workflow() %>% \r\n",
+ " add_recipe(cuisines_recipe) %>% \r\n",
+ " add_model(mr_spec)\r\n",
+ "\r\n",
+ "# Print out workflow\r\n",
+ "mr_wf"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "══ Workflow ════════════════════════════════════════════════════════════════════\n",
+ "\u001b[3mPreprocessor:\u001b[23m Recipe\n",
+ "\u001b[3mModel:\u001b[23m multinom_reg()\n",
+ "\n",
+ "── Preprocessor ────────────────────────────────────────────────────────────────\n",
+ "1 Recipe Step\n",
+ "\n",
+ "• step_smote()\n",
+ "\n",
+ "── Model ───────────────────────────────────────────────────────────────────────\n",
+ "Multinomial Regression Model Specification (classification)\n",
+ "\n",
+ "Main Arguments:\n",
+ " penalty = 1\n",
+ "\n",
+ "Engine-Specific Arguments:\n",
+ " MaxNWts = 2086\n",
+ "\n",
+ "Computational engine: nnet \n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 333
+ },
+ "id": "Sc1TfPA4Ke3_",
+ "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "工作流程 👌👌!**`workflow()`** 可以像模型一樣進行擬合。所以,是時候訓練模型了!\n"
+ ],
+ "metadata": {
+ "id": "TNQ8i85aKf9L"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "source": [
+ "# Train a multinomial regression model\n",
+ "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n",
+ "\n",
+ "mr_fit"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "══ Workflow [trained] ══════════════════════════════════════════════════════════\n",
+ "\u001b[3mPreprocessor:\u001b[23m Recipe\n",
+ "\u001b[3mModel:\u001b[23m multinom_reg()\n",
+ "\n",
+ "── Preprocessor ────────────────────────────────────────────────────────────────\n",
+ "1 Recipe Step\n",
+ "\n",
+ "• step_smote()\n",
+ "\n",
+ "── Model ───────────────────────────────────────────────────────────────────────\n",
+ "Call:\n",
+ "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n",
+ " trace = FALSE)\n",
+ "\n",
+ "Coefficients:\n",
+ " (Intercept) almond angelica anise anise_seed apple\n",
+ "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n",
+ "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n",
+ "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n",
+ "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n",
+ " apple_brandy apricot armagnac artemisia artichoke asparagus\n",
+ "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n",
+ "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n",
+ "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n",
+ "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n",
+ " avocado bacon baked_potato balm banana barley\n",
+ "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n",
+ "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n",
+ "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n",
+ "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n",
+ " bartlett_pear basil bay bean beech\n",
+ "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n",
+ "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n",
+ "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n",
+ "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n",
+ " beef beef_broth beef_liver beer beet\n",
+ "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n",
+ "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n",
+ "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n",
+ "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n",
+ " bell_pepper bergamot berry bitter_orange black_bean\n",
+ "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n",
+ "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n",
+ "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n",
+ "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n",
+ " black_currant black_mustard_seed_oil black_pepper black_raspberry\n",
+ "indian 0 0.38935801 -0.4453495 0\n",
+ "japanese 0 -0.05452887 -0.5440869 0\n",
+ "korean 0 -0.03929970 0.8025454 0\n",
+ "thai 0 -0.21498372 -0.9854806 0\n",
+ " black_sesame_seed black_tea blackberry blackberry_brandy\n",
+ "indian -0.2759246 0.3079977 0.191256164 0\n",
+ "japanese -0.6101687 -0.1671913 -0.118915977 0\n",
+ "korean 1.5197674 -0.3036261 -0.007729435 0\n",
+ "thai -0.1755656 -0.1487033 -0.002983296 0\n",
+ " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n",
+ "indian 0 0.216164294 -0.2276744 0 0.22427587\n",
+ "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n",
+ "korean 0 -0.007821986 0.2854487 0 -0.02562342\n",
+ "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n",
+ "\n",
+ "...\n",
+ "and 308 more lines."
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "GMbdfVmTKkJI",
+ "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "模型訓練期間學到的係數已顯示。\n",
+ "\n",
+ "### 評估訓練好的模型\n",
+ "\n",
+ "現在是時候透過測試集來評估模型的表現 📏!首先,讓我們在測試集上進行預測。\n"
+ ],
+ "metadata": {
+ "id": "tt2BfOxrKmcJ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "source": [
+ "# Make predictions on the test set\n",
+ "results <- cuisines_test %>% select(cuisine) %>% \n",
+ " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n",
+ "\n",
+ "# Print out results\n",
+ "results %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine .pred_class\n",
+ "1 indian thai \n",
+ "2 indian indian \n",
+ "3 indian indian \n",
+ "4 indian indian \n",
+ "5 indian indian "
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 2\n",
+ "\n",
+ "| cuisine <fct> | .pred_class <fct> |\n",
+ "|---|---|\n",
+ "| indian | thai |\n",
+ "| indian | indian |\n",
+ "| indian | indian |\n",
+ "| indian | indian |\n",
+ "| indian | indian |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 2\n",
+ "\\begin{tabular}{ll}\n",
+ " cuisine & .pred\\_class\\\\\n",
+ " & \\\\\n",
+ "\\hline\n",
+ "\t indian & thai \\\\\n",
+ "\t indian & indian\\\\\n",
+ "\t indian & indian\\\\\n",
+ "\t indian & indian\\\\\n",
+ "\t indian & indian\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 2 \n",
+ "\n",
+ "\tcuisine .pred_class \n",
+ "\t<fct> <fct> \n",
+ " \n",
+ "\n",
+ "\tindian thai \n",
+ "\tindian indian \n",
+ "\tindian indian \n",
+ "\tindian indian \n",
+ "\tindian indian \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 248
+ },
+ "id": "CqtckvtsKqax",
+ "outputId": "e57fe557-6a68-4217-fe82-173328c5436d"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "出色的工作!在 Tidymodels 中,可以使用 [yardstick](https://yardstick.tidymodels.org/) 評估模型性能——這是一個用於通過性能指標衡量模型效果的套件。正如我們在邏輯回歸課程中所做的那樣,讓我們從計算混淆矩陣開始。\n"
+ ],
+ "metadata": {
+ "id": "8w5N6XsBKss7"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "source": [
+ "# Confusion matrix for categorical data\n",
+ "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " Truth\n",
+ "Prediction chinese indian japanese korean thai\n",
+ " chinese 83 1 8 15 10\n",
+ " indian 4 163 1 2 6\n",
+ " japanese 21 5 73 25 1\n",
+ " korean 15 0 11 191 0\n",
+ " thai 10 11 3 7 70"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 133
+ },
+ "id": "YvODvsLkK0iG",
+ "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "當處理多個類別時,通常更直觀的方式是將其視為熱圖,如下所示:\n"
+ ],
+ "metadata": {
+ "id": "c0HfPL16Lr6U"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "source": [
+ "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n",
+ "# Visualize confusion matrix\n",
+ "results %>% \n",
+ " conf_mat(cuisine, .pred_class) %>% \n",
+ " autoplot(type = \"heatmap\")"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "plot without title"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg=="
+ },
+ "metadata": {
+ "image/png": {
+ "width": 420,
+ "height": 420
+ }
+ }
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 436
+ },
+ "id": "HsAtwukyLsvt",
+ "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "混淆矩陣圖中較深的方格表示案例數量較多,希望你可以看到一條深色方格的對角線,代表預測標籤與實際標籤一致的案例。\n",
+ "\n",
+ "現在讓我們計算混淆矩陣的摘要統計數據。\n"
+ ],
+ "metadata": {
+ "id": "oOJC87dkLwPr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "source": [
+ "# Summary stats for confusion matrix\n",
+ "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n",
+ "summary()"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " .metric .estimator .estimate\n",
+ "1 accuracy multiclass 0.7880435\n",
+ "2 kap multiclass 0.7276583\n",
+ "3 sens macro 0.7780927\n",
+ "4 spec macro 0.9477598\n",
+ "5 ppv macro 0.7585583\n",
+ "6 npv macro 0.9460080\n",
+ "7 mcc multiclass 0.7292724\n",
+ "8 j_index macro 0.7258524\n",
+ "9 bal_accuracy macro 0.8629262\n",
+ "10 detection_prevalence macro 0.2000000\n",
+ "11 precision macro 0.7585583\n",
+ "12 recall macro 0.7780927\n",
+ "13 f_meas macro 0.7641862"
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 13 × 3\n",
+ "\n",
+ "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n",
+ "|---|---|---|\n",
+ "| accuracy | multiclass | 0.7880435 |\n",
+ "| kap | multiclass | 0.7276583 |\n",
+ "| sens | macro | 0.7780927 |\n",
+ "| spec | macro | 0.9477598 |\n",
+ "| ppv | macro | 0.7585583 |\n",
+ "| npv | macro | 0.9460080 |\n",
+ "| mcc | multiclass | 0.7292724 |\n",
+ "| j_index | macro | 0.7258524 |\n",
+ "| bal_accuracy | macro | 0.8629262 |\n",
+ "| detection_prevalence | macro | 0.2000000 |\n",
+ "| precision | macro | 0.7585583 |\n",
+ "| recall | macro | 0.7780927 |\n",
+ "| f_meas | macro | 0.7641862 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 13 × 3\n",
+ "\\begin{tabular}{lll}\n",
+ " .metric & .estimator & .estimate\\\\\n",
+ " & & \\\\\n",
+ "\\hline\n",
+ "\t accuracy & multiclass & 0.7880435\\\\\n",
+ "\t kap & multiclass & 0.7276583\\\\\n",
+ "\t sens & macro & 0.7780927\\\\\n",
+ "\t spec & macro & 0.9477598\\\\\n",
+ "\t ppv & macro & 0.7585583\\\\\n",
+ "\t npv & macro & 0.9460080\\\\\n",
+ "\t mcc & multiclass & 0.7292724\\\\\n",
+ "\t j\\_index & macro & 0.7258524\\\\\n",
+ "\t bal\\_accuracy & macro & 0.8629262\\\\\n",
+ "\t detection\\_prevalence & macro & 0.2000000\\\\\n",
+ "\t precision & macro & 0.7585583\\\\\n",
+ "\t recall & macro & 0.7780927\\\\\n",
+ "\t f\\_meas & macro & 0.7641862\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 13 × 3 \n",
+ "\n",
+ "\t.metric .estimator .estimate \n",
+ "\t<chr> <chr> <dbl> \n",
+ " \n",
+ "\n",
+ "\taccuracy multiclass 0.7880435 \n",
+ "\tkap multiclass 0.7276583 \n",
+ "\tsens macro 0.7780927 \n",
+ "\tspec macro 0.9477598 \n",
+ "\tppv macro 0.7585583 \n",
+ "\tnpv macro 0.9460080 \n",
+ "\tmcc multiclass 0.7292724 \n",
+ "\tj_index macro 0.7258524 \n",
+ "\tbal_accuracy macro 0.8629262 \n",
+ "\tdetection_prevalence macro 0.2000000 \n",
+ "\tprecision macro 0.7585583 \n",
+ "\trecall macro 0.7780927 \n",
+ "\tf_meas macro 0.7641862 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 494
+ },
+ "id": "OYqetUyzL5Wz",
+ "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "如果我們聚焦於一些指標,例如準確性、敏感度、ppv,作為起步其實表現不算差 🥳!\n",
+ "\n",
+ "## 4. 更深入探討\n",
+ "\n",
+ "讓我們問一個微妙的問題:究竟是什麼標準用來決定某種菜式作為預測結果?\n",
+ "\n",
+ "其實,統計機器學習算法,例如邏輯回歸,是基於「概率」的;因此分類器真正預測的是一組可能結果的概率分佈。然後,具有最高概率的類別會被選為給定觀察的最可能結果。\n",
+ "\n",
+ "讓我們通過進行硬分類預測和概率來看看這個過程的實際運作。\n"
+ ],
+ "metadata": {
+ "id": "43t7vz8vMJtW"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "source": [
+ "# Make hard class prediction and probabilities\n",
+ "results_prob <- cuisines_test %>%\n",
+ " select(cuisine) %>% \n",
+ " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n",
+ " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n",
+ "\n",
+ "# Print out results\n",
+ "results_prob %>% \n",
+ " slice_head(n = 5)"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n",
+ "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n",
+ "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n",
+ "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n",
+ "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n",
+ "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n",
+ " .pred_thai \n",
+ "1 5.388194e-01\n",
+ "2 1.577948e-06\n",
+ "3 6.874989e-03\n",
+ "4 3.863391e-03\n",
+ "5 5.653283e-03"
+ ],
+ "text/markdown": [
+ "\n",
+ "A tibble: 5 × 7\n",
+ "\n",
+ "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n",
+ "|---|---|---|---|---|---|---|\n",
+ "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n",
+ "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n",
+ "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n",
+ "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n",
+ "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n",
+ "\n"
+ ],
+ "text/latex": [
+ "A tibble: 5 × 7\n",
+ "\\begin{tabular}{lllllll}\n",
+ " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n",
+ " & & & & & & \\\\\n",
+ "\\hline\n",
+ "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n",
+ "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n",
+ "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n",
+ "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n",
+ "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/html": [
+ "\n",
+ "A tibble: 5 × 7 \n",
+ "\n",
+ "\tcuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean .pred_thai \n",
+ "\t<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> \n",
+ " \n",
+ "\n",
+ "\tindian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04 5.388194e-01 \n",
+ "\tindian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05 1.577948e-06 \n",
+ "\tindian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05 6.874989e-03 \n",
+ "\tindian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01 3.863391e-03 \n",
+ "\tindian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03 5.653283e-03 \n",
+ " \n",
+ "
\n"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 248
+ },
+ "id": "xdKNs-ZPMTJL",
+ "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "✅ 可以解釋為什麼模型很確定第一個觀察是泰國菜嗎?\n",
+ "\n",
+ "## **🚀挑戰**\n",
+ "\n",
+ "在這節課中,你使用清理過的數據建立了一個機器學習模型,能根據一系列食材預測國家菜系。花些時間閱讀 [Tidymodels 提供的多種選項](https://www.tidymodels.org/find/parsnip/#models) 來分類數據,以及 [其他方法](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) 來進行多項式回歸。\n",
+ "\n",
+ "#### 特別感謝:\n",
+ "\n",
+ "[`Allison Horst`](https://twitter.com/allison_horst/) 創作了令人驚嘆的插圖,讓 R 更加友好和吸引人。可以在她的 [畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 找到更多插圖。\n",
+ "\n",
+ "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 創建了這個模組的原始 Python 版本 ♥️\n",
+ "\n",
+ " \n",
+ "本來想加些笑話,但我對食物的雙關語一點都不懂 😅。\n",
+ "\n",
+ " \n",
+ "\n",
+ "祝學習愉快,\n",
+ "\n",
+ "[Eric](https://twitter.com/ericntay),Microsoft Learn 金牌學生大使。\n"
+ ],
+ "metadata": {
+ "id": "2tWVHMeLMYdM"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/notebook.ipynb
new file mode 100644
index 000000000..7cd853304
--- /dev/null
+++ b/translations/zh-HK/4-Classification/2-Classifiers-1/solution/notebook.ipynb
@@ -0,0 +1,281 @@
+{
+ "cells": [
+ {
+ "source": [
+ "# 建立分類模型\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
+ "0 0 indian 0 0 0 0 0 \n",
+ "1 1 indian 1 0 0 0 0 \n",
+ "2 2 indian 0 0 0 0 0 \n",
+ "3 3 indian 0 0 0 0 0 \n",
+ "4 4 indian 0 0 0 0 0 \n",
+ "\n",
+ " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 382 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 2 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 3 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 4 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 382 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 1
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n",
+ "cuisines_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.model_selection import train_test_split, cross_val_score\n",
+ "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n",
+ "from sklearn.svm import SVC\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0 indian\n",
+ "1 indian\n",
+ "2 indian\n",
+ "3 indian\n",
+ "4 indian\n",
+ "Name: cuisine, dtype: object"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ],
+ "source": [
+ "cuisines_label_df = cuisines_df['cuisine']\n",
+ "cuisines_label_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ],
+ "source": [
+ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
+ "cuisines_feature_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracy is 0.8181818181818182\n"
+ ]
+ }
+ ],
+ "source": [
+ "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n",
+ "model = lr.fit(X_train, np.ravel(y_train))\n",
+ "\n",
+ "accuracy = model.score(X_test, y_test)\n",
+ "print (\"Accuracy is {}\".format(accuracy))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n"
+ ]
+ }
+ ],
+ "source": [
+ "# test an item\n",
+ "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n",
+ "print(f'cuisine: {y_test.iloc[50]}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " 0\n",
+ "korean 0.392231\n",
+ "chinese 0.372872\n",
+ "japanese 0.218825\n",
+ "thai 0.013427\n",
+ "indian 0.002645"
+ ],
+ "text/html": "\n\n
\n \n \n \n 0 \n \n \n \n \n korean \n 0.392231 \n \n \n chinese \n 0.372872 \n \n \n japanese \n 0.218825 \n \n \n thai \n 0.013427 \n \n \n indian \n 0.002645 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 8
+ }
+ ],
+ "source": [
+ "#rehsape to 2d array and transpose\n",
+ "test= X_test.iloc[50].values.reshape(-1, 1).T\n",
+ "# predict with score\n",
+ "proba = model.predict_proba(test)\n",
+ "classes = model.classes_\n",
+ "# create df with classes and scores\n",
+ "resultdf = pd.DataFrame(data=proba, columns=classes)\n",
+ "\n",
+ "# create df to show results\n",
+ "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n",
+ "topPrediction.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred = model.predict(X_test)\r\n",
+ "print(classification_report(y_test,y_pred))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "9408506dd864f2b6e334c62f80c0cfcc",
+ "translation_date": "2025-09-03T20:20:29+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/README.md b/translations/zh-HK/4-Classification/3-Classifiers-2/README.md
new file mode 100644
index 000000000..6eac9059b
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/README.md
@@ -0,0 +1,240 @@
+# 美食分類器 2
+
+在這第二部分的分類課程中,你將探索更多分類數據的方法。同時,你也會了解選擇不同分類器所帶來的影響。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+### 前置條件
+
+我們假設你已完成之前的課程,並在這個四課程文件夾的根目錄中的 `data` 資料夾內擁有一個名為 _cleaned_cuisines.csv_ 的清理過的數據集。
+
+### 準備工作
+
+我們已經將清理過的數據集載入到你的 _notebook.ipynb_ 文件中,並將其分割為 X 和 y 數據框,準備進行模型構建。
+
+## 分類地圖
+
+之前,你已經學習了使用 Microsoft 的速查表來分類數據的各種選項。Scikit-learn 提供了一個類似但更細緻的速查表,可以進一步幫助你縮小選擇範圍(分類器的另一個術語是估算器):
+
+
+> 提示:[在線訪問此地圖](https://scikit-learn.org/stable/tutorial/machine_learning_map/)並點擊路徑以閱讀相關文檔。
+
+### 計劃
+
+一旦你對數據有了清晰的理解,這張地圖非常有幫助,因為你可以沿著它的路徑進行決策:
+
+- 我們有超過 50 個樣本
+- 我們希望預測一個類別
+- 我們有標籤數據
+- 我們的樣本少於 100K
+- ✨ 我們可以選擇 Linear SVC
+- 如果這不起作用,因為我們有數值數據
+ - 我們可以嘗試 ✨ KNeighbors Classifier
+ - 如果這不起作用,嘗試 ✨ SVC 和 ✨ Ensemble Classifiers
+
+這是一條非常有幫助的路徑。
+
+## 練習 - 分割數據
+
+按照這條路徑,我們應該先導入一些需要使用的庫。
+
+1. 導入所需的庫:
+
+ ```python
+ from sklearn.neighbors import KNeighborsClassifier
+ from sklearn.linear_model import LogisticRegression
+ from sklearn.svm import SVC
+ from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
+ from sklearn.model_selection import train_test_split, cross_val_score
+ from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
+ import numpy as np
+ ```
+
+1. 分割你的訓練和測試數據:
+
+ ```python
+ X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
+ ```
+
+## 線性 SVC 分類器
+
+支持向量聚類(SVC)是支持向量機家族中的一員(以下可以了解更多)。在這種方法中,你可以選擇一個「核函數」來決定如何聚類標籤。「C」參數指的是「正則化」,它調節參數的影響。核函數可以是[多種選項](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)之一;在這裡,我們將其設置為「線性」,以確保我們使用線性 SVC。概率默認為「false」;在這裡,我們將其設置為「true」以獲取概率估算。我們將隨機狀態設置為「0」,以打亂數據以獲取概率。
+
+### 練習 - 應用線性 SVC
+
+首先創建一個分類器的陣列。隨著測試的進行,你將逐步添加到這個陣列中。
+
+1. 從線性 SVC 開始:
+
+ ```python
+ C = 10
+ # Create different classifiers.
+ classifiers = {
+ 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0)
+ }
+ ```
+
+2. 使用線性 SVC 訓練你的模型並打印報告:
+
+ ```python
+ n_classifiers = len(classifiers)
+
+ for index, (name, classifier) in enumerate(classifiers.items()):
+ classifier.fit(X_train, np.ravel(y_train))
+
+ y_pred = classifier.predict(X_test)
+ accuracy = accuracy_score(y_test, y_pred)
+ print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
+ print(classification_report(y_test,y_pred))
+ ```
+
+ 結果相當不錯:
+
+ ```output
+ Accuracy (train) for Linear SVC: 78.6%
+ precision recall f1-score support
+
+ chinese 0.71 0.67 0.69 242
+ indian 0.88 0.86 0.87 234
+ japanese 0.79 0.74 0.76 254
+ korean 0.85 0.81 0.83 242
+ thai 0.71 0.86 0.78 227
+
+ accuracy 0.79 1199
+ macro avg 0.79 0.79 0.79 1199
+ weighted avg 0.79 0.79 0.79 1199
+ ```
+
+## K-Neighbors 分類器
+
+K-Neighbors 是「鄰居」家族的機器學習方法的一部分,可以用於監督學習和非監督學習。在這種方法中,預定義了一些點,並在這些點周圍收集數據,以便可以為數據預測通用標籤。
+
+### 練習 - 應用 K-Neighbors 分類器
+
+之前的分類器表現良好,並且與數據配合得很好,但也許我們可以獲得更好的準確性。嘗試使用 K-Neighbors 分類器。
+
+1. 在分類器陣列中添加一行(在 Linear SVC 項目後添加逗號):
+
+ ```python
+ 'KNN classifier': KNeighborsClassifier(C),
+ ```
+
+ 結果稍差一些:
+
+ ```output
+ Accuracy (train) for KNN classifier: 73.8%
+ precision recall f1-score support
+
+ chinese 0.64 0.67 0.66 242
+ indian 0.86 0.78 0.82 234
+ japanese 0.66 0.83 0.74 254
+ korean 0.94 0.58 0.72 242
+ thai 0.71 0.82 0.76 227
+
+ accuracy 0.74 1199
+ macro avg 0.76 0.74 0.74 1199
+ weighted avg 0.76 0.74 0.74 1199
+ ```
+
+ ✅ 了解 [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors)
+
+## 支持向量分類器
+
+支持向量分類器是[支持向量機](https://wikipedia.org/wiki/Support-vector_machine)家族的一部分,用於分類和回歸任務。SVM 將「訓練樣本映射到空間中的點」,以最大化兩個類別之間的距離。隨後的數據被映射到這個空間中,以便預測它們的類別。
+
+### 練習 - 應用支持向量分類器
+
+讓我們嘗試使用支持向量分類器來獲得更好的準確性。
+
+1. 在 K-Neighbors 項目後添加逗號,然後添加以下行:
+
+ ```python
+ 'SVC': SVC(),
+ ```
+
+ 結果相當不錯!
+
+ ```output
+ Accuracy (train) for SVC: 83.2%
+ precision recall f1-score support
+
+ chinese 0.79 0.74 0.76 242
+ indian 0.88 0.90 0.89 234
+ japanese 0.87 0.81 0.84 254
+ korean 0.91 0.82 0.86 242
+ thai 0.74 0.90 0.81 227
+
+ accuracy 0.83 1199
+ macro avg 0.84 0.83 0.83 1199
+ weighted avg 0.84 0.83 0.83 1199
+ ```
+
+ ✅ 了解 [支持向量](https://scikit-learn.org/stable/modules/svm.html#svm)
+
+## 集成分類器
+
+即使之前的測試結果相當不錯,我們還是沿著路徑走到最後。讓我們嘗試一些「集成分類器」,特別是隨機森林和 AdaBoost:
+
+```python
+ 'RFST': RandomForestClassifier(n_estimators=100),
+ 'ADA': AdaBoostClassifier(n_estimators=100)
+```
+
+結果非常好,尤其是隨機森林:
+
+```output
+Accuracy (train) for RFST: 84.5%
+ precision recall f1-score support
+
+ chinese 0.80 0.77 0.78 242
+ indian 0.89 0.92 0.90 234
+ japanese 0.86 0.84 0.85 254
+ korean 0.88 0.83 0.85 242
+ thai 0.80 0.87 0.83 227
+
+ accuracy 0.84 1199
+ macro avg 0.85 0.85 0.84 1199
+weighted avg 0.85 0.84 0.84 1199
+
+Accuracy (train) for ADA: 72.4%
+ precision recall f1-score support
+
+ chinese 0.64 0.49 0.56 242
+ indian 0.91 0.83 0.87 234
+ japanese 0.68 0.69 0.69 254
+ korean 0.73 0.79 0.76 242
+ thai 0.67 0.83 0.74 227
+
+ accuracy 0.72 1199
+ macro avg 0.73 0.73 0.72 1199
+weighted avg 0.73 0.72 0.72 1199
+```
+
+✅ 了解 [集成分類器](https://scikit-learn.org/stable/modules/ensemble.html)
+
+這種機器學習方法「結合了多個基估算器的預測」,以提高模型的質量。在我們的例子中,我們使用了隨機樹和 AdaBoost。
+
+- [隨機森林](https://scikit-learn.org/stable/modules/ensemble.html#forest),一種平均方法,構建了一個隨機性注入的「決策樹森林」,以避免過度擬合。n_estimators 參數設置為樹的數量。
+
+- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) 將分類器擬合到數據集,然後將該分類器的副本擬合到相同的數據集。它專注於錯誤分類項目的權重,並調整下一個分類器的擬合以進行修正。
+
+---
+
+## 🚀挑戰
+
+每種技術都有大量的參數可以調整。研究每種技術的默認參數,並思考調整這些參數對模型質量的影響。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+這些課程中有很多術語,因此花點時間回顧[這份列表](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott)中的有用術語!
+
+## 作業
+
+[參數調整](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/assignment.md b/translations/zh-HK/4-Classification/3-Classifiers-2/assignment.md
new file mode 100644
index 000000000..2ed60bd72
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/assignment.md
@@ -0,0 +1,16 @@
+# 參數遊戲
+
+## 指引
+
+在使用這些分類器時,有許多參數是預設設定的。VS Code 的 Intellisense 可以幫助你深入了解這些參數。在本課中採用其中一種機器學習分類技術,並透過調整各種參數值重新訓練模型。建立一個筆記本,解釋為什麼某些更改能提升模型品質,而其他更改則會降低品質。請詳細說明你的答案。
+
+## 評分標準
+
+| 評分標準 | 卓越 | 合格 | 需要改進 |
+| -------- | ---------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------- | ----------------------------- |
+| | 提交了一個完整的筆記本,包含已建構的分類器及其參數調整,並在文本框中詳細解釋更改 | 提交了一個部分完成的筆記本或解釋不充分 | 提交了一個有錯誤或有缺陷的筆記本 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/zh-HK/4-Classification/3-Classifiers-2/notebook.ipynb
new file mode 100644
index 000000000..d081a747f
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/notebook.ipynb
@@ -0,0 +1,163 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
+ "0 0 indian 0 0 0 0 0 \n",
+ "1 1 indian 1 0 0 0 0 \n",
+ "2 2 indian 0 0 0 0 0 \n",
+ "3 3 indian 0 0 0 0 0 \n",
+ "4 4 indian 0 0 0 0 0 \n",
+ "\n",
+ " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 382 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 2 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 3 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 4 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 382 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 9
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n",
+ "cuisines_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0 indian\n",
+ "1 indian\n",
+ "2 indian\n",
+ "3 indian\n",
+ "4 indian\n",
+ "Name: cuisine, dtype: object"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 10
+ }
+ ],
+ "source": [
+ "cuisines_label_df = cuisines_df['cuisine']\n",
+ "cuisines_label_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 11
+ }
+ ],
+ "source": [
+ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
+ "cuisines_feature_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "15a83277036572e0773229b5f21c1e12",
+ "translation_date": "2025-09-03T20:27:23+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/Julia/README.md
new file mode 100644
index 000000000..cdf42b6c4
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb
new file mode 100644
index 000000000..7574aafa2
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb
@@ -0,0 +1,650 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "lesson_12-R.ipynb",
+ "provenance": [],
+ "collapsed_sections": []
+ },
+ "kernelspec": {
+ "name": "ir",
+ "display_name": "R"
+ },
+ "language_info": {
+ "name": "R"
+ },
+ "coopTranslator": {
+ "original_hash": "fab50046ca413a38939d579f8432274f",
+ "translation_date": "2025-09-03T20:32:27+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jsFutf_ygqSx"
+ },
+ "source": [
+ "# 建立分類模型:美味的亞洲和印度美食\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HD54bEefgtNO"
+ },
+ "source": [
+ "## 美食分類器 2\n",
+ "\n",
+ "在這第二部分的分類課程中,我們將探索`更多方法`來分類類別型數據。我們還會了解選擇不同分類器所帶來的影響。\n",
+ "\n",
+ "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n",
+ "\n",
+ "### **先決條件**\n",
+ "\n",
+ "我們假設你已完成之前的課程,因為我們將延續之前學到的一些概念。\n",
+ "\n",
+ "在這節課中,我們需要以下套件:\n",
+ "\n",
+ "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個[由 R 套件組成的集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n",
+ "\n",
+ "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個[套件集合](https://www.tidymodels.org/packages),用於建模和機器學習。\n",
+ "\n",
+ "- `themis`: [themis 套件](https://themis.tidymodels.org/) 提供額外的配方步驟,用於處理不平衡數據。\n",
+ "\n",
+ "你可以使用以下指令安裝它們:\n",
+ "\n",
+ "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n",
+ "\n",
+ "或者,以下腳本會檢查你是否已安裝完成此模組所需的套件,並在缺少時為你安裝。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "vZ57IuUxgyQt"
+ },
+ "source": [
+ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n",
+ "\n",
+ "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z22M-pj4g07x"
+ },
+ "source": [
+ "## **1. 分類地圖**\n",
+ "\n",
+ "在我們的[上一課](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)中,我們嘗試解答一個問題:如何在多個模型之間進行選擇?在很大程度上,這取決於數據的特性以及我們想要解決的問題類型(例如分類或回歸)。\n",
+ "\n",
+ "之前,我們學習了使用 Microsoft 的速查表進行數據分類的各種選擇。Python 的機器學習框架 Scikit-learn 提供了一個類似但更細緻的速查表,可以進一步幫助縮小估算器(另一個分類器的術語)的範圍:\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "u1i3xRIVg7vG"
+ },
+ "source": [
+ "> 提示:[在線查看此地圖](https://scikit-learn.org/stable/tutorial/machine_learning_map/),並沿著路徑點擊以閱讀相關文檔。\n",
+ ">\n",
+ "> [Tidymodels 參考網站](https://www.tidymodels.org/find/parsnip/#models)也提供了關於不同模型類型的出色文檔。\n",
+ "\n",
+ "### **計劃** 🗺️\n",
+ "\n",
+ "當你對數據有清晰的理解時,這張地圖非常有幫助,因為你可以沿著它的路徑“走”到一個決策:\n",
+ "\n",
+ "- 我們有超過 50 個樣本\n",
+ "\n",
+ "- 我們想要預測一個類別\n",
+ "\n",
+ "- 我們有標籤數據\n",
+ "\n",
+ "- 我們的樣本少於 100K\n",
+ "\n",
+ "- ✨ 我們可以選擇 Linear SVC\n",
+ "\n",
+ "- 如果這不起作用,因為我們有數值型數據\n",
+ "\n",
+ " - 我們可以嘗試 ✨ KNeighbors Classifier\n",
+ "\n",
+ " - 如果這不起作用,嘗試 ✨ SVC 和 ✨ Ensemble Classifiers\n",
+ "\n",
+ "這是一條非常有幫助的路徑。現在,讓我們使用 [tidymodels](https://www.tidymodels.org/) 建模框架直接開始吧:這是一個一致且靈活的 R 套件集合,旨在鼓勵良好的統計實踐 😊。\n",
+ "\n",
+ "## 2. 分割數據並處理不平衡數據集\n",
+ "\n",
+ "在之前的課程中,我們了解到不同菜系之間有一組常見的成分。此外,菜系的數量分佈也非常不均衡。\n",
+ "\n",
+ "我們將通過以下方式處理這些問題:\n",
+ "\n",
+ "- 使用 `dplyr::select()` 刪除那些在不同菜系之間造成混淆的最常見成分。\n",
+ "\n",
+ "- 使用一個 `recipe` 預處理數據,通過應用 `over-sampling` 算法使其準備好進行建模。\n",
+ "\n",
+ "我們在之前的課程中已經看過上述內容,所以這應該會非常輕鬆 🥳!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6tj_rN00hClA"
+ },
+ "source": [
+ "# Load the core Tidyverse and Tidymodels packages\n",
+ "library(tidyverse)\n",
+ "library(tidymodels)\n",
+ "\n",
+ "# Load the original cuisines data\n",
+ "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n",
+ "\n",
+ "# Drop id column, rice, garlic and ginger from our original data set\n",
+ "df_select <- df %>% \n",
+ " select(-c(1, rice, garlic, ginger)) %>%\n",
+ " # Encode cuisine column as categorical\n",
+ " mutate(cuisine = factor(cuisine))\n",
+ "\n",
+ "\n",
+ "# Create data split specification\n",
+ "set.seed(2056)\n",
+ "cuisines_split <- initial_split(data = df_select,\n",
+ " strata = cuisine,\n",
+ " prop = 0.7)\n",
+ "\n",
+ "# Extract the data in each split\n",
+ "cuisines_train <- training(cuisines_split)\n",
+ "cuisines_test <- testing(cuisines_split)\n",
+ "\n",
+ "# Display distribution of cuisines in the training set\n",
+ "cuisines_train %>% \n",
+ " count(cuisine) %>% \n",
+ " arrange(desc(n))"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zFin5yw3hHb1"
+ },
+ "source": [
+ "### 處理數據不平衡\n",
+ "\n",
+ "數據不平衡通常會對模型性能產生負面影響。許多模型在觀測數量相等時表現最佳,因此在面對不平衡數據時往往會遇到困難。\n",
+ "\n",
+ "處理數據不平衡主要有兩種方法:\n",
+ "\n",
+ "- 增加少數類別的觀測數量:`過採樣`,例如使用 SMOTE 演算法,該演算法通過少數類別案例的最近鄰居合成生成新的少數類別樣本。\n",
+ "\n",
+ "- 移除多數類別的觀測數量:`欠採樣`\n",
+ "\n",
+ "在之前的課程中,我們展示了如何使用 `recipe` 處理數據不平衡。`recipe` 可以被視為一種藍圖,描述了應該對數據集應用哪些步驟以使其準備好進行數據分析。在我們的案例中,我們希望在 `訓練集` 中實現菜系數量的均等分佈。現在就讓我們開始吧!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "cRzTnHolhLWd"
+ },
+ "source": [
+ "# Load themis package for dealing with imbalanced data\n",
+ "library(themis)\n",
+ "\n",
+ "# Create a recipe for preprocessing training data\n",
+ "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n",
+ " step_smote(cuisine) \n",
+ "\n",
+ "# Print recipe\n",
+ "cuisines_recipe"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KxOQ2ORhhO81"
+ },
+ "source": [
+ "現在我們準備好訓練模型了 👩💻👨💻!\n",
+ "\n",
+ "## 3. 超越多項式迴歸模型\n",
+ "\n",
+ "在上一課中,我們探討了多項式迴歸模型。現在讓我們來看看一些更靈活的分類模型。\n",
+ "\n",
+ "### 支援向量機\n",
+ "\n",
+ "在分類的背景下,`支援向量機`是一種機器學習技術,旨在尋找一個*超平面*,以「最佳」方式分隔不同的類別。讓我們看一個簡單的例子:\n",
+ "\n",
+ "
\n",
+ " \n",
+ " https://commons.wikimedia.org/w/index.php?curid=22877598 \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "C4Wsd0vZhXYu"
+ },
+ "source": [
+ "H1~ 不會分隔類別。H2~ 會分隔,但只有很小的間距。H3~ 則會以最大的間距分隔。\n",
+ "\n",
+ "#### 線性支持向量分類器\n",
+ "\n",
+ "支持向量聚類(SVC)是支持向量機(SVM)這個機器學習技術家族中的一員。在 SVC 中,超平面會被選擇用來正確分隔`大部分`的訓練觀測值,但`可能會錯誤分類`一些觀測值。通過允許某些點位於錯誤的一側,SVM 對異常值的容忍度更高,因此對新數據的泛化能力更強。調節這種違規程度的參數稱為`cost`,其默認值為 1(參見 `help(\"svm_poly\")`)。\n",
+ "\n",
+ "讓我們通過在多項式 SVM 模型中設置 `degree = 1` 來創建一個線性 SVC。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "vJpp6nuChlBz"
+ },
+ "source": [
+ "# Make a linear SVC specification\n",
+ "svc_linear_spec <- svm_poly(degree = 1) %>% \n",
+ " set_engine(\"kernlab\") %>% \n",
+ " set_mode(\"classification\")\n",
+ "\n",
+ "# Bundle specification and recipe into a worklow\n",
+ "svc_linear_wf <- workflow() %>% \n",
+ " add_recipe(cuisines_recipe) %>% \n",
+ " add_model(svc_linear_spec)\n",
+ "\n",
+ "# Print out workflow\n",
+ "svc_linear_wf"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rDs8cWNkhoqu"
+ },
+ "source": [
+ "現在我們已經將預處理步驟和模型規範整合到一個*工作流程*中,接下來可以進行線性SVC的訓練並同時評估結果。至於性能指標,我們可以建立一個指標集來評估:`準確率`、`敏感度`、`正向預測值`以及`F值`\n",
+ "\n",
+ "> `augment()` 會將預測結果的欄位新增到給定的數據中。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "81wiqcwuhrnq"
+ },
+ "source": [
+ "# Train a linear SVC model\n",
+ "svc_linear_fit <- svc_linear_wf %>% \n",
+ " fit(data = cuisines_train)\n",
+ "\n",
+ "# Create a metric set\n",
+ "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n",
+ "\n",
+ "\n",
+ "# Make predictions and Evaluate model performance\n",
+ "svc_linear_fit %>% \n",
+ " augment(new_data = cuisines_test) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0UFQvHf-huo3"
+ },
+ "source": [
+ "#### 支援向量機\n",
+ "\n",
+ "支援向量機(SVM)是支援向量分類器的延伸,旨在處理類別之間的非線性邊界。本質上,SVM 使用*核技巧*來擴展特徵空間,以適應類別之間的非線性關係。一種受歡迎且非常靈活的核函數是*徑向基函數*。讓我們看看它在我們的數據上會有怎樣的表現。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-KX4S8mzhzmp"
+ },
+ "source": [
+ "set.seed(2056)\n",
+ "\n",
+ "# Make an RBF SVM specification\n",
+ "svm_rbf_spec <- svm_rbf() %>% \n",
+ " set_engine(\"kernlab\") %>% \n",
+ " set_mode(\"classification\")\n",
+ "\n",
+ "# Bundle specification and recipe into a worklow\n",
+ "svm_rbf_wf <- workflow() %>% \n",
+ " add_recipe(cuisines_recipe) %>% \n",
+ " add_model(svm_rbf_spec)\n",
+ "\n",
+ "\n",
+ "# Train an RBF model\n",
+ "svm_rbf_fit <- svm_rbf_wf %>% \n",
+ " fit(data = cuisines_train)\n",
+ "\n",
+ "\n",
+ "# Make predictions and Evaluate model performance\n",
+ "svm_rbf_fit %>% \n",
