From 9e984d75b1264408e647c2c8a1789833bdeeb6ed Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Tue, 8 Jun 2021 17:43:35 -0400 Subject: [PATCH] notebooks for classification --- .../2-Classifiers-1/solution/notebook.ipynb | 114 ++++----- .../3-Classifiers-2/solution/notebook.ipynb | 242 ++++++++++++++++++ 2 files changed, 299 insertions(+), 57 deletions(-) diff --git a/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/4-Classification/2-Classifiers-1/solution/notebook.ipynb index aeba09710..1540ae943 100644 --- a/4-Classification/2-Classifiers-1/solution/notebook.ipynb +++ b/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -1,29 +1,15 @@ { "cells": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Build Classification Model" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], "source": [ - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.model_selection import train_test_split, cross_val_score\n", - "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", - "from sklearn.svm import SVC\n", - "import pandas as pd\n", - "import numpy as np" - ] + "# Build Classification Models" + ], + "cell_type": "markdown", + "metadata": {} }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -56,17 +42,31 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" }, "metadata": {}, - "execution_count": 26 + "execution_count": 12 } ], "source": [ + "import pandas as pd\n", "recipes_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n", "recipes_df.head()" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -82,7 +82,7 @@ ] }, "metadata": {}, - "execution_count": 27 + "execution_count": 14 } ], "source": [ @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -125,7 +125,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" }, "metadata": {}, - "execution_count": 28 + "execution_count": 15 } ], "source": [ @@ -135,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -144,14 +144,14 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 17, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Accuracy is 0.810675562969141\n" + "Accuracy is 0.8023352793994996\n" ] } ], @@ -165,26 +165,26 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 23, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "ingredients: Index(['bean', 'coriander', 'cumin', 'fenugreek', 'pepper', 'turmeric',\n 'vegetable_oil'],\n dtype='object')\ncusine: thai\n" + "ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object')\ncuisine: indian\n" ] } ], "source": [ "# test an item\n", - "print(f'ingredients: {X_test.iloc[20][X_test.iloc[20]!=0].keys()}')\n", - "print(f'cuisine: {y_test.iloc[20]}')" + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -192,42 +192,42 @@ "data": { "text/plain": [ " 0\n", - "indian 0.530435\n", - "thai 0.344293\n", - "japanese 0.108792\n", - "chinese 0.015001\n", - "korean 0.001480" + "indian 0.715851\n", + "chinese 0.229475\n", + "japanese 0.029763\n", + "korean 0.017277\n", + "thai 0.007634" ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0
indian0.530435
thai0.344293
japanese0.108792
chinese0.015001
korean0.001480
\n
" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0
indian0.715851
chinese0.229475
japanese0.029763
korean0.017277
thai0.007634
\n
" }, "metadata": {}, - "execution_count": 32 + "execution_count": 24 } ], "source": [ - "#rehsape to 2d array and transpose\r\n", - "test= X_test.iloc[20].values.reshape(-1, 1).T\r\n", - "# predict with score\r\n", - "proba = model.predict_proba(test)\r\n", - "classes = model.classes_\r\n", - "# create df with classes and scores\r\n", - "resultdf = pd.DataFrame(data=proba, columns=classes)\r\n", - "\r\n", - "# create df to show results\r\n", - "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\r\n", + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", "topPrediction.head()" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 20, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - " precision recall f1-score support\n\n chinese 0.75 0.67 0.70 231\n indian 0.91 0.90 0.90 255\n japanese 0.77 0.82 0.79 260\n korean 0.83 0.83 0.83 220\n thai 0.79 0.83 0.81 233\n\n accuracy 0.81 1199\n macro avg 0.81 0.81 0.81 1199\nweighted avg 0.81 0.81 0.81 1199\n\n" + " precision recall f1-score support\n\n chinese 0.73 0.71 0.72 229\n indian 0.91 0.93 0.92 254\n japanese 0.70 0.75 0.72 220\n korean 0.86 0.76 0.81 242\n thai 0.79 0.85 0.82 254\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" ] } ], @@ -245,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -272,17 +272,17 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 22, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Accuracy (train) for L1 logistic: 79.4% \n", - "Accuracy (train) for L2 logistic (Multinomial): 79.2% \n", - "Accuracy (train) for L2 logistic (OvR): 80.2% \n", - "Accuracy (train) for Linear SVC: 79.1% \n" + "Accuracy (train) for L1 logistic: 79.5% \n", + "Accuracy (train) for L2 logistic (Multinomial): 80.1% \n", + "Accuracy (train) for L2 logistic (OvR): 80.7% \n", + "Accuracy (train) for Linear SVC: 78.5% \n" ] } ], diff --git a/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/4-Classification/3-Classifiers-2/solution/notebook.ipynb index e69de29bb..4cd141959 100644 --- a/4-Classification/3-Classifiers-2/solution/notebook.ipynb +++ b/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,242 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Build Classification Model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "recipes_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n", + "recipes_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "recipes_label_df = recipes_df['cuisine']\n", + "recipes_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "recipes_feature_df = recipes_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "recipes_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(recipes_feature_df, recipes_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Try different classifiers" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\r\n", + "C = 10\r\n", + "# Create different classifiers.\r\n", + "classifiers = {\r\n", + " 'L1 logistic': LogisticRegression(C=C, penalty='l1',\r\n", + " solver='saga',\r\n", + " multi_class='multinomial',\r\n", + " max_iter=10000),\r\n", + " 'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',\r\n", + " solver='saga',\r\n", + " multi_class='multinomial',\r\n", + " max_iter=10000),\r\n", + " 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',\r\n", + " solver='saga',\r\n", + " multi_class='ovr',\r\n", + " max_iter=10000),\r\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,\r\n", + " random_state=0)\r\n", + "}\r\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for L1 logistic: 79.8% \n", + "Accuracy (train) for L2 logistic (Multinomial): 80.2% \n", + "Accuracy (train) for L2 logistic (OvR): 81.3% \n", + "Accuracy (train) for Linear SVC: 79.6% \n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\r\n", + "\r\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\r\n", + " classifier.fit(X_train, np.ravel(y_train))\r\n", + "\r\n", + " y_pred = classifier.predict(X_test)\r\n", + " accuracy = accuracy_score(y_test, y_pred)\r\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\r\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "dd61f40108e2a19f4ef0d3ebbc6b6eea57ab3c4bc13b15fe6f390d3d86442534" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file