diff --git a/5-Clustering/2-K-Means/notebook.ipynb b/5-Clustering/2-K-Means/notebook.ipynb index b25d4f188..f7d541b67 100644 --- a/5-Clustering/2-K-Means/notebook.ipynb +++ b/5-Clustering/2-K-Means/notebook.ipynb @@ -1,84 +1,172 @@ { - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", - "display_name": "Python 3.7.0 64-bit ('3.7')" - }, - "metadata": { - "interpreter": { - "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2, "cells": [ { + "cell_type": "markdown", + "metadata": {}, "source": [ "# Nigerian Music scraped from Spotify - an analysis" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", - "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", - "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", - "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", - "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", - "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", - "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", - "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", - "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", - "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", - "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", - "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ - "pip install seaborn" + "# %pip install seaborn" ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Start where we finished in the last lesson, with data imported and filtered." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n", + "
" + ], "text/plain": [ " name album \\\n", "0 Sparky Mandy & The Jungle \n", @@ -107,11 +195,11 @@ "2 0.0424 130.005 4 \n", "3 0.1130 111.087 4 \n", "4 0.0447 105.115 4 " - ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + ] }, + "execution_count": 1, "metadata": {}, - "execution_count": 6 + "output_type": "execute_result" } ], "source": [ @@ -126,37 +214,36 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We will focus only on 3 genres. Maybe we can get 3 clusters built!" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "Text(0.5, 1.0, 'Top genres')" ] }, + "execution_count": 2, "metadata": {}, - "execution_count": 7 + "output_type": "execute_result" }, { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAKzCAYAAAAwULNUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATEtJREFUeJzt3QmclVX9P/ADEovKIigCCYo7KqCiImmKaSoaZZK5lUuEaYgJZcbPFSsxTSUNtbJAU9QsxbSy3FJLJEXJJSUxF9xNAxIVUeb/+p7532lGQEEZZznv9+t1XzP33mfufebqPDyf53zP97SoqqqqSgAAAM1cy4beAQAAgI+C8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AaBGixbLd/vzn31oADQ9rRp6BwBoPH75y7r3L700pZtuWvLxPn0+0t0CgJWiRVVVVdXKeSkAmpujj05p4sSUSv+XYvHilN56K6W2bRt6TwD4MJS9AbBCFixI6ZvfTKlnz5TatElpk01S+uEPlwxIUR4X4enyy6u3ieAwYEBKd9yxfO/z1FMpffazKa22Wkpdu6Y0enRKf/zj0svupk9Pac89U+rYMaVVV01p551T+utf625z6qnVPzt7dkqHHZZSp07V2x9+eEqvv77sfd988+rf88Ybq5979tmUvvKVlNZeu/rxeP4Xv1hy/88/v/q52J811khpm21SmjJl+X53AOqHsjcAllsEnAgkt92W0vDhKW25ZXUgOe646lBw7rl1t7/99pSuuiqlY46pDgoXXFAdUv72t5S22OK9A9anPpXS88+n9I1vpNStW3VwiPd9t1tvTWnIkOpgdcopKbVsmdKkSdU/f+edKW23Xd3tv/jFlHr3Tmn8+JTuuy+liy+uDlc/+MGSr/urX1WHoDXXTGm99VJ68cWUtt/+f+ForbVS+sMfqj+L+fNTOvbY6p/92c+qf+cvfKF6/998M6UHHqgOaQcd5H84gIai7A2A5S57u+66lPbZJ6XvfS+lE07433b77ZfSb36T0mOPpbTBBv//H5gW1V/vvbc6mISnn64eBYqwcs01y37fc86pHl2aOjWlz32u+rEIEFttldKjj1aHoMGDq/crXm/99atDSOU933ijetRlww1T+tOf/jfyM25c9ajNz3/+v/fad9/q0ah//7vWP44tqkPUgw+mtNlm/3v8q19N6fe/r368S5f/PX7ggdXvH2GtXbvqzyhGmB56yP9cAI2JsjcAlluc+K+ySvWoRm0RVCKIRACobdCg/wWf0KtXdZiJ0aJ33ln2+0SJ2cc/Xj3KVBFlcyNG1N1u5szqwBWjKa+8Uh1g4hYjR7vuWh1qYr5ObUceWff+Jz9Z/bMxclNblM7VDj7x+0XAGzq0+vvKe8Vtjz1SmjeveiQpREndM8+kdM89y/4dAfjoKXsDYLnFPJwePVJq337p3d/i+do22mjJ19h44+o5Ni+/XF3Otqz3iRGkykhORYzk1BbBJxx66LL3OUJJzLmpHcBqqzz3n/+k1KHD/x6P0rjaYn/nzk3ppz+tvi3NSy9Vfz3++JRuvrm65C72effdqwPaDjssez8BqH/CDwBNVmVU56yzqucfLc3qq9e9HyNXS/Puhg1Rvra09/rSl5Ydtvr1+18YnDUrpRtuqB7FihGjmO908snVpXcANAzhB4Dltu661SMa//1v3dGfmIdTeX5pIzO1/fOf1R3QolnAe73PP/5RHUhqj/7EPJraKvOLYsRmt93q9z9k7G/8zlGutzzvFV3q9t+/+hZtsmNu0fe/n9LYsVpmAzQUc34AWG577VV98v/jH9d9PLq8RUiJRga1TZv2v3kwYc6c6qYJUQa2rBGYEHNoonvcb3/7v8ei4UF0Uast5hNFAIpW26+9tuTrRKnayhL7O2xY9SjO0hoZ1H6vmENUW+vW1fOHIswtWrTy9gmAFWPkB4DlFpP9d9mlutPbk0+m1L9/dTe1CDTR5rkyElMR7awjyNRudR3er/Tra1+rDljRRS1aRXfvXr3mTmWR0cpoUHRki1bVEbqiu1us2RONEiI4RUe4GBG6/vqV9x/4jDOqX3fgwOrmCxFoXn21OuDFiFh8HyLcxXymmOMT6wE98kj177P33kvOlwLgoyP8ALDcImzEaEzMXYn1e2I9nVj/JubcRMe3d4uOadHxLcJOtLmOsDB58v/mxixLzNOJdXZGjUrpRz+qvn/IISl94hPVoy+VEBSi5XWMMH33u9UBI0aAInhEQIkQtTJFkIk1ik47rbpVd4S5aHkdwav2OkHxvhHWomV37M8661QHwBNPXLn7A8CKsc4PAPUiRmdGjlyyRO7DmDAhpdGjq9tIxwgPAKwIc34AaJRiodLaYs7PT35S3T5b8AHgg1D2BkCjFN3RYk2eaGEda/Vcdll1V7koJwOAD0L4AaBRikYJ0cwgwk50mIv5QldeWd06GgA+CHN+AACAIpjzAwAAFEH4AQAAitAk5/wsXrw4Pffcc6l9+/apRWWlOwAAoDhVVVXpv//9b+rRo0dqGQvSNbfwE8GnZ8+eDb0bAABAIzFnzpy0Tqwq3dzCT4z4VH7BDh06NPTuAAAADWT+/Pl5YKSSEZpd+KmUukXwEX4AAIAWyzEdRsMDAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIrRq6B1o7AYcd2lD7wI0STPOOqShdwEAoA4jPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEVYo/IwfPz5tu+22qX379qlr165pn332SbNmzaqzzZtvvplGjhyZunTpklZfffU0bNiw9OKLL9bZ5umnn0577713WnXVVfPrHHfccentt99eOb8RAADAhw0/t99+ew42d999d7rpppvSokWL0u67754WLFhQs83o0aPT9ddfn66++uq8/XPPPZf23XffmuffeeedHHzeeuutdNddd6VLLrkkTZ48OZ188skrsisAAAArpEVVVVVV+oBefvnlPHITIWennXZK8+bNS2uttVaaMmVK+sIXvpC3efTRR1OfPn3StGnT0vbbb5/+8Ic/pM985jM5FK299tp5m4suuigdf/zx+fVat279vu87f/781LFjx/x+HTp0SPVpwHGX1uvrQ3M146xDGnoXAIACzF+BbPCh5vzEG4TOnTvnrzNmzMijQbvttlvNNptuumnq1atXDj8hvvbt27cm+IQ99tgj7/TDDz/8YXYHAABgmVqlD2jx4sXp2GOPTTvssEPaYost8mMvvPBCHrnp1KlTnW0j6MRzlW1qB5/K85XnlmbhwoX5VhFBCQAAYEV84JGfmPvz0EMPpSuvvDLVt2i0EENZlVvPnj3r/T0BAIDm5QOFn6OPPjrdcMMN6bbbbkvrrLNOzePdunXLjQzmzp1bZ/vo9hbPVbZ5d/e3yv3KNu82duzYXGJXuc2ZM+eD7DYAAFCwFQo/0Rshgs+1116bbr311tS7d+86zw8YMCB97GMfS7fcckvNY9EKO1pbDxo0KN+Prw8++GB66aWXaraJznExOWmzzTZb6vu2adMmP1/7BgAAUG9zfqLULTq5XXfddXmtn8ocnShFa9euXf46fPjwNGbMmNwEIULKqFGjcuCJTm8hWmNHyPnyl7+czjzzzPwaJ554Yn7tCDkAAAANHn4uvPDC/HXw4MF1Hp80aVI67LDD8vfnnntuatmyZV7cNJoURCe3Cy64oGbbVVZZJZfMHXXUUTkUrbbaaunQQw9Np5122sr5jQAAAFb2Oj8NxTo/0PhZ5wcAaFbr/AAAADQVwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRhhcPPHXfckYYOHZp69OiRWrRokaZOnVrn+XhsabezzjqrZpv11ltviefPOOOMlfMbAQAArIzws2DBgtS/f/80ceLEpT7//PPP17n94he/yOFm2LBhdbY77bTT6mw3atSoFd0VAACA5dYqraAhQ4bk27J069atzv3rrrsu7bLLLmn99dev83j79u2X2BYAAKBJzvl58cUX0+9+97s0fPjwJZ6LMrcuXbqkrbbaKpfEvf3228t8nYULF6b58+fXuQEAANTryM+KuOSSS/IIz7777lvn8WOOOSZtvfXWqXPnzumuu+5KY8eOzaVv55xzzlJfZ/z48WncuHH1uasAAEAzV6/hJ+b7HHzwwalt27Z1Hh8zZkzN9/369UutW7dOX/va13LIadOmzRKvE+Go9s/EyE/Pnj3rc9cBAIBmpt7Cz5133plmzZqVrrrqqvfdduDAgbns7cknn0ybbLLJEs9HIFpaKAIAAGjwOT8///nP04ABA3JnuPczc+bM1LJly9S1a9f62h0AAKBwKzzy89prr6XZs2fX3H/iiSdyeIn5O7169aopS7v66qvT2WefvcTPT5s2LU2fPj13gIv5QHF/9OjR6Utf+lJaY401PuzvAwAAsHLCz7333puDS0VlLs6hhx6aJk+enL+/8sorU1VVVTrwwAOX+PkoX4vnTz311NzFrXfv3jn81J7TAwAAsLK1qIqU0sTEyFLHjh3TvHnzUocOHer1vQYcd2m9vj40VzPOOqShdwEAKMD8FcgG9brODwAAQGMh/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCKscPi544470tChQ1OPHj1SixYt0tSpU+s8f9hhh+XHa9/23HPPOtu8+uqr6eCDD04dOnRInTp1SsOHD0+vvfbah/9tAAAAVlb4WbBgQerfv3+aOHHiMreJsPP888/X3K644oo6z0fwefjhh9NNN92UbrjhhhyojjjiiBXdFQAAgOXWKq2gIUOG5Nt7adOmTerWrdtSn3vkkUfSjTfemO655560zTbb5MfOP//8tNdee6Uf/vCHeUQJAACgScz5+fOf/5y6du2aNtlkk3TUUUelV155pea5adOm5VK3SvAJu+22W2rZsmWaPn16fewOAADAio/8vJ8oedt3331T79690+OPP57+7//+L48URehZZZVV0gsvvJCDUW2tWrVKnTt3zs8tzcKFC/OtYv78+f7TAQAADRt+DjjggJrv+/btm/r165c22GCDPBq06667fqDXHD9+fBo3btxK3EsAAKA09d7qev31109rrrlmmj17dr4fc4FeeumlOtu8/fbbuQPcsuYJjR07Ns2bN6/mNmfOnPrebQAAoJmp9/DzzDPP5Dk/3bt3z/cHDRqU5s6dm2bMmFGzza233poWL16cBg4cuMwGCtEWu/YNAACgXsveYj2eyihOeOKJJ9LMmTPznJ24RXnasGHD8ihOzPn59re/nTbccMO0xx575O379OmT5wWNGDEiXXTRRWnRokXp6KOPzuVyOr0BAACNZuTn3nvvTVtttVW+hTFjxuTvTz755NzQ4IEHHkif/exn08Ybb5wXLx0wYEC688478+hNxeWXX5423XTTPAcoWlzvuOOO6ac//enK/c0AAAA+zMjP4MGDU1VV1TKf/+Mf//i+rxEjRFOmTFnRtwYAAGi8c34AAAAaA+EHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUYYXDzx133JGGDh2aevTokVq0aJGmTp1a89yiRYvS8ccfn/r27ZtWW221vM0hhxySnnvuuTqvsd566+WfrX0744wzVs5vBAAAsDLCz4IFC1L//v3TxIkTl3ju9ddfT/fdd1866aST8tdrrrkmzZo1K332s59dYtvTTjstPf/88zW3UaNGreiuAAAALLdWaQUNGTIk35amY8eO6aabbqrz2I9//OO03Xbbpaeffjr16tWr5vH27dunbt26rejbAwAANM45P/PmzctlbZ06darzeJS5denSJW211VbprLPOSm+//XZ97woAAFCwFR75WRFvvvlmngN04IEHpg4dOtQ8fswxx6Stt946de7cOd11111p7NixufTtnHPOWerrLFy4MN8q5s+fX5+7DQAANEP1Fn6i+cEXv/jFVFVVlS688MI6z40ZM6bm+379+qXWrVunr33ta2n8+PGpTZs2S7xWPD5u3Lj62lUAAKAALesz+Dz11FN5DlDtUZ+lGThwYC57e/LJJ5f6fIwMRflc5TZnzpz62G0AAKAZa1Vfweexxx5Lt912W57X835mzpyZWrZsmbp27brU52M0aGkjQgAAAPUWfl577bU0e/bsmvtPPPFEDi8xf6d79+7pC1/4Qm5zfcMNN6R33nknvfDCC3m7eD7K26ZNm5amT5+edtlll9zxLe6PHj06felLX0prrLHGiu4OAABA/YSfe++9NweXd8/fOfTQQ9Opp56afvvb3+b7W265ZZ2fi1GgwYMH5xGcK6+8Mm8bTQx69+6dw0/teUAAAAANHn4iwEQTg2V5r+dCdHm7++67V/RtAQAAGvc6PwAAAI2B8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEVY4fBzxx13pKFDh6YePXqkFi1apKlTp9Z5vqqqKp188smpe/fuqV27dmm33XZLjz32WJ1tXn311XTwwQenDh06pE6dOqXhw4en11577cP/NgAAACsr/CxYsCD1798/TZw4canPn3nmmem8885LF110UZo+fXpabbXV0h577JHefPPNmm0i+Dz88MPppptuSjfccEMOVEccccSK7goAAMBya5VW0JAhQ/JtaWLUZ8KECenEE09Mn/vc5/Jjl156aVp77bXzCNEBBxyQHnnkkXTjjTeme+65J22zzTZ5m/PPPz/ttdde6Yc//GEeUQIAAGjUc36eeOKJ9MILL+RSt4qOHTumgQMHpmnTpuX78TVK3SrBJ8T2LVu2zCNFS7Nw4cI0f/78OjcAAIAGCz8RfEKM9NQW9yvPxdeuXbvWeb5Vq1apc+fONdu82/jx43OIqtx69uy5MncbAAAoQJPo9jZ27Ng0b968mtucOXMaepcAAICSw0+3bt3y1xdffLHO43G/8lx8femll+o8//bbb+cOcJVt3q1Nmza5M1ztGwAAQIOFn969e+cAc8stt9Q8FvNzYi7PoEGD8v34Onfu3DRjxoyabW699da0ePHiPDcIAACgUXR7i/V4Zs+eXafJwcyZM/OcnV69eqVjjz02fe9730sbbbRRDkMnnXRS7uC2zz775O379OmT9txzzzRixIjcDnvRokXp6KOPzp3gdHoDAAAaTfi599570y677FJzf8yYMfnroYcemiZPnpy+/e1v57WAYt2eGOHZcccdc2vrtm3b1vzM5ZdfngPPrrvumru8DRs2LK8NBAAAUF9aVMXiPE1MlNJF17doflDf838GHHdpvb4+NFczzjqkoXcBACjA/BXIBk2i2xsAAMCHJfwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAirPTws95666UWLVoscRs5cmR+fvDgwUs8d+SRR67s3QAAAKijVVrJ7rnnnvTOO+/U3H/ooYfSpz/96bTffvvVPDZixIh02mmn1dxfddVVV/ZuAAAA1G/4WWuttercP+OMM9IGG2yQdt555zphp1u3biv7rQEAABpmzs9bb72VLrvssvSVr3wll7dVXH755WnNNddMW2yxRRo7dmx6/fXX3/N1Fi5cmObPn1/nBgAA0KAjP7VNnTo1zZ07Nx122GE1jx100EFp3XXXTT169EgPPPBAOv7449OsWbPSNddcs8zXGT9+fBo3blx97ioAANDMtaiqqqqqrxffY489UuvWrdP111+/zG1uvfXWtOuuu6bZs2fn8rhljfzErSJGfnr27JnmzZuXOnTokOrTgOMurdfXh+ZqxlmHNPQuAAAFmD9/furYseNyZYN6G/l56qmn0s033/yeIzph4MCB+et7hZ82bdrkGwAAQKOb8zNp0qTUtWvXtPfee7/ndjNnzsxfu3fvXl+7AgAAUD8jP4sXL87h59BDD02tWv3vLR5//PE0ZcqUtNdee6UuXbrkOT+jR49OO+20U+rXr5//HAAAQNMKP1Hu9vTTT+cub7XF/J94bsKECWnBggV53s6wYcPSiSeeWB+7AQAAUL/hZ/fdd09L66MQYef222+vj7cEAABouHV+AAAAGgvhBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAitCqoXcAoLEbcNylDb0L0CTNOOuQht4FgDqM/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACjCSg8/p556amrRokWd26abblrz/JtvvplGjhyZunTpklZfffU0bNiw9OKLL67s3QAAAKj/kZ/NN988Pf/88zW3v/zlLzXPjR49Ol1//fXp6quvTrfffnt67rnn0r777lsfuwEAAFCjVaoHrVq1St26dVvi8Xnz5qWf//znacqUKelTn/pUfmzSpEmpT58+6e67707bb799fewOAABA/Yz8PPbYY6lHjx5p/fXXTwcffHB6+umn8+MzZsxIixYtSrvttlvNtlES16tXrzRt2jT/OQAAgKYz8jNw4MA0efLktMkmm+SSt3HjxqVPfvKT6aGHHkovvPBCat26derUqVOdn1l77bXzc8uycOHCfKuYP3/+yt5tAACgmVvp4WfIkCE13/fr1y+HoXXXXTf96le/Su3atftArzl+/PgcogAAABptq+sY5dl4443T7Nmz8zygt956K82dO7fONtHtbWlzhCrGjh2b5wtVbnPmzKnv3QYAAJqZeg8/r732Wnr88cdT9+7d04ABA9LHPvaxdMstt9Q8P2vWrDwnaNCgQct8jTZt2qQOHTrUuQEAADRo2du3vvWtNHTo0FzqFm2sTznllLTKKqukAw88MHXs2DENHz48jRkzJnXu3DmHmFGjRuXgo9MbAADQpMLPM888k4POK6+8ktZaa62044475jbW8X0499xzU8uWLfPiptHEYI899kgXXHDByt4NAACA+g0/V1555Xs+37Zt2zRx4sR8AwAAaDZzfgAAABoD4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIqw0sPP+PHj07bbbpvat2+funbtmvbZZ580a9asOtsMHjw4tWjRos7tyCOPXNm7AgAAUH/h5/bbb08jR45Md999d7rpppvSokWL0u67754WLFhQZ7sRI0ak559/vuZ25plnruxdAQAAqNEqrWQ33nhjnfuTJ0/OI0AzZsxIO+20U83jq666aurWrdvKfnsAAICGmfMzb968/LVz5851Hr/88svTmmuumbbYYos0duzY9Prrry/zNRYuXJjmz59f5wYAANCgIz+1LV68OB177LFphx12yCGn4qCDDkrrrrtu6tGjR3rggQfS8ccfn+cFXXPNNcucRzRu3Lj63FUAAKCZq9fwE3N/HnroofSXv/ylzuNHHHFEzfd9+/ZN3bt3T7vuumt6/PHH0wYbbLDE68TI0JgxY2rux8hPz54963PXAQCAZqbews/RRx+dbrjhhnTHHXekddZZ5z23HThwYP46e/bspYafNm3a5BsAAECjCT9VVVVp1KhR6dprr01//vOfU+/evd/3Z2bOnJm/xggQAABAkwg/Ueo2ZcqUdN111+W1fl544YX8eMeOHVO7du1yaVs8v9dee6UuXbrkOT+jR4/OneD69eu3sncHAACgfsLPhRdeWLOQaW2TJk1Khx12WGrdunW6+eab04QJE/LaPzF3Z9iwYenEE09c2bsCAABQv2Vv7yXCTiyECgAA0KzW+QEAAGgMhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCKs9EVOAQCaowHHXdrQuwBNzoyzDkmNiZEfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8AAAARRB+AACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAABFEH4AAIAiCD8AAEARhB8AAKAIwg8AAFAE4QcAACiC8AMAABRB+AEAAIog/AAAAEUQfgAAgCIIPwAAQBGEHwAAoAjCDwAAUIQGDT8TJ05M6623Xmrbtm0aOHBg+tvf/taQuwMAADRjDRZ+rrrqqjRmzJh0yimnpPvuuy/1798/7bHHHumll15qqF0CAACasQYLP+ecc04aMWJEOvzww9Nmm22WLrroorTqqqumX/ziFw21SwAAQDPWqiHe9K233kozZsxIY8eOrXmsZcuWabfddkvTpk1bYvuFCxfmW8W8efPy1/nz59f7vr6z8I16fw9ojj6Kv8+PiuMAfDDN6TgQHAugcR4HKu9RVVXVOMPPv//97/TOO++ktddeu87jcf/RRx9dYvvx48encePGLfF4z54963U/gQ+u4/lH+vigcI4DQMeP8Hzgv//9b+rYsWPjCz8rKkaIYn5QxeLFi9Orr76aunTpklq0aNGg+0bDiIQf4XfOnDmpQ4cO/jNAoRwLAMcBqqqqcvDp0aPH+34YDRJ+1lxzzbTKKqukF198sc7jcb9bt25LbN+mTZt8q61Tp071vp80fhF8hB/AsQBwHChbx/cZ8WnQhgetW7dOAwYMSLfcckud0Zy4P2jQoIbYJQAAoJlrsLK3KGM79NBD0zbbbJO22267NGHChLRgwYLc/Q0AAKDZhJ/9998/vfzyy+nkk09OL7zwQtpyyy3TjTfeuEQTBFiaKIOMNaLeXQ4JlMWxAHAcYEW0qFqennAAAABNXIMtcgoAAPBREn4AAIAiCD8AAEARhB8AAKAIwg8spzPOOCNddNFFPi8AgCZK+IHl9NJLL6Wvf/3r6dJLL/WZAQA0QQ22zg80Fa+++mrq3LlzOuecc1L79u3T8OHD0+LFi9Nhhx3W0LsGrKBY3aFFixY1XwHeT/yb37Kl8YLmQviB9zBhwoR02WWX5dumm26axo0blw+CI0aMyM8LQNA0T2Dmzp2bOnbsmB9r1aqVkxvgfY8bU6dOTc8880zq2bNn6tOnT9p44419ak2QRU7hPTz55JNp6623Tttuu20677zz0iabbJIfP+mkk/IcoJ/97GcCEDQBtUd6vve976Ubb7wxLVq0KPXr1y995zvfSRtssIEABCzzuBHHiR//+Mf5POBf//pX2nzzzdMhhxySjjjiCJ9aE2MMD5bh7bffTuutt1564IEH0syZM/N8n0cffTQ/993vfjeNHTs2ffWrX02TJk3yGUITOYGJk5cf/vCH6Ytf/GIaNGhQeuKJJ9J2222X/vGPf+Sru3GVFyBUjhv33Xdfuvnmm9Of/vSnNGPGjHTHHXfkCyc/+clP0i9/+UsfVhNj5AfewzvvvJNWWWWVNGfOnLTNNtukLbbYIk2cODGXwIWTTz45nX766ennP/95OvTQQ32W0IhNnz49d2wcMmRIDj8hruAed9xx6W9/+1u6++6708c//vGG3k2gEYkqj4cffjiPFEcJfJTJhlmzZqVTTjklXyi94oor0sc+9rGG3lWWk5EfeA8RfOJKcNT33nvvvemhhx5KI0eOrBkBOu2003IJ3OGHH56mTJnis4RG6ne/+10uUf3jH/+YOnToUPN4796981y+tddeO/3+97+vGSkCqIz+XH755emuu+7KF0Irovxt//33T9dcc00eQabpEH7gXSonPq+88kp68cUXa4a9IwDdc8896cEHH6wTgOLKT8wh2GqrrXyW0Eh9+tOfTp/61KfSvHnz0pVXXplee+21/Hj8fcfE5fi7f+yxx2oeA8qztLLX448/Ppe3RaODqPJ4+eWXa55bd911c9ODqBKh6dDtDZYyN+D6669Pp556avrvf/+bh7K///3vpx133DH16tUrjwBFCdw3vvGN3P46Jj3+3//9n88RGnFb2tatW6dzzz03f3/nnXemH/3oR/nvNv7eo2wlvtYeEQLKPW7Mnj07LViwIPXo0SOttdZaucPr/Pnzc4lsXED53Oc+l7p27ZpOOOGEtPrqq9c0Q6JpMOcHllIec9BBB+WrPTEvIBob3H///enYY4/NQ9xxIIyh72iGMHTo0HT11Ver9YVGeAITpahRqrrqqqumAQMG5Lk+b731VjrmmGPyxOW4mBEXMmLeTzQ8iG0r9fxAmU1R4qLIb3/723xciKYGMdf34osvzs/FBZRvfvOb+fuY5xsBKY4z2uU3LcIP1PLcc8+lAw88MH3mM5/JV3j+/e9/p4EDB+aTqbjaEw0OKgEohsBff/11ff6hEYq/3+jC1L9//3yCEvX68fcbI7oRgL71rW/lEpYY0Y2LGEcffXT+uRgFEoCgTGeddVZucBCNDWIk+C9/+UtuZrDOOuukG264IW8Tx40YCYqukV/5yldSp06dapoj0TS4xAW1/yBatcqjPp///OfzfJ+ddtopzxWIDlFxghRlbhF4osFBHAyBxidGdS699NJ03XXXpe233z6Hn6uuuiodeeSReRTo29/+djr77LNz96Z//vOf6c0336y58usEBsoUx4kIO7GeT4wShxgx3mijjfLc3ghF8dzw4cNzCVyMAMXFkljyonPnzg29+6wADQ+glqjh3XvvvfPXCRMm5DreH/zgB/m5aG/9n//8J/361792ZRgasbhw0b1797w4cVhttdXyFdozzzwz36JpSczli3k/G264YfrNb36T1+564403NDuAQrVr1y699NJL+YJIRdu2bfP8nih9i/m+FaNHj87HjwhDcaFFh8imRfihWHHFJjzyyCN5EdO///3v+X5lRCcOgu3bt09t2rTJ9+PgFsPf0QxhjTXWaMA9B95LXIWNE5hKR8bKicknP/nJfOEirvBWmiDEoqfrr79+XrQwwg9QZle3KF2LhY9jrk/M/6uI0eC+ffumV199tWaUOIwaNSpdcMEFaffdd3fRpIkRfihK1OhGTW+Ik6Bf/epXaeedd84lbfvuu28aP358zbZRHvPXv/41t7GOMrdodRktLWM9EKBxnsCELbfcMo/6xN97XNyoTGSOEd24cBEnMJULIDECNHny5Fzjr3QFymqKEqPAsYDp888/n48FURobi5fGGn6x8HEEnWiLf9NNN+U1wWIkKI4nlWNPbL/ZZps18G/EitLwgGLE1d6Y7BxXemPuzlFHHZXbVEf9f3RuiwPdiSeemMaMGVMTgmL+TzRBiCtC8XMxeRpoXN2Zfvazn6Unn3wyNzKIhiWx5laUssXfeQSaqNGPr/F3HaWr06ZNqzn5WVpbbKD5i46uUbIWf/8xlzdK2OKxuGASpW5RLhsXSjp27JjPH+67774ckGofe2iaNDygGHEgiwmKUcoWB7k4WYpRn+jeFldzouVtPBdD2RF2Ym5AtLCMtX5i2DtGgoDG15b2/PPPz41J4uQkOjLtt99+eYJy/F3Hyc0XvvCFfOEiujLFhOY42al0ZxJ8oLzjxm233ZaPDXGL40Ks/RUXR1944YXczvrmm2/OF0RjZCjmD0ZTg6gW0Q2yeRB+KEq3bt3SEUcckQ+C5513Xp7fEydIlXD05S9/OX8foz9R/x8nVRGIgMajcgLz7LPP5hOUKEmJrm7hpJNOyvfj7zmu4kbb+ieeeCLP74mTmAg7TmCg3ONGdG+NZSy+/vWv54smIcpkYwmLGCXeeuut87lArAMWF04q4oKJNvjNg7F+igxAcYCLhQ7jqk6EoIo4YTrkkEPS6aefnq688sr08ssv6+ICjVBcnY0TlyhL6dmzZ83jEX7iRCbm8FQaGESt/sc//vEcfKLMzQkMlCnm9sSxIdb8ipL2EOWycUE0Ak90hYxzgngswk5t2uA3H8IPzV6lM0t0b4srwDF5MUZ84qpwlMzELebzVER5W4wOPfbYY/lKkNpeaHyic9vChQtz+9kYAQoRbGKEJ+buRd3+rbfeusTPKXODcsXobzQ9ihHhaHhUGRWuNDCI56PaIx4Tdpov4YcianynTp2arxLvtttueUX3WP092lbG11jpPQLQhRdeWCcARR0w0Di7usUcvWuvvTY3MojRnriiWwk2MU9v3XXXVbIKLHEhNNpZx8hPrN2zww475Asl0dAgRpFvv/12XR8LoNsbzV5MXNxnn33yIoZR7hYdn2IB02hvG80OYoJjtLEeN25c+ulPf5onNgKNQ+1ubDHKE6Wosfhwhw4d0pprrpmbHOy55555EeIoWY0SuJirN2fOnPycq7fA0sTxJJogxdfo+BpBaPr06fm+rm7Nm/BDs77KEydO0dI6RnIi8ETp28CBA9Nee+2VJk6cmLeLbWIUKNrlxlo/cWIFNC5RphrdF6NZQfzNfuITn8ijtnHCcv/99+cLHBF4Yt2NEHX7Mben0tUNKKvio3Z3t2V9H0EnLojGRdKoENlll13y45qiNG/K3mi24uAWJz0xnB2BJ7q7xPofsRpzZY5PHOzioBdXkGO9H8EHGp8Ymf3FL36R29LGgoSVJiXRsj66vcXf9fXXX5+7M8UFjliYWPCB8sSFkUqwifLXSslsPFZpYFAJRpXy2fi3P0rhourjmWeeqdmG5kv4oVmpHNBiJKcihq9j1Cc6QH3+85/PIz5xYItFza666qp0zz33uDoMjXiOT5SixN9uXJWNOT5RrhrdGiPgxKTl0K9fv3TdddfldXyivDUudhjxgbJUSmRjNCcudMZipT/84Q/zY3E8WFoAioujccFk4403Tn379s0jyI4dzZvwQ7NRGcr+3e9+l0tgbrzxxvz4aaedlrtCxTB2jPjECVNs+/3vfz+v9B4nUg500DjE32blBCa6tcWFjDZt2uS5efE3XBFBKDq+xQWMuJARYiHTP/3pT3mh0whHS2uUADQ/tf/WL7jgghx4IvhEyfsll1ySO7i+VwCKEaBoghDHlThfoHmzyCnNRhzI4srvgQcemA9iHTt2zI/36NEjt74dOXJk2nLLLdMGG2yQD3h33HFHXgxxww03bOhdB1JKixYtyiO1YezYsenqq69Ot9xyS/4b/c1vfpNHgGKOT0WEnWhbH2tyxElOZQQo5gBFq1ptraEMlb/12267LS9nEYEn2lnPnz8/XXHFFTkMRVnbxRdfXBOA4mvt8rYofYt5hZWFz2m+NDyg2Yha/+j6dMABB+Qa3nefVEUt79lnn51PlKIjVGy30UYbNdj+AtWi5CT+ZiOwhBjlifux6GBlBfY4kZk5c2ZuTLLZZpvlixux+nq7du3Sb3/7WzX6ULgoeY2Ln9GyOtrgx7IWIQJQLFoe//7vvPPOuasrZRN+aDZiUdJPfepTeQ5AXMGpDGebuAiNV9Tlx5XauGIb5W3R1CA6tsUIbZywbL755jXbDhs2LM/Ri7KUWIww/raj4YG2tEBc4IyLI1He/qUvfSn96Ec/qvlQIgBFiWx0iIxR5WiWQrmUvdFsxAlQDGP/61//yuEnTowqnV/++Mc/5vkCe++99xKtLoGGcffdd6d//OMfeW5PBJ9Yl6eyEHF0YXz22Wdz+Kms9ROlbxGSYq2fuB9NEOJvXltaKHf9r4oogY0LJ/H45Zdfnhcqj/X7QqwL9sUvfjGtvfbaNecBlMvID03S0sLLf/7znzR06NBc+x9XfPr06VPz3LHHHptmz56dR4UqcwOAhhVlbIceemj6+te/nmbMmJEef/zxPG8vylY++9nP5mYH0cI6ylOXdrITrOMDZal9LIiLJFEmG+Fmp512yoEnurVFa/wYOY7AUwlAtTlulE34ockGnzjo/f73v8/3Y27A1ltvndcAidK3WPcjOr2su+66eZvLLrss1wNvscUWDb37wLsWL40JyS+++GJublCp049W1UOGDElvvPFGXo9LYxKg9oXPKF379a9/nUd/Y0QnAlE0SVlrrbVyAJo0aVK+4BnzBs8991wfHjW0uqbJiQNftLKNcPPQQw+l22+/Pffpj4NelMjE/Zg4HQe7aHcbV5fjMcEHGo9Ku9koWYta/fXXXz898sgjae7cufnxWHj4D3/4Qx6pjbk+jz76aAPvMdDQKsEnmhfE/MC4sDlr1qx8oSQ6uMbFzxgJiqZGhx9+eG6CFM2QKnOAIf9/VOX/CJqYWLU5urXEMPeIESNyuVus2ROrvsfBMLq4xdXi6OoW20ZXqPbt2zf0bgNLqdWPBgbRsS3W5ojR2fibjlK4+PuujADFGhyxps8vf/lLnyEU5gc/+EFeuDguiIS4WDJq1Kh08MEH546PcZEkytuOOuqoXBESx5hYxiJGgCL4xNfKmj7m+hKEH5qUv//972n77bfP83m++93v1kxcjKBzwgknpAkTJuQ+/fvtt19D7yrwHsEnTk6iA1M0Oog21iEmK9911105AB122GE1Fy3mzZuXVl99dYsRQ2Hi4sjXvva1/LX2YuSxmHnfvn1z85N99903d3CL40csan7qqafmoBTNVCqBSfChNt3eaFK6deuW9t9//zzCE6M6lROqKHM7/fTT88Exno/7URYHNA5x8lEJPnGiEqM4cUU2SlairC0WIbzooovyCUwsRBhXaGMuX4zcVhYsNkkZyjpmbLvttrkZSqXcPRY2jpK2yoXPmNMT28RocejVq1ceBVpvvfXSGmusUfNaRnyozZwfmpSY1BglbtHDP64Ox4rvcUIVB8lodR1XfU466aS08cYbN/SuArVUTj7OPPPMvPr6Nddck+6///58P9rSxtXdaHoQAWiHHXbIC5/G6FBtta/8As1bXNisHDvi2BAdIGNU5/nnn6/ZJr6Ptb5im1jMPBY8jkWQzzjjjHy8qMwthNqUvdFoVYapn3zyyTwp+vXXX0/9+vXLz0Ud7ze+8Y18JShqfKPhgWFtaNyee+659H//9395cnKM0EYA+upXv5qOPvrodP755+fV12PuT48ePdJZZ52VxowZI/BA4caPH59Hh2Pdrzh2xCjPKaecko8TsVbYyJEjcwjq2rVrLoF/4IEHUqtWrZwTsEzCD41SJcjEmh9xshRXdKILVJTExEEvruhErW90c4sFTGMtkLhaDDResX5PTE7eZZdd8rpbMTdv9OjR+e/4nHPOyauvR2ODa6+9NnXu3Dn/jFI3KHduYIwSRzv8aGkdbfBjNDgC0Fe+8pVc6h7HiRj5iTb5cV4Qx5AIPo4bvBdzfmiUoSducZIUNf8xfB0TomO9nlgM8bXXXstXgmK+QHR4i3aW0eHtscceS23btm3oXwFYhvj7jL/lKFGNEdtoTV+p1Y95elHOGhc1YqHCCqVuUJZK8PnrX/+aR3Yi5ETwiUATa/bEuUEEoDhfiPODaIIUtwrBh/djzg+NQrS4feWVV2rmBcQJ0OTJk9OJJ56YA088HmUwceC78MIL0ze/+c1cBhcBKLaLA6TgA41fXJUN//znP3MXt/jbjhGhGMGNScxxYhMnP5V6f6A8d955ZzrkkENyQ4PKBZA4VtQOQNE0Jdpbx/lCbS6Y8H6EHxrcrbfemg9yP/rRj/KaPSHa3w4ePDjPC4j5PXFSFIuXxQlSBKKYF3DsscemhQsX5laWH//4xxv61wCWQ+UCxxFHHJEblkS5aszle+qpp3Jdf0XttYCA5u3dS05G+Ws0NYoR4VjA/Omnn87HhNoBKErhYkHTLl26NNh+0zSZ80OjECM5sTpzhJyY/ByBJlpZxzofP/7xj/NB7qqrrsrd3iZOnJh+/vOf5+4v9957b+revXtD7z7wAdx333256UEsaBrNDWJUKJqbVEaHgLLm+MTff4wEx7peIVrgx7yfKHOLJkdxoTO2j7BUe4Tn3Ysnw3vxLwwNKhoZRP3/2WefnY477rg8aTGu7MQE6OjRHwe4Rx55JF/pieAT4gpxXBGKuT5K3aDp2nrrrfOtQvCBstQOLbFI+W233ZbL2Lbccss8tzcaGEQHt7gAGucGEYCiy1tlpKgyT1jwYUUIPzSoyhXeGMGJNpURbGJkJ67oRPvKCEB77bVXXvsjOkPFyVEcHGMipOADzYsRHyhLJbREV9dJkyblEeA+ffrkNX2iuiPWAIvnQnSBjHmCsQZYVIcEi5fyQRgjpEHFget3v/tdXqcngk0c+LbbbrvcxCA6ub366qu5FC4mNsZBb9VVV83lcdElCgBo2h588ME0derUNGXKlFwBEuXucXEzSt0qFzkjAEWL/Jjna44PH5Y5PzSYGK6O2t7Pf/7zaZNNNskNDypiaDtWah4+fHieAxStb2PbGBGKMjkAoHl0e42urrE4aYSgWOIi5vp87Wtfyxc9oxx+3333rVPmZlFzPgwjPzSYOIC1a9cul7rE3J8Qoz8hgtBGG22UfvKTn+Qe/9EGO64ACT4A0DQtrYV9NDGI84Fx48bldb8qwSf84x//yHOBZs6cme8LPqwMwg8NLub63HPPPXlkp7Iyc4hFy+L7hx9+eIk2mABA0xH/jlfm+EQX1/vvvz8/FnN7+/btm9fyi2qPSvCJEre4+Bnr+UU7/ArzfPiwlL3RYCrD1tHZpX///mnQoEF5bk+MBsXj0eVlww03zGVxlU5vAEDT7eoW/+YPGDAgz92Jf/O32GKLvKjp8ccfn0vb99xzzzzvJ0rfo+lBtMSPqg/trFlZhB8aVOVgdtddd+VubnGFZ7PNNssjPtddd1166KGHcgACAJq273znO7mU7d///ncuZYu21dHFLUZ+/vznP6frr78+L2oaTY2iHC46vVr/i5VN+KHR+M9//pNOOeWUPL8nQtEJJ5yQrwgBAE3bhRdemMPPTTfdlKs54t/6UaNGpWeffTaHnghA4bXXXqtZ5DRY/4uVTfjhIylti/k80dQghrIrag9hv3s4u7L4KQDQtEQ5W5Ss1w4x3/zmN9MzzzyTrrrqqprHXnrppfSZz3wmB55f/epX+YJn7U5uurpRHzQ8oN5UDlo33HBDLmnbZptt0ogRI9Ill1xS/T9fy5Y1nV/evTqzxQ4BoOmJsrXo2Bbr8tUWbaujlL32iE40PDrqqKPSo48+mg4++OA0Z86cfN5QaXykuQH1Qfih3hcwHTZsWJ7HEy0s46pPLF4aLS2XFnpq/ywA0LTExc7o5FaZzxuLlYcjjjgiV4GceuqpdS5yduvWLa/zE6NE8bMhGh9AfRF+qLdRnwULFqSJEyfmGt8f/OAHeYXmSZMmpc997nO5i0vtoW8AoGmrvSxFLGGx44475rk+cT4QF0EPPPDAdOONN6Zvf/vb+bEnn3wyXXDBBWm11VZL3/3ud9Pjjz+eAxPUJ+GHejnwxfB2tKyOCY1vvPFGzfNxhefII4/Mc38c4ACgeag9PydGfbbddttc/hYjPbFQaQScY489Nn32s59Nv/71r3PTg8GDB6ennnoqXyCN1tcx+tOhQ4eG/lVo5qrHHOFDHuwqX+MWB7Wo+Y3Stl69eqXnnnsuT2aMA188HzW+2223XfrLX/6SFzFr06aNzx8AmqjaTYuitK1t27b5+zFjxuR/96PZQYhKkFjPJ7q8/eEPf8jnA5/85Cfzc5dddlle7sK6ftQ34YcP5V//+lfaYIMNau6/8MIL6cQTT0zf+MY30qabbpobHAwZMiRtsskm+bHKFZ3YLn5OXS8ANF1x8bMSfGKEJ9briVAT83332GOPNHr06PxcBKDYLhocdOrUKX3xi1/Mj8cippMnT06XXnppuv3223MAgvok/PCBxRWdO+64Ix/oYqj6T3/6U7r77rvTJz7xifSlL30pb7P77rvneT6HH354euCBB9Iaa6yRD5SxqFmUvenqBgBNv9TtrLPOSt/73vfSV7/61dzs6JFHHsnd3SL0VALQcccdlytBYg5wVIOEaIQUVSBRDWJtPz4K1vnhA4mGBV/+8pfT9OnT8wjP66+/nn72s5/lA1ysyhwhKL5WDoy33HJLuuKKK/Lkxu7du+dhbwc5AGj6YvTmJz/5Sdp///3Tpz71qTR37tz0rW99KwegWO8nvg/R1CAaHkTQqd3VNc4h3t0aG+qL8MMHEqsxn3TSSfnqzsyZM/MIUExq/MUvfpFreeMKUKXWtxKAKqs0v/XWW6l169Y+eQBo4qJz65lnnpnn+kRVx8Ybb5wff/nll9PYsWPzGj4RgCrzfmrPFQ6WtuCjptsbH0jU5MZ8nRjeHjp0aG5gEN3dRo4cmU4//fTcxvKnP/1p3rZ295cg+ABA8zBgwIBc0RELlMaoTu3zhDPOOCNtvvnmeVRoypQpNc/VbpIEHzVzfvhAtt9++zRw4MB08cUXp5122iltueWWNc9FN5fo/BKLlkXgiaYH77WgKQDQNG244YZ5LZ+4+Pmb3/wmh55Yzyesueaa6bTTTstzf6MkLgg8NDRlb6ywd955J4/67LnnnqlHjx7pb3/7Ww5CRx99dNpqq61qtou+/THkHaVwhx12mE8aAJqpJ554Ipe9x/yduOhZCUBLO3+AhiT88KHFmj6nnHJKGjRoUD7w1R4FOvfcc3NI6tOnj08aAJp5ADrmmGPy/J8DDjggDR8+vKF3CZYg/LBcKvW5s2bNSv/973/zlZ0od1taAIoDX//+/X2yAFBgADrooIPStttum84777yG3h1YgvDDcgefqVOn5lbW0dggWlbHVZ0TTjihZpHTCEDRxjJGeWKh0759+/p0AaAwzz//fFp77bXN9aVR0vCA9xXBJxYwjYVKYx5PzN+59dZb01577ZXeeOON3OJ6k002Sfvtt19eqOzHP/5xnuQIAJQnur+FaH6k2RGNjZEf3tf8+fPzqsyxaOnJJ5+ch7Q//elP5+YGN998c9p5553T+PHja+b1RFlc+/btfbIAADQqRn54X23btk277bZb2nrrrdOrr76ahg0blgYPHpzbXF955ZW5tnfRokVpwoQJaaONNkqrr766TxUAgEZH+OF9xaKksZBphKDLLrssf41St4oY+Xn44YdTmzZt8n09/AEAaIysOslyicATouQtytpWW221fP/vf/97Hgl67LHHUq9evXyaAAA0Wub8sELuv//+3M56m222yYHonnvuSXfeeWfq16+fTxIAgEbNyA8rJJoc3Hbbbal3795p0003TXfddZfgAwBAk2Dkhw8k2lfG3B7zewAAaCqEHwAAoAjK3gAAgCIIPwAAQBGEHwAAoAjCDwAAUAThBwAAKILwAwAAFEH4AQAAiiD8ALBC1ltvvTRhwgSfGgBNjvADwFJNnjw5derUaYnH77nnnnTEEUfUS1Ba1nsCwMrQaqW8CgDNyqJFi5b53FprrfWR7ktz9s4776QWLVqkli1diwT4KDjaAhTgxhtvTDvuuGMeVenSpUv6zGc+kx5//PH83JNPPplPwK+66qq08847p7Zt26bLL788HX744WnevHn5ubideuqpS4zmVFVV5cd79eqV2rRpk3r06JGOOeaY/NzgwYPTU089lUaPHl3zGu/lz3/+8zLf8z//+U865JBD0hprrJFWXXXVNGTIkPTYY48tMWI0derUtNFGG+XfYY899khz5sxZ7s/oe9/7XuratWtq3759+upXv5q+853vpC233LLONhdffHHq06dPfv1NN900XXDBBTXPVT7Ha665Ju2yyy55P/v375+mTZu2xH7+9re/TZtttln+zJ5++um0cOHC9K1vfSt9/OMfT6uttloaOHBg/jwAWLmEH4ACLFiwII0ZMybde++96ZZbbskjDZ///OfT4sWLa7aJk/1vfOMb6ZFHHskn7xFwOnTokJ5//vl8i5Pzd/vNb36Tzj333PSTn/wkh5EIH3379s3PRQhYZ5110mmnnVbzGu/lE5/4xDLf87DDDsv7HqEhwkSErr322qvOCNXrr7+evv/976dLL700/fWvf01z585NBxxwwHJ9PhH24md/8IMfpBkzZuQwd+GFFy6xzcknn5y3i8/o9NNPTyeddFK65JJL6mx3wgkn5P2eOXNm2njjjdOBBx6Y3n777Tr7Ge8TQerhhx/Ogevoo4/Ov9eVV16ZHnjggbTffvulPffcs07AA2AlqAKgOC+//HJV/BPw4IMPVj3xxBP5+wkTJtTZZtKkSVUdO3Zc4mfXXXfdqnPPPTd/f/bZZ1dtvPHGVW+99dZS36f2tstjae/5z3/+M+/fX//615rH/v3vf1e1a9eu6le/+lXNz8U2d999d802jzzySH5s+vTp7/u+AwcOrBo5cmSdx3bYYYeq/v3719zfYIMNqqZMmVJnm+9+97tVgwYNyt9XPseLL7645vmHH344Pxb7Uns/Z86cWbPNU089VbXKKqtUPfvss3Vee9ddd60aO3bs++47AMvPyA9AAWIEIUYg1l9//TyyEqVrIUquKrbZZpsVft0YoXjjjTfy644YMSJde+21dUY5VoYYZWnVqlUuBauI0r1NNtkkP1cR22y77bY196MsLUrMam+zLLNmzUrbbbddncdq34+RsygTHD58eFp99dVrblEqVykfrOjXr1/N9927d89fX3rppZrHWrduXWebBx98MM/9iVGi2q99++23L/HaAHw4Gh4AFGDo0KFp3XXXTT/72c/yvJwod9tiiy3SW2+9VbNNzDVZUT179szB4eabb0433XRT+vrXv57OOuusfOL+sY99LDUXr732Wv4an1/tEBZWWWWVOvdr/96VeU61ywvbtWtXZ/5TvHa8RpTbvfu1IgQBsPIY+QFo5l555ZUcUE488cS066675gn70UDg/cQIRYxIvJ84mY9wdd555+VJ+jF3JUYzVuQ13us9Y39jNGn69OlL/E7RNKAitol5QRXxfMz7iZ9/PzGKFC28a6t9f+21186h8V//+lfacMMN69x69+6dPoytttoq/84xOvTu1+7WrduHem0A6jLyA9DMRYe0KBP76U9/msuwotQtmhu8nyiNi1GJaJAQXcuie1ncaovuZXHiHqMh8dxll12Ww1CMMlVe44477siNB6Kz2ZprrrnC7xnd2z73uc/lsrporBDd2GL/ozNaPF57xGXUqFE5hEUJXDQR2H777ZcoZ1ua+Ll4/Sj9i8YL0fkuGg9EOV/FuHHjcie7jh075mYE0aEtwlYEyWgm8UFFudvBBx+cu9mdffbZOQy9/PLL+TOI8ri99977A782AHUZ+QFo5qKzW3QRi7KqKHWL1tNRmvZ+IgQceeSRaf/9989r+5x55plLbBNzaqIUbIcddsgn6lH+dv311+ewFaLTW7SA3mCDDZZrfaBlveekSZPSgAEDcovuQYMG5W5vv//97+uUmEVQOv7449NBBx2U9ydKxiLELI8IH2PHjs1d2rbeeuv0xBNP5A5z0dK6ItpfR4e22JfoaBdtwSP8fdiRn8rvF+Hnm9/8Zh6F2mefffLIU3SdA2DlaRFdD1bi6wHARy5CyLHHHpvL3FaWT3/607ns7Je//OVKe00AGpayNwCKF2vvXHTRRXlh1Gg6cMUVV9Q0cQCg+VD2BsBHZsiQIXXaOde+xaKh9WXzzTdf5vvG4qXRfS3K6HbaaadcXhele7GA62677VZv+wTAR0/ZGwAfmWeffTavC7Q0nTt3zrf68NRTT6VFixYt9bno5BZNFABo/oQfAACgCMreAACAIgg/AABAEYQfAACgCMIPAABQBOEHAAAogvADAAAUQfgBAACKIPwAAACpBP8PGOvjUKyeecsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] }, - "metadata": { - "needs_background": "light" - } + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -171,12 +258,148 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n", + "
" + ], "text/plain": [ " name album \\\n", "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", @@ -205,16 +428,277 @@ "4 0.0447 105.115 4 \n", "5 0.1970 100.103 4 \n", "6 0.1990 95.842 4 " - ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + ] }, + "execution_count": 3, "metadata": {}, - "execution_count": 8 + "output_type": "execute_result" } ], "source": [ "df.head()" ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAyHCAYAAABFe4bzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3b9rndUDx/Fz0wTbZEpoBqFCO9hNiGC6aAQdXFuhg/oHdBJ3S3UQiXtxyuLYDoJ1LSjY6GIdAm52MKDQISGZkkYiyZfnQvNt/fqj9Zt7n+c5n9cLSm96fx1uD+fe5+R5J4PDw8PDAgAAAAAAAAAAAAAAEGSi7QEAAAAAAAAAAAAAAACMm6ACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4k+N+wr29vfLjjz8OL8/Pz5fJybEPAQAAgI77/fffy8bGxvDyCy+8UE6ePNn2kOBY2BcBAADgSdgboUb2RQAAAOjivsjYa4Ymprhw4cK4nxYAAICe+v7778vi4mLbw4BjYV8EAACAp2VvhFrYFwEAAKCL+yITI310AAAAAAAAAAAAAACADhr7b6iYn59/rBh59tlnxz0EAAAAOu7+/ftHv93w0eNI6Dv7IgAAADwJeyPUyL4IAAAAXdwXGXtQMTn536dsYoozZ86MewgAAAD0yKPHkdB39kUAAAD4f44loc/siwAAANDFfZGJkT8DAAAAAAAAAAAAAABAxwgqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgzmTbA4AkV65cKVtbW20PA+DYzM3NlZWVFa8oAAD8DfsBQBc5pgcAAACA4+X7AaSwv0xtBBUwRk1Msbm56TUHAACAIPYDAAAAAACgfr4fANBPggpowWEZlMOpU157Rmaw/6CZZeYaI59jAADAk7MfwB+PqcwJ2uCYHgAAAABGy95v++zDj/Z1hdoIKqAFTUyxs/CW156RmVm7WQb7u+YaI59jAADAk7MfwB+PqcwJ2uCYHgAAAABGy95v++zDj/Z1hdpMtD0AAAAAAAAAAAAAAACAcRNUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEm2x5AV125cqVsbW2Vubm5srKy0vZwAAAAjpVjHsAaAQAA9Im9DADA5w4AAHssoyCo+AtNTLG5uTmSFx0AAKBtjnkAawQAANAn9jIAAJ87AADssYzCxEgeFQAAAAAAAAAAAAAAoMMEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEGey7QEAAAAAAAAAwDjs7OyUjY2N8uDBg3Lq1KkyPz9fZmZmvPiANYJq3k+6PDYAAOgiQQUAAAAAAAAA1To8PCxra2vliy++KN9++205ODg4um5iYqIsLS2VS5culYWFhTIYDFodKzB+1ghqmCtdHhsAAHSdoAIAAAAAAACAKv30009leXm5rK+v/+n1zQmn33zzzfDP2bNny9WrV8v58+fHPk6gHdYIapgrXR4bAAD0wUTbAwAAAAAAAACA4/bDDz+U995777ETTGdnZ8sbb7xR3nzzzeHfzdcPNbdrbt/cD6ifNYIa5kqXxwYAAH3hN1QAAAAAAAAAUJXmp3Vfu3at7O3tDb9+/vnnyzvvvFNeeeWVMjU1dXS7/f39srq6Wm7cuFHu3bs3vH1zv+vXr/vp3VAxawQ1zJUujw0AAPrEb6gAAAAAAAAAoBqHh4dleXn56ATT5sTSTz/9tLz22muPnWDaaL5+/fXXh9e//PLLw39r7vfJJ58MHweojzWCGuZKl8cGAAB9I6gAAAAAAAAAoBpra2tlfX396Kd1f/DBB+WZZ5752/s013/44YfD2zd+/vnn4eMA9bFGUMNc6fLYAACgbwQVAAAAAAAAAFTj1q1bR5fffvvtfzzB9KHmdm+99dbR119++eVIxge0yxpBDXOly2MDAIC+mTzuB/z111//9vr79+8f91MCAAAAdIJ9EQAAgHbt7OyU1dXV4eXZ2dmytLT0VPd/9dVXh/fb3t4ud+7cGT7ezMzMiEYLdenDvog1ghrmSpfHBgAAfXTsQcVzzz1XarK1tVUuX77c9jCoaD4B1MT7JEB/+WwKo2FfBGsu0BeO6QGodS9jY2OjHBwcDC8vLi6Wqampp3qe5vbN/W7fvj18nM3NTSeZQkX7ItYIapgrXR5bbRw7A/9m3YAE3iP7zVo1hqCiNg8PHAAA75MAAGnsiwDUyxoPQK0ePHhwdPnfnhw6PT19dHl3d/dYxgV0gzWCGuZKl8dWG8fOAOA9kgzHHlT88ssv//grHC9cuFD6YmJioszNzbU9DCqquh7+lACAGnifBOgvn01hNOyLYM0F+sIxPQC17mWcOnXq6PLOzs6/eq5HTyx99IRToP/7ItYIapgrXR5bbRw7A0/L92BJ4T2y36xVYwgqzpw5U2rSxBSff/5528OgEpcvX/YbT4CqeJ8E6C+fTWE07ItgzQX6wjE9ALXuZczPzw9P7Gjii7t375b9/f0yNTX1xM/T3L65X+PEiRPl9OnT/9e4IUkf9kWsEdQwV7o8tto4dgaelu/BksJ7ZL9Zq/7XxJ/8GwAAAAAAAAD0zszMTFlaWhpe3t7eLqurq091/zt37gzv12gep3k8oB7WCGqYK10eGwAA9JGgAgAAAAAAAIBqXLp06ejyjRs3ym+//fZE92tud/PmzaOvL168OJLxAe2yRlDDXOny2AAAoG8EFQAAAAAAAABUY2FhoZw9e3Z4+d69e+Wjjz76xxNNm+ub2zW3b5w7d274OEB9rBHUMFe6PDYAAOgbQQUAAAAAAAAA1RgMBuXq1avl5MmTw6+/++678u6775avv/667O/vP3bb5uuvvvpqeH1zu0Zzv/fff3/4OEB9rBHUMFe6PDYAAOibybYHAAAAAAAAAADH6fz58+Xjjz8u165dK3t7e0c/vXt2drYsLi6W6enpsru7W+7evVu2t7eP7tecYNrcr7k/UC9rBDXMlS6PDQAA+kRQAQAAAAAAAEB1XnrppXL9+vWyvLxc1tfXh//WnFB6+/btP739uXPnhj+t2wmmkMEaQQ1zpctjAwCAvhBUAAAAAAAAAFCl5oTRzz77rKytrZVbt26V1dXVcnBwcHT9iRMnytLSUrl48WJZWFgog8Gg1fEC42WNoIa50uWxAQBAHwgqAAAAAAAAAKhWc+Loiy++OPyzs7NTNjc3y+7ubpmeni6nT58uMzMzbQ8RaJE1ghrmSpfHBgAAXSeoAAAAAAAAACBCc0Kpk0oBawQ1v590eWwAANBFE20PAAAAAAAAAAAAAAAAYNwEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEGey7QF01dzc3GN/AwAA1MQxD2CNAAAA+sReBgDgcwcAgD2WURBU/IWVlZWRvOAAAABd4JgHsEYAAAB9Yi8DAPC5AwDAHssoTIzkUQEAAAAAAAAAAAAAADpMUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEmWx7AJBosP+gzKzdbHsYVD7HHv5trjHKOQYAADzd52jHaDx6TGVO0AbH9AAAAAAw+j043w9ol3340b6uUBtBBbRgUA7LYH/Xa4+5BgAAEMR+AOYEAAAAAED9fD+gO/xfAE9CUAFjNDc35/UGqmJdAwAAn5uBfnJMDwAAAAD23MD+MggqYKxWVla84gAAABDGfgAAAAAAANTP9wMA+mmi7QEAAAAAAAAAAAAAAACMm6ACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqAC4D/s3Qm4XdPdMPCVgYSIEBFTSMxTQg3x1lQzRWOmKFXUXK+q1tR+Qk01v7y85hqLlpqHGhOzmhUlZqWmEPOYxPme/3q/c76b5E6Jm3vPvev3e57z3J179t5nn732Obnrv9f/vwAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4vRs7xecMGFCbfntt99u75cHAACgE2jYX2zYj4TOTlwEAACA1hAboSsSFwEAAKAe4yLtnlAxduzY2vJKK63U3i8PAABAJxP9yCFDhnT0YUCbEBcBAABgWvqSYiN0BeIiAAAA1GNcpPt03TsAAAAAAAAAAAAAAEAd6lapVCrt+YJfffVVevrpp/PynHPOmXr27NluU39UZ8R4+OGH0zzzzNMur0vb05Zdh7bsOrRl16Etuw5t2XVoy65Fe7ZeTNlYrVg3bNiw1Lt37+nWLlBCXGRq+K6iRK57SuXap0Sue0rl2u98xEboijpDXIS25f8fSuFapySud0rhWqckb9fhGPv2jou0e+803tDw4cNTR4qGHjRoUIceA21DW3Yd2rLr0JZdh7bsOrRl16Etuxbt2bLpPWUjdIR6iItMDd9VlMh1T6lc+5TIdU+pXPudh9gIXU1ni4vQtvz/Qylc65TE9U4pXOuUZJ46GmPfnnGR7u32SgAAAAAAAAAAAAAAAHVCQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcbpVKpVKRx8EAAAAAAAAAAAAAABAezJDBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcYpIqHj99dfTAQcckJZYYonUp0+f1L9//zR8+PB0wgknpC+++KKjD69o7733XrrxxhvTYYcdljbccMM0YMCA1K1bt/z42c9+NtX7u+WWW9Lmm2+eBg0alHr16pV/xr/j90xfjz76aPr973+f1l9//dr5n2WWWdJiiy2Wdt5553TfffdN1f60Zcf45JNP0hVXXJG/M9dYY420yCKLpH79+qUZZ5wxDRw4MK255prp+OOPTx988EGr9vfAAw+kHXbYIQ0ePDj17t07zT333GmDDTZIl19++XR/LzTvoIMOqn3fxmP06NEtnjKfy47VsL2ae8TntCXasr7861//SiNHjkwrrrhimnPOOfP35fzzz59WX331/DfSM8880+z22rNjxGettZ/L1nzXakegs8ZCfH9R0rUf21999dVpr732yvucffbZ0wwzzJDmmGOOtPLKK6fDDz88vfPOO232XqCe49+x34UWWqj2t+6QIUM0GF362r/jjjvyPYuIl8ZrRcw0Yt9bbbVVOvPMM9Nnn33Wpq8HHXndv/baazl+vMIKK6TZZpst/70Tr7PKKqvk+0Bxbw+A8uhvUwp9bEqiX00p9KXp6tp6HHZrxPjPGCsc40FjnFOMD41xog8++GDqtCpd3PXXX1+ZddZZK/FWG3sstthilRdffLGjD7NYTbVLPHbaaadW72fixImVXXfdtdn9/fznP8/r0fZWX331Zs999fHTn/608vXXX2vLOnb77be3qi0HDBhQ+dvf/tbsvkaOHFnp3r17k/vYeOONK19++WW7vTf+vyeeeKLSs2fPSdpj1KhRTZ4i37H1oTWfzXisscYaTe5DW9af0047rdKnT59m23S//fZrdFvt2bHis9baz2U84v/EN998c4r9aEegs8ZCfH9R2rX/1FNPVWaZZZYW/8+P17/iiiva/L1BvcW/DzjggEleZ/DgwRqJLnntjxs3rrLpppu2+P0f8TboCtf9xRdfXJlpppmavd779+9fue2229rsfQFQ//S3KYU+NiXRr6YU+tKUoK3GYbfGF198Udloo42aHRtz+OGHVzqjLp1Q8fjjj9eCfnHD8+ijj6488MADlTvvvLOy2267TRJg/OSTTzr6cIvU8IO0wAILVNZff/1p+iAffPDBte2WW265yuWXX155+OGH88/4d/W5Qw45ZLq+n1ItvPDC+fzOO++8edDnVVddlc//gw8+WDn55JMr8803X60Ntttuu2b3pS07PqFi/vnnz8kvp556auXqq6/O7Xj//fdX/vznP1e23nrrSo8ePXJbzjjjjJUnn3yy0f2cddZZtTaP6+P888/P18S1115bWWuttVp9PdD2YuDb8OHD8/kfOHBgqxIqfC7rQ7Wt9tprr8rTTz/d5OOVV15pch/asr4ceeSRk/w9esIJJ1RGjx6dB2Hccccd+d+rrLJKZf/99290e+3ZseKz1txnMR7xf2e1jddbb71G96Mdgc4aC/H9RWnX/r333lvbx6qrrlo59thjcx86XvfWW2+t7LHHHrWiAtFvvvnmm6fL+4R6iH/H68Z13rt370rfvn0lVNBlr/2PPvqossIKK9T2t/nmm1f+9Kc/VR566KHKI488kmOnEQ8fNGiQhAq6xHV/33331f6eiZ8777xzjulHbD/u+4wYMaL2OnEsL7/8cpu/TwDqj/42pdDHpiT61ZRCX5pStNU47NbYdttta/uOcaDV2FGMD62OI47H2WefXelsUglV86MKdwQVJ3f88cfXGi8qqdP+DjvssMoNN9xQeeedd/K/X3311an+II8ZM6ZWaX3FFVfMGVANff755/n31WvBjCRtL2YaiAGDEyZMaPT5sWPH5iB+tW3vvvtubVmnmmrDhq655ppJbiJO7oMPPqj069ev9h90tP/kr9HwxktzA/lpe6eccko+70sssUROMmupHXzH1o/v+jeLtqwvkTBRbdNIYvvmm2+aXLex2Z20Z+dw4IEH1tr5kksumeJ57Qh01liI7y9KvPaj0MA222xTefbZZ5tcJ4LG3bp1qxUX+Pbbb6f6daDe498R16kOMP/973+fZ6aIZTNU0BWv/R133DHvo1evXpXrrruuyfXi+378+PHT/DpQL9d93Oup7uOMM85odJ1f/epXtXX22WcfjQdQAP1tSqGPTUn0qymFvjSlaItx2K0RhT2q+43xn5OPNY1xojFeNJ6fbbbZ8uy/nUmXTaj4+9//Xmu4qBDXVJXuJZdcstZ4zQ1ko31Mywc5KnVXt4lK+o2J31fX2Xvvvdv4qGmN+MKutsG+++7b6DrasvNYfPHFc1sOGDBgiueOO+64WlvHLDGNeeONN2ozXcQUULSP119/PVcvi/MeVfDjxlpLCRU+l/Xju94Q1Zb1I/4GXXTRRXN7LrvsstM06EJ7do52rs7SFd+9keQ7Oe0IdNZYiO8v6k09xQG33HLL2rE89thj0+U1oCOv+5NOOinvL2JDkfwtoYKueu03nJkoZpCEEq772WefPW8/xxxzNDtzS/VYll9++al+DQA6F/1tSqGPTUn0qymFvjQlm14JFRtuuGGt4EeM/2xMjBetvnYUAOlMuqcu6tprr60t77zzzo2u07179/TTn/40L3/00Udp1KhR7XZ8tI0YX3rdddfl5SWWWCJ9//vfb3S9+P3iiy+el2P9/x2XSntaa621assvv/zyFM9ry86lb9+++edXX33V5PfvrLPOmrbYYotGtx80aFBad9118/Kdd96ZPv300+l6vPyvffbZJ3322Wdpp512SmussUaLp8XnsuvQlvXltttuSy+++GJePuigg1LPnj2nanvt2TnE/2///ve/8/JWW22VZp555kme145AZ42F+P6iHtVTHLCl+Ad05uv+9ddfT4cddlhePuuss9KMM874nfYH9Xztn3766flnv3790i9+8QuNRRHX/TfffJN/Lrjggk2uE5+JAQMGTLI+AF2X/jal0MemJPrVlEJfGtrWp59+msfBhBj3GeM/GxPjRWPcaLjmmms6VTN02YSK++67L//s06dPWmGFFZpcr+GA0vvvv79djo228+qrr6a33norL7c0OLj6fAxse+211zRDO/v6669ryz169JjieW3ZeYwZMyY9+eSTtUSmhuIGysMPP5yXV1555WZvrFc/k3FtPProo9P1mEnpL3/5S7rxxhtT//7904knntiqU+Jz2XVoy/py5ZVX5p/dunVLP/rRj2q/HzduXE60iJ/N0Z6dw8UXX1xbrg5oaEg7Ap01FuL7i3pUT3HAluIf0Jmv+7333jt9/vnnaccdd0xrrrnmd9oX1PO1HzHOaiGn9dZbL/Xu3TsvT5w4Mb3xxhv5/kJjhWags3/nVwuTxd/8Tfnkk0/S+++/P8n6AHRd+tuUQh+bkuhXUwp9aWhbjzzySK24RnNjtWO8aLUwfmwzfvz4TtMUXTah4rnnnss/F1lkkWar/jYcDFzdhs7jn//8Z2158oHdk9PWHevuu++uLS+55JJTPK8t69sXX3yRB/mefPLJ+T/ECRMm5N//8pe/nGS9F154Id9YDD6T9SMqku233355+bjjjqtVEGuJz2X9DsZfaqmlcrX7mC1m0UUXzbOONFd1TlvWl4ceeij/HDJkSG7Dyy67LA0bNizNMcccabHFFss/44Z0JD81HJBXpT3rX8wGVM20Hzx4cKODzbQj0FljIb6/qEf1FAdsKf4BnfW6v+KKK9LNN9+cZp999nTSSSdN836gM1z7Tz31VC1hIvrrMYA84qARU1tggQVy9f6o0h/JFqNHj57m9wL19p2/55575p8ffPBBnomoMUceeeQU6wPQdelvUwp9bEqiX00p9KWhbf1zGsZqxxjTGHPaWXTJhIoIdFerozQ1rUhV3ACKii4hKgvRubz55pu15Zbaev75568ta+v29e2336Y//OEPtX9vs802U6yjLevPhRdemKunxyO+J2OQ7wEHHJDefffd/PzBBx+ctt9++0m20Y716cADD0zvvPNOWnXVVdOuu+7a6u20Z/3+gRodvy+//DIP2n7ppZdyJfy11147bb755unjjz+eYhttWV//Jz7//PN5OQZiRLLTT37yk/TMM89MkaD2m9/8JrdrJEU1pD3r31//+tdcuTfssMMO+f/SyWlHoLPGQnx/UW/qKQ4YA3Bvuumm2gBcCRV0lev+ww8/rBXViBjfnHPOOU37gc5y7Te8ORj9+BVXXDGdeuqpk/TPoxrbHXfckfvtUcAEusJ3/i677FKbZXOfffZJu+22W7rhhhvyDNNXX311jj1WZz/+7W9/m9Zdd91peEcAdBb625RCH5uS6FdTCn1paHtvFjBWu0smVHz66ae15VlmmaXF9avBxRiUSNdt62o7B23dvk455ZT08MMP5+Utttii0SmptWXn8b3vfS+357HHHjvFAFHtWH/uvffedN555+XKZVFVrLFBvU3RnvUlZqTYdttt07nnnpvb9Yknnki33XZbvnkZMxqEa6+9Nm266aZTTJemLetHJLzEYIzw9NNPp9NOOy3NM8886dJLL03jxo3LMwJFVePq9HcPPPBAvpndkPasf5HkVFUdiDA57Qh01liI7y/qTb3EAWNmsZ///Oe1WRuPPvroNt0/dOR1H8neUWBj5ZVXzoNroatf+9E/r4pkiaii9sMf/jDHROOG/HvvvZfOPPPMPEtFpVLJhWeuu+66qXoNqMfv/B49eqSLLrooz5C77LLL5rjyJptskoYPH5623HLLHHtca6210u23356OOuoojQjQxelvUwp9bEqiX00p9KWhYz9XfTrpWO0umVBRnYo5zDjjjC2u36tXr/wzKj3Tddu62s5BW7efGBQaN5TCwIED842mxmjL+rPZZpvlwb7xiJuFl19+ea5A9eSTT6btttsu3XjjjVNsox3rS1TK23333fON3f333z8NHTp0qrbXnvXl3//+d/4cxiCt1VZbLSc3rbfeevnm5bPPPpuWW2652vfu5N+12rJ+VGctqLZLJMqMGjUqz1IRVQRnmmmm9IMf/CDddddd+cZ1uOaaa9Lf//73Sbar8vdPfWbljx49Oi9HYkzM8NQY7Qh01liI7y/qTb3EAX/xi1/k6s1hp512SiNGjGjT/UNHXff33HNP+uMf/zhNhRqgs177k/fdI/4SsdAYVB77jFla9txzz/y77t3/9zbbIYcckmNw0Nn/1omZcaNQRNwXaMyDDz6Yzj///ByrBKBr09+mFPrYlES/mlLoS0PHfq56ddKx2l0yoaJ3796TDCZtTQW5EAPY6LptXW3noK3bRwzwjQH4EyZMyG0VVY0iqaIx2rL+zDbbbHkAfjziZmFUxo9pveNmyiuvvJKr4F944YWTbKMd68sxxxyTnn/++bTAAgukkSNHTvX22rP+PpNNmWuuudJVV12VZphhhvzv//7v/57keW1ZPxq2RYgEmcUXX3yK9eJvlYZVjf/85z83ug9//9SfmG2kOgtJDKZsinYEOmssxPcX9aYe4oAxg2NUcA7Rfz7jjDPabN/Qkdd9bFct1LDffvulZZZZRoNQ3N871VkqonL/5KLgRczIXB2E3tQAdOgsf+vErLgxG9ENN9yQ5ptvvnTJJZekd955J7/uG2+8kf/GieIgV1xxRVpppZXyPSAAui79bUqhj01J9Ksphb40dOzn6utOOla7SyZU9O3bd6qmC6lWG2rNVLl03rZuWFVKW09/r776alp//fXThx9+mG82RYA9Km43RVt2HjvuuGPaeuut82DRqMA5bty42nPasX5EIkUM6qkOrm84lVZrac/OZaGFFsoVE8NLL72U3nrrrdpz2rJ+NGyLEP9XNmWdddbJVWDDI4880ug+/P1Tf2KwQTXj/sc//nGT62lHoLPGQnx/UW86Og549tlnp0MPPTQvL7HEEunmm2+epv4X1ON1H0neY8aMSfPPP3864ogjNBJF/r0Ts1FUZwVtzAYbbFBbbth3h8523ceN7piZ+uOPP05zzz13euihh9IOO+yQC7lEEZdBgwalvffeO89cFDfQI/bYXCEJADo//W1KoY9NSfSrKYW+NHTs5+rzTjpW+39HaHUxEcibY4450gcffJDefPPNZteNwd7VxosbQ3QuEcCtaqmto3pOlbaeviKQvu666+af3bp1S3/84x/zbAbN0ZadS7TnX/7yl/z9+be//S1tv/32+ffasX6ccsopORs0Btl/8cUXOalpcs8880xt+a677srVxsKIESPyACDt2fkstdRSeQBX+Pe//53mnXfevKwt60cMso/BGGPHjm3xb5L4m3bAgAH5s1ldP2jP+vXoo4+mf/7zn3n5Rz/6UZp99tmbXFc7Ap01FuL7i3rTkXHAyy+/PA8sDIMHD0633357/vsNusp1H1X5Q8T5olp5Y6r7jp/V2EPMULv22mtP1WtBPV37Dddv+LdPS+s27LtDZ7vuI84f8cSw77775qSKxiy99NI50SJm53rsscfSU089lZZddtmpei0AOgf9bUqhj01J9Ksphb40tL1Bk43VXnHFFbvcWO0umVBRHVAYU9NGheYJEybUqvs2VsG7askll2zHI6St2rmxtmyMtm4f77//fq6Q/sorr9Qq4//0pz9tcTtt2bnEYOCq119/vba82GKL5RlJJk6c6DPZwapTZ8VnMSqLteTII4+cZIaZSKjwuex8IomtMdqyvsSN59GjR+fl+L5sTvX5hn/Las/6dfHFF9eWW6rSqB2BzhoL8f1FPeqIOOD111+f4x0xe+M888yT7rzzzhYH3UJnu+6r03ZfcMEF+dFSTLAaf1hjjTUkVNCpr/3ot1e1tt8emjoW6AzX/XPPPVdbXn755Ztdd4UVVsgJFdXXlFAB0HXpb1MKfWxKol9NKfSloe0/U1M7VjtiWIsuumjqLLqnLmq11VbLP6MSS1RIacrdd99dW1511VXb5dhoOwsuuGCt+nbDtmxMTEMc5ptvvjRkyBDNMB3EVNAxxXm1MvMf/vCHtM8++7RqW23ZuVQrVU0+LdOMM86YVlpppbz84IMP1m68N6b6mY1q7c1lLNJxfC47n+r3b6j+/xi0ZX35wQ9+UFuuJiA25pNPPsmDkqp/v1Rpz/o0fvz4WkXeSDzccMMNm11fOwKdNRbi+4t61N5xwEie2GabbfKAxqgYHTNTLLzwwtO8P5gW4t+Uqj2u/Zh1aIEFFsjLr732WqpUKk2u+/LLL9eWG/bdobNd9w2TNOJvnJZiII1tB0DXo79NKfSxKYl+NaXQl4a2NXz48Dw2tKWx2jFe9KGHHqptM8MMM3SapuiyCRWbbbZZbbmp6llRQa5aRXa22WZLa621VrsdH21XiXvTTTetZTVVP4iTi99Xs55i/aYqeDPtvvjii7Txxhunxx9/PP/7t7/9bTrooINavb227FyuvPLK2vKwYcMa/f6NgcBXX311o9vHtE933HFHXl5nnXVS3759p+vxlujCCy/MN3ube4wcObK2/qhRo2q/ryad+Vx2LjGzSAzkCjGYq+FNfG1ZX7bccsva8jXXXNPkevFcddDG6quvXvu99qxPt9xySxo7dmxe3n777VscUKAdgc4aC/H9RelxwAceeCDHlmJWwH79+qVbb711kkrm0JWu+5biCvGIgechflZ/V52RDzrzd3617x4xzkika0rD+Gf1Rj10xus+EqerYjaM5jS8ad5wOwC6Hv1tSqGPTUn0qymFvjS0rb59++ZxniHGfcb4z6bipRFTDZtvvnnnaoZKF7b66qvHCLRKz549Kw888MAUzx9//PH5+XiMHDmyQ46RSb366qu1Ntlpp51adXrGjBlT6dGjR95mxRVXrHzxxReTPB//jt9Xr4UXXnjBaW9jX3/9dWX99devtd1+++03TfvRlh3vggsuqHz55ZfNrnPyySfX2nrBBResTJgwYZLnP/jgg0q/fv3y84MHD668//77kzwf648YMaK2j1GjRk2X90LL4v++ltrB57I+XH/99ZXx48c3+fw777xTWW655WrtedJJJ02xjrasLxtuuGFuq+7du1fuuOOOKZ5/++23K4MGDcrrzDjjjJU333xzkue1Z/3Zcssta5/Bxx57rFXbaEegHmMh8XdhS/1y31+Ueu0/8cQTldlmmy2v06dPn8p99903Xd4L1NN135KI/VRjQNCVrv3XX3+90rt377zOsGHDKh9//PEU61xyySW1/Wy88cZt9O6gY677Dz/8sDLzzDPn5/v27Vv5xz/+0ehx3HzzzTmeFevNN998lYkTJ2oygC5Of5tS6GNTEv1qSqEvTammZRz2BRdc0OJ4+jvvvLO2ziabbDLFuNGxY8dWFlhggfx83E8bN25cpTPp0gkVjz/+eGWmmWbKjTPLLLNUjjnmmMqDDz5Yueuuuyq77757rWEXW2yxyieffNLRh1uke++9N38Qq48TTjih1i6rrrrqJM/FoykHH3xwbbsYUHrFFVdUHnnkkfyz4QDTQw45pF3fXym22GKL2jlee+21c6D96aefbvIRg2+aoi07Vtz87t+/f2W33XarXHTRRXlwyJNPPpk/q//zP/+TP5fVto4Bvrfffnuj+znrrLNq6y288MKVP/7xj/kzed1111XWWmut2nPbbbddu79Hpi6hIvhc1sdnc955563su+++lcsuuyzfNI3BXPEZ/O1vf1sZMGBArS1XW221yldffdXofrRl/Yj/C6uD8WKARrTNPffck78rzzjjjFoyRTyOO+64RvehPetHdAJ79eqV22vo0KFTta12BOotFtLawbW+vyjt2n/ppZcqAwcOrK1zyimnNBv7iMe7777bTu+eUrXXd35zJFTQla/9hgPUF1988RzjfPTRR/Pr/OIXv6gVepp11lkVcqJLXPe///3va+vEa8Q9tdh/xCH/9re/Vfbaa6+c0FFdJ5KKAOj69LcphT42JdGvphT60pSiLcZhX9CKhIqw7bbb1taLcaAxHjTGOkXsNMaJVp87++yzK51Nl06oqFZ0jmB2tZEmf0Rg8cUXX+zowyxWBG2bapvGHk2JCji77LJLs9vuuuuuKuVMJ1PThi1VrNOWHat6E7ylRwz0ve2225rd12GHHVbp1q1bk/vYaKONWpwNg/pIqPC57DyfzaiQH9XkmqIt669DM9dcczXZnvEd+rvf/a7J7bVn/TjzzDNr7RYDbqaGdgTqLRbS2gGGvr8o7dpvGEhu7cOMuHSV7/zmSKigq1/7kUTaXIwzku0amy0AOuN1/+2331Z++ctfNnvNx2OGGWbIN+YBKIf+NqXQx6Yk+tWUQl+aErTFOOwLWplQ8cUXX+Rxn03tO2Y27az3x7qnLm7EiBHpH//4R9p///3TYostlmaeeeY022yzpRVXXDEdd9xx6YknnkiLLLJIRx8m31H37t3T+eefn2666aa06aabpnnnnTfNOOOM+Wf8++abb07nnXdeXo/6pi071q233ppOOumktMUWW6RlllkmzTXXXKlnz56pb9++aeGFF05bbrlluuCCC9KYMWPSeuut1+y+jjjiiHTfffel7bffPs0///z5Mzlw4MC83WWXXZY/r717926398a087nseBdddFH+TP3whz/Mf8/0798/fzbjb5phw4alPfbYIz3wwAPpqquuyr9rirasL6uttlp69tln08iRI9Oyyy6bZp111vy9uOCCC6add945PfbYY+nII49scnvtWT8uueSS/LNHjx7pJz/5yVRtqx2BzhoL8f1FPRIHpESue0rVXtf+sccem+6///604447piFDhqRevXqlfv36peHDh+c++wsvvJBWXnnlNnlP0NHXfbdu3dIpp5ySHnnkkbTnnnumoUOH5nsDEe+I636FFVZIv/rVr9IzzzyTfv3rX2swgILod1AK1zol0a+mFPrS0LZmmmmmPO7zT3/6Ux4HGuNBY1xojA+NcaIxXvTwww/vlKe9W2RVdPRBAAAAAAAAAAAAAAAAtCfl+gEAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAoM787Gc/S926dUtDhgxJ9eDCCy/MxxOP1157raMPBwAAACjE6NGjazGJWAYAAAAAAGhrEioAAAAAAAAAAAAAAIDiSKgAALrUjBoAAABA/YrZL6uzTsSsmAAAAAAAAB2pZ4e+OgDQKRIm4gEAAADQntZcc81UqVScdAAAAAAAYLoxQwUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQA0KEOP/zw1K1bt/wIH330URo5cmRaeuml0yyzzJL69++f1lprrXT55Ze3uK/XXnst7b///nnbvn37pplnnjktuuiiaY899khPP/10s9tWjyGOJ9xxxx1pk002SfPMM0/q3bt3WmihhdIvfvGL9O9//7vV76Upo0ePrq0Xy1Pr888/T3/+85/Tz3/+8/S9730v9evXL80wwwxpzjnnTGussUY68cQT02effTZV7/euu+5KW2+9dZp//vnzvoYMGVJb98ILL6ytH+d48vd70UUX5X+//vrrtfUaPsL1119f+/cVV1zR4ns84IAD8ro9e/ZMb7311lSfIwAAAJiennnmmXTUUUelDTbYIA0aNCj16tUrxzEiDrHTTjulhx56qFX7uf/++3P/fvHFF0+zzjprmnHGGfP+fvSjH6Uzzjgjx0macsMNN6Stttqq9vpzzDFHWnnlldMf/vCHZuMCbRm/eOyxx9Kuu+6aFltssdSnT58cQ4nYwgorrJD22WefHA+oVCq19WNfCy64YO3fO++88xRxhGqsorXHUHXzzTenHXbYIcdwqscSr7Xlllvm2MYXX3wxyfqTxzu+/fbbdM4556RVVlklzT777HkfyyyzTDr66KOn2LYxEydOzDGSaLt555231iarrbZaOvnkk9OXX37Z7PZTey6rvvrqq3TaaaelNddcM8eGIq4T8bS4pjbccMP82g3jOQAAAFCSUaNG5VhNxAtiDEnEX4YNG5Z+85vfNDkWYfLYSfS9TzjhhLT88svnsSjxWGmlldLpp5+eJkyY0OIxxPax7jrrrJPmnnvuHP8ZOHBgWnfdddP555/f7D5i7EYcx89+9rNa/CCWI+YRsYfG4jv33XdfjofEa1XHu+y5557ppZdeys9HDCG2i58NbbHFFvn3EReJY25OHHPsP9bfaKONWjwHAFD3KgDQgUaOHBl3gvPjlVdeqSy88MK1f0/+2GabbSrjx49vdD8XXXRRpVevXk1u26NHj8oxxxzT5HFU14vjOfzww5vcT79+/Sr33HNPi++lOaNGjaqtF8uT22mnnfJzgwcPbnT7NdZYo8njqz4WXHDBynPPPdeq93vooYdOsX3D177gggtqv3/11Vcbfb/NPcKECRMq88wzT/73Bhts0Oz5iTYeOHBgXnfjjTdudl0AAABobw379c09Dj744Cb38cUXX1S22267FvcRfe/Jffnll5XNN9+82e3mnXfeyhNPPDFd4xcnn3xypXv37i2+h08//bS2TWvOW8P33NIxhPfff7+yzjrrtLjfiG801DDe8eyzzza7j5VWWqny2WefNXmuXn/99cqyyy7b7OsvssgilTFjxjS6/bScy/DWW29VllpqqRa3O+CAA5ppaQAAAOh6In6y7bbbNttf7tOnT+X6669vNnbyzjvvVL73ve81uY8RI0ZUJk6c2ORxPPnkk3n8RXPHMXz48Pw6jaluG+NIzjzzzErPnj0bHZNR9Yc//KHSrVu3Rl+nb9++lVtvvbU25iR+NnTTTTfV1r388subPb/XXXddbd0rr7yyhdYAgPrXs6MTOgCg6sc//nF69dVXc2Z8VFiMmRf+8Y9/pOOOOy698MIL6S9/+Uuu8HfKKadMctJuuummnIEf9+WjGmTMbhCZ/DG7wQMPPJCOPfbY9P7776dDDz00zTbbbGmvvfZq8qTHvh599NFcxe/AAw/MlQg//vjjdOWVV6Zzzz03L0elwahEGVUCO0Jk+kfFhJhBY8UVV8znJN57zBBxzTXX5PMU53GzzTZLTz75ZK440JSrr746z94R+4vZPYYOHZorJsZ2Ldl7771zO/3ud79L1113XT6OW2+9tdF1e/Tokdso2uL2229Pb775Zq6g2VQbvPfee3l5l112afV5AQAAgPbql8cMAhtvvHFae+210xJLLJGrG0Zf9tlnn82zBUQfPWaKiNkGYhaGhmImhE033TT3j0PMahF97OjjR6XEt99+O8czon/fmKiqGP3/sOyyy+Y4yJJLLpnGjRuXZ4WMmReiwmJUPYy4ynzzzdfm5yD2++tf/zq/l6iIGLN6xiyaMTPCp59+msaMGZMrQEa8oKGIQcSxxcweIWb5iHPRUFRobK2YOSJmNq3OTBqzOey+++45vhFVGt944410zz335Jk+m7PbbrvlWUXi3G6zzTa5wuK//vWvdPzxx6cHH3wwPfzww/lYI64xuQ8++CDPQhGvFa8Z+4oZRKOCZMwUctttt6VTTz01V4GMGSMef/zxHPP6rucy7Lvvvumf//xnXo7ZOaKSZMRnIg4T11HEuBrbDgAAALqyGD8RYxli7EEYMWJE7u/HTA3du3fP/fyTTjop9/1jvZhBNOIyjYm+dvS9//M//zPvJ/rr0Vc/8sgj03PPPZdnEI2xJHvssccU20YsIGIEMc4kYkcxA2XMbBFjTSKeELNRnn322emRRx7J8ZF77703zzzZmFjn0ksvzdtGHCGON2JUsU1VxJIOPvjgvBzHedBBB6XVV189/zvWi1jVtttum2e4bMwPf/jDPI4jxnNccMEFed2mxPNhwIABeewKAHR6HZ3RAUDZJp/l4LLLLptinU8++aRW5S+q9T399NO157755ptcdTGem2WWWRqtvvjaa6/VZkeYeeaZK2PHjp1inYbHsPzyy09R8S9cfPHFtXW23nrrZt/L9Jyh4oUXXmh2/7fffnutquF5553X6DoN329UYPzqq6+a3F9TM1S09nirXnrppVolhKOPPrrJ9TbZZJO8zpxzzpnbFwAAAOpJxBU+/PDDJp//+uuvK+utt16trxyzNjZ06qmn1vrZMdNEU33yqG745ptvTvK7G2+8cZL+fLzW5M4555xJZvucHvGL//N//k+tkmNTFRTDRx99NEWVxogtNDVrxNQcQ9h///1rz++zzz6Vb7/9ttH9xHma/Dgbxjvicckll0yxXbTN0KFD8/NzzDFHozOnbr/99rW2jtlXG/P444/ncxXrxUyhbXEuo9LmDDPM0KoZKD744INmnwcAAICupBobiX7zLbfc0ug648aNqyy99NJ5vVVXXbXJ2Enso7GYRPS155prrrzOMsss0+hrrLLKKvn55ZZbrtFxKiGOrzq+I457cg1ntxg2bFiTMamIYVSPZ8CAAZUXX3xxinVi5sz+/fvX9jf5DBUN4xRxTG+88Uajr/Xuu+/WYhL77bdfo+sAQGfTvaMTOgCgKmZ+2G677aY4IX379k3nnHNOXo5qfWeddVbtuajIGJUNQ8yUEBX8Jjd48OB0wgkn1CoXVjPlmxKvFTNdTG7HHXfMlQSrr/vOO+90SONF5crmxOwc1QoA1157bbPrRvWF8847L1dQnN4WXnjhtOaaa+blqJbZmHfffTfdfPPNtcqKTVVfAAAAgI4SlfdiBsymzDjjjLU4RMxU0XAWyIhrVJ+Lin8XX3xxk33y6LNPPrvEGWeckX9GfzniG/Fak4sZEiI2UJ2ZMmYqaGvVmEjMwDHXXHM1uV7MxBDvY3r46KOPchXH6swUMQtEt27dGl03zlNzxxnVJiMOMblom5gxIkTlyOpsEFWvvfZabfaL008/Pc8w0ZjlllsuV6FsLCYyrecyZiQZP358Xv7BD36QmhNVKQEAAKAEUV/yuOOOy8sxq0TMutCY2WefvRajiRkqXnzxxUbXi9khq+McJu9rV2cljZkzYxaKhmJGiJiBNFx00UU5ntSYOL6YJaO5cRQN40JNxaRibEiMtwiHH354WmSRRaZYJ2IPI0eObPY1dtlllxxfiRhWHHdjYqaMakwi1geArkBCBQB1o9rZbExMe7j00kvn5TvuuKP2++pydOia66htvfXW+cbz5NtPbtiwYfkmfFOqrxFTJ44ePTrVg7Fjx+bO/TPPPFN7VKdofOqpp5rddtVVV01DhgxppyNN6ec//3n+Gcd73333NdrxjnMbdLwBAADoDL7++uv0r3/9Kw+2r/bL/3dyyDRF3zySK958881a4kNjBR2aEv3lu+++Oy+vv/76af75529y3dj39IxfzDPPPPlnvOeHH344dYS77rorF86oDpDo0aPHNO/rJz/5SZPPNYwTvfLKK5M8d9NNN6WJEyemmWeeuVaEoynVpIcoDBLXy3c9l3PMMUctoeaSSy6pxVMAAACgZNG/fvnll/NyNVGhKQ0LFDz44IPTHDOIONCrr746yXPXX399/rn44ovncSitOY5HHnmkyf59xIFWX331JvdRHQcTxRiaO+YoKNFUQYoQ40eqhTqaSvCoFjGN97/MMss0uS8A6EwkVABQN4YPH97s85FUEV544YX0zTff5OUYpBCiAmA1iaAxcYM5qgE23Oa7HEO1ykBHiQoJP/7xj/PN84EDB+ZKAtEJrz7OPffcvN7777/f7H7au3MbFR+j0kNobKaQ6u+iHYYOHdquxwYAAACt9fnnn6djjz02LbvssqlPnz55dswoBFHtl1djEJP3zZ944onacnM3wRsTg/mrCQT/8R//0ey6DZ9vLg4yrWKG0ZglI5JJoljDiBEj8oyikyeTTE/f5VxObokllmjV7A6ffvrpJM89+uij+We0S8+ePfOAhKYeMTNrVcNZT6f1XMbsGREbCldddVWuPHnggQfmmT9j9g4AAAAoUbWvHlZeeeVm++oNC1007Ku3ZcxgzJgxzR5DPKqzY8asDzEj5bSM7ajGfxZaaKFmZ1aNY451WlMo86WXXsozbUz+vqqvpUgmAF2JhAoA6kYkBjRnrrnmyj/jZvKHH36Yl6udyZa2DXPPPfck23yXY2hpP9NTTM+42mqrpb/85S8tHsOXX37Z7PPV5Ib20rt371zxIMTxxwCUqqjC+Oyzz+ZlHW8AAADq1WuvvZaTJg499ND0j3/8I89Q0Nq+ecPkiurMBK3VMAbQUvyiGgOZfLu2EoMJLr/88hxXiMqJN954Y9prr73yeYlj23HHHae44d7Wvsu5nFzMMNGUqOxYNXlbv/fee9P0etXEmO96Lk8//fScgBFef/31dMIJJ6SNN944F+CIYhXx748//niajhEAAAA6o7boq9dLzGBqxnZUx9A0V4i0qqV1NttsszRgwIBGC2X+8Y9/rI392H777Vt8LQDoLHp29AEAQFVz0wpOz22nx36mlzvvvDMdccQReTmqBvz617/OyRULLLBArogZ1RDDYYcdlo488sgW99ejR4/U3qKawX//93+nzz77LFdQ3GmnnSbpiM8000y5OiMAAADUoxjg/uqrr+YYws4775y23XbbtOSSS+ab0TFDZvz+22+/rfW5p8eMDfUQv9hyyy3Tuuuum/785z+nW2+9NQ/6Hzt2bE50uPTSS/Mj+vxxo73hAIOupDpYIgYZjBo1qtXbxUyrbXEuZ5111nT99dfnIhVRuGL06NHpySefzMcVFSPjceKJJ6Zrr702V+UEAACArq5hYsMNN9yQhgwZ0qrtWlPEc1qOI2Y3jX59a80333wdPrYj4lsR/zrllFPSlVdemcd3xHiUr776KheFCJtvvnmzM2EAQGcjoQKAuvHuu++m+eefv9nnq4MGqtn31SkUq881pzpFY8NpF5t6jdY8P/l+Gt7QjoETTQ0WaDgrw9Q699xz8894/w899FCTlQM6avaM1oipKKNK4iOPPJKTKGJAQHS8r7jiivz8Fltskfr169fRhwkAAABTeP7559N9992Xl2OGiqOOOmqq+uXV6n7h7bffzrMTtFbDOERL8YtqDGTy7do6fhH999133z0/wnPPPZeuu+66fKP9rbfeShdddFFabrnl0n777Zfa2uTncvIkhfYQM0GETz/9NCfVfJfBDd/lXK600kr5UT2WSKy48MIL09VXX50rYkbCxssvv5yLWAAAAEBXVu2rhxjwP3To0A49jig02R7HUB1DEwUaWtKadaJQZiRUxPFHUsXPfvazXLDho48+ys/vsssubXDUAFA/umZZKAA6pRhg35rnF1100ZwRH6odz6gM2Vynb/z48emJJ56YZJvvcgyN7adv375TTKfYmBdeeCFNq2effTb/XGuttZqdhjEqELaXaamKGZ3vcM8996RXXnkl3+DX8QYAAKDeVfvl4cc//vFU98uXX3752nL0iadGzFQ588wz5+W///3vza4bMxZ0RPwikgoOPvjgXAQiKheGmDlhesyu8V3OZVuJBIfw9ddft3kspjXnsjHRviNGjEh//etf03/+53/WEk6qiUAAAADQlVX76uH+++/v8OOI8RANC19ML0svvXTt9ZqL90QRkFinJUsttVRttssolBli5swwePDgtM4667TRkQNAfZBQAUDdiEp7zSUyPPPMM3l53XXXrf2+ulypVGqduMZcddVV6eOPP55i+8k9/fTTtcSLxlQ7iFFxcM0115zkuYaVEJu7iV6diWFaTJgwocUqkXH8LQ2saEu9e/euDR5ore222y4PBoh2i4qJ1baLcxjJIgAAAFCPqv3ylvrmZ511VqO/X3bZZWuzc5533nm5yl9r9ezZM62xxhp5+fbbb09vvvlmk+vGvqvbdET8It7jYostlpfff//9RuMIUxtLmFzED6qJBjGLw8SJE1N7i8SFaoLIf/3Xf02X12juXLak4eCGqd0WAAAAOqMowDBo0KC8fM4556SvvvqqQ45jk002yT9jTMSpp5463V+vGgOI2Ugvu+yyJte79NJL8zFNTaHMe++9N40aNSrdeeed+d8xW0VbFcwAgHohoQKAunH99dc3WmkvBhfsscceebl79+615bDZZpuleeedNy8fffTROSFicm+88Ub69a9/nZejkuPOO+/c7HHsvvvujQ6KiE7nzTffXHvdeeaZZ5LnV1lllTxQIcTUh411Qk844YRJqkROrZidI0RVwZdeemmK52OWjh133DG1p+p5eO+999Knn37aqm2iWuI222yTl88+++x011135WUdbwAAAOpZtV8eokBAY84888x03XXXNfpcxDV+85vf5OVIiPjpT3+avvnmm0bXjRvgb7311iS/22efffLP2GbXXXfNM3I2Vgzitttuy8tbbLHFdIlfXHvttbWZJhsTsZjnn39+igSOMMccc9RmHn355ZfTtJptttlqMaLHHnss/fKXv2xyQECcp4hbtLXFF188bb311rUElJNPPrnZ9WOG1csvv7xNzmVUk7z77rubfb3qdTD5tgAAANBVRezl0EMPrfWdI/bSXEGHTz75JJ1++ultfhzrr79+WmmllWpxlpZmnYyxLjfccMM0v97mm2+eBg4cmJcPP/zwRmMuL774YjriiCNavc+YnTXGdkS8Zfvtt8+xqkikaGnMDQB0RhIqAKgbK664Yu6ExeCAyG6Pm+Exc0H8vjprRDy3zDLL1LaJG/BRVSA6bdHRXXXVVdORRx6ZHnjggTxLQwwMiO2rAxBOPPHENGDAgGaPIaozxs8YGBHHEIP9995771qiQnQYYz+Ti85p9Sb6rbfemisO/O1vf8vHHgMpttpqq3TggQfmgQvTKjr7IRI+oiplVGCM9xqPOKaodPnPf/6zNvVie6i+n+g877nnnumhhx7KyR7VR0vVDGJAQ2wbgY1IqAAAAIB6tdxyy6WhQ4fWCgTEjeUbb7wxxw+i7x9xgYghRHyiKRHbWG+99fLyNddck4YNG5YrFd5///05hnDLLbekkSNHpiWWWCLHPBraeOONa7GHGCz//e9/P/3pT3/Kr3/HHXfkvna1v92/f/9GB/i3RfwiZmOYb775crGEmI0jBvY/+eSTOZ4TgwTi/X/55Zd53YgVNBTJHMOHD68lf0SCwXPPPVeLI4wbN66VrZFyDCjOX4jBD7Hfc889N8cmHn/88Vy8IxJYIpmgWiSjrUUCzUILLZSXDzjggByvOf/88/MxxDmNdjnppJNymy+yyCLpr3/9a5ucy3/961959pGll146/e53v8uJGTHDazyuvvrqfG2eccYZed3vfe976T/+4z+my/sHAACAehP950gwCFdeeWXuO0cfu9rnvueee3LMJcanRAHPSECYHqJoZ8RnYlbN6KdHDCbiOFHEImI5EQM65phj8viOGAfTUuGE5sSMoNXZM2OWyogDxHuO+EQ8jj/++BxHirEZ1YIhLc0yETODbrvttnn5nXfeyT/XXnvtNHjw4Gk+TgCoWxUA6EAjR46M0oH58corr1QWXHDB2r8nf2y55ZaV8ePHN7qfCy+8sNKrV68mt+3Ro0flmGOOafI4quvF8TQ8pskfs846a2X06NFN7uedd96pLLrook1uv+2221buuOOO2r9HjRo1xT522mmn/NzgwYMbfY2dd9652ff5X//1X5O8h5beb0suuOCC2vqvvvrqFM9PnDix8v3vf7/JY2rOUkstVVtvvfXWa/FYAAAAoKM98cQTldlnn73JfvCwYcMqb731VrN9788//7yy1VZbNbmP5rb98ssvK5tvvnmz280777z5OKdX/GKNNdZo8di7d+9eOfLIIxt9/RtvvLHSrVu3Ft9zvG5zMZQwduzYyg9+8IMWjyfiG1MT76iK55raR9Xbb79dWX311Vs8hnhEXKctzmXDc9PcY4kllsgxNwAAACjJN998U9lrr72ajD80fMQ4lYZaGm8xNXGLMWPGVIYOHdqqPvwRRxwxxfYxbiSei3EkrXHUUUc1+Z5nnnnmyk033VSLYfzwhz9scX9///vfJ9nHn/70p1YdBwB0NmaoAKBuRLXAyMKP6ReXXHLJNPPMM6d+/fqlH/zgB+nSSy9NV111Va5i2JiddtopPf/882m//fbL20am/EwzzZQWXnjhtNtuu+WKgIccckirjiOqD0Rlxqj6ONdcc+VZMIYMGZIrTD777LO50mBTYv2YGeOggw7KWf29evXKFQeq7yGqLvbo0SN9F1G98ZJLLkmrr756ni0jXiMqAMQMGjFTRZyD9hQzS0RVzKiGGDNkzDLLLC1WMqjaYYcdasu77LLLdDxKAAAAaBtR7T+qGUa1w+iPzzDDDLnvv9JKK+XZI6PK4DzzzNPsPiLmERUSY1bM6M9HTCTiGBGDmH/++dOIESPyDBgx40FjFQdjBoKYfWGLLbbIlRRju9lnnz1XHzz22GPTmDFj8nFOr/hFPF+t5BivM/fcc+eYTcQEourjXnvtlWMxEStoTMRc7rzzzrTpppvm449zOK1iJtKo4BjnJGbXGDRoUH4/cZ5i5oiYjSOqP2633XZpeon3H9UtY7aSn/zkJ/l1o43jfc0555x5to9oyzjOiOu0xbmMuNDo0aNzvGuttdbKs19EnCheM9p3/fXXzzNexLUa1xcAAACUJPrH//M//5OeeuqptO++++YZLmP8ScQ74mf0wXfdddc8DiVmzpxeFltssdw3j9kqttxyy7TAAgvUYkARP4rZJ6PPH2NlDjvssO/8er/97W9z/GGzzTbLs5RWx5PEeIxHH300bbTRRumTTz7J68Z5aEnEu+I9hNlmmy3HogCgK+oWWRUdfRAAlCuSF4444oi83JH/JVUTAEaOHDndpnNkSjHIIAIHMejj7bffzp15AAAAAAAAAADa1vjx43MixZdffpkTOY488shm14/kiyj+EOtH0YdIUgGArsgMFQBAh/joo4/SNddcU0uskEwBAAAAAAAAADB9XHvttTk5Inz/+99vcf2YWbO6fszoAQBdlYQKAKBDnHbaabWO95577qkVAAAAAAAAAACm0UsvvdTkc6+99lr61a9+lZfnmmuutMEGGzS7rwkTJqSTTz45L6+44opphRVW0C4AdFk9O/oAAIAyRGc7Ouhff/11GjVqVDrmmGPy7zfZZJO09NJLd/ThAQAAAAAAAAB0WksssUTaaKON0o9+9KM8DqNPnz7pvffey2M0zjrrrPTRRx/l9U488cTUs+eUQ0fHjRuXHx988EE66aST0gsvvJB/f+ihh7b7ewGA9iShAgBoF2+++WZadNFFJ/ldv379ahUNAAAAAAAAAACYNhMnTkw33HBDfjSme/fu6aijjko77LBDo8+fdtpp6Ygjjpjkd5Gcsfnmm2sSALo0CRUAQLsbOHBgWnnlldPRRx+dFl54YS0AAAAAAAAAAPAdRCLFLbfckh544IH07rvv5pkmevXqleabb7605pprpn322ScNHTq0xf3E7BWDBw9O2223XTrkkEO0CQBdXrdKpVLp6IMAAAAAAAAAAAAAAABoT93b9dUAAAAAAAAAAAAAAADqgIQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIrTs71f8KuvvkpPP/10Xp5zzjlTz57tfggAAADUuQkTJqSxY8fm5WHDhqXevXt39CFBmxAXAQAAoDXERuiKxEUAAACox7hIu2czRDLFSiut1N4vCwAAQCf18MMPp+HDh3f0YUCbEBcBAABgaomN0FWIiwAAAFCPcZHu03XvAAAAAAAAAAAAAAAAdajdZ6iYc845J8kYmWeeedr7EAAAAKhzb7/9dm12w4b9SOjsxEUAAABoDbERuiJxEQAAAOoxLtLuCRU9e/7/l4xkikGDBrX3IQAAANCJNOxHQmcnLgIAAMB36UtCZyYuAgAAQD3GRbpP91cAAAAAAAAAAAAAAACoMxIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAiiOhAgAAAAAAAAAAAAAAKI6ECgAAAAAAAAAAAAAAoDgSKgAAAAAAAAAAAAAAgOJIqAAAAAAAAAAAAAAAAIojoQIAAAAAAAAAAAAAACiOhAoAAAAAAAAAAAAAAKA4EioAAAAAAAAAAAAAAIDiSKgAAAAAAAAAAAAAAACKI6ECAAAAAAAAAAAAAAAojoQKAAAAAAAAAAAAAACgOBIqAAAAAAAAAAAAAACA4kioAAAAAAAAAAAAAAAAitOzow8AAAAAADra7rvvnsaNG9fRh8F00L9//3TOOec4twAAAAAA8P+4L9L1uT8CrSehogmHHnpo+vzzz1OfPn3SMcccMxWnFAAAAIDOJpIp3n///Y4+DAAAAAAAgOnOfRGA/09CRRMeeuih9O2336bu3bs3tQoAAAAAXUwldUuVGWZK9aDb+C/jaOrqmDqT6vkDAAAAAAAaV/I9iK56H8b9EZh6EioAAAAA4P+JgPnn39u2Ls5HnyevSN3Gf1FXx9SZVM8fAAAAAADQuJLvQXTV+zDuj8DUM/0CAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxenb0AdSrb7/9tvZz9913T+ecc05HHxIAAABAu4hYyLhx41L//v3FRAB8vwIAAAAgng5AF+Fe8JQkVLRCDCAAAAAAKCkW8v7773f0YQB0Ob5fAQAAALoW8R4AOhv/d02peyO/AwAAAAAAAAAAAAAA6NIkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAAAAxZFQAQAAAAAAAAAAAAAAFEdCBQAAAAAAAAAAAAAAUBwJFQAAAAAAAAAAAAAAQHEkVAAAAAAAAAAAAAAAAMWRUAEAAAAAAAAAAAAAABRHQgUAAAAAAAAAAAAAAFAcCRUAAAAAAAAAAAAAAEBxJFQAAAAAAAAAAAAAAADFkVABAAAAAAAAAAAAAAAUR0IFAAAAAAAAAAAAAABQHAkVAAAAAAAAAAAAAABAcSRUAAAAAAAAAAAAAMD/Ze8+wOUoy8ZxvwkhIQRCqNJDF5EIAgEBQ0eaFAERQUEBRRHsogLSFFGwAn4qiIAFEEGqqJSPDtJ7kSJFIJESegIEOP/rmd9/9tuz2d2z55zdPbtn7vu69jp7dqfPO7Mzz7zP+wJQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACicUUO9AN3gueeeSxtttFGac84507zzzpve9773pdVXXz319PSk6dOnpzfffDMtuuiiaeLEidnw06ZNSy+//HIaP3589vnYsWOzz+PvwgsvnMaNG5dee+219MQTT6SpU6em119/PY0ZMybNP//8aYEFFigNUy6Gf/bZZ9PMmTN7TadRjY4/2Pk0YxmGg1asa/k0a4l55eWrCNsZiqpI51Og2JzvbFsAAJp3DV3tu9