+ " augment(new_data = cuisines_test) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QBFSa7WSh4HQ"
+ },
+ "source": [
+ "好得多 🤩!\n",
+ "\n",
+ "> ✅ 請參閱:\n",
+ ">\n",
+ "> - [*支持向量機*](https://bradleyboehmke.github.io/HOML/svm.html),《Hands-on Machine Learning with R》\n",
+ ">\n",
+ "> - [*支持向量機*](https://www.statlearning.com/),《An Introduction to Statistical Learning with Applications in R》\n",
+ ">\n",
+ "> 以獲取更多閱讀資料。\n",
+ "\n",
+ "### 最近鄰分類器\n",
+ "\n",
+ "*K*-最近鄰(KNN)是一種基於每個觀測值與其他觀測值之間的*相似性*來進行預測的算法。\n",
+ "\n",
+ "讓我們將其應用到我們的數據中。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "k4BxxBcdh9Ka"
+ },
+ "source": [
+ "# Make a KNN specification\n",
+ "knn_spec <- nearest_neighbor() %>% \n",
+ " set_engine(\"kknn\") %>% \n",
+ " set_mode(\"classification\")\n",
+ "\n",
+ "# Bundle recipe and model specification into a workflow\n",
+ "knn_wf <- workflow() %>% \n",
+ " add_recipe(cuisines_recipe) %>% \n",
+ " add_model(knn_spec)\n",
+ "\n",
+ "# Train a boosted tree model\n",
+ "knn_wf_fit <- knn_wf %>% \n",
+ " fit(data = cuisines_train)\n",
+ "\n",
+ "\n",
+ "# Make predictions and Evaluate model performance\n",
+ "knn_wf_fit %>% \n",
+ " augment(new_data = cuisines_test) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HaegQseriAcj"
+ },
+ "source": [
+ "看來這個模型的表現不太理想。可能透過更改模型的參數(請參考 `help(\"nearest_neighbor\")`)可以改善模型的表現。記得試試看。\n",
+ "\n",
+ "> ✅ 請參考:\n",
+ ">\n",
+ "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n",
+ ">\n",
+ "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n",
+ ">\n",
+ "> 了解更多關於 *K*-最近鄰分類器的資訊。\n",
+ "\n",
+ "### 集成分類器\n",
+ "\n",
+ "集成算法透過結合多個基礎估算器來生成最佳模型,其方法包括:\n",
+ "\n",
+ "`bagging`:對一組基礎模型應用*平均函數*\n",
+ "\n",
+ "`boosting`:建立一系列模型,彼此之間相互改進以提升預測性能。\n",
+ "\n",
+ "我們先試試隨機森林模型,它會建立大量的決策樹,然後應用平均函數以生成更好的整體模型。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "49DPoVs6iK1M"
+ },
+ "source": [
+ "# Make a random forest specification\n",
+ "rf_spec <- rand_forest() %>% \n",
+ " set_engine(\"ranger\") %>% \n",
+ " set_mode(\"classification\")\n",
+ "\n",
+ "# Bundle recipe and model specification into a workflow\n",
+ "rf_wf <- workflow() %>% \n",
+ " add_recipe(cuisines_recipe) %>% \n",
+ " add_model(rf_spec)\n",
+ "\n",
+ "# Train a random forest model\n",
+ "rf_wf_fit <- rf_wf %>% \n",
+ " fit(data = cuisines_train)\n",
+ "\n",
+ "\n",
+ "# Make predictions and Evaluate model performance\n",
+ "rf_wf_fit %>% \n",
+ " augment(new_data = cuisines_test) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RGVYwC_aiUWc"
+ },
+ "source": [
+ "做得好 👏!\n",
+ "\n",
+ "我們也來嘗試使用提升樹模型。\n",
+ "\n",
+ "提升樹是一種集成方法,它建立一系列連續的決策樹,每棵樹都依賴於前一棵樹的結果,試圖逐步減少錯誤。它專注於那些被錯誤分類的項目的權重,並調整下一個分類器的擬合以進行修正。\n",
+ "\n",
+ "有多種方法可以擬合此模型(請參閱 `help(\"boost_tree\")`)。在這個例子中,我們將通過 `xgboost` 引擎來擬合提升樹。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Py1YWo-micWs"
+ },
+ "source": [
+ "# Make a boosted tree specification\n",
+ "boost_spec <- boost_tree(trees = 200) %>% \n",
+ " set_engine(\"xgboost\") %>% \n",
+ " set_mode(\"classification\")\n",
+ "\n",
+ "# Bundle recipe and model specification into a workflow\n",
+ "boost_wf <- workflow() %>% \n",
+ " add_recipe(cuisines_recipe) %>% \n",
+ " add_model(boost_spec)\n",
+ "\n",
+ "# Train a boosted tree model\n",
+ "boost_wf_fit <- boost_wf %>% \n",
+ " fit(data = cuisines_train)\n",
+ "\n",
+ "\n",
+ "# Make predictions and Evaluate model performance\n",
+ "boost_wf_fit %>% \n",
+ " augment(new_data = cuisines_test) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zNQnbuejigZM"
+ },
+ "source": [
+ "> ✅ 請參閱:\n",
+ ">\n",
+ "> - [社會科學家的機器學習](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n",
+ ">\n",
+ "> - [R 的實作機器學習](https://bradleyboehmke.github.io/HOML/)\n",
+ ">\n",
+ "> - [統計學習入門:R 的應用](https://www.statlearning.com/)\n",
+ ">\n",
+ "> - - 探討 AdaBoost 模型,它是 xgboost 的一個不錯替代方案。\n",
+ ">\n",
+ "> 了解更多有關集成分類器的資訊。\n",
+ "\n",
+ "## 4. 額外部分 - 比較多個模型\n",
+ "\n",
+ "我們在這次實驗中已經擬合了相當多的模型 🙌。如果需要從不同的預處理器和/或模型規範中建立大量工作流程,然後逐一計算性能指標,這可能會變得繁瑣或費力。\n",
+ "\n",
+ "讓我們看看是否可以通過創建一個函數來解決這個問題。該函數可以在訓練集上擬合一系列工作流程,然後根據測試集返回性能指標。我們將使用 [purrr](https://purrr.tidyverse.org/) 套件中的 `map()` 和 `map_dfr()` 來對列表中的每個元素應用函數。\n",
+ "\n",
+ "> [`map()`](https://purrr.tidyverse.org/reference/map.html) 函數可以讓你用更簡潔且易於閱讀的代碼替代許多 for 循環。學習 [`map()`](https://purrr.tidyverse.org/reference/map.html) 函數的最佳地方是 R for Data Science 中的 [迭代章節](http://r4ds.had.co.nz/iteration.html)。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Qzb7LyZnimd2"
+ },
+ "source": [
+ "set.seed(2056)\n",
+ "\n",
+ "# Create a metric set\n",
+ "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n",
+ "\n",
+ "# Define a function that returns performance metrics\n",
+ "compare_models <- function(workflow_list, train_set, test_set){\n",
+ " \n",
+ " suppressWarnings(\n",
+ " # Fit each model to the train_set\n",
+ " map(workflow_list, fit, data = train_set) %>% \n",
+ " # Make predictions on the test set\n",
+ " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n",
+ " # Select desired columns\n",
+ " select(model, cuisine, .pred_class) %>% \n",
+ " # Evaluate model performance\n",
+ " group_by(model) %>% \n",
+ " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n",
+ " ungroup()\n",
+ " )\n",
+ " \n",
+ "} # End of function"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Fwa712sNisDA"
+ },
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "3i4VJOi2iu-a"
+ },
+ "source": [
+ "# Make a list of workflows\n",
+ "workflow_list <- list(\n",
+ " \"svc\" = svc_linear_wf,\n",
+ " \"svm\" = svm_rbf_wf,\n",
+ " \"knn\" = knn_wf,\n",
+ " \"random_forest\" = rf_wf,\n",
+ " \"xgboost\" = boost_wf)\n",
+ "\n",
+ "# Call the function\n",
+ "set.seed(2056)\n",
+ "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n",
+ "\n",
+ "# Print out performance metrics\n",
+ "perf_metrics %>% \n",
+ " group_by(.metric) %>% \n",
+ " arrange(desc(.estimate)) %>% \n",
+ " slice_head(n=7)\n",
+ "\n",
+ "# Compare accuracy\n",
+ "perf_metrics %>% \n",
+ " filter(.metric == \"accuracy\") %>% \n",
+ " arrange(desc(.estimate))\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KuWK_lEli4nW"
+ },
+ "source": [
+ "[**workflowset**](https://workflowsets.tidymodels.org/) 套件讓用戶可以建立並輕鬆擬合大量模型,但主要是為了配合像是 `cross-validation` 這類的重抽樣技術使用,而這部分我們尚未涵蓋。\n",
+ "\n",
+ "## **🚀挑戰**\n",
+ "\n",
+ "每種技術都有許多參數可以調整,例如 SVM 的 `cost`、KNN 的 `neighbors`、隨機森林的 `mtry`(隨機選擇的預測變數)。\n",
+ "\n",
+ "研究每種模型的預設參數,並思考調整這些參數會對模型的品質產生什麼影響。\n",
+ "\n",
+ "若想了解更多關於特定模型及其參數的資訊,可以使用:`help(\"model\")`,例如 `help(\"rand_forest\")`\n",
+ "\n",
+ "> 實際上,我們通常會透過在 `模擬數據集` 上訓練多個模型並測量這些模型的表現來*估算*這些參數的*最佳值*。這個過程稱為 **調參(tuning)**。\n",
+ "\n",
+ "### [**課後測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n",
+ "\n",
+ "### **複習與自學**\n",
+ "\n",
+ "這些課程中有許多術語,因此花點時間查看[這份清單](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott),了解一些實用的術語吧!\n",
+ "\n",
+ "#### 特別感謝:\n",
+ "\n",
+ "[`Allison Horst`](https://twitter.com/allison_horst/) 創作了這些令人驚嘆的插圖,讓 R 語言變得更親切、更有趣。可以在她的[畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)找到更多插圖。\n",
+ "\n",
+ "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 創建了這個模組的原始 Python 版本 ♥️\n",
+ "\n",
+ "祝學習愉快,\n",
+ "\n",
+ "[Eric](https://twitter.com/ericntay),Gold Microsoft Learn 學生大使。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 插圖由 @allison_horst 提供 \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/notebook.ipynb
new file mode 100644
index 000000000..f339619bd
--- /dev/null
+++ b/translations/zh-HK/4-Classification/3-Classifiers-2/solution/notebook.ipynb
@@ -0,0 +1,302 @@
+{
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
+ "0 0 indian 0 0 0 0 0 \n",
+ "1 1 indian 1 0 0 0 0 \n",
+ "2 2 indian 0 0 0 0 0 \n",
+ "3 3 indian 0 0 0 0 0 \n",
+ "4 4 indian 0 0 0 0 0 \n",
+ "\n",
+ " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 382 columns]"
+ ],
+ "text/html": "
\n\n
\n \n \n \n Unnamed: 0 \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 2 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 3 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 4 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 382 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 1
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n",
+ "cuisines_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0 indian\n",
+ "1 indian\n",
+ "2 indian\n",
+ "3 indian\n",
+ "4 indian\n",
+ "Name: cuisine, dtype: object"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 2
+ }
+ ],
+ "source": [
+ "cuisines_label_df = cuisines_df['cuisine']\n",
+ "cuisines_label_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ],
+ "source": [
+ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
+ "cuisines_feature_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 嘗試不同的分類器\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.neighbors import KNeighborsClassifier\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.svm import SVC\n",
+ "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n",
+ "from sklearn.model_selection import train_test_split, cross_val_score\n",
+ "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "C = 10\n",
+ "# Create different classifiers.\n",
+ "classifiers = {\n",
+ " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n",
+ " 'KNN classifier': KNeighborsClassifier(C),\n",
+ " 'SVC': SVC(),\n",
+ " 'RFST': RandomForestClassifier(n_estimators=100),\n",
+ " 'ADA': AdaBoostClassifier(n_estimators=100)\n",
+ " \n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracy (train) for Linear SVC: 76.4% \n",
+ " precision recall f1-score support\n",
+ "\n",
+ " chinese 0.64 0.66 0.65 242\n",
+ " indian 0.91 0.86 0.89 236\n",
+ " japanese 0.72 0.73 0.73 245\n",
+ " korean 0.83 0.75 0.79 234\n",
+ " thai 0.75 0.82 0.78 242\n",
+ "\n",
+ " accuracy 0.76 1199\n",
+ " macro avg 0.77 0.76 0.77 1199\n",
+ "weighted avg 0.77 0.76 0.77 1199\n",
+ "\n",
+ "Accuracy (train) for KNN classifier: 70.7% \n",
+ " precision recall f1-score support\n",
+ "\n",
+ " chinese 0.65 0.63 0.64 242\n",
+ " indian 0.84 0.81 0.82 236\n",
+ " japanese 0.60 0.81 0.69 245\n",
+ " korean 0.89 0.53 0.67 234\n",
+ " thai 0.69 0.75 0.72 242\n",
+ "\n",
+ " accuracy 0.71 1199\n",
+ " macro avg 0.73 0.71 0.71 1199\n",
+ "weighted avg 0.73 0.71 0.71 1199\n",
+ "\n",
+ "Accuracy (train) for SVC: 80.1% \n",
+ " precision recall f1-score support\n",
+ "\n",
+ " chinese 0.71 0.69 0.70 242\n",
+ " indian 0.92 0.92 0.92 236\n",
+ " japanese 0.77 0.78 0.77 245\n",
+ " korean 0.87 0.77 0.82 234\n",
+ " thai 0.75 0.86 0.80 242\n",
+ "\n",
+ " accuracy 0.80 1199\n",
+ " macro avg 0.80 0.80 0.80 1199\n",
+ "weighted avg 0.80 0.80 0.80 1199\n",
+ "\n",
+ "Accuracy (train) for RFST: 82.8% \n",
+ " precision recall f1-score support\n",
+ "\n",
+ " chinese 0.80 0.75 0.77 242\n",
+ " indian 0.90 0.91 0.90 236\n",
+ " japanese 0.82 0.78 0.80 245\n",
+ " korean 0.85 0.82 0.83 234\n",
+ " thai 0.78 0.89 0.83 242\n",
+ "\n",
+ " accuracy 0.83 1199\n",
+ " macro avg 0.83 0.83 0.83 1199\n",
+ "weighted avg 0.83 0.83 0.83 1199\n",
+ "\n",
+ "Accuracy (train) for ADA: 71.1% \n",
+ " precision recall f1-score support\n",
+ "\n",
+ " chinese 0.60 0.57 0.58 242\n",
+ " indian 0.87 0.84 0.86 236\n",
+ " japanese 0.71 0.60 0.65 245\n",
+ " korean 0.68 0.78 0.72 234\n",
+ " thai 0.70 0.78 0.74 242\n",
+ "\n",
+ " accuracy 0.71 1199\n",
+ " macro avg 0.71 0.71 0.71 1199\n",
+ "weighted avg 0.71 0.71 0.71 1199\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "n_classifiers = len(classifiers)\n",
+ "\n",
+ "for index, (name, classifier) in enumerate(classifiers.items()):\n",
+ " classifier.fit(X_train, np.ravel(y_train))\n",
+ "\n",
+ " y_pred = classifier.predict(X_test)\n",
+ " accuracy = accuracy_score(y_test, y_pred)\n",
+ " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n",
+ " print(classification_report(y_test,y_pred))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "7ea2b714669c823a596d986ba2d5739f",
+ "translation_date": "2025-09-03T20:27:48+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/4-Applied/README.md b/translations/zh-HK/4-Classification/4-Applied/README.md
new file mode 100644
index 000000000..d4aca2f2b
--- /dev/null
+++ b/translations/zh-HK/4-Classification/4-Applied/README.md
@@ -0,0 +1,320 @@
+# 建立一個美食推薦網頁應用程式
+
+在這節課中,你將使用之前課程中學到的一些技術,並利用這個系列中使用的美食數據集,建立一個分類模型。此外,你還會建立一個小型的網頁應用程式,使用已保存的模型,並利用 Onnx 的網頁運行時環境。
+
+機器學習最實用的應用之一就是建立推薦系統,而今天你可以邁出這個方向的第一步!
+
+[](https://youtu.be/17wdM9AHMfg "應用機器學習")
+
+> 🎥 點擊上方圖片觀看影片:Jen Looper 使用分類的美食數據建立了一個網頁應用程式
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+在這節課中,你將學到:
+
+- 如何建立模型並將其保存為 Onnx 模型
+- 如何使用 Netron 檢視模型
+- 如何在網頁應用程式中使用你的模型進行推理
+
+## 建立你的模型
+
+建立應用型機器學習系統是將這些技術應用於商業系統的重要部分。通過使用 Onnx,你可以在網頁應用程式中使用模型(因此在需要時也可以在離線環境中使用)。
+
+在[之前的課程](../../3-Web-App/1-Web-App/README.md)中,你建立了一個關於 UFO 目擊事件的回歸模型,將其“pickle”保存,並在 Flask 應用程式中使用。雖然這種架構非常實用,但它是一個全棧的 Python 應用程式,而你的需求可能包括使用 JavaScript 應用程式。
+
+在這節課中,你可以建立一個基於 JavaScript 的基本推理系統。不過,首先你需要訓練一個模型並將其轉換為 Onnx 格式。
+
+## 練習 - 訓練分類模型
+
+首先,使用我們之前使用的清理過的美食數據集訓練一個分類模型。
+
+1. 首先導入有用的庫:
+
+ ```python
+ !pip install skl2onnx
+ import pandas as pd
+ ```
+
+ 你需要使用 '[skl2onnx](https://onnx.ai/sklearn-onnx/)' 來幫助將 Scikit-learn 模型轉換為 Onnx 格式。
+
+1. 然後,像之前課程中一樣,使用 `read_csv()` 讀取 CSV 文件來處理數據:
+
+ ```python
+ data = pd.read_csv('../data/cleaned_cuisines.csv')
+ data.head()
+ ```
+
+1. 移除前兩列不必要的數據,並將剩餘數據保存為 'X':
+
+ ```python
+ X = data.iloc[:,2:]
+ X.head()
+ ```
+
+1. 將標籤保存為 'y':
+
+ ```python
+ y = data[['cuisine']]
+ y.head()
+
+ ```
+
+### 開始訓練流程
+
+我們將使用 'SVC' 庫,該庫具有良好的準確性。
+
+1. 從 Scikit-learn 導入相關庫:
+
+ ```python
+ from sklearn.model_selection import train_test_split
+ from sklearn.svm import SVC
+ from sklearn.model_selection import cross_val_score
+ from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report
+ ```
+
+1. 分離訓練集和測試集:
+
+ ```python
+ X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
+ ```
+
+1. 像之前課程中一樣,建立一個 SVC 分類模型:
+
+ ```python
+ model = SVC(kernel='linear', C=10, probability=True,random_state=0)
+ model.fit(X_train,y_train.values.ravel())
+ ```
+
+1. 現在,測試你的模型,調用 `predict()`:
+
+ ```python
+ y_pred = model.predict(X_test)
+ ```
+
+1. 輸出分類報告以檢查模型的質量:
+
+ ```python
+ print(classification_report(y_test,y_pred))
+ ```
+
+ 如我們之前所見,準確性是很好的:
+
+ ```output
+ precision recall f1-score support
+
+ chinese 0.72 0.69 0.70 257
+ indian 0.91 0.87 0.89 243
+ japanese 0.79 0.77 0.78 239
+ korean 0.83 0.79 0.81 236
+ thai 0.72 0.84 0.78 224
+
+ accuracy 0.79 1199
+ macro avg 0.79 0.79 0.79 1199
+ weighted avg 0.79 0.79 0.79 1199
+ ```
+
+### 將模型轉換為 Onnx 格式
+
+確保使用正確的張量數進行轉換。這個數據集中列出了 380 種食材,因此你需要在 `FloatTensorType` 中註明這個數字:
+
+1. 使用 380 的張量數進行轉換。
+
+ ```python
+ from skl2onnx import convert_sklearn
+ from skl2onnx.common.data_types import FloatTensorType
+
+ initial_type = [('float_input', FloatTensorType([None, 380]))]
+ options = {id(model): {'nocl': True, 'zipmap': False}}
+ ```
+
+1. 創建 onx 並保存為文件 **model.onnx**:
+
+ ```python
+ onx = convert_sklearn(model, initial_types=initial_type, options=options)
+ with open("./model.onnx", "wb") as f:
+ f.write(onx.SerializeToString())
+ ```
+
+ > 注意,你可以在轉換腳本中傳入[選項](https://onnx.ai/sklearn-onnx/parameterized.html)。在這個例子中,我們將 'nocl' 設為 True,'zipmap' 設為 False。由於這是一個分類模型,你可以選擇移除 ZipMap,它會生成一個字典列表(非必要)。`nocl` 指的是是否在模型中包含類別信息。通過將 `nocl` 設為 'True',可以減小模型的大小。
+
+運行整個筆記本後,將建立一個 Onnx 模型並將其保存到此文件夾中。
+
+## 檢視你的模型
+
+Onnx 模型在 Visual Studio Code 中不太容易查看,但有一個非常好的免費軟件,許多研究人員用來可視化模型以確保其正確構建。下載 [Netron](https://github.com/lutzroeder/Netron) 並打開你的 model.onnx 文件。你可以看到你的簡單模型被可視化,顯示其 380 個輸入和分類器:
+
+
+
+Netron 是一個查看模型的有用工具。
+
+現在你已經準備好在網頁應用程式中使用這個簡單的模型。讓我們建立一個應用程式,當你查看冰箱並試圖弄清楚可以用哪些剩餘食材來烹飪某種美食時,這個應用程式會派上用場。
+
+## 建立推薦網頁應用程式
+
+你可以直接在網頁應用程式中使用你的模型。這種架構還允許你在本地運行,甚至在需要時離線運行。首先,在存儲 `model.onnx` 文件的同一文件夾中創建一個 `index.html` 文件。
+
+1. 在這個文件 _index.html_ 中,添加以下標記:
+
+ ```html
+
+
+
+
+ ...
+
+
+ ```
+
+1. 現在,在 `body` 標籤內添加一些標記,以顯示一些反映食材的複選框列表:
+
+ ```html
+ Check your refrigerator. What can you create?
+
+
+ What kind of cuisine can you make?
+
+ ```
+
+ 注意,每個複選框都有一個值。這反映了數據集中食材所在的索引。例如,蘋果在這個按字母順序排列的列表中佔據第五列,因此其值為 '4'(因為我們從 0 開始計數)。你可以查閱 [ingredients spreadsheet](../../../../4-Classification/data/ingredient_indexes.csv) 來查找某個食材的索引。
+
+ 繼續在 index.html 文件中工作,在最後一個閉合的 `` 後添加一個腳本塊,調用模型。
+
+1. 首先,導入 [Onnx Runtime](https://www.onnxruntime.ai/):
+
+ ```html
+
+ ```
+
+ > Onnx Runtime 用於支持在廣泛的硬件平台上運行 Onnx 模型,包括優化和使用的 API。
+
+1. 一旦 Runtime 就位,你可以調用它:
+
+ ```html
+
+ ```
+
+在這段代碼中,發生了以下幾件事:
+
+1. 你創建了一個包含 380 個可能值(1 或 0)的數組,根據是否選中某個食材複選框來設置並發送到模型進行推理。
+2. 你創建了一個複選框數組,以及一個在應用程式啟動時調用的 `init` 函數,用於確定複選框是否被選中。當複選框被選中時,`ingredients` 數組會被修改以反映所選食材。
+3. 你創建了一個 `testCheckboxes` 函數,用於檢查是否有任何複選框被選中。
+4. 當按下按鈕時,你使用 `startInference` 函數,如果有任何複選框被選中,則開始推理。
+5. 推理流程包括:
+ 1. 設置模型的異步加載
+ 2. 創建一個張量結構以發送到模型
+ 3. 創建 'feeds',反映你在訓練模型時創建的 `float_input` 輸入(你可以使用 Netron 驗證該名稱)
+ 4. 將這些 'feeds' 發送到模型並等待響應
+
+## 測試你的應用程式
+
+在 Visual Studio Code 中打開一個終端會話,進入存放 index.html 文件的文件夾。確保你已全局安裝 [http-server](https://www.npmjs.com/package/http-server),並在提示符下輸入 `http-server`。一個本地主機應該會打開,你可以查看你的網頁應用程式。檢查基於不同食材推薦的美食:
+
+
+
+恭喜你,你已經建立了一個帶有幾個字段的“推薦”網頁應用程式。花些時間來擴展這個系統吧!
+
+## 🚀挑戰
+
+你的網頁應用程式非常簡單,因此繼續使用 [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv) 數據中的食材及其索引來擴展它。哪些味道組合可以創造出某個國家的特色菜?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+雖然這節課只是簡單介紹了如何為食材創建推薦系統,但這個機器學習應用領域有非常豐富的例子。閱讀更多關於這些系統如何構建的內容:
+
+- https://www.sciencedirect.com/topics/computer-science/recommendation-engine
+- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/
+- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/
+
+## 作業
+
+[建立一個新的推薦系統](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/4-Applied/assignment.md b/translations/zh-HK/4-Classification/4-Applied/assignment.md
new file mode 100644
index 000000000..f7d0ab463
--- /dev/null
+++ b/translations/zh-HK/4-Classification/4-Applied/assignment.md
@@ -0,0 +1,16 @@
+# 建立推薦系統
+
+## 指引
+
+根據你在本課中的練習,你現在已經知道如何使用 Onnx Runtime 和轉換後的 Onnx 模型來構建基於 JavaScript 的網頁應用程式。嘗試使用本課中的數據或其他來源的數據(請記得標明來源)來建立一個新的推薦系統。你可以創建一個根據不同性格特質推薦寵物的系統,或者根據一個人的心情推薦音樂類型的系統。發揮你的創意吧!
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 有待改進 |
+| -------- | -------------------------------------------------------------------- | ----------------------------------- | -------------------------------- |
+| | 提供了一個網頁應用程式和筆記本,兩者均有良好的文檔且能正常運行 | 缺少其中一個或其中一個有缺陷 | 兩者均缺失或均有缺陷 |
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/4-Applied/notebook.ipynb b/translations/zh-HK/4-Classification/4-Applied/notebook.ipynb
new file mode 100644
index 000000000..0b37056ef
--- /dev/null
+++ b/translations/zh-HK/4-Classification/4-Applied/notebook.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 4,
+ "coopTranslator": {
+ "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb",
+ "translation_date": "2025-09-03T20:26:41+00:00",
+ "source_file": "4-Classification/4-Applied/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [
+ "# 建立一個美食推薦系統\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/4-Applied/solution/notebook.ipynb b/translations/zh-HK/4-Classification/4-Applied/solution/notebook.ipynb
new file mode 100644
index 000000000..b4e1debd2
--- /dev/null
+++ b/translations/zh-HK/4-Classification/4-Applied/solution/notebook.ipynb
@@ -0,0 +1,292 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff",
+ "translation_date": "2025-09-03T20:27:03+00:00",
+ "source_file": "4-Classification/4-Applied/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [
+ "# 建立一個美食推薦系統\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n",
+ "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n",
+ "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n",
+ "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n",
+ "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n",
+ "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n",
+ "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n",
+ "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n",
+ "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n",
+ "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n",
+ "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
+ "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install skl2onnx"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
+ "0 0 indian 0 0 0 0 0 \n",
+ "1 1 indian 1 0 0 0 0 \n",
+ "2 2 indian 0 0 0 0 0 \n",
+ "3 3 indian 0 0 0 0 0 \n",
+ "4 4 indian 0 0 0 0 0 \n",
+ "\n",
+ " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 382 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n Unnamed: 0 \n cuisine \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n indian \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 2 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 3 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 4 \n indian \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 382 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 60
+ }
+ ],
+ "source": [
+ "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 1 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
+ "0 0 0 0 ... 0 0 0 \n",
+ "1 0 0 0 ... 0 0 0 \n",
+ "2 0 0 0 ... 0 0 0 \n",
+ "3 0 0 0 ... 0 0 0 \n",
+ "4 0 0 0 ... 0 0 0 \n",
+ "\n",
+ " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 1 0 \n",
+ "\n",
+ "[5 rows x 380 columns]"
+ ],
+ "text/html": "\n\n
\n \n \n \n almond \n angelica \n anise \n anise_seed \n apple \n apple_brandy \n apricot \n armagnac \n artemisia \n artichoke \n ... \n whiskey \n white_bread \n white_wine \n whole_grain_wheat_flour \n wine \n wood \n yam \n yeast \n yogurt \n zucchini \n \n \n \n \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 1 \n 1 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 2 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 3 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n \n \n 4 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n ... \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 0 \n 1 \n 0 \n \n \n
\n
5 rows × 380 columns
\n
"
+ },
+ "metadata": {},
+ "execution_count": 61
+ }
+ ],
+ "source": [
+ "X = data.iloc[:,2:]\n",
+ "X.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " cuisine\n",
+ "0 indian\n",
+ "1 indian\n",
+ "2 indian\n",
+ "3 indian\n",
+ "4 indian"
+ ],
+ "text/html": "\n\n
\n \n \n \n cuisine \n \n \n \n \n 0 \n indian \n \n \n 1 \n indian \n \n \n 2 \n indian \n \n \n 3 \n indian \n \n \n 4 \n indian \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 62
+ }
+ ],
+ "source": [
+ "y = data[['cuisine']]\n",
+ "y.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.svm import SVC\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "SVC(C=10, kernel='linear', probability=True, random_state=0)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 65
+ }
+ ],
+ "source": [
+ "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n",
+ "model.fit(X_train,y_train.values.ravel())\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_pred = model.predict(X_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(classification_report(y_test,y_pred))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from skl2onnx import convert_sklearn\n",
+ "from skl2onnx.common.data_types import FloatTensorType\n",
+ "\n",
+ "initial_type = [('float_input', FloatTensorType([None, 380]))]\n",
+ "options = {id(model): {'nocl': True, 'zipmap': False}}\n",
+ "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n",
+ "with open(\"./model.onnx\", \"wb\") as f:\n",
+ " f.write(onx.SerializeToString())\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/4-Classification/README.md b/translations/zh-HK/4-Classification/README.md
new file mode 100644
index 000000000..3fd78f336
--- /dev/null
+++ b/translations/zh-HK/4-Classification/README.md
@@ -0,0 +1,32 @@
+# 開始學習分類
+
+## 地區主題:美味的亞洲及印度料理 🍜
+
+在亞洲和印度,飲食文化非常多元且美味!讓我們來看看有關地區料理的數據,試著了解它們的食材。
+
+
+> 照片由 Lisheng Chang 提供,來自 Unsplash
+
+## 你將學到什麼
+
+在這部分,你將基於之前對回歸的學習,進一步了解其他分類器,幫助你更好地理解數據。
+
+> 有一些實用的低代碼工具可以幫助你學習如何使用分類模型。試試 [Azure ML 完成這項任務](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
+
+## 課程
+
+1. [分類介紹](1-Introduction/README.md)
+2. [更多分類器](2-Classifiers-1/README.md)
+3. [其他分類器](3-Classifiers-2/README.md)
+4. [應用機器學習:建立網頁應用程式](4-Applied/README.md)
+
+## 致謝
+
+"開始學習分類" 由 [Cassie Breviu](https://www.twitter.com/cassiebreviu) 和 [Jen Looper](https://www.twitter.com/jenlooper) 用 ♥️ 撰寫。
+
+美味料理數據集來源於 [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines)。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/README.md b/translations/zh-HK/5-Clustering/1-Visualize/README.md
new file mode 100644
index 000000000..b141f2394
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/README.md
@@ -0,0 +1,338 @@
+# 聚類簡介
+
+聚類是一種[無監督學習](https://wikipedia.org/wiki/Unsupervised_learning)方法,假設數據集是未標籤的,或者其輸入未與預定義的輸出匹配。它使用各種算法來整理未標籤的數據,並根據數據中識別的模式提供分組。
+
+[](https://youtu.be/ty2advRiWJM "PSquare 的 No One Like You")
+
+> 🎥 點擊上方圖片觀看影片。在學習機器學習中的聚類時,欣賞一些尼日利亞舞廳音樂——這是 PSquare 在 2014 年的一首高評價歌曲。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+### 簡介
+
+[聚類](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)在數據探索中非常有用。讓我們看看它是否能幫助發現尼日利亞觀眾消費音樂的趨勢和模式。
+
+✅ 花一分鐘思考一下聚類的用途。在日常生活中,聚類發生在你有一堆洗衣物需要分類成家人衣物的時候 🧦👕👖🩲。在數據科學中,聚類發生在分析用戶偏好或確定任何未標籤數據集的特徵時。聚類在某種程度上幫助理解混亂,就像整理襪子抽屜一樣。
+
+[](https://youtu.be/esmzYhuFnds "聚類簡介")
+
+> 🎥 點擊上方圖片觀看影片:麻省理工學院的 John Guttag 介紹聚類
+
+在專業環境中,聚類可以用於確定市場細分,例如確定哪些年齡段購買哪些商品。另一個用途是異常檢測,例如從信用卡交易數據集中檢測欺詐行為。或者你可能使用聚類來確定一批醫學掃描中的腫瘤。
+
+✅ 花一分鐘思考一下你可能在銀行、電子商務或商業環境中遇到過的聚類。
+
+> 🎓 有趣的是,聚類分析起源於 1930 年代的人類學和心理學領域。你能想像它可能是如何被使用的嗎?
+
+或者,你可以用它來分組搜索結果,例如按購物鏈接、圖片或評論分組。當你有一個大型數據集需要縮減並進行更細緻的分析時,聚類非常有用,因此該技術可以在構建其他模型之前幫助了解數據。
+
+✅ 一旦你的數據被組織成聚類,你可以為其分配一個聚類 ID。這種技術在保護數據集隱私時非常有用;你可以用聚類 ID 而不是更具識別性的數據來引用數據點。你能想到其他使用聚類 ID 而不是聚類中其他元素來識別的原因嗎?
+
+在這個[學習模組](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)中深入了解聚類技術。
+
+## 聚類入門
+
+[Scikit-learn 提供了大量方法](https://scikit-learn.org/stable/modules/clustering.html)來執行聚類。你選擇的類型將取決於你的使用案例。根據文檔,每種方法都有不同的優勢。以下是 Scikit-learn 支持的方法及其適用使用案例的簡化表格:
+
+| 方法名稱 | 使用案例 |
+| :--------------------------- | :--------------------------------------------------------------------- |
+| K-Means | 通用用途,歸納式 |
+| Affinity propagation | 多個、不均勻的聚類,歸納式 |
+| Mean-shift | 多個、不均勻的聚類,歸納式 |
+| Spectral clustering | 少量、均勻的聚類,轉導式 |
+| Ward hierarchical clustering | 多個、受限的聚類,轉導式 |
+| Agglomerative clustering | 多個、受限的、非歐幾里得距離,轉導式 |
+| DBSCAN | 非平面幾何、不均勻的聚類,轉導式 |
+| OPTICS | 非平面幾何、不均勻的聚類,密度可變,轉導式 |
+| Gaussian mixtures | 平面幾何,歸納式 |
+| BIRCH | 大型數據集,含異常值,歸納式 |
+
+> 🎓 我們如何創建聚類與我們如何將數據點分組有很大關係。讓我們解釋一些術語:
+>
+> 🎓 ['轉導式' vs. '歸納式'](https://wikipedia.org/wiki/Transduction_(machine_learning))
+>
+> 轉導式推理是基於觀察到的訓練案例並映射到特定測試案例。歸納式推理是基於訓練案例並映射到一般規則,然後應用於測試案例。
+>
+> 舉例:假設你有一個部分標籤的數據集。一些是“唱片”,一些是“CD”,一些是空白。你的任務是為空白部分提供標籤。如果你選擇歸納式方法,你會訓練一個模型尋找“唱片”和“CD”,並將這些標籤應用於未標籤數據。這種方法可能難以分類實際上是“磁帶”的物品。而轉導式方法則更有效地處理這些未知數據,因為它努力將相似的物品分組,然後為整個分組分配標籤。在這種情況下,聚類可能反映“圓形音樂物品”和“方形音樂物品”。
+>
+> 🎓 ['非平面' vs. '平面'幾何](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)
+>
+> 源自數學術語,非平面 vs. 平面幾何指的是通過“平面”([歐幾里得](https://wikipedia.org/wiki/Euclidean_geometry))或“非平面”(非歐幾里得)幾何方法測量點之間的距離。
+>
+>'平面'在此上下文中指的是歐幾里得幾何(部分被教為“平面”幾何),而非平面指的是非歐幾里得幾何。幾何與機器學習有什麼關係?作為兩個根植於數學的領域,必須有一種通用方法來測量聚類中點之間的距離,這可以根據數據的性質以“平面”或“非平面”的方式進行。[歐幾里得距離](https://wikipedia.org/wiki/Euclidean_distance)是通過兩點之間線段的長度來測量的。[非歐幾里得距離](https://wikipedia.org/wiki/Non-Euclidean_geometry)則沿曲線測量。如果你的數據在可視化後似乎不在平面上,你可能需要使用專門的算法來處理它。
+>
+
+> 信息圖由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供
+>
+> 🎓 ['距離'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)
+>
+> 聚類由其距離矩陣定義,例如點之間的距離。這些距離可以通過幾種方式測量。歐幾里得聚類由點值的平均值定義,並包含一個“中心點”或中心點。因此距離是通過到該中心點的距離來測量的。非歐幾里得距離指的是“聚類中心點”,即最接近其他點的點。聚類中心點可以通過多種方式定義。
+>
+> 🎓 ['受限'](https://wikipedia.org/wiki/Constrained_clustering)
+>
+> [受限聚類](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)在這種無監督方法中引入了“半監督”學習。點之間的關係被標記為“不能鏈接”或“必須鏈接”,因此對數據集施加了一些規則。
+>
+>舉例:如果一個算法在一批未標籤或半標籤數據上自由運行,它生成的聚類可能質量較差。在上述例子中,聚類可能分組為“圓形音樂物品”、“方形音樂物品”、“三角形物品”和“餅乾”。如果給出一些限制或規則(“物品必須由塑料製成”,“物品需要能夠產生音樂”),這可以幫助“限制”算法做出更好的選擇。
+>
+> 🎓 '密度'
+>
+> 被認為是“噪聲”的數據被認為是“密集”的。每個聚類中的點之間的距離在檢查時可能顯示出更多或更少的密度或“擁擠”,因此需要使用適當的聚類方法來分析這些數據。[這篇文章](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)展示了使用 K-Means 聚類與 HDBSCAN 算法探索具有不均勻聚類密度的噪聲數據集的區別。
+
+## 聚類算法
+
+有超過 100 種聚類算法,其使用取決於手頭數據的性質。讓我們討論一些主要的算法:
+
+- **層次聚類**。如果物品是根據其與附近物品的接近程度而分類,而不是與更遠的物品,聚類是基於其成員與其他物品的距離形成的。Scikit-learn 的凝聚聚類是層次聚類。
+
+ 
+ > 信息圖由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供
+
+- **中心點聚類**。這種流行的算法需要選擇“k”,即要形成的聚類數量,然後算法確定聚類的中心點並圍繞該點收集數據。[K-means 聚類](https://wikipedia.org/wiki/K-means_clustering)是中心點聚類的一個流行版本。中心點由最近的平均值確定,因此得名。聚類的平方距離被最小化。
+
+ 
+ > 信息圖由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供
+
+- **基於分佈的聚類**。基於統計建模,基於分佈的聚類集中於確定數據點屬於某個聚類的概率,並據此分配。高斯混合方法屬於此類。
+
+- **基於密度的聚類**。數據點根據其密度或圍繞彼此的分組分配到聚類中。遠離群體的數據點被認為是異常值或噪聲。DBSCAN、Mean-shift 和 OPTICS 屬於此類聚類。
+
+- **基於網格的聚類**。對於多維數據集,創建一個網格,並將數據分配到網格的單元中,從而創建聚類。
+
+## 練習 - 聚類你的數據
+
+聚類作為一種技術在適當的可視化支持下效果更佳,因此讓我們開始可視化我們的音樂數據。這個練習將幫助我們決定針對這些數據的性質最有效使用哪種聚類方法。
+
+1. 打開此文件夾中的 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb)。
+
+1. 導入 `Seaborn` 套件以進行良好的數據可視化。
+
+ ```python
+ !pip install seaborn
+ ```
+
+1. 從 [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv) 附加歌曲數據。使用一些關於歌曲的數據加載一個數據框。通過導入庫並輸出數據準備探索這些數據:
+
+ ```python
+ import matplotlib.pyplot as plt
+ import pandas as pd
+
+ df = pd.read_csv("../data/nigerian-songs.csv")
+ df.head()
+ ```
+
+ 查看數據的前幾行:
+
+ | | name | album | artist | artist_top_genre | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature |
+ | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- |
+ | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 |
+ | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 |
+| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 |
+| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 |
+| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 |
+
+1. 獲取數據框的基本信息,使用 `info()`:
+
+ ```python
+ df.info()
+ ```
+
+ 輸出如下所示:
+
+ ```output
+
+ RangeIndex: 530 entries, 0 to 529
+ Data columns (total 16 columns):
+ # Column Non-Null Count Dtype
+ --- ------ -------------- -----
+ 0 name 530 non-null object
+ 1 album 530 non-null object
+ 2 artist 530 non-null object
+ 3 artist_top_genre 530 non-null object
+ 4 release_date 530 non-null int64
+ 5 length 530 non-null int64
+ 6 popularity 530 non-null int64
+ 7 danceability 530 non-null float64
+ 8 acousticness 530 non-null float64
+ 9 energy 530 non-null float64
+ 10 instrumentalness 530 non-null float64
+ 11 liveness 530 non-null float64
+ 12 loudness 530 non-null float64
+ 13 speechiness 530 non-null float64
+ 14 tempo 530 non-null float64
+ 15 time_signature 530 non-null int64
+ dtypes: float64(8), int64(4), object(4)
+ memory usage: 66.4+ KB
+ ```
+
+1. 使用 `isnull()` 並驗證總和為 0,檢查是否有空值:
+
+ ```python
+ df.isnull().sum()
+ ```
+
+ 看起來不錯:
+
+ ```output
+ name 0
+ album 0
+ artist 0
+ artist_top_genre 0
+ release_date 0
+ length 0
+ popularity 0
+ danceability 0
+ acousticness 0
+ energy 0
+ instrumentalness 0
+ liveness 0
+ loudness 0
+ speechiness 0
+ tempo 0
+ time_signature 0
+ dtype: int64
+ ```
+
+1. 描述數據:
+
+ ```python
+ df.describe()
+ ```
+
+ | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature |
+ | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- |
+ | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 |
+ | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 |
+ | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 |
+ | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 |
+ | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 |
+ | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 |
+ | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 |
+ | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 |
+
+> 🤔 如果我們正在使用聚類這種不需要標籤數據的無監督方法,為什麼還要展示帶有標籤的數據?在數據探索階段,標籤很有用,但對於聚類算法來說並非必要。你完全可以移除列標題,並通過列號來引用數據。
+
+查看數據的一般值。注意,流行度可以是 "0",這表示歌曲沒有排名。我們稍後會移除這些數據。
+
+1. 使用條形圖找出最流行的音樂類型:
+
+ ```python
+ import seaborn as sns
+
+ top = df['artist_top_genre'].value_counts()
+ plt.figure(figsize=(10,7))
+ sns.barplot(x=top[:5].index,y=top[:5].values)
+ plt.xticks(rotation=45)
+ plt.title('Top genres',color = 'blue')
+ ```
+
+ 
+
+✅ 如果想查看更多的前幾名數據,可以將 `[:5]` 改為更大的值,或者移除它以查看所有數據。
+
+注意,當最流行的音樂類型被描述為 "Missing" 時,這表示 Spotify 沒有對其進行分類,因此我們需要移除它。
+
+1. 通過篩選移除缺失數據:
+
+ ```python
+ df = df[df['artist_top_genre'] != 'Missing']
+ top = df['artist_top_genre'].value_counts()
+ plt.figure(figsize=(10,7))
+ sns.barplot(x=top.index,y=top.values)
+ plt.xticks(rotation=45)
+ plt.title('Top genres',color = 'blue')
+ ```
+
+ 現在重新檢查音樂類型:
+
+ 
+
+1. 顯然,前三大音樂類型在這個數據集中占主導地位。我們將集中研究 `afro dancehall`、`afropop` 和 `nigerian pop`,並進一步篩選數據,移除流行度值為 0 的數據(這表示該數據集未對其進行流行度分類,對我們的目的來說可以視為噪音):
+
+ ```python
+ df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]
+ df = df[(df['popularity'] > 0)]
+ top = df['artist_top_genre'].value_counts()
+ plt.figure(figsize=(10,7))
+ sns.barplot(x=top.index,y=top.values)
+ plt.xticks(rotation=45)
+ plt.title('Top genres',color = 'blue')
+ ```
+
+1. 快速測試數據是否有特別強的相關性:
+
+ ```python
+ corrmat = df.corr(numeric_only=True)
+ f, ax = plt.subplots(figsize=(12, 9))
+ sns.heatmap(corrmat, vmax=.8, square=True)
+ ```
+
+ 
+
+ 唯一的強相關性是 `energy` 和 `loudness` 之間,這並不令人驚訝,因為響亮的音樂通常非常有活力。除此之外,相關性相對較弱。看看聚類算法如何處理這些數據會很有趣。
+
+ > 🎓 注意,相關性並不意味著因果關係!我們有相關性的證據,但沒有因果關係的證據。一個[有趣的網站](https://tylervigen.com/spurious-correlations)提供了一些視覺化內容,強調了這一點。
+
+在這個數據集中,歌曲的流行度和舞蹈性是否有任何收斂?FacetGrid 顯示無論音樂類型如何,都有一些同心圓排列。是否可能是尼日利亞的品味在這些音樂類型中收斂於某個舞蹈性水平?
+
+✅ 嘗試不同的數據點(例如 energy、loudness、speechiness)以及更多或不同的音樂類型。你能發現什麼?查看 `df.describe()` 表格以了解數據點的一般分佈。
+
+### 練習 - 數據分佈
+
+這三種音樂類型在流行度和舞蹈性方面的感知是否有顯著差異?
+
+1. 檢查我們前三大音樂類型在流行度和舞蹈性上的數據分佈,沿著給定的 x 和 y 軸。
+
+ ```python
+ sns.set_theme(style="ticks")
+
+ g = sns.jointplot(
+ data=df,
+ x="popularity", y="danceability", hue="artist_top_genre",
+ kind="kde",
+ )
+ ```
+
+ 你可以發現圍繞一般收斂點的同心圓,顯示數據分佈。
+
+ > 🎓 注意,此示例使用了 KDE(核密度估計)圖,該圖使用連續概率密度曲線表示數據。這使我們在處理多個分佈時能夠解釋數據。
+
+ 總的來說,這三種音樂類型在流行度和舞蹈性方面大致對齊。要在這些大致對齊的數據中確定聚類將是一個挑戰:
+
+ 
+
+1. 創建散點圖:
+
+ ```python
+ sns.FacetGrid(df, hue="artist_top_genre", height=5) \
+ .map(plt.scatter, "popularity", "danceability") \
+ .add_legend()
+ ```
+
+ 同一軸上的散點圖顯示了類似的收斂模式
+
+ 
+
+總的來說,對於聚類,你可以使用散點圖來顯示數據的聚類,因此掌握這種可視化方法非常有用。在下一課中,我們將使用 k-means 聚類來探索這些數據中有趣的重疊群組。
+
+---
+
+## 🚀挑戰
+
+為下一課做準備,製作一張關於你可能在生產環境中發現並使用的各種聚類算法的圖表。聚類試圖解決什麼樣的問題?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在應用聚類算法之前,正如我們所學,了解數據集的性質是個好主意。閱讀更多相關內容:[這裡](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)
+
+[這篇有用的文章](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) 介紹了不同聚類算法在不同數據形狀下的行為。
+
+## 作業
+
+[研究其他聚類的可視化方法](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/assignment.md b/translations/zh-HK/5-Clustering/1-Visualize/assignment.md
new file mode 100644
index 000000000..de810817e
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/assignment.md
@@ -0,0 +1,16 @@
+# 研究其他聚類的視覺化方法
+
+## 指引
+
+在這節課中,你已經學習了一些視覺化技術,以便在進行聚類之前繪製你的數據。散點圖特別有助於尋找物件的群組。請研究不同的方法和不同的庫來創建散點圖,並在筆記本中記錄你的研究成果。你可以使用本課的數據、其他課程的數據,或者自己找到的數據(請在筆記本中標註其來源)。使用散點圖繪製一些數據,並解釋你發現了什麼。
+
+## 評分標準
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| -------- | ------------------------------------------------------------ | ---------------------------------------------------------------------------------------- | ----------------------------------- |
+| | 提交了一個包含五個詳細記錄的散點圖的筆記本 | 提交了一個包含少於五個散點圖且記錄不夠詳細的筆記本 | 提交了一個不完整的筆記本 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/notebook.ipynb b/translations/zh-HK/5-Clustering/1-Visualize/notebook.ipynb
new file mode 100644
index 000000000..184fecf3f
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/notebook.ipynb
@@ -0,0 +1,50 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95",
+ "display_name": "Python 3.8.3 64-bit (conda)"
+ },
+ "coopTranslator": {
+ "original_hash": "40e0707e96b3e1899a912776006264f9",
+ "translation_date": "2025-09-03T20:01:51+00:00",
+ "source_file": "5-Clustering/1-Visualize/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/zh-HK/5-Clustering/1-Visualize/solution/Julia/README.md
new file mode 100644
index 000000000..d3e552d9c
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/zh-HK/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb
new file mode 100644
index 000000000..a99198e62
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb
@@ -0,0 +1,493 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## **從 Spotify 擷取的尼日利亞音樂分析**\n",
+ "\n",
+ "聚類是一種[無監督學習](https://wikipedia.org/wiki/Unsupervised_learning)方法,假設數據集是未標籤的,或者其輸入未與預定義的輸出匹配。它使用各種算法來整理未標籤的數據,並根據數據中辨識出的模式進行分組。\n",
+ "\n",
+ "[**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n",
+ "\n",
+ "### **簡介**\n",
+ "\n",
+ "[聚類](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)在數據探索中非常有用。讓我們看看它是否能幫助發現尼日利亞觀眾消費音樂的趨勢和模式。\n",
+ "\n",
+ "> ✅ 花一分鐘思考一下聚類的用途。在日常生活中,聚類就像你有一堆洗好的衣服,需要將家人不同的衣物分類 🧦👕👖🩲。在數據科學中,聚類發生在分析用戶偏好或確定任何未標籤數據集的特徵時。聚類在某種程度上幫助我們從混亂中找到秩序,就像整理襪子抽屜一樣。\n",
+ "\n",
+ "在專業環境中,聚類可以用於確定市場細分,例如確定哪些年齡段購買哪些商品。另一個用途是異常檢測,例如從信用卡交易數據集中檢測欺詐行為。或者,你可以用聚類來分析一批醫學掃描中的腫瘤。\n",
+ "\n",
+ "✅ 花一分鐘思考一下你在銀行業、電子商務或商業環境中可能遇到過的聚類。\n",
+ "\n",
+ "> 🎓 有趣的是,聚類分析起源於1930年代的人類學和心理學領域。你能想像它可能是如何被使用的嗎?\n",
+ "\n",
+ "此外,你可以用它來分組搜索結果,例如購物鏈接、圖片或評論。當你有一個大型數據集需要縮減並進行更細緻的分析時,聚類技術非常有用,因此它可以在構建其他模型之前幫助了解數據。\n",
+ "\n",
+ "✅ 一旦你的數據被組織成聚類,你可以為其分配一個聚類 ID。這種技術在保護數據集隱私時非常有用;你可以用聚類 ID 而不是更具識別性的數據來引用數據點。你能想到其他使用聚類 ID 而不是聚類中其他元素來識別它的原因嗎?\n",
+ "\n",
+ "### 聚類入門\n",
+ "\n",
+ "> 🎓 我們如何創建聚類與我們如何將數據點分組有很大關係。讓我們解釋一些術語:\n",
+ ">\n",
+ "> 🎓 ['Transductive' vs. 'inductive'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n",
+ ">\n",
+ "> Transductive 推理是從觀察到的訓練案例中得出的,這些案例映射到特定的測試案例。Inductive 推理是從訓練案例中得出的,這些案例映射到一般規則,然後才應用於測試案例。\n",
+ ">\n",
+ "> 舉個例子:假設你有一個部分標籤的數據集。一些是“唱片”,一些是“CD”,還有一些是空白的。你的任務是為空白部分提供標籤。如果你選擇 Inductive 方法,你會訓練一個模型尋找“唱片”和“CD”,並將這些標籤應用於未標籤數據。這種方法可能難以分類實際是“磁帶”的東西。而 Transductive 方法則更有效地處理這些未知數據,因為它努力將相似的項目分組,然後為整個組分配一個標籤。在這種情況下,聚類可能反映“圓形音樂物品”和“方形音樂物品”。\n",
+ ">\n",
+ "> 🎓 ['Non-flat' vs. 'flat' geometry](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n",
+ ">\n",
+ "> 源自數學術語,Non-flat 和 Flat 幾何指的是通過“平面”([歐幾里得](https://wikipedia.org/wiki/Euclidean_geometry))或“非平面”(非歐幾里得)幾何方法測量點之間的距離。\n",
+ ">\n",
+ "> 在這裡,“平面”指的是歐幾里得幾何(部分被教為“平面幾何”),而“非平面”指的是非歐幾里得幾何。幾何與機器學習有什麼關係?作為兩個根植於數學的領域,必須有一種通用的方法來測量聚類中點之間的距離,這可以根據數據的性質以“平面”或“非平面”的方式完成。[歐幾里得距離](https://wikipedia.org/wiki/Euclidean_distance)是通過兩點之間線段的長度來測量的。[非歐幾里得距離](https://wikipedia.org/wiki/Non-Euclidean_geometry)則沿曲線測量。如果你的數據在可視化時似乎不在平面上,你可能需要使用專門的算法來處理它。\n",
+ "\n",
+ "\n",
+ " \n",
+ " Dasani Madipalli 的信息圖 \n",
+ "\n",
+ "> 🎓 ['Distances'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n",
+ ">\n",
+ "> 聚類由其距離矩陣定義,例如點之間的距離。這些距離可以通過幾種方式測量。歐幾里得聚類由點值的平均值定義,並包含一個“中心點”。距離因此通過到該中心點的距離來測量。非歐幾里得距離指的是“聚類中心”,即最接近其他點的點。聚類中心可以通過多種方式定義。\n",
+ ">\n",
+ "> 🎓 ['Constrained'](https://wikipedia.org/wiki/Constrained_clustering)\n",
+ ">\n",
+ "> [約束聚類](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)在這種無監督方法中引入了“半監督”學習。點之間的關係被標記為“不能鏈接”或“必須鏈接”,因此對數據集施加了一些規則。\n",
+ ">\n",
+ "> 舉個例子:如果一個算法在一批未標籤或半標籤數據上自由運行,它生成的聚類可能質量較差。在上述例子中,聚類可能將“圓形音樂物品”、“方形音樂物品”、“三角形物品”和“餅乾”分組。如果給出一些約束或規則(例如“物品必須是塑料製成的”、“物品需要能夠產生音樂”),這可以幫助“約束”算法做出更好的選擇。\n",
+ ">\n",
+ "> 🎓 'Density'\n",
+ ">\n",
+ "> 被認為“噪聲多”的數據被視為“密集”。其聚類中的點之間的距離可能在檢查時顯示為更密集或更稀疏,因此需要使用適當的聚類方法來分析這些數據。[這篇文章](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)展示了使用 K-Means 聚類與 HDBSCAN 算法探索具有不均勻聚類密度的噪聲數據集的區別。\n",
+ "\n",
+ "在這個[學習模組](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)中深入了解聚類技術。\n",
+ "\n",
+ "### **聚類算法**\n",
+ "\n",
+ "有超過100種聚類算法,其使用取決於手頭數據的性質。讓我們討論一些主要的算法:\n",
+ "\n",
+ "- **層次聚類**。如果一個物品是通過其與附近物品的接近程度而被分類,而不是與更遠的物品,聚類是基於其成員與其他物品的距離形成的。層次聚類的特點是反覆合併兩個聚類。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " Dasani Madipalli 的信息圖 \n",
+ "\n",
+ "- **中心點聚類**。這種流行的算法需要選擇“k”,即要形成的聚類數量,之後算法確定聚類的中心點並圍繞該點收集數據。[K-means 聚類](https://wikipedia.org/wiki/K-means_clustering)是中心點聚類的一種流行版本,它將數據集分成預定義的 K 組。中心點由最近的平均值確定,因此得名。聚類的平方距離被最小化。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " Dasani Madipalli 的信息圖 \n",
+ "\n",
+ "- **基於分佈的聚類**。基於統計建模,分佈式聚類集中於確定數據點屬於某個聚類的概率,並據此分配。高斯混合方法屬於這種類型。\n",
+ "\n",
+ "- **基於密度的聚類**。數據點根據其密度或彼此之間的分組被分配到聚類中。遠離群體的數據點被視為異常值或噪聲。DBSCAN、Mean-shift 和 OPTICS 屬於這種類型的聚類。\n",
+ "\n",
+ "- **基於網格的聚類**。對於多維數據集,創建一個網格,並將數據分配到網格的單元中,從而形成聚類。\n",
+ "\n",
+ "學習聚類的最佳方式是親自嘗試,因此你將在這個練習中進行操作。\n",
+ "\n",
+ "我們需要一些套件來完成這個模組。你可以通過以下方式安裝它們:`install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n",
+ "\n",
+ "或者,下面的腳本會檢查你是否擁有完成此模組所需的套件,並在缺少某些套件時為你安裝它們。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n",
+ "\r\n",
+ "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 練習 - 將你的數據進行分群\n",
+ "\n",
+ "分群是一種技術,透過適當的視覺化可以大大提升效果,因此讓我們從視覺化音樂數據開始吧。這個練習將幫助我們決定哪種分群方法最適合用於這些數據的特性。\n",
+ "\n",
+ "讓我們立即開始,先導入數據。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Load the core tidyverse and make it available in your current R session\r\n",
+ "library(tidyverse)\r\n",
+ "\r\n",
+ "# Import the data into a tibble\r\n",
+ "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n",
+ "\r\n",
+ "# View the first 5 rows of the data set\r\n",
+ "df %>% \r\n",
+ " slice_head(n = 5)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "有時候,我們可能想要更深入了解我們的數據。我們可以使用 [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 函數來查看 `數據` 和 `其結構`:\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Glimpse into the data set\r\n",
+ "df %>% \r\n",
+ " glimpse()\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "做得好!💪\n",
+ "\n",
+ "我們可以看到 `glimpse()` 會提供總行數(觀察值)和列數(變數),然後在變數名稱後面顯示每個變數的前幾個條目。此外,變數的*數據類型*會在每個變數名稱後面以 `< >` 的形式直接顯示。\n",
+ "\n",
+ "`DataExplorer::introduce()` 可以整齊地總結這些信息:\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Describe basic information for our data\r\n",
+ "df %>% \r\n",
+ " introduce()\r\n",
+ "\r\n",
+ "# A visual display of the same\r\n",
+ "df %>% \r\n",
+ " plot_intro()\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "太棒了!我們剛剛了解到我們的數據沒有缺失值。\n",
+ "\n",
+ "既然如此,我們可以探索一些常見的集中趨勢統計(例如 [平均值](https://en.wikipedia.org/wiki/Arithmetic_mean) 和 [中位數](https://en.wikipedia.org/wiki/Median))以及分散程度的測量(例如 [標準差](https://en.wikipedia.org/wiki/Standard_deviation)),使用 `summarytools::descr()`。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Describe common statistics\r\n",
+ "df %>% \r\n",
+ " descr(stats = \"common\")\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "讓我們來看看數據的一般值。請注意,流行度可以是 `0`,這表示歌曲沒有排名。我們稍後會移除這些。\n",
+ "\n",
+ "> 🤔 如果我們正在使用聚類,一種不需要標籤數據的無監督方法,為什麼我們要展示這些帶有標籤的數據呢?在數據探索階段,這些標籤非常有用,但它們並不是聚類算法運作所必需的。\n",
+ "\n",
+ "### 1. 探索流行的音樂類型\n",
+ "\n",
+ "讓我們繼續找出最流行的音樂類型 🎶,方法是統計它出現的次數。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Popular genres\r\n",
+ "top_genres <- df %>% \r\n",
+ " count(artist_top_genre, sort = TRUE) %>% \r\n",
+ "# Encode to categorical and reorder the according to count\r\n",
+ " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n",
+ "\r\n",
+ "# Print the top genres\r\n",
+ "top_genres\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "事情進展得不錯!有人說一張圖片勝過數千行數據框(其實沒人真的這樣說過 😅)。但你明白我的意思吧?\n",
+ "\n",
+ "視覺化分類數據(字符或因子變量)的一種方法是使用柱狀圖。讓我們製作一個前10大類型的柱狀圖:\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Change the default gray theme\r\n",
+ "theme_set(theme_light())\r\n",
+ "\r\n",
+ "# Visualize popular genres\r\n",
+ "top_genres %>%\r\n",
+ " slice(1:10) %>% \r\n",
+ " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n",
+ " fill = artist_top_genre)) +\r\n",
+ " geom_col(alpha = 0.8) +\r\n",
+ " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n",
+ " ggtitle(\"Top genres\") +\r\n",
+ " theme(plot.title = element_text(hjust = 0.5),\r\n",
+ " # Rotates the X markers (so we can read them)\r\n",
+ " axis.text.x = element_text(angle = 90))\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "現在更容易辨認出我們有「缺失」的音樂類型 🧐!\n",
+ "\n",
+ "> 一個好的視覺化能讓你發現意想不到的事情,或者對數據提出新的問題 —— Hadley Wickham 和 Garrett Grolemund,《R For Data Science》([R For Data Science](https://r4ds.had.co.nz/introduction.html))\n",
+ "\n",
+ "注意,當主要音樂類型被描述為「缺失」時,這表示 Spotify 沒有對其進行分類,所以我們應該將它移除。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Visualize popular genres\r\n",
+ "top_genres %>%\r\n",
+ " filter(artist_top_genre != \"Missing\") %>% \r\n",
+ " slice(1:10) %>% \r\n",
+ " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n",
+ " fill = artist_top_genre)) +\r\n",
+ " geom_col(alpha = 0.8) +\r\n",
+ " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n",
+ " ggtitle(\"Top genres\") +\r\n",
+ " theme(plot.title = element_text(hjust = 0.5),\r\n",
+ " # Rotates the X markers (so we can read them)\r\n",
+ " axis.text.x = element_text(angle = 90))\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "從初步的數據探索中,我們了解到前三大音樂類型在這個數據集中占主導地位。我們將重點放在 `afro dancehall`、`afropop` 和 `nigerian pop` 上,並進一步篩選數據集,移除任何人氣值為 0 的項目(這意味著它在數據集中未被分類為有人氣,可以視為對我們目的而言的噪音):\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "nigerian_songs <- df %>% \r\n",
+ " # Concentrate on top 3 genres\r\n",
+ " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n",
+ " # Remove unclassified observations\r\n",
+ " filter(popularity != 0)\r\n",
+ "\r\n",
+ "\r\n",
+ "\r\n",
+ "# Visualize popular genres\r\n",
+ "nigerian_songs %>%\r\n",
+ " count(artist_top_genre) %>%\r\n",
+ " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n",
+ " fill = artist_top_genre)) +\r\n",
+ " geom_col(alpha = 0.8) +\r\n",
+ " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n",
+ " ggtitle(\"Top genres\") +\r\n",
+ " theme(plot.title = element_text(hjust = 0.5))\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "讓我們看看數據集中數值變量之間是否存在明顯的線性關係。這種關係可以通過[相關係數](https://en.wikipedia.org/wiki/Correlation)來進行數學量化。\n",
+ "\n",
+ "相關係數是一個介於 -1 和 1 之間的值,用於表示關係的強度。大於 0 的值表示*正相關*(一個變量的高值往往與另一個變量的高值同時出現),而小於 0 的值表示*負相關*(一個變量的高值往往與另一個變量的低值同時出現)。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Narrow down to numeric variables and fid correlation\r\n",
+ "corr_mat <- nigerian_songs %>% \r\n",
+ " select(where(is.numeric)) %>% \r\n",
+ " cor()\r\n",
+ "\r\n",
+ "# Visualize correlation matrix\r\n",
+ "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "數據之間的相關性並不強,除了 `energy` 和 `loudness` 之間的關係較為明顯,這是合理的,因為嘈吵的音樂通常更有活力。`Popularity` 與 `release date` 也有一定的關聯,這也合理,因為較新的歌曲可能更受歡迎。`Length` 和 `energy` 似乎也有一定的相關性。\n",
+ "\n",
+ "這些數據交給聚類算法分析可能會很有趣!\n",
+ "\n",
+ "> 🎓 請注意,相關性並不代表因果關係!我們有相關性的證據,但沒有因果關係的證據。一個[有趣的網站](https://tylervigen.com/spurious-correlations)提供了一些視覺化例子來強調這一點。\n",
+ "\n",
+ "### 2. 探索數據分佈\n",
+ "\n",
+ "讓我們提出一些更微妙的問題。不同的音樂類型在其舞蹈性上的感知是否因其受歡迎程度而顯著不同?讓我們使用[密度圖](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves)來檢視我們前三大音樂類型在受歡迎程度和舞蹈性上的數據分佈,沿著給定的 x 和 y 軸進行分析。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# Perform 2D kernel density estimation\r\n",
+ "density_estimate_2d <- nigerian_songs %>% \r\n",
+ " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n",
+ " geom_density_2d(bins = 5, size = 1) +\r\n",
+ " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n",
+ " xlim(-20, 80) +\r\n",
+ " ylim(0, 1.2)\r\n",
+ "\r\n",
+ "# Density plot based on the popularity\r\n",
+ "density_estimate_pop <- nigerian_songs %>% \r\n",
+ " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n",
+ " geom_density(size = 1, alpha = 0.5) +\r\n",
+ " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n",
+ " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n",
+ " theme(legend.position = \"none\")\r\n",
+ "\r\n",
+ "# Density plot based on the danceability\r\n",
+ "density_estimate_dance <- nigerian_songs %>% \r\n",
+ " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n",
+ " geom_density(size = 1, alpha = 0.5) +\r\n",
+ " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n",
+ " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n",
+ "\r\n",
+ "\r\n",
+ "# Patch everything together\r\n",
+ "library(patchwork)\r\n",
+ "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "我們可以看到,不論是什麼類型,這些同心圓都能對齊。是否意味著尼日利亞人的喜好在這個類型的某個舞蹈性水平上趨於一致?\n",
+ "\n",
+ "整體來說,這三個類型在受歡迎程度和舞蹈性方面是相符的。要在這些鬆散排列的數據中找出聚類將會是一個挑戰。讓我們看看散點圖是否能提供支持。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [
+ "# A scatter plot of popularity and danceability\r\n",
+ "scatter_plot <- nigerian_songs %>% \r\n",
+ " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n",
+ " geom_point(size = 2, alpha = 0.8) +\r\n",
+ " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n",
+ "\r\n",
+ "# Add a touch of interactivity\r\n",
+ "ggplotly(scatter_plot)\r\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "散佈圖使用相同的坐標軸顯示了類似的收斂模式。\n",
+ "\n",
+ "一般來說,對於分群分析,你可以使用散佈圖來展示數據的群集,因此掌握這種可視化方法非常有用。在下一課中,我們將使用這些篩選後的數據,並利用 k-means 分群法來發現數據中有趣的重疊群組。\n",
+ "\n",
+ "## **🚀 挑戰**\n",
+ "\n",
+ "為了準備下一課,製作一個關於各種分群算法的圖表,這些算法可能會在生產環境中被發現和使用。分群算法試圖解決哪些類型的問題?\n",
+ "\n",
+ "## [**課後測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n",
+ "\n",
+ "## **回顧與自學**\n",
+ "\n",
+ "在應用分群算法之前,正如我們所學的,了解數據集的特性是個好主意。你可以在[這裡](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)閱讀更多相關內容。\n",
+ "\n",
+ "加深你對分群技術的理解:\n",
+ "\n",
+ "- [使用 Tidymodels 和相關工具訓練及評估分群模型](https://rpubs.com/eR_ic/clustering)\n",
+ "\n",
+ "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n",
+ "\n",
+ "## **作業**\n",
+ "\n",
+ "[研究其他分群的可視化方法](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n",
+ "\n",
+ "## 特別感謝:\n",
+ "\n",
+ "[Jen Looper](https://www.twitter.com/jenlooper) 創建了這個模組的原始 Python 版本 ♥️\n",
+ "\n",
+ "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) 創作了令人驚嘆的插圖,使機器學習概念更易於理解。\n",
+ "\n",
+ "祝學習愉快,\n",
+ "\n",
+ "[Eric](https://twitter.com/ericntay),Gold Microsoft Learn 學生大使。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": "",
+ "kernelspec": {
+ "display_name": "R",
+ "language": "R",
+ "name": "ir"
+ },
+ "language_info": {
+ "codemirror_mode": "r",
+ "file_extension": ".r",
+ "mimetype": "text/x-r-source",
+ "name": "R",
+ "pygments_lexer": "r",
+ "version": "3.4.1"
+ },
+ "coopTranslator": {
+ "original_hash": "99c36449cad3708a435f6798cfa39972",
+ "translation_date": "2025-09-03T20:08:46+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/zh-HK/5-Clustering/1-Visualize/solution/notebook.ipynb
new file mode 100644
index 000000000..c7f744a90
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/1-Visualize/solution/notebook.ipynb
@@ -0,0 +1,857 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Defaulting to user installation because normal site-packages is not writeable\n",
+ "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n",
+ "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n",
+ "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n",
+ "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n",
+ "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n",
+ "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n",
+ "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n",
+ "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n",
+ "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n",
+ "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n",
+ "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install seaborn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " name \n",
+ " album \n",
+ " artist \n",
+ " artist_top_genre \n",
+ " release_date \n",
+ " length \n",
+ " popularity \n",
+ " danceability \n",
+ " acousticness \n",
+ " energy \n",
+ " instrumentalness \n",
+ " liveness \n",
+ " loudness \n",
+ " speechiness \n",
+ " tempo \n",
+ " time_signature \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Sparky \n",
+ " Mandy & The Jungle \n",
+ " Cruel Santino \n",
+ " alternative r&b \n",
+ " 2019 \n",
+ " 144000 \n",
+ " 48 \n",
+ " 0.666 \n",
+ " 0.8510 \n",
+ " 0.420 \n",
+ " 0.534000 \n",
+ " 0.1100 \n",
+ " -6.699 \n",
+ " 0.0829 \n",
+ " 133.015 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " shuga rush \n",
+ " EVERYTHING YOU HEARD IS TRUE \n",
+ " Odunsi (The Engine) \n",
+ " afropop \n",
+ " 2020 \n",
+ " 89488 \n",
+ " 30 \n",
+ " 0.710 \n",
+ " 0.0822 \n",
+ " 0.683 \n",
+ " 0.000169 \n",
+ " 0.1010 \n",
+ " -5.640 \n",
+ " 0.3600 \n",
+ " 129.993 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " LITT! \n",
+ " LITT! \n",
+ " AYLØ \n",
+ " indie r&b \n",
+ " 2018 \n",
+ " 207758 \n",
+ " 40 \n",
+ " 0.836 \n",
+ " 0.2720 \n",
+ " 0.564 \n",
+ " 0.000537 \n",
+ " 0.1100 \n",
+ " -7.127 \n",
+ " 0.0424 \n",
+ " 130.005 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " Confident / Feeling Cool \n",
+ " Enjoy Your Life \n",
+ " Lady Donli \n",
+ " nigerian pop \n",
+ " 2019 \n",
+ " 175135 \n",
+ " 14 \n",
+ " 0.894 \n",
+ " 0.7980 \n",
+ " 0.611 \n",
+ " 0.000187 \n",
+ " 0.0964 \n",
+ " -4.961 \n",
+ " 0.1130 \n",
+ " 111.087 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " wanted you \n",
+ " rare. \n",
+ " Odunsi (The Engine) \n",
+ " afropop \n",
+ " 2018 \n",
+ " 152049 \n",
+ " 25 \n",
+ " 0.702 \n",
+ " 0.1160 \n",
+ " 0.833 \n",
+ " 0.910000 \n",
+ " 0.3480 \n",
+ " -6.044 \n",
+ " 0.0447 \n",
+ " 105.115 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " name album \\\n",
+ "0 Sparky Mandy & The Jungle \n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "2 LITT! LITT! \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "0 Cruel Santino alternative r&b 2019 144000 48 \n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "2 AYLØ indie r&b 2018 207758 40 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "0 0.0829 133.015 5 \n",
+ "1 0.3600 129.993 3 \n",
+ "2 0.0424 130.005 4 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "獲取有關數據框的資訊\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 530 entries, 0 to 529\n",
+ "Data columns (total 16 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 name 530 non-null object \n",
+ " 1 album 530 non-null object \n",
+ " 2 artist 530 non-null object \n",
+ " 3 artist_top_genre 530 non-null object \n",
+ " 4 release_date 530 non-null int64 \n",
+ " 5 length 530 non-null int64 \n",
+ " 6 popularity 530 non-null int64 \n",
+ " 7 danceability 530 non-null float64\n",
+ " 8 acousticness 530 non-null float64\n",
+ " 9 energy 530 non-null float64\n",
+ " 10 instrumentalness 530 non-null float64\n",
+ " 11 liveness 530 non-null float64\n",
+ " 12 loudness 530 non-null float64\n",
+ " 13 speechiness 530 non-null float64\n",
+ " 14 tempo 530 non-null float64\n",
+ " 15 time_signature 530 non-null int64 \n",
+ "dtypes: float64(8), int64(4), object(4)\n",
+ "memory usage: 66.4+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "name 0\n",
+ "album 0\n",
+ "artist 0\n",
+ "artist_top_genre 0\n",
+ "release_date 0\n",
+ "length 0\n",
+ "popularity 0\n",
+ "danceability 0\n",
+ "acousticness 0\n",
+ "energy 0\n",
+ "instrumentalness 0\n",
+ "liveness 0\n",
+ "loudness 0\n",
+ "speechiness 0\n",
+ "tempo 0\n",
+ "time_signature 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "查看數據的一般值。請注意,受歡迎程度可以是「0」- 並且有許多行具有該值\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " release_date \n",
+ " length \n",
+ " popularity \n",
+ " danceability \n",
+ " acousticness \n",
+ " energy \n",
+ " instrumentalness \n",
+ " liveness \n",
+ " loudness \n",
+ " speechiness \n",
+ " tempo \n",
+ " time_signature \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " 530.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 2015.390566 \n",
+ " 222298.169811 \n",
+ " 17.507547 \n",
+ " 0.741619 \n",
+ " 0.265412 \n",
+ " 0.760623 \n",
+ " 0.016305 \n",
+ " 0.147308 \n",
+ " -4.953011 \n",
+ " 0.130748 \n",
+ " 116.487864 \n",
+ " 3.986792 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 3.131688 \n",
+ " 39696.822259 \n",
+ " 18.992212 \n",
+ " 0.117522 \n",
+ " 0.208342 \n",
+ " 0.148533 \n",
+ " 0.090321 \n",
+ " 0.123588 \n",
+ " 2.464186 \n",
+ " 0.092939 \n",
+ " 23.518601 \n",
+ " 0.333701 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 1998.000000 \n",
+ " 89488.000000 \n",
+ " 0.000000 \n",
+ " 0.255000 \n",
+ " 0.000665 \n",
+ " 0.111000 \n",
+ " 0.000000 \n",
+ " 0.028300 \n",
+ " -19.362000 \n",
+ " 0.027800 \n",
+ " 61.695000 \n",
+ " 3.000000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 2014.000000 \n",
+ " 199305.000000 \n",
+ " 0.000000 \n",
+ " 0.681000 \n",
+ " 0.089525 \n",
+ " 0.669000 \n",
+ " 0.000000 \n",
+ " 0.075650 \n",
+ " -6.298750 \n",
+ " 0.059100 \n",
+ " 102.961250 \n",
+ " 4.000000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 2016.000000 \n",
+ " 218509.000000 \n",
+ " 13.000000 \n",
+ " 0.761000 \n",
+ " 0.220500 \n",
+ " 0.784500 \n",
+ " 0.000004 \n",
+ " 0.103500 \n",
+ " -4.558500 \n",
+ " 0.097950 \n",
+ " 112.714500 \n",
+ " 4.000000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 2017.000000 \n",
+ " 242098.500000 \n",
+ " 31.000000 \n",
+ " 0.829500 \n",
+ " 0.403000 \n",
+ " 0.875750 \n",
+ " 0.000234 \n",
+ " 0.164000 \n",
+ " -3.331000 \n",
+ " 0.177000 \n",
+ " 125.039250 \n",
+ " 4.000000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 2020.000000 \n",
+ " 511738.000000 \n",
+ " 73.000000 \n",
+ " 0.966000 \n",
+ " 0.954000 \n",
+ " 0.995000 \n",
+ " 0.910000 \n",
+ " 0.811000 \n",
+ " 0.582000 \n",
+ " 0.514000 \n",
+ " 206.007000 \n",
+ " 5.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " release_date length popularity danceability acousticness \\\n",
+ "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n",
+ "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n",
+ "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n",
+ "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n",
+ "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n",
+ "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n",
+ "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n",
+ "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n",
+ "\n",
+ " energy instrumentalness liveness loudness speechiness \\\n",
+ "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n",
+ "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n",
+ "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n",
+ "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n",
+ "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n",
+ "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n",
+ "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n",
+ "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n",
+ "\n",
+ " tempo time_signature \n",
+ "count 530.000000 530.000000 \n",
+ "mean 116.487864 3.986792 \n",
+ "std 23.518601 0.333701 \n",
+ "min 61.695000 3.000000 \n",
+ "25% 102.961250 4.000000 \n",
+ "50% 112.714500 4.000000 \n",
+ "75% 125.039250 4.000000 \n",
+ "max 206.007000 5.000000 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import seaborn as sns\n",
+ "\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top[:5].index,y=top[:5].values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 音樂類型分類指南\n",
+ "\n",
+ "## 目錄\n",
+ "- 流行音樂\n",
+ "- 搖滾音樂\n",
+ "- 嘻哈音樂\n",
+ "- 古典音樂\n",
+ "- 電子音樂\n",
+ "- 鄉村音樂\n",
+ "- 爵士音樂\n",
+ "- 藍調音樂\n",
+ "- 雷鬼音樂\n",
+ "\n",
+ "## 流行音樂\n",
+ "流行音樂是一種廣受歡迎的音樂類型,通常具有吸引人的旋律和簡單的歌詞。它涵蓋了多種子類型,例如舞曲和軟搖滾。\n",
+ "\n",
+ "## 搖滾音樂\n",
+ "搖滾音樂以其強烈的節奏和吉他主導的編曲而聞名。子類型包括硬搖滾、重金屬和另類搖滾。\n",
+ "\n",
+ "## 嘻哈音樂\n",
+ "嘻哈音樂起源於街頭文化,通常包括說唱、節奏和打擊樂。它是一種表達個人故事和社會問題的方式。\n",
+ "\n",
+ "## 古典音樂\n",
+ "古典音樂是一種歷史悠久的音樂類型,通常由管弦樂團演奏。著名作曲家包括莫扎特、貝多芬和巴赫。\n",
+ "\n",
+ "## 電子音樂\n",
+ "電子音樂使用電子設備和技術創作,涵蓋了多種子類型,例如浩室音樂和迷幻音樂。\n",
+ "\n",
+ "## 鄉村音樂\n",
+ "鄉村音樂以其敘事性歌詞和簡單的旋律而聞名,通常使用吉他和班卓琴等樂器。\n",
+ "\n",
+ "## 爵士音樂\n",
+ "爵士音樂是一種即興創作的音樂類型,具有複雜的和弦進行和獨特的節奏。\n",
+ "\n",
+ "## 藍調音樂\n",
+ "藍調音樂以其深刻的情感表達和獨特的音階結構而聞名,通常反映生活中的困難和挑戰。\n",
+ "\n",
+ "## 雷鬼音樂\n",
+ "雷鬼音樂起源於牙買加,具有獨特的節奏和社會意識的歌詞。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = df[df['artist_top_genre'] != 'Missing']\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top.index,y=top.values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n",
+ "df = df[(df['popularity'] > 0)]\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top.index,y=top.values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "corrmat = df.corr()\n",
+ "f, ax = plt.subplots(figsize=(12, 9))\n",
+ "sns.heatmap(corrmat, vmax=.8, square=True);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.set_theme(style=\"ticks\")\n",
+ "\n",
+ "# Show the joint distribution using kernel density estimation\n",
+ "g = sns.jointplot(\n",
+ " data=df,\n",
+ " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n",
+ " kind=\"kde\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "一般來說,這三種類型在受歡迎程度和舞蹈性方面是一致的。相同軸的散佈圖顯示了相似的收斂模式。嘗試使用散佈圖檢查每種類型的數據分佈。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n",
+ " warnings.warn(msg, UserWarning)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n",
+ " .map(plt.scatter, \"popularity\", \"danceability\") \\\n",
+ " .add_legend()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.7.0 64-bit ('3.7')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.9"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "c61deff2839902ac8cb4ed411eb10fee",
+ "translation_date": "2025-09-03T20:03:08+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/README.md b/translations/zh-HK/5-Clustering/2-K-Means/README.md
new file mode 100644
index 000000000..c8957db59
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/README.md
@@ -0,0 +1,252 @@
+# K-Means 分群
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+在這節課中,你將學習如何使用 Scikit-learn 和之前導入的尼日利亞音樂數據集來創建分群。我們將介紹 K-Means 分群的基礎知識。請記住,正如你在之前的課程中學到的,分群有很多方法,使用哪種方法取決於你的數據。我們將嘗試 K-Means,因為它是最常見的分群技術。讓我們開始吧!
+
+你將學到的術語:
+
+- Silhouette 分數
+- 肘部法則
+- 慣性
+- 方差
+
+## 介紹
+
+[K-Means 分群](https://wikipedia.org/wiki/K-means_clustering) 是一種源自信號處理領域的方法。它用於將數據分組並劃分為 'k' 個分群,通過一系列觀測來完成。每次觀測都會將數據點分配到距離最近的 '均值' 或分群的中心點。
+
+分群可以被視覺化為 [Voronoi 圖](https://wikipedia.org/wiki/Voronoi_diagram),其中包括一個點(或“種子”)及其對應的區域。
+
+
+
+> 信息圖由 [Jen Looper](https://twitter.com/jenlooper) 提供
+
+K-Means 分群過程[通過三步流程執行](https://scikit-learn.org/stable/modules/clustering.html#k-means):
+
+1. 演算法通過從數據集中抽樣選擇 k 個中心點。接著進行迴圈:
+ 1. 將每個樣本分配到最近的中心點。
+ 2. 通過計算分配到之前中心點的所有樣本的平均值來創建新的中心點。
+ 3. 計算新舊中心點之間的差異,並重複直到中心點穩定。
+
+使用 K-Means 的一個缺點是需要確定 'k',即中心點的數量。幸運的是,“肘部法則”可以幫助估算 'k' 的良好起始值。你將很快嘗試它。
+
+## 前置條件
+
+你將在本課的 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) 文件中工作,其中包括你在上一課中完成的數據導入和初步清理。
+
+## 練習 - 準備工作
+
+首先再次查看歌曲數據。
+
+1. 為每一列調用 `boxplot()` 創建一個箱型圖:
+
+ ```python
+ plt.figure(figsize=(20,20), dpi=200)
+
+ plt.subplot(4,3,1)
+ sns.boxplot(x = 'popularity', data = df)
+
+ plt.subplot(4,3,2)
+ sns.boxplot(x = 'acousticness', data = df)
+
+ plt.subplot(4,3,3)
+ sns.boxplot(x = 'energy', data = df)
+
+ plt.subplot(4,3,4)
+ sns.boxplot(x = 'instrumentalness', data = df)
+
+ plt.subplot(4,3,5)
+ sns.boxplot(x = 'liveness', data = df)
+
+ plt.subplot(4,3,6)
+ sns.boxplot(x = 'loudness', data = df)
+
+ plt.subplot(4,3,7)
+ sns.boxplot(x = 'speechiness', data = df)
+
+ plt.subplot(4,3,8)
+ sns.boxplot(x = 'tempo', data = df)
+
+ plt.subplot(4,3,9)
+ sns.boxplot(x = 'time_signature', data = df)
+
+ plt.subplot(4,3,10)
+ sns.boxplot(x = 'danceability', data = df)
+
+ plt.subplot(4,3,11)
+ sns.boxplot(x = 'length', data = df)
+
+ plt.subplot(4,3,12)
+ sns.boxplot(x = 'release_date', data = df)
+ ```
+
+ 這些數據有點雜亂:通過觀察每一列的箱型圖,你可以看到異常值。
+
+ 
+
+ 你可以遍歷數據集並移除這些異常值,但這樣會使數據變得非常少。
+
+1. 現在選擇你將用於分群練習的列。選擇範圍相似的列,並將 `artist_top_genre` 列編碼為數值數據:
+
+ ```python
+ from sklearn.preprocessing import LabelEncoder
+ le = LabelEncoder()
+
+ X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]
+
+ y = df['artist_top_genre']
+
+ X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])
+
+ y = le.transform(y)
+ ```
+
+1. 現在你需要選擇目標分群的數量。你知道數據集中有 3 個歌曲類型,因此我們嘗試 3:
+
+ ```python
+ from sklearn.cluster import KMeans
+
+ nclusters = 3
+ seed = 0
+
+ km = KMeans(n_clusters=nclusters, random_state=seed)
+ km.fit(X)
+
+ # Predict the cluster for each data point
+
+ y_cluster_kmeans = km.predict(X)
+ y_cluster_kmeans
+ ```
+
+你會看到一個陣列,列印出每行數據框的預測分群(0、1 或 2)。
+
+1. 使用此陣列計算 'Silhouette 分數':
+
+ ```python
+ from sklearn import metrics
+ score = metrics.silhouette_score(X, y_cluster_kmeans)
+ score
+ ```
+
+## Silhouette 分數
+
+尋找接近 1 的 Silhouette 分數。此分數範圍從 -1 到 1,如果分數為 1,則分群密集且與其他分群分離良好。接近 0 的值表示分群重疊,樣本非常接近鄰近分群的決策邊界。[(來源)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)
+
+我們的分數是 **0.53**,介於中間。這表明我們的數據不太適合這種分群,但我們繼續。
+
+### 練習 - 建立模型
+
+1. 導入 `KMeans` 並開始分群過程。
+
+ ```python
+ from sklearn.cluster import KMeans
+ wcss = []
+
+ for i in range(1, 11):
+ kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
+ kmeans.fit(X)
+ wcss.append(kmeans.inertia_)
+
+ ```
+
+ 這裡有幾個部分需要解釋。
+
+ > 🎓 range:這是分群過程的迭代次數
+
+ > 🎓 random_state:"決定中心點初始化的隨機數生成。" [來源](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans)
+
+ > 🎓 WCSS:"分群內平方和" 測量分群內所有點到分群中心點的平均平方距離。[來源](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce)
+
+ > 🎓 慣性:K-Means 演算法試圖選擇中心點以最小化“慣性”,“慣性是分群內部一致性的度量。” [來源](https://scikit-learn.org/stable/modules/clustering.html)。該值在每次迭代中附加到 wcss 變數。
+
+ > 🎓 k-means++:在 [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) 中,你可以使用 'k-means++' 優化,它“初始化中心點,使它們(通常)彼此距離較遠,從而可能比隨機初始化獲得更好的結果。”
+
+### 肘部法則
+
+之前,你推測因為你目標是 3 個歌曲類型,所以應選擇 3 個分群。但真的是這樣嗎?
+
+1. 使用“肘部法則”確認。
+
+ ```python
+ plt.figure(figsize=(10,5))
+ sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red')
+ plt.title('Elbow')
+ plt.xlabel('Number of clusters')
+ plt.ylabel('WCSS')
+ plt.show()
+ ```
+
+ 使用你在上一步中建立的 `wcss` 變數創建一個圖表,顯示肘部的“彎曲”位置,這表明最佳分群數量。可能確實是 **3**!
+
+ 
+
+## 練習 - 顯示分群
+
+1. 再次嘗試此過程,這次設置三個分群,並以散點圖顯示分群:
+
+ ```python
+ from sklearn.cluster import KMeans
+ kmeans = KMeans(n_clusters = 3)
+ kmeans.fit(X)
+ labels = kmeans.predict(X)
+ plt.scatter(df['popularity'],df['danceability'],c = labels)
+ plt.xlabel('popularity')
+ plt.ylabel('danceability')
+ plt.show()
+ ```
+
+1. 檢查模型的準確性:
+
+ ```python
+ labels = kmeans.labels_
+
+ correct_labels = sum(y == labels)
+
+ print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size))
+
+ print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))
+ ```
+
+ 此模型的準確性不太好,分群的形狀給了你提示原因。
+
+ 
+
+ 這些數據太不平衡,相關性太低,列值之間的方差太大,無法很好地分群。事實上,形成的分群可能受到我們上面定義的三個類型的影響或偏斜。這是一個學習過程!
+
+ 在 Scikit-learn 的文檔中,你可以看到像這樣的模型,分群劃分不太清晰,存在“方差”問題:
+
+ 
+ > 信息圖來自 Scikit-learn
+
+## 方差
+
+方差被定義為“與平均值的平方差的平均值” [(來源)](https://www.mathsisfun.com/data/standard-deviation.html)。在這個分群問題的背景下,它指的是數據集中數字偏離平均值的程度。
+
+✅ 這是一個很好的時機來思考所有可能的方式來解決這個問題。進一步調整數據?使用不同的列?使用不同的演算法?提示:嘗試[縮放你的數據](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)以進行標準化並測試其他列。
+
+> 試試這個 '[方差計算器](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' 來更好地理解這個概念。
+
+---
+
+## 🚀挑戰
+
+花些時間使用這個 notebook,調整參數。你能通過更多清理數據(例如移除異常值)來提高模型的準確性嗎?你可以使用權重來給某些數據樣本更多的權重。還有什麼方法可以創建更好的分群?
+
+提示:嘗試縮放你的數據。notebook 中有註解的程式碼,添加標準縮放以使數據列在範圍上更接近。你會發現雖然 Silhouette 分數下降了,但肘部圖中的“彎曲”變得更平滑。這是因為未縮放的數據允許方差較小的數據具有更大的權重。閱讀更多關於這個問題的內容[這裡](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+看看一個 K-Means 模擬器[例如這個](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)。你可以使用這個工具來視覺化樣本數據點並確定其中心點。你可以編輯數據的隨機性、分群數量和中心點數量。這是否幫助你更好地理解數據如何分組?
+
+另外,看看 [這份關於 K-Means 的講義](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) 來自斯坦福。
+
+## 作業
+
+[嘗試不同的分群方法](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/assignment.md b/translations/zh-HK/5-Clustering/2-K-Means/assignment.md
new file mode 100644
index 000000000..a7a313144
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/assignment.md
@@ -0,0 +1,16 @@
+# 嘗試不同的分群方法
+
+## 說明
+
+在這節課中,你學習了 K-Means 分群。有時候,K-Means 並不適合你的數據。請建立一個筆記本,使用這些課程中的數據或其他來源的數據(請註明來源),並展示一種不同於 K-Means 的分群方法。你學到了什麼?
+
+## 評分標準
+
+| 評分標準 | 卓越 | 合格 | 需要改進 |
+| -------- | ------------------------------------------------------------ | ---------------------------------------------------------------- | ---------------------------- |
+| | 提交了一個包含詳細記錄的分群模型的筆記本 | 提交了一個筆記本,但記錄不充分和/或不完整 | 提交的作品不完整 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/notebook.ipynb b/translations/zh-HK/5-Clustering/2-K-Means/notebook.ipynb
new file mode 100644
index 000000000..4f2d369b8
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/notebook.ipynb
@@ -0,0 +1,231 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd",
+ "translation_date": "2025-09-03T20:10:20+00:00",
+ "source_file": "5-Clustering/2-K-Means/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n",
+ "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n",
+ "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n",
+ "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n",
+ "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n",
+ "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n",
+ "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n",
+ "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
+ "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install seaborn"
+ ]
+ },
+ {
+ "source": [
+ "從我們上節課結束的地方開始,已經導入並篩選了數據。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "0 Sparky Mandy & The Jungle \n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "2 LITT! LITT! \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "0 Cruel Santino alternative r&b 2019 144000 48 \n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "2 AYLØ indie r&b 2018 207758 40 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "0 0.0829 133.015 5 \n",
+ "1 0.3600 129.993 3 \n",
+ "2 0.0424 130.005 4 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 "
+ ],
+ "text/html": "\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 0 \n Sparky \n Mandy & The Jungle \n Cruel Santino \n alternative r&b \n 2019 \n 144000 \n 48 \n 0.666 \n 0.8510 \n 0.420 \n 0.534000 \n 0.1100 \n -6.699 \n 0.0829 \n 133.015 \n 5 \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 2 \n LITT! \n LITT! \n AYLØ \n indie r&b \n 2018 \n 207758 \n 40 \n 0.836 \n 0.2720 \n 0.564 \n 0.000537 \n 0.1100 \n -7.127 \n 0.0424 \n 130.005 \n 4 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ],
+ "source": [
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "\n",
+ "\n",
+ "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "source": [
+ "我們將只專注於三個類型。也許我們可以建立三個群集!\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n",
+ "df = df[(df['popularity'] > 0)]\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top.index,y=top.values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "5 Kasala Pioneers \n",
+ "6 Pull Up Everything Pretty \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "5 DRB Lasgidi nigerian pop 2020 184800 26 \n",
+ "6 prettyboydo nigerian pop 2018 202648 29 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n",
+ "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "1 0.3600 129.993 3 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 \n",
+ "5 0.1970 100.103 4 \n",
+ "6 0.1990 95.842 4 "
+ ],
+ "text/html": "\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n 5 \n Kasala \n Pioneers \n DRB Lasgidi \n nigerian pop \n 2020 \n 184800 \n 26 \n 0.803 \n 0.1270 \n 0.525 \n 0.000007 \n 0.1290 \n -10.034 \n 0.1970 \n 100.103 \n 4 \n \n \n 6 \n Pull Up \n Everything Pretty \n prettyboydo \n nigerian pop \n 2018 \n 202648 \n 29 \n 0.818 \n 0.4520 \n 0.587 \n 0.004490 \n 0.5900 \n -9.840 \n 0.1990 \n 95.842 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 8
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/zh-HK/5-Clustering/2-K-Means/solution/Julia/README.md
new file mode 100644
index 000000000..549997f17
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/zh-HK/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb
new file mode 100644
index 000000000..f0ac22809
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb
@@ -0,0 +1,639 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "anaconda-cloud": "",
+ "kernelspec": {
+ "display_name": "R",
+ "language": "R",
+ "name": "ir"
+ },
+ "language_info": {
+ "codemirror_mode": "r",
+ "file_extension": ".r",
+ "mimetype": "text/x-r-source",
+ "name": "R",
+ "pygments_lexer": "r",
+ "version": "3.4.1"
+ },
+ "colab": {
+ "name": "lesson_14.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true
+ },
+ "coopTranslator": {
+ "original_hash": "ad65fb4aad0a156b42216e4929f490fc",
+ "translation_date": "2025-09-03T20:18:23+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GULATlQXLXyR"
+ },
+ "source": [
+ "## 使用 R 和 Tidy 數據原則探索 K-Means 分群\n",
+ "\n",
+ "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n",
+ "\n",
+ "在這節課中,你將學習如何使用 Tidymodels 套件以及 R 生態系中的其他套件(我們稱它們為朋友 🧑🤝🧑),並使用你之前匯入的尼日利亞音樂數據集來創建分群。我們將介紹 K-Means 分群的基礎知識。請記住,正如你在之前的課程中學到的,分群有許多不同的方法,而你使用的方法取決於你的數據。我們將嘗試 K-Means,因為它是最常見的分群技術。讓我們開始吧!\n",
+ "\n",
+ "你將學到的術語:\n",
+ "\n",
+ "- Silhouette 評分\n",
+ "\n",
+ "- Elbow 方法\n",
+ "\n",
+ "- Inertia(慣性)\n",
+ "\n",
+ "- Variance(方差)\n",
+ "\n",
+ "### **簡介**\n",
+ "\n",
+ "[K-Means 分群](https://wikipedia.org/wiki/K-means_clustering) 是一種源自信號處理領域的方法。它用於根據特徵的相似性將數據分成 `k 個分群`。\n",
+ "\n",
+ "這些分群可以用 [Voronoi 圖](https://wikipedia.org/wiki/Voronoi_diagram) 來可視化,其中包括一個點(或“種子”)及其對應的區域。\n",
+ "\n",
+ "\n",
+ " \n",
+ " Jen Looper 的資訊圖表 \n",
+ "\n",
+ "K-Means 分群的步驟如下:\n",
+ "\n",
+ "1. 數據科學家首先指定要創建的分群數量。\n",
+ "\n",
+ "2. 接著,算法隨機選擇數據集中的 K 個觀測值作為分群的初始中心(即質心)。\n",
+ "\n",
+ "3. 然後,將其餘的觀測值分配到距離最近的質心。\n",
+ "\n",
+ "4. 接著,計算每個分群的新平均值,並將質心移動到該平均值。\n",
+ "\n",
+ "5. 現在質心已重新計算,每個觀測值再次被檢查是否更接近其他分群。所有對象根據更新的分群平均值重新分配。分群分配和質心更新步驟會反覆進行,直到分群分配不再改變(即達到收斂)。通常,算法在每次新迭代中質心的移動變得微乎其微且分群變得穩定時終止。\n",
+ "\n",
+ "
\n",
+ "\n",
+ "> 請注意,由於初始 k 個觀測值的隨機化,我們每次應用該程序時可能會得到略有不同的結果。因此,大多數算法會使用多次 *隨機起始*,並選擇具有最低 WCSS 的迭代。因此,強烈建議始終使用多個 *nstart* 值運行 K-Means,以避免 *不理想的局部最優解*。\n",
+ "\n",
+ "
\n",
+ "\n",
+ "以下這段短動畫使用 Allison Horst 的 [插畫](https://github.com/allisonhorst/stats-illustrations) 解釋了分群過程:\n",
+ "\n",
+ "\n",
+ " \n",
+ " @allison_horst 的插畫 \n",
+ "\n",
+ "在分群中出現的一個基本問題是:如何知道應將數據分成多少個分群?使用 K-Means 的一個缺點是你需要確定 `k`,即 `質心` 的數量。幸運的是,`elbow 方法` 可以幫助估算一個不錯的起始值。你很快就會試試看。\n",
+ "\n",
+ "### \n",
+ "\n",
+ "**前置條件**\n",
+ "\n",
+ "我們將從 [上一節課](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) 的結尾開始,在那節課中我們分析了數據集,進行了大量可視化,並篩選了感興趣的觀測值。一定要查看!\n",
+ "\n",
+ "我們需要一些套件來完成這個模組。你可以通過以下方式安裝它們:`install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n",
+ "\n",
+ "或者,下面的腳本會檢查你是否擁有完成此模組所需的套件,並在缺少某些套件時為你安裝它們。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "ah_tBi58LXyi"
+ },
+ "source": [
+ "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n",
+ "\n",
+ "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7e--UCUTLXym"
+ },
+ "source": [
+ "讓我們立即開始!\n",
+ "\n",
+ "## 1. 與數據共舞:縮窄至三大最受歡迎的音樂類型\n",
+ "\n",
+ "這是上一課內容的回顧。讓我們來分析和整理一些數據吧!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Ycamx7GGLXyn"
+ },
+ "source": [
+ "# Load the core tidyverse and make it available in your current R session\n",
+ "library(tidyverse)\n",
+ "\n",
+ "# Import the data into a tibble\n",
+ "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n",
+ "\n",
+ "# Narrow down to top 3 popular genres\n",
+ "nigerian_songs <- df %>% \n",
+ " # Concentrate on top 3 genres\n",
+ " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n",
+ " # Remove unclassified observations\n",
+ " filter(popularity != 0)\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Visualize popular genres using bar plots\n",
+ "theme_set(theme_light())\n",
+ "nigerian_songs %>%\n",
+ " count(artist_top_genre) %>%\n",
+ " ggplot(mapping = aes(x = artist_top_genre, y = n,\n",
+ " fill = artist_top_genre)) +\n",
+ " geom_col(alpha = 0.8) +\n",
+ " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n",
+ " ggtitle(\"Top genres\") +\n",
+ " theme(plot.title = element_text(hjust = 0.5))\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "b5h5zmkPLXyp"
+ },
+ "source": [
+ "🤩 這進展得很好!\n",
+ "\n",
+ "## 2. 更多數據探索\n",
+ "\n",
+ "這些數據有多乾淨?讓我們使用盒形圖檢查是否有異常值。我們將集中於異常值較少的數值型欄位(雖然你也可以清理掉異常值)。盒形圖可以顯示數據的範圍,並幫助選擇要使用的欄位。請注意,盒形圖並不顯示方差,而方差是良好可聚類數據的重要元素。請參閱[這篇討論](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)以了解更多。\n",
+ "\n",
+ "[盒形圖](https://en.wikipedia.org/wiki/Box_plot)用於以圖形方式描述`數值型`數據的分佈,因此讓我們從*選擇*所有數值型欄位以及流行音樂類型開始。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "HhNreJKLLXyq"
+ },
+ "source": [
+ "# Select top genre column and all other numeric columns\n",
+ "df_numeric <- nigerian_songs %>% \n",
+ " select(artist_top_genre, where(is.numeric)) \n",
+ "\n",
+ "# Display the data\n",
+ "df_numeric %>% \n",
+ " slice_head(n = 5)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uYXrwJRaLXyq"
+ },
+ "source": [
+ "看看選擇助手 `where` 如何讓這件事變得簡單 💁?可以在[這裡](https://tidyselect.r-lib.org/)探索其他類似的功能。\n",
+ "\n",
+ "由於我們將為每個數值特徵製作箱型圖,而且我們希望避免使用迴圈,因此我們需要將數據重新格式化為*更長*的格式,這樣就可以利用 `facets`——每個子圖都顯示數據的一個子集。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "gd5bR3f8LXys"
+ },
+ "source": [
+ "# Pivot data from wide to long\n",
+ "df_numeric_long <- df_numeric %>% \n",
+ " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n",
+ "\n",
+ "# Print out data\n",
+ "df_numeric_long %>% \n",
+ " slice_head(n = 15)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-7tE1swnLXyv"
+ },
+ "source": [
+ "現在更長了!現在是時候使用一些 `ggplots` 了!那麼我們會使用什麼 `geom` 呢?\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "r88bIsyuLXyy"
+ },
+ "source": [
+ "# Make a box plot\n",
+ "df_numeric_long %>% \n",
+ " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n",
+ " geom_boxplot() +\n",
+ " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n",
+ " theme(legend.position = \"none\")\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EYVyKIUELXyz"
+ },
+ "source": [
+ "Easy-gg!\n",
+ "\n",
+ "現在我們可以看到這些數據有點雜亂:通過觀察每一列的箱型圖,可以看到有異常值。你可以逐一檢查數據集並移除這些異常值,但這樣會使數據變得非常有限。\n",
+ "\n",
+ "暫時,我們來選擇要用於聚類練習的列。讓我們挑選範圍相似的數值列。我們可以將 `artist_top_genre` 編碼為數值,但目前先把它刪除。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-wkpINyZLXy0"
+ },
+ "source": [
+ "# Select variables with similar ranges\n",
+ "df_numeric_select <- df_numeric %>% \n",
+ " select(popularity, danceability, acousticness, loudness, energy) \n",
+ "\n",
+ "# Normalize data\n",
+ "# df_numeric_select <- scale(df_numeric_select)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "D7dLzgpqLXy1"
+ },
+ "source": [
+ "## 3. 在 R 中計算 k-means 分群\n",
+ "\n",
+ "我們可以使用 R 中內建的 `kmeans` 函數來計算 k-means,請參考 `help(\"kmeans()\")`。`kmeans()` 函數的主要參數是一個包含所有數值型欄位的資料框。\n",
+ "\n",
+ "使用 k-means 分群的第一步是指定最終解決方案中將生成的群組數量 (k)。我們知道從資料集中分出來的歌曲類型有 3 種,因此我們嘗試使用 3:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "uC4EQ5w7LXy5"
+ },
+ "source": [
+ "set.seed(2056)\n",
+ "# Kmeans clustering for 3 clusters\n",
+ "kclust <- kmeans(\n",
+ " df_numeric_select,\n",
+ " # Specify the number of clusters\n",
+ " centers = 3,\n",
+ " # How many random initial configurations\n",
+ " nstart = 25\n",
+ ")\n",
+ "\n",
+ "# Display clustering object\n",
+ "kclust\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hzfhscWrLXy-"
+ },
+ "source": [
+ "kmeans 物件包含了多項資訊,詳細說明可參考 `help(\"kmeans()\")`。現在,我們先集中討論幾個重點。我們看到數據已被分成三個群組,分別有 65、110 和 111 個觀測值。輸出還包含了三個群組在五個變數上的群組中心(平均值)。\n",
+ "\n",
+ "聚類向量是每個觀測值的群組分配。我們可以使用 `augment` 函數將群組分配加入到原始數據集中。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "0XwwpFGQLXy_"
+ },
+ "source": [
+ "# Add predicted cluster assignment to data set\n",
+ "augment(kclust, df_numeric_select) %>% \n",
+ " relocate(.cluster) %>% \n",
+ " slice_head(n = 10)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "NXIVXXACLXzA"
+ },
+ "source": [
+ "完美,我們已經將數據集分成了三個群組。那麼,我們的分群效果如何呢 🤷?讓我們來看看 `Silhouette score`。\n",
+ "\n",
+ "### **Silhouette score**\n",
+ "\n",
+ "[Silhouette 分析](https://en.wikipedia.org/wiki/Silhouette_(clustering)) 可以用來研究結果群組之間的分離距離。這個分數範圍從 -1 到 1,如果分數接近 1,表示群組密集且與其他群組分離良好。接近 0 的值則表示群組重疊,樣本非常接近鄰近群組的決策邊界。[來源](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)。\n",
+ "\n",
+ "平均 Silhouette 方法計算不同 *k* 值下觀測值的平均 Silhouette 分數。高平均 Silhouette 分數表示分群效果良好。\n",
+ "\n",
+ "使用 cluster 套件中的 `silhouette` 函數來計算平均 Silhouette 寬度。\n",
+ "\n",
+ "> Silhouette 可以使用任何 [距離](https://en.wikipedia.org/wiki/Distance \"Distance\") 度量來計算,例如 [歐幾里得距離](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") 或 [曼哈頓距離](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\"),這些我們在[上一課](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)中已經討論過。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Jn0McL28LXzB"
+ },
+ "source": [
+ "# Load cluster package\n",
+ "library(cluster)\n",
+ "\n",
+ "# Compute average silhouette score\n",
+ "ss <- silhouette(kclust$cluster,\n",
+ " # Compute euclidean distance\n",
+ " dist = dist(df_numeric_select))\n",
+ "mean(ss[, 3])\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QyQRn97nLXzC"
+ },
+ "source": [
+ "我們的分數是 **.549**,屬於中間水平。這表明我們的數據並不特別適合這種類型的聚類分析。讓我們看看是否可以通過視覺化來驗證這個想法。[factoextra 套件](https://rpkgs.datanovia.com/factoextra/index.html) 提供了函數(`fviz_cluster()`)來視覺化聚類結果。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "7a6Km1_FLXzD"
+ },
+ "source": [
+ "library(factoextra)\n",
+ "\n",
+ "# Visualize clustering results\n",
+ "fviz_cluster(kclust, df_numeric_select)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IBwCWt-0LXzD"
+ },
+ "source": [
+ "群集之間的重疊表明,我們的數據並不特別適合這種類型的群集,但我們還是繼續進行。\n",
+ "\n",
+ "## 4. 確定最佳群集數量\n",
+ "\n",
+ "在 K-Means 群集分析中,經常出現的一個基本問題是——在沒有已知類別標籤的情況下,如何知道應該將數據分成多少個群集?\n",
+ "\n",
+ "我們可以嘗試的一種方法是使用數據樣本來`創建一系列群集模型`,並逐步增加群集的數量(例如從 1 到 10),然後評估群集指標,例如 **Silhouette 分數**。\n",
+ "\n",
+ "讓我們通過計算不同 *k* 值的群集算法並評估 **群集內平方和**(WCSS)來確定最佳群集數量。群集內平方和(WCSS)衡量群集的緊密性,我們希望它越小越好,較低的值意味著數據點更接近。\n",
+ "\n",
+ "讓我們探索不同的 `k` 值(從 1 到 10)對此群集的影響。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hSeIiylDLXzE"
+ },
+ "source": [
+ "# Create a series of clustering models\n",
+ "kclusts <- tibble(k = 1:10) %>% \n",
+ " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n",
+ " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n",
+ " # Farm out clustering metrics eg WCSS\n",
+ " glanced = map(model, ~ glance(.x))) %>% \n",
+ " unnest(cols = glanced)\n",
+ " \n",
+ "\n",
+ "# View clustering rsulsts\n",
+ "kclusts\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "m7rS2U1eLXzE"
+ },
+ "source": [
+ "現在我們已經獲得每個聚類算法在中心 *k* 下的總聚類內平方和 (tot.withinss),我們可以使用[肘部法](https://en.wikipedia.org/wiki/Elbow_method_(clustering))來尋找最佳的聚類數量。此方法包括將聚類內平方和 (WCSS) 作為聚類數量的函數進行繪圖,並選擇[曲線的肘部](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\")作為要使用的聚類數量。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "o_DjHGItLXzF"
+ },
+ "source": [
+ "set.seed(2056)\n",
+ "# Use elbow method to determine optimum number of clusters\n",
+ "kclusts %>% \n",
+ " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n",
+ " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n",
+ " geom_point(size = 2, color = \"#FF7F0EFF\")\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pLYyt5XSLXzG"
+ },
+ "source": [
+ "圖表顯示,當群組數量從一個增加到兩個時,WCSS(因此更大的*緊密性*)大幅減少,並且從兩個增加到三個群組時也有明顯的減少。之後,減少的幅度變得不太明顯,導致圖表在大約三個群組時出現一個`肘部` 💪。這是一個很好的指標,表明數據點有兩到三個相對分隔良好的群組。\n",
+ "\n",
+ "現在我們可以繼續提取`k = 3`的群組模型:\n",
+ "\n",
+ "> `pull()`:用於提取單一列\n",
+ ">\n",
+ "> `pluck()`:用於索引像列表這樣的數據結構\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "JP_JPKBILXzG"
+ },
+ "source": [
+ "# Extract k = 3 clustering\n",
+ "final_kmeans <- kclusts %>% \n",
+ " filter(k == 3) %>% \n",
+ " pull(model) %>% \n",
+ " pluck(1)\n",
+ "\n",
+ "\n",
+ "final_kmeans\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l_PDTu8tLXzI"
+ },
+ "source": [
+ "太好了!讓我們來看看獲得的群集。想用 `plotly` 增加一些互動性嗎?\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "dNcleFe-LXzJ"
+ },
+ "source": [
+ "# Add predicted cluster assignment to data set\n",
+ "results <- augment(final_kmeans, df_numeric_select) %>% \n",
+ " bind_cols(df_numeric %>% select(artist_top_genre)) \n",
+ "\n",
+ "# Plot cluster assignments\n",
+ "clust_plt <- results %>% \n",
+ " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n",
+ " geom_point(size = 2, alpha = 0.8) +\n",
+ " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n",
+ "\n",
+ "ggplotly(clust_plt)\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6JUM_51VLXzK"
+ },
+ "source": [
+ "或許我們原本預期每個群集(以不同顏色表示)會有明顯不同的類型(以不同形狀表示)。\n",
+ "\n",
+ "現在讓我們看看模型的準確度。\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "HdIMUGq7LXzL"
+ },
+ "source": [
+ "# Assign genres to predefined integers\n",
+ "label_count <- results %>% \n",
+ " group_by(artist_top_genre) %>% \n",
+ " mutate(id = cur_group_id()) %>% \n",
+ " ungroup() %>% \n",
+ " summarise(correct_labels = sum(.cluster == id))\n",
+ "\n",
+ "\n",
+ "# Print results \n",
+ "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n",
+ "\n",
+ "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "C50wvaAOLXzM"
+ },
+ "source": [
+ "這個模型的準確度不算差,但也不算好。可能是因為這些數據不太適合使用 K-Means 分群。這些數據過於不平衡,相關性太低,而且欄位值之間的差異太大,導致分群效果不佳。事實上,形成的群集可能受到我們之前定義的三個類型分類的影響或偏斜。\n",
+ "\n",
+ "儘管如此,這仍然是一個很好的學習過程!\n",
+ "\n",
+ "在 Scikit-learn 的文檔中,你可以看到像這樣的模型,群集劃分不太清晰,存在「方差」問題:\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 來自 Scikit-learn 的資訊圖表 \n",
+ "\n",
+ "\n",
+ "\n",
+ "## **方差**\n",
+ "\n",
+ "方差被定義為「與平均值的平方差的平均值」[來源](https://www.mathsisfun.com/data/standard-deviation.html)。在這個分群問題的背景下,它指的是數據集中數值偏離平均值的程度。\n",
+ "\n",
+ "✅ 這是一個很好的時機來思考如何解決這個問題。稍微調整數據?使用不同的欄位?使用不同的算法?提示:嘗試[縮放你的數據](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)以進行正規化並測試其他欄位。\n",
+ "\n",
+ "> 試試這個「[方差計算器](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)」來更好地理解這個概念。\n",
+ "\n",
+ "------------------------------------------------------------------------\n",
+ "\n",
+ "## **🚀挑戰**\n",
+ "\n",
+ "花些時間使用這個筆記本,調整參數。你能通過更清理數據(例如移除異常值)來提高模型的準確度嗎?你可以使用權重來給某些數據樣本更高的權重。還有什麼方法可以用來創建更好的群集?\n",
+ "\n",
+ "提示:嘗試縮放你的數據。筆記本中有註解的代碼可以添加標準縮放,使數據欄位在範圍上更接近。你會發現,雖然輪廓分數下降了,但肘部圖中的「折點」變得更平滑。這是因為未縮放的數據允許方差較小的數據承擔更大的權重。可以在[這裡](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)閱讀更多相關問題。\n",
+ "\n",
+ "## [**課後測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n",
+ "\n",
+ "## **回顧與自學**\n",
+ "\n",
+ "- 看看 K-Means 模擬器[例如這個](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)。你可以使用這個工具來可視化樣本數據點並確定其中心點。你可以編輯數據的隨機性、群集數量和中心點數量。這是否幫助你更好地理解數據如何分組?\n",
+ "\n",
+ "- 另外,看看[這份來自 Stanford 的 K-Means 手冊](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)。\n",
+ "\n",
+ "想要嘗試使用你新學到的分群技能來處理適合 K-Means 分群的數據集嗎?請參考以下資源:\n",
+ "\n",
+ "- [訓練和評估分群模型](https://rpubs.com/eR_ic/clustering),使用 Tidymodels 和相關工具\n",
+ "\n",
+ "- [K-means 分群分析](https://uc-r.github.io/kmeans_clustering),UC 商業分析 R 編程指南\n",
+ "\n",
+ "- [使用整潔數據原則進行 K-means 分群](https://www.tidymodels.org/learn/statistics/k-means/)\n",
+ "\n",
+ "## **作業**\n",
+ "\n",
+ "[嘗試不同的分群方法](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n",
+ "\n",
+ "## 特別感謝:\n",
+ "\n",
+ "[Jen Looper](https://www.twitter.com/jenlooper) 創建了這個模組的原始 Python 版本 ♥️\n",
+ "\n",
+ "[`Allison Horst`](https://twitter.com/allison_horst/) 創作了令人驚嘆的插圖,使 R 更加友好和吸引人。可以在她的[畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)中找到更多插圖。\n",
+ "\n",
+ "祝學習愉快,\n",
+ "\n",
+ "[Eric](https://twitter.com/ericntay),Gold Microsoft Learn 學生大使。\n",
+ "\n",
+ "
\n",
+ " \n",
+ " 由 @allison_horst 創作的藝術作品 \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/zh-HK/5-Clustering/2-K-Means/solution/notebook.ipynb
new file mode 100644
index 000000000..6ddbf4ede
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/solution/notebook.ipynb
@@ -0,0 +1,546 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "e867e87e3129c8875423a82945f4ad5e",
+ "translation_date": "2025-09-03T20:11:47+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n",
+ "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n",
+ "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n",
+ "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n",
+ "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n",
+ "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n",
+ "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n",
+ "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
+ "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install seaborn"
+ ]
+ },
+ {
+ "source": [
+ "從我們在上一課結束的地方開始,已導入並篩選數據。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "0 Sparky Mandy & The Jungle \n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "2 LITT! LITT! \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "0 Cruel Santino alternative r&b 2019 144000 48 \n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "2 AYLØ indie r&b 2018 207758 40 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "0 0.0829 133.015 5 \n",
+ "1 0.3600 129.993 3 \n",
+ "2 0.0424 130.005 4 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 "
+ ],
+ "text/html": "
\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 0 \n Sparky \n Mandy & The Jungle \n Cruel Santino \n alternative r&b \n 2019 \n 144000 \n 48 \n 0.666 \n 0.8510 \n 0.420 \n 0.534000 \n 0.1100 \n -6.699 \n 0.0829 \n 133.015 \n 5 \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 2 \n LITT! \n LITT! \n AYLØ \n indie r&b \n 2018 \n 207758 \n 40 \n 0.836 \n 0.2720 \n 0.564 \n 0.000537 \n 0.1100 \n -7.127 \n 0.0424 \n 130.005 \n 4 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 11
+ }
+ ],
+ "source": [
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "\n",
+ "\n",
+ "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "source": [
+ "我們將只專注於三個類型。也許我們可以建立三個群集!\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n",
+ "df = df[(df['popularity'] > 0)]\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top.index,y=top.values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "5 Kasala Pioneers \n",
+ "6 Pull Up Everything Pretty \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "5 DRB Lasgidi nigerian pop 2020 184800 26 \n",
+ "6 prettyboydo nigerian pop 2018 202648 29 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n",
+ "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "1 0.3600 129.993 3 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 \n",
+ "5 0.1970 100.103 4 \n",
+ "6 0.1990 95.842 4 "
+ ],
+ "text/html": "\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n 5 \n Kasala \n Pioneers \n DRB Lasgidi \n nigerian pop \n 2020 \n 184800 \n 26 \n 0.803 \n 0.1270 \n 0.525 \n 0.000007 \n 0.1290 \n -10.034 \n 0.1970 \n 100.103 \n 4 \n \n \n 6 \n Pull Up \n Everything Pretty \n prettyboydo \n nigerian pop \n 2018 \n 202648 \n 29 \n 0.818 \n 0.4520 \n 0.587 \n 0.004490 \n 0.5900 \n -9.840 \n 0.1990 \n 95.842 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 13
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "source": [
+ "這些數據有多乾淨?使用箱型圖檢查異常值。我們將集中於異常值較少的列(儘管您可以清除異常值)。箱型圖可以顯示數據的範圍,並幫助選擇使用哪些列。注意,箱型圖不顯示方差,這是良好可聚類數據的一個重要元素(https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(20,20), dpi=200)\n",
+ "\n",
+ "plt.subplot(4,3,1)\n",
+ "sns.boxplot(x = 'popularity', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,2)\n",
+ "sns.boxplot(x = 'acousticness', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,3)\n",
+ "sns.boxplot(x = 'energy', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,4)\n",
+ "sns.boxplot(x = 'instrumentalness', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,5)\n",
+ "sns.boxplot(x = 'liveness', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,6)\n",
+ "sns.boxplot(x = 'loudness', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,7)\n",
+ "sns.boxplot(x = 'speechiness', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,8)\n",
+ "sns.boxplot(x = 'tempo', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,9)\n",
+ "sns.boxplot(x = 'time_signature', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,10)\n",
+ "sns.boxplot(x = 'danceability', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,11)\n",
+ "sns.boxplot(x = 'length', data = df)\n",
+ "\n",
+ "plt.subplot(4,3,12)\n",
+ "sns.boxplot(x = 'release_date', data = df)"
+ ]
+ },
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
+ "le = LabelEncoder()\n",
+ "\n",
+ "# scaler = StandardScaler()\n",
+ "\n",
+ "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n",
+ "\n",
+ "y = df['artist_top_genre']\n",
+ "\n",
+ "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n",
+ "\n",
+ "# X = scaler.fit_transform(X)\n",
+ "\n",
+ "y = le.transform(y)\n",
+ "\n"
+ ]
+ },
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n",
+ " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n",
+ " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n",
+ " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n",
+ " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n",
+ " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n",
+ " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n",
+ " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n",
+ " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n",
+ " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n",
+ " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n",
+ " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n",
+ " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n",
+ " dtype=int32)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 16
+ }
+ ],
+ "source": [
+ "\n",
+ "from sklearn.cluster import KMeans\n",
+ "\n",
+ "nclusters = 3 \n",
+ "seed = 0\n",
+ "\n",
+ "km = KMeans(n_clusters=nclusters, random_state=seed)\n",
+ "km.fit(X)\n",
+ "\n",
+ "# Predict the cluster for each data point\n",
+ "\n",
+ "y_cluster_kmeans = km.predict(X)\n",
+ "y_cluster_kmeans"
+ ]
+ },
+ {
+ "source": [
+ "那些數字對我們來說意義不大,所以讓我們獲取一個「輪廓分數」來查看準確性。我們的分數處於中間位置。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0.5466747351275563"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 17
+ }
+ ],
+ "source": [
+ "from sklearn import metrics\n",
+ "score = metrics.silhouette_score(X, y_cluster_kmeans)\n",
+ "score"
+ ]
+ },
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.cluster import KMeans\n",
+ "wcss = []\n",
+ "\n",
+ "for i in range(1, 11):\n",
+ " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n",
+ " kmeans.fit(X)\n",
+ " wcss.append(kmeans.inertia_)"
+ ]
+ },
+ {
+ "source": [
+ "使用該模型利用肘部法決定建立的最佳群集數量\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,5))\n",
+ "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n",
+ "plt.title('Elbow')\n",
+ "plt.xlabel('Number of clusters')\n",
+ "plt.ylabel('WCSS')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "source": [
+ "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together."