Cf4fuKP1SOk8cq//3vf2evWbNmZTHzNdZYI4unl8fJw2KLLZYWWmih7POIvefTyWPsoVXL3l/5PPLlHDFiRPbMIOZXK87fzSrXd7iuZ6sMtEy6L27dtu3E7dyq5WjFdGN6Dz74YOl56EorrVQ6N3eDTtnnQGdyjoBicuy3f3uXxwMmTJgwW/260I5rtr72vbIBAMUgoaLMK6+8krbffvv0zjvvVN1Y8bAnHhZceeWV2WsgRo4cmSVlvPTSS3WH22CDDdIOO+yQvT/vvPPStdde22u5YjpTpkzJhonkjnhYUyke3txxxx3p3HPPrTv+aqutlu68884+h6s1n3oaXYaBTLvTtGJdy6d5zTXXZP/313DbzlBURTqfAsXmfGfbAgDQ3GvoSZMmZcPcfffdfcYXI6YQw4d77rmnofhDvfm3U711bVbspD/rOhziNY2sb6xXrOdHPvKRrl3PTru/dV/cum3b7Gk0Q6uWoxXTjWmcffbZ6ayzzsoao6sUCXG77LJL2nnnnbN5dJpO2edAZ3KOgGJy7Ld/e99+++3p1FNPTXfddVe/x2/mNVtf+/6DH/xgWnXVVbPYiGtHACiGET0DqaE9CE8++WRaaqmlsvf/+c9/0pJLLpk6wVZbbVW35f9Otswyy6SDDjooa/0lF63CfP/730+PPfZYn+NHzxuRLDKQ+dTTn2Xo77Q7TSvWtT/TbFS3b2coqiKdT4Fic76zbbvh3hGKUrajElRUkopKUVFpqgjydX5nzrnTa6vvmjrBuDvOTCNnzeioZeom+fYrUjmm8zX7/NqKGGIj8vhDGIr5D8ZAYyeD2dbdGK8ZyPp243p22v2t++LWbdtmT6MZWrUcrZjupZdemo455piGnifGc8cDDzwwbb755qlTdMo+H673j9Dt5bpbzxHA4Dj227+9DzvssFKPFIM1mPNxM2Mp+XLEq2jxdIaHTnwu0m7D9TmM5yMMh2fBT7b5/lFCRUpp4403HlDL/03bCSNGZK96rVlFrxbrrrtuqYv0m2++Ob3wwgul7+eaa670ve99L6211lrplltuSYccckh6/fXXS9/PP//8afLkyTXHb3S48vnUM5BlaHTanaYV61ptms3SrdsZiqpI51Og2JzvbNtueLgKRSrb3RBEK8KDg+EayG8XDwwY7ufXetfQES+44YYbBt1bRLTKmMelK+MPUWE24tpvvvlm6kRzzDFH+sAHPlB12fsbO2lGvLab4jX11nfMmDFpgQUWyHrzfuONN7p6PTvt/naPPfZIv/vd78QBW7Bty8tkp8QfWrUcrZju6aefnk488cRen8X5f9FFF01jx47NGqybNm3abM9aP/vZz6bddtstDbVO2efD+f4Rurlcd/M5Ahg4x377t/e3v/3thpJz68Un4rz8yiuvDOp83Ne+f+KJJ9Ktt94623hrrrlmWnrppWv+LowePTq9/PLLhYqnMzx04nORdhuuz2E8H2E4PAt+UkJF8XqmiAurn/zkJ+mpp55Kv/rVr9Lzzz9f9SHF8ccfX8qsjYvMa665Jp1xxhnpoYceKk3na1/7Wvrxj39cuvBbccUVs2BldEUWD7hy9913X/rSl77U62I1vv/5z3+eVlllldJnteZz3HHH1czyjUzeL37xi30uw0Cm3Wlasa6V04ygdB6ELn8fwaXI3H777berLlv5sLEsEdiOoFS9eQOdpUjnU6DYnO9s2254uApFK9vdEEQrwoOD4RrIbxcPDBjO59d619CPPvpor+8iLhixg/K4c/wW7bnnnln8MCpw53HDsOCCC2Zxh6gcWx5jWHbZZWeLP5RPL4avVjlihRVWyGLwEf9utf4se6Oxk8ptXW39dt9997TOOuukf/7zn1nF44cffrjqsN0Qr6m1vvl65nGpPB5VbX27YT078f62nDhgc7dtXiZDJ8RbWxUHacV0o2eKo446qtfzym233Tbttddeae655y59PmPGjHTyySeniy66qFey1cEHHzykPVV0e8ypW+4foVvLdbefI4CBcey3f3vvv//+NRtjiHNvNIRcmVxere5TXItGIvqVV145oPNxX/u+8vuYX35tWz6fevdzRYqnMzx04nORdhuuz2E8H2E4PAt+ss33jyNTgUXW6lAmU8TFVogLsWOPPTZtuummWbZrNXGBdvTRR/eqIL/JJpukE044Ia2//vql6UR3u/mFXVzwxfdx4Vl+wx/TKO+WN1qTCvF/LEd5CzK15lO+LOXis+gWra9lGMi0O00r1rVymhGMzr8vfx/TiBbW8mSKfB/mw+XTyt/Hvo1s7W7czlBURTqfAsXmfGfbAgDQvGvoUaNGzfbdaaedNlvcOWKLEY/ebLPNssoJlb0ln3rqqbPFGGLaEX+Ihn/KK9HG+5hGZTJFxCvOOeecdNJJJ2XzKxctmufx8VqihchK5XHQauaZZ55sfWste39jJ5XbulJs31/84hfZto/tEPOI//N5VOr0eE2t9S1fzzwulcejqq1vp69np93frrfeer2+Ewds3rYtP95j/E6It7YqDtKK6UYvR/E8sfwcHA/Yo0Jc+e9AiP8POOCA7Pvyc3WMP9jekgZKzAlwjgBcHwytuB6L5NzyZIqIB+TimjViDJdccknpOjbuj6LBgvJp5NeeUXfusssuG9B1el/XhtW+j2vbavOpdj1dPh8AoDsVOqFi++237/c4iy++eEPDVT4gqiYutpZYYonsfbQaFg+XouuwPMu1Ugxzxx139Poshjv00EOzrNmQP7SK/7/zne9UnU5M47HHHisNFw+Y8vGrzaPafGoNVzntWsswkGl3mlasa/k0o2xEiz6V72Pc7bbbLj3++ONV92EMl5er8vcxfJT5btvOUFRFOp8CxeZ8Z9sCANC8a+hq30VvxZVx5xgmho1Xte/uv//+mjGG+C6PVYZ4n08jFwkWZ555ZtZjRPk8ctHQUa0khXzZo3XKynh89NCcL1O5vLJwxEBjfWste39jJ+Xbs9oyVovXVM6jUifHa6qtb19xqVrr28nr2Wn3t5XPqiL+Lw7YnG1bXjZj/E6It7YqDtKK6UYFsvy5Ywwbz6Ii6a6e+D6Gy+cd48fzz6Eg5gQ4RwCuD4ZWXI/ldZtC3OPnDR/n16wRYyi/jj3ssMPSkUcemZZffvnSeOV1n+Katd59f71lqXe9XO37uLatN59q98PVeu4EALpDoRMqBtIiynzzzdfQcJWtvdQyfvz40vuzzjqr9H6bbbapOvz5558/22dxgbbrrr27G/r4xz9eM1B63nnn9RouLgDLx682j2rzqTZc5bT7Ctb2Z9qdphXrWj7N8rJR/j7mdfHFF9fdh7XGjfG6bTtDURXpfAoUm/OdbQsAQPOuoat9V/5Zedw5Ygb1vqsVYygfp5bJkydnyRSNDl8pj3lWxuMvvfTS2WLhYZFFFmlo2fsbO6m37PXiNdVi9uU6NV5TbX0biUvVWt9OXc9Ou78tj/dX+7+WIsUBmxU7aMY0BrudWxUHacV0y59bfvjDH+4zmSIXw2299dZVp9NOYk6AcwTg+qCz7jHL7/GrxSzyz+K122679Rq3vO5TX/f9fS1LtevlWt/3NZ/K7+s1HgEAFCyh4sknn6z7mjp1auoEv/rVr/o9zoQJE7LM2EY0eoEU04vphmeffbbUlfk+++xT+rzc1VdfnV577bXZPl9zzTV7/b/GGmtUnV+Me80115TmM2XKlOz9BhtsUOpCvdY8+hqu1rQb1egydIJWrGv5NGPf/+tf/yq9f+CBB0rzin3b1z6M4fPyE9PJ38e8oqx0y3aGoirS+RQoNuc72xaGo26JiwAw/K6hq31X+VnEnctjBvGq9V2MWxljiBh2+fRqNUB08MEHl5Ypn0eIOGUjjRYtvfTS2bh5jDSXxzcrY+dPPfVUrxhotWUvj480Ejsp33aVGonXlM+jUifGa6qtb3/iUtXWtxPXs9Pub8vHi55d+rvdihAHbEbsoPycEe+HKt7aqjhIK6Yb5/vnnnuuVDb33nvvfk3zM5/5TKlMx7TyZ6DtIuYEQ6cb4iLOEVBMjv32b+/KeEB53adqMYvy69jK6/jKuk993fdXLku96+W+vu9rPvF9fu375ptvDsv7MgAoglHNnuBSSy2VusHf//73fo+zyiqrpOuvv35Q811ooYVKAcha043Wu+aee+609tprp0suuWS2XjVi/HHjxvX6/MUXX+z1/0svvVQ1ISMClnnPHDGfvCeN+Bv/x/xqzaOv4WpNu1GNLkMnaMW69vT0lKZZXibK38c4sa/72ocxrXy8GLb8fZSNbtnOUFRFOp8CxeZ8Z9vCcNQtcZFGTZ8+Pe28886pCGJdGZ6KVI4Z/ueaetfQ1b6LRIPyzyLuXB4zyFX7LuIJEydO7PXZQw891Gt6r7766mwx87Fjx5aSJmKZIlaZi5h3tXEq3XvvvWnUqFGz9TKdxzerxerLY6DVlr08PtJI7KR8e1ZqJF5TPo9KnRivqba+/YlLVVvfTlzPTru/LR9v0UUXzSqZ9me7FSEO2IzYQeUzl6GKt7YqDtKK6Ual51yUzfiN6I8YPi/T4eGHH04LL7xwahcxJxg63RAXcY6AYnLst397l8cDKus+VYtZlF/HxvvyenOVdZ/6uu+vXJZ618t9fd/X/UB8P3r06PTGG29k/+++++5ZTAO6geciw5/nI9QrG/RW2F/vGTNm9HucuPgZrGrTqLwQyy+6agUnqy37zJkz+xymcrjKi8jy+dXbPrWGqzftRjW6DEOt1etaXibKy0zMq9F9WHmjUT6vbtnOUFRFOp8CxeZ8Z9sCnS9/QATdTDmmKNfQ1b6r9lm1uHO17/J4QvlnkcxQPk5eWaBceSyyMm5da5xK8dtTOW75clWrLFwZA621Po3GTmrNP1+PRtSrgNxp8Zpq69vfuFS19e209ey0+9vy8eaaa64BbbfhHgdsRuyg1jOX/mjGdm5VHKQV03355Zd7JcoNRHmZrmwYrtXEnADnCMD1QWfdY1bWfWrkOrbyHrO/9/3VlqXafBq5duxrPnkPFUNx7QtQj+cjMIQJFf/5z3/qfh8tkUQG6VCLC53oZqs/+jt8o9OYNWtWr//zrr9qXehVeyhRGcys9aCmfLjKLsbK59fog57y4epNu1GNLsNQa8W6lmdml5eJ8jIT82p0H5ZPo/x9zKtbtjMUVZHOp0CxOd/ZtjAcdUtcpFEjR45MCyywQCpKSyy1WiKnuxWpHDP8zzX1rqGrfVfts2px52rf5fGE8s/ynifycSpj26H8s8q4da1xqvX0XKsCbyxXX/OttuyV8ZG+Yif1KhA3Gq9ptOGiTlBtffsbl6q2vp22np12f1s+3uuvvz6g7Tbc44DNiB3UeubSH83Yzq2Kg7RiuuPHj28owaye8jI9YcKE1E5iTjB0uiEu4hwBxeTYH7rtXa3uUyP7pPIes7/3/dWWpdp8Gikbfc2nvM5XXPvqoYJu4bnI8Of5CLU4/tuQULHkkkumbrDlllumM888s1/j3HfffYOeb2WrjpGhWjndm2++ObsQu+mmm2Ybf4455sgeJlWqDESWP9gqF93pxkkyHtrFfOJiMzJ442/8X28eod5wtabdqEaXoRO0al3zaUaZKH8f5SQuvmOc/fbbr899GN/n5SqmX/4+yka3bGcoqiKdT4Fic76zbWE46pa4SKOiEvrZZ5+dimDnnXfWG8cwVaRyzPA/19S7hq72XeVnEXcujxnE53ncsfK7iCdUxhhWXHHFXtOrlhwSFW+jJ4uIQ8b889hmiJh3eSWDWt773vf2WvZcHt+sjKmXx9lrLXt5fKSR2Em1+ecaideUz6NSJ8Zrqq1vf+JS1da3E9ez0+5vy8ebNm1av7dbEeKAzYgdlJ8z4v1QxVtbFQdpxXTLK4lF2azs/bwvMXxepsMKK6yQ2knMCYZON8RFnCOgmBz77d/e5fGAyrpP1WIW5dex8b683lxl3ae+7vsrl6Xe9XJf3/c1n/i+PGHkj3/844B7joN281xk+PN8hFoc/7MbmQrqc5/7XL/HiS653vOe9/S7G9t6Vl555VJXX3GBFl544YX0m9/8pmoXYFOmTKl60XXrrbf2+v+2226rOr8YN6aRz+eaa67J3l999dXZ//Xm0ddwtabdqEaXoRO0Yl3Lpxn7/t3vfnfpfZSTfF6xb/vahzFuXn5WWmml0vsYL8pKt2xnKKoinU+BYnO+s20BAGjeNXS17yo/i7hzecxggw02qPldjFsZY4gYdvn0InGimqOOOqq0TPk8QsQpa41T7oknnsjGzWOkuTy+WRk7X3zxxXvFQKste3l8pJHYSfm2q9RIvKZ8HpU6MV5TbX37E5eqtr6duJ6ddn9bPl5e0ag/260IccBmxA7Kzxnxfqjira2Kg7RiunG+zyuKRdk8+eST+zXNk046qVSmY1r5M9B2EXMCnCMA1wdDq1o8oLzuU7WYRfl1bOV1fGXdp77u+yuXpd71cl/f9zWf+D6/9h09evSwvC8DgCIobEJFiOzS/mrkYU9opNvy8PLLL5fe77LLLqX3f/3rX6sOv/3228/22RtvvDFbbxtnnHFG9nk1O+ywQ6/hYhnKx682j2rzqTZc5bRrLcNApt1pWrGu5dMsLxvl72NeW2+9da//X3nllV7TrDXuVltt1XXbGYqqSOdToNic72xbAACadw1d7bvyz8rjzhEzqPddrRhD+Ti1RMuNzz//fMPDV8pjnpXx+M0226xqz9PPPPNMQ8ve39hJvWWvF6+pFrMv16nxmmrr20hcqtb6dup6dtr9bXm8v9r/tRQpDtis2EEzpjHY7dyqOEgrplv+3PKiiy7KzsuNiOdSF198cdXptJOYE+AcAbg+6Kx7zPJ7/Goxi/yzeJ1++um9xi2v+9TXfX9fy1LternW933Np/L7RhtgBgA6T6ETKs4///x+j/P00083NNzbb7/d5zBxEfXUU09l75dddtm00047paWXXjr7v1qgM4ZZffXVe30Wwx155JHpoYceyv7PuxyL/+PzatOJaSyzzDKl4T71qU+Vxq82j2rzqTVc5bRrLcNApt1pWrGu5dOMspF3nxzvx44dW5pXlN2JEyeW/t9zzz1L04xx8nJV/j6Gv+CCC7puO0NRFel8ChSb851tCwBA866hq323yiqrzBZ3jmFi2HhV+y56aq4VY4jv8rhliLhlPo1ctMy46667ZkkV5fMoH6deJYOY7x577DFbPP4nP/lJaZmqNXAUMdBY31rL3t/YSfn2rLaM1eI1lfOo1Mnxmmrr21dcqtb6dvJ6dtr9beWzqvhfHLA527a8bMb4nRBvbVUcpBXT3XnnnUvPHWPYeBbVV1JFfB/PHfN5x/jx/HMoiDkBzhGA64OhFddjed2mEPf45XWf4lo0Ygzl17GHH354OvTQQ9MjjzxSGq+87lNcs9a776+3LPWul6t9H9e29eZT7X44v34GALpPoRMq5p133tKF2lB4/fXXs7/x4Ogb3/hGuuyyy9Jrr71WddgxY8akb3/722nEiBGlB0SXX3552n///dN1111Xms6BBx5YehAVn8f3//u//9urx4yYRgyXX8RNnz49+xv/x3Lk86g3n/JlKRefHXTQQX0uw0Cm3Wlasa6V05wxY0bp+5kzZ5beX3/99VnSzhxzzNFrH+bj5NPK38e+feedd7pyO0NRFel8ChSb851tCwBA866h33rrrdm+iwqwlXHniC1GPPrSSy/Nkh+qVYatjDHEtCP+cMABB5TijnncMqZRWWkg4hVRiXafffaZrQGiGCePj9fywgsvzPZZeRy0mldffTVb31rL3t/YSeW2rhTT+sIXvpBt+9gmMY/4P59HpU6P19Ra3/L1zONSeTyq2vp2+np22v1txPvLiQM2b9uWH+8xfifEW1sVB2nFdEeOHJk9Tyw/B0eSxfHHH9/rdyDE/z//+c+z78vP1TF+TGcoiDkBzhGA64OhFddjBx98cBo9enSveEAurkUjxrD55puXrmNvuOGGdOONN/aaRn7tGXXnNt100wFdp/d1bVjt+7i2rTafatfT5fMBALrTiJ7KpyUt9uSTT6allloqe/+f//wnLbnkkmmobbzxxrM9NGqnuJiKV1R4r5f8se6662ZZt3GhGF2mlz9Qigu3733ve2mttdZKt9xySzrkkEN6PZCaf/750+TJk2uO3+hw5fOpZyDL0Oi0O00r1rXaNJulW7czFFWRzqdAsTnf2bbdcO8IzdAtZTseFj333HNpoYUWSmeffXYqgnyd35lz7vTa6rumTjDujjPTyFkzOmqZukm+/YpUjul8zTy/1ruGjsSCf/7zn3Vjzo2ISrAf+MAH0jzzzDNb/CESKCKu/eabb6ZOFI3RrLPOOlWXvb+xk2bEa7spXlNvfaMCywILLJBVmK7W+n03rWen3d9Gryy/+93vxAFbsG3Ly2SnxB9atRytmO7pp5+eTjzxxF6fxfl/0UUXzcaNeU2bNm22Z62f/exn02677ZaGWqfs8+F8/wjdXK67+RwBDJxjv/3bO5IRKhN9+xufiPNyxDsGcz7ua9/Hb9Ott94623hrrrlm9vtV63chkkZefvllcUi6Tic+F2m34focxvMRhsOz4CfbfP8ooeL/t9VWW/XKgu0m0aVYXHiutNJKpc8efPDB9P3vfz899thjfY4fD74auWitNp96+rMM/Z12p2nFuvZnmo3q9u0MRVWk8ylQbM53tm0nP1yFopXtbgiiFeHBwXAN5LeLBwYU4fzaihhiI/L4QxiK+Q/GQGMng9nW3RivGcj6duN6dtr9rfvi1m3bZk+jGVq1HK2YbvRodMwxxzT0PDGeO0bPFNHScKfolH0+XO8fodvLdbeeI4DBcey3f3sfdthhaerUqU2Z3mDOx82MpeTLEb1bFC2ezvDQic9F2m24PofxfITh8Cz4SQkVQye6Mt9+++0H3WpXXxmz0dvESy+9VHOYaNVlgw02yJYl3p933nnpmmuu6bVc0brWlClTsmFWX331ql2GRUswd9xxR5/jr7baaunOO+8c8HzqaXQZBjLtTtOKdS2f5tVXXz2gnlSG23aGoirS+RQoNuc727aTH65Ckcp2NwTRivDgYLgG8tvFAwOKcn7t6xp61VVXzd7fddddveKLET+ojDdG/HrSpEnZ+7vvvruh+EO9+bdTvXVtVuykP+sa2zLmucMOO3RtvKaR9R0O69lp97fui1u3bZs9jWZo1XK0YroxjXPOOSf96U9/yn7LKi288MJpl112STvttFN2bug0nbLPh+P9IwyHct2N5whg8Bz77d/et99+ezrttNOyemr91czzcV/7/oMf/GAWY7jnnnsa+l0oYjyd4aETn4u023B9DuP5CH3pht+uJyVUdIaNNtqoaosq48ePzx4o5RdEUaCiNZbo1nbixInZcNGtbSRnROJE3t1tiK7BovCNGzcuvfbaa+mJJ57IMm+jW+wYZr755ksLLrhgaZhyMXzMK7oOK59Ooxodf7DzacYyDAetWNfyaVY+7Mz/j3nlXY8WYTtDURXpfAoUm/Ndsbdtpz5chaKU7W4IohXhwcFwDeS3iwcGFPH8Wu86r9p3oT/D93XNWDlOHqt85JFHspYfIxa++OKLZ/H1iKfH8PF7+PTTT2fjL7bYYtl8Ypznn38+G37MmDHZdPJ4aKuWfaDbOl/OWL6I08by1orzd7PK9R2u69kqAy2T3XDvNtSasY06ZTu3ajlaMd1nn302Pfzww+nFF19MEyZMSCussEKWUNEtOmWfD5f7Rxhu5bpbzhFAczn226syHjD//POnsWPHluo+9XXf3+xlqTefRspGEePpDA+d+Fyk3YbrcxjPR+hLN/x2Pdnm+8dRLZ36MNGKAhMXVu95z3uyV6PDD+aisNHxBzufoZp2p2nFuhZp+wH1OR8AReF8Z9sCANC8a+ha3/V3+IHMP2+MqNrwK6+8cvZqdJzK8fuzHM2Uz6OR5RwOira+zTbQMum+uD3bqFO2c6uWoxXTjeSJbkqg6NR9DnQm5wgoJsd++7d3rXhA5XDtWJZ681E2AKAYOq+/VQAAAAAAAAAAAAAAgBaTUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwRg31AnSDBRZYYKgXAQAAAKDtsRAxEQDnVwAAAADE0wEYPjwLnp2EihpGjhyZ3nnnnezviSeeWGswAAAAgGFHLATA+RUAAAAA8XQAhh/Pgmc3sspnAAAAAAAAAAAAAAAAw5qECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHBGDfUCAAAAAECnGDFrZhp3x5mpU5al05apm+TbDwAAAAAAqB1LL+oziOH6HMbzEeg/CRU1fOADH0ivvfZaGjdu3AA2KwAAAADdaETqSSNmzUidpBOXCQAAAAAA6H6eQdgGgISKmr7//e8rHwAAAAAFscACCwz1ItAi9i0AAAAAAIidF43nI9A4PVQAAAAAUHgnnnhi4bcBAAAAAABQDJ6LAPyfkWXvAQAAAAAAAAAAAAAACkFCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwRrV7hm+99Vbp/dSpU9s9ewAAALpA+f1i+X0kdDtxEQAAABohNsJwJC4CAABAJ8ZF2p5Q8eyzz5ber7322u2ePQAAAF0m7iOXWWaZoV4MaApxEQAAAAZyLyk2wnAgLgIAAEAnxkVGtnTqAAAAAAAAAAAAAAAAHWhET09PTztn+Prrr6e77747e7/wwgunUaPa3klGQ92E5L1n3HTTTWmxxRYb6kWCQVOuGa6UbYYj5ZrhSLmmv6LLxrzFukmTJqW55prLRmRYqIyLRDkXgyDn9xJlgUrOCygPVOPcgPJQDGIjDEcDrS/it6+72F/dw77qLvZXd7G/uod91V3sr+5if3WPqR1Yb77dcZG2ZzPECk2ePDl1iygUSy655FAvBjSVcs1wpWwzHCnXDEfKNY1qdZeNMBQq4yLlFQecHymnPKAsUMl5AeWBapwbUB6GN7ERhptm1Bfx29dd7K/uYV91F/uru9hf3cO+6i72V3exv7pHJ+2rdsZFRrZtTgAAAAAAAAAAAAAAAB1CQgUAAAAAAAAAAAAAAFA4EioAAAAAAAAAAAAAAIDCkVABAAAAAAAAAAAAAAAUjoQKAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAAAhSOhAgAAAAAAAAAAAAAAKJwRPT09PUO9EAAAAAAAAAAAAAAAAO2khwoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFI6ECAAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAABA4UioAAAAAAAAAAAAAAAACkdCBQAAAAAAAAAAAAAAUDgSKgAAAAAAAAAAAAAAgMKRUAEAAAAAAAAAAAAAABSOhAoAAAAAAAAAAAAAAKBwJFQAAAAAAAAAAAAAAACFM6wTKh5//PH0ta99La288spp3LhxaYEFFkiTJ09Oxx57bJoxY0bT5vO3v/0tfeQjH0lLLrlkGjNmTPY3/o/PoZvKdYz/l7/8JX3+85/Ppjn//POnOeecMy244IJp3XXXTYcffniaNm1a09YF2n2+LhfTXW655dKIESOy1zLLLGOH0LXl+rLLLkuf+tSn0gorrJDNa7755ksrrbRS2nnnndMvf/nL9OqrrzZ1fhRbO8r2Y489lr75zW+mNddcM02YMCG7Hon5rLfeeunII49MzzzzTFPmA9BMYhC0oyy888476b777kunnnpq2m+//bLpRiwqv6+58sor7YgOI45DO8rC/fffn0444YS05557pjXWWCOLT88111zZfCL28bGPfSydf/75qaenxw7pEGJhtKMsxPVCfo3Q1yuGZWiJJQJFEHHf448/Pu20005pxRVXTHPPPXd23RrXrzvssEM688wz01tvvdXw9O6555607777puWXXz6NHTs2LbzwwmnKlCnpV7/6Vb+m04gzzjgjfehDH0qLLrpotswTJ05Mn/jEJ9INN9yQhqt4tnT11VenH/3oR2mXXXZJyy67bL+fq8ZwjV6P5K8oJwMRz8laPY/hvr9iuzS6DWN7N0Mcq3HMxrEbx3Acy3FMx7F97733puGoGfsqYoQxjYMOOihttNFG2blp9OjRafz48WnVVVfN4oZ33XVXU5bXsTX4/VXOb9fQinpv/f1dinEGImL1rZ7HcBfnt0a3YbNcf/312TVeXOvFNV+cX7fYYovsWpD2XuvX4tjqm2fWg9AzTF1wwQU948ePjydEVV8rrbRSz0MPPTSoebz99ts9e++9d815xGufffbJhoNOL9d33nlnzzzzzFO3PMcr5n/mmWfaoXTV+bqar33ta73mM3HixKbPg+JqV7mePn16z/bbb9/nufv2229vynpBO8r27373u56xY8fWLdMLLLBAzyWXXGKHAB1DDIJ2lYVTTz217m/kFVdcYWd0EHEc2lEWwu67797nfWG8Ntxww57nnnvOjhliYmG0qyyccsopDZ0b4hXDMnTEEoEiOOSQQ3pGjBjR52/S5MmTex5//PE+p3fiiSf2jB49uuZ01l577Z5nn3120Ms9Y8aMnq233rrmfEaOHNlz+OGH9wxHG220Uc31bvS5agzX6PVIvOabb76emTNnDmh599xzz4bn8+ijj/YMN83YX7FdGt2Gsb0HK47ROOZrzWPMmDE9J510Us9w04x9tdRSS/W5j+L8dOCBB/a88847g1pex9bg91fOb9fQO+yww/r1uxSv008/fUDzilh9o/OI5WJ2EctsdBs2Q+yHOHfWmsc222wz4OuU4a7Z1/r1OLbq88x6cEalYej222/PWt2aOXNmmmeeedK3v/3ttPHGG2f/R6bTSSedlB588MG0zTbbpFtuuSXNO++8A5rPwQcfnE4++eTs/fvf//504IEHZpnSjzzySDrmmGOy5fjNb36TZVF///vfb/JaUjStLtcvv/xyqQXz9ddfP334wx9Oa621VtY7xbPPPpv1XBHziOF23333LLN9q622atHaUhTtOl9Xm+/PfvazLBM2Wj1/5ZVXmjJdaGe5fumll9Lmm2+ebr311uz/6B0reqSIa5E55pgj/ec//0lXXXVVOuecc+wYuqZsX3fddVlLN9GyzsiRI7MWdrfffvu0+OKLpyeeeCKddtpp6cILL0zTp0/PPo9WXKLFXYChJAZBO8tCeevycS8zadKkNGvWrHT33XfbER1GHId2lYUwatSotM4662QxvTgvRMtpEZN+4YUX0gMPPJB+/etfZ9fOcY+47bbbpmuvvTa73qb9xMIYqrLwj3/8I7u3riVaC2RoiCUCRTF16tTsnjZ6ZIrnGZtuumnWcm08q4se14477rh08803Z6/NNtss3XbbbdlvZDUXX3xx+tznPpfFkd/1rndl9TbiejjixvEbGs+1b7rppmw+0YJtPDMZqL322iubX4jf6i996UvZb2rch0cdkKgbEq1KL7bYYumzn/1sGk7KYxDRi1bUHYhWm/vTK/oll1yS3nzzzbrDRC/sX/nKV7L30fp7lInBiP0T1z71LLHEEmm4acb+Kve9730vew5Ty/zzz58G4+23386O0Tjmw4477pg+85nPZMt+4403ZvOP3sqjp4rYX8Opbkoz9tXTTz+d/V1hhRWylsAjHhBlP+4nrrjiivTTn/40iwlE3bU4Bzajzppja3DHlt+uzhC9t0Sdir7OTxtssEFWPy7qxkXL+oP129/+NuuNspZFFllk0PMYzuK4O+WUU1o6j4ifHnHEEdn7qHMTPQBFnDXOtz//+c+zc+tf//rX7Nrw9NNPb+myFP1avz8cW715Zt0EPcPQlClTsoymUaNG9Vx//fWzfX/MMccMOsPvX//6Vzb9mMZaa62VtUxQ7rXXXss+z5ejFa2rUyytLtfXXXddzy677NJz77331hzmvPPOK2UTLr/88oPOZId2nK8rvfXWWz1rrrlmNs0jjzyy1DKKHirotnL9yU9+stQ6y/nnn19zuDhXz5o1a8DzgXaW7WjVIZ/GL37xi6rDfPWrXy0N84UvfMEOAoacGATtLAs33nhjz3HHHddzww03lFpCKm9VSw8VnUMch3aVhdDXPV/EQnbcccfSfOrdQ9JaYmG0syyU91AxHFthHi7EEoGiiFbSf/jDH/a8/PLLNa9Z41l1/tt1xBFHVB3uzTff7FluueWyYaKnp4cffni2Yfbbb7+m9MJ0+eWXl6az7bbbZstY2br+0ksvnX0/YcKErFfx4eTXv/511ip3eV2XVjxXLd/v11xzzaBb0S/qM99m7K/yHipa3YPZySefXJpXHLOVYj3y3txWWGGFYfWssxn7at111+35+9//XrPOTpwbF1544dI9xyOPPDLg5XVsDX5/+e3qLhdffHHp/LT33ns3pRV9cfvB9VARf1vp+eefz3rJinnFtV1lL2dxDRjXgvZn66/1G+HYqs0z68EbdgkV8WA5P/D23XffqsO8/fbbPe95z3tKN7Zx4dJfn//850vziYfY1cTn9W4AoNPKdSN22mmn0rLceuutLZkHxTBU5frHP/5xNr13v/vdPW+88YaECrqyXEdAOZ/Pscce24Qlh84o2/PPP382/oILLlhzmBdffLG0LGussYZdBwwpMQjaXRaqkVDRecRx6MSyUB6r/vrXv24nDQGxMNpdFiRUdD6xRIDennvuuZ7Ro0dnv3+TJk2qunn+9Kc/lX5Hjz766KrDROOXeax5lVVWGfBm3mqrrUqVkf/zn/9UHeaMM84oLU8kRA53zU6oiHj/XHPNlU0zEmUGo+iVvqvp5ISK/Fp3gQUWyI7ZauIYz5fnrLPO6hnOWpGsdPzxx5e2X9SRGCjH1uD3l9+u7rLrrruWjp2rrrpqwNNR6bt7EioiESDf53FtV01cC84xxxzZMFtvvXVLl6fI1/qNcGxV55l1cwy7fr3PO++80vtPf/rTVYeJ7sz32GOP7P2LL76YdcnTH5GIcv7552fvV1555fSBD3yg6nDx+bvf/e7sfQxf3m0bdFq5blR0ZZqLLkyhm8r1448/ng499NDs/a9+9as0evToQU0Phqpcn3DCCdnf+eabL+2///52BMOmbOddfy+77LI1h4lyv9BCC/UaHmCoiEHQzrJA9+ik8iCOM7Q6qSzMO++8pfevv/56S+ZBfWJhDGVZoDOJJQL0tuCCC6b3ve99dZ9Dl587P/WpT1UdZu6550677LJL9v6+++5LDz74YL839SuvvJIuv/zy7P1mm22WllxyyarD7bjjjmn8+PHZ+3PPPdcu7aezzjqrdH+SX/sw/MUxef/992fv41iNY7aa8mPc8dV/YkKdw29X93j55ZdLdULjefWUKVOGepFo4zEa13RxbVdNXAvGNWGIa8S4VqT51/oMnGfWzTHsEiquvfba7O+4cePSmmuuWXO4DTfcsPT+uuuu69c8Hn300fT000/PNp1683nqqafSY4891q/5QDvLdaPeeOON0vs55pjDTqKryvV+++2XXnvttfTJT34ybbTRRoOaFgxVuY4K5PlN/Oabb57mmmuu7P3bb7+d/vOf/2TXGyrH0K3n7DwZOa636wWynnvuuV7DAwwVMQjaWRboHp1UHsRxhlYnlYUzzzyz9D4aCaL9xMIYyrJAZxJLBKh9D1PrOXR+7ozY8KKLLtqy39Gbb7651KBPvToh0Xhb3gBnjDNr1qx+z6vIfve732V/R4wYkT2/pRjy47iv4yuO8ZVWWil773q4/8SEOoffru7x5z//Oc2cOTN7H79L8fvE8BbXezfddFP2ft11163bMG/+mxXn11tuuaVty1ika30GzjPr5hh2CRV5FvMKK6yQRo0aVXO48odG+TiNilYMqk2n2fOBdpbrRl111VWl9+95z3vsJLqmXEfFgYsvvjjNP//86cc//vGApwNDXa7vvPPOUsLEpEmTssrlX/7yl7MW+5deeumspYRowT+SLa688ko7jK46Z3/uc5/L/j7//PNZT0LVfPe7351teIChIgZBO8sC3aOTyoM4TrHLQiQi33DDDWnvvfdORx11VPZZ3DvuvvvuTZsHjRMLY6jKQt4TxuKLL55VDIjzQFT8POSQQ7LGwBg6YokAvT3zzDOlc2O159Cvvvpq1rBUO+ppDKROyFtvvZUeeuihfs+rqKJhpbyS/Ac/+MG03HLLNWW68XwhKjxGK8hjxoxJiy22WNpiiy2y3t9nzJjRlHkUwfHHH59dr0bDbvHc8b3vfW/2TOa2224b9LQHcnzFsR8NJzJ0MSHH1sD47erORL9m95x08MEHp4kTJ2a/S1Fn6f3vf3/6yle+MqBetIrogQceSOuss06aMGFC9rsUvUVsv/322f4abDJr7INovDSoBzy01/oD4dj6P55ZN8ewSqiIyoV5a7W1ulzMxY9TtP4T8pvuRj355JOl933NZ6mlliq97+98oJ3lutFKvH/9619LlXglVNAt5fqFF17IKpyHH/zgB2nhhRce0HSgE8p1eZDxnXfeSWuttVb6+c9/nl588cVeWfSXXXZZ2mSTTdIPf/hDO46uOWfvtddepeDUF77whfSZz3wmXXjhhVkLD3/5y1/SRz7ykfSjH/2odHOcd6sJMBTEIGh3WaA7dFJ5EMcpZlmIHjmj9bx4RfxjvfXWS7/97W9TT09PVon63HPPzR4+0l5iYQxVWchFoxtTp07NKhpERagbb7wxS7SKSnK//vWv7aAhIJYIMLtjjz02S0oIu+yyy5DW01AnpPWiEmTcpzS70mpUXr766qvT9OnTs+dl06ZNS5dcckk64IADst4Orr/++qbNaziLxIlHHnkka0k6GneL55Nx3Rg9rEViRXnvB+04vqKslI9HfZE89LOf/Sx7HxW4o+LxYDm2BsZvV/d47LHH0jXXXJO9X3/99dPyyy/ftGnHb88TTzyR/S5FvY477rgjO0aj3t3hhx9e+j2kuv/+979ZLxIvvfRS9vsTjUNccMEFac8990yrr776oBqhcM3XOdf6A+HY+n88s26e2k3fdKFXXnml9H6eeebpc/gIREcGc1z0tWo+ebA79Hc+0N/yNphy3Ze4INlnn31KWZl5q3bQDeX6G9/4RnaBHd2zReVc6OZyHQHgXCRLxIXxlltumY488sj0vve9LwtqnnPOOelb3/pWdkMZfyOTvhmBMoqpnefs6NrxtNNOS9tuu236/ve/n37zm99kr3Ibb7xxOuiggyRTAENODIJ2lwW6Q6eUB3GcodcpZSH3xS9+MX3nO9/JkipoP7EwhqosREvPO+64YxYXzSuj/fvf/85iR2effXYWV4oKcZGE9dnPftaOaiOxRIDeItkvr/wbFaw///nPD2k9DXVCWu/3v/999nfs2LFNqVQX1zPRC1c8X1hjjTXSu971ruxa5+67704nn3xyVhEzKmB+6EMfyirMRuvgzC4S8KNxq0jWX3HFFbOWwCMxN5JSYjvG8RSJFXGM/PGPfxzQJnR8td43v/nNrPJ23oBZ9FY3UI6twfHb1V2/S3liQ1TUb4boJSnuyfOemKKXyjg2L7roolLvCkcccUSWaBHPxult5MiRadNNN01bb711Wm211bLep+KYiqS/+C2KRIpI+Iv6A/E7v/TSS/d7E/pN6pxr/f5wbPXmmXXzDKuEirgZykW3xX2JLNwwc+bMls0nn8dA5gP9LW/lZa7Z5W3//ffPWofOLxwjEAHdUK6jBZJoiTFuTH71q19lN/zQzeW6vDvbmOfmm2+e3XBHRfQQLZDGg/BVV10169I4erH49re/nbbbbjvln664FonARwSQ4iFHNTfccEMWtI8WO5ZYYokBzQOgGcQgaHdZoDt0SnkQxyluWTjllFOy+8Z4ABwt3kU875e//GU64YQTskrUkbAcFYtoL7EwhqIsREW4iOVXxkMnT56cPvaxj2XxpKjYERU4vvKVr2Sxo0UXXdTOahOxRID/E42i7bzzzlmLtfG7FY3uzD333ENaT0OdkNaK1oSj94MQDYKNHz9+0NP86U9/WrU3vrzBvUMOOSSrrBr3S9GQZNwreW7cW1S6j6STyuMvkk+iMmtUzI+ew6My8Omnn55dU8Y1ZH85vlorEl0iBhDiWdr3vve9QU3PsTU4fru6xx/+8IfsbySSNSPRL+69H3/88TTnnHP2+jyS/nbYYYesUYNI8otGMn/wgx9k59RIGuD//OUvf6n62z5lypS03377Zb/vcd0Y15Jf/vKXs+H7y29S51zrN8qxNTvPrJtnZBpG4gctF5l7fcm7oIuM91bNp7ybu/7OB/pb3srLXDPL29FHH11qHTp+lH7xi1/YOXRFuY7x4iYkKhF86Utfylrvh+F0HZL3UpEnU5SLVg7ioXheQb1W5XTopGuRaBUqHm5ceOGFWbJEtAQS3XHHfKNb9rgGiZvrM888M6299trp3nvvtQOBISMGQbvLAt2hE8qDOE6xy8Kyyy6bJdhPmjQpe7gYlaTvuuuurPJLVJ6O2F55V/a0h1gY7S4LYb755qtbSfDDH/5wOvTQQ7P3M2bMyBovoH3EEoFOFb8dg32deuqp/WpNdZtttildo0aFwk022WTI62l0S52Qdu+vZolGlXLNagW8WoXLXKznUUcdlbVyHaJl60jqaLdO31+RqFSvgmP0WJFXOA7HH3/8gObTDcdXp++rWq688sq09957Z+8XWGCBrGe6wW43x9bg+O3qjmPwn//8Z3rwwQdLiX5xPz1Y0VtWZTJFuXjWnSc/RZ2m/H23aeW+qnf+iW0bdRnf/e53Z/+fe+65WVLgcPxNKsq1fqOKcmz1h2fWzTOsEirmnXfefnXbmLfw3Ei3ygOdT3kr0v2dD/S3vJWXuWaVt+gi66CDDsrer7zyyuniiy/u1UUqdHK5jsDYv/71r6w7++gmD4bbdUj0RlGvS+Itttii9P7mm2/u13yg3WU7AhAf//jHs1Y4okXMCFx94hOfyFrPjRvi6PoxWpqInofihvDpp59u2oMWgIEQg6DdZYHuMNTlQRyncwx1WSgX18/Rc0VUjIlE5QMPPLDp86A+sTDaXRYaFY3R5EkXV111VUvmQXViiQD/ryXVqLR46623Zpvj61//et1r1XbW01AnpHXiWcBZZ52VvV9sscWyntjbZd999y29d+0zMJG4v8oqq2Tvr7322vTOO+/0exqOr9aIXleix5A4xuK8F3V7ooeKdnBs1ea3qzuUJ/rtsccebZvvrrvuWuqlye9S/40aNaqURDbQbeg3qXOu9ZupaMeWZ9bNMyoNI/FgaMEFF0zPP/98n61svfDCC6Wb6Kho2x9RmSvX13ziAVWuv/OBdpbras4444ys4mKYOHFiuvTSS9NCCy1kx9A15Tpa7g/R9Wi0dl5NPu34Gy2eh0UWWWTQGbEUT7vKdfnw5dckfQ377LPP9ms+0O6y/fe//73UasQBBxyQJVVU8973vjdLtIgWJ+Lm+84779T9KTAkxCBod1mgO4jj0AlloZqI6a2//vpZfO/8889Ps2bNqtuSF80lFka7y0KjIg4ay/Pcc88NqCVHBk4sEehU0eP1YEUl+b689dZbaZdddklXXHFF9v8+++yTjj322LrjRK/G7aqnUVknZK211mrZvLphfzVTPLON65yw2267Ve2FvVXyRIAwFNc+3bi/am3H++67L6soGde10QDcYI6venVQ8uMrkoD7ei5a5H0VPbpvueWWWUvgY8aMSeedd15aZ5112jZ/x1Ztfrs6/xiMXgn+9Kc/Ze+job/yRivbkRCw0korZQlR3XpPPtTny8Gef4pWD7iTr/WbaTgcW/3hmXXzDKuEivwkec0116SHH344OzDj4KjmgQceKL3vb0Zu+Ym4fDrNng+0s1xXuuCCC7Ks22hRIH4IL7/88rbeoDL8taNc592xRSuM8aonHhpGy+hhww03lFBBx5brqEyee/vtt+sOW/59rWWBTinb5Tfva6yxRt1h11xzzSyhIp/naqut1q95ATSLGATtLAt0D3EchrIs1JNXcpkxY0YWB+mEijhFIhZGO8tCf+Q9VNB+YolAJ1p55ZVbPo94/vzJT36y1Bjaxz72say3vUZaXo3Ka1GZrdX1NAZSJyR+01dcccU03PZXK1sBb3cv1EN93dON+6sV27Hy+Fp99dX7PL7i2B83blxql27aV4888kjW00skt8R5KCqGb7rppm1dBsdWbX67Ov8YvOiii9L06dOz97vvvntbE/064fjp9vPlYLdfVLqPfR51a4pQD7iTr/WbrduPrf7yzLo5RqZh5oMf/GD2N1rtybuLqaa8K5domas/ll122bT44ovPNp1qrr766lLG6TLLLNOv+UA7y3W5SJ6ILMF4mBOtU0XLdcsvv7wdQleXaxgu5Tp6DFp66aWz94899ljq6empG0Cr1voFdGLZLq9AEtcg9URrutXGA2g3MQjaWRboHuI4DFVZ6Et5a1zzzDNPy+ZDd5QHhk4nlYXo0TQSrEL+3Iv2EUsEimrfffct9Rq/7bbbpj/84Q9p5MiR/Tp3/utf/0rTpk1r2e/o5MmT0+jRo2ebVrXG3f75z3+WxtELXN/XHtFbdYhK9JMmTUrtFL0q5Fz7DH47Rk8IUZ+kv/LjuK/jK47xBx98MHvv3qi6aE19s802S1OnTs3Oo6eddlrafvvtU7s5turz29U9iX7R8HA7xTPx/Dznd2lozj9xvbf22mtn72+44YZSw73V5L9Z8ftXr/eyohvMtX6zFPHY8sy6OYZdQsUOO+xQel+rNfLIgsp/DCdMmJA23njjfmcv5RegkXmW3yBXis/zzLQYvmhZT3RXuc5df/31WXl944030nzzzZf+8Y9/9GoNHbqpXEdF875eUTk9xN/8syuvvHJQ60Zxtet8vdNOO2V/X3755SwJrpa//OUvVYOT0IllO5KWc9FSZz3lAfby8QDaTQyCdpYFuoc4DkNRFhqpZBEPBfMYSLSQSHuJhdHOstCoE088sdRYR/TaS3uJJQJF9NWvfrXU+3C0oP7nP/+5X43mlJ87Tz311KrDRI9sZ511Vqml1mh5uL/iejlv4f2yyy7LrqdrPYeJZzXhIx/5SL/nUzRnnHFGqcGkdvdOEcpbR3btMzDXXXdduvfee0vPHgdSQTKOybxl7zhW45itpvwYd3zN7plnnsmSKaIBvvCrX/0q7bbbbmkoOLbq89vVuaJnl4svvjh7v9pqq2WvdooeZV566aXsvd+lgVWa/+1vf1v6f4MNNhjUMRrXdOV1bMrFtWBcE4a4RhRbbc21frMU8djyzLpJeoahKVOmRPS3Z9SoUT3XX3/9bN8fc8wx2ffxOuyww2b7/oorrih9v+eee1adx7/+9a+eOeaYIxtmrbXW6pkxY0av7+P/+DxfjgcffLCJa0gRtaNc33777T0TJkzIhhk3blzPtdde25J1gXaW675MnDgxGz/+QreU68cff7xnrrnmyoaZNGlSz0svvTTbML///e9L09lmm23sXDq+bL/wwgs9c889d/b9vPPO23PXXXdVXY6LL764Z+TIkdlwSyyxRM/bb79t7wJDSgyCdpaFamJa+XgxDTqDOA7tKgsRp7788svrbvAXX3yxtBzx+s53vmMHDRGxMNpVFh599NGe2267re4Gv/DCC3tGjx6dTWPs2LE9Tz75pB00BMQSgSIpv39db731el599dV+T+PNN9/sWW655bJpjB8/vufhhx+ebZj99tuvNJ9TTjml6nTi83q/tSGus/Nhtttuu5633nqr1/fPPvtsz9JLL519H8/Yp0+f3jPcDfa56pprrlm6Bvrvf/87oLJTbZ/ecMMNPU8//XTN8d95552egw8+uDSN1VZbLftsuOvv/jr33HPrbpeHHnqoVObjdc455wxof4WTTz65NMwXvvCF2b6PYzuO8fh+hRVW6Jk1a1bPcNbffRXP1FZfffXSNvzpT386oPk6ttqzv/x2da7jjz++dBz9+Mc/bni8uOfOx9twww1n+z6uCfqK1d94442lOnojRozoueWWWwa0DsPV//7v/2bnunrHVcRD8v2w7bbbDmhfheeff75nvvnmKx3Xzz33XK/v4xowpu85TOuv9R1bg+OZ9eC1P/2nDX7+859n3b3NnDkzfehDH0oHHXRQ1npP/B/dyUSLO3nW89e+9rUBzSPG/cY3vpF+8IMfpFtuuSWb3ze/+c20/PLLp0ceeST98Ic/TLfffns2bAy34oorNnUdKZ5Wl+sot1tssUV68cUXs/+/973vZT1U3HPPPTXHWWSRRbIXdPL5GoZjuV566aXTkUcemQ488MB09913Z10QxnXI+973vlLW/C9/+cts2PHjx6ef/vSnTV1HiqnVZTta3PzWt76VDj300PTKK6+k9dZbLx1wwAFp8803T/PPP3/673//m84///x00kknZS11hrgWb3f3kACVxCBoZ1mo1gLnHXfcUXr/97//vdQqXVhhhRX0VDZExHFoV1l4+umns9a+ogW9aIVqzTXXTIsuumjW8te0adOy1kNPPvnk7H1YddVVs+tuhoZYGO0qC3E9ENNbd91107bbbpudI/JY/r///e909tlnZ6+8d4of/ehHaYkllrCDhoBYIlAUxx9/fDriiCOy9/Gbc8wxx6RHH3207jjvfve705xzztnrs/g/phW/b/E8JH5PDznkkOw5yQsvvJDFj88555xS6/mf/OQnB7zMm2yySdp1112z3+YLLrggi1V/+ctfTosvvnj2bOaoo45KTzzxRDZs1A+JOPZw8vDDD6drr72212evvvpq6W9lfGLLLbfM7kVque+++9Ktt95aGraZ9QwiHhLPC2K6sZ+iZ5J45vDGG2+ku+66K2u9+sYbb8yGnXvuubNyMmLEiDScNGN/RS8QEUvacccds2NqySWXTGPGjElTp05N//jHP7J7y3yau+yySzbcQEUPJbFf4p71F7/4RXbP+pnPfCY7jm666ab03e9+NzvG4xnQcccdNyStW3fqvopyvc0225RigrvvvnvWU0W9uj3jxo0bUI/vjq3mHFt+uzpX3jNknGPiWGqWaBk/7smj/kYer1tsscXSHHPMkV07XHTRRen3v/99evPNN7Phv/71r2fD8H9OO+20tN1222WvjTbaKLsujLovcdzF9UTETeLaIsQ1RdxbD9QCCyyQXct97nOfS48//nhaZ5110sEHH5wmTZqUxV5/9rOfpSuuuCIb9uMf/3i2PLTmWr8vjq36PLNugp5h6oILLihlK1d7rbTSSln2dDWNtggYreHutddeNecRr7333luruXRFuS5vhaPRV63WOqBTynUj9FBBN5frb33rW1lrBbXms8gii1Rt5RA6tWxHy0df/vKX65breM0555w9xx57rB0JdAwxCNpZFvpz3z7Q+ySaQxyHdpSF8u/7ekXvhc8884wdM8TEwuikc0P0FPnrX//aThliYolAEUSLwP19Fh0t1NZy4oknlnpaqvZae+21sx4kammkh4owY8aMnq233rrmfKI35eH6zLy/9Qf6aon7m9/8ZmnYs846q6mt6Jd/X+8VvStce+21PcNRM/ZXo+N+/vOf73n99ddrLksjPVSEOEYnT55ccz5jxozpOemkk3qGm8Huq/LWuxt91WqV3bHV+v1Vzm9XZ7n//vtL+y1+65vZin6jx+kcc8zRc/jhhxei16T+Ku99ot5r0qRJPffee2/N6TTSQ0Xu0EMPrVtPIcrJzJkzW7C23a9Z1/qOrcHzzHpwhk8Kb4VokSAyzSPr5q9//Wt68skn0+jRo7Ns6o9+9KNp//33zzLPByMyoSMDe6eddsqy3m6++eb03HPPpYUWWihNnjw57bvvvmmrrbZq2jpBO8o1tJtyzXDUrnJ99NFHZxn50RvFNddck7UQM9dcc2WtF8bn0bp/9DYE3VK2o0Wo6FHlE5/4RPrNb36TtfgSrUDMmDEjzTPPPNl8Ntxww+w6O8o5QKcQg6CdZYHuoTzQjrIQLfJGS6GXXXZZ1pNyTDt6d4tr6Gi1LVqg/MAHPpC1nhbDMvScG2hHWYiWLf/whz+kG264ITs3RMwonl+99dZbWau/733ve7PebfbZZx+9UHcAsUSA/ouW7KMnpmi5/vLLL89aD44W2N/znvdkLUzHb1wzWrQfO3Zs9jt9+umnZ62Q33nnnenFF19M73rXu9KUKVOy3+tYDuqLXqf/+Mc/Zu+j54h4htVMn/70p7N9Etc+cX31zDPPpOeffz4rA1F/Z4011sh+b3fbbbfsORrVRU8ssQ2jN494NhPXj6+99lp2b7nccstlZX6vvfbKej5shtg3119/fdZjSBxj999/fza/6AUmrlW/9KUvZdetDB3HVnP57eos0UNEbo899mjqtOM89uc//zk7p0avO0899VR2Tn399dez+hvRMn/0chDXK8sss0xT5z1cfPOb30yrr756tg2jJ4pnn302TZ8+Pes5KX7z11prrbTzzjtnvStFzx/NED0sbLHFFlnPSVH/JmKscd0SvX7G+TDiqwwtx1bfPLMenBGRVTHIaQAAAAAAAAAAAAAAAHSVkUO9AAAAAAAAAAAAAAAAAO0moQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQIAAAAAAAAAAAAAACgcCRUAAAAAAAAAAAAAAEDhSKgAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqAAAAAAAAAAAAAACAwpFQAQAAAAAAAAAAAAAAFI6ECgAAAAAAAAAAAAAAoHAkVAAAAAAAAAAAAAAAAIUjoQKgS5166qlpxIgR2euxxx4b6sWB2SyzzDJZ+fzUpz5l6wAAAECb4kJxHx6fx305AAAAQDcbTnVjYvnzdYn1AgA6h4QKAAAAAAAAAAAAAACgcCRUANB0hx9+eCmrns6x0UYbZfsk/gIAAAAAAAAAAAAUnYQKgC71qU99KvX09GSvZZZZZqgXBwAAAIAOcOqpp2bxoscee2yoFwUAAAAAAKDjSagAAAAAAAAAAAAAAAAKR0IFAAAAAAAAAAAAAABQOBIqALrUqaeemkaMGJG9HnvssV7fbbTRRtnn8Tc89dRT6atf/WpaYYUV0tixY9OCCy6Ytthii/S3v/2t7jzefvvtbD4x7KKLLppGjx6d5ptvvrTiiiumTTfdNH3/+99P991332zLdMQRR5Q+y5ex/FW+vJXL+tBDD6X9998/m8fcc8/da/h661wuvsuHi3EqfepTn8q+W2aZZbL/p02blr7+9a+nlVZaKZvnEksskXbZZZd07733zjbdL37xi9lwsR3f9a53pd133z098sgjqRFXXHFF2nPPPdNyyy2XzWf8+PFp0qRJ6Rvf+EZ6+umna453+OGHl9YnvP766+nYY49Na6yxRpp33nmz19prr51OOOGE9NZbb9Vc36uuuir7P/5W7pN8W+Ree+219Kc//Snts88+afXVV8/2+5xzzpkWXnjhtOGGG6Yf/ehH6dVXX00DdeWVV5bmHe/DWWedlZWrmEds33e/+93pwAMPTNOnT29omuedd1766Ec/mpZeeuk011xzpQkTJqS11lorK48vvPBC3XEffPDBdMABB6RVV101255R1hdffPFs3ffaa69sW7zxxhuDPkYAAACg1SrjHrkjjzyydC8e8Ze+xL1uDLvYYotl97/NvBevXMYXX3wxHXrooem9731vGjduXDadDTbYIP3xj39saJ1feumldPTRR6f1118/iyvE/Xks97bbbpvOPvvs1NPTU3f8c889N+2www5pySWXTGPGjMliAxG/mTJlSvrOd76TbrrppqrjRTznW9/6VhajyWMnES+KeM/HP/7xLGbw8ssvN7QOAAAAwMA8++yz6ZBDDknvf//7s5hCxCgi5vDJT34yXXvttXXHzWMlUS+jnsq6LdVE/OR//ud/0jrrrJPVB4lYQcQMon5FtfoGlcRLAGAI9QDQlU455ZR4Epy9Hn300V7fbbjhhtnn8ffaa6/tWWihhUrDVr6OPfbYqtN/5ZVXeqZMmVJzvPy10047VV2meq/y5S1f1vPOO69n3LhxNYevt87l4rt8uBin0p577pl9N3HixJ477rijZ9FFF626nLEs11xzTTbO5Zdf3jPffPNVHW7++efvueeee2ouz8yZM3t23XXXutsk5nXBBRdUHf+www4rDTdt2rSe1VdfveZ0tt12256333676vrWe8W2KJfvl3qvZZddtuf++++vud4xzRgu5l/piiuuKE0ntu0nPvGJmvNZYYUVeqZOnVpzPtOnT+/ZZJNN6i7rIoss0nPDDTdUHf+ss87qGT16dJ/re/fddw/6GAEAAIBmqBcjKY97lHvooYdK4xx++OF1px/xhznmmCMb9stf/nLT78XLl/GBBx7oWWaZZWpO5wtf+ELdZb3ssst6FlxwwbrLsvXWW2f38ZXeeuutno9+9KN93tuvueaas4179dVX94wfP77PcS+88MK6yw8AAADU1lc9kX/84x993p9HbKGyHkUuHybqZdRTXrelmr7qD6yxxho9t912W8N1WcRLAKC9Rg1lMgcArTV16tSsdb2RI0emH/zgB+mDH/xg1kJfZOBHq4TR+t+3v/3ttNVWW2UtAJaL7Ptrrrkme//hD38464khb23wmWeeSbfffnu66KKLSr0mhJhXtEIYGfe//OUvs8/uvvvu2ZYreoCo9MQTT6RPfOITWc8N0fJftAA4xxxzpJtvvjnNM888Ldg6Kc2YMSN95CMfSW+++WbWk0D0vBDz/Pvf/579H700RIsFl156abZu0XpAbLdoTSB6gjjnnHPSz372s6zFxb333jv985//nG0ecf+98847p7/+9a/Z/9EyYvR+Ea0cxn6JFg5//OMfZ+sfw1133XXZNqxlxx13zHo8iJ4yYloLLLBA+te//pW++93vpvvvvz9deOGF6aSTTkr77rtvaZyjjjoq64Hj05/+dLrllluy6Z9yyim9phvlolysX7SmuN1222XDR28NsS6PP/541mpj9Cbx6KOPZtvljjvuyMrFQMX+vv7667Np7bHHHmnixInpv//9b/rFL36RbbeHH344feUrX0lnnHHGbONGKw6bbbZZuu2227J9t9tuu6Wtt946LbvssmnWrFnp6quvTj/5yU+yMhufR7mN6ediPrFdogwsssgiWe8oH/jAB9JCCy2UZs6cmc07evSIFjcrDeQYAQAAgKESPZdGTOPGG29Mp59+ejrssMNqDhs9Nea9UsT9bjPvxStjMxHfeP7557OWJGO6EQeKcaKXiyeffDKLD8Qw0WNGpYijRFwr5hs9Q0Tvk6uttloWx4jeI2I9/vCHP6SLL7446zU0YjnlIn715z//OXsfcbPoqXP55ZfPesmIZbrrrruyOFH0gFG5DXbdddes94nozeLzn/982njjjbPYQsQYImYSsY6IoQAAAACtEXUVImYQ9+LRa2Q87486DnFfH7GFqCcT9+gRW4jPfvjDH7ZsV0R9l7z+wNprr53VcVhxxRWzOgnRg2XEH8rrcdQjXgIAQ6DNCRwAtLGHijxz/cknn5xt/Oh5YcSIEdkwX/ziF2f7fqmllsq+23nnnesux/PPP1+3R4W+lC/r4osv3vP444/XHLbZPVTEK3rvePjhh2cb5oQTTigNs/DCC/esuOKKPc8888xsw33jG98oDRetCVQ68cQTs+/mnHPOnr/97W9VlzdadXzve9+bDbf++uvX3Z4xnejdodp+eNe73pUN8773vW9ALSaUe/DBB+t+f+mll/aMHDkym95vfvObQfVQEa/vfe97sw3zzjvv9HzoQx/Kvh81alTV7X/QQQdl30+YMKHnlltuqbocjz32WM9iiy2WDbfbbrv1+u7kk0+u2QNFuRkzZmSvZh0jAAAA0O4eKsJxxx1XGu/mm2+uOf111lknG2allVZq+r14+TLGK3oErdbzZ/SoMddcc2XDbLfddrN9/+abb5Z6tthyyy17XnvttarLksdm4nXJJZf0+i5vOTLWd9asWQ3f20dvm430QBHTfOmll2p+DwAAAAw8BjJ58uTs8+hlM3qqqFYXY5VVVsmGifoN1eIPzeih4qKLLurVS2a1GMMRRxzRq45EX3VZxEsAoL1GDkUSBwDtc/zxx1ftESJa3YtWCUOeJV9u2rRp2d/oKaKe6CGhWaJ1gGjhv52iZ4doebDSXnvtVep14dlnn03HHXdcWnjhhWcbLlogzFVux7j3zls4iB4lttxyy6rLMP/886djjz221LLiQw89VHN5o6XFjTbaqOp+iJ4W8l5BKltO7K9oKaGeaDEyWnYI1Xpv6I8111wzHXTQQbN9Hj07fPWrXy31mHHDDTf0+v7VV1/NWpLI92NMp5poBTN6wQjR6kP0PFJZzmMfrLrqqjWXcezYsdlrqI8RAAAAGIyPfexjWa8S4Y9//GPVYR555JGsF4tqvVM04168UkynsufUvEeN6M0yRG+rlc4888z02GOPZfGb3/3ud1mvp9V85jOfyVqGDNEiZLV7+/XWWy+NGjWq4Xv7fLywwQYb1Bwvpjl+/Pia3wMAAAADc9NNN6Wbb765dO//oQ99aLZhoh7AiSeemL1/55130v/8z/+0ZHPn0x0zZkw66aSTqsYYomfOenUSKomXAEB7SagAGMYmTJiQttlmm5rf5w+9//3vf8/23WKLLZb9/dOf/pR1J9hqo0ePTh/96EdTO0WF/V122aXqd1F5Pk8qiJvsLbbYoupwyy67bJp33nmrbsf77rsvq4QQdt5557rLUv7wvTJxoFxlRYZq+zMSOaLbymaKpJJI9LjnnntKrzzB5M477xzUtHfbbbdsX1RTXjGjcvteddVVpcSRRrfvrFmz0q233jpbOX/hhRfS+eef36/lbvcxAgAAAIO1yCKLpM0337x0PxuVCSqdfvrpve7Zm30vXi7iAZXzqBYXmD59enrxxRd7fXfBBRdkfzfccMOqjWBUW5bKmEt+b3/hhRem5557ru40qo0XTjnllIbHAwAAAJrjsssuK73fe++9aw63/vrrp/e85z2zjdMsb7/9drryyiuz95HUsfjii1cdbuTIkWnPPfdsaJriJQDQfhIqAIaxSAiIm7K+Wtd75ZVXZvsuv5G7/vrrs6SB/fffP5177rlZxfpWLWveI0S7LLTQQnV7D4iElLxFxFoV/suHq9yOt9xyS+n9uuuum02j1mueeeap2sphpZVXXrnmd+XrUm2f9lf0lhEtVy644IJZhYuVVlopTZo0qfSKlhVCfyocNHOdyrdvVGSot33LW3oo377Ry0a+/z7ykY+kTTbZJP30pz/NKnpE4KOedh8jAAAA0Ax5Yw1Tp05N//u//1szoSJ6No2YSLPvxStjMxF3GExc4B//+Efd5YjXj370o6rLkd/bP/zww9m6Ro+lZ5xxRnryySdTPdHz63LLLZe9//KXv5z1gHH00UdnsZQ333yz7rgAAADA4EUjkHnjnauvvnrdYSPGEaIRyWbft0cjm3kDjJMnT647bN6DZl/ESwCg/SRUAAxjc889d93v82SLaq0Rfuc738keIsdD52eeeSb94he/SDvuuGNWsT4eiB922GHpv//9b9OWNXqB6NTt0+hwlRXwY7sNRL3eDuotS3nyTF/JAH05/PDDs8oBZ511VtYKZD0zZ84c1LwGuk7N2L5RaSNatFxiiSWynj2uuOKK9NWvfjWttdZaWaWNKPMXXXRR1em0+xgBAACAZthhhx1K9+J//OMfe3132223pQceeKBmL5nNjnU0GnNpVlygMoYR9/UHHXRQGjVqVNbzRvQ2ET1mLLXUUlmCxde+9rWqPbvOOeecWa8WeQuXN998czadiKVEww1bbrlllpgy2PgMAAAAUF1ejyGe68d9fT2LLrpo9jfqBLzwwgtN3aTl9SmirkA973rXuxqapngJALRf/asJAAorHgyffPLJ2YPjaJkvWiyMlv8iW//ee+/NXj/5yU/SH/7wh7T99tsPen5zzDFHGm7KH5rHQ/ZlllmmofH6uslutcsvvzwdccQR2ftobfHrX/96ViFg6aWXTuPGjSsFIw499ND03e9+tyO2b1T4iDLbiCWXXLLX/1OmTMlaojznnHPSxRdfnK6++uqsJcqXX34563EiXltssUX6y1/+0itw0e5jBAAAAJohesmM+9S4l4173V/+8pelXkPz3ikiThO9VrbqXrwZ8mXZaqut0jHHHDPg6Rx11FHps5/9bJZcEjGRf/7zn1kCSLQwGff1xx9/fDruuOPS5z73uV7jrbLKKunuu+/OYj7xinhCxBciaSN6zYhXjB+xhqGO9QAAAMBwFQ0gdopOWBbxEgAYGAkVANQVD4ej0ny8Xn/99XTttddmD9d/97vfpVdffTV9/OMfzx4wL7bYYi3fkuWtElbrVSP32muvpU4QvR/konXC6LWgG5x00kmlXkOiEsHCCy9cdbi+eq5o5/aNZRxM5YyoOBItb+atbz766KPpr3/9a1Zp4sEHH8wqQRx88MHppz/9aUcfIwAAANCIuP+NhIpoTCB6Ztx5552zWMuZZ56Zfb/55ptXTQJo5r34YMWyPP3001nDBoONuUycODHrYSJes2bNynqciF47f/3rX2f3+vvtt19aZ5110vvf//5e40XiSfT4Ea8wderU9Pe//z3rxfLWW2/NXvvuu2/WWAMAAADQPNEzRXj++efTW2+9VbeXimnTppUSHqIeRLn4LHquqFcHpV49lPLp/fe//607jb6+bwbxEgAYmP+rmQoADVQ632yzzdJvf/vbdOyxx2afRat78eC9HVn38847b+l9vW4YowJ8Jyh/yH7dddelodbofomeFcLGG29cM5kiRG8Mw3X7Lrvssmn//ffPKlDklUOiIkWzjhEAAAAYStET40ILLdSrV4qrrroqPfXUU9n7vMGBTo515MuS9xbZLNHrxnrrrZd+9rOflbZNVKw4++yz+xw3GlP49Kc/nW644Ya0xhprZJ9FTCBiAwAAAEDz5I0rREzgjjvuqDvsTTfdlP1dccUV0+jRo6vWQ6lXByXiAtErZTXLL798Gjt2bPY+6hfU09f3zSBeAgADI6ECgAHZdNNNS++fe+652SqV5954442mVnJvpDJ/tLDYCeLBeV4Z/8QTT8xaNBxK+X7pa59E6w199fRx++23pxtvvDENpUhcmHvuubP3xx13XBbEaLbx48enyZMnVy3ngzlGAAAAYChFq4277LJL9v7iiy9OL774Yil5IO618x4XhuJevFHbbbdd9vell15Kp5xySkvmMdB7+0jK2HDDDUtxlti+AAAAQPNEjCIXDR7WEo0e3HfffbONU1kPpV4dlL/97W817+0jxrLRRhtl7y+55JKs98pqogeM0047LbWaeAkADIyECgBmM3369HThhRfWfSgeN4LVEh3y1vhyjzzySFNbGMi7bTzhhBOqJgZELwJ//vOfUycYOXJkOuigg7L3//73v9Mee+xRN5nh5ZdfztarVfL9EstSb99Gqwzh2muvrdrKwrPPPps++clPpqE2YcKErBeJcP3116evfOUrdbvhjO4zf/Ob3/T67B//+EfNgEZeKSNvraK8nA/2GAEAAIChlvdCEbGKSKY455xzsv+33377NM8887TsXrxZ9txzz7TUUktl77/+9a+nq6++uu7wEeeIXjjK/eEPfyg1LNGfe/trrrmmZsuUeeuY+bxiW9brARQAAADov7XXXjuttdZa2fuTTjopXX755VWf9++7776l+huf//znZxsmbxAhGpSs1hvntGnT0gEHHFB3WfLpRowl5vf222/PNszRRx+d7r777tRq4iUAMDCjBjgeAMNYVOyPrPVlllkm7bjjjmmdddZJEydOzDLro/J5VCTPH4YvscQS6cMf/nCv8ddbb73S+3iwfvDBB2eV+UeMGJF9FtONafVXjBM3n3Gjec8996RNNtkkHXjggWnppZfOHtBHIsWpp56azT8e6neCz33uc+nSSy9N5557brZ8t912W7YOcXM/33zzZdv6gQceSFdeeWW64IILsl4k8ooJzRbbJVpsfOaZZ9JXv/rV9IlPfCJbhrzlxNjHIRI/Yh9HDxURPPjWt76V1lxzzey72K4/+clPsqDBuuuum7XmMJSOPPLIrIJCBDd+/vOfZ9vxM5/5TFp99dXTuHHjsm4577333nTZZZdlrUZMmjQp7bPPPr16M9l2223T5ptvnj70oQ+VknZeeeWVrIxFgstTTz1V2pfNOkYAAABgqEWcIJIEHn300Sx2k7e0mCdatOpevFnGjBmTNawRrUC++uqrWZxo1113zXrXiPWKRI+4R7/11luzuExUWjj++ONLFSXC/8fe/cDaXdb3A39oi9A25U+hGxD+qciGZq7dBmOrJcypiwUB+TfGWGTTYTJFR5aRDJE0OphpYphjm1tVmA4UScFioCa6YUfFEXVrhWxG6DIEAmSt5V/6j2L55fNNzv2de+45597vvefcc879vF7JTc+55/n+e+45p8/zfL/v5xsTRkQYI/r2UR9vfOMbq7GZGGeK8ZzPfvazY6GI5nqJizQ++clPllWrVpVzzjmnvPWtb61CE3v27CmPPfZY+Yd/+IdqDCi8//3vn9Y4GAAAANBdBCniXH1MbLB69eoq+BDn/2N8YsuWLeVTn/pUNeFkiP5/XA/Q6qqrrip///d/X024EMvecMMN5W1ve1u1zghYxPUR+/fvryamfPzxx9vuRywXP3GdQPysXLmyulYmlonrM+I6lq9+9atVAKTbnTB6wXgJAEyPUXwAOnriiSeqzmEnEZK49957J8xaeMopp5RLL720OqkdM/k1z+YX4kR9XIg+Hddff3359re/XR5++OHq4v44Sd4sTqLHRfDtOsKDECGS6Bh/9KMfrU6mxx07IgTSyc/93M/1bV/iooIIo8SAwV//9V9XPw0RBoi/d7j44ovLH/7hH1bhi2eeeaZ85CMfGbee+fPnl5tvvrm6QGLQgYoYDIgLHK688spyzz33lB/+8IddAymHHXbYhN/F4MfGjRurn04iTNFaDzP5jAAAAMAwuPzyy8uNN944FqY4+uijy+/8zu/0vS/eK2eeeWYV6IhxqKeeeqrccccd1U+dfYnwRAQnGuGJVjEZxZ133jl2N4yGCGxEsKT1rhfN4m4fMRYDAAAA9F5M7hABhksuuaSaFPHTn/509dPqQx/6UMf++Vve8paydu3aalLKuAYighDNYkLGDRs2lI9//OMdAxUhxiPe/e53VyGMmIQirs9otmLFivKP//iPY5NZ9pPxEgCoT6ACgAni4vrvfe971QXmEVr4yU9+Up1cjtn+jjjiiPLmN7+5StdHUr/TSfHbb7+9StevX7++/PjHP65m/I8TzTO1aNGi8sADD1QX9MfJ7G3btlV3V/iFX/iF6taFceF7nEAfJrF/MaNB3OYxZkiIE/1PPvlkVZ9xoX3Mmhid5uhc9/NOBrGt+HvGQEGEXOLvunv37rZlb7311mpmx3Xr1pWtW7dWsy8cc8wx5ayzzqoukog7bKxZs6YMgyVLlpS77767fOc73ylf/OIXy+bNm6sgSMwKGe/PmF0y9jdmjIy7UDSL91HcnSLeU4888kg1c+X27dur0EhcKBF34YhZNGMGil5/RgAAAGDQ4q4LEahoiGDCVO6mMJO+eD8uEogLGmK2x7iIImag3LFjR5k3b15114jTTjutuivFRRddVI0fNYu7U95///3VccQkGNG3j3BJHN8v/uIvVuGSGM/5+Z//+XHLxayWcVeKuAtHbC+OPWacDDF+EscedwCN4wcAAAD6J8Yd4rqRmFAyzt/HBJP79u2r+vJxZ8m4hqT1fH+rCFHEOf64fiCuA4jrKI477rjqrhcxYeaJJ5446X7EWEJcCxITbX7pS18qP/rRj6oJOGOM5Hd/93fLn/7pn5bnnnuuzBbjJQBQz0GvvfbaazWXAQAAAAAAAAAAAAAAGGnzBr0DAAAAAAAAAAAAAAAAs02gAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASEegAgAAAAAAAAAAAAAASGfBbG9w79695dFHH7sV/cQAAQAASURBVK0eL1u2rCxYMOu7AAAAwJB79dVXy/bt26vHv/RLv1QOPfTQQe8S9IRxEQAAAKbC2AhzkXERAAAAhnFcZNbTDBGmOOOMM2Z7swAAAIyo733ve+X0008f9G5ATxgXAQAAoC5jI8wVxkUAAAAYxnGReX1dOwAAAAAAAAAAAAAAwBCa9TtULFu2bFxi5Nhjj53tXQAAAGDIPfvss2N3N2zuR8KoMy4CAADAVBgbYS4yLgIAAMAwjovMeqBiwYL/v8kIUxx//PGzvQsAAACMkOZ+JIw64yIAAADMpC8Jo8y4CAAAAMM4LjKv71sAAAAAAAAAAAAAAAAYMgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgIVAAAAAAAAAAAAAABAOgsGvQP0zlVXXVV27typSmEali5dWtatW6fuAAAAAGNy9IwxJwAAAAAAgOEmUDGHRJhix44dg94NAAAAAEjDmBwAAAAAMBPXXXdd2bVrV1m8eHG56aabVCYAzDKBijnotXJQee3ghSW7g/bviZpQH0zpfQIAAAAw18fkjJfNfl0DAAAAwGQefvjhcuDAgTJv3jyVBQADIFAxB8WJ213LLyvZLd56Zzlo/271wZTeJwAAAABzfUzOeNns1zUAAAAAAADDTaQRAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIR6ACAAAAAAAAAAAAAABIZ8Ggd2BYXXXVVWXnzp1l6dKlZd26dYPeHQCAtrRZAIBB0Q4BALQLAAAAYOYOHDgw7l8AYHYJVHQQYYodO3bM7l8DAKAmbRYAYFC0QwAA7QIAAAAAAEbdvEHvAAAAAAAAAAAAAAAAwGwTqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANJZMOgdAACgP7Zv314ee+yx8tJLL5XDDjusnHrqqWXZsmUDq+5du3ZV+7Rnz56ycOHCal8WL148NOvv9/4N2lw/vuzHW5f6AXxHAACj0GfZuXPnWL9u6dKlbft2zf2bEP++8MIL1eNjjz22nHjiiXO2P9jat4vjjN/1ui9cpw9Zt7+ZsX86iGOu85nq9XaffPLJ8sMf/rA88cQT5aCDDionn3xyOfPMM8tJJ500sDoatnFTYLisWbOmPPTQQ2X//v3l4IMPLitXrqx+BwAAMBfcfvvt5b777isvv/xyWbJkSTn33HPLFVdcUbITqAAAmEMOHDhQ1q9fX+66666yY8eOCa8fffTR5dJLLy0XX3xxmTev/zcre+2118rWrVvL1772tfKd73yn2r+G2P6qVavKBRdcUJYvX16dUJ3t9fd7/wZtrh9f9uOtS/0AviMAgFHtszREX67RtwsbNmzoWLbZL//yL5f3ve99ZcWKFSPfH