+ ],
+ "cell_type": "code",
+ "metadata": {},
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "from sklearn.cluster import KMeans\n",
+ "kmeans = KMeans(n_clusters = 3)\n",
+ "kmeans.fit(X)\n",
+ "labels = kmeans.predict(X)\n",
+ "plt.scatter(df['popularity'],df['danceability'],c = labels)\n",
+ "plt.xlabel('popularity')\n",
+ "plt.ylabel('danceability')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "source": [
+ "此模型的準確性不算差,但也不算好。可能是數據不太適合 K-Means 聚類。你可以嘗試使用其他方法。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 811,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n"
+ ]
+ }
+ ],
+ "source": [
+ "labels = kmeans.labels_\n",
+ "\n",
+ "correct_labels = sum(y == labels)\n",
+ "\n",
+ "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n",
+ "\n",
+ "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/zh-HK/5-Clustering/2-K-Means/solution/tester.ipynb
new file mode 100644
index 000000000..6a11f726e
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/2-K-Means/solution/tester.ipynb
@@ -0,0 +1,343 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 2,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "6f92868513e59d321245137c1c4c5311",
+ "translation_date": "2025-09-03T20:12:43+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n",
+ "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n",
+ "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n",
+ "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n",
+ "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n",
+ "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
+ "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n",
+ "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n",
+ "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
+ "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install seaborn"
+ ]
+ },
+ {
+ "source": [
+ "從我們上節課結束的地方開始,已經導入並篩選了數據。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 105,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "0 Sparky Mandy & The Jungle \n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "2 LITT! LITT! \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "0 Cruel Santino alternative r&b 2019 144000 48 \n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "2 AYLØ indie r&b 2018 207758 40 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "0 0.0829 133.015 5 \n",
+ "1 0.3600 129.993 3 \n",
+ "2 0.0424 130.005 4 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 "
+ ],
+ "text/html": "\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 0 \n Sparky \n Mandy & The Jungle \n Cruel Santino \n alternative r&b \n 2019 \n 144000 \n 48 \n 0.666 \n 0.8510 \n 0.420 \n 0.534000 \n 0.1100 \n -6.699 \n 0.0829 \n 133.015 \n 5 \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 2 \n LITT! \n LITT! \n AYLØ \n indie r&b \n 2018 \n 207758 \n 40 \n 0.836 \n 0.2720 \n 0.564 \n 0.000537 \n 0.1100 \n -7.127 \n 0.0424 \n 130.005 \n 4 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 105
+ }
+ ],
+ "source": [
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n",
+ "\n",
+ "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "source": [
+ "我們將只專注於三個類型。也許我們可以建立三個群集!\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 106,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Top genres')"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 106
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n",
+ "df = df[(df['popularity'] > 0)]\n",
+ "top = df['artist_top_genre'].value_counts()\n",
+ "plt.figure(figsize=(10,7))\n",
+ "sns.barplot(x=top.index,y=top.values)\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.title('Top genres',color = 'blue')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 107,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " name album \\\n",
+ "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n",
+ "3 Confident / Feeling Cool Enjoy Your Life \n",
+ "4 wanted you rare. \n",
+ "5 Kasala Pioneers \n",
+ "6 Pull Up Everything Pretty \n",
+ "\n",
+ " artist artist_top_genre release_date length popularity \\\n",
+ "1 Odunsi (The Engine) afropop 2020 89488 30 \n",
+ "3 Lady Donli nigerian pop 2019 175135 14 \n",
+ "4 Odunsi (The Engine) afropop 2018 152049 25 \n",
+ "5 DRB Lasgidi nigerian pop 2020 184800 26 \n",
+ "6 prettyboydo nigerian pop 2018 202648 29 \n",
+ "\n",
+ " danceability acousticness energy instrumentalness liveness loudness \\\n",
+ "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n",
+ "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n",
+ "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n",
+ "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n",
+ "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n",
+ "\n",
+ " speechiness tempo time_signature \n",
+ "1 0.3600 129.993 3 \n",
+ "3 0.1130 111.087 4 \n",
+ "4 0.0447 105.115 4 \n",
+ "5 0.1970 100.103 4 \n",
+ "6 0.1990 95.842 4 "
+ ],
+ "text/html": "\n\n
\n \n \n \n name \n album \n artist \n artist_top_genre \n release_date \n length \n popularity \n danceability \n acousticness \n energy \n instrumentalness \n liveness \n loudness \n speechiness \n tempo \n time_signature \n \n \n \n \n 1 \n shuga rush \n EVERYTHING YOU HEARD IS TRUE \n Odunsi (The Engine) \n afropop \n 2020 \n 89488 \n 30 \n 0.710 \n 0.0822 \n 0.683 \n 0.000169 \n 0.1010 \n -5.640 \n 0.3600 \n 129.993 \n 3 \n \n \n 3 \n Confident / Feeling Cool \n Enjoy Your Life \n Lady Donli \n nigerian pop \n 2019 \n 175135 \n 14 \n 0.894 \n 0.7980 \n 0.611 \n 0.000187 \n 0.0964 \n -4.961 \n 0.1130 \n 111.087 \n 4 \n \n \n 4 \n wanted you \n rare. \n Odunsi (The Engine) \n afropop \n 2018 \n 152049 \n 25 \n 0.702 \n 0.1160 \n 0.833 \n 0.910000 \n 0.3480 \n -6.044 \n 0.0447 \n 105.115 \n 4 \n \n \n 5 \n Kasala \n Pioneers \n DRB Lasgidi \n nigerian pop \n 2020 \n 184800 \n 26 \n 0.803 \n 0.1270 \n 0.525 \n 0.000007 \n 0.1290 \n -10.034 \n 0.1970 \n 100.103 \n 4 \n \n \n 6 \n Pull Up \n Everything Pretty \n prettyboydo \n nigerian pop \n 2018 \n 202648 \n 29 \n 0.818 \n 0.4520 \n 0.587 \n 0.004490 \n 0.5900 \n -9.840 \n 0.1990 \n 95.842 \n 4 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 107
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "scaler = StandardScaler()\n",
+ "\n",
+ "# X = df.loc[:, ('danceability','energy')]\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 110,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "error",
+ "ename": "ValueError",
+ "evalue": "Unknown label type: 'continuous'",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.svm import SVC\n",
+ "from sklearn.semi_supervised import LabelSpreading\n",
+ "from sklearn.semi_supervised import SelfTrainingClassifier\n",
+ "from sklearn import datasets\n",
+ "\n",
+ "X = df[['danceability','acousticness']].values\n",
+ "y = df['energy'].values\n",
+ "\n",
+ "# X = scaler.fit_transform(X)\n",
+ "\n",
+ "# step size in the mesh\n",
+ "h = .02\n",
+ "\n",
+ "rng = np.random.RandomState(0)\n",
+ "y_rand = rng.rand(y.shape[0])\n",
+ "y_30 = np.copy(y)\n",
+ "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n",
+ "y_50 = np.copy(y)\n",
+ "y_50[y_rand < 0.5] = -1\n",
+ "# we create an instance of SVM and fit out data. We do not scale our\n",
+ "# data since we want to plot the support vectors\n",
+ "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n",
+ "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n",
+ "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n",
+ "\n",
+ "# the base classifier for self-training is identical to the SVC\n",
+ "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n",
+ "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n",
+ " y_30, 'Self-training 30% data')\n",
+ "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n",
+ " y_50, 'Self-training 50% data')\n",
+ "\n",
+ "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n",
+ "\n",
+ "# create a mesh to plot in\n",
+ "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n",
+ "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n",
+ "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n",
+ " np.arange(y_min, y_max, h))\n",
+ "\n",
+ "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n",
+ "\n",
+ "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n",
+ "for i, (clf, y_train, title) in enumerate(classifiers):\n",
+ " # Plot the decision boundary. For that, we will assign a color to each\n",
+ " # point in the mesh [x_min, x_max]x[y_min, y_max].\n",
+ " plt.subplot(3, 2, i + 1)\n",
+ " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n",
+ "\n",
+ " # Put the result into a color plot\n",
+ " Z = Z.reshape(xx.shape)\n",
+ " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n",
+ " plt.axis('off')\n",
+ "\n",
+ " # Plot also the training points\n",
+ " colors = [color_map[y] for y in y_train]\n",
+ " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n",
+ "\n",
+ " plt.title(title)\n",
+ "\n",
+ "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/5-Clustering/README.md b/translations/zh-HK/5-Clustering/README.md
new file mode 100644
index 000000000..4fcd28b93
--- /dev/null
+++ b/translations/zh-HK/5-Clustering/README.md
@@ -0,0 +1,33 @@
+# 機器學習中的聚類模型
+
+聚類是一種機器學習任務,旨在尋找彼此相似的物件並將它們分組成稱為「群集」的組別。聚類與機器學習中的其他方法不同,因為它是自動進行的。事實上,可以說它是監督式學習的反面。
+
+## 區域主題:針對尼日利亞觀眾音樂品味的聚類模型 🎧
+
+尼日利亞的多元化觀眾擁有多樣化的音樂品味。使用從 Spotify 抓取的數據(靈感來自[這篇文章](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)),讓我們來看看一些在尼日利亞流行的音樂。這個數據集包含了各種歌曲的「舞蹈性」分數、「聲學性」、音量、「語音性」、流行度和能量等數據。探索這些數據中的模式將會非常有趣!
+
+
+
+> 照片由 Marcela Laskoski 提供,來自 Unsplash
+
+在這系列課程中,你將學習使用聚類技術分析數據的新方法。當你的數據集缺乏標籤時,聚類特別有用。如果數據集有標籤,那麼你在之前課程中學到的分類技術可能會更有用。但在需要分組未標記數據的情況下,聚類是一種發現模式的好方法。
+
+> 有一些低代碼工具可以幫助你學習如何使用聚類模型。試試 [Azure ML](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) 來完成這項任務。
+
+## 課程
+
+1. [聚類簡介](1-Visualize/README.md)
+2. [K-Means 聚類](2-K-Means/README.md)
+
+## 致謝
+
+這些課程由 [Jen Looper](https://www.twitter.com/jenlooper) 帶著 🎶 編寫,並由 [Rishit Dagli](https://rishit_dagli) 和 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) 提供了有益的審核。
+
+[Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) 數據集來自 Kaggle,並從 Spotify 抓取。
+
+有助於創建這課程的 K-Means 示例包括這個 [iris 探索](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering)、這個[入門筆記本](https://www.kaggle.com/prashant111/k-means-clustering-with-python),以及這個[假設的 NGO 示例](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering)。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/1-Introduction-to-NLP/README.md b/translations/zh-HK/6-NLP/1-Introduction-to-NLP/README.md
new file mode 100644
index 000000000..41df9f036
--- /dev/null
+++ b/translations/zh-HK/6-NLP/1-Introduction-to-NLP/README.md
@@ -0,0 +1,170 @@
+# 自然語言處理簡介
+
+這節課涵蓋了*自然語言處理*(NLP)這一*計算語言學*的子領域的簡短歷史和重要概念。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 簡介
+
+NLP(自然語言處理)是機器學習應用最廣泛的領域之一,並已被用於生產軟件中。
+
+✅ 你能想到每天使用的軟件中可能嵌入了某些 NLP 技術嗎?例如你經常使用的文字處理程序或手機應用程式?
+
+你將學習以下內容:
+
+- **語言的概念**:語言是如何發展的,以及主要的研究領域。
+- **定義和概念**:你還將學習有關計算機如何處理文本的定義和概念,包括解析、語法以及識別名詞和動詞。本課程中有一些編程任務,並引入了幾個重要概念,這些概念你將在後續課程中學習如何編程。
+
+## 計算語言學
+
+計算語言學是一個研究和開發領域,已有數十年的歷史,研究計算機如何與語言合作,甚至理解、翻譯和與語言交流。自然語言處理(NLP)是一個相關領域,專注於計算機如何處理“自然”或人類語言。
+
+### 示例 - 手機語音輸入
+
+如果你曾經用語音輸入代替打字,或者向虛擬助手提問,那麼你的語音已被轉換為文本形式,然後被處理或*解析*成你所說的語言。檢測到的關鍵詞隨後被處理成手機或助手可以理解並執行的格式。
+
+
+> 真正的語言理解非常困難!圖片來源:[Jen Looper](https://twitter.com/jenlooper)
+
+### 這項技術是如何實現的?
+
+這是因為有人編寫了一個計算機程序來完成這項工作。幾十年前,一些科幻作家預測人們將主要通過語音與計算機交流,而計算機將始終準確理解人們的意思。不幸的是,這個問題比許多人想像的要困難得多。雖然今天對這個問題的理解已經大大提高,但在實現“完美”的自然語言處理以理解句子的含義方面仍然存在重大挑戰。尤其是在理解幽默或檢測句子中的情感(如諷刺)時,這是一個特別困難的問題。
+
+此時,你可能會回憶起學校課堂上老師講解句子語法部分的情景。在某些國家,學生會專門學習語法和語言學,但在許多國家,這些主題是作為學習語言的一部分來教授的:要麼是在小學學習母語(學習閱讀和寫作),要麼是在中學或高中學習第二語言。如果你不擅長區分名詞和動詞或副詞和形容詞,不用擔心!
+
+如果你對*一般現在時*和*現在進行時*的區別感到困惑,你並不孤單。這對許多人來說都是一個挑戰,即使是母語使用者。好消息是,計算機非常擅長應用正式規則,你將學習編寫代碼來像人類一樣*解析*句子。更大的挑戰是理解句子的*含義*和*情感*,這是你稍後將探討的內容。
+
+## 先決條件
+
+本課程的主要先決條件是能夠閱讀和理解本課程的語言。沒有數學問題或方程需要解決。雖然原作者用英語編寫了本課程,但它也被翻譯成其他語言,因此你可能正在閱讀翻譯版本。有些示例使用了多種不同語言(用於比較不同語言的語法規則)。這些示例*未被翻譯*,但解釋性文本已被翻譯,因此含義應該是清晰的。
+
+在編程任務中,你將使用 Python,示例使用的是 Python 3.8。
+
+在本節中,你需要並使用以下工具:
+
+- **Python 3 理解能力**:理解 Python 3 編程語言,本課程使用輸入、循環、文件讀取和數組。
+- **Visual Studio Code + 擴展**:我們將使用 Visual Studio Code 及其 Python 擴展。你也可以使用自己選擇的 Python IDE。
+- **TextBlob**:[TextBlob](https://github.com/sloria/TextBlob) 是一個簡化的 Python 文本處理庫。按照 TextBlob 網站上的說明將其安裝到你的系統上(同時安裝語料庫,如下所示):
+
+ ```bash
+ pip install -U textblob
+ python -m textblob.download_corpora
+ ```
+
+> 💡 提示:你可以直接在 VS Code 環境中運行 Python。查看[文檔](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott)了解更多信息。
+
+## 與機器交流
+
+讓計算機理解人類語言的歷史可以追溯到幾十年前,最早考慮自然語言處理的科學家之一是*艾倫·圖靈*。
+
+### “圖靈測試”
+
+當圖靈在1950年代研究*人工智能*時,他考慮是否可以通過一個對話測試來分辨人類和計算機(通過打字通信),其中參與對話的人類無法確定自己是在與另一個人類還是計算機交流。
+
+如果在一定時間的對話後,人類無法判斷回答是來自計算機還是人類,那麼是否可以說計算機在*思考*?
+
+### 靈感來源 - “模仿遊戲”
+
+這個想法來自一個叫做*模仿遊戲*的派對遊戲,遊戲中一名審問者獨自待在一個房間裡,試圖判斷另一個房間裡的兩個人分別是男性還是女性。審問者可以發送便條,並必須設法提出一些問題,通過書面回答來揭示神秘人物的性別。當然,另一個房間裡的玩家會試圖通過回答問題來誤導或混淆審問者,同時也要給出看似誠實的回答。
+
+### 開發 Eliza
+
+在1960年代,一位麻省理工學院的科學家*約瑟夫·魏岑鮑姆*開發了[*Eliza*](https://wikipedia.org/wiki/ELIZA),一個計算機“治療師”,它會向人類提問並給出看似理解的回答。然而,雖然 Eliza 可以解析句子並識別某些語法結構和關鍵詞以給出合理的回答,但它並不能說是*理解*句子。如果 Eliza 被呈現一個格式為“**我很** 難過 ”的句子,它可能會重新排列並替換句子中的詞語,形成回應“你**有多長時間** 難過 ”。
+
+這給人一種 Eliza 理解了陳述並提出了後續問題的印象,而實際上它只是改變了時態並添加了一些詞語。如果 Eliza 無法識別它有回應的關鍵詞,它會給出一個隨機回應,這可能適用於許多不同的陳述。例如,如果用戶寫道“**你是**一個自行車 ”,它可能會回應“我**有多長時間**是一個自行車 ?”而不是更合理的回應。
+
+[](https://youtu.be/RMK9AphfLco "與 Eliza 聊天")
+
+> 🎥 點擊上方圖片觀看原始 ELIZA 程式的視頻
+
+> 注意:如果你有 ACM 帳戶,可以閱讀1966年發表的[Eliza 原始描述](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract)。或者,請在[wikipedia](https://wikipedia.org/wiki/ELIZA)上了解 Eliza。
+
+## 練習 - 編寫一個基本的對話機器人
+
+一個對話機器人,如 Eliza,是一個能夠引導用戶輸入並看似理解和智能回應的程序。與 Eliza 不同,我們的機器人不會有多條規則使其看似能進行智能對話。相反,我們的機器人只有一個功能,即通過隨機回應來保持對話,這些回應可能適用於幾乎任何簡單的對話。
+
+### 計劃
+
+構建對話機器人的步驟:
+
+1. 打印指示,告知用戶如何與機器人互動
+2. 開始循環
+ 1. 接受用戶輸入
+ 2. 如果用戶要求退出,則退出
+ 3. 處理用戶輸入並確定回應(在本例中,回應是從可能的通用回應列表中隨機選擇)
+ 4. 打印回應
+3. 返回步驟2
+
+### 構建機器人
+
+接下來讓我們創建機器人。我們將從定義一些短語開始。
+
+1. 使用以下隨機回應在 Python 中自己創建這個機器人:
+
+ ```python
+ random_responses = ["That is quite interesting, please tell me more.",
+ "I see. Do go on.",
+ "Why do you say that?",
+ "Funny weather we've been having, isn't it?",
+ "Let's change the subject.",
+ "Did you catch the game last night?"]
+ ```
+
+ 以下是一些示例輸出(用戶輸入以`>`開頭):
+
+ ```output
+ Hello, I am Marvin, the simple robot.
+ You can end this conversation at any time by typing 'bye'
+ After typing each answer, press 'enter'
+ How are you today?
+ > I am good thanks
+ That is quite interesting, please tell me more.
+ > today I went for a walk
+ Did you catch the game last night?
+ > I did, but my team lost
+ Funny weather we've been having, isn't it?
+ > yes but I hope next week is better
+ Let's change the subject.
+ > ok, lets talk about music
+ Why do you say that?
+ > because I like music!
+ Why do you say that?
+ > bye
+ It was nice talking to you, goodbye!
+ ```
+
+ 任務的一個可能解決方案在[這裡](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py)
+
+ ✅ 停下來思考
+
+ 1. 你認為隨機回應能否“欺騙”某人,使其認為機器人真的理解了他們?
+ 2. 機器人需要哪些功能才能更有效?
+ 3. 如果機器人真的能“理解”句子的含義,它是否需要“記住”對話中前幾句的含義?
+
+---
+
+## 🚀挑戰
+
+選擇上述“停下來思考”中的一個元素,嘗試用代碼實現它,或者用紙筆寫出解決方案的偽代碼。
+
+在下一節課中,你將學習其他解析自然語言和機器學習的方法。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+查看以下參考資料作為進一步學習的機會。
+
+### 參考資料
+
+1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = .
+2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010.
+
+## 作業
+
+[尋找一個機器人](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/zh-HK/6-NLP/1-Introduction-to-NLP/assignment.md
new file mode 100644
index 000000000..3bbae6c8b
--- /dev/null
+++ b/translations/zh-HK/6-NLP/1-Introduction-to-NLP/assignment.md
@@ -0,0 +1,16 @@
+# 尋找一個機械人
+
+## 指引
+
+機械人無處不在。你的任務是:找到一個並採用它!你可以在網站上、銀行應用程式中,甚至在電話上找到它們,例如當你致電金融服務公司諮詢或查詢帳戶資訊時。分析這個機械人,看看你是否能讓它混淆。如果你能讓機械人混淆,你認為為什麼會發生這種情況?寫一篇簡短的文章分享你的經驗。
+
+## 評分標準
+
+| 評分標準 | 優異 | 合格 | 需要改進 |
+| -------- | ------------------------------------------------------------------------------------------------------------- | ------------------------------------------ | --------------------- |
+| | 撰寫了一篇完整的文章,解釋了推測的機械人架構並概述了你的使用經驗 | 文章不完整或研究不充分 | 未提交文章 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原文文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/2-Tasks/README.md b/translations/zh-HK/6-NLP/2-Tasks/README.md
new file mode 100644
index 000000000..badf47f67
--- /dev/null
+++ b/translations/zh-HK/6-NLP/2-Tasks/README.md
@@ -0,0 +1,219 @@
+# 常見自然語言處理任務與技術
+
+對於大多數*自然語言處理*任務,需將待處理的文本分解、分析,並將結果存儲或與規則和數據集交叉參照。這些任務使程式設計師能夠推導出文本中的_含義_、_意圖_或僅僅是_詞語頻率_。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+讓我們探索處理文本時常用的技術。結合機器學習,這些技術能幫助你高效地分析大量文本。然而,在將機器學習應用於這些任務之前,我們需要了解自然語言處理專家所遇到的問題。
+
+## 自然語言處理的常見任務
+
+分析文本有多種方式。你可以執行一些任務,通過這些任務來理解文本並得出結論。通常這些任務是按順序進行的。
+
+### 分詞(Tokenization)
+
+大多數自然語言處理算法的第一步通常是將文本分割成詞元或單詞。雖然這聽起來很簡單,但考慮到標點符號以及不同語言的單詞和句子分隔符,這可能會變得很棘手。你可能需要使用多種方法來確定分界。
+
+
+> 從**傲慢與偏見**中分詞的例子。資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+
+### 嵌入(Embeddings)
+
+[詞嵌入](https://wikipedia.org/wiki/Word_embedding)是一種將文本數據轉換為數字形式的方法。嵌入的方式使得具有相似含義或經常一起使用的詞語聚集在一起。
+
+
+> "我對你的神經非常尊重,它們是我的老朋友。" - **傲慢與偏見**中的一句話的詞嵌入。資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+
+✅ 試試[這個有趣的工具](https://projector.tensorflow.org/),用來實驗詞嵌入。點擊一個詞可以看到相似詞的聚集,例如:'toy' 與 'disney'、'lego'、'playstation' 和 'console' 聚集在一起。
+
+### 解析與詞性標註(Parsing & Part-of-speech Tagging)
+
+每個被分詞的詞都可以被標註為詞性,例如名詞、動詞或形容詞。句子 `the quick red fox jumped over the lazy brown dog` 可能被詞性標註為 fox = 名詞,jumped = 動詞。
+
+
+
+> 從**傲慢與偏見**中解析句子的例子。資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+
+解析是識別句子中哪些詞語彼此相關,例如 `the quick red fox jumped` 是形容詞-名詞-動詞的序列,與 `lazy brown dog` 序列分開。
+
+### 詞語與短語頻率
+
+分析大量文本時,一個有用的步驟是建立一個字典,記錄每個感興趣的詞語或短語及其出現頻率。句子 `the quick red fox jumped over the lazy brown dog` 中,詞語 "the" 的頻率為 2。
+
+讓我們看一段文本,計算詞語的頻率。拉迪亞德·吉卜林的詩《The Winners》中有以下詩句:
+
+```output
+What the moral? Who rides may read.
+When the night is thick and the tracks are blind
+A friend at a pinch is a friend, indeed,
+But a fool to wait for the laggard behind.
+Down to Gehenna or up to the Throne,
+He travels the fastest who travels alone.
+```
+
+由於短語頻率可以根據需要設置為大小寫敏感或不敏感,短語 `a friend` 的頻率為 2,`the` 的頻率為 6,而 `travels` 的頻率為 2。
+
+### N-grams
+
+文本可以被分割成固定長度的詞語序列,例如單詞(unigram)、兩個詞(bigram)、三個詞(trigram)或任意數量的詞(n-grams)。
+
+例如,句子 `the quick red fox jumped over the lazy brown dog` 的 n-gram 值為 2,生成以下 n-grams:
+
+1. the quick
+2. quick red
+3. red fox
+4. fox jumped
+5. jumped over
+6. over the
+7. the lazy
+8. lazy brown
+9. brown dog
+
+可以將其視為句子上的滑動框。以下是 n-grams 為 3 的情況,每個句子中的 n-gram 用粗體表示:
+
+1. **the quick red** fox jumped over the lazy brown dog
+2. the **quick red fox ** jumped over the lazy brown dog
+3. the quick **red fox jumped ** over the lazy brown dog
+4. the quick red **fox jumped over ** the lazy brown dog
+5. the quick red fox **jumped over the ** lazy brown dog
+6. the quick red fox jumped **over the lazy ** brown dog
+7. the quick red fox jumped over **the lazy brown** dog
+8. the quick red fox jumped over the **lazy brown dog **
+
+
+
+> N-gram 值為 3:資訊圖表由 [Jen Looper](https://twitter.com/jenlooper) 製作
+
+### 名詞短語提取
+
+在大多數句子中,存在一個名詞作為主語或賓語。在英文中,通常可以通過其前面是否有 'a'、'an' 或 'the' 來識別。通過提取名詞短語來識別句子的主語或賓語,是自然語言處理中試圖理解句子含義時的一個常見任務。
+
+✅ 在句子 "I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun." 中,你能識別出名詞短語嗎?
+
+在句子 `the quick red fox jumped over the lazy brown dog` 中,有兩個名詞短語:**quick red fox** 和 **lazy brown dog**。
+
+### 情感分析
+
+句子或文本可以被分析其情感,即*正面*或*負面*。情感通過*極性*和*客觀性/主觀性*來衡量。極性從 -1.0 到 1.0(負面到正面),客觀性從 0.0 到 1.0(最客觀到最主觀)。
+
+✅ 稍後你會學到使用機器學習來判斷情感的不同方法,但其中一種方法是擁有一個由人類專家分類為正面或負面的詞語和短語列表,並將該模型應用於文本以計算極性分數。你能看出這種方法在某些情況下有效,而在其他情況下效果不佳嗎?
+
+### 詞形變化(Inflection)
+
+詞形變化使你能夠獲得詞語的單數或複數形式。
+
+### 詞形還原(Lemmatization)
+
+*詞形還原*是指將一組詞還原到其根詞或詞頭,例如 *flew*、*flies*、*flying* 的詞形還原為動詞 *fly*。
+
+此外,對於自然語言處理研究者來說,有一些非常有用的數據庫,例如:
+
+### WordNet
+
+[WordNet](https://wordnet.princeton.edu/) 是一個包含詞語、同義詞、反義詞以及許多其他細節的數據庫,涵蓋多種語言。它在構建翻譯、拼寫檢查器或任何類型的語言工具時非常有用。
+
+## 自然語言處理庫
+
+幸運的是,你不需要自己構建所有這些技術,因為有一些出色的 Python 庫使得非自然語言處理或機器學習專家的開發者也能輕鬆使用。接下來的課程中會包含更多這些庫的例子,但在這裡你將學到一些有用的例子,幫助你完成下一個任務。
+
+### 練習 - 使用 `TextBlob` 庫
+
+讓我們使用一個名為 TextBlob 的庫,因為它包含了處理這些任務的有用 API。TextBlob "基於 [NLTK](https://nltk.org) 和 [pattern](https://github.com/clips/pattern) 的強大基礎,並與它們良好兼容。" 它的 API 中嵌入了大量機器學習功能。
+
+> 注意:TextBlob 提供了一個有用的[快速入門指南](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart),推薦給有經驗的 Python 開發者。
+
+在嘗試識別*名詞短語*時,TextBlob 提供了多種提取器選項來找到名詞短語。
+
+1. 看看 `ConllExtractor`。
+
+ ```python
+ from textblob import TextBlob
+ from textblob.np_extractors import ConllExtractor
+ # import and create a Conll extractor to use later
+ extractor = ConllExtractor()
+
+ # later when you need a noun phrase extractor:
+ user_input = input("> ")
+ user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified
+ np = user_input_blob.noun_phrases
+ ```
+
+ > 這裡發生了什麼?[ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) 是 "一個使用基於 ConLL-2000 訓練語料庫的塊解析進行名詞短語提取的工具。" ConLL-2000 指的是 2000 年的計算自然語言學習會議。每年會議都會舉辦一個工作坊來解決棘手的自然語言處理問題,而 2000 年的主題是名詞短語解析。一個模型基於《華爾街日報》進行訓練,使用 "第 15-18 節作為訓練數據(211727 個詞元),第 20 節作為測試數據(47377 個詞元)"。你可以查看使用的程序[這裡](https://www.clips.uantwerpen.be/conll2000/chunking/)以及[結果](https://ifarm.nl/erikt/research/np-chunking.html)。
+
+### 挑戰 - 使用自然語言處理改進你的機器人
+
+在上一課中,你構建了一個非常簡單的問答機器人。現在,你將讓 Marvin 更具同理心,通過分析你的輸入情感並打印出匹配情感的回應。你還需要識別一個 `noun_phrase` 並詢問相關話題。
+
+構建更好的對話機器人的步驟:
+
+1. 打印指示,告知用戶如何與機器人互動
+2. 開始循環
+ 1. 接收用戶輸入
+ 2. 如果用戶要求退出,則退出
+ 3. 處理用戶輸入並確定適當的情感回應
+ 4. 如果在情感中檢測到名詞短語,將其變為複數並詢問該話題的更多信息
+ 5. 打印回應
+3. 返回步驟 2
+
+以下是使用 TextBlob 確定情感的程式碼片段。注意,只有四種*情感回應梯度*(如果你願意,可以設置更多):
+
+```python
+if user_input_blob.polarity <= -0.5:
+ response = "Oh dear, that sounds bad. "
+elif user_input_blob.polarity <= 0:
+ response = "Hmm, that's not great. "
+elif user_input_blob.polarity <= 0.5:
+ response = "Well, that sounds positive. "
+elif user_input_blob.polarity <= 1:
+ response = "Wow, that sounds great. "
+```
+
+以下是一些示例輸出(用戶輸入以 > 開頭的行):
+
+```output
+Hello, I am Marvin, the friendly robot.
+You can end this conversation at any time by typing 'bye'
+After typing each answer, press 'enter'
+How are you today?
+> I am ok
+Well, that sounds positive. Can you tell me more?
+> I went for a walk and saw a lovely cat
+Well, that sounds positive. Can you tell me more about lovely cats?
+> cats are the best. But I also have a cool dog
+Wow, that sounds great. Can you tell me more about cool dogs?
+> I have an old hounddog but he is sick
+Hmm, that's not great. Can you tell me more about old hounddogs?
+> bye
+It was nice talking to you, goodbye!
+```
+
+任務的一個可能解決方案在[這裡](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py)
+
+✅ 知識檢查
+
+1. 你認為同理心的回應能否讓人覺得機器人真的理解了他們?
+2. 識別名詞短語是否讓機器人更具“可信度”?
+3. 為什麼從句子中提取“名詞短語”是一件有用的事情?
+
+---
+
+實現上述知識檢查中的機器人,並測試它與朋友的互動。它能騙過他們嗎?你能讓你的機器人更具“可信度”嗎?
+
+## 🚀挑戰
+
+嘗試實現上述知識檢查中的任務。測試機器人與朋友的互動。它能騙過他們嗎?你能讓你的機器人更具“可信度”嗎?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+在接下來的幾課中,你將學到更多關於情感分析的內容。研究這項有趣技術的文章,例如 [KDNuggets](https://www.kdnuggets.com/tag/nlp) 上的文章。
+
+## 作業
+
+[讓機器人回應](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/2-Tasks/assignment.md b/translations/zh-HK/6-NLP/2-Tasks/assignment.md
new file mode 100644
index 000000000..89ce4e830
--- /dev/null
+++ b/translations/zh-HK/6-NLP/2-Tasks/assignment.md
@@ -0,0 +1,16 @@
+# 讓機器人回應
+
+## 指引
+
+在過去幾節課中,你已經編寫了一個基本的聊天機器人。這個機器人會隨機回答,直到你說「bye」為止。你能否讓機器人的回答不那麼隨機,並在你說特定詞語(例如「why」或「how」)時觸發特定回答?想一想機器學習如何讓這類工作變得更自動化,並擴展你的機器人。你可以使用 NLTK 或 TextBlob 庫來簡化你的任務。
+
+## 評分標準
+
+| 評分標準 | 卓越 | 合格 | 需要改進 |
+| -------- | --------------------------------------------- | ------------------------------------------------ | ----------------------- |
+| | 提供了一個新的 bot.py 文件並有詳細的文檔 | 提供了一個新的 bot 文件,但存在錯誤 | 未提供文件 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/3-Translation-Sentiment/README.md b/translations/zh-HK/6-NLP/3-Translation-Sentiment/README.md
new file mode 100644
index 000000000..3fc0d93b4
--- /dev/null
+++ b/translations/zh-HK/6-NLP/3-Translation-Sentiment/README.md
@@ -0,0 +1,191 @@
+# 翻譯與情感分析使用機器學習
+
+在之前的課程中,你學習了如何使用 `TextBlob` 建立一個基本的機器人。`TextBlob` 是一個嵌入了機器學習的庫,能執行基本的自然語言處理任務,例如名詞短語提取。計算語言學中的另一個重要挑戰是準確地將句子從一種語言翻譯到另一種語言。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+翻譯是一個非常困難的問題,因為世界上有數千種語言,每種語言的語法規則可能非常不同。一種方法是將一種語言(例如英語)的正式語法規則轉換為一種不依賴語言的結構,然後通過轉換回另一種語言來完成翻譯。這種方法的步驟如下:
+
+1. **識別**:識別或標記輸入語言中的詞語,例如名詞、動詞等。
+2. **創建翻譯**:生成目標語言格式中每個詞的直接翻譯。
+
+### 英語到愛爾蘭語的例句
+
+在「英語」中,句子 _I feel happy_ 是三個詞,順序為:
+
+- **主語** (I)
+- **動詞** (feel)
+- **形容詞** (happy)
+
+然而,在「愛爾蘭語」中,同一句子有非常不同的語法結構——像 "*happy*" 或 "*sad*" 這樣的情感被表達為「在你身上」。
+
+英語短語 `I feel happy` 在愛爾蘭語中是 `Tá athas orm`。*字面*翻譯是 `Happy is upon me`。
+
+一位愛爾蘭語使用者翻譯成英語時會說 `I feel happy`,而不是 `Happy is upon me`,因為他們理解句子的意思,即使詞語和句子結構不同。
+
+在愛爾蘭語中,句子的正式順序是:
+
+- **動詞** (Tá 或 is)
+- **形容詞** (athas 或 happy)
+- **主語** (orm 或 upon me)
+
+## 翻譯
+
+一個簡單的翻譯程式可能只翻譯詞語,忽略句子結構。
+
+✅ 如果你作為成年人學習了第二(或第三甚至更多)語言,你可能一開始會用母語思考,然後在腦海中逐字翻譯概念到第二語言,最後說出翻譯的內容。這類似於簡單翻譯程式的工作方式。要達到流利程度,重要的是要超越這個階段!
+
+簡單翻譯會導致糟糕(有時甚至是搞笑)的錯誤翻譯:`I feel happy` 字面翻譯成愛爾蘭語是 `Mise bhraitheann athas`。這字面意思是 `me feel happy`,並不是一個有效的愛爾蘭語句子。即使英語和愛爾蘭語是兩個相鄰島嶼上使用的語言,它們的語法結構仍然非常不同。
+
+> 你可以觀看一些關於愛爾蘭語言傳統的影片,例如 [這個](https://www.youtube.com/watch?v=mRIaLSdRMMs)
+
+### 機器學習方法
+
+到目前為止,你已經學習了基於正式規則的自然語言處理方法。另一種方法是忽略詞語的意思,而是使用機器學習來檢測模式。如果你擁有大量文本(*語料庫*)或文本集(*語料集*),這種方法在翻譯中可能有效。
+
+例如,考慮 *Pride and Prejudice* 的情況,這是 Jane Austen 在 1813 年寫的一本著名英語小說。如果你查看英語版本和人類翻譯的 *法語* 版本,你可以檢測到某些短語在一種語言中被*慣用地*翻譯成另一種語言。你將在稍後進行這個操作。
+
+例如,當英語短語 `I have no money` 被字面翻譯成法語時,可能會變成 `Je n'ai pas de monnaie`。「Monnaie」是一個棘手的法語「假同源詞」,因為「money」和「monnaie」並不是同義詞。一個人類可能會做出更好的翻譯 `Je n'ai pas d'argent`,因為它更好地傳達了你沒有錢的意思(而不是「零錢」,這是「monnaie」的意思)。
+
+
+
+> 圖片由 [Jen Looper](https://twitter.com/jenlooper) 提供
+
+如果一個機器學習模型擁有足夠多的人類翻譯文本來建立模型,它可以通過識別之前由專家翻譯的文本中的常見模式來提高翻譯的準確性。
+
+### 練習 - 翻譯
+
+你可以使用 `TextBlob` 來翻譯句子。試試 **Pride and Prejudice** 的著名第一句:
+
+```python
+from textblob import TextBlob
+
+blob = TextBlob(
+ "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!"
+)
+print(blob.translate(to="fr"))
+
+```
+
+`TextBlob` 的翻譯效果相當不錯:"C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!"。
+
+事實上,可以說 `TextBlob` 的翻譯比 1932 年由 V. Leconte 和 Ch. Pressoir 的法語翻譯更精確:
+
+"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles."
+
+在這種情況下,基於機器學習的翻譯比人類翻譯更好,因為人類翻譯者為了「清晰」而不必要地添加了原作者未表達的內容。
+
+> 這是怎麼回事?為什麼 `TextBlob` 的翻譯如此出色?事實上,它背後使用了 Google Translate,一個能解析數百萬短語並預測最佳字串的高級人工智能。這裡沒有任何手動操作,並且你需要網絡連接才能使用 `blob.translate`。
+
+✅ 試試更多句子。哪種翻譯更好,機器學習還是人類翻譯?在哪些情況下?
+
+## 情感分析
+
+機器學習在情感分析方面也非常有效。一種非機器學習的方法是識別「正面」和「負面」的詞語和短語。然後,給定一段新的文本,計算正面、負面和中性詞語的總值,以識別整體情感。
+
+這種方法很容易被欺騙,就像你在 Marvin 任務中看到的那樣——句子 `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` 是一個諷刺的負面情感句子,但簡單的算法會檢測到「great」、「wonderful」、「glad」是正面的,而「waste」、「lost」和「dark」是負面的。整體情感被這些矛盾的詞語所影響。
+
+✅ 停下來想一想,作為人類說話者,我們如何表達諷刺。語調的變化起著重要作用。試著用不同的方式說「Well, that film was awesome」,看看你的聲音如何傳達意思。
+
+### 機器學習方法
+
+機器學習的方法是手動收集負面和正面的文本——例如推文、電影評論,或任何人類給出分數*以及*書面意見的文本。然後可以將自然語言處理技術應用於意見和分數,使模式浮現(例如,正面的電影評論比負面的電影評論更常出現「Oscar worthy」,或者正面的餐廳評論比負面的餐廳評論更常出現「gourmet」而不是「disgusting」)。
+
+> ⚖️ **例子**:如果你在一位政治家的辦公室工作,並且有一項新法律正在辯論,選民可能會寫信給辦公室,支持或反對這項新法律。假設你的任務是閱讀這些電子郵件並將它們分成兩堆,*支持*和*反對*。如果有很多電子郵件,你可能會因為試圖閱讀所有電子郵件而感到不堪重負。如果有一個機器人能幫你閱讀所有電子郵件,理解它們並告訴你每封電子郵件屬於哪一堆,那不是很好嗎?
+>
+> 一種實現方法是使用機器學習。你可以用部分*反對*的電子郵件和部分*支持*的電子郵件來訓練模型。模型會傾向於將某些短語和詞語與反對方和支持方相關聯,*但它不會理解任何內容*,只會知道某些詞語和模式更可能出現在反對或支持的電子郵件中。你可以用一些未用於訓練模型的電子郵件進行測試,看看它是否得出了與你相同的結論。然後,一旦你對模型的準確性感到滿意,你就可以處理未來的電子郵件,而不必逐一閱讀。
+
+✅ 這個過程是否與你在之前的課程中使用的過程相似?
+
+## 練習 - 情感句子
+
+情感以 *極性* -1 到 1 來衡量,-1 表示最負面的情感,1 表示最正面的情感。情感還以 0 到 1 的分數衡量客觀性(0)和主觀性(1)。
+
+再看看 Jane Austen 的 *Pride and Prejudice*。該文本可在 [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) 找到。以下示例展示了一個短程式,它分析了書中的第一句和最後一句的情感,並顯示其情感極性和主觀性/客觀性分數。
+
+你應該使用 `TextBlob` 庫(如上所述)來確定 `sentiment`(你不需要自己編寫情感計算器)來完成以下任務。
+
+```python
+from textblob import TextBlob
+
+quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife."""
+
+quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them."""
+
+sentiment1 = TextBlob(quote1).sentiment
+sentiment2 = TextBlob(quote2).sentiment
+
+print(quote1 + " has a sentiment of " + str(sentiment1))
+print(quote2 + " has a sentiment of " + str(sentiment2))
+```
+
+你會看到以下輸出:
+
+```output
+It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146)
+
+Darcy, as well as Elizabeth, really loved them; and they were
+ both ever sensible of the warmest gratitude towards the persons
+ who, by bringing her into Derbyshire, had been the means of
+ uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8)
+```
+
+## 挑戰 - 檢查情感極性
+
+你的任務是使用情感極性來判斷 *Pride and Prejudice* 是否有更多絕對正面的句子,而不是絕對負面的句子。對於此任務,你可以假設極性分數為 1 或 -1 分別表示絕對正面或負面。
+
+**步驟:**
+
+1. 從 Project Gutenberg 下載 [Pride and Prejudice 的副本](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) 作為 .txt 文件。刪除文件開頭和結尾的元數據,只保留原始文本。
+2. 在 Python 中打開文件並將內容提取為字符串。
+3. 使用書的字符串創建一個 TextBlob。
+4. 在循環中分析書中的每個句子:
+ 1. 如果極性為 1 或 -1,將句子存儲在正面或負面消息的數組或列表中。
+5. 最後,分別打印出所有正面句子和負面句子,以及每個的數量。
+
+這裡是一個 [示例解決方案](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb)。
+
+✅ 知識檢查
+
+1. 情感是基於句子中使用的詞語,但程式是否*理解*這些詞語?
+2. 你認為情感極性準確嗎?換句話說,你是否*同意*這些分數?
+ 1. 特別是,你是否同意或不同意以下句子的絕對**正面**極性:
+ * “What an excellent father you have, girls!” said she, when the door was shut.
+ * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect.
+ * How wonderfully these sort of things occur!
+ * I have the greatest dislike in the world to that sort of thing.
+ * Charlotte is an excellent manager, I dare say.
+ * “This is delightful indeed!
+ * I am so happy!
+ * Your idea of the ponies is delightful.
+ 2. 以下三個句子被評為絕對正面情感,但仔細閱讀後,它們並不是正面句子。為什麼情感分析認為它們是正面句子?
+ * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power.
+ * If I could but see you as happy!
+ * Our distress, my dear Lizzy, is very great.
+ 3. 你是否同意或不同意以下句子的絕對**負面**極性:
+ - Everybody is disgusted with his pride.
+ - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful.
+ - The pause was to Elizabeth’s feelings dreadful.
+ - It would be dreadful!
+
+✅ 任何 Jane Austen 的愛好者都會理解,她經常在書中批判英國攝政時期社會中更荒謬的方面。*Pride and Prejudice* 的主角 Elizabeth Bennett 是一位敏銳的社會觀察者(就像作者一樣),她的語言通常充滿微妙的含義。甚至故事中的愛情對象 Mr. Darcy 也注意到 Elizabeth 的俏皮和戲謔的語言使用:"I have had the pleasure of your acquaintance long enough to know that you find great enjoyment in occasionally professing opinions which in fact are not your own."
+
+---
+
+## 🚀挑戰
+
+你能否通過從用戶輸入中提取其他特徵來使 Marvin 更加出色?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+有很多方法可以從文本中提取情感。想想可能使用這項技術的商業應用。再想想它可能出錯的情況。了解更多關於分析情感的高級企業級系統,例如 [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott)。測試一些《傲慢與偏見》中的句子,看看它是否能夠檢測出細微差別。
+
+## 作業
+
+[Poetic license](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/3-Translation-Sentiment/assignment.md b/translations/zh-HK/6-NLP/3-Translation-Sentiment/assignment.md
new file mode 100644
index 000000000..d9a73b953
--- /dev/null
+++ b/translations/zh-HK/6-NLP/3-Translation-Sentiment/assignment.md
@@ -0,0 +1,16 @@
+# 詩意的許可
+
+## 指引
+
+在[這個筆記本](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency)中,你可以找到超過500首艾米莉·狄更生的詩,這些詩之前已使用Azure文本分析進行情感分析。利用這個數據集,使用課堂中描述的技術進行分析。一首詩的建議情感是否與更高級的Azure服務的判斷一致?為什麼或為什麼不一致?根據你的看法,有什麼讓你感到驚訝嗎?
+
+## 評分標準
+
+| 標準 | 卓越表現 | 合格表現 | 需要改進 |
+| -------- | -------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------ |
+| | 提交了一個包含作者樣本輸出完整分析的筆記本 | 筆記本不完整或未進行分析 | 未提交筆記本 |
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
new file mode 100644
index 000000000..f1727ea7c
--- /dev/null
+++ b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/R/README.md
new file mode 100644
index 000000000..397955262
--- /dev/null
+++ b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/R/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb
new file mode 100644
index 000000000..e950914e6
--- /dev/null
+++ b/translations/zh-HK/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb
@@ -0,0 +1,100 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 4,
+ "coopTranslator": {
+ "original_hash": "27de2abc0235ebd22080fc8f1107454d",
+ "translation_date": "2025-09-03T20:58:09+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from textblob import TextBlob\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# You should download the book text, clean it, and import it here\n",
+ "with open(\"pride.txt\", encoding=\"utf8\") as f:\n",
+ " file_contents = f.read()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "book_pride = TextBlob(file_contents)\n",
+ "positive_sentiment_sentences = []\n",
+ "negative_sentiment_sentences = []"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for sentence in book_pride.sentences:\n",
+ " if sentence.sentiment.polarity == 1:\n",
+ " positive_sentiment_sentences.append(sentence)\n",
+ " if sentence.sentiment.polarity == -1:\n",
+ " negative_sentiment_sentences.append(sentence)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n",
+ "for sentence in positive_sentiment_sentences:\n",
+ " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n",
+ "for sentence in negative_sentiment_sentences:\n",
+ " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/README.md b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/README.md
new file mode 100644
index 000000000..ba3c571a5
--- /dev/null
+++ b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/README.md
@@ -0,0 +1,408 @@
+# 使用酒店評論進行情感分析 - 數據處理
+
+在本節中,你將使用之前課程中的技術對一個大型數據集進行探索性數據分析。一旦你對各列的實用性有了良好的理解,你將學習:
+
+- 如何移除不必要的列
+- 如何基於現有列計算一些新的數據
+- 如何保存結果數據集以便在最終挑戰中使用
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+### 簡介
+
+到目前為止,你已經學習了文本數據與數值型數據的不同之處。如果文本是由人類書寫或口述的,它可以被分析以發現模式和頻率、情感和含義。本課程將帶你進入一個真實的數據集並面臨一個真實的挑戰:**[歐洲515K酒店評論數據](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**,並包含[CC0: 公共領域許可證](https://creativecommons.org/publicdomain/zero/1.0/)。該數據集是從Booking.com的公共來源抓取的,數據集的創建者是Jiashen Liu。
+
+### 準備工作
+
+你需要:
+
+* 能夠使用Python 3運行.ipynb筆記本
+* pandas
+* NLTK,[你應該在本地安裝](https://www.nltk.org/install.html)
+* 可在Kaggle上獲得的數據集[歐洲515K酒店評論數據](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)。解壓後約230 MB。將其下載到與這些NLP課程相關的根目錄`/data`文件夾中。
+
+## 探索性數據分析
+
+本挑戰假設你正在使用情感分析和客人評論分數來構建一個酒店推薦機器人。你將使用的數據集包括6個城市中1493家不同酒店的評論。
+
+使用Python、酒店評論數據集和NLTK的情感分析,你可以找出:
+
+* 在評論中最常用的詞語和短語是什麼?
+* 酒店的官方*標籤*是否與評論分數相關(例如,某酒店的*家庭帶小孩*評論是否比*單獨旅行者*更負面,可能表明該酒店更適合*單獨旅行者*?)
+* NLTK的情感分數是否與酒店評論者的數值分數一致?
+
+#### 數據集
+
+讓我們探索你已下載並保存到本地的數據集。使用VS Code或Excel等編輯器打開文件。
+
+數據集的標題如下:
+
+*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng*
+
+以下是分組後更易於檢查的方式:
+##### 酒店相關列
+
+* `Hotel_Name`, `Hotel_Address`, `lat` (緯度), `lng` (經度)
+ * 使用*lat*和*lng*,你可以使用Python繪製一張地圖,顯示酒店位置(可能根據正面和負面評論進行顏色編碼)
+ * Hotel_Address對我們來說似乎沒有明顯的用途,我們可能會用國家替代以便更容易排序和搜索
+
+**酒店元評論列**
+
+* `Average_Score`
+ * 根據數據集創建者的說法,此列是*酒店的平均分數,基於過去一年內的最新評論計算*。這似乎是一種不尋常的計算方式,但由於是抓取的數據,我們暫時接受它。
+
+ ✅ 根據此數據中的其他列,你能想到另一種計算平均分數的方法嗎?
+
+* `Total_Number_of_Reviews`
+ * 該酒店收到的評論總數——不清楚(需要編寫一些代碼)這是否指數據集中的評論。
+* `Additional_Number_of_Scoring`
+ * 這意味著評論者給出了分數,但沒有撰寫正面或負面評論。
+
+**評論相關列**
+
+- `Reviewer_Score`
+ - 這是一個數值,最多有1位小數,範圍在2.5到10之間。
+ - 未解釋為什麼最低分數是2.5。
+- `Negative_Review`
+ - 如果評論者未撰寫任何內容,此字段將顯示"**No Negative**"
+ - 注意,評論者可能在負面評論列中撰寫正面評論(例如:"這家酒店沒有任何不好的地方")
+- `Review_Total_Negative_Word_Counts`
+ - 更高的負面詞數表明分數較低(未檢查情感性)
+- `Positive_Review`
+ - 如果評論者未撰寫任何內容,此字段將顯示"**No Positive**"
+ - 注意,評論者可能在正面評論列中撰寫負面評論(例如:"這家酒店完全沒有任何好的地方")
+- `Review_Total_Positive_Word_Counts`
+ - 更高的正面詞數表明分數較高(未檢查情感性)
+- `Review_Date` 和 `days_since_review`
+ - 可以對評論應用新鮮度或陳舊度的衡量(較舊的評論可能不如較新的評論準確,因為酒店管理可能已更改,或進行了翻新,或新增了泳池等)
+- `Tags`
+ - 這些是評論者可能選擇用來描述他們是什麼類型的客人(例如,單獨或家庭)、他們的房間類型、停留時間以及評論提交方式的簡短描述。
+ - 不幸的是,使用這些標籤存在問題,請查看下面討論其實用性的部分。
+
+**評論者相關列**
+
+- `Total_Number_of_Reviews_Reviewer_Has_Given`
+ - 這可能是推薦模型中的一個因素,例如,如果你能確定更高產的評論者(有數百條評論)更可能是負面而非正面。然而,任何特定評論的評論者並未用唯一代碼標識,因此無法鏈接到一組評論。有30位評論者有100條或更多評論,但很難看出這如何幫助推薦模型。
+- `Reviewer_Nationality`
+ - 有些人可能認為某些國籍更可能給出正面或負面評論,因為有某種國家傾向。建模時要小心建立這樣的傳聞觀點。這些是國家(有時是種族)刻板印象,每位評論者都是基於他們的經驗撰寫評論的個體。評論可能受到多種因素的影響,例如他們之前的酒店住宿、旅行距離以及個人性格。認為他們的國籍是評論分數的原因是難以證明的。
+
+##### 示例
+
+| 平均分數 | 總評論數 | 評論者分數 | 負面 評論 | 正面評論 | 標籤 |
+| -------- | -------- | -------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------- | ----------------------------------------------------------------------------------------- |
+| 7.8 | 1945 | 2.5 | 這目前不是一家酒店,而是一個建築工地。我在長途旅行後休息並在房間工作時,從早上到整天都被不可接受的施工噪音折磨。人們整天都在工作,例如在相鄰房間使用鑽孔機。我要求更換房間,但沒有安靜的房間可用。更糟的是,我被多收了費。我在晚上退房,因為我需要早班飛機,並收到了一張適當的賬單。一天後,酒店在未經我同意的情況下額外收取了超出預訂價格的費用。這是一個可怕的地方。不要折磨自己,千萬不要預訂這裡。 | 沒有任何好的地方 | 商務旅行 情侶 標準雙人房 停留2晚 |
+
+如你所見,這位客人在這家酒店的住宿並不愉快。該酒店有7.8的良好平均分數和1945條評論,但這位評論者給出了2.5分,並寫了115個字描述他們的負面住宿體驗。如果他們在正面評論列中未撰寫任何內容,你可能會推測沒有任何正面內容,但他們卻寫了7個字的警告。如果我們僅僅計算字數而不是字詞的含義或情感,我們可能會對評論者的意圖有一個偏頗的看法。奇怪的是,他們的2.5分令人困惑,因為如果酒店住宿如此糟糕,為什麼還要給任何分數?仔細調查數據集,你會發現最低可能分數是2.5,而不是0。最高可能分數是10。
+
+##### 標籤
+
+如上所述,乍看之下,使用`Tags`來分類數據似乎很合理。不幸的是,這些標籤並未標準化,這意味著在某家酒店中,選項可能是*單人房*、*雙床房*和*雙人房*,但在下一家酒店中,它們可能是*豪華單人房*、*經典大床房*和*行政特大床房*。這些可能是相同的房型,但有如此多的變化,選擇變成:
+
+1. 嘗試將所有術語更改為單一標準,這非常困難,因為不清楚每種情況的轉換路徑(例如,*經典單人房*映射到*單人房*,但*帶庭院花園或城市景觀的高級大床房*則更難映射)
+
+1. 我們可以採用NLP方法,測量某些術語的頻率,例如*單獨*、*商務旅行者*或*家庭帶小孩*,並將其應用於每家酒店,並將其納入推薦中。
+
+標籤通常(但並非總是)是一個包含5到6個逗號分隔值的單一字段,對應於*旅行類型*、*客人類型*、*房間類型*、*停留天數*和*提交評論的設備類型*。然而,由於某些評論者未填寫每個字段(可能留空一個),值並不總是按相同順序排列。
+
+例如,取*群體類型*。在`Tags`列中,此字段有1025種唯一可能性,不幸的是,其中只有部分提到群體(有些是房間類型等)。如果你僅篩選提到家庭的標籤,結果包含許多*家庭房*類型的結果。如果你包括術語*with*,即計算*家庭帶*的值,結果更好,在515,000條結果中有超過80,000條包含短語"家庭帶小孩"或"家庭帶大孩"。
+
+這意味著標籤列對我們來說並非完全無用,但需要一些工作才能使其有用。
+
+##### 酒店平均分數
+
+數據集中有一些奇怪或不一致的地方我無法解釋,但在此列出以便你在構建模型時注意。如果你能解釋,請在討論區告訴我們!
+
+數據集有以下列與平均分數和評論數相關:
+
+1. Hotel_Name
+2. Additional_Number_of_Scoring
+3. Average_Score
+4. Total_Number_of_Reviews
+5. Reviewer_Score
+
+數據集中評論最多的酒店是*Britannia International Hotel Canary Wharf*,有4789條評論(共515,000條)。但如果我們查看該酒店的`Total_Number_of_Reviews`值,則為9086。你可能推測有更多的分數沒有評論,因此我們應該加上`Additional_Number_of_Scoring`列的值。該值為2682,加上4789得到7471,仍然比`Total_Number_of_Reviews`少1615。
+
+如果你查看`Average_Score`列,你可能推測它是數據集中評論的平均值,但Kaggle的描述是"*酒店的平均分數,基於過去一年內的最新評論計算*”。這似乎不太有用,但我們可以基於數據集中的評論分數計算自己的平均值。以同一家酒店為例,酒店的平均分數為7.1,但計算出的分數(數據集中評論者的平均分數)為6.8。這很接近,但不是相同的值,我們只能猜測`Additional_Number_of_Scoring`評論中的分數將平均值提高到7.1。不幸的是,由於無法測試或證明這一假設,使用或信任`Average_Score`、`Additional_Number_of_Scoring`和`Total_Number_of_Reviews`變得困難,因為它們基於或引用了我們沒有的數據。
+
+更複雜的是,評論數第二多的酒店的計算平均分數為8.12,而數據集中的`Average_Score`為8.1。這個正確的分數是巧合還是第一家酒店的數據不一致?
+
+基於這些酒店可能是異常值的可能性,以及也許大多數值是匹配的(但某些值由於某些原因不匹配),我們將在接下來編寫一個簡短的程序來探索數據集中的值並確定正確的使用方式(或不使用方式)。
+> 🚨 注意事項
+>
+> 在處理這個數據集時,你將撰寫程式碼來從文本中計算某些內容,而無需親自閱讀或分析文本。這正是自然語言處理(NLP)的核心:解讀意義或情感,而不需要人類親自參與。然而,有可能你會看到一些負面評論。我建議你不要去閱讀,因為你並不需要這樣做。有些評論可能很荒謬,或者是無關緊要的負面酒店評論,例如「天氣不好」,這是酒店或任何人都無法控制的事情。但有些評論也有陰暗的一面。有時候,負面評論可能帶有種族歧視、性別歧視或年齡歧視的內容。這是令人遺憾的,但在從公共網站抓取的數據集中,這是可以預期的。一些評論者可能會留下讓你覺得反感、不舒服或心情不好的評論。最好讓程式碼來測量情感,而不是自己去閱讀這些評論並因此感到不安。話雖如此,撰寫這類評論的人只是少數,但它們的確存在。
+## 練習 - 資料探索
+### 載入資料
+
+視覺化檢視資料已經足夠,現在你需要撰寫一些程式碼來獲取答案!這部分會使用 pandas 函式庫。你的第一個任務是確保你能載入並讀取 CSV 資料。pandas 函式庫提供快速的 CSV 載入功能,結果會存放在 dataframe 中,就像之前的課程一樣。我們要載入的 CSV 檔案有超過五十萬行,但只有 17 個欄位。pandas 提供了許多強大的方式來與 dataframe 互動,包括能對每一行進行操作的能力。
+
+從這裡開始,課程中會有程式碼片段以及一些程式碼的解釋,並討論結果的意義。請使用附帶的 _notebook.ipynb_ 來撰寫你的程式碼。
+
+讓我們從載入你將使用的資料檔案開始:
+
+```python
+# Load the hotel reviews from CSV
+import pandas as pd
+import time
+# importing time so the start and end time can be used to calculate file loading time
+print("Loading data file now, this could take a while depending on file size")
+start = time.time()
+# df is 'DataFrame' - make sure you downloaded the file to the data folder
+df = pd.read_csv('../../data/Hotel_Reviews.csv')
+end = time.time()
+print("Loading took " + str(round(end - start, 2)) + " seconds")
+```
+
+現在資料已經載入,我們可以對其進行一些操作。將這段程式碼保留在程式的頂部,供接下來的部分使用。
+
+## 探索資料
+
+在這個例子中,資料已經是*乾淨*的,這意味著它已準備好使用,並且不包含可能會影響只接受英文字符的演算法的其他語言字符。
+
+✅ 你可能需要處理一些需要初步格式化的資料,才能應用 NLP 技術,但這次不需要。如果需要,你會如何處理非英文字符?
+
+花點時間確保資料載入後,你可以使用程式碼來探索它。很容易想要專注於 `Negative_Review` 和 `Positive_Review` 欄位。這些欄位充滿了自然文本,供你的 NLP 演算法處理。但等等!在你進行 NLP 和情感分析之前,應該先按照以下程式碼來確認資料集中提供的值是否與你使用 pandas 計算的值相符。
+
+## Dataframe 操作
+
+這堂課的第一個任務是撰寫一些程式碼來檢查以下斷言是否正確(不更改資料框)。
+
+> 就像許多程式設計任務一樣,完成這些任務有多種方式,但好的建議是以最簡單、最容易的方式完成,尤其是當你未來回顧這段程式碼時更容易理解。對於 dataframe,有一個全面的 API,通常可以有效地完成你想要的操作。
+
+將以下問題視為程式設計任務,嘗試回答它們而不查看解答。
+
+1. 輸出你剛載入的資料框的*形狀*(形狀是行數和列數)
+2. 計算評論者國籍的頻率:
+ 1. `Reviewer_Nationality` 欄位有多少個不同的值?它們是什麼?
+ 2. 資料集中最常見的評論者國籍是什麼(輸出國家和評論數量)?
+ 3. 接下來最常見的前 10 個國籍及其頻率是多少?
+3. 對於前 10 個評論者國籍,每個國籍最常被評論的酒店是什麼?
+4. 資料集中每個酒店有多少評論(酒店的評論頻率)?
+5. 雖然資料集中每個酒店都有 `Average_Score` 欄位,但你也可以計算平均分數(計算資料集中每個酒店所有評論者分數的平均值)。新增一個名為 `Calc_Average_Score` 的欄位到你的 dataframe,該欄位包含計算出的平均分數。
+6. 是否有酒店的 `Average_Score` 和 `Calc_Average_Score`(四捨五入到小數點後一位)相同?
+ 1. 嘗試撰寫一個 Python 函數,該函數接受一個 Series(行)作為參數並比較這些值,當值不相等時輸出訊息。然後使用 `.apply()` 方法處理每一行。
+7. 計算並輸出 `Negative_Review` 欄位值為 "No Negative" 的行數
+8. 計算並輸出 `Positive_Review` 欄位值為 "No Positive" 的行數
+9. 計算並輸出 `Positive_Review` 欄位值為 "No Positive" **且** `Negative_Review` 欄位值為 "No Negative" 的行數
+
+### 程式碼解答
+
+1. 輸出你剛載入的資料框的*形狀*(形狀是行數和列數)
+
+ ```python
+ print("The shape of the data (rows, cols) is " + str(df.shape))
+ > The shape of the data (rows, cols) is (515738, 17)
+ ```
+
+2. 計算評論者國籍的頻率:
+
+ 1. `Reviewer_Nationality` 欄位有多少個不同的值?它們是什麼?
+ 2. 資料集中最常見的評論者國籍是什麼(輸出國家和評論數量)?
+
+ ```python
+ # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality
+ nationality_freq = df["Reviewer_Nationality"].value_counts()
+ print("There are " + str(nationality_freq.size) + " different nationalities")
+ # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data
+ print(nationality_freq)
+
+ There are 227 different nationalities
+ United Kingdom 245246
+ United States of America 35437
+ Australia 21686
+ Ireland 14827
+ United Arab Emirates 10235
+ ...
+ Comoros 1
+ Palau 1
+ Northern Mariana Islands 1
+ Cape Verde 1
+ Guinea 1
+ Name: Reviewer_Nationality, Length: 227, dtype: int64
+ ```
+
+ 3. 接下來最常見的前 10 個國籍及其頻率是多少?
+
+ ```python
+ print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.")
+ # Notice there is a leading space on the values, strip() removes that for printing
+ # What is the top 10 most common nationalities and their frequencies?
+ print("The next 10 highest frequency reviewer nationalities are:")
+ print(nationality_freq[1:11].to_string())
+
+ The highest frequency reviewer nationality is United Kingdom with 245246 reviews.
+ The next 10 highest frequency reviewer nationalities are:
+ United States of America 35437
+ Australia 21686
+ Ireland 14827
+ United Arab Emirates 10235
+ Saudi Arabia 8951
+ Netherlands 8772
+ Switzerland 8678
+ Germany 7941
+ Canada 7894
+ France 7296
+ ```
+
+3. 對於前 10 個評論者國籍,每個國籍最常被評論的酒店是什麼?
+
+ ```python
+ # What was the most frequently reviewed hotel for the top 10 nationalities
+ # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow)
+ for nat in nationality_freq[:10].index:
+ # First, extract all the rows that match the criteria into a new dataframe
+ nat_df = df[df["Reviewer_Nationality"] == nat]
+ # Now get the hotel freq
+ freq = nat_df["Hotel_Name"].value_counts()
+ print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.")
+
+ The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews.
+ The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews.
+ The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews.
+ The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews.
+ The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews.
+ The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews.
+ The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews.
+ The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews.
+ The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews.
+ The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews.
+ ```
+
+4. 資料集中每個酒店有多少評論(酒店的評論頻率)?
+
+ ```python
+ # First create a new dataframe based on the old one, removing the uneeded columns
+ hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1)
+
+ # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found
+ hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')
+
+ # Get rid of all the duplicated rows
+ hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"])
+ display(hotel_freq_df)
+ ```
+ | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found |
+ | :----------------------------------------: | :---------------------: | :-----------------: |
+ | Britannia International Hotel Canary Wharf | 9086 | 4789 |
+ | Park Plaza Westminster Bridge London | 12158 | 4169 |
+ | Copthorne Tara Hotel London Kensington | 7105 | 3578 |
+ | ... | ... | ... |
+ | Mercure Paris Porte d Orleans | 110 | 10 |
+ | Hotel Wagner | 135 | 10 |
+ | Hotel Gallitzinberg | 173 | 8 |
+
+ 你可能會注意到*資料集中計算的*結果與 `Total_Number_of_Reviews` 的值不匹配。不清楚資料中的這個值是否代表酒店的總評論數,但並非所有評論都被抓取,或者是其他計算方式。由於這種不明確性,`Total_Number_of_Reviews` 不會被用於模型中。
+
+5. 雖然資料集中每個酒店都有 `Average_Score` 欄位,但你也可以計算平均分數(計算資料集中每個酒店所有評論者分數的平均值)。新增一個名為 `Calc_Average_Score` 的欄位到你的 dataframe,該欄位包含計算出的平均分數。輸出欄位 `Hotel_Name`、`Average_Score` 和 `Calc_Average_Score`。
+
+ ```python
+ # define a function that takes a row and performs some calculation with it
+ def get_difference_review_avg(row):
+ return row["Average_Score"] - row["Calc_Average_Score"]
+
+ # 'mean' is mathematical word for 'average'
+ df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)
+
+ # Add a new column with the difference between the two average scores
+ df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1)
+
+ # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)
+ review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"])
+
+ # Sort the dataframe to find the lowest and highest average score difference
+ review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"])
+
+ display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]])
+ ```
+
+ 你可能也會好奇 `Average_Score` 的值以及為什麼它有時與計算出的平均分數不同。由於我們無法知道為什麼有些值匹配,但其他值有差異,在這種情況下最安全的做法是使用我們擁有的評論分數來自行計算平均分數。儘管如此,差異通常非常小,以下是資料集中平均分數與計算出的平均分數差異最大的酒店:
+
+ | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name |
+ | :----------------------: | :-----------: | :----------------: | ------------------------------------------: |
+ | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria |
+ | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery |
+ | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans |
+ | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel |
+ | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es |
+ | ... | ... | ... | ... |
+ | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre |
+ | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur |
+ | 0.9 | 6.8 | 5.9 | Villa Eugenie |
+ | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux |
+ | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar |
+
+ 只有 1 家酒店的分數差異超過 1,這意味著我們可以忽略差異並使用計算出的平均分數。
+
+6. 計算並輸出 `Negative_Review` 欄位值為 "No Negative" 的行數
+
+7. 計算並輸出 `Positive_Review` 欄位值為 "No Positive" 的行數
+
+8. 計算並輸出 `Positive_Review` 欄位值為 "No Positive" **且** `Negative_Review` 欄位值為 "No Negative" 的行數
+
+ ```python
+ # with lambdas:
+ start = time.time()
+ no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1)
+ print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index)))
+
+ no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1)
+ print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index)))
+
+ both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1)
+ print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index)))
+ end = time.time()
+ print("Lambdas took " + str(round(end - start, 2)) + " seconds")
+
+ Number of No Negative reviews: 127890
+ Number of No Positive reviews: 35946
+ Number of both No Negative and No Positive reviews: 127
+ Lambdas took 9.64 seconds
+ ```
+
+## 另一種方法
+
+另一種不使用 Lambdas 的計算方式,並使用 sum 來計算行數:
+
+ ```python
+ # without lambdas (using a mixture of notations to show you can use both)
+ start = time.time()
+ no_negative_reviews = sum(df.Negative_Review == "No Negative")
+ print("Number of No Negative reviews: " + str(no_negative_reviews))
+
+ no_positive_reviews = sum(df["Positive_Review"] == "No Positive")
+ print("Number of No Positive reviews: " + str(no_positive_reviews))
+
+ both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive"))
+ print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews))
+
+ end = time.time()
+ print("Sum took " + str(round(end - start, 2)) + " seconds")
+
+ Number of No Negative reviews: 127890
+ Number of No Positive reviews: 35946
+ Number of both No Negative and No Positive reviews: 127
+ Sum took 0.19 seconds
+ ```
+
+ 你可能注意到有 127 行的 `Negative_Review` 和 `Positive_Review` 欄位分別為 "No Negative" 和 "No Positive"。這意味著評論者給酒店一個數字分數,但拒絕撰寫正面或負面的評論。幸運的是,這些行數量很少(127 行中的 515738 行,僅佔 0.02%),因此可能不會在任何特定方向上影響我們的模型或結果。但你可能沒想到評論資料集中會有沒有評論的行,因此值得探索資料以發現這樣的行。
+
+現在你已經探索了資料集,在下一課中你將篩選資料並進行一些情感分析。
+
+---
+## 🚀挑戰
+
+這堂課展示了,就像我們在之前的課程中看到的那樣,在對資料進行操作之前,了解資料及其特性是多麼重要。特別是基於文本的資料,需要仔細檢查。深入挖掘各種以文本為主的資料集,看看是否能發現可能引入偏差或情感偏斜的地方。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+參加 [這個 NLP 學習路徑](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott),探索在構建語音和文本模型時可以嘗試的工具。
+
+## 作業
+
+[NLTK](assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/assignment.md
new file mode 100644
index 000000000..f20f9be61
--- /dev/null
+++ b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/assignment.md
@@ -0,0 +1,10 @@
+# NLTK
+
+## 使用說明
+
+NLTK 是一個知名的庫,用於計算語言學和自然語言處理。趁此機會閱讀『[NLTK 書籍](https://www.nltk.org/book/)』並嘗試其中的練習。在這個不計分的作業中,您將更深入地了解這個庫。
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/notebook.ipynb
new file mode 100644
index 000000000..e69de29bb
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
new file mode 100644
index 000000000..6a7d51997
--- /dev/null
+++ b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
new file mode 100644
index 000000000..f1727ea7c
--- /dev/null
+++ b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb
new file mode 100644
index 000000000..4c878cc86
--- /dev/null
+++ b/translations/zh-HK/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb
@@ -0,0 +1,174 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 4,
+ "coopTranslator": {
+ "original_hash": "2d05e7db439376aa824f4b387f8324ca",
+ "translation_date": "2025-09-03T20:57:51+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# EDA\n",
+ "import pandas as pd\n",
+ "import time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_difference_review_avg(row):\n",
+ " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load the hotel reviews from CSV\n",
+ "print(\"Loading data file now, this could take a while depending on file size\")\n",
+ "start = time.time()\n",
+ "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n",
+ "end = time.time()\n",
+ "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# What shape is the data (rows, columns)?\n",
+ "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# value_counts() creates a Series object that has index and values\n",
+ "# in this case, the country and the frequency they occur in reviewer nationality\n",
+ "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# What reviewer nationality is the most common in the dataset?\n",
+ "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# What is the top 10 most common nationalities and their frequencies?\n",
+ "print(\"The top 10 highest frequency reviewer nationalities are:\")\n",
+ "print(nationality_freq[0:10].to_string())\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# How many unique nationalities are there?\n",
+ "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n",
+ "for nat in nationality_freq[:10].index:\n",
+ " # First, extract all the rows that match the criteria into a new dataframe\n",
+ " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n",
+ " # Now get the hotel freq\n",
+ " freq = nat_df[\"Hotel_Name\"].value_counts()\n",
+ " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n",
+ "# First create a new dataframe based on the old one, removing the uneeded columns\n",
+ "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n",
+ "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n",
+ "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n",
+ "# Get rid of all the duplicated rows\n",
+ "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n",
+ "print()\n",
+ "print(hotel_freq_df.to_string())\n",
+ "print(str(hotel_freq_df.shape))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# While there is an `Average_Score` for each hotel according to the dataset, \n",
+ "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n",
+ "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n",
+ "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n",
+ "# Add a new column with the difference between the two average scores\n",
+ "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n",
+ "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n",
+ "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n",
+ "# Sort the dataframe to find the lowest and highest average score difference\n",
+ "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n",
+ "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n",
+ "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/README.md b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/README.md
new file mode 100644
index 000000000..ea1308a57
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/README.md
@@ -0,0 +1,375 @@
+# 使用酒店評論進行情感分析
+
+現在你已經詳細探索了數據集,是時候篩選欄位,並對數據集應用自然語言處理(NLP)技術,以獲得關於酒店的新見解。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+### 篩選與情感分析操作
+
+正如你可能已經注意到的,這個數據集存在一些問題。一些欄位充滿了無用的信息,另一些則看起來不正確。即使它們是正確的,也不清楚它們是如何計算的,並且無法通過自己的計算獨立驗證答案。
+
+## 練習:進一步處理數據
+
+對數據進行更多清理。添加一些稍後會用到的欄位,修改其他欄位的值,並完全刪除某些欄位。
+
+1. 初步欄位處理
+
+ 1. 刪除 `lat` 和 `lng`
+
+ 2. 將 `Hotel_Address` 的值替換為以下值(如果地址包含城市和國家的名稱,則將其更改為僅顯示城市和國家)。
+
+ 以下是數據集中唯一的城市和國家:
+
+ 阿姆斯特丹,荷蘭
+ 巴塞隆拿,西班牙
+ 倫敦,英國
+ 米蘭,意大利
+ 巴黎,法國
+ 維也納,奧地利
+
+ ```python
+ def replace_address(row):
+ if "Netherlands" in row["Hotel_Address"]:
+ return "Amsterdam, Netherlands"
+ elif "Barcelona" in row["Hotel_Address"]:
+ return "Barcelona, Spain"
+ elif "United Kingdom" in row["Hotel_Address"]:
+ return "London, United Kingdom"
+ elif "Milan" in row["Hotel_Address"]:
+ return "Milan, Italy"
+ elif "France" in row["Hotel_Address"]:
+ return "Paris, France"
+ elif "Vienna" in row["Hotel_Address"]:
+ return "Vienna, Austria"
+
+ # Replace all the addresses with a shortened, more useful form
+ df["Hotel_Address"] = df.apply(replace_address, axis = 1)
+ # The sum of the value_counts() should add up to the total number of reviews
+ print(df["Hotel_Address"].value_counts())
+ ```
+
+ 現在你可以查詢國家層級的數據:
+
+ ```python
+ display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"}))
+ ```
+
+ | Hotel_Address | Hotel_Name |
+ | :--------------------- | :--------: |
+ | 阿姆斯特丹,荷蘭 | 105 |
+ | 巴塞隆拿,西班牙 | 211 |
+ | 倫敦,英國 | 400 |
+ | 米蘭,意大利 | 162 |
+ | 巴黎,法國 | 458 |
+ | 維也納,奧地利 | 158 |
+
+2. 處理酒店元評論欄位
+
+ 1. 刪除 `Additional_Number_of_Scoring`
+
+ 2. 將 `Total_Number_of_Reviews` 替換為數據集中實際存在的該酒店的評論總數
+
+ 3. 用我們自己計算的分數替換 `Average_Score`
+
+ ```python
+ # Drop `Additional_Number_of_Scoring`
+ df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True)
+ # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values
+ df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')
+ df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)
+ ```
+
+3. 處理評論欄位
+
+ 1. 刪除 `Review_Total_Negative_Word_Counts`、`Review_Total_Positive_Word_Counts`、`Review_Date` 和 `days_since_review`
+
+ 2. 保留 `Reviewer_Score`、`Negative_Review` 和 `Positive_Review` 原樣
+
+ 3. 暫時保留 `Tags`
+
+ - 我們會在下一部分對標籤進行一些額外的篩選操作,然後再刪除標籤
+
+4. 處理評論者欄位
+
+ 1. 刪除 `Total_Number_of_Reviews_Reviewer_Has_Given`
+
+ 2. 保留 `Reviewer_Nationality`
+
+### 標籤欄位
+
+`Tag` 欄位是一個問題,因為它是一個以文本形式存儲的列表。不幸的是,該欄位中的子部分順序和數量並不總是相同。由於數據集有 515,000 行和 1427 家酒店,每個評論者可以選擇的選項略有不同,因此人類很難識別出需要關注的正確短語。這正是 NLP 的用武之地。你可以掃描文本,找到最常見的短語並對其進行計數。
+
+不幸的是,我們對單詞不感興趣,而是對多詞短語(例如 *商務旅行*)感興趣。在這麼多數據(6762646 個單詞)上運行多詞頻率分佈算法可能需要花費大量時間,但如果不查看數據,這似乎是必要的開銷。這時,探索性數據分析就派上用場了,因為你已經看過一些標籤樣本,例如 `[' 商務旅行 ', ' 獨自旅行者 ', ' 單人房 ', ' 住了 5 晚 ', ' 從移動設備提交 ']`,你可以開始思考是否有可能大幅減少需要處理的數據量。幸運的是,這是可能的——但首先你需要遵循一些步驟來確定感興趣的標籤。
+
+### 篩選標籤
+
+記住,數據集的目標是添加情感和欄位,幫助你選擇最佳酒店(無論是為自己還是為委託你製作酒店推薦機器人的客戶)。你需要問自己這些標籤在最終數據集中是否有用。以下是一種解讀方式(如果你出於其他原因需要數據集,不同的標籤可能會被保留/排除):
+
+1. 旅行類型相關,應保留
+2. 客人群體類型重要,應保留
+3. 客人入住的房間、套房或工作室類型無關緊要(所有酒店基本上都有相同的房間)
+4. 提交評論的設備無關緊要
+5. 評論者入住的晚數*可能*相關,如果你認為更長的入住時間意味著他們更喜歡酒店,但這有點牽強,可能無關緊要
+
+總結來說,**保留兩種類型的標籤,刪除其他標籤**。
+
+首先,在標籤格式更好之前,你不想對標籤進行計數,這意味著需要移除方括號和引號。你可以用多種方法完成這一步,但你需要最快的方法,因為處理大量數據可能需要很長時間。幸運的是,pandas 提供了一種簡單的方法來完成這些步驟。
+
+```Python
+# Remove opening and closing brackets
+df.Tags = df.Tags.str.strip("[']")
+# remove all quotes too
+df.Tags = df.Tags.str.replace(" ', '", ",", regex = False)
+```
+
+每個標籤變成類似這樣的格式:`商務旅行, 獨自旅行者, 單人房, 住了 5 晚, 從移動設備提交`。
+
+接下來,我們發現了一個問題。一些評論(或行)有 5 個標籤,一些有 3 個,一些有 6 個。這是數據集創建方式的結果,很難修復。你想要獲取每個短語的頻率計數,但它們在每條評論中的順序不同,因此計數可能會出錯,某些酒店可能無法獲得應有的標籤。
+
+相反,你可以利用這種不同的順序,因為每個標籤是多詞的,但也用逗號分隔!最簡單的方法是創建 6 個臨時欄位,將每個標籤插入到對應於其順序的欄位中。然後你可以將這 6 個欄位合併為一個大欄位,並對合併後的欄位運行 `value_counts()` 方法。打印出來後,你會看到有 2428 個唯一標籤。以下是其中的一小部分:
+
+| 標籤 | 計數 |
+| --------------------------------- | ------ |
+| 休閒旅行 | 417778 |
+| 從移動設備提交 | 307640 |
+| 伴侶 | 252294 |
+| 住了 1 晚 | 193645 |
+| 住了 2 晚 | 133937 |
+| 獨自旅行者 | 108545 |
+| 住了 3 晚 | 95821 |
+| 商務旅行 | 82939 |
+| 團體 | 65392 |
+| 帶小孩的家庭 | 61015 |
+| 住了 4 晚 | 47817 |
+| 雙人房 | 35207 |
+| 標準雙人房 | 32248 |
+| 高級雙人房 | 31393 |
+| 帶大孩的家庭 | 26349 |
+| 豪華雙人房 | 24823 |
+| 雙人或雙床房 | 22393 |
+| 住了 5 晚 | 20845 |
+| 標準雙人或雙床房 | 17483 |
+| 經典雙人房 | 16989 |
+| 高級雙人或雙床房 | 13570 |
+| 2 間房 | 12393 |
+
+一些常見的標籤如 `從移動設備提交` 對我們沒有用,因此在計算短語出現次數之前刪除它們可能是明智的,但這是一個非常快速的操作,你可以將它們保留在內並忽略它們。
+
+### 移除入住時長標籤
+
+移除這些標籤是第一步,這稍微減少了需要考慮的標籤總數。注意,你並未從數據集中刪除它們,只是選擇不將它們作為評論數據集中的計數/保留值。
+
+| 入住時長 | 計數 |
+| -------------- | ------ |
+| 住了 1 晚 | 193645 |
+| 住了 2 晚 | 133937 |
+| 住了 3 晚 | 95821 |
+| 住了 4 晚 | 47817 |
+| 住了 5 晚 | 20845 |
+| 住了 6 晚 | 9776 |
+| 住了 7 晚 | 7399 |
+| 住了 8 晚 | 2502 |
+| 住了 9 晚 | 1293 |
+| ... | ... |
+
+房間、套房、工作室、公寓等種類繁多。它們的含義大致相同,對你來說並不重要,因此從考慮範圍中移除它們。
+
+| 房間類型 | 計數 |
+| ---------------------------- | ------ |
+| 雙人房 | 35207 |
+| 標準雙人房 | 32248 |
+| 高級雙人房 | 31393 |
+| 豪華雙人房 | 24823 |
+| 雙人或雙床房 | 22393 |
+| 標準雙人或雙床房 | 17483 |
+| 經典雙人房 | 16989 |
+| 高級雙人或雙床房 | 13570 |
+
+最後,這是令人欣喜的(因為幾乎不需要處理),你將只剩下以下**有用的**標籤:
+
+| 標籤 | 計數 |
+| --------------------------------------------- | ------ |
+| 休閒旅行 | 417778 |
+| 伴侶 | 252294 |
+| 獨自旅行者 | 108545 |
+| 商務旅行 | 82939 |
+| 團體(與朋友旅行者合併) | 67535 |
+| 帶小孩的家庭 | 61015 |
+| 帶大孩的家庭 | 26349 |
+| 攜帶寵物 | 1405 |
+
+你可以認為 `與朋友旅行者` 與 `團體` 基本相同,將兩者合併是合理的,如上所示。識別正確標籤的代碼在 [Tags notebook](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) 中。
+
+最後一步是為每個這些標籤創建新欄位。然後,對於每條評論行,如果 `Tag` 欄位與新欄位之一匹配,則添加 1,否則添加 0。最終結果將是計算有多少評論者選擇了這家酒店(總體上)作為商務旅行、休閒旅行或攜帶寵物的目的,這在推薦酒店時是有用的信息。
+
+```python
+# Process the Tags into new columns
+# The file Hotel_Reviews_Tags.py, identifies the most important tags
+# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends,
+# Family with young children, Family with older children, With a pet
+df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0)
+df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0)
+df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0)
+df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0)
+df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0)
+df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0)
+df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0)
+df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0)
+
+```
+
+### 保存文件
+
+最後,將當前數據集保存為一個新名稱。
+
+```python
+df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True)
+
+# Saving new data file with calculated columns
+print("Saving results to Hotel_Reviews_Filtered.csv")
+df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False)
+```
+
+## 情感分析操作
+
+在最後一部分,你將對評論欄位應用情感分析,並將結果保存到數據集中。
+
+## 練習:加載並保存篩選後的數據
+
+注意,現在你加載的是上一部分保存的篩選後數據集,而**不是**原始數據集。
+
+```python
+import time
+import pandas as pd
+import nltk as nltk
+from nltk.corpus import stopwords
+from nltk.sentiment.vader import SentimentIntensityAnalyzer
+nltk.download('vader_lexicon')
+
+# Load the filtered hotel reviews from CSV
+df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')
+
+# You code will be added here
+
+
+# Finally remember to save the hotel reviews with new NLP data added
+print("Saving results to Hotel_Reviews_NLP.csv")
+df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False)
+```
+
+### 移除停用詞
+
+如果你對負面和正面評論欄位運行情感分析,可能需要很長時間。在一台性能強大的測試筆記本電腦上測試時,根據使用的情感分析庫不同,耗時約 12-14 分鐘。這是一段(相對)較長的時間,因此值得研究是否可以加快速度。
+
+移除停用詞(即不改變句子情感的常見英文字詞)是第一步。通過移除它們,情感分析應該會運行得更快,但準確性不會降低(因為停用詞不影響情感,但會減慢分析速度)。
+
+最長的負面評論有 395 個單詞,但移除停用詞後,只有 195 個單詞。
+
+移除停用詞也是一個快速操作,在測試設備上,從 2 個評論欄位的 515,000 行中移除停用詞耗時 3.3 秒。具體時間可能因你的設備 CPU 速度、RAM、是否使用 SSD 等因素略有不同。操作相對較短,這意味著如果它能改善情感分析時間,那麼值得一試。
+
+```python
+from nltk.corpus import stopwords
+
+# Load the hotel reviews from CSV
+df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv")
+
+# Remove stop words - can be slow for a lot of text!
+# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches
+# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends
+start = time.time()
+cache = set(stopwords.words("english"))
+def remove_stopwords(review):
+ text = " ".join([word for word in review.split() if word not in cache])
+ return text
+
+# Remove the stop words from both columns
+df.Negative_Review = df.Negative_Review.apply(remove_stopwords)
+df.Positive_Review = df.Positive_Review.apply(remove_stopwords)
+```
+
+### 執行情感分析
+
+現在你應該計算負面和正面評論欄位的情感分析,並將結果存儲在 2 個新欄位中。情感分析的測試是將其與評論者對同一評論的評分進行比較。例如,如果情感分析認為負面評論的情感得分為 1(極度正面情感),正面評論的情感得分也為 1,但評論者給酒店的評分是最低分,那麼要麼評論文本與評分不匹配,要麼情感分析器無法正確識別情感。你應該預期某些情感得分完全錯誤,這通常是可以解釋的,例如評論可能極具諷刺意味:「當然,我*超愛*住在一個沒有暖氣的房間裡」,情感分析器可能認為這是正面情感,但人類閱讀時會知道這是諷刺。
+NLTK 提供了不同的情感分析器供學習使用,你可以替換它們,看看情感分析的準確性是否有所不同。這裡使用的是 VADER 情感分析。
+
+> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
+
+```python
+from nltk.sentiment.vader import SentimentIntensityAnalyzer
+
+# Create the vader sentiment analyser (there are others in NLTK you can try too)
+vader_sentiment = SentimentIntensityAnalyzer()
+# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
+
+# There are 3 possibilities of input for a review:
+# It could be "No Negative", in which case, return 0
+# It could be "No Positive", in which case, return 0
+# It could be a review, in which case calculate the sentiment
+def calc_sentiment(review):
+ if review == "No Negative" or review == "No Positive":
+ return 0
+ return vader_sentiment.polarity_scores(review)["compound"]
+```
+
+在你的程式中,當你準備計算情感時,可以將其應用到每個評論,如下所示:
+
+```python
+# Add a negative sentiment and positive sentiment column
+print("Calculating sentiment columns for both positive and negative reviews")
+start = time.time()
+df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment)
+df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment)
+end = time.time()
+print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds")
+```
+
+在我的電腦上,這大約需要 120 秒,但每台電腦的時間可能會有所不同。如果你想打印結果並檢查情感是否與評論相符:
+
+```python
+df = df.sort_values(by=["Negative_Sentiment"], ascending=True)
+print(df[["Negative_Review", "Negative_Sentiment"]])
+df = df.sort_values(by=["Positive_Sentiment"], ascending=True)
+print(df[["Positive_Review", "Positive_Sentiment"]])
+```
+
+在挑戰中使用該檔案之前,最後要做的事情就是保存它!你還應該考慮重新排列所有新列的順序,使其更易於操作(對於人類來說,這是一個外觀上的改變)。
+
+```python
+# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)
+df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1)
+
+print("Saving results to Hotel_Reviews_NLP.csv")
+df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False)
+```
+
+你應該運行[分析筆記本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)的完整程式碼(在你運行[篩選筆記本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)以生成 Hotel_Reviews_Filtered.csv 檔案之後)。
+
+回顧一下,步驟如下:
+
+1. 原始數據集檔案 **Hotel_Reviews.csv** 在上一課中通過[探索筆記本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb)進行了探索。
+2. **Hotel_Reviews.csv** 通過[篩選筆記本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)進行篩選,生成 **Hotel_Reviews_Filtered.csv**。
+3. **Hotel_Reviews_Filtered.csv** 通過[情感分析筆記本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)進行處理,生成 **Hotel_Reviews_NLP.csv**。
+4. 在下面的 NLP 挑戰中使用 **Hotel_Reviews_NLP.csv**。
+
+### 結論
+
+當你開始時,你擁有一個包含列和數據的數據集,但並非所有數據都可以被驗證或使用。你已經探索了數據,篩選出不需要的部分,將標籤轉換為有用的內容,計算了自己的平均值,添加了一些情感列,並希望學到了一些關於處理自然文本的有趣知識。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 挑戰
+
+現在你已經對數據集進行了情感分析,看看你是否可以使用本課程中學到的策略(例如聚類)來確定情感的模式。
+
+## 回顧與自學
+
+參加[這個 Learn 模組](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott),學習更多內容,並使用不同的工具來探索文本中的情感。
+
+## 作業
+
+[嘗試一個不同的數據集](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/assignment.md
new file mode 100644
index 000000000..d04564dc6
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/assignment.md
@@ -0,0 +1,16 @@
+# 嘗試不同的數據集
+
+## 指引
+
+現在你已經學會使用 NLTK 為文本分配情感,嘗試使用一個不同的數據集。你可能需要對數據進行一些處理,因此請建立一個筆記本並記錄你的思考過程。你發現了什麼?
+
+## 評分標準
+
+| 標準 | 卓越 | 合格 | 需要改進 |
+| -------- | ------------------------------------------------------------------------------------------------------------ | -------------------------------------- | --------------------- |
+| | 提供完整的筆記本和數據集,並且有詳細記錄的單元格解釋如何分配情感 | 筆記本缺乏良好的解釋 | 筆記本存在缺陷 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/notebook.ipynb
new file mode 100644
index 000000000..e69de29bb
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb
new file mode 100644
index 000000000..c618eb83d
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb
@@ -0,0 +1,172 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 4,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "033cb89c85500224b3c63fd04f49b4aa",
+ "translation_date": "2025-09-03T20:58:29+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import time\n",
+ "import ast"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def replace_address(row):\n",
+ " if \"Netherlands\" in row[\"Hotel_Address\"]:\n",
+ " return \"Amsterdam, Netherlands\"\n",
+ " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n",
+ " return \"Barcelona, Spain\"\n",
+ " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n",
+ " return \"London, United Kingdom\"\n",
+ " elif \"Milan\" in row[\"Hotel_Address\"]: \n",
+ " return \"Milan, Italy\"\n",
+ " elif \"France\" in row[\"Hotel_Address\"]:\n",
+ " return \"Paris, France\"\n",
+ " elif \"Vienna\" in row[\"Hotel_Address\"]:\n",
+ " return \"Vienna, Austria\" \n",
+ " else:\n",
+ " return row.Hotel_Address\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load the hotel reviews from CSV\n",
+ "start = time.time()\n",
+ "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# dropping columns we will not use:\n",
+ "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Replace all the addresses with a shortened, more useful form\n",
+ "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Drop `Additional_Number_of_Scoring`\n",
+ "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n",
+ "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n",
+ "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n",
+ "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Process the Tags into new columns\n",
+ "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n",
+ "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n",
+ "# Family with young children, Family with older children, With a pet\n",
+ "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n",
+ "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n",
+ "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n",
+ "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n",
+ "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n",
+ "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n",
+ "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n",
+ "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# No longer need any of these columns\n",
+ "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Saving results to Hotel_Reviews_Filtered.csv\n",
+ "Filtering took 23.74 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Saving new data file with calculated columns\n",
+ "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n",
+ "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n",
+ "end = time.time()\n",
+ "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb
new file mode 100644
index 000000000..c036ff017
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb
@@ -0,0 +1,137 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 4,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "341efc86325ec2a214f682f57a189dfd",
+ "translation_date": "2025-09-03T20:58:45+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load the hotel reviews from CSV (you can )\n",
+ "import pandas as pd \n",
+ "\n",
+ "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# We want to find the most useful tags to keep\n",
+ "# Remove opening and closing brackets\n",
+ "df.Tags = df.Tags.str.strip(\"[']\")\n",
+ "# remove all quotes too\n",
+ "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# removing this to take advantage of the 'already a phrase' fact of the dataset \n",
+ "# Now split the strings into a list\n",
+ "tag_list_df = df.Tags.str.split(',', expand = True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Remove leading and trailing spaces\n",
+ "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n",
+ "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n",
+ "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n",
+ "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n",
+ "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n",
+ "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Merge the 6 columns into one with melt\n",
+ "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "The shape of the tags with no filtering: (2514684, 2)\n",
+ " index count\n",
+ "0 Leisure trip 338423\n",
+ "1 Couple 205305\n",
+ "2 Solo traveler 89779\n",
+ "3 Business trip 68176\n",
+ "4 Group 51593\n",
+ "5 Family with young children 49318\n",
+ "6 Family with older children 21509\n",
+ "7 Travelers with friends 1610\n",
+ "8 With a pet 1078\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Get the value counts\n",
+ "tag_vc = df_tags.value.value_counts()\n",
+ "# print(tag_vc)\n",
+ "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n",
+ "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n",
+ "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n",
+ "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n",
+ "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n",
+ "print(tag_vc[:10])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb
new file mode 100644
index 000000000..8f928f2e0
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb
@@ -0,0 +1,260 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "orig_nbformat": 4,
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "705bf02633759f689abc37b19749a16d",
+ "translation_date": "2025-09-03T20:59:01+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 9
+ }
+ ],
+ "source": [
+ "import time\n",
+ "import pandas as pd\n",
+ "import nltk as nltk\n",
+ "from nltk.corpus import stopwords\n",
+ "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n",
+ "nltk.download('vader_lexicon')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vader_sentiment = SentimentIntensityAnalyzer()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# There are 3 possibilities of input for a review:\n",
+ "# It could be \"No Negative\", in which case, return 0\n",
+ "# It could be \"No Positive\", in which case, return 0\n",
+ "# It could be a review, in which case calculate the sentiment\n",
+ "def calc_sentiment(review): \n",
+ " if review == \"No Negative\" or review == \"No Positive\":\n",
+ " return 0\n",
+ " return vader_sentiment.polarity_scores(review)[\"compound\"] \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load the hotel reviews from CSV\n",
+ "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Remove stop words - can be slow for a lot of text!\n",
+ "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n",
+ "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n",
+ "start = time.time()\n",
+ "cache = set(stopwords.words(\"english\"))\n",
+ "def remove_stopwords(review):\n",
+ " text = \" \".join([word for word in review.split() if word not in cache])\n",
+ " return text\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Remove the stop words from both columns\n",
+ "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n",
+ "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Removing stop words took 5.77 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "end = time.time()\n",
+ "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Calculating sentiment columns for both positive and negative reviews\n",
+ "Calculating sentiment took 201.07 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Add a negative sentiment and positive sentiment column\n",
+ "print(\"Calculating sentiment columns for both positive and negative reviews\")\n",
+ "start = time.time()\n",
+ "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n",
+ "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n",
+ "end = time.time()\n",
+ "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " Negative_Review Negative_Sentiment\n",
+ "186584 So bad experience memories I hotel The first n... -0.9920\n",
+ "129503 First charged twice room booked booking second... -0.9896\n",
+ "307286 The staff Had bad experience even booking Janu... -0.9889\n",
+ "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n",
+ "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n",
+ "... ... ...\n",
+ "26899 I would say however one night expensive even d... 0.9933\n",
+ "138365 Wifi terribly slow I speed test network upload... 0.9938\n",
+ "79215 I find anything hotel first I walked past hote... 0.9938\n",
+ "278506 The property great location There bakery next ... 0.9945\n",
+ "339189 Guys I like hotel I wish return next year Howe... 0.9948\n",
+ "\n",
+ "[515738 rows x 2 columns]\n",
+ " Positive_Review Positive_Sentiment\n",
+ "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n",
+ "5839 I completely disappointed mad since reception ... -0.9780\n",
+ "64158 get everything extra internet parking breakfas... -0.9751\n",
+ "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n",
+ "489137 Very rude manager abusive staff reception Dirt... -0.9703\n",
+ "... ... ...\n",
+ "331570 Everything This recently renovated hotel class... 0.9984\n",
+ "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n",
+ "293710 This place surprise expected good actually gre... 0.9985\n",
+ "417442 We celebrated wedding night Langham I commend ... 0.9985\n",
+ "132492 We arrived super cute boutique hotel area expl... 0.9987\n",
+ "\n",
+ "[515738 rows x 2 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n",
+ "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n",
+ "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n",
+ "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n",
+ "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Saving results to Hotel_Reviews_NLP.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n",
+ "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
new file mode 100644
index 000000000..f21ae0b03
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
new file mode 100644
index 000000000..f21ae0b03
--- /dev/null
+++ b/translations/zh-HK/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/README.md b/translations/zh-HK/6-NLP/README.md
new file mode 100644
index 000000000..08edc2d0f
--- /dev/null
+++ b/translations/zh-HK/6-NLP/README.md
@@ -0,0 +1,29 @@
+# 開始學習自然語言處理
+
+自然語言處理(NLP)是指電腦程式能夠理解人類語言的能力,包括口語和書面語言——即所謂的自然語言。它是人工智能(AI)的一個組成部分。自然語言處理已有超過50年的歷史,其根源可追溯至語言學領域。整個領域的目標是幫助機器理解和處理人類語言,從而執行拼寫檢查或機器翻譯等任務。自然語言處理在許多領域中都有實際應用,包括醫學研究、搜索引擎和商業情報。
+
+## 地區主題:歐洲語言與文學以及歐洲浪漫酒店 ❤️
+
+在本課程的這一部分,你將了解機器學習最廣泛的應用之一:自然語言處理(NLP)。源自計算語言學,這一人工智能類別是通過語音或文本交流在人類與機器之間架起的橋樑。
+
+在這些課程中,我們將通過構建小型對話機器人來學習自然語言處理的基礎知識,了解機器學習如何幫助使這些對話變得越來越「智能」。你將穿越時光,與珍·奧斯汀1813年出版的經典小說《傲慢與偏見》中的伊麗莎白·班內特和達西先生進行交流。接著,你將進一步學習如何通過分析歐洲酒店評論來進行情感分析。
+
+
+> 照片由 Elaine Howlin 提供,來自 Unsplash
+
+## 課程
+
+1. [自然語言處理簡介](1-Introduction-to-NLP/README.md)
+2. [常見的自然語言處理任務與技術](2-Tasks/README.md)
+3. [使用機器學習進行翻譯與情感分析](3-Translation-Sentiment/README.md)
+4. [準備你的數據](4-Hotel-Reviews-1/README.md)
+5. [使用NLTK進行情感分析](5-Hotel-Reviews-2/README.md)
+
+## 致謝
+
+這些自然語言處理課程由 [Stephen Howell](https://twitter.com/Howell_MSFT) 用 ☕ 編寫
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-HK/6-NLP/data/README.md b/translations/zh-HK/6-NLP/data/README.md
new file mode 100644
index 000000000..42a868bb3
--- /dev/null
+++ b/translations/zh-HK/6-NLP/data/README.md
@@ -0,0 +1,6 @@
+下載酒店評論數據到此文件夾。
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤詮釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/README.md b/translations/zh-HK/7-TimeSeries/1-Introduction/README.md
new file mode 100644
index 000000000..e09362871
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/README.md
@@ -0,0 +1,190 @@
+# 時間序列預測簡介
+
+
+
+> 手繪圖由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 提供
+
+在本課程及接下來的課程中,你將學習一些關於時間序列預測的知識。這是一個有趣且有價值的機器學習科學家技能,雖然它的知名度可能不如其他主題。時間序列預測就像一個「水晶球」:根據某個變量(例如價格)的過去表現,你可以預測其未來的潛在價值。
+
+[](https://youtu.be/cBojo1hsHiI "時間序列預測簡介")
+
+> 🎥 點擊上方圖片觀看關於時間序列預測的影片
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+這是一個有用且有趣的領域,對商業有實際價值,因為它直接應用於定價、庫存和供應鏈問題。雖然深度學習技術已開始被用來獲得更多洞察以更好地預測未來表現,但時間序列預測仍然是一個主要由經典機器學習技術所驅動的領域。
+
+> 賓州州立大學的時間序列課程可以在[這裡](https://online.stat.psu.edu/stat510/lesson/1)找到。
+
+## 簡介
+
+假設你管理一組智能停車計時器,這些計時器提供有關它們使用頻率及使用時長的數據。
+
+> 如果你能根據計時器的過去表現,根據供需法則預測其未來價值,會怎樣?
+
+準確地預測何時採取行動以達到目標是一個挑戰,可以通過時間序列預測來解決。雖然在繁忙時段收取更高的停車費可能不會讓人們感到高興,但這確實是一種產生收入以清潔街道的有效方式!
+
+讓我們探索一些時間序列算法的類型,並開始使用筆記本清理和準備一些數據。你將分析的數據來自 GEFCom2014 預測競賽。它包括 2012 年至 2014 年之間的 3 年每小時電力負載和溫度值。根據電力負載和溫度的歷史模式,你可以預測未來的電力負載值。
+
+在這個例子中,你將學習如何僅使用歷史負載數據來預測下一個時間步驟。在開始之前,了解背後的原理是很有幫助的。
+
+## 一些定義
+
+當遇到「時間序列」這個術語時,你需要了解它在不同上下文中的使用。
+
+🎓 **時間序列**
+
+在數學中,「時間序列是一系列按時間順序索引(或列出或繪製)的數據點。最常見的是,時間序列是在時間上等間隔點採集的序列。」時間序列的一個例子是 [道瓊斯工業平均指數](https://wikipedia.org/wiki/Time_series) 的每日收盤價。時間序列圖和統計建模的使用在信號處理、天氣預測、地震預測以及其他事件發生並且數據點可以隨時間繪製的領域中經常遇到。
+
+🎓 **時間序列分析**
+
+時間序列分析是對上述時間序列數據的分析。時間序列數據可以採取不同形式,包括「中斷時間序列」,它檢測時間序列在中斷事件前後的演變模式。所需的分析類型取決於數據的性質。時間序列數據本身可以是數字或字符的序列。
+
+分析使用多種方法,包括頻域和時域、線性和非線性等。[了解更多](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) 關於分析這類數據的方法。
+
+🎓 **時間序列預測**
+
+時間序列預測是使用模型根據過去收集的數據所顯示的模式來預測未來值。雖然可以使用回歸模型來探索時間序列數據,並將時間索引作為圖上的 x 變量,但這類數據最好使用特殊類型的模型進行分析。
+
+時間序列數據是一組有序的觀測值,與可以通過線性回歸分析的數據不同。最常見的模型是 ARIMA,這是「自回歸整合移動平均」的縮寫。
+
+[ARIMA 模型](https://online.stat.psu.edu/stat510/lesson/1/1.1)「將序列的當前值與過去的值和過去的預測誤差相關聯。」它們最適合分析時間域數據,即按時間順序排列的數據。
+
+> ARIMA 模型有多種類型,你可以在[這裡](https://people.duke.edu/~rnau/411arim.htm)了解更多,並在下一課中接觸到。
+
+在下一課中,你將使用[單變量時間序列](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm)建立 ARIMA 模型,該模型專注於一個隨時間變化的變量。這類數據的一個例子是[這個數據集](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm),記錄了 Mauna Loa 天文台的每月 CO2 濃度:
+
+| CO2 | YearMonth | Year | Month |
+| :-----: | :-------: | :---: | :---: |
+| 330.62 | 1975.04 | 1975 | 1 |
+| 331.40 | 1975.13 | 1975 | 2 |
+| 331.87 | 1975.21 | 1975 | 3 |
+| 333.18 | 1975.29 | 1975 | 4 |
+| 333.92 | 1975.38 | 1975 | 5 |
+| 333.43 | 1975.46 | 1975 | 6 |
+| 331.85 | 1975.54 | 1975 | 7 |
+| 330.01 | 1975.63 | 1975 | 8 |
+| 328.51 | 1975.71 | 1975 | 9 |
+| 328.41 | 1975.79 | 1975 | 10 |
+| 329.25 | 1975.88 | 1975 | 11 |
+| 330.97 | 1975.96 | 1975 | 12 |
+
+✅ 識別此數據集中隨時間變化的變量
+
+## 時間序列數據的特徵需要考慮
+
+當查看時間序列數據時,你可能會注意到它具有[某些特徵](https://online.stat.psu.edu/stat510/lesson/1/1.1),需要考慮並減少以更好地理解其模式。如果你將時間序列數據視為可能提供「信號」的數據,這些特徵可以被視為「噪音」。你通常需要使用一些統計技術來減少這些「噪音」。
+
+以下是一些你需要了解的概念,以便能夠處理時間序列:
+
+🎓 **趨勢**
+
+趨勢被定義為隨時間可測量的增長或減少。[了解更多](https://machinelearningmastery.com/time-series-trends-in-python)。在時間序列的背景下,這是關於如何使用以及(如果需要)移除時間序列中的趨勢。
+
+🎓 **[季節性](https://machinelearningmastery.com/time-series-seasonality-with-python/)**
+
+季節性被定義為週期性波動,例如假期高峰可能影響銷售。[看看](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) 不同類型的圖表如何顯示數據中的季節性。
+
+🎓 **異常值**
+
+異常值遠離標準數據變異範圍。
+
+🎓 **長期週期**
+
+獨立於季節性,數據可能顯示長期週期,例如持續超過一年的經濟衰退。
+
+🎓 **恆定方差**
+
+隨時間推移,某些數據顯示恆定波動,例如每日和夜間的能源使用。
+
+🎓 **突然變化**
+
+數據可能顯示突然的變化,可能需要進一步分析。例如,由於 COVID 導致企業突然關閉,數據發生了變化。
+
+✅ 這裡有一個[示例時間序列圖](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python),顯示了幾年內每日遊戲內貨幣消費。你能在這些數據中識別出上述特徵嗎?
+
+
+
+## 練習 - 開始使用電力使用數據
+
+讓我們開始創建一個時間序列模型,根據過去的使用情況預測未來的電力使用。
+
+> 本例中的數據來自 GEFCom2014 預測競賽。它包括 2012 年至 2014 年之間的 3 年每小時電力負載和溫度值。
+>
+> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 和 Rob J. Hyndman,「概率能源預測:全球能源預測競賽 2014 及以後」,《國際預測期刊》,第 32 卷,第 3 期,頁 896-913,2016 年 7 月至 9 月。
+
+1. 在本課程的 `working` 文件夾中,打開 _notebook.ipynb_ 文件。首先添加幫助你加載和可視化數據的庫:
+
+ ```python
+ import os
+ import matplotlib.pyplot as plt
+ from common.utils import load_data
+ %matplotlib inline
+ ```
+
+ 注意,你正在使用包含的 `common` 文件夾中的文件,這些文件設置了你的環境並處理數據的下載。
+
+2. 接下來,通過調用 `load_data()` 和 `head()` 查看數據作為數據框:
+
+ ```python
+ data_dir = './data'
+ energy = load_data(data_dir)[['load']]
+ energy.head()
+ ```
+
+ 你可以看到有兩列代表日期和負載:
+
+ | | load |
+ | :-----------------: | :----: |
+ | 2012-01-01 00:00:00 | 2698.0 |
+ | 2012-01-01 01:00:00 | 2558.0 |
+ | 2012-01-01 02:00:00 | 2444.0 |
+ | 2012-01-01 03:00:00 | 2402.0 |
+ | 2012-01-01 04:00:00 | 2403.0 |
+
+3. 現在,通過調用 `plot()` 繪製數據:
+
+ ```python
+ energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+4. 現在,通過提供 `[from date]: [to date]` 模式的輸入,繪製 2014 年 7 月的第一周:
+
+ ```python
+ energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+ 一個漂亮的圖表!看看這些圖表,看看你是否能確定上述列出的任何特徵。通過可視化數據,我們可以推測什麼?
+
+在下一課中,你將創建一個 ARIMA 模型來進行一些預測。
+
+---
+
+## 🚀挑戰
+
+列出所有你能想到的行業和研究領域,這些領域可以從時間序列預測中受益。你能想到這些技術在藝術中的應用嗎?在計量經濟學中?在生態學中?在零售業中?在工業中?在金融中?還有其他地方嗎?
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+雖然我們不會在這裡涵蓋,但有時會使用神經網絡來增強經典的時間序列預測方法。[在這篇文章中](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412)了解更多。
+
+## 作業
+
+[可視化更多時間序列](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/assignment.md b/translations/zh-HK/7-TimeSeries/1-Introduction/assignment.md
new file mode 100644
index 000000000..29491cffc
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/assignment.md
@@ -0,0 +1,16 @@
+# 視覺化更多時間序列
+
+## 指引
+
+你已經開始學習時間序列預測,並了解需要這種特殊建模的數據類型。你已經視覺化了一些與能源相關的數據。現在,請尋找其他適合時間序列預測的數據。找出三個例子(可以試試 [Kaggle](https://kaggle.com) 和 [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)),並建立一個筆記本來視覺化它們。在筆記本中記錄它們的任何特殊特徵(例如季節性、突然變化或其他趨勢)。
+
+## 評分標準
+
+| 評分標準 | 卓越表現 | 合格表現 | 需要改進 |
+| -------- | ------------------------------------------------------ | ---------------------------------------------------- | ----------------------------------------------------------------------------------------- |
+| | 在筆記本中繪製並解釋了三個數據集 | 在筆記本中繪製並解釋了兩個數據集 | 在筆記本中繪製或解釋的數據集較少,或所呈現的數據不足 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/Julia/README.md
new file mode 100644
index 000000000..987fdd084
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/R/README.md
new file mode 100644
index 000000000..ff081ad96
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/R/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/notebook.ipynb
new file mode 100644
index 000000000..64c60b8bb
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/solution/notebook.ipynb
@@ -0,0 +1,170 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 數據設置\n",
+ "\n",
+ "在此筆記本中,我們將展示如何:\n",
+ "- 設置此模組的時間序列數據\n",
+ "- 可視化數據\n",
+ "\n",
+ "此示例中的數據來自GEFCom2014預測競賽。它包含2012年至2014年3年間的每小時電力負載和溫度值。\n",
+ "\n",
+ "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 和 Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import matplotlib.pyplot as plt\n",
+ "from common.utils import load_data\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "將數據從 csv 加載到 Pandas dataframe\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " load\n",
+ "2012-01-01 00:00:00 2698.0\n",
+ "2012-01-01 01:00:00 2558.0\n",
+ "2012-01-01 02:00:00 2444.0\n",
+ "2012-01-01 03:00:00 2402.0\n",
+ "2012-01-01 04:00:00 2403.0"
+ ],
+ "text/html": "\n\n
\n \n \n \n load \n \n \n \n \n 2012-01-01 00:00:00 \n 2698.0 \n \n \n 2012-01-01 01:00:00 \n 2558.0 \n \n \n 2012-01-01 02:00:00 \n 2444.0 \n \n \n 2012-01-01 03:00:00 \n 2402.0 \n \n \n 2012-01-01 04:00:00 \n 2403.0 \n \n \n
\n
"
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "data_dir = './data'\n",
+ "energy = load_data(data_dir)[['load']]\n",
+ "energy.head()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "繪製所有可用的負載數據(2012年1月至2014年12月)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
+ "plt.xlabel('timestamp', fontsize=12)\n",
+ "plt.ylabel('load', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "source": [
+ "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
+ "plt.xlabel('timestamp', fontsize=12)\n",
+ "plt.ylabel('load', fontsize=12)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernel_info": {
+ "name": "python3"
+ },
+ "kernelspec": {
+ "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "nteract": {
+ "version": "nteract-front-end@1.0.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "dddca9ad9e34435494e0933c218e1579",
+ "translation_date": "2025-09-03T19:56:37+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/zh-HK/7-TimeSeries/1-Introduction/working/notebook.ipynb
new file mode 100644
index 000000000..9e647d2dc
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/1-Introduction/working/notebook.ipynb
@@ -0,0 +1,64 @@
+{
+ "cells": [
+ {
+ "source": [
+ "# 數據設置\n",
+ "\n",
+ "在這份筆記本中,我們將展示如何:\n",
+ "\n",
+ "設置此模組的時間序列數據 \n",
+ "可視化數據 \n",
+ "\n",
+ "此範例中的數據來自GEFCom2014預測競賽。它包含2012年至2014年之間的3年每小時電力負載和溫度值。\n",
+ "\n",
+ "1陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman,\"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\",《國際預測期刊》,第32卷,第3期,頁896-913,2016年7月至9月。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為具權威性的來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernel_info": {
+ "name": "python3"
+ },
+ "kernelspec": {
+ "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
+ "display_name": "Python 3.7.0 64-bit ('3.7')"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "nteract": {
+ "version": "nteract-front-end@1.0.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "coopTranslator": {
+ "original_hash": "5e2bbe594906dce3aaaa736d6dac6683",
+ "translation_date": "2025-09-03T19:57:15+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/README.md b/translations/zh-HK/7-TimeSeries/2-ARIMA/README.md
new file mode 100644
index 000000000..47099fa79
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/README.md
@@ -0,0 +1,398 @@
+# 使用 ARIMA 進行時間序列預測
+
+在上一課中,你已經了解了一些關於時間序列預測的知識,並載入了一個展示電力負載隨時間波動的數據集。
+
+[](https://youtu.be/IUSk-YDau10 "ARIMA 簡介")
+
+> 🎥 點擊上方圖片觀看影片:ARIMA 模型的簡要介紹。範例使用 R 語言,但概念是通用的。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 簡介
+
+在本課中,你將學習如何使用 [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) 建立模型。ARIMA 模型特別適合用於分析具有 [非平穩性](https://wikipedia.org/wiki/Stationary_process) 的數據。
+
+## 基本概念
+
+在使用 ARIMA 之前,你需要了解以下一些概念:
+
+- 🎓 **平穩性**。在統計學中,平穩性指的是數據的分佈在時間移動時不會改變。非平穩數據則會因趨勢而波動,必須進行轉換才能進行分析。例如,季節性可能會引入數據波動,可以通過“季節性差分”過程來消除。
+
+- 🎓 **[差分](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**。差分是指將非平穩數據轉換為平穩數據的過程,通過移除其非恆定趨勢來實現。“差分可以消除時間序列中的水平變化,消除趨勢和季節性,從而穩定時間序列的均值。” [Shixiong 等人的論文](https://arxiv.org/abs/1904.07632)
+
+## ARIMA 在時間序列中的應用
+
+讓我們拆解 ARIMA 的各個部分,以更好地理解它如何幫助我們建模時間序列並進行預測。
+
+- **AR - 自回歸**。自回歸模型顧名思義,會“回溯”分析數據中的過去值並對其進行假設。這些過去的值被稱為“滯後”。例如,顯示鉛筆月銷量的數據。每個月的銷量總數被視為數據集中的“演變變量”。該模型的構建方式是“演變變量與其自身的滯後(即之前的)值進行回歸。” [維基百科](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average)
+
+- **I - 積分**。與類似的 'ARMA' 模型不同,ARIMA 中的 'I' 指的是其 *[積分](https://wikipedia.org/wiki/Order_of_integration)* 特性。通過應用差分步驟來消除非平穩性,數據被“積分”。
+
+- **MA - 移動平均**。該模型的 [移動平均](https://wikipedia.org/wiki/Moving-average_model) 部分指的是通過觀察滯後的當前和過去值來確定輸出變量。
+
+總結:ARIMA 用於使模型盡可能貼合時間序列數據的特殊形式。
+
+## 練習 - 建立 ARIMA 模型
+
+打開本課程中的 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) 資料夾,找到 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb) 文件。
+
+1. 運行 notebook 以載入 `statsmodels` Python 庫;你將需要它來使用 ARIMA 模型。
+
+1. 載入必要的庫。
+
+1. 現在,載入幾個對繪製數據有用的庫:
+
+ ```python
+ import os
+ import warnings
+ import matplotlib.pyplot as plt
+ import numpy as np
+ import pandas as pd
+ import datetime as dt
+ import math
+
+ from pandas.plotting import autocorrelation_plot
+ from statsmodels.tsa.statespace.sarimax import SARIMAX
+ from sklearn.preprocessing import MinMaxScaler
+ from common.utils import load_data, mape
+ from IPython.display import Image
+
+ %matplotlib inline
+ pd.options.display.float_format = '{:,.2f}'.format
+ np.set_printoptions(precision=2)
+ warnings.filterwarnings("ignore") # specify to ignore warning messages
+ ```
+
+1. 從 `/data/energy.csv` 文件中載入數據到 Pandas dataframe,並查看:
+
+ ```python
+ energy = load_data('./data')[['load']]
+ energy.head(10)
+ ```
+
+1. 繪製 2012 年 1 月至 2014 年 12 月的所有可用能源數據。這些數據應該不會有驚喜,因為我們在上一課中已經看過:
+
+ ```python
+ energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 現在,讓我們建立一個模型!
+
+### 創建訓練和測試數據集
+
+現在數據已載入,你可以將其分為訓練集和測試集。你將在訓練集上訓練模型。像往常一樣,模型訓練完成後,你將使用測試集評估其準確性。你需要確保測試集涵蓋訓練集之後的時間段,以確保模型不會從未來的時間段中獲取信息。
+
+1. 將 2014 年 9 月 1 日至 10 月 31 日的兩個月分配給訓練集。測試集將包括 2014 年 11 月 1 日至 12 月 31 日的兩個月:
+
+ ```python
+ train_start_dt = '2014-11-01 00:00:00'
+ test_start_dt = '2014-12-30 00:00:00'
+ ```
+
+ 由於此數據反映了每日能源消耗,因此存在強烈的季節性模式,但消耗量與最近幾天的消耗量最為相似。
+
+1. 可視化差異:
+
+ ```python
+ energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \
+ .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \
+ .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+ 因此,使用相對較小的時間窗口來訓練數據應該足夠。
+
+ > 注意:由於我們用於擬合 ARIMA 模型的函數在擬合過程中使用了樣本內驗證,因此我們將省略驗證數據。
+
+### 為訓練準備數據
+
+現在,你需要通過過濾和縮放數據來準備訓練數據。過濾數據集以僅包含所需的時間段和列,並縮放以確保數據投影在 0,1 區間內。
+
+1. 過濾原始數據集以僅包含每個集合中上述的時間段,並僅包含所需的“load”列和日期:
+
+ ```python
+ train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]
+ test = energy.copy()[energy.index >= test_start_dt][['load']]
+
+ print('Training data shape: ', train.shape)
+ print('Test data shape: ', test.shape)
+ ```
+
+ 你可以查看數據的形狀:
+
+ ```output
+ Training data shape: (1416, 1)
+ Test data shape: (48, 1)
+ ```
+
+1. 將數據縮放到範圍 (0, 1)。
+
+ ```python
+ scaler = MinMaxScaler()
+ train['load'] = scaler.fit_transform(train)
+ train.head(10)
+ ```
+
+1. 可視化原始數據與縮放後的數據:
+
+ ```python
+ energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)
+ train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+ > 原始數據
+
+ 
+
+ > 縮放後數據
+
+1. 現在你已校準縮放後的數據,可以縮放測試數據:
+
+ ```python
+ test['load'] = scaler.transform(test)
+ test.head()
+ ```
+
+### 實現 ARIMA
+
+現在是時候實現 ARIMA 了!你將使用之前安裝的 `statsmodels` 庫。
+
+接下來需要遵循幾個步驟:
+
+ 1. 通過調用 `SARIMAX()` 並傳入模型參數:p、d 和 q 參數,以及 P、D 和 Q 參數來定義模型。
+ 2. 通過調用 `fit()` 函數準備訓練數據的模型。
+ 3. 通過調用 `forecast()` 函數並指定預測步數(即“預測範圍”)進行預測。
+
+> 🎓 這些參數是什麼意思?在 ARIMA 模型中,有 3 個參數用於幫助建模時間序列的主要方面:季節性、趨勢和噪音。這些參數是:
+
+`p`: 與模型的自回歸部分相關的參數,包含*過去*的值。
+`d`: 與模型的積分部分相關的參數,影響應用於時間序列的*差分*次數(🎓 還記得差分嗎 👆?)。
+`q`: 與模型的移動平均部分相關的參數。
+
+> 注意:如果你的數據具有季節性特徵(例如本數據),我們使用季節性 ARIMA 模型(SARIMA)。在這種情況下,你需要使用另一組參數:`P`、`D` 和 `Q`,它們與 `p`、`d` 和 `q` 的關聯相同,但對應於模型的季節性部分。
+
+1. 首先設置你偏好的預測範圍值。讓我們試試 3 小時:
+
+ ```python
+ # Specify the number of steps to forecast ahead
+ HORIZON = 3
+ print('Forecasting horizon:', HORIZON, 'hours')
+ ```
+
+ 為 ARIMA 模型選擇最佳參數值可能具有挑戰性,因為它有些主觀且耗時。你可以考慮使用 [`pyramid` 庫](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html) 中的 `auto_arima()` 函數。
+
+1. 現在嘗試一些手動選擇以找到一個好的模型。
+
+ ```python
+ order = (4, 1, 0)
+ seasonal_order = (1, 1, 0, 24)
+
+ model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)
+ results = model.fit()
+
+ print(results.summary())
+ ```
+
+ 一個結果表格被打印出來。
+
+你已經建立了第一個模型!現在我們需要找到評估它的方法。
+
+### 評估你的模型
+
+為了評估你的模型,你可以執行所謂的 `逐步前進` 驗證。在實際操作中,每次有新數據可用時,時間序列模型都會重新訓練。這使得模型能夠在每個時間步驟上進行最佳預測。
+
+使用此技術從時間序列的開頭開始,對訓練數據集進行模型訓練。然後對下一個時間步驟進行預測。預測結果與已知值進行評估。然後擴展訓練集以包含已知值,並重複該過程。
+
+> 注意:為了更高效地進行訓練,你應該保持訓練集窗口固定,這樣每次向訓練集添加新觀測值時,你都會從集合的開頭移除觀測值。
+
+此過程提供了模型在實際操作中的更穩健估計。然而,這需要付出創建大量模型的計算成本。如果數據量小或模型簡單,這是可以接受的,但在大規模情況下可能會成為問題。
+
+逐步前進驗證是時間序列模型評估的黃金標準,建議在你的項目中使用。
+
+1. 首先,為每個預測範圍步驟創建測試數據點。
+
+ ```python
+ test_shifted = test.copy()
+
+ for t in range(1, HORIZON+1):
+ test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')
+
+ test_shifted = test_shifted.dropna(how='any')
+ test_shifted.head(5)
+ ```
+
+ | | | load | load+1 | load+2 |
+ | ---------- | -------- | ---- | ------ | ------ |
+ | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 |
+ | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 |
+ | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 |
+ | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 |
+ | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 |
+
+ 數據根據其預測範圍點水平移動。
+
+1. 使用此滑動窗口方法對測試數據進行預測,循環大小為測試數據長度:
+
+ ```python
+ %%time
+ training_window = 720 # dedicate 30 days (720 hours) for training
+
+ train_ts = train['load']
+ test_ts = test_shifted
+
+ history = [x for x in train_ts]
+ history = history[(-training_window):]
+
+ predictions = list()
+
+ order = (2, 1, 0)
+ seasonal_order = (1, 1, 0, 24)
+
+ for t in range(test_ts.shape[0]):
+ model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)
+ model_fit = model.fit()
+ yhat = model_fit.forecast(steps = HORIZON)
+ predictions.append(yhat)
+ obs = list(test_ts.iloc[t])
+ # move the training window
+ history.append(obs[0])
+ history.pop(0)
+ print(test_ts.index[t])
+ print(t+1, ': predicted =', yhat, 'expected =', obs)
+ ```
+
+ 你可以觀察訓練過程:
+
+ ```output
+ 2014-12-30 00:00:00
+ 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]
+
+ 2014-12-30 01:00:00
+ 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]
+
+ 2014-12-30 02:00:00
+ 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]
+ ```
+
+1. 將預測結果與實際負載進行比較:
+
+ ```python
+ eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])
+ eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]
+ eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')
+ eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()
+ eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])
+ eval_df.head()
+ ```
+
+ 輸出
+ | | | timestamp | h | prediction | actual |
+ | --- | ---------- | --------- | --- | ---------- | -------- |
+ | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 |
+ | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 |
+ | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 |
+ | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 |
+ | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 |
+
+ 觀察每小時數據的預測結果,與實際負載相比。準確度如何?
+
+### 檢查模型準確性
+
+通過測試所有預測的平均絕對百分比誤差 (MAPE) 來檢查模型的準確性。
+> **🧮 展示數學公式**
+>
+> 
+>
+> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) 用於顯示預測準確度,通過上述公式定義為一個比率。實際值與預測值之間的差異被實際值除。
+>
+> 「在這個計算中,絕對值會對每個預測點進行求和,然後再除以擬合點的數量 n。」[維基百科](https://wikipedia.org/wiki/Mean_absolute_percentage_error)
+1. 用程式碼表示方程式:
+
+ ```python
+ if(HORIZON > 1):
+ eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']
+ print(eval_df.groupby('h')['APE'].mean())
+ ```
+
+1. 計算單步的 MAPE:
+
+ ```python
+ print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')
+ ```
+
+ 單步預測 MAPE:0.5570581332313952 %
+
+1. 輸出多步預測的 MAPE:
+
+ ```python
+ print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')
+ ```
+
+ ```output
+ Multi-step forecast MAPE: 1.1460048657704118 %
+ ```
+
+ 一個較低的數值是最好的:請考慮,如果預測的 MAPE 是 10,表示偏差為 10%。
+
+1. 但如同往常,視覺化這類準確度的測量會更容易理解,所以讓我們繪製圖表:
+
+ ```python
+ if(HORIZON == 1):
+ ## Plotting single step forecast
+ eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))
+
+ else:
+ ## Plotting multi step forecast
+ plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]
+ for t in range(1, HORIZON+1):
+ plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values
+
+ fig = plt.figure(figsize=(15, 8))
+ ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)
+ ax = fig.add_subplot(111)
+ for t in range(1, HORIZON+1):
+ x = plot_df['timestamp'][(t-1):]
+ y = plot_df['t+'+str(t)][0:len(x)]
+ ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))
+
+ ax.legend(loc='best')
+
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+🏆 非常漂亮的圖表,顯示了一個準確度良好的模型。做得好!
+
+---
+
+## 🚀挑戰
+
+深入了解測試時間序列模型準確度的方法。本課程中我們提到了 MAPE,但是否還有其他方法可以使用?研究它們並加以註解。一份有用的文件可以在[這裡](https://otexts.com/fpp2/accuracy.html)找到。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+本課程僅涉及 ARIMA 時間序列預測的基礎知識。花些時間深入了解 [這個資源庫](https://microsoft.github.io/forecasting/) 及其各種模型類型,學習其他構建時間序列模型的方法。
+
+## 作業
+
+[一個新的 ARIMA 模型](assignment.md)
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/assignment.md b/translations/zh-HK/7-TimeSeries/2-ARIMA/assignment.md
new file mode 100644
index 000000000..1cf4908df
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/assignment.md
@@ -0,0 +1,16 @@
+# 一個新的 ARIMA 模型
+
+## 指示
+
+現在您已經建立了一個 ARIMA 模型,請使用新的數據建立另一個模型(可以嘗試使用[杜克大學的這些數據集](http://www2.stat.duke.edu/~mw/ts_data_sets.html))。在筆記本中註解您的工作,視覺化數據和您的模型,並使用 MAPE 測試其準確性。
+
+## 評分標準
+
+| 評分標準 | 卓越 | 合格 | 需要改進 |
+| -------- | ------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------- | ----------------------------------- |
+| | 提供了一個筆記本,其中包含建立、測試並解釋的新 ARIMA 模型,並附有視覺化和準確性說明。 | 提供的筆記本未註解或包含錯誤 | 提供了一個不完整的筆記本 |
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,請注意自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/Julia/README.md
new file mode 100644
index 000000000..f21ae0b03
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/Julia/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/R/README.md
new file mode 100644
index 000000000..f21ae0b03
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/R/README.md
@@ -0,0 +1,6 @@
+
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/notebook.ipynb
new file mode 100644
index 000000000..49b44add3
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/solution/notebook.ipynb
@@ -0,0 +1,1130 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman,〈概率能源預測:2014年全球能源預測競賽及其未來〉,《國際預測期刊》,第32卷,第3期,頁896-913,2016年7月至9月。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 安裝依賴項目\n",
+ "首先安裝一些必要的依賴項目。以下列出的庫及其對應版本已知可以正常運行此解決方案:\n",
+ "\n",
+ "* `statsmodels == 0.12.2`\n",
+ "* `matplotlib == 3.4.2`\n",
+ "* `scikit-learn == 0.24.2`\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "source": [
+ "!pip install statsmodels"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "/bin/sh: pip: command not found\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import datetime as dt\n",
+ "import math\n",
+ "\n",
+ "from pandas.plotting import autocorrelation_plot\n",
+ "from statsmodels.tsa.statespace.sarimax import SARIMAX\n",
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "from common.utils import load_data, mape\n",
+ "from IPython.display import Image\n",
+ "\n",
+ "%matplotlib inline\n",
+ "pd.options.display.float_format = '{:,.2f}'.format\n",
+ "np.set_printoptions(precision=2)\n",
+ "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n"
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "source": [
+ "energy = load_data('./data')[['load']]\n",
+ "energy.head(10)"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " load \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2012-01-01 00:00:00 \n",
+ " 2,698.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 01:00:00 \n",
+ " 2,558.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 02:00:00 \n",
+ " 2,444.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 03:00:00 \n",
+ " 2,402.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 04:00:00 \n",
+ " 2,403.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 05:00:00 \n",
+ " 2,453.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 06:00:00 \n",
+ " 2,560.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 07:00:00 \n",
+ " 2,719.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 08:00:00 \n",
+ " 2,916.00 \n",
+ " \n",
+ " \n",
+ " 2012-01-01 09:00:00 \n",
+ " 3,105.00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " load\n",
+ "2012-01-01 00:00:00 2,698.00\n",
+ "2012-01-01 01:00:00 2,558.00\n",
+ "2012-01-01 02:00:00 2,444.00\n",
+ "2012-01-01 03:00:00 2,402.00\n",
+ "2012-01-01 04:00:00 2,403.00\n",
+ "2012-01-01 05:00:00 2,453.00\n",
+ "2012-01-01 06:00:00 2,560.00\n",
+ "2012-01-01 07:00:00 2,719.00\n",
+ "2012-01-01 08:00:00 2,916.00\n",
+ "2012-01-01 09:00:00 3,105.00"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "繪製所有可用的負載數據(2012年1月至2014年12月)\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "source": [
+ "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
+ "plt.xlabel('timestamp', fontsize=12)\n",
+ "plt.ylabel('load', fontsize=12)\n",
+ "plt.show()"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 建立訓練和測試數據集\n",
+ "\n",
+ "在機器學習中,將數據分成訓練集和測試集是非常重要的。訓練集用於訓練模型,而測試集則用於評估模型的性能。\n",
+ "\n",
+ "### 為什麼需要分割數據?\n",
+ "\n",
+ "分割數據的主要目的是避免模型過度擬合。當模型僅僅在訓練數據上表現良好,但在新數據上表現不佳時,就會出現過度擬合的情況。通過使用測試集,我們可以檢查模型是否能夠在未見過的數據上表現良好。\n",
+ "\n",
+ "### 如何分割數據?\n",
+ "\n",
+ "以下是分割數據的一些常見方法:\n",
+ "\n",
+ "1. **隨機分割** \n",
+ " 將數據隨機分成訓練集和測試集。例如,80%作為訓練集,20%作為測試集。\n",
+ "\n",
+ "2. **交叉驗證** \n",
+ " 使用交叉驗證技術,例如K折交叉驗證,將數據分成多個子集,並多次訓練和測試模型。\n",
+ "\n",
+ "3. **時間序列分割** \n",
+ " 如果數據具有時間序列特性,則應根據時間順序分割數據。例如,使用較早的數據作為訓練集,較晚的數據作為測試集。\n",
+ "\n",
+ "### 使用 @@INLINE_CODE_1@@ 進行分割\n",
+ "\n",
+ "以下是使用 @@INLINE_CODE_1@@ 分割數據的範例:\n",
+ "\n",
+ "```python\n",
+ "# 將數據分成訓練集和測試集\n",
+ "X_train, X_test, y_train, y_test = @@INLINE_CODE_1@@(X, y, test_size=0.2, random_state=42)\n",
+ "```\n",
+ "\n",
+ "### 注意事項\n",
+ "\n",
+ "[!NOTE] 確保測試集足夠大,以便能夠準確評估模型性能。 \n",
+ "[!WARNING] 不要在測試集上進行模型訓練,這會導致結果不準確。 \n",
+ "[!TIP] 使用隨機種子(例如 @@INLINE_CODE_2@@)以確保分割結果可重現。 \n",
+ "[!IMPORTANT] 如果數據不平衡,考慮使用分層分割方法。 \n",
+ "[!CAUTION] 在分割數據之前,檢查是否有缺失值或異常值,這可能會影響模型性能。\n",
+ "\n",
+ "### 結論\n",
+ "\n",
+ "分割數據是機器學習流程中的重要步驟。通過正確分割數據,我們可以更好地評估模型的性能,並確保模型能夠在真實世界中有效運行。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "source": [
+ "train_start_dt = '2014-11-01 00:00:00'\n",
+ "test_start_dt = '2014-12-30 00:00:00' "
+ ],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "source": [
+ "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
+ " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
+ " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
+ "plt.xlabel('timestamp', fontsize=12)\n",
+ "plt.ylabel('load', fontsize=12)\n",
+ "plt.show()"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "source": [
+ "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
+ "test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
+ "\n",
+ "print('Training data shape: ', train.shape)\n",
+ "print('Test data shape: ', test.shape)"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Training data shape: (1416, 1)\n",
+ "Test data shape: (48, 1)\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "source": [
+ "scaler = MinMaxScaler()\n",
+ "train['load'] = scaler.fit_transform(train)\n",
+ "train.head(10)"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " load \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2014-11-01 00:00:00 \n",
+ " 0.10 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 01:00:00 \n",
+ " 0.07 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 02:00:00 \n",
+ " 0.05 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 03:00:00 \n",
+ " 0.04 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 04:00:00 \n",
+ " 0.06 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 05:00:00 \n",
+ " 0.10 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 06:00:00 \n",
+ " 0.19 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 07:00:00 \n",
+ " 0.31 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 08:00:00 \n",
+ " 0.40 \n",
+ " \n",
+ " \n",
+ " 2014-11-01 09:00:00 \n",
+ " 0.48 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " load\n",
+ "2014-11-01 00:00:00 0.10\n",
+ "2014-11-01 01:00:00 0.07\n",
+ "2014-11-01 02:00:00 0.05\n",
+ "2014-11-01 03:00:00 0.04\n",
+ "2014-11-01 04:00:00 0.06\n",
+ "2014-11-01 05:00:00 0.10\n",
+ "2014-11-01 06:00:00 0.19\n",
+ "2014-11-01 07:00:00 0.31\n",
+ "2014-11-01 08:00:00 0.40\n",
+ "2014-11-01 09:00:00 0.48"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 23
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "原始數據與縮放後數據:\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "source": [
+ "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n",
+ "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n",
+ "plt.show()"
+ ],
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "讓我們也對測試數據進行縮放\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "source": [
+ "test['load'] = scaler.transform(test)\n",
+ "test.head()"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " load \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2014-12-30 00:00:00 \n",
+ " 0.33 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 01:00:00 \n",
+ " 0.29 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 02:00:00 \n",
+ " 0.27 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 03:00:00 \n",
+ " 0.27 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 04:00:00 \n",
+ " 0.30 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " load\n",
+ "2014-12-30 00:00:00 0.33\n",
+ "2014-12-30 01:00:00 0.29\n",
+ "2014-12-30 02:00:00 0.27\n",
+ "2014-12-30 03:00:00 0.27\n",
+ "2014-12-30 04:00:00 0.30"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 25
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "source": [
+ "# Specify the number of steps to forecast ahead\n",
+ "HORIZON = 3\n",
+ "print('Forecasting horizon:', HORIZON, 'hours')"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Forecasting horizon: 3 hours\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "source": [
+ "order = (4, 1, 0)\n",
+ "seasonal_order = (1, 1, 0, 24)\n",
+ "\n",
+ "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n",
+ "results = model.fit()\n",
+ "\n",
+ "print(results.summary())\n"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " SARIMAX Results \n",
+ "==========================================================================================\n",
+ "Dep. Variable: load No. Observations: 1416\n",
+ "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n",
+ "Date: Thu, 30 Sep 2021 AIC -6942.477\n",
+ "Time: 14:36:28 BIC -6911.050\n",
+ "Sample: 11-01-2014 HQIC -6930.725\n",
+ " - 12-29-2014 \n",
+ "Covariance Type: opg \n",
+ "==============================================================================\n",
+ " coef std err z P>|z| [0.025 0.975]\n",
+ "------------------------------------------------------------------------------\n",
+ "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n",
+ "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n",
+ "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n",
+ "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n",
+ "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n",
+ "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n",
+ "===================================================================================\n",
+ "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n",
+ "Prob(Q): 0.83 Prob(JB): 0.00\n",
+ "Heteroskedasticity (H): 0.84 Skew: 0.14\n",
+ "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n",
+ "===================================================================================\n",
+ "\n",
+ "Warnings:\n",
+ "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 評估模型\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "為每個HORIZON步驟創建一個測試數據點。\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "source": [
+ "test_shifted = test.copy()\n",
+ "\n",
+ "for t in range(1, HORIZON):\n",
+ " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n",
+ " \n",
+ "test_shifted = test_shifted.dropna(how='any')\n",
+ "test_shifted.head(5)"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " load \n",
+ " load+1 \n",
+ " load+2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2014-12-30 00:00:00 \n",
+ " 0.33 \n",
+ " 0.29 \n",
+ " 0.27 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 01:00:00 \n",
+ " 0.29 \n",
+ " 0.27 \n",
+ " 0.27 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 02:00:00 \n",
+ " 0.27 \n",
+ " 0.27 \n",
+ " 0.30 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 03:00:00 \n",
+ " 0.27 \n",
+ " 0.30 \n",
+ " 0.41 \n",
+ " \n",
+ " \n",
+ " 2014-12-30 04:00:00 \n",
+ " 0.30 \n",
+ " 0.41 \n",
+ " 0.57 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " load load+1 load+2\n",
+ "2014-12-30 00:00:00 0.33 0.29 0.27\n",
+ "2014-12-30 01:00:00 0.29 0.27 0.27\n",
+ "2014-12-30 02:00:00 0.27 0.27 0.30\n",
+ "2014-12-30 03:00:00 0.27 0.30 0.41\n",
+ "2014-12-30 04:00:00 0.30 0.41 0.57"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 28
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "對測試數據進行預測\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "source": [
+ "%%time\n",
+ "training_window = 720 # dedicate 30 days (720 hours) for training\n",
+ "\n",
+ "train_ts = train['load']\n",
+ "test_ts = test_shifted\n",
+ "\n",
+ "history = [x for x in train_ts]\n",
+ "history = history[(-training_window):]\n",
+ "\n",
+ "predictions = list()\n",
+ "\n",
+ "# let's user simpler model for demonstration\n",
+ "order = (2, 1, 0)\n",
+ "seasonal_order = (1, 1, 0, 24)\n",
+ "\n",
+ "for t in range(test_ts.shape[0]):\n",
+ " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n",
+ " model_fit = model.fit()\n",
+ " yhat = model_fit.forecast(steps = HORIZON)\n",
+ " predictions.append(yhat)\n",
+ " obs = list(test_ts.iloc[t])\n",
+ " # move the training window\n",
+ " history.append(obs[0])\n",
+ " history.pop(0)\n",
+ " print(test_ts.index[t])\n",
+ " print(t+1, ': predicted =', yhat, 'expected =', obs)"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "2014-12-30 00:00:00\n",
+ "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n",
+ "2014-12-30 01:00:00\n",
+ "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n",
+ "2014-12-30 02:00:00\n",
+ "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n",
+ "2014-12-30 03:00:00\n",
+ "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n",
+ "2014-12-30 04:00:00\n",
+ "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n",
+ "2014-12-30 05:00:00\n",
+ "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n",
+ "2014-12-30 06:00:00\n",
+ "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n",
+ "2014-12-30 07:00:00\n",
+ "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n",
+ "2014-12-30 08:00:00\n",
+ "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n",
+ "2014-12-30 09:00:00\n",
+ "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n",
+ "2014-12-30 10:00:00\n",
+ "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n",
+ "2014-12-30 11:00:00\n",
+ "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n",
+ "2014-12-30 12:00:00\n",
+ "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n",
+ "2014-12-30 13:00:00\n",
+ "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n",
+ "2014-12-30 14:00:00\n",
+ "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n",
+ "2014-12-30 15:00:00\n",
+ "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n",
+ "2014-12-30 16:00:00\n",
+ "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n",
+ "2014-12-30 17:00:00\n",
+ "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n",
+ "2014-12-30 18:00:00\n",
+ "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n",
+ "2014-12-30 19:00:00\n",
+ "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n",
+ "2014-12-30 20:00:00\n",
+ "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n",
+ "2014-12-30 21:00:00\n",
+ "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n",
+ "2014-12-30 22:00:00\n",
+ "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n",
+ "2014-12-30 23:00:00\n",
+ "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n",
+ "2014-12-31 00:00:00\n",
+ "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n",
+ "2014-12-31 01:00:00\n",
+ "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n",
+ "2014-12-31 02:00:00\n",
+ "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n",
+ "2014-12-31 03:00:00\n",
+ "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n",
+ "2014-12-31 04:00:00\n",
+ "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n",
+ "2014-12-31 05:00:00\n",
+ "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n",
+ "2014-12-31 06:00:00\n",
+ "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n",
+ "2014-12-31 07:00:00\n",
+ "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n",
+ "2014-12-31 08:00:00\n",
+ "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n",
+ "2014-12-31 09:00:00\n",
+ "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n",
+ "2014-12-31 10:00:00\n",
+ "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n",
+ "2014-12-31 11:00:00\n",
+ "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n",
+ "2014-12-31 12:00:00\n",
+ "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n",
+ "2014-12-31 13:00:00\n",
+ "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n",
+ "2014-12-31 14:00:00\n",
+ "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n",
+ "2014-12-31 15:00:00\n",
+ "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n",
+ "2014-12-31 16:00:00\n",
+ "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n",
+ "2014-12-31 17:00:00\n",
+ "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n",
+ "2014-12-31 18:00:00\n",
+ "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n",
+ "2014-12-31 19:00:00\n",
+ "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n",
+ "2014-12-31 20:00:00\n",
+ "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n",
+ "2014-12-31 21:00:00\n",
+ "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n",
+ "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n",
+ "Wall time: 2min 36s\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "scrolled": true
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "比較預測與實際負載\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "source": [
+ "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n",
+ "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n",
+ "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n",
+ "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n",
+ "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n",
+ "eval_df.head()"
+ ],
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " timestamp \n",
+ " h \n",
+ " prediction \n",
+ " actual \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2014-12-30 00:00:00 \n",
+ " t+1 \n",
+ " 3,008.74 \n",
+ " 3,023.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2014-12-30 01:00:00 \n",
+ " t+1 \n",
+ " 2,955.53 \n",
+ " 2,935.00 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2014-12-30 02:00:00 \n",
+ " t+1 \n",
+ " 2,900.17 \n",
+ " 2,899.00 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2014-12-30 03:00:00 \n",
+ " t+1 \n",
+ " 2,917.69 \n",
+ " 2,886.00 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2014-12-30 04:00:00 \n",
+ " t+1 \n",
+ " 2,946.99 \n",
+ " 2,963.00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " timestamp h prediction actual\n",
+ "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n",
+ "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n",
+ "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n",
+ "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n",
+ "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 30
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "計算所有預測的**平均絕對百分比誤差 (MAPE)**\n",
+ "\n",
+ "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "source": [
+ "if(HORIZON > 1):\n",
+ " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n",
+ " print(eval_df.groupby('h')['APE'].mean())"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "h\n",
+ "t+1 0.01\n",
+ "t+2 0.01\n",
+ "t+3 0.02\n",
+ "Name: APE, dtype: float64\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "source": [
+ "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "One step forecast MAPE: 0.5570581332313952 %\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "source": [
+ "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Multi-step forecast MAPE: 1.1460048657704118 %\n"
+ ]
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "繪製測試集第一週的預測值與實際值的對比圖\n"
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "source": [
+ "if(HORIZON == 1):\n",
+ " ## Plotting single step forecast\n",
+ " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n",
+ "\n",
+ "else:\n",
+ " ## Plotting multi step forecast\n",
+ " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n",
+ " for t in range(1, HORIZON+1):\n",
+ " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n",
+ "\n",
+ " fig = plt.figure(figsize=(15, 8))\n",
+ " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n",
+ " ax = fig.add_subplot(111)\n",
+ " for t in range(1, HORIZON+1):\n",
+ " x = plot_df['timestamp'][(t-1):]\n",
+ " y = plot_df['t+'+str(t)][0:len(x)]\n",
+ " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n",
+ " \n",
+ " ax.legend(loc='best')\n",
+ " \n",
+ "plt.xlabel('timestamp', fontsize=12)\n",
+ "plt.ylabel('load', fontsize=12)\n",
+ "plt.show()"
+ ],
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "No handles with labels found to put in legend.\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ],
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "source": [],
+ "outputs": [],
+ "metadata": {}
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始語言的文件應被視為權威來源。對於重要資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernel_info": {
+ "name": "python3"
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3.7.0 64-bit"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "nteract": {
+ "version": "nteract-front-end@1.0.0"
+ },
+ "metadata": {
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ }
+ },
+ "interpreter": {
+ "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
+ },
+ "coopTranslator": {
+ "original_hash": "c193140200b9684da27e3890211391b6",
+ "translation_date": "2025-09-03T19:54:44+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/zh-HK/7-TimeSeries/2-ARIMA/working/notebook.ipynb
new file mode 100644
index 000000000..604617c81
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/2-ARIMA/working/notebook.ipynb
@@ -0,0 +1,50 @@
+{
+ "metadata": {
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": 3
+ },
+ "orig_nbformat": 2,
+ "coopTranslator": {
+ "original_hash": "523ec472196307b3c4235337353c9ceb",
+ "translation_date": "2025-09-03T19:55:45+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb",
+ "language_code": "hk"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "cells": [
+ {
+ "source": [
+ "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman,《概率能源預測:2014年全球能源預測競賽及未來》,《國際預測期刊》,第32卷,第3期,頁896-913,2016年7月至9月。\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pip install statsmodels"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n---\n\n**免責聲明**: \n此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/3-SVR/README.md b/translations/zh-HK/7-TimeSeries/3-SVR/README.md
new file mode 100644
index 000000000..f793f7430
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/3-SVR/README.md
@@ -0,0 +1,384 @@
+# 使用支持向量回歸進行時間序列預測
+
+在上一課中,你學習了如何使用 ARIMA 模型進行時間序列預測。現在,我們將探討支持向量回歸(Support Vector Regressor,SVR)模型,它是一種用於預測連續數據的回歸模型。
+
+## [課前測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 簡介
+
+在本課中,你將學習如何使用 [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine)(支持向量機)進行回歸,也就是 **SVR: Support Vector Regressor**(支持向量回歸)。
+
+### SVR 在時間序列中的應用 [^1]
+
+在理解 SVR 在時間序列預測中的重要性之前,以下是一些你需要了解的重要概念:
+
+- **回歸:** 一種監督式學習技術,用於從給定的輸入集中預測連續值。其核心思想是找到特徵空間中包含最多數據點的曲線(或直線)。[點擊這裡](https://en.wikipedia.org/wiki/Regression_analysis)了解更多資訊。
+- **支持向量機(SVM):** 一種監督式機器學習模型,用於分類、回歸和異常檢測。該模型在特徵空間中是一個超平面,分類時作為邊界,回歸時作為最佳擬合線。在 SVM 中,通常使用核函數將數據集轉換到更高維度的空間,以便更容易分離。[點擊這裡](https://en.wikipedia.org/wiki/Support-vector_machine)了解更多關於 SVM 的資訊。
+- **支持向量回歸(SVR):** SVM 的一種,用於找到最佳擬合線(在 SVM 中是超平面),以包含最多的數據點。
+
+### 為什麼選擇 SVR? [^1]
+
+在上一課中,你學習了 ARIMA,它是一種非常成功的統計線性方法,用於預測時間序列數據。然而,在許多情況下,時間序列數據具有*非線性*特性,這些特性無法通過線性模型映射。在這種情況下,SVM 在回歸任務中考慮數據非線性的能力使得 SVR 在時間序列預測中非常成功。
+
+## 練習 - 構建 SVR 模型
+
+數據準備的前幾步與上一課 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) 的步驟相同。
+
+打開本課中的 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) 文件夾,找到 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb) 文件。[^2]
+
+1. 運行 notebook 並導入必要的庫:[^2]
+
+ ```python
+ import sys
+ sys.path.append('../../')
+ ```
+
+ ```python
+ import os
+ import warnings
+ import matplotlib.pyplot as plt
+ import numpy as np
+ import pandas as pd
+ import datetime as dt
+ import math
+
+ from sklearn.svm import SVR
+ from sklearn.preprocessing import MinMaxScaler
+ from common.utils import load_data, mape
+ ```
+
+2. 從 `/data/energy.csv` 文件中加載數據到 Pandas dataframe,並查看數據:[^2]
+
+ ```python
+ energy = load_data('../../data')[['load']]
+ ```
+
+3. 繪製 2012 年 1 月至 2014 年 12 月的所有能源數據:[^2]
+
+ ```python
+ energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+ 現在,讓我們構建 SVR 模型。
+
+### 創建訓練和測試數據集
+
+現在數據已加載,你可以將其分為訓練集和測試集。接著,你需要重塑數據以創建基於時間步長的數據集,這是 SVR 所需的。你將在訓練集上訓練模型。模型訓練完成後,你將在訓練集、測試集以及完整數據集上評估其準確性,以查看整體性能。需要確保測試集涵蓋訓練集之後的時間段,以避免模型從未來時間段中獲取信息 [^2](這種情況稱為*過擬合*)。
+
+1. 將 2014 年 9 月 1 日至 10 月 31 日的兩個月分配給訓練集。測試集包括 2014 年 11 月 1 日至 12 月 31 日的兩個月:[^2]
+
+ ```python
+ train_start_dt = '2014-11-01 00:00:00'
+ test_start_dt = '2014-12-30 00:00:00'
+ ```
+
+2. 可視化差異:[^2]
+
+ ```python
+ energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \
+ .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \
+ .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
+ plt.xlabel('timestamp', fontsize=12)
+ plt.ylabel('load', fontsize=12)
+ plt.show()
+ ```
+
+ 
+
+### 為訓練準備數據
+
+現在,你需要通過篩選和縮放數據來準備訓練數據。篩選數據集以僅包含所需的時間段和列,並縮放數據以確保其投影在 0 到 1 的區間內。
+
+1. 篩選原始數據集以僅包含上述每個集合的時間段,以及僅包含所需的列 'load' 和日期:[^2]
+
+ ```python
+ train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]
+ test = energy.copy()[energy.index >= test_start_dt][['load']]
+
+ print('Training data shape: ', train.shape)
+ print('Test data shape: ', test.shape)
+ ```
+
+ ```output
+ Training data shape: (1416, 1)
+ Test data shape: (48, 1)
+ ```
+
+2. 將訓練數據縮放到範圍 (0, 1):[^2]
+
+ ```python
+ scaler = MinMaxScaler()
+ train['load'] = scaler.fit_transform(train)
+ ```
+
+4. 現在,縮放測試數據:[^2]
+
+ ```python
+ test['load'] = scaler.transform(test)
+ ```
+
+### 創建基於時間步長的數據 [^1]
+
+對於 SVR,你需要將輸入數據轉換為 `[batch, timesteps]` 的形式。因此,你需要重塑現有的 `train_data` 和 `test_data`,以便新增一個維度表示時間步長。
+
+```python
+# Converting to numpy arrays
+train_data = train.values
+test_data = test.values
+```
+
+在此示例中,我們設置 `timesteps = 5`。因此,模型的輸入是前 4 個時間步長的數據,輸出是第 5 個時間步長的數據。
+
+```python
+timesteps=5
+```
+
+使用嵌套列表推導式將訓練數據轉換為 2D 張量:
+
+```python
+train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]
+train_data_timesteps.shape
+```
+
+```output
+(1412, 5)
+```
+
+將測試數據轉換為 2D 張量:
+
+```python
+test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]
+test_data_timesteps.shape
+```
+
+```output
+(44, 5)
+```
+
+選擇訓練和測試數據的輸入和輸出:
+
+```python
+x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]
+x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]
+
+print(x_train.shape, y_train.shape)
+print(x_test.shape, y_test.shape)
+```
+
+```output
+(1412, 4) (1412, 1)
+(44, 4) (44, 1)
+```
+
+### 實現 SVR [^1]
+
+現在是時候實現 SVR 了。要了解更多有關此實現的資訊,你可以參考[此文檔](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)。在我們的實現中,我們遵循以下步驟:
+
+1. 通過調用 `SVR()` 並傳入模型超參數(kernel、gamma、c 和 epsilon)來定義模型
+2. 通過調用 `fit()` 函數準備訓練數據的模型
+3. 通過調用 `predict()` 函數進行預測
+
+現在我們創建一個 SVR 模型。在這裡,我們使用 [RBF 核函數](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel),並將超參數 gamma、C 和 epsilon 分別設置為 0.5、10 和 0.05。
+
+```python
+model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)
+```
+
+#### 在訓練數據上擬合模型 [^1]
+
+```python
+model.fit(x_train, y_train[:,0])
+```
+
+```output
+SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,
+ kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
+```
+
+#### 進行模型預測 [^1]
+
+```python
+y_train_pred = model.predict(x_train).reshape(-1,1)
+y_test_pred = model.predict(x_test).reshape(-1,1)
+
+print(y_train_pred.shape, y_test_pred.shape)
+```
+
+```output
+(1412, 1) (44, 1)
+```
+
+你已經構建了 SVR!現在我們需要評估它。
+
+### 評估你的模型 [^1]
+
+為了評估,首先我們將數據縮放回原始比例。然後,為了檢查性能,我們將繪製原始和預測的時間序列圖,並打印 MAPE 結果。
+
+將預測和原始輸出縮放:
+
+```python
+# Scaling the predictions
+y_train_pred = scaler.inverse_transform(y_train_pred)
+y_test_pred = scaler.inverse_transform(y_test_pred)
+
+print(len(y_train_pred), len(y_test_pred))
+```
+
+```python
+# Scaling the original values
+y_train = scaler.inverse_transform(y_train)
+y_test = scaler.inverse_transform(y_test)
+
+print(len(y_train), len(y_test))
+```
+
+#### 檢查模型在訓練和測試數據上的性能 [^1]
+
+我們從數據集中提取時間戳,以顯示在圖表的 x 軸上。注意,我們使用前 ```timesteps-1``` 個值作為第一個輸出的輸入,因此輸出的時間戳將從那之後開始。
+
+```python
+train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]
+test_timestamps = energy[test_start_dt:].index[timesteps-1:]
+
+print(len(train_timestamps), len(test_timestamps))
+```
+
+```output
+1412 44
+```
+
+繪製訓練數據的預測:
+
+```python
+plt.figure(figsize=(25,6))
+plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)
+plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)
+plt.legend(['Actual','Predicted'])
+plt.xlabel('Timestamp')
+plt.title("Training data prediction")
+plt.show()
+```
+
+
+
+打印訓練數據的 MAPE:
+
+```python
+print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')
+```
+
+```output
+MAPE for training data: 1.7195710200875551 %
+```
+
+繪製測試數據的預測:
+
+```python
+plt.figure(figsize=(10,3))
+plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)
+plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)
+plt.legend(['Actual','Predicted'])
+plt.xlabel('Timestamp')
+plt.show()
+```
+
+
+
+打印測試數據的 MAPE:
+
+```python
+print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')
+```
+
+```output
+MAPE for testing data: 1.2623790187854018 %
+```
+
+🏆 你在測試數據集上取得了非常好的結果!
+
+### 檢查模型在完整數據集上的性能 [^1]
+
+```python
+# Extracting load values as numpy array
+data = energy.copy().values
+
+# Scaling
+data = scaler.transform(data)
+
+# Transforming to 2D tensor as per model input requirement
+data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]
+print("Tensor shape: ", data_timesteps.shape)
+
+# Selecting inputs and outputs from data
+X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]
+print("X shape: ", X.shape,"\nY shape: ", Y.shape)
+```
+
+```output
+Tensor shape: (26300, 5)
+X shape: (26300, 4)
+Y shape: (26300, 1)
+```
+
+```python
+# Make model predictions
+Y_pred = model.predict(X).reshape(-1,1)
+
+# Inverse scale and reshape
+Y_pred = scaler.inverse_transform(Y_pred)
+Y = scaler.inverse_transform(Y)
+```
+
+```python
+plt.figure(figsize=(30,8))
+plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)
+plt.plot(Y_pred, color = 'blue', linewidth=0.8)
+plt.legend(['Actual','Predicted'])
+plt.xlabel('Timestamp')
+plt.show()
+```
+
+
+
+```python
+print('MAPE: ', mape(Y_pred, Y)*100, '%')
+```
+
+```output
+MAPE: 2.0572089029888656 %
+```
+
+🏆 非常棒的圖表,顯示出模型具有良好的準確性。幹得好!
+
+---
+
+## 🚀挑戰
+
+- 嘗試在創建模型時調整超參數(gamma、C、epsilon),並在數據上進行評估,以查看哪組超參數在測試數據上表現最佳。要了解更多關於這些超參數的資訊,你可以參考[此文檔](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)。
+- 嘗試為模型使用不同的核函數,並分析它們在數據集上的性能。相關文檔可參考[這裡](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)。
+- 嘗試為模型設置不同的 `timesteps` 值,讓模型回溯進行預測。
+
+## [課後測驗](https://ff-quizzes.netlify.app/en/ml/)
+
+## 回顧與自學
+
+本課旨在介紹 SVR 在時間序列預測中的應用。要了解更多關於 SVR 的資訊,你可以參考[這篇博客](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/)。[scikit-learn 的文檔](https://scikit-learn.org/stable/modules/svm.html)提供了更全面的解釋,包括 SVM 的一般概念、[SVR](https://scikit-learn.org/stable/modules/svm.html#regression),以及其他實現細節,例如可用的不同[核函數](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)及其參數。
+
+## 作業
+
+[一個新的 SVR 模型](assignment.md)
+
+## 致謝
+
+[^1]: 本節中的文字、代碼和輸出由 [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) 貢獻
+[^2]: 本節中的文字、代碼和輸出取自 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA)
+
+---
+
+**免責聲明**:
+此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原文文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-HK/7-TimeSeries/3-SVR/assignment.md b/translations/zh-HK/7-TimeSeries/3-SVR/assignment.md
new file mode 100644
index 000000000..661f256cd
--- /dev/null
+++ b/translations/zh-HK/7-TimeSeries/3-SVR/assignment.md
@@ -0,0 +1,20 @@
+# 一個新的 SVR 模型
+
+## 指引 [^1]
+
+現在你已經建立了一個 SVR 模型,請使用新的數據建立另一個模型(可以嘗試使用[杜克大學的這些數據集](http://www2.stat.duke.edu/~mw/ts_data_sets.html))。在筆記本中註解你的工作,視覺化數據和你的模型,並使用適當的圖表和 MAPE 測試其準確性。同時嘗試調整不同的超參數以及使用不同的時間步長值。
+
+## 評分標準 [^1]
+
+| 評分標準 | 優秀 | 合格 | 需要改進 |
+| -------- | ----------------------------------------------------------- | --------------------------------------------------------- | ----------------------------------- |
+| | 提交的筆記本包含已建立、測試並通過視覺化解釋的 SVR 模型,並明確說明其準確性。 | 提交的筆記本未註解或包含錯誤。 | 提交的筆記本不完整。 |
+
+
+
+[^1]:本部分的文字基於 [ARIMA 的作業](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md)
+
+---
+
+**免責聲明**:
+本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋概不負責。
\ No newline at end of file