5xKPfWiL1ynDxnq9Mcz9k8HccyNbd5zzz3VNuN5q35sO7azZcuWctttt5VHH320bZnPfvazZcGCBWX16tXlox/9aJk/f37f62jYxk2B4RKBswsvvHDC7yNUsWnTpnL22WdXz+M7NQJpAAAAoyQmr4hxlejjtP7+85//fPUTgfIYb53rk510ctBr7UbP+ujpp58uJ5xwQvX4qaeeKscff3wZRjFYFoNpMXgWg2ujoLHPBw5eVHYtv6xkt3jrnWXe/t3qgym9T0bpsw7Qqc3ywQ9+sKxdu3ZC47edaARfe+215Z3vfGffKjRmebvpppuq2ecmEzPTXXfdddVscLO1/n7v36DN9ePLfrwZ6mdU+o4wF97b0/2OGMWxE8g+Jme8bPbr2nckWcy0XVCnPTITxx13XDXD9KD7O9M1k3qq09ers52o0zjV+Oyzz05pH37/93+/3HHHHSPVPx3FPvl03iu92HZsNz5jzzzzTK3lzjvvvPLII4/0rY6+9a1vDdW46Sj3H2Euvq/f/va3TxrObBahqwceeKCv+wRAPo3wXogwHwD0yvnnn19efPHFKZc//PDDy7333puu/2h6DQCAOWD37t3lxhtvHHdSMGZqO/bYY8sb3vCG6t/mmduiXJT/8pe/3Jf9+cEPflA+8pGPjDsJeuSRR5Z3vetd5b3vfW/1bzxviHJRPpabjfX3e/8Gba4fX/bjrUv9AL4jAIBR67M0HHLIIdWYRvzbC3GR94c//OGR7A92q6eGbrP2T7UvXLcPGXXaHKaYrD8e41GZ+u+D6JNP9zM1023HcvH56hSm6Pb+/PrXv963Oorxz2EaNwWG7+LVOmGKEOWbL3oFAAAYVu94xztqhSlClI/lslkw6B0AAKA3gYqGOCH6nve8p/zRH/1RWbRo0bgyX/jCF8p9991X9u3bV/1u3bp1ZdmyZT2dcS1morv++uvL3r17q+dvetObyuWXX17e9ra3VTO8NZ+c3Lx5c/nKV75SHn/88ap8LPc3f/M3XWeYm+n6/+zP/qx8+tOf7tv+DVq/63/YZDveutQP0M/viEMPPVQFAwA97bM0nHLKKdWdDBrtkmiP3HXXXdWt5zvdeP2YY44pH/jAB8pv/uZvlocffnis7RLiYunGcq+88kr52Mc+Vm655ZaR6Q+21lPMzPbcc8+NXSDeaMf9+q//+oRjj/qLuolZ3CbrC9dpH7b+PaKO//iP/7hccsklbduSt912W7UPDXEMMXY1l/vvg+iT1/lMxTYjNLBt27axctPddmw3Plfx+Wp1xhlnVK/F7Iax3Zht93Of+1z5v//7vwllly5dWq6++uqe1VHcmSLGP4dl3BQYLnFninbiLjWrV68ee75x48bqLjftlnenCgAAYJjvTPHqq69O+P3NN99cVqxYMfZ8y5Yt5ZprrhlXJpaL5YfhThWzxR0qAABGWOvMSXHScf369dVscM0nBUM8jxOS8XqUa4gTAXVnYOokTqLfdNNNYydt4+Tn3/7t35bf+q3fGncSNMTzOOEQr69cubL6XSz3V3/1Vx0vjujF+uN4+7V/g9bv+h822Y63LvUD9Ps74uWXX1bJAEDP+iwN0S75u7/7u3HtkgULFlQXRnfqv8WYxz/90z9VM6fF49a2Syy3cOHCsfJxwfSo9AfbtdsivNAIUzS349ode5SbP39+FTTp1heu0z5s9/eIx/G7eK1ZLBvrmDdv/CnJeB6ze8/V/vsg+uR1PlONbcbvG9tsqLvtxnYbQYTm47r77rursbgIUzR+FwGFf/7nfy6/8Ru/MWFdO3fuLGeddVZP6ijGO5svgB70uCkwXOL7pvXzHcHACH01hylCPI/fx+vNYvlYDwAAwLDZtWvXhDtTfOITn6j6Ns1hihDPN23aVL3eLJaP9WQhUAEAMMKaT5DGDGtf/OIXy5IlS7ouE69HuSjfOLEeJzd7YevWreWJJ54Ym3Xv4x//+Nh2OonXb7jhhqp8+N///d9qPf1af/Psjb3ev0Hrd/0Pm2zHW5f6Afr9HfGzn/1MJQMAPWmPNHRqlzSXPe644yasK2aX/9GPftS17bJnz55xy45Kf7C13XbeeeeVJ598smt9tR57LH/BBRd07QvXaR82l33jG99Y3f2g03ob5X/yk5+M7VuI593qf9T774Pok9f5THXaZkOdbbfbboR+7rzzznLUUUd13O573/vetq/F3WN6UUcRjmiMAw7DuCkwXC688MJxzyMsEXfy6SZebw1VtK4HAABgGMRYYLMIS8QkFt2cddZZE0IVreuZywQqAABGWFwM0HDuuedOelKwIco1z7J011139WR/NmzYMPb4937v9yY9UdwQ5S677LKx551uGder9fdr/wat3/U/bLIdb13qB5iN7wgAgF60RyZrlzSXbcx036pd36617dK67Cj0B1vbbffff/+4590ulG8+9o0bN3btC9dpHzaXjYtLo3yn9baWP+ecc7qW7XYMo/D3GmSfvM5nqts262673XZPP/30jmGKhub3crNvfOMbPamj5vHOYRg3BYbbZGGKuuUAAAAGqTHJRMNkYYpO5VrXM5f1PFDx9NNPd/159tlne71JAICUtm/fPu6W9u9///trLR8zKcVscY11xc9MxG3eNm/eXD0+8sgjy6pVq2otH43yWC48+OCDE24bN9P1/+qv/uq457/yK7/S0/0btH7X/7DJdrx1qR8YnFEYF+nld0Q4cOBAz/cRAJjbmtsjDZ3aJc1ljzjiiAl3omjo1Ldrbrv8+Mc/HheqGPb+YGu7LcYy6rTjWvu+MTbSri9cp33Yrmy3PnZr+Q984AO1+uOj2H8fRJ+8zmdqsm02TGXb7bYbPvaxj015ucb4ZMO+ffvG7mgylf1tt58xzrljx46x9Q963BQyGYVxkTVr1ox7fu2119ZavrV86/oAAAAG6fbbbx/3/Oabb661/M0t5VvXN1ct6PUKTzjhhDKX7Ny5s1x88cVlVPYVmPufdYDmk4sN8+bNK4sWLapVOVH+mGOOGTuBsW3btrJs2bJpV3CcWGxcUBmz0B188MG1lo/ysdw3v/nNaj1x0nPx4sU9W/8LL7ww7vmLL75YXYjRq/0btH7X/7DJdrx1qR8YnFEYF+nld0R4/vnn9adIzZgck70/jDmRQd3vwub2SEOndklz2Te/+c3lu9/9btt1durbtfb/3vKWt4ytY9j7g63tthjbqNOOaz32GAtp1xeu0z7sVLZTH7u1fIxH1emPj2L/fRB98jqfqcm22TCVbbfb7sKFCzveSabdcs3jkw1bt24tJ5100pT2t91+PvbYY2OPY/2DHjeFTEZhXOShhx4a97z5rjRTEeXXrl3bcX0AAACDdN999417vmLFilrLr2gpH3e+veKKK8pc1/NAxVzTGIQD5jafdWDUtc7kNlWHHnpox8BBXXv27Bl7PN0T280nN3fv3t3T9Tcv3279M92/Qet3/Q+bbMdbl/oBZvM7Iu6YZewEoD1jTjB5e2Sydklz2de97nVdq7RT36657dJ6gfkw9wdb223Tace19n3b9YXrrLdT2U597Hbl6/bHR63/Pog+eZ3P1FS2OdVtt9vuVEIczctFAKPVVPoX3eropZde6rr+2R43BYbL/v37h3p9AAAAM/Hyyy/3tAJffPHFkkHPAxVPPfVU19djJo8zzjijjIqY7Xnp0qVlVGaAap0FBph7n3WA5jtUNBrBcSHjdOzdu3fscZ27NbTTfHJy165d01pH88nP1pO4M11/68nTujPTTbZ/g9bv+h822Y63LvUDgzMK4yK9/o6IYOdRRx3Vk32DUWRMjm6MOZFF3e/Cdhc4d2qXNJd95ZVXuq63U9+uue3SetHjMPcHW9tt02nHtfZ92/WF66y3U9lOfex25ev2x0et/z6IPnmdz9RUtjnVbbfb7lQuLG5erl0o4+ijj55RHR122GFd1z/b46aQySiMi0Twq5chiLp3IgIAAOinJUuWTHtMqp3J7kQ6V/Q8UHH88ceXuSQusF6/fn0ZBXHreDNCwtz/rAM0bN++vVxyySXV47hooXWWwclE+eeee27s+SmnnDKjyo3b3sfFQrEv3//+96sTEnVOJET5WC7Mnz9/wonTma6/9cRn3Qb/ZPs3aP2u/2GT7XjrUj8wOKMwLtLL74hw5JFH6k+RmjE5ujHmRBZ1vwub2yMNndolzWX/+7//u+M6O/XtWvt///Vf/zXpMsPabvuTP/mTWu241mOPsZB2feE67cN2ZUOnPnZr+RiPqtMfH8X++yD65HU+U5Nts2Eq22633QgwxMyF3cbempdrHp9sWL58+ZT3t91+nnrqqWOPY/2DHjeFTEZhXGTlypVl06ZNY883btxYVq9ePeXlo3zr+gAAAIbFueeeWz7/+c+PPd+yZUtZsWLFlJffsmXLuOd1+kujbN6gdwAAgOmJE48xI3TDF77whVrLf+5znxu7s0WsK35mYvHixWXVqlXV4+eff75s3ry51vIPPvhgtVyI9cT6ern+//iP/xj3/D//8z97un+D1u/6HzbZjrcu9QPM1ndEiAuhAACm2x5p6NQuaS77wgsvlNNOO63tOjv17ZrbLnGRdfMt6oe9P9jabouxjDrtuNa+b4yNtOsL12kftivbrY/dWj5O5tbpj49i/30QffI6n6nJttkwlW2322648cYbp7xc6513DznkkHLSSSdNeX/b7WeMczZCFrH+QY+bAsNlzZo1456vXbu21vKt5VvXBwAAMEhXXHHFuOfXXHNNreWvaSnfur65yhlvAIARtnDhwrHH9913X3n55ZentNxLL700bhalSy+9tCf7c8EFF4w9/spXvlL27ds3peWi3J133jn2/Pzzz+/r+vu1f4PW7/ofNtmOty71A8zGdwQAQC/aI5O1S5rLNgcimrXr27W2XVqXHYX+YGu77ZxzzplSO6712GMmuW594Trtw+ayd9xxR1W+03pby99///1dy3Y7hlH4ew2yT17nM9Vtm3W33W67cfeIn/70p12X6zS74bvf/e6e1FHzeOcwjJsCwy3+P5uKW2+9te/7AgAAMFOtdyyNySmm4l//9V+7rmcuE6gAABhhhx566LiTie973/smPTkYr1955ZVjJ1Oj8XvRRRf1ZH+WL19eTj755Orx448/Xj7xiU9M6aRtlIvy4fWvf321nn6tv9HY78f+DVq/63/YZDveutQP0O/viPnz56tkAKAn7ZGGTu2S5rLPPPNM2wknWu9c0dp2iTLNy45Kf7C13XbvvfeWE088sWt9tR57LL9hw4aufeE67cPmsv/zP/9Ttm3b1nG9jfKNOw401hnPu9X/qPffB9Enr/OZ6rTNhjrbbrfduLvDZZdd1jFUEduN92Q7V199dU/q6OKLLx4bBxyGcVNguNxzzz0T7kwzWagiXv/Sl77UdT0AAADDoHXc5YYbbpg0VPHggw+WT37yk13XM5cJVAAAjLB588Y353bu3FmdLLzlllvK7t27x70Wzz/zmc9Ur0e5hmuvvXbCeqbroIMOKtddd91Y0OOhhx4qH/7wh8sDDzxQ9u/fP65sPI9kc7we5UIs9xd/8RfVevq1/jjefu3foPW7/odNtuOtS/0A/f6OWLJkiUoGAHrWZ2mI9saHPvShce2SV199tbzjHe/o2H/bs2dPdRH0t771rWr8o7XtEstFmYZDDjlkZPqD7dptcbF640Lx5nZcu2OPcj/72c/Kd7/73a594Trtw3Z/j3gcv4vXmsWysY4DBw6M+308//a3vz1n+++D6JPX+Uw1thm/b2yzoe62G9uNz1XrcUUY4c///M/H7g4Tv/vmN79Z/uAP/qD8+7//+4R1LV26tPzbv/1bT+ooxjtjHHBYxk2B4RLfN62f7whVnH322ePuUhPiefw+Xm8Wy8d6AAAAhs3ixYvL4YcfPiFUEX2bLVu2jPt9PD/77LOr15vF8rGeLA56LUZdZ9HTTz9dTjjhhOrxU089VY4//vgyjGLAbMeOHeXoo48u69evL6Ogsc8HDl5Udi2/rGS3eOudZd7+3eqDKb1PRumzDtDu//9FixZNOBEYJxOPOeaY6uTi3r17y3PPPVedcG921VVXlcsvv7znlfqDH/ygXH/99dV2G4488shy+umnj+3r97///fL888+PvR77+Zd/+Zfl137t1/q+/n7v36DN9ePLfrxZ6mdU+o4w6u/tmXxHfOpTnxq5sRPIPiZnvGz269p3JFnM5JxKu/ZIQ1ygHRcqxgXOk83uP1Wve93ryk033TRy/cFu9dQ8FtTttN9U+nrTaR82q1N2VPqno9Ynn8lnaibbju1GsOKVV16Z1vuzWS/r6Mtf/nJZt27d0IybjnL/Eebi+zouGpquTZs29XRfAMit+f8k/8cA0CvtJkCZigULFpR/+Zd/SdV/FKjoQKBi9DlBTJ33iZPbwKhqbrN88IMfLGvXrp0wg1s7MTthzLD2zne+s2/79thjj1UXKDzxxBOTln39619fzSh36qmnztr6+71/gzbXjy/78Waon2E7uQpz+b093e+IURw7gX4QqKAdY05kM9N2QZ32yEwcd9xxZc2aNQPv70zXTOqpTl+vznaiTuNC9GeffXZK+xAXqN9xxx0j1T8dxT75dN4rvdh2bDc+Y88880yt5c4777zyyCOP9K2O4u41wzRuOsr9R5iL7+u3v/3tE+6k1E3cmSLu+gMAvSRQAUC/nH/++WN3D52Kww8/vNx7773p+o8L+rp2AABmTZzk++3f/u1y9913l69+9avVhQytli1bVi699NJy0UUX9f129XFS87bbbitbt24tGzZsKJs3bx53UmL+/Pll1apVVcN9+fLl1cxws7n+fu/foM3148t+vHWpH8B3BAAwyn2WhhjLaPTtol/XrWxDlHvrW99arrzyypHvD061nmbaF67bhwx1+uMxM16m/vsg+uTN2/za175WbbPd3SEan6kLLrigJ9uO7UZgJrZ76623lkcffbTrTIfnnntuufrqq6s6iP3rVx0N27gpMFwiHBF37rnwwgsnLXvPPfdUd/oBAAAYFRGO2LVrVzX+022yiYMPPrgal1m8eHHJSKACAGAOiZN9l1xySfWzffv2sm3btvLCCy+UI444opxyyinVicHZFCc3V6xYUf1E4zxOVu7evbssWrSomrVypo3wma6/3/s3aHP9+LIfb13qB/AdAQCMWp/lpz/9adm3b1855JBDylFHHTWhb9fa/wt79+4tzz//fPX42GOPLSeeeOKc6g9269vFTzzuRV+4bh+yTtmM/dNBHPN0PlO93O4tt9xSbffJJ58cd/eJk08+uZx55pnlpJNOmtU6GrZxU2C4REhi06ZN1eO4085DDz1UXWgUFxStXLmy+h0AAMCoinGVuINnuP3228vGjRuru1bE3ShWr15drrjiipKdQAUAwBwVJwGH6URgNM77eUJ8puvv9/4N2lw/vuzHW5f6AXxHAACj0GdpveC6W9mMZuvY62yn7j5l/PsN4pjrfKZ6vd3TTjut+hmmOhq2cVNguAhPAAAAc1mEJwQoJnK/UgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIB2BCgAAAAAAAAAAAAAAIJ0Fg96BYbV06dJx/wIADCNtFgBgULRDAADtAgAAAAAARp1ARQfr1q2b3b8EAMA0aLMAAIOiHQIAaBcAAADAzM2bN68cOHCg+hcAmH3+BwYAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAAAAAAAAAAAAANIRqAAAAID/x959QElWVQ3DPjMMOQ9BcmaQHIf4IohkJGeQJEkJgiKKIEEUUJCggORoICkZJOecc84gAww5wwz0v/b5VtXf01PVaaq7q/s8z1q1pqbr1q2qe2489+y9EwAAAAAAAAAApRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUJwhff0FaLxBo75Ikz5yfvGLNpaD5UFnthcAAACAEvrk9Jf1/rIGAAAAAACguQmoGIAGpZY0aNTnff01moblAQAAAIA+KP1lAAAAANCMll122fTZZ5+lSSedtK+/CgAUSUDFADJ06NC+/grQb9l+AAAAAH0K6HMCAAAAoLcdfvjhFjoA9CEBFQPIqaee2tdfAQAAAACKok8OAAAAAAAA+q/Bff0FAAAAAAAAAAAAAAAAepuACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDhDevsDR48eXX0+YsSI3v54AAAA+oHW14utryOhv9MvAgAAQGfoG2Eg0i8CAABAM/aL9HpAxciRI6vPl1566d7+eAAAAPqZuI6cY445+vprQEPoFwEAAKA715L6RhgI9IsAAADQjP0ig3t07gAAAAAAAAAAAAAAAE1oUEtLS0tvfuCXX36ZHn/88fx8uummS0OG9HqRDAovAVOpjHLfffelGWecsa+/EtRlfaW/sK7Sn1hf6S+sq/+vZGMlY93CCy+cJppoor5uFmgI/SL9g/1wGbTzwKeNBz5tPPBp4zJo54FPG3ePvhEGov7QL2Kf1dy0T3PTPs1L2zQ37dO8tE1z0z7NTfs0r/7SNqN7ecxIr1+dxg8aPnx4b38sjCV2ArPMMoslQ79gfaW/sK7Sn1hf6S9KXld7umQj9AX9Iv1PyfvhkmjngU8bD3zaeODTxmXQzgOfNu4afSMMNP2tX8Q+q7lpn+amfZqXtmlu2qd5aZvmpn2am/ZpXs3eNnP04piRwb32SQAAAAAAAAAAAAAAAE1CQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQa1tLS09PWXAAAAAAAAAAAAAAAA6E0qVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABf3Sq6++mvbZZ5/03e9+N0066aRp6NChafjw4emoo45Kn3/++TjN+9tvv01PPfVUOvvss9Nuu+2W5zvhhBOmQYMG5cctt9zSsN9BGXpyfY33X3zxxemnP/1pnufUU0+dxh9//DTNNNOk5ZZbLh1yyCHprbfeathvYWDryXX16aefTieccELabrvt0hJLLJFmmWWWNNFEE+XPmWuuudLmm2+eLrvsstTS0tKw38PA1ZPraj0x31hXK+cDc8wxR498DgNPT66vcb5aWSc7esS0AKX7+uuv0+mnn57WWGONNOOMM+Zr/ckmmyzNN998aYcddkh33XVXp+bz3//+N2244Yb5nDbmEf/G/+Pv9Ix33nknXXnllemggw5Ka621Vpp22mmrx7jtt9++y/NrRBuOHj06nXzyyWnFFVdM0003XZp44onT3HPPnXbdddf05JNPdvk7la4RbdzoPpKY35FHHpnnFedwcS4X53RxbhfnePRNOzf6mk07N38b33DDDfm988wzT94Op5xyyjRs2LC0ySabpJNOOil9+umn7b5fGzdvG7/yyivp17/+dVpyySXTVFNNlffZsb9dfvnl06GHHpo/qzO0cWM98MADefmvvvrq1XOlOGeO7S7Ome+4444uzc95F9AoH3/8cTr//PPz+fhKK62Uzw3ivGCCCSZI008/fVp55ZXz+ft7773XsM+0D2u+9mnUdV98n872rQ8EvdU+jb5nUcJ5Xm+0TZx3d7ZdOrqmLm3baU9cy7T+vY0aS3beeeflc/EZZpghj6eYffbZ049+9KN09913d3oeJWw7vdk+H330UfrnP/+Zr4cWXXTRvI3GsSf6hL///e+no48+On344Ycdzie2q3HZ/gaKRrZNHPc7u0/qzOe8++67ub9jkUUWSVNMMUV+xPP4WyPPMUton3hfV489cYyppbRtZ1yXV1c57rTRAv3M5Zdf3jLFFFPEiNuaj2HDhrU8//zz3Z7/2WefXXfe8bj55psb+nsY2HpyfX300UdbJptssnbX13jE559//vkN/20MLD29b9166607XFfjsdJKK7W8++67Df1tDCw9va7Ws88++4zxObPPPnvDP4OBp6fX17POOqtT+9Z4xLQAJXvllVdaFlxwwQ73l3vuuWfLt99+W3Me33zzTcuOO+7Y7vt32mmnPB2N1d4y32677To9n0a14ciRI1uGDx9edx4TTjhhy2mnndaAX16OcW3jRveRxDnavPPO2+58rrjiigb9+nI0altu1DWbdm7uNn7//fdb1l9//Q6364cffrjuPLRx87bxueee2zLxxBO3O7+hQ4e2XHfdde3ORxs31oorrtipPoZtt9225auvvmp3Xs67gEa7/vrrO7WPmnbaaVuuueaacfos+7DmbJ9GXvfF/cjOfN94DAS9tf008p5FKed5vdE2L7/8cqfbpfJYffXVa86rtG2nnrgOHTJkSEPHkn3++ecta6+9dt3lOXjw4JZDDjmkw/mUsu30VvtcffXVua+3o/V9hhlmaLnpppvanVf0VXVm2xnI4xAave0cfPDBnd4ndfQ599xzT27Heu+fccYZW+69996WgayR7RPv6+qxZ5dddqk5r9K2nc4urzgmjwvHndqGtA2wgGb28MMP5yzmX3zxRc6I85vf/CZHe8b/I2r7tNNOS88991xaZ511chadySefvMuf0To7ekSULrzwwmnUqFHp8ccfb/CvYaDr6fU1shVUMrCtsMIK6Yc//GFaaqmlcgaOkSNH5uwc8Rkx3dZbb50jZyNrGPT2uhqGDBmSlllmmbyuxn41MipExP4HH3yQnnnmmXTKKaekJ554It16661p3XXXzZnOBg9WSIveX1frfe5xxx2Xs4DEucEnn3yiaWi69fXaa69NM800U93XI6skQKnimj72t5WqAZFR6Be/+EWuTBHH9Tj3jCxSn332WTr++OPz/nS//fYbaz4HHHBAOuOMM/LzxRdfPP3qV7/KFQlefPHFnPEr9v1RASPOcw8//PBe/52lmG222XJGteuuu67L721EG37zzTe5msX999+f/7/RRhulnXfeOWd7u/fee9Mf/vCHnFE7KlXMPPPMrsN7qY0b2UcS+4XYZzz//PP5/9G+W2yxRa5CcvPNN6cjjjgizyfO9e6888602GKLdednFm9ctuVGXLNp5+Zu48j+uNpqq6UHH3ww/z/2u1GRIvbZ4403Xnr99ddzH9J//vOfuvPQxs3bxrHvjGoWUS08+v+iou3666+fz8Fee+21dM4556Qrrrgivf/++/nv0WcYFWja0saN9+abb+Z/oy023XTTXIkr2jnOfyIjbpwz/+9//0vnnntuPsf+17/+VXdezruAnjDrrLPmPtaobhTPo/pkHE/eeOON9O9//zuf90dm4fXWWy/dd999OYt0d9iHNWf79MS98Xj/WWedlUrQW9tPI+5ZlHae19NtE/1TnRnvFMu1cn4X5+jtKWnbaSvaZpdddsnVa6OKSGcr63Xkxz/+cbr66qvz81gf9tprr7wNRdtFP2X0X0Y2/lg/4vNrKW3b6Y32iaoEX331Vb52jX6KNddcM2+DUWUxttGoXHHBBRfk6khxXOrMco3r3OhDricq1AxEPbXtVHS0n5tzzjnrvhb9TDFOKc4nYmxT3D+K9gxRpfOYY45JI0aMyNNEX9VAvO/e6PaJCjmdOfbsscceuY+vM8ee0radqMi222671X09qg+NC8edOuoEWkBTZ8eJaLi77rprrNePPPLIahRWRCF2R0QT/vWvf225++67W7744ouxIhpVqKBZ1tc777yzZbPNNmt58skn605z6aWXtgwaNCh/xtxzz1030ypl641966hRo9p9ffTo0S0bbbRR9XMuu+yybn0OA1tvrKu11s0ll1wyz/PQQw+tRr8PlOh2+vf62jrbU2QYAqC2iy66qLq/XG655fLxva0HHnigZfzxx8/TTDXVVGOdvz777LPVzDxLLbVUztzS2meffZb/Xtn390TFrJIddNBBOXPaW2+9NVZmvc5mw25UG55xxhnVz95tt93Gej3eV6lQNc8883R4LURj2riRfSQHHnhg9bPjnK3WZ1XWpXHNAlWaRmzLjbpm087N3cbbbLNNfk9kgWyvjyi243r7WW3cvG28zjrrVN9z4okn1pzmF7/4RXWa3XffveY02rjxom0uuOCCmufLlSpdUW2z0ja33nprzemcdwE9od6+qbVLLrmkuo/acMMNu/U59mHN2z6NvO6rZNkv5Zqut7afRt2zKOk8r7fapjPfY6aZZsqfMfnkk4/Vb1bqtlPLsccem5fBd7/73Zbf/OY3DRlLduONN1bns+666461XsR5+GyzzVbtu46KjqVvO73VPlHxaNddd2159dVX604TYwwrn/P973+/7nSVPqtxrdLaX/XEttN6POe4qPRDxePCCy8c6/W4Th7XPswS26cjH3zwQbUCTNxLqae0bafRY55qcdypT0AF/UYEOlR2GHGyUq/85vzzz189ifz6668b8tkCKuhP62tbG2+8cfW7PPjggz3yGfRfzbSuRiBb5bv88pe/7JHPoP/qq3X16KOPzvObb775Wr766isBFTTV+iqgAqBzfv7zn1f3y5dffnnd6eKGZGW6xx57bIzXfvrTn1Zfi/PWjs5naw20p3G6M3izUW1YOX4PHTo0B2HUcsQRR7R7A4aONWKgfXf6SOKcbMopp8yvR1vHOVstcY5Xmc99993XsO9Xmka0c3eu2bRzc7fx7bffXn3PUUcd1a3P1cbN3cZTTz11nn6aaaapO82HH35Yne8SSywx1uvauO9EQE2lbfbcc8+a0zjvAvpSnBfGPmraaaft1vvtw5q7fRp1b9yg8J5pn0bcs3Ce1zNt05Frrrmm2nY77LBD3elK33ZiUP1kk02Wl8Ett9zSsLFka621Vp5HBDu8/vrrNac577zz2g2WsO30XPt0RiVRz+DBg3MATC2lDQrvjbZpREDFiBEjcrvFPNZYY42608VrlTaO9wwkfbXtnHzyydXP+d3vfld3utK2nd4IqHDcqW9wvcoV0GwuvfTS6vMddtih5jRRYmvbbbfNzz/88MNcsgxKX1+jHGBFlAGEZl1XJ5988urzL7/8UkPR5+vqq6++mg466KD8/OSTTx5wJQIpY98KQEpff/11dTHMNddcdRfJ3HPPXfM90X952WWX5eff/e5307LLLlvz/fH3+eabLz+P6f9fvyfNoFFt+Nxzz6Wnn346P99ss83SJJNMUnM+22+/ffX5JZdc0rDfQc/3kcQ52UcffVQtMR7nbLVo4+bQ3Ws27dzcTjjhhPzvlFNOmfbYY49uzUMbN7fKedacc85Zd5po/2mnnXaM6VvTxs17LHXeBfS1yr2m7txnsg9r7vbpLPfGm7t9OuI8r2/a5txzz60+j/4Qatt9993Tp59+mpfRSiut1JDF9Mknn6Qbb7wxP1911VXTLLPMUnO6jTbaKE0xxRR1+xttOz3TPp218sor53+//fbb9PLLL/fqZ/cHfdk2Hbn88stzu7V3X791f3BMG+8ZSPqqfSrHnkGDBlXHTdDzHHfaJ6CCfuOOO+7I/0466aRpySWXrDtd6x37nXfe2SvfDZp5ff3qq6+qz8cbb7we+Qz6r2ZaV88///zq8xjkBH29ru62227ps88+S9tss021EwT6274VgFQdIB9eeumluoukMiAsOm/nnXfe6t/jBsibb76Zn3fUmVx5/X//+1965ZVXLP4m0ag2rBzjO5rPDDPMkIYNG5afO8Y3l476SDrbxksttVQ1oEYb953uXrNp5+YVA+crAXCrrbZammiiifLzb775Jr3++ut5v9yZAUTauH+cm7U3yOTjjz9O77777hjTt6aNm/dY6rwL6EvPPvtseuSRR7p9n8k+rLnbp7PcG2/u9umI87zeb5sYWFlJFDbHHHOk733vew3/jIHgwgsvTFdeeWUaOnRo+vOf/9yw+d5///3VIPL2+qIiiUQlSUy8Z9SoUWO8Xvq201Pt01mOPc3bNh3p7LYzUO/r91X7xP24u+66Kz9fccUV8/GH3uG40z4BFfQblQyA88wzTxoyZEjd6VpfQFTeAyWvr7feemv1+fzzz98jn0H/1dfratwYvfvuu9OOO+6YDjvssPy3yD639dZbN+wzGBh6e12NAJ+rr746TT311Onoo4/u9nwoU1/sWyNjxkwzzZQ7VGM/Gp2qv/3tb/NgUIDSbbnlltXsXX/605/yoMy2Hn744XTVVVfl51tttVV1+vDUU09Vn3d001KfRHNqVBt2Zz4xADgGfNMcOuoj6WwbxzlenOsF/Y99Y1yu2bRz83r00UerARMLL7xwHlS/995752uc2WabLVc0iMoFEWxxyy231J2PNm5uP/nJT/K/7733Xq4uU8vvf//7saZvTRv3/2Np29eddwHd9fnnn6fnn38+HXPMMXmg2+jRo/Pf4xyiq+zDmrt9euLe+DPPPJOWWWaZNNVUU+Vg3sgMv/766+eMyW0HKw9EPdk+3b1n4Tyv59umrX//+9/580IkLIhkMx0pbduJSvN77bVXtX+5Uk2vEbpz7In1IdaP7sxnIPZp9WT7dPXYM/7441eXbz233XZbWmyxxXLlmQhuib6OzTffPAc2DbSq173ZNquvvnqafvrp83En/o3kK3/84x/TBx980O77KttO9DdFoqR6Zpxxxup9I9tO31RGKmnbCRdddFFaYIEF8m+N3xyJ4GJZRUWiceG40z4BFfQLcROlko2oXnmziriJFtmAKzetoeT1NW5CVgYFxU1IARU0w7oaFy7REROP6aabLi2//PLpzDPPzCe4cQEVJSqj8wX6al2Ni+pKh2RcZMd6Cs2+b43BRCNGjMgd1TEo5d57782BatFpd8opp2hAoGhxjvn3v/89dzpG5qDhw4fnztp77rkn3XDDDel3v/tdvjEZmcCWWGKJsQbmvvHGG9XnHe3bZ5111upzfRLNo1Ft2J35xHVO6/fRdzrTR1JpqzhH6+i6tNLGI0eOHCMLHT1vXK/ZtHPzan1D79tvv82ZM//yl7/kG/AVcbyO4/cqq6ySb8bXoo2b249//OO07bbb5ue777572nnnndMVV1yRHnjggXTxxRenDTfcsJoV8YADDkirrrrqWPPQxn0jtsvY71ZsttlmY03jvAvoDWeffXb1PlOcu0eFwH322Se9/fbb+fX99tsvJ0voKvuw5m6fnrg3Ht/pvvvuSx999FG+rovB/pdffnkerBYD9gbKgMm+aJ/u3rMo+Tyvr7ad1oNaK+fpHSlt2/nVr36V3nrrrbTCCivkRJGN1OhjT4nbTk+2T2fEceexxx7Lz9dYY40xkjXVq4gVx6tPP/00ffHFF7kaZ1QJiGvhyNQ/kJLl9WbbXH/99XmdjuNO/BtBLr/5zW/SXHPNVa2GWktl2+lo+2u97QyUez99te3EPZN//OMf+fnEE0+cNt100069r6Rtp9JPGsfT+K3xm1944YV8zI4+0fjNcQzuDsed9tVPlwpNJErMVUw22WQdTh8niJH9L3YmUOr6Ghc+O+20UzX7aiX7PzTbulrxs5/9LB144IF9kjGA5tbb6+q+++6bOwKXW265fFMfmnl9jU6gjTbaKK+vlU6cl156Kf3nP//JWYUiwCOyeUYH/C677NKtzwAYCNZbb7304IMP5mCJM844Y6yMN9/5zndyJuQ49ldKnndn314JlAv6JJpHo9rQutB/dbaPpNLGnT2Pa72uTDjhhA37vvTsNZt2bl7vv/9+9XkES8T1zJprrpkOPfTQtMgii+SKFXGtEwOJ4qZh/BuZNyMTamvauLmNN9546ZxzzknrrrtuOvzww9Ppp5+eH619//vfT/vvv3/NYIqgjfvGsccemwfOheiLWHLJJceaxnkX0JdiEO+pp56aEyl0h31Yc7dPI++NDx48OP3gBz9Ia6+9dlp00UXTNNNMk9v/oYceyoP9Y/BaDGKLc5I49kW1tIGuUe0zrvcsnOf1XNvU8tprr1Uz60cSxI4y65e47dx+++35eiUqO0SFvc5U8OjLY09pfVo93T6d6ceIRAGVa93ov6gnKifEfYqopLDQQgvligiRQOLuu+9OJ510Uh6kHwmhoipn/C1e7896q20igHKDDTZISy+9dK6MFAEVzz77bPrnP/+ZrrvuuryMN95445zIYa211hrr/d3ZdgbCvZ++3HbuuOOOfG4QIjAgqi+0p7RtJ+5Rxu+N4230e8a6WQkSiraKQNWoyhH9oRFIFJVxusJxp30CKugXKmW+KzvJjlRO9iJCC0pdX/fYY4+c1SvEYKG4QQXNsK6eddZZefBwRB3HSW6sp3GSe8IJJ+ST5jhpjwFt0BfrapQJjIopfdXpQv/Xm+trdDDEMb7tehqd6lHe8sorr8w3LqLj6Oc//3m+8G6vVCnAQBbZrCNzS2QiqlX6NwbmRkacKBEc+8vu7ttb33zSJ9E8GtWG1oX+q7N9JJU27sp5XLC9955GXLNp5+YV/UWt2yluhMZ1TQxKCFGNJAZfxc3TqC4V2fIj22Acu1uvC9q4+cVAqzg3e/zxx2u+HjfAIwg2skrPPPPMY72ujXtf3LiPIKYw/fTT5/7cWpx3Ab0hBs1FJavKufiLL76Ys9NGBfQtt9wyHXfccemHP/xhl+drH9bc7dPIe+NRFatWBvfIbrzbbrvlwO0IAI3+oqiOF9MPFD3ZPo24Z1HyeV5fbDvRH1rpK+1MdYrStp3oU47An1hGsc7GtWijNfrYU9K20xvt054I4Nt6663Tq6++mv//29/+Ni2++OJ1p48go1rbz8orr5yPYZtsskkOAIjr5aiqfcwxx6T+qrfaJvYzhxxyyFh/X2aZZfI+LQK9oh8p2iqCLmO/OtFEE43zttOft5tm2HaionxFZ449JW07ISpt1Pq90U+655575sCghx9+OPfTRN9MJC/uCsed9g3u4HVoCq0PZrFT70ilJFmUBYIS19cjjjiimtUrOihOPPHEhs2bgaOv1tUYpBYn5BEpHp0rcYIeJRAjk0V0pMU627rEGPTWuhrvq1w47rXXXjn7JTTzvjWyK7Q3gCw61g866KD8/PPPP8+DUQBKHZwZ2Y3jOikyRkUZ4+hYjX1wZLeOjtb/+7//yzfd48Zl287WruzbW5dI1yfRPBrVhtaF/qkrfSSVNu7KeVywvfeORl2zaefm1famdlSpqARTtBbH7RiIFeKY3nZQvjZu/iyIkbE4skNGsETcSH/rrbfyvjeyCsZ+OrLxnX/++TnD5JNPPjnWPLRx74o2iAGSo0ePzsv+oosuykEVtTjvAnpDDDCK+0zxiHP8LbbYIg/ajWC9SNwV2VrPPvvsLs/XPqy526eR98ZrDVKriCy/Ma/55psv/z8Gs8fAtoGiJ9unEfcsSj7P64ttpzKoNQYJR9BLZ75jSdtOVNR75plncqWNgw8+uEc+o9HHnpK2nd5on/ZEENE111xT3b8deOCB3d5+IkN/BFANHTo0/z+q0nSmLUtvm/aWadh1113TjjvumJ+/+eabuVpSW93ZdvrzdtPX204M5o8+hRAVRepVJi112+no90Zy4qj4ValKcfzxx3d5/o477RNQQb/QurRPZ8omVTJZdaYcEwy09TUibKMceojST1dfffUYJfugWdbVtidsUbkibpbGjdMY5Aa9va5G+eco/xgliCNyHfr7vjXEgLPKDYxK2WaA0kSGohi4F+JGbQzOjGulyDg0xRRT5KwuN998cy5FH4N099133/Too492a9/eOrO2Ponm0ag2tC70P13tI6m0cVfO44LtvXc06ppNOzev1vvZqEbRXmbHNdZYo/r8/vvvrzkf23LzicEHkV03glojG/E999yTfvSjH+UbwnEzeJZZZsmDUqIaTfQXxoCHyHLcljbuPS+//HJaffXV0wcffJADnCLQ5Xvf+17d6Z13AX1pm222SZtuummuYhXZaiOpQlfYhzV3+/TmvfGoiFcZgFlK33pPtU9X71k4z+u9tomM3zGgNkS1kI4GJpe27cSyiWCtyoDVnhpz0+hjTynXwb3VPvVEtcwYuB0iiWgM6K6VEKKrQWkRSFVpo0rVpf6mr9umVlBFRaOOO/11u2mG9rn88svThx9+mJ9HhZdx3W4G0rbTWXPNNVe+rxleeOGF3HfWFY477RvSwevQFKLjfJpppknvvfdeh1nLo1O3cgCLm2tQ0vp63nnn5RtOYfbZZ0/XX399mnbaacd5vgxMzbZvjXV1hRVWyOvtZZddlsu9VqJqKVtvrasxuDJEFHxkSaylMu/4N24gh8jIt8oqq3Tpsxi4mm3fGutnfJ93332332cCAuiOCJA488wz8/Nhw4bVHJBXudn3+9//Pme8jpuTke3t2GOPza/FwL6KjvbtERxcoU+ieTSqDdvOp73r7cp8YpBA6/fRe7rTRxJtde+99+ZztLix095ggkobx6DvSrl3elajrtm0c/Nqvd/taN/ZetqRI0eO8Zo2bl6RvbNybbrnnnvmoIpaFlxwwRxoERluH3zwwRzsuuiii1Zf18a9I27Kxz43/o1zmjivjszI7XHeBfS12E/FoMY4H4zjzlZbbdXp99qHNXf79Pa98QUWWKD6vJS+9Ua3T3fuWTjP6722icoXFdtuu21qlIGy7UTfcGQ5j4GrUVGl0sfQ2hNPPFF9ftNNN+XKe2Hdddft9CDltseepZZaqtv9liX1afVW+9Trn/rjH/+Yny+xxBLpyiuvbFjFgoGw/fRl23Rnmca28/bbb3d436D1ttOf7/30dfs49jRuvY4g4sp6HdU+Ostxp30CKuhXO4LIKBmRVVFWOAY71FKJoA7zzz9/L35D6Nv1NaI440I3Bv/MOOOM6cYbbzRog363b42L9hAn7tGRFusy9Na6Win9F9VS4tGeWD8jo2JYaaWVBFTQ1PvW9kpsAwx00RFeydrWXpbrsOSSS9bcR7fucG/991r0STSnRrVh2/kstthiHc4nbq70dRauEnW3jyTauFL6Pdpw2WWXrTldnOO9+OKL+bn+x97TqGs27dy8YhB9xTfffNPutK1fb3vNpY2b19NPP119HgNPOjo3i4CKyj65dUCFNu55sR+NjIcvvfRSNXNlZwbaOe8C+lrlPlN49dVXu/Re+7Dmbp/evjdeYr96I9unu8vWeV7vtE0kNmydhGDNNddMjTJQtp2orhfifLjSv9CeSNbTuspbZ/sDu3PsiWvgeeedt+g+rd5qn7b+9re/pf3226+6/K699tpcBbtRBsL201dt091lGttOJHKISpoROFAv8cOIESPSxx9/nJ/bdrrnnXfeydtMpU9ooYUWSo0yELad3vq9jjvtG9zB69A0IktkiGjaOJDV07o8U2Q6hxLW1+gg2myzzfLFT2R0iOwbc889d7fnRzmabd/aOiK8P5fJY+Cvq9Bf1tfI1BqDIEJXMhMADBStB1jG9VJHNxJrvW/OOees7kM7KlN/22235X9nnnnmNMccc3T7e9NYjWrDyjG+o/nEjZfnnnsuP3dO2vvGpY+ks20cZcMrlRC0cf+jnZtXZBWebbbZ8vNXXnklV5qqpzIApLLPbk0bD+xzs6CNe1YMJFljjTXSU089lf8f2Vd33333Tr3XeRfQ18blPpN9WM9r1H3A3rg3XjkOltS33hv3aTu6Z+E8r3fa5qqrrsqV1kNUu6iXGKw7Stx2xsXw4cPTBBNM0GFfVCSZuOeee6rvGX/88cd43bbT8/7+97+nPfbYIz+P7P433HBDw6oiVdh+Gq+jZdrZbcc4lHH3r3/9q9oX1MjKSCVuO+Pyex132ieggn5jgw02qD6vl4Essg9USgNF+bLvf//7vfb9oK/W17vuuiuXeIwo3ymnnDJHc7bO5gb9Zd8aJfTuvvvu6g30ySefvEc+h/6pN9bVGKjR0SPWzRD/Vv52yy23jNNvY+Bppn3rqaeeWh2EFJl5AUozdOjQaoaoONdsb+Be6w7xGETROtNLXHNVsntVbly1FX+vZAmL6UvLiNPMGtWGw4YNq2afuvDCC3NlvVrOPvvs6vMNN9ywYb+Dnu8jWXnllfP7wjnnnFN3MLc27huNumbTzs1t4403zv9G1r8YKFfPxRdfXPPmd9DGzav1OVZUdmxPvXOzoI17TpzfrLPOOumhhx7K/z/ggAPSr3/9606/33kX0Ncuuuii6vOFF164S++1D2vu9unNe+PRf3TmmWdW//+9730vlaAR7TOu9yyc5/VO21TuT4XtttsuNcpA2nai76ejPoiDDz64Ov3NN99c/XtXEu3EmIgf/OAH+XkM0I8xE/WugSvZ8Wv1N5a27fRW+7Re/jvssEN+f1RDiv6KRg/ajsD2SuWYSSaZJC211FKpP+rttunIKaecUn1e67iz3nrrpcGD/98Q6vYq4la2nZg23tNf9WX7VI49ERAWwXyNMlC2nc6KSi4RTBwioLhtopmOOO50oAX6kRVXXDHO+FqGDBnSctddd431+pFHHplfj8fBBx881us333xz9fXtttuu058b86q8L+YBzbK+Pvzwwy1TTTVVnmbSSSdtueOOOzQOTbeuPvvssy033nhju9/hww8/rH6PeBx44IFakl5fVztj9tlnz++Pf6Ev19eXX3655aGHHmr3O1xxxRUtE0wwQZ7HxBNP3PLGG29oNKBIW265ZXWfesghh9Sc5v33329ZYIEFqtNde+21Y53TjjfeePm1pZZaquXzzz8f4/X4f/y9su9/7rnnevQ3lS6Og109r2tUG55xxhnVz959993Hev2FF15omWKKKfLr88wzT8uoUaO6+SvL1p02blQfSVyPVj47ztnainO7WEfi9ZVWWqlbn0H327lR12zauXnb+NVXX22ZaKKJ8nsWXnjhlo8++misaf7+979X57vOOuvUnI82bs42/uCDD1ommWSSPP3kk0/e8thjj9Wc7uqrr24ZPHhwnm7mmWdu+eabb8aaRhs33ldffdWy+uqrV9t0r7326tZ8nHcBPeGss85q+eKLL9qd5phjjqnuw+acc86W0aNHd/kegX1Yc7dPI677brrppnxOUs/XX3+dP7/yXdZdd92W/q432qeR9yxKOs/rrW2ntffee6/aDnHN1VklbjuNGEsWbdze/cAQYykq06y33npjtfHIkSNbZptttvx67AOjL7v0bac32yfuFVS2memnn77lmWee6fJ3+e9//ztWf3Rrn3zyyRjXYnvuuWfLQNaIton+hOeff77dzznllFOq85hhhhlaPv3005rTbbPNNtXpLrroorFev/DCCxveh1nCttPaE0880a3jQ2nbzuWXX97uPaW33nqrZfHFF6/+3qOPPnqsaRx3xk3janZBL/jLX/6SVlhhhfTFF1+k1VdfPe2///45m2/8PyLNIpq9kjFwn3326fbntI7IDY888kj1+TXXXJPLjVfMM888Y2XAgt5YX6OsfZTd/vDDD/P///CHP+SI8yeeeKLue6affvr8gN5cV998882cVWHRRRfNWduXXHLJNMMMM+TSoW+99Va688470xlnnJGfh4UWWijtt99+Gok+Ow+A/rC+xvlozG+55ZZL6667bt7HVo7xL730Uvr3v/+dH5UMNH/+85+7nJ0AYKA46KCD0mWXXZaz7R5yyCHpwQcfzJnXoiz3l19+masSHHfccem1117L08e5a+y7W4v99b777pv++Mc/pgceeCDv4yNTb2R/iWuzP/3pT+nhhx/O08Z08847b5/81oHqjjvuSC+88EL1/++++271efy9bT/O9ttvP9Y8GtWGse5Epr24jjnxxBPzdczOO++cpp566nTfffel3//+9zlbXGSq+utf/5qve+j5Nm5kH0m0/wUXXJCee+659Ktf/Sp//hZbbJEmnnjinJHr8MMPzxkX4/+x76B3t+VG0c7N28azzTZbOvTQQ/P29/jjj6ell146768XWWSRvH+NrJAnnXRSnjaqUB177LE1v4s2bs42jgqN0e8X52effPJJWn755dOee+6ZVltttXwsffvtt/N522mnnZYrO4Y4dleyRbamjRtvyy23TNddd11+vsoqq6Qdd9yx3WPpBBNMkM+x2nLeBfSEuJ6PftSoZhX35uNabrLJJsvHkzhn+Oc//5mv0yr7p+h/HW+88br8OfZhzds+jbrui8ztkVk6HpHRfb755svnlZ9++mnuM4rv9tRTT1XfH339/V1vtE8j71mUdJ7XW/u21uIe1ddff93l6hQlbju9Jc69Yx2Ptrn88svz9dHee++dKyDEenDYYYdV+66jDzOunUrfdnpL3DuISh6xzURW/eiDGDVqVLvHnqhgEde+rcV17dZbb5022mijMbb1yKwflZdOPvnkahvHthX7BtoX+52ddtopH3vWWmutXL1nmmmmyet4VKGO/Wfl+jb2m7GPmnTSSWvOK7axGA86cuTIfF0c9w9++MMf5teuvPLKdPTRR+fn0003XT7/oOviGFLRlWNPadtO9JHFPibOC+KcKqqCxD47+t+iCnNUXKn0xcXy2H333bv1OY477RjHgAzok0isSqa/Wo9hw4bVjUDsbGR2vXnXepQQeUhzrq+tIwo7++hMVChl6sl1tfXrHT0iq+A777zTC7+Y/qo3zgPao0IF/W3fGpk/I/sGQOmuv/76lmmnnbbD/eYqq6xSN8NXZEb+8Y9/3O77d9xxx5oZlBk3rbPbdeZRT6PaMLLCDR8+vO48JpxwwpbTTjtNs/diGze6jyTO0eadd966741zvMisSd9sy426ZtPOzd3G++23X8ugQYPqvjeyQtaqBtiaNm7ONv72229b9t5773bbNx7jjz9+y1FHHaWNe1FXj6Xt7WuddwGNVjnP6+gxyyyztFx33XXjdI/APqw526dR132dPZ+JzP1PPvlky0DQG+3T6HsWpZzL9+a+rWKZZZbJ00Yl1xEjRnT6u5a47fRmFvfIwL722mvXXa5Rwa8z431K2XZ6q31az6Ozj5hnW1ERpDPvjenqVe8ZSBrRNp09L5hmmmlaLr300g6/0z333JOrWNSbT7wW05Sg0RUq4tx6pplmytNOPfXUuTpmZ5W27XT2vGDjjTeuWzXKcWfcSJFGvxPR7I899liOZr7qqqvSG2+8kSOxo1LEpptumvbYY480ySST9PXXhMz6Sn/Rk+tqZH699tpr0w033JAjuWPekW0uMgRH1oo555wzLbvssjnSO6aFvlpXoT+tr1Ht5x//+Ee6++678751xIgRORtBZN2IzDQLLrhgzrAemTlUpwJIadVVV81ZiaIy2n//+9/05JNP5oyGUT0gqqcNHz48bbXVVjnD2qBBg2oussiMHO+PzDCRzej+++/P+95pp502v3/XXXfNmZBoXo1qw5g+sh9F9ux//etf6emnn06fffZZzhoXx9+99torH4vpv+J8LSqWRBWSiy66KGf0i0x0s846a1p77bVzG88+++x9/TUZR9q5uR1xxBH5uBzVKG6//fZ8zTPRRBPlrNHx98jYFhmJ26ONm1Oca0VWzx/96Efp9NNPz1UvXn311dxXGFkGo91WWmmlfFyuVf2gNW3cvJx3AY0W95mijzUytcf5edxneu+993LG1uj/XGyxxXIm4c0222yc7xHYhzV3+4yrqH4W3yf61iObfmSjfv/999OEE06YvvOd76SllloqbbLJJjkj+bhWAiipfRp9z6KU87ze3naef/75dO+99+bnUQUh+kU7q8RtpzdFm8e6EH2NUfnv0Ucfzf3XsWxXXHHFfE8xspV3pJRtp7+Jqjw33nhj3n6effbZvH+M9o3tOvqUl1lmmTxeJipn17s/wZhifY6+/limsc5X9p+RK2Do0KG5UtKaa66ZK2fGuKSORBtERZi4r3/ppZfmykshxjOtv/76uWpMVMCg62Ldf/PNN/PzzTffPI+X6KzStp2o5HHrrbfm3xsVvuL3RsXe6C+L/XhUeo0KH505HnTEcae2QRFVUec1AAAAAAAAAAAAAACAAWlwX38BAAAAAAAAAAAAAACA3iagAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqACAPvbKK6+kQYMG5cfZZ5/d7fnEeyvziXkCAAAAAAAAAHTXIYccUh2HQNfdcsst1eUXzwGA5iSgAgAAAAAAAAAAAAAAKI6ACgAAAAAAGMBUtQQAAAD0FdDTVOQAoL8SUAEAA8T222+fWlpa8mOOOebo668DAAAAAAAAAPRjhxxySHUcAl238sorV5dfPAcAmpOACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqACgId5888203377pSWWWCJNOeWUafzxx0/f+c530sILL5y23HLLdPbZZ6ePP/54jPcMGjQoP6JEZLjhhhvSeuutl2acccY00UQTpbnmmivtscce6X//+1+nvsNDDz2UfvKTn6T55psvTTbZZGnSSSfNz3/605+m5557rtfm8cQTT6Q999wz//app546L4sZZpghrbrqqunII49MI0aM6HAe119/fVp33XXz+yaccMI055xz5u/wxhtv1H1PLOPKMn3llVfGej3KR8ZrlTKSsVx/8YtfpHnmmSdNPPHEaZpppklrrLFG+u9//9up3/nWW2+lAw44IC211FJp6NCh+XvOOuusabPNNstt2Z5vvvkmf9/4vPiNE0wwQV5v5p133vSDH/wgHX744empp56q+d5oh1i+Cy20UJp88snze2eaaaa02GKLpR//+MfpggsuSF999VWnfgMAAAAMZLfcckvuC9hhhx2qf4s+hkr/QeUR07V16aWXpk033TTNNttsuZ9mqqmmyn0Av/vd79IHH3xQ9zO33377PM855pij2n/wy1/+Mg0bNixNMskkaeaZZ859B08++eQY74u+jJ/97Gd5uuiniH6lrbfeOr344ot1Pyv6lCq/IXz44Yfp4IMPTgsuuGDu14n+iu9///vpvPPO69Tyiu/w85//PL8/+hzi+0Zfxa677poef/zxTs0DAAAABlJfQdtr77bi+j9ei/6AypiLuJ6PsQNxfR/jEWJcwrvvvjvG++66664x+h3mnnvu9Otf/zp98sknHf6GGG9wzjnnpB/+8Id5rECMVYjxDv/3f/+XjjnmmPTFF1+knnDTTTfl8S+xvOK3Rb/B7LPPnpZddtnc9xGv11ve9fpfKl577bU8JiTmHcsjftcGG2yQbr755k61Q9vxN/fff3/+rrPMMktePtEfs80226Snn3663d/40ksvpaOPPjqPV4m2jd8Zj/idm2++ebrmmmvq9qnE50c/TEU8b7texTiRen1I3R0L03YdfPDBB/PzWJbx22sts48++igdccQRaYUVVkjTTTddHncSY5Xid//73/9OLS0t7X4nAAagFgAYR7fddlvLFFNMEVcT7T6uuOKKMd5X+fvBBx/ccsghh9R935RTTpk/o55vvvmm5ec//3nLoEGD6s5jyJAhLaecckqPzmP06NEdziMe22233Rjve/nll6uvnXXWWS377bdf3fdON910LU899VTNz4/3VqaLeba10kor5dfi3zvuuKNl2mmnrfs5Rx11VEt7/vGPf7RMOumk7f7OHXfcsWXUqFFjvfeTTz5pWXHFFTtcXzbeeOOx3nvhhRe2TDDBBB2+9/HHH2/3+wMAAEAJbr755g6voeMR01W8//77Lausskq7008//fQtd999d83PjH6PmGb22WdveeSRR1pmmGGGmvOIfoXbb789v+fGG2/M/T+1ppt66qlbnnjiiZqfFX1Kleleeumllrnnnrvud95ss81q9lNUnHPOOS0TTjhh3fePN954LYcffvg4twkAAAD0p76C1tfetcT1f2UcxLnnnlv3fv6wYcNaRowYkd8T4xHqjatYYokl8piCel599dWWRRddtN3vPs8887Q8++yzDV1ue++9d4fLbJpppml3ebfuf2kt+kUmm2yymvOM5XTYYYd12A6V12K6E088MY9vqTW/SSaZpOXWW2+tOY/oW+nMuvGjH/1orD6W1uNe2nvEuJZafUjt6WgsTOt18KSTTqr521u74YYbclu19z3XXnvtdtdDAAaeIX0d0AFA/xaVALbYYotcfSIy90XEfESZTz/99Onrr79OL7/8cs4scMkll9Sdx1VXXZUeeOCBXAniV7/6VVpkkUVyNPhFF12UTjvttPw8MgtE5YfIYtBWVCv429/+lp9/73vfy5HmUd0isgE8+uij6bjjjstZDyObYFRDiCoYPTGPXXbZJZ155pn5eUSuR3WN5ZdfPldeGDlyZLrvvvtyJHt74vfG8lpppZXyZ0VWxsiueO655+ZHzCeqMNx9992pu6JCRmQyGDx4cPrjH/+YszREtP0dd9yRDj300Px5v/nNb9Jaa62VMzK2deGFF+bMBXFNXqkissACC+So/cgGcMYZZ6Srr746/zvFFFPkDBCtRUaE22+/PT+Pdo3sFJWsE++88056+OGH05VXXjlWloC33347Z8mI9SrWr/jcyPQw7bTT5gwTL7zwQrr11ltzBk0AAAAgpeHDh+fKCpdddln67W9/mxfJtddem7McthYZ+yr9PFFhM7JJjjfeeGmrrbZKa6+9dn591KhR6bbbbsvX+XH9Hn+Pa/jIUFjL559/njbccMN8HR+VKKOvI+YZmQzj/5999lnuX4gqndFPEf0n0S+xzDLLpNGjR6f//Oc/uT8mqmHsuOOO6Z577mm3SSNLYvRDReXRTTbZJM/vscceS3/6059ytcvoz4jffeyxx9bsm4q+oOjriMoW++yzT14OQ4YMyf00kbEwMmnuv//+uVJH9H8BAABACX0FnRXjKqJCZFSkiGoNCy+8cK42EWMo/vGPf+Rr8/j7RhttlPbdd998rz/GacQ4kbjm/utf/5rHGUSfxB/+8Ic8lqGt9957L49veP3113PlgZ133jn3N0SFgk8//TRdd9116S9/+UseOxDjHWJe0T8wrmL8QvRRhBjPEv0C888/f553jK+IsSQ33HBDHhPSVVERIsafRD9J9EPEvKOfJMZaxBiZo446Kh1wwAG5v6Qzoi3je8Ty32uvvfK/MZ4ixuzEson+muiPef755/M4kbaVP+Jva6yxRlpttdXyOJCo/vn+++/n9jvxxBPzb432jLEiUcW0IipgxHoVlTFiTEuIto/1rbWomNFT4rPju8W4oljXotJq9DFVxqeEO++8M68b0c8V1VFjHVx00UXz+v/mm2+mCy64IM8j1sXtttsu908BUIi+jugAoH+LSPl6FShai+j0jz76aIy/dSbLQGQwqEyz6aabjvX6ddddV3399NNPr/nZX3zxRTWzYkSmt42Ub8Q8Lrvssuo8lltuuZYPPvig7rJ47bXX2o3U33nnnVu+/fbbsd630047Vad56KGHul2hovIb3njjjbGmicyQlUwQP/vZz8Z6feTIkdWMkT/+8Y/rZnbcf//98zSDBw9ueeaZZ8Z4bdZZZ82vbbLJJi3tee+998b4/xlnnNGpChSff/55fgAAAACd6zNoez0/1VRTtTzwwAM1p3nllVdaZpxxxjzdVlttNdbrleyC8YjqmC+88MJY05xwwgljVOOcd955W955552xptt3333b7QtpnZ0xHv/617/Gmubjjz+uZq6Mfoq2fQpff/11y0wzzZRfj2yQDz/8cLu/OTI5Rv8IAAAAlNBX0NkKFfFYfvnlWz777LOxpomxAZXqj0OHDm3ZeOONW0aPHj3GNPH/ZZddtlrpodZYhOiHqIx3iGoKtUT/QVTFjOmin6MRttlmm+rntle1oO0Yh85UqNhggw2qr19yySVjvR7Lc+mll65bbaGibXWFr776aqxp/vCHP1Snufjii8d6/dNPP21588036/6+GMey/fbb5/fHMv7www+7/Htba3SFingsvPDCdcfrRB/QHHPMkadbc801a66r4dRTT63OL8YTAVCGwX0d0AFA//bWW29Vn0dlh3oikj4i6Os59dRTcwbAtiIyPqLDQ0TMt/68UMlKsPHGG+dshbVE5YMTTjghP3/11VfTzTff3GPziIoWUYUishXWU6vKRkVUtjj++OPHqs4QIoK+onUEfXfEZ0SGgLYim0Mls0GtzzjppJNyxZB4b1T0iHatJTIRxDTffvttrqzRWqUNV1xxxXa/Y2Q6qPW+qaeeOi200EJ13zfxxBPnBwAAANB5kckxMg2G3//+92nJJZesOV1UpDjwwAPz86guGhkU64n5zD333GP9PTIVRl9LiGqckYUyKl+21boSREd9IVEFc8sttxzr71FRNfqdQvRTnHzyyWO8Hv1NkYEwRGbOxRZbrOZvjoyQITI5nnXWWe1+FwAAAChNjHE4/fTT85iJtnbbbbdqBYQvv/wyX6dHFcvW4v+77LJLtRLFU089Ncbrr7zySq4eEGLsRr0KGosvvnjafffd8/Ozzz67Ib+tMlZhiSWWqDmupd4Yh45Ef8QVV1yRn0e1zahM0VYsz0q/RmdEf0v0W7StPhF+9rOfVf9eq59l0kknzWNW2mvjo48+OrdV9AdFVY5mE31b9cbrnH/++Xk9imUU41hqrashKp8svfTSDV2HAGh+AioAGCetL6a6ezM5SgzWu0kfKuUAoxTfLbfcUv37xx9/XP1/XFy2J8otTjvttPn53Xff3dB5xMX8Pffck59vvvnmY5XC7Ir4DlGaspYodVm5OI+yj90VF4/rrLNO3dcrbVHrMy6//PLqIIV63zNEoMVyyy031rJqvc5EZ0cMQuisyvs++OCDXH4UAAAAaJxbb701J1HoTB9JJanGqFGj0oMPPlj3Jvtmm21W87VIhDDvvPNWEyesscYaNaeLwRERENGZvpAddtih7mtxE3zBBRfMz9ve7K/8P75vpQ+qlk033TRNOeWUNecBAAAApVtkkUXymIpaFl100erz1VZbrW7gQevp2vYDXHXVVTkgIwbBV5JydtRvEQELr732WhpXlbEKt912W3rxxRdTo0Qiz/hNlWSj9cRyab1s2hPLd/rpp6/5WvSxVPpjOjPmJPp93njjjfT000+nJ554Ij9imU4zzTT59UcffTQ1k0hu2l5iz8p4l5VWWqlmYo9a61Db8S4ADFwCKgAYJ1HRYK655srP995773yD+ogjjkh33nln+vrrrzs1j+HDh7f7eiXyOzz++OPV5w8//HDOLBgiA2Hc+G7v8e677+ZpW1e5aMQ8Hnnkkaip2KmqCx357ne/2+7rMcggfPLJJ93+jLhAHjy4/ilApfOi7WfEhXz81nDKKad0uKyiUkdoW1Vku+22y//eddddeWDEHnvskbNBRkbK9qy33nrVTAIbbrhhWmWVVdKxxx6bB25UOhkAAACA7nnggQfGGCjQ3jV/68qRba/7KyIpRXuZGSvX+PPMM0/NSp1tp+uoL6Sz/UvPPffcGH1WMRggRB9FezfTI4NjZLls/R4AAADg/xk2bFjdRdG6YkBnp2vbD1Dpt4ikjZHgsb1+i0gQ2VG/RVdsu+221WSb0SeyxRZb5ISjL7zwwjjNt3X/QntJSMNSSy3VkDEn9caDtA6iiCoPyy67bE74GUEKCyywQE6UWnm88847edrK+JlmCuppT2Uduvbaazsc7/LnP/+5YesPAP2DgAoAxsn444+fSxBWMg3cf//9af/998+BFnGxu+aaa6Z//etf7Q54rxcdX/Gd73yn+vz999+vPq9cpHVV66oIjZhH64vE9sofdka9koIVlUCIcQkg6OxnVAJNWi/7qBLSVW2rUBx44IE542NchMbyj4vxjTbaKK8H0flw8MEHp7fffnus+USWg8gYMPPMM+cAlsjW8Itf/CJ3HMRFf8zjyiuv7PL3AwAAABrTR9Kd/odG9YV0tn8p+hSi+mXbvqaO3h9mmGGGMd4DAAAApA6v71snfOzsdG37ARrdb9EVP/jBD9IJJ5yQK25++eWX6YILLshjHiKZ5SyzzJJ+8pOfdKtaQ+v+iY4qJnT0esW49LNEf8dyyy2Xk2Lee++9HSZR/eKLL1IzqSQorac761Cz/UYAes6QHpw3AIWIaPSoHBGBFfGIMocRiR8XFhHZHY9jjjkmXX311TVvTreXhbA9rS/womLC8ssv3+WLqEbMoxStl9VOO+2U9tprr069LzI4tg3COeOMM9I+++yTzjvvvHTTTTflTABxMf7kk0/mR6wv//jHP9L6668/xnujAkisW//5z3/y+hTrWpSY/Pjjj3OVi3isscYa6eKLL+6wowAAAACofd3/0EMP5ev3zoiBA82gu/1LjXo/AAAA0PP9FlERM5IvdlZUpGyE3XffPW266aY5oej111+f7rzzzvTRRx+l//3vf3msyamnnpqTj/7hD39I/VWMAXnwwQfz8w022CAHjUTVhxjnM9FEE1X7Tmabbbb0+uuv56QVzWS88cbr1Dq01lprpSOPPLKXvhUA/YWACgAadmESF1TxCCNGjEjXXHNNrj4QF1zx2HXXXfOA97ZqVSOo93ql/GClYkFFDJ6P6gZd1Yh5xAV7Rfzugar1so8L4+4sq7aBOL///e/zI7I43HHHHbnz4dxzz02ffvpp2nLLLdOLL744VtWPuFDfeuut8yO8/PLL6aqrrkrHH398eu6553IAzwEHHJCOPfbYcfp+AAAAUJLWfSSR9bBZAiU6K/qPZp111nZfD3Hzv3WijEp/R0f9U+Gtt94a4z0AAABA7/ZbfPLJJ2n++efvcPB8T4jAgr333js/vv322/TII4/kMTBRveLDDz9Mhx12WBo+fPhYiSPrad0/MXLkyDTzzDPXnTZe70mRxDIqb4QYixEJMDtTWWNcVKplxLJsz2effdawdejNN9/MyT7HdbwLAAPP/18nCwAaKAbB77DDDunuu+9OSyyxRP7blVdeWbMc3v3339/uvFq/3vqiZrHFFqtGwEf0f3c0Yh6LL754dR5RMWGgikoTCy644Dgtq3oiSGLVVVdNZ555ZjrqqKPy32JdiXWmMxklouRkrCeVwR4XXnhhQ78fAAAA9Gedqb4Q/RsVjb7u7w2d7V+ad955x6imWelrioQN7Q1OGDVqVHr44YfHeA8AAAD0V/2tUmOl3+Krr75KDzzwQF9/nRwMEGNhIoHkjTfeWP17V8YqVMZfhEpliHp6+jc///zzue8jbL755nWne+aZZ3KCzEasV5NPPnn+N4JR2hOJNRu5DsWyjKAKAGhNQAUAPWr88cdPK620Un4+evTomhdCjz/+ePWGdC0xyD5EhoGVV155jGyJyy67bH4elQ26E5HfiHlEVsLll1++enEcEe0D1XrrrVe9SI5KED3hBz/4QfX5u+++2+n3TTHFFDnbQ1ffBwAAAANdJDKoiIEHtUSig6jeGf7617/m6pT9yTnnnNNuMMUTTzxR/Z2tVf4fv/ess86qO49///vf6aOPPqo5DwAAABiIfQXNZN11160O1j/uuONSM4nAikq1ia6MVYjxL5UqDX//+9/rTvfoo4/mR0+K8TydqQhx8sknN2y9iuSZlaojzz77bM1pIvDhP//5T2rkeJfo32mvDwiAMgmoAGCc3H777emFF16o+3pc3Nx66635+WSTTZYDGGrZZZddal6URZDD1VdfnZ9vsMEGufJFa7/97W+r5Qc32WSTdiPX42LtxBNPTF9++WXD5/HrX/86//v555+nTTfdtHqDvZY33ngj9Vd77bVXbscQFUiefPLJdqe/6qqr0mOPPVb9//vvv5+uuOKKdgdlXHfddWNdQIcI4BgxYkTd98Uyv++++8Z6HwAAAJSudX/Kiy++WHOaqaaaKleADHfddVf6+c9/nr799tu683z77bfT6aefnprF5ZdfXjMLZGRN3HXXXfPzGKRQeV4R/U0zzTRTfn7YYYflxB9tvf766+mXv/xlfh5BJ9EnAgAAAAO9r6CZzDfffHksRjj//PPTMccc0+70UYnyvPPOa8hnX3DBBemLL76o+3pUPPjggw+6PFZhlllmSeuss041kcOll1461jTxuTGepqfNM8881YCVSFpRa0xHjPU44YQTGrZeVZKzhqOPPrrmNL/4xS/S//73v9QI2223XZp11lnz8+jnue2229qd/o477qiOdwJg4BvS118AgP4tShdGCcMVV1wxX+gtssgiOWgiLuqi7F5Epz/00EN52h133DENGTL2oWeppZbKF5jxbwQmLLzwwnlwfFwwnnLKKdVSf3/+85/Heu/aa6+dB/n/5S9/yRc7888/f/rJT36S/u///i9NM800OUgjAj4i8OPiiy/OF7FxkdToeUQ2hPh9Z5xxRh50sMACC+RBCCussEKunBBZCOI3xoX2oosums4+++zUH33nO9/JF88ReBLBDdFm22+/fVprrbXyxX6UgIyAkQhsiPZ76aWX8kV1rBeVoJWI+p9jjjnSRhttlJZZZpk0++yz5/Ui5hfTVgZjzDzzzOmHP/xh9bOjsyOW82qrrZZWX331tNBCC+XqIJGtILJMxoV75UI62g8AAAD4fxZffPGcITASRBx44IG5omhcj1eyIMY1+MQTT5wOPfTQfKP43nvvzf0kt9xyS9p5553TYostliaddNLcJxLJFW644Yb03//+N/fh7LTTTk2xmKOPYquttsrfP/otoj8mkjz86U9/qmY53H333at9FBUTTDBBOvXUU3OfQ/RbRF/OvvvumytoRrXU6Of54x//mN555508ffRPTTvttH3yGwEAAKC3+wqayUknnZTHXcQ4hH322Sdddtlladttt00LLrhgmnDCCdN7772XKzlcc8016aabbkobbrhh2nLLLcf5c2McS4xBWH/99dP3vve9NGzYsNxPEp8Xg+6PP/74PF30I3S1nyQCQ2LcTSV5509/+tP8vaNfI8ZBHHnkkempp55Kw4cPzxU4e0qMjYmxM5E0M5ZfjMmI7xLrRPSJRJWIGOcy11xz5SSlI0eOrDmf2WabLY8diXEj0YcSzyMYJpZNZcxJjP+prIPLLbdcuvvuu9Npp52WE7bGWJwpp5wyPf/887m/Jtpx+eWXz/0z4yrWkUjGEZVBIgHHKquskrbYYoucbCMCYSKxSIxbefDBB9Mll1ySk25E27YO/ABg4BJQAcA4i4uKuFndXmR2XFgeccQRNV+LQIx4/O53v6uZ4S8uFCPLYAzCr+XYY4/NA+sjsOOtt95KhxxySN3vERe1lQu1Rs8jgj+iQyEqWLz55ptp//33r/n+CKjozyIQIjomIpAiKk5E0Ey9so7R2RLLq61XXnml3YwRkbUgPqNSDaMiAjaiYkmlakkt0ZHxs5/9rEu/CQAAAAayuFEd18pxEz4SX8RN8dZuvvnmfDM5bixff/31+Zo/kkrEIIRK1Ypaos+mWcQN8QiC+Nvf/pYfbW288cZ1+yKiX+qss87K1SsiccNBBx2UH61FX1D0G8VgAgAAACilr6CZxJiOO++8M2222WY5IWYkzGyvykAj+y0iiCCST8ajluhTiXETkfChq5UhojJFBFFEss8YwF8J0Kg4+OCD87icCKiIIJieDFiJxKOvvfZaTqYRj7bBEvFdI/CiPTFWZrfddstVQmKsUGvR/xL9ThVnnnlmDliIoI1ayzcqSUTATCMCKsKyyy6bE4jEOhQVSf/5z3/mR3/o+wKgZwmoAGCcxMVLZPaLC6mHH344BxJUMvbNMMMMaemll84ZASplCuuJAIaIPI8Lw0o5xJlmmilfiP3mN7/JUev1RNnBuMm9zTbb5AvUiFCPjARR5WKSSSbJJfsisj06AOIitFYWhUbMI26sx/ePoJAIroiLsKiYEFH0Ec0fy2nNNdfMn9HfRdbGuPiNLAER3BDZKSO4IipNRLvHBW1E80dGyErJxBDZC6J6RbwnLnhfffXV9Pbbb+fo/6mmmipX9oh5R8nKthemEfQS1SmibSLDZGQGiKwHsdzjM2L9iWwPcYEPAAAAjCmqLMw777zp3HPPzdfx0efxzTff1BxQEVkHI8Ni3MSOAQrR3xPVSONafe655879PdHX03awRV+KTIKRQTCyH0YWwehziOyakdgi+hm23nrrdt8fGRDjBv5xxx2Xrrvuujx4IAYrRP9U9HHsueeeuSIHAAAAlNZX0ExiPEIEUUQlhfPOOy9XN4ikmZGcMcYcxO+JsQPrrbderibRCBFccsUVV+TPfe655/LnxZiWGEsS/SSR4CESMET1hu6IcRBRjSLaI6pDxFiIqaeeOgdnRH/EGmuskfbee+88bVRv6Ckx7iKCa6LaZyTAjL6VCOCI5KdRxWGvvfbK36sjsSyiEkWMm3nkkUfyWJLRo0fXnPa73/1u/szDDjssjyOJ3x6/cckll8y/PcYMRWWMRoqgiqiAEfONdo2xTu+++25OGDrddNOl+eefP/cRRXKOqK4BQBkGtbS0tPT1lwCgTBHEUImmb68iBAAAAAC0Ff1JUfE0uNUBAAAADFSrrrpquvHGG3OCyUh+AQA01uAGzw8AAAAAAAAAAACAcRSVQ6M6RqW6AgDQeAIqAAAAAAAAAAAAAHrZCy+8UPe1L774Im2//fZp1KhR+f/bbrttL34zACjHkL7+AgAAAAAAAAAAAACl2WmnndJnn32WNttss7TkkkumoUOHpk8++SQ98MAD6W9/+1s14GLHHXdMCy+8cF9/XQAYkARUAAAAAAAAAAAAAAPOO++8kx9dNcEEE6Rhw4al3hDBE/GoZ8MNN0zHH398r3wXACiRgAoAAAAAAAAAAABgwIkqD7/73e+6/L7ZZ589vfLKK6mnHXPMMemSSy5JN910U3rjjTfSyJEjU0tLS5p++unTsssum7bbbru09tpr9/j3AICSDWqJoy8AAAAAAAAAAADAAHLIIYc0dUAFAND3BFQAAAAAAAAAAAAAAADFGdzXXwAAAAAAAAAAAAAAAKC3CagAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKM6Q3v7AL7/8Mj3++OP5+XTTTZeGDOn1rwAAAECTGz16dBo5cmR+vvDCC6eJJpqor78SNIR+EQAAADpD3wgDkX4RAAAAmrFfpNejGSKYYumll+7tjwUAAKCfuu+++9Lw4cP7+mtAQ+gXAQAAoKv0jTBQ6BcBAACgGftFBvfo3AEAAAAAAAAAAAAAAJpQr1eomG666caIGJlxxhl7+ysAAADQ5EaMGFGtbtj6OhL6O/0iAAAAdIa+EQYi/SIAAAA0Y79IrwdUDBny/39kBFPMMsssvf0VAAAA6EdaX0dCf6dfBAAAgHG5loT+TL8IAAAAzdgvMrjHPwEAAAAAAAAAAAAAAKDJCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAojoAKAAAAAAAAAAAAAACgOAIqAAAAAAAAAAAAAACA4gioAAAAAAAAAAAAAAAAiiOgAgAAAAAAAAAAAAAAKI6ACgAAAAAAAAAAAAAAoDgCKgAAAAAAAAAAAAAAgOIIqAAAAAAAAAAAAAAAAIojoAIAAAAAAAAAAAAAACiOgAoAAAAAAAAAAAAAAKA4AioAAAAAAAAAAAAAAIDiCKgAAAAAAAAAAAAAAACKI6ACAAAAAAAAAAAAAAAozpC+/gIAAM1ol112Se+//35ffw3olKFDh6ZTTz3V0gIAYEBznUZrroMAAAAAQN8qA5++YHqDgAoAgBoimOLdd9+1bAAAAJqE6zQAAAAAAH2rAI0moAIAoB0taVBqGX9iy6jBBo36Ipas5dug5QgAACUZqNdprpO6tpwAAAAAgK4ZqH2rfUm/bs8vW+gNAioAANoRF5KfLbaFZdRgkz5yfho06nPLt0HLEQAASjJQr9NcJ3VtOQEAAAAAXTNQ+1b7kn7dnl+20BsG98qnAAAAAAAAAAAAAAAANBEBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABRHQAUAAAAAAAAAAAAAAFAcARUAAAAAAAAAAAAAAEBxBFQAAAAAAAAAAAAAAADFEVABAAAAAAAAAAAAAAAUR0AFAAAAAAAAAAAAAABQHAEVAAAAAAAAAAAAAABAcQRUAAAAAAAAAAAAAAAAxRFQAQAAAAAAAAAAAAAAFEdABQAAAAAAAAAAAAAAUBwBFQAAAAAAAAAAAAAAQHEEVAAAAAAAAAAAAAAAAMURUAEAAAAAAAAAAAAAABTn/2PvTsDkqMpGAVdCAgFkSUwQlF0Iyg8KQlCQCC7IoohKQEAREQVFcL2iKCCyuOAurkFcUAQRBBRRwZVdQEXBhUUWQQETSAiQsPd9vrq3+u8M0zM9M909VXXe93kGJtPV1dV16ix1zvlOCagAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASM6k8T4AgCo48MADs3vvvTebNm1aNnfu3PE+HACAMdO+AaDb1C0AoD4EAADGn346AEBbYWQEVAB0IIIp5s+f71wBALWhfQOAugUA3GsBAAD1YwwIANBWGJmJI9weAAAAAAAAAAAAAACg8gRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJGfSeB9AGT344IPZvHnzsiVLlmTLL798NmPGjGzFFVcc78OCSuaLXuenbu9f/gcAAFLXi/uist5rlfW4AACA6o5dAdWmjOitKH9vuOGGbNGiRdnKK6+czZw5My+Hy6hKx1pFVcprVTpWAABGR0DF/9doNLJrrrkmO/vss7NLLrkke+KJJ5onaeLEidns2bOzV7/61dlmm22WTZgwYZSnG9LIF73OT93efyf7e+SRR0Z8nAAAAFXRi/u4sva1lPW4AACA6o5dAdWmjOitKHPPPPPM7Iwzzsjmz5//pNenT5+e7bnnntmcOXPyMnk8VelYq6hKea1KxwoAwNgJqMiyPKL8Yx/7WHbrrbcOepKiUfy73/0u/1l33XWzD33oQ3nkOdTZaPNFr/NTt/ff6f4Kjz32WMfHCgAAUAW9uI8ra19LWY8LAACo7tgVUG3KiN668MILsxNOOCF79NFH224TgQtf+cpXspNOOik77LDDsh122CEbD1U61iqqUl6r0rECANAdyQdUXH311dkRRxyRPfTQQ82TMnXq1GzWrFn549nisW1XXXVVtmDBgvy1aCy/853vzI477rhsyy237FIyQD3yxRvf+MbslFNO6Vl+6nZ+Hen+wsKFC/P3yf8AAEAd9KJfpKx9LWU9LgAAoLpjV0C16Svore9///vZ3Llzl/pbrOS/+uqrZ8svv3y2ZMmS7K677sqfBBAikOH444/P5s2bl+2zzz49PrrqHmsVVSmvVelYAQDonqQDKiKiuLURvOGGG+Y3Ottuu202efLk5nZxI3TxxRdnp512WnbjjTfm28f7vvjFL4owpnbGki9aOxi6nZ+6nV9Hur/oDHn88cfzv8n/AABAHfSiX6SsfS1lPS4AAKC6Y1dAtekr6P3THlrL4OWWWy7bddddsze/+c3ZCius0Pz74sWLs5NPPjk777zzsocffjj/W7xvxowZfXv6Q5WOtYqqlNeqdKwAAHTXxCxRETUej2crGsHR+P3Sl76UvfjFL16qERzi3y95yUvy11/4whfmf4v3ffzjH29Gn0MdjDVfFOLf3cxP3c6vo9nfqquu2vyb/A8AAFRdL/pFytrXUtbjAgAAetee32abbZZ6zX0A0I2yRV9BZ5544onshBNOaP572rRp2ZlnnpkdcsghSwUohPj3oYcemr8e2xXi/bGfXqvSsVZRlfJalY4VAIDuSzag4pprrskfu1ZEFB955JF5lPlQ4vWjjjoq3z7ccsst+X4g9Xyx2267LfW3+Hc381O38+to9heP8wzLLLPMsMcLAACQYr9IWftaynpcAABA/8auXvWqV7kPAMZctugr6EwEHMQK/sV5+853vpOttNJKQ74nXo/tinSI95911lk9v2qrdKxVVKW8VqVjBQCg+5INqDjnnHOav++9997DNoILsd1ee+3V/Pe5557bk+ODKuWLn/70p0v9+/zzz+9qfup2fh3t/kLrKhTyPwAAUFW96Bcpa19LWY8LAADoXXt+4FhVt8eugGrTV9BbZ5xxRvP3V77ylcMGKBRiu1122WXQ/fRKlY61iqqU16p0rAAAdN+kbu/wjjvuGPL1O++8MxtvDz74YHbxxRfnv0+dOjWbPXv2iN7/ohe9KH/fggULsosuuijf34orrtijo4Vy54vW98VTHOLxhSPJF8Plp27n13nz5o1pf8suu6z8DwAAtJVqv0goY1+LPiAAAKiuso5dAe2l2i+ijPhfMR4/f/78Zhl8wAEHjOj8vvWtb80ntkfZHfuKnxkzZmSpH2sVVSmvVelYAQCoSEDFWmutlZVd3MQ88cQT+e+zZs3KJk+ePKL3x/bxvgsuuCDfT9xgaQhTdaPNF63vW3311fNOsJHki+HyU7fz64033jim/cUNcPGe2M/rX//6bNKkrhelQAnce++9430IMKLrdc6cOc4YI6Kcg95ItV8kBo7L2NeiD2h8aJvQy2sLlDWUnbIK6j92BbSXar+IMuJ/3XDDDc3fowxeYYUVRnR+Y/ui7A433XRTz4IUqnSsVVSlvFalYx0p/XRAa3kAVaU+6805ZWlJzgJesmRJ8/fRNmBbb6QWL17cleOCKuaL1vctv/zyo8oXQ+WnbufX++67b0z7i5vfhx9+uPnvhQsXjuqYAKCbis5ZAChDv0iZ+lr0AY0PbRNAWQNAWcaupkyZ0vWxK6Da9BX01qJFiwadPzASrWV3L8fjq3SsVVSlvFalYx0p/XQA1IH6jEoGVNx+++1Dvh6R2VtttVU2nlpvhOIxa6PR2vgdaZQ6lNFo80Xr+1pvMkeSL4bKT93Or6usssqY9jdx4sR8dYEiqGLVVVf1hAqocSRusRIJlF3UT9OmTRvvw6BilHPQG6n2i8QTKrq9z27QBzQ+tE3oFe0XlDVUgbIKyjV29dBDD3V97ApoL9V+Ef7XyiuvPOj8gZFoLbtjPL5XqnSsVVSlvFalYx0p/XRAQX8FVaY+6z5lQh8CKtZcc82s7OIRe5HBYpLkVVddlT366KMjelxbbB/vC8sss0w2ffr0Hh4tlDtftL7vrrvuGnG+GC4/dTu/brjhhmPa39SpU5tPqYj9nXrqqaV5VCPQXXPmzLHiP5URwRRnnnnmeB8GFaOcg95IuV+kjH0t+oDGh7YJvaL9grKGKlBWQf3HroD2Uu4X4f+ZOXNm81REGRyTzEca0FaU3WGDDTbo2amt0rFWUZXyWpWOdaT00wEF/RVUmfqs+5QJTzYxS1BMfp49e3b++4IFC7KLL754RO+/6KKL8veF2I/J1KScL1rfV6xIOpJ8MVx+6nZ+jRvhsezvkUcekf8BAIBK60W/SFn7Wsp6XAAAQHXHroBq01fQWzEeX0wmjzL45JNPHtH7TzrppGbZHfuKn16p0rFWUZXyWpWOFQCA3kgyoCK8+tWvbv5+2mmn5avNdyK2O/3005v/3m233XpyfFClfLHLLrsM+e+x5qdu59fR7m/gYxrlfwAAoKp60S9S1r6Wsh4XAABQ3bEroNr0FfTWnnvu2fz9vPPOy+6///6O3rdo0aLs/PPPH3Q/vVKlY62iKuW1Kh0rAADdl2xAxWabbZatu+66+e833nhjdswxxwzbGI7XY7vYPqy33nr5fiD1fPHjH/94qb+dc845Xc1P3c6vo9lfsbLE448/PuzxAgAApNgvUta+lrIeFwAA0Lv2/LnnnrvU3+Lf7gOAsZYt+go6M2fOnGzy5MnN87bffvsNG6gQr7/pTW9qpkO8f/fdd+/5RVulY62iKuW1Kh0rAADdl2xAxYQJE7IPfehD2ZQpU/J/X3rppdkhhxyS/frXv84effTRpbaNf//qV7/KX4/tQrzv8MMPz/cDdTHWfFG47LLLupqfup1fR7O/hQsXNv8m/wMAAFXXi36Rsva1lPW4AACA3rXnY6yqlfsAoBtli76CzkycODE77LDDmv++995788CFE088MVu8ePFS28a/v/CFL+Svx3aFeH/sp9eqdKxVVKW8VqVjBQCg+yY0imXX++SOO+7I1lprrfz322+/PVtzzTWz8XT11VdnRxxxRPbQQw81/zZ16tRs1qxZ2QorrJDfEF111VXZggULmq9HI/i4447Lttxyy3E6aihnvnjjG9+YnXLKKT3LT93Or6PZX/j0pz8t/0MCojN0/vz52ROTV8ge3Gyv8T6c2lnxmtOziY8udn67dB6nT5+enXnmmd1JHJIr58p6/ZTt3hHqem33ol+krH0tZT2uOil73UL11f0+zX3SyM6TsoayUh9CWmNXKd0/Qh2va30FvfX9738/mzt37lJ/i8nmq6++el7WRtl81113ZQOnLR144IHZPvvs0+Ojq+6xVlGV8lqVjnUo7kuA1PpWx5N+3d6fW33BabYV7ujz/eOkLHHRmP3iF7+YfexjH8tuvfXW/G/R6L3gggsG3T4ezxYRxTNnzuzzkUI18kW8t1f5qdv5daT7C6uuumqpboIBAADK1i9S1r6Wsh4XAABQ3bEroNr0FfRWBBrMmDEjO+GEE5or/EdAwp133jno9pMnT86f9rDDDjtk/ValY62iKuW1Kh0rAADdk3xARYhG7be+9a3smmuuyc4555zs4osvzp544onmSVpmmWWy2bNnZ7vttlu22WabeTwbSRhtvuh1fur2/jvd3x//+Mds0aJF2aRJik0AAKBeenEfV9a+lrIeFwAAUN2xK6DalBG9FQEHL33pS7Ozzjor+8EPfpCvgjtQBDLsueee2e67755NnDgxGy9VOtYqqlJeq9KxAgDQHWYG/3/RuN18883znwcffDC/MYrHtMXj2uKRJiuuuGKXTjnUP1/0Oj91e/+d7C8ecQQAAFBXvbiPK2tfS1mPCwAAqO7YFVBtyojeisCDPfbYI/+ZN29edtNNN2ULFy7MVl111WyDDTbIgxTKokrHWkVVymtVOlYAAMZOQMUgotGr4QvdyRe9zk/d3r/8DwAApK4X90Vlvdcq63EBAADVHbsCqk0Z0VsRkFCVoIQqHWsVVSmvVelYAQAYHc+fAwAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDmTxvsAAKpg2rRpS/0fAKDqtG8AULcAgHstAACgfowBAQDaCiMjoAKgA3PnznWeAIBa0b4BQN0CAO61AACA+jEGBABoK4zMxBFuDwAAAAAAAAAAAAAAUHkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgAoAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOZPG+wAAAMpswqNLshWvOX28D6OW57X4v/M79vMIAAApqet9hPukkZ0nAAAAAGDkfZB17FsdT/p1e39uoR8EVAAADGFC1sgmPLrYOeoR5xcAAHAf4T4JAAAAAOg9czScW2BwAioAAAYxbdo054XKcL0CAJAC7V5cDwAAAACgb5W0GBugHwRUAAAMYu7cuc4LAABAibhPAwAAAADQtwrQbRO7vkcAAAAAAAAAAAAAAICSE1ABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkR0AFAAAAAAAAAAAAAACQHAEVAAAAAAAAAAAAAABAcgRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAAAAAAAAAAAAkBwBFQAAAAAAAAAAAAAAQHIEVAAAAAAAAAAAAAAAAMkRUAEAAAAAAAAAAAAAACRHQAUAAAAAAAAAAAAAAJAcARUAAAAAAAAAAAAAAEByBFQAAAAAAAAAAAAAAADJEVABAAAAAAAAAAAAAAAkZ1K/P/Cxxx5r/n7nnXf2++MBAACogNb7xdb7SKg6/SIAAAB0Qt8IdaRfBAAAgDL2i/Q9oGLevHnN37faaqt+fzwAAAAVE/eR66677ngfBnSFfhEAAABGcy+pb4Q60C8CAADASPWjX2RiT/cOAAAAAAAAAAAAAABQQhMajUajnx/40EMPZddee23++4wZM7JJk/r+kIykH39SPBXkyiuvzNZYY43xPiS6RNrWl7StL2lbX9K2vqRtfUnbcopHNhYr1m266abZlClTxvuQoCv0iwxOWUw7rg1cG4yUcgPXBsoN6lKn6BuhjvSLVMd4l4GMnDSrHmlWPdKseqRZ9Uiz6pFm1VOVNHusz3NG+h7NEF9o1qxZ/f5YBogMsOaaazovNSRt60va1pe0rS9pW1/Str6kbbn0+pGNMB70iwxPWYxrg5FSbuDaQLlBt6hTKNu1oW+EutEvUk3qx+qRZtUjzapHmlWPNKseaVY90qx6yp5m6/ZxzsjEvn0SAAAAAAAAAAAAAABASQioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEjOhEaj0RjvgwAAAAAAAAAAAAAAAOgnT6gAAAAAAAAAAAAAAACSI6ACAAAAAAAAAAAAAABIjoAKAAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAACA5AioAAAAAAAAAAAAAAAAkiOgAgAAAAAAAAAAAAAASI6ACgAAAAAAAAAAAAAAIDkCKgAAAAAAAAAAAAAAgOQIqAAAAAAAAAAAAAAAAJIjoAIAAAAAAAAAAAAAAEiOgIqKue2227L3ve992bOe9axsxRVXzKZNm5bNmjUr+9SnPpUtXrx4TPv++9//nn3pS1/K9ttvv+x5z3tetuaaa2ZTpkzJP2f99dfPXve612Xnnntu1mg0uvZ96F/6thP7jfSdMGFC/rPuuutKloql7be//e1m+g33E9tS3Xz7y1/+MnvTm96UbbDBBvlnrbLKKtnMmTOzOXPmZF/96lezBx54oKufl7pepe2tt97acZ5VNlc330Y6f+ADH8i22GKLbNVVV80mT56cf84222yTHXPMMdl///vfrnwO/U/bW265JXvPe96TbbLJJtlKK62Uf86GG26YHXzwwdlf//pXSQKMm6hbzjvvvOyoo47Kdt5552z69OnNtkS0IUfqZz/7Wfaa17wm7xtYbrnl8v/Hv+PvnXrssceyr33ta9ns2bOzGTNmZMsvv3z2zGc+MzvooINGVGbOnz8//17Pec5zspVXXjn/id/jb/fcc0/H+7nuuuvyz45jiGOJY4pji2OMY+3nuanatdHt+86ol0844YS8no76OurTqL+jHo/6vN91/2WXXZa94Q1vyNZZZ528L2z11VfPdtxxx+y0007LRiK2f/nLX56/P/YT+4v9Xn755VkZXX311XnbNI65uJ6f8pSn5PeZ+++/f3bJJZeMaH/Kjd6em6pdG8qN+pUbixYtyk4//fS83N1uu+3y/qnom1p22WWz1VZbLdt+++3zsr3TurlMZW9d66UqXRu//e1vO25rHH300cMek3ZoNUTfWWvaxnUwHO2N3p4boLfqeA/2t7/9LW/rvPKVr8znGUTbZYUVVsjWW2+9bK+99srOP//8rBvGazy8jmkW6dTvscl+1lF1S7PouxvpuPJo84B8lmUPP/xwdsUVV2Qnnnhitu+++2YbbbRRNnHixOa5LfNckn63BeuYbt3+Tu3EPW2n+bmTe6SU06zT8xj9Et3Sz768uqVZpMNI67TR5gH5LMvuvvvu7Bvf+Ea2zz77ZBtvvHF+7URf3RprrJHttNNO2dy5c7MlS5Z0fE5vq3GdtpQGlfHjH/+4sfLKK0c0w6A/M2fObNx4442j3v/rX//6tvtu/dluu+0a8+fP7+p3o/fp28773ve+pT5nnXXWkRwVS9tvfetbHeXd+IltqU7aFu69997GbrvtNmz6/ulPf+rK96K3aXvLLbd0nGeLn5e//OWSpUL59pRTTmksv/zyQ6bptGnTGhdccIF0rVjafv3rX28su+yybT8jXjvxxBO79p0ARmKoeme//fbreD+PP/5444ADDhhyf295y1vy7YYyb968xqxZs9ruY7nllmucdNJJwx7PFVdc0Vh99dXb7meNNdZo/P73vx92P3Pnzh2yDN9qq63yY+7HuanitdHN+86ojzfccMO274/6/Cc/+Unf6v6PfOQjjYkTJ7bdzyte8YrGkiVLhtzH4sWLG7vsskvbfcT+jz766EaZzJ49u6P0fOMb39h4+OGHh9yXcqP356aK14Zyo37lxoUXXtjRtTF9+vTGz3/+88qUvXWsl6p4bfzmN7/puK0R52go2qHVEH3ZkyZNWipt4zpoR3ujXu0NSFEd78HiWDv5TjvuuGNjwYIFjbEYj/HwOqZZiPkgnXyvbswb6XcdVcc0i767Tq/94ueyyy4b1fmTzxqNN73pTUOe2zLOJRmPtmAd062b32k4cU/baX4e6h4p9TQLnZ7HmOs6Vv3uy6tjmkU6dJpmxTm94447GqORej6LMdFllllm2GOJPtE///nPSddpAwmoqIg//vGPzYl5T3nKUxrHH3983gj+1a9+1XjrW9+61MW5aNGiUX1GNMSf//znN9773vfmDeWf/exnjauvvjrvDI+JYZtssknzc7beemsdbxVL33afG4XnlClTGiuttFL+GQIqqpe2rTe2v/jFLxrXXntt25+xdlbR37QNCxcubGyxxRbN/b3mNa9pnHrqqfnEsquuuqrxox/9qPGud72rseaaawqoqEjaPvLII0Pm0+Jnn332aX5WpDnlT9twySWXNCc+xP/333//xjnnnNO48sorG2eeeWZj1113bX5OHMs///lPSVuRtD3ttNOa+1lllVUaxxxzTJ7eURbHDekGG2yQvzZhwoTGD37wA+kK9F1rZ9Laa6+dB2SOJqDigx/8YPN9m2++eV7+RT0W/49/F68dfvjhbffx2GOPNbbddtvmtq997WvzPoYIfPjiF7/YWG211Zp15fnnn992P//6178aM2bMyLeNyVaHHXZY46KLLsp/4vdiAlbs7/bbb2+7n5/+9KfN+vlpT3tafgxxLHFMcWzFccYxx7H38txU9dro1n1n1MNRHxf7ino66uuot6P+jno8/r7CCisMeX/Trbr/a1/7WnPbZz7zmY2TTz45T9Nov734xS9uvrb33nsPeX722muv5rbxvqL9F/uL/RavRXBmWRTH9fSnPz2/p4y2ahzz5Zdf3vjsZz/beMYzntHx91du1Kvc6Na1odyoX7kR4wRrrbVWPuj3hS98Ie+Tiuvi0ksvze+B9thjj+ZAXQQxXnPNNaUve+taL1Xx2mgNqPjmN785ZFvj7rvvbnss2qHlqU+GEgPfxcTC4t5guEkM2hv1am9Aiup4D/bSl760uYDUgQce2Pj+97+ft4HiWKINttFGGy3V5zKWiU/jMR5exzRrDaiIxfyGOo/XX3/9mM5ft7536mkWE0mHG1OOvtKi7zPuOUZLPls6gCXmUMXk39bFfso4B2w82oJ1TLdufqeRTPQeLn8/8MADY/qsOqdZKLZ/+9vfPuR5vPnmmxtj1e++vDqmWaTDcNd89CMV+9xhhx0ao5V6Pjv22GOb/XDR/og+x9/97nd5/fTDH/5wqXHCGIcdaoz1jzWv0wYSUFERRQRTTBYYLJr4hBNO6Hh1nnYeffTRIV+Pxn7rRINzzz13VJ/D+KTvYOlZTNKOCYHFjbOAiuqlbeuNbax8T73y7b777ttcnWKocveJJ54YthynvGXyYGV0NLKLm5GIdqcaaRsrRRb7+PKXvzzoNhG8Wmzzjne8Y1SfQ3/T9sEHH2x2bMdNYtxYD3Tfffc1Nt100+Zk3fvvv18yAX111FFH5asn33XXXU96Klank+ZjoLQIUthyyy2f1AaJ8jD+XpS57VYbiQ7k4rMPPvjgJ70e7ytWMomAtHbt2KItHD9nnHHGk15v7Vht9x0jmHX99dfPt4nPvOmmm560TRzjcKsYduvcVPXa6NZ955FHHtncT9TPA8XEy+I8D7VqVDfq/nvuuScPkiwCTQY+oSTa5K3BsO0m+EWncbFNbD8wKCf2G/uP11ddddX8CYRlEO3WyEPtgojiuFsnGUdn+2CUG/UrN7p1bSg36lduDBV0WDj77LOXWhSk7GVvHeulql4brQEVY/lu2qHlqU+G8rnPfS5P62c961n5IPhwaa+9Ub/2BqSojvdgsVJxTBp86KGHBv2MOJbWyeTf+c53GqM1HuPhdUyzUMwLGckCLKMxHnVUXdNsOF/5yleanxMTKEdLPms0Tj/99Pw8XHfddc0gsNYV1cs232C82oJ1TLdufaeRTvTulzqmWehGPurEePTl1TXNhhOLqRX7/O53vzvq/aSezyKA4wMf+EDjv//9b9vjbZ23FAvFplqnDSSgogIiOrm46A466KBBt4mC6tnPfnazYI4JA70QEVPFsfyf//N/evIZqRmv9P3MZz6T7y9WhojHCAmoqG7aCqiob9pefPHFzc/51Kc+1YUjpyp17s9//vOOGq6UL22nTp2av/+pT33qkE+eKY7lec97nmSsQNpGlH7xGR/+8IeHXJWz2C6e8AYwnkYzaT5W8SneE/f/w/ULDDYQGIoyN1YojA6uwXz84x8fMljizjvvbK6stuOOO7Y95ngttolt4z1DBV3EZw4mjrGowzfeeOOenpsyGK+Aiqh/i4micY20W5ky6vPis2LlmV7V/Z/85Ceb+4nVbQYTq/IUK2rH47wHs/POOzc7cNut4tP6pKvBJuyWVQTiFMd96KGHDrqNciONcmM014ZyI81yIxQrEU+fPr3UZW9d66WqXhvdCqjQDi1/fXLbbbc1n/7y29/+dqlJDu3SXnsjzfYGpKhq92CdiMWJWicgjlZZx8OrmGb9Cqgoax1VxTQbzgte8ILmE9RvvfXWxmjJZ4Mb6YThfs43KGs+63deG0wvJnp38p3KOtG7rmnWr4CKsvblVTHNhhJlY/EUh+g3aFd3dkI+G17MF15jjTXy8x19pIP1jf4+wTqtXCUzg2pdneWKK65oe5ZaG9rxmMNeiCiz4jMOOeQQKVbR9I2bqBVXXHGpDmoBFdVN27Le2NZZv9L2da97XbPhsmTJkjEeNVWqc/fZZ5/m/mNgkeqkbVG/RmT0UGLyQGy3ySabjPgz6H/aRvR+8d5LLrmk7XaxetCUKVOGXb0UoIyT5uOJZ8UTsmKl2E4mw0XHZrxv4Aoixee+7W1va7uPCH4Y6tG2scJh8XqsfNNOayf1YI9Sjn0Xrw8WcDHYZMn4Dr04N6kHVET9W+zjE5/4RNvtWjtEB3tsb7fq/q233jp/LVYCjI7j4YJ24qmBAx9XHP+ORybH6zvttFPbfcT+ixUH43OrIh51XZzDwSbuKjfSKTdGem0E5Uaa5UYoVgqLgc8yl711rJeqfG10I6BCO7Qa9ckrX/nKpdqhwwVUaG+k296AFFXtHqxTxXhIu+CwKo+HVzHN+hFQUeY6qoppNpQbbrih+f7tt9++MRap57NuTRju15h0mfNZFdOtW/1hVZ7oXcU060dARZn78qqYZkO54IILmvuLJ6GNhXzWmTlz5jTP+WBPszg8wTptYkbpXXLJJfn/V1xxxWyLLbZou912223X/P3SSy/tybGcfvrpzd+f9axn9eQzUjMe6XvwwQdnDz74YLbvvvtm22+//Zj2RTXyLtVL20ceeSQ799xz89932GGHbMqUKfnvjz/+eHb77bdnt956a/bQQw+N8htQ5nx7//33Z+ecc07++7rrrpu96EUv6ur+U9WvtN1oo43y/99yyy1tt1m0aFE2f/78pban3Gl7zz33NH9/2tOe1na7SZMmZdOmTct/v/zyy7PHHntsRJ8DMJ6i7vrPf/7zpDJzMMXr//73v/N26WDl8nD7WX311bOZM2e2LZc73c9w5Xuxn6hz4zNHs59unZvUdZqmW265ZbbCCisMm6ZjqfvjfuvKK6/Mf996662zZZdddtj9PPzww9nVV1+91GtXXXVVvq/hvlPs/wUveEHzPY8++mhWBfGdC8sss8yTXldupFtuDHdtdItyo3rlxvXXX59dc801g44flK3sreP1VdVro1u0Q8tfn5xxxhnZeeedl/edfPrTn+7oPdob6bY3IEVVuwfrVNF26+W9w3ipa5qNVZnrqLql2SmnnNL8/Y1vfGNWR/1Ks6qNSZfte1c93crUHzZe6phm3VDmMYC6pZk6rf9pNtw1dEmCdZqAigr4+9//nv9/gw02yCdptdPaCV28pxtiwl9MCDvggAOy448/Pv/b9OnTs9e//vVd+4yU9Tt9Iyjm/PPPz6ZOnZp95jOfGfV+KGfe3X///bOnP/3peUMt8mk01o444oi8EqFaafvnP/+5GTCx6aab5hOw3/3ud+fpuvbaa2frrbdetsoqq+TBFr/97W9H/V0oV50bzjzzzGzx4sX57xH4NmHCBMlUobR929ve1pyA/7WvfW3QbY499tgnbU+50/YpT3lK8/f77ruv7XaxEEaU1yE6Vm666aYRfQ7AePrb3/7W/H24SW5Dlamj2U8EDEfQ/2D7iTbvUIEQa6yxRrbyyisPeiwPPPBAvu/x+E6D7acuRnvf2el5jPo86vV257Abdf8NN9yQB6sPdyy9uDYi4PLGG2/MquB3v/td8/dnP/vZT3pduZFuuTHctTGQcqPe5Ub0YcTxffazn80HtIrA8ujHKnPZW8d6qarXxkAf/vCHs3XWWSdbbrnl8nGMzTffPHvPe96Tn6ehaIeW+9pYuHBh9q53vSv//ZOf/GTejuyE9ka67Q1IUdXuwTrxpz/9qdln3sm9Q9XGw6ucZhdddFG22WabZSuttFIeQBxjz6973evyRd/+36Lfo1fmOqrKaTZQpNP3vve9/PdIwzlz5mTdkmI+q9qYdNm+d9XTrRf9YZ14+ctfnq222mp5Xov/x6LIn/jEJ7IFCxZk/VblNPvhD3+YbbzxxnlZGPXahhtumO23337Zb37zmzHvu8x9eVVOs4FiPO/ss8/Of48+oW4uEC6fDS6CfmJOeLGoaLFwaOp1moCKkovJtMUKxmuuueaQ20bHckQDhWLCwGhFoRQTOONnxowZ2TbbbJN985vfzBvk0ViOAmzVVVcd02fQ//SNBlcxWBENsEhb6pV3Y2L9nXfemVd6MZn397//fR4IFRXb17/+9THtm/6mbWtj4YknnshXw/vCF76QDzwVYrLuL3/5y+wlL3lJPghFNfNtilHXdU7bN7/5zc10e8c73pG99a1vzX7yk5/kq0b+6Ec/yl7zmtc0V+CLCQIve9nLRvGN6HfatnZAtHZMDDY4FDf7hX/9618SC6iMO+64o/n7cGXqWmut1fx9YJk6mv1EX0Pr+1r3M9w+WvfTjWPp5X7qYrT3ncV5jPp4uD6l4jzOmzdvqRVyulX3uzaGF/eh0XdU2HPPPdumaSfpodwY3bmp6rUxkHKjfnXKt7/97eb4QZS1saLq+973vuzuu+/OX//gBz+Y7bPPPqUue+tYL1X12hjosssuy++no+8z+kLjyRaf//zn83vzo48+uu0EP+3Qcl8bhx12WHbXXXdlL3zhC/MF3DqlveE+BVJRxXuwTnzsYx8b0b1DlcbDq55msRJwLPAXYxpLlizJV/iNp0nFONbs2bPHNHG+rO3bqqfZYEExxcrMkW4xibhbUsxnVRuTLtP3rnq69ao/rBMXXnhh3tcQeS3+H+PQhx9+eLb++utn5557btYvVU+zmF8VE6ujPot6LRY9jHk3MZcqysehFkwcTlm/d9XTbKCzzjqrGVT4hje8oasLz8png5s7d26zztpjjz2e9PpDidZp7cNGKIX7779/0JVx24kLMwqX1olc3fTOd74zO/LIIzteOYZype/73//+fOAiHhseEzypT9pGY/q1r31tnrZFxXHzzTfnDY5Y7T4quVgFPRocBx544Kg+g/6m7b333tv8PYIlIg132mmn7Jhjjsme85zn5Ku5RPrGIGQ0/uP/EYW52267SaoK17kxWFxM1o5gxmIFRKqTtvEYvO985zvZrrvumg8UfOMb38h/Wr34xS/OPvShDwmmqFDa7rzzznnEfawmEStrRtDMwPZwdFpEkEy74wOoU5ladIqFgWVqt/fTafnej2MZ636qbqz3naNJ0+I8xgrVrfsYa93v2hje5z73uezKK6/Mf490H+xxzmU7j8qN8lwbBeVGenVKrHAbg3GzZs2qZZlR9nqpqtdG65PHolzZdttt8/Ij7sOjr+y8887LJ0LEBJOPfvSjeaBF6+TMgvqkvNfGxRdfnPePRZrGE11HMjGiDmWHtihQ13uw4RT9BSG+T3yvsSjbeHhV0yxWQX/Vq16Vr9a8ySab5E+HjSDWWKH4q1/9aj4x7dJLL8122GGH/G/x+kiVtX1b1TTrZJG+WIm9G1LOZ1Ubky7T9656unW7P6wTm266afbqV78622qrrfKnwcT97vXXX5+deuqp2QUXXJCXy7vvvnu+cGOMU/daVdMsnkgRddpLX/rSfL5UHFcRmBL3nhEQFk9einlUMal+8uTJI/6MMn7vKqdZPxeelc/ai7q9mNsS10YEcg10f6J1moCKkovGaOuNzXCKjvyIuBuLb33rW/kFHhHQUUnHqspx8/SlL30pz1DR8RmPeqE66RvR6fGUkdF0WFPutI1o2rhBHpimMTgVj+WMAadoPEUDPB6NHo3J1VdffcSfQ3/TtvVxnvGZ0WkVaRmTtUM8YSY6K6Kja7vttssn8kYDJ9JX/q5WndsqHstarLLn6RTVTdtY/SBu+K699tpBX48O6JNPPjlfWfEZz3jGqD6D/qZtdBpHmRtt4ViVKVZTPOGEE/LgmPjcWC0zVsn8xS9+kf87JneM5nMAqlKmFuXpYGVdt/czlvK9bN+pyrpx3zmaNB14HrtV97s2hhYDThG0H+JR89EnOJiynUflRnmujaDcqHedEoP+8TTV4tj++c9/5qvZxpOt99577/xpAq985StrV2aUvV6q6rVRtCluu+22J01ueN7znpfvMyZrxaS/WFgmVmCM9sdzn/vcpbZVn5Tz2og+kki/6POMdmL0Z49EHcoObVGgrvdgw42T7L///vnvyy+/fPbd7353TOOXZRsPr3KaxeTLwZ7Qtv3222eHHHJINmfOnHwyb6RhBLPGIlMjVcb2bZXTrN1xFgFLMdYYk4nHKvV8VrUx6TJ976qnWzf7wzrx7ne/Ox9XHuj5z39+PkckngIT49KPP/549pa3vCW/r54yZUrWK1VOsxi3H6xOi/lVhx56aB6M8qc//Sn/jvG9YiHxkSrj965ymrV7OkE8GSm84AUvyJ92OlbyWXuLFy/O6/PiyS0nnnhiHtg10EOJ1mkTu75Huqq1QiwmZg2leNx03JSOxXrrrZd3akakVjzOLxrDf/nLX7JddtklbyRHg3k0j3RkfNI33ld0WL/rXe/KV7enPnk3VoUYqgMqBqiOOuqoZqUYk3gpf9oOvCGKp1QUwRStYsW2YkWX6NhqN4Gb8ta5raJDuWgARscU1UvbWHEvVm2J1SKiAzPS9K677so/N1b1+fKXv5yvlHD66afnK0789a9/HfFnMD5p++lPfzpvC4cbbrghn9ARdXDsK9I8gili0sgBBxzQfE83H68MUKYytShPBytTu72fsZTvZftOVdaN+87RpOnA89itut+10V60T2MAPZ7MFefphz/8YT4oM5iynUflRnmujaDcGPo6rXqdEoPVMX4QPzFWsNdee2U/+tGP8sUFYkGmWPnv29/+du3KjLLXS1W9NorV5YZaKTL6UGKRgxDjHMXvrdQn5bw24mki//jHP7K11147+8hHPjLi99eh7NAWBep6D9bOf/7zn7wvPVaajb6EWPQxFpgaizKNh1c9zQabeNo6phHBsNOmTcv/HU8Y66TOG6hs7duqp9lgYsX1RYsW5b+/4Q1vyCZOHPv0v9TzWdXGLcv0vauebt3sD+vEUOVwOOigg5rjzVGnxhNieqXqaTbUuYyFwiPwrOhriEnjo1G27131NGu38GwsItzNJy7JZ4OL62aPPfbI/vznP+f/fvvb35696U1vGnTbKYnWaQIqSq51ElYnjygpVjTv5DEro7lw48kVMQkwJgQedthhXf+M1PQrfY8//vj80WCxunKsIkBaeTdEQE1x8xuRqpQ/bVs/J55Gsfnmm7fddscdd2z+ftVVV43ocyhPvo0VYWJwMcSKHsM18Clf2kbDPVZbjEjuWJHliiuuyDsx42Y9btTXXHPN7OCDD86fGhXtqugA6dYNYar6mW8j0CkCZU466aRss802W6pTOTop4pGIEVBTPGUmTJ06dcSfA1CFMrX1aWoDy9Ru72cs5XvZvlPdDXffOZo0HXgeu1X3uzYGd8stt+Srfy9YsCAP6I8g4Be96EVtz2/ZzqNyozzXRqeUG/WrU/bdd998UC4GQWN123vvvbdWZUbZ66WqXhudiuCMlVdeedi2RlCflOPaiL7Oj3/8483JKxE4M1J1KDu0RYG63oMNJur4+E633nprs/yPOrwf+jEeXsc0G2xSfZFmsa+rr756xPsoU/u2rmkWAcuFWNG+X+qcz6o2blmm7131dOt3f1gnIqiiIK+N3vrrr58/rSLcdNNN+fyMkSrTtVrHfDaeC8+mls9iHksET5x//vn5v/fcc89BFyxJvU4TUFFyMdnuqU99av77cE+EiIxXXDAxcb4Xpk+fnr3whS/Mfz/33HPzR7lR/vSNle3Dy172snwiYBTOA3+Kfcf/i7/9+te/HuU3o2x5NyZ6FscTjzyj/Gnbun1Mwu5023nz5o3ocyhPvh2vjq8U9Cttf/7znzfL2HiEZLvH3P7P//xPHmgR/vCHPzSjvyl/vo0VfuLRqvFo0AicufHGG/M0v/POO7PjjjsuP574W2HjjTce1ecAjIfWNudwZWosslAYWKaOZj8xCDewzVv8u5OnYxb7GXgs8bSokR7LYPvp1rmpu+HuO4vzGPXxwoULOzqPEVze+vjebtX943m9D7afMojBpOg3iv8XK4jGKuJDUW64NsZKuVHtcqOdouyIMjjuk8ta9taxXqrqtdGpSZMmZTNnzhy2rRG0Q8txbXzuc5/LVxaMSSyxivFgY1PXXXddc/sYkxo4ZqW9kUZ7A1JUh3uwgeKJFDvttFPzydzHHnts9o53vCPrl16Ph9cxzdppHdsYzbksSx1V1zS7++67swsuuCD/fYsttujrWFSd81nVxi3L9L2rnm7d+k7dNNZyOMU0a0edVu40i8DNv/3tb80nIfVzwcrU8lm0y0899dT895133jl/MshQT7iakmidJqCiAorMG5Fy8diVdopVrcNYH5k4lBg0CNH5OX/+/J59Tir6kb7Fo3DiCSOxcvZgP0Vaxv+Lvx1zzDGj/FaUMe8O9XhGype2MeG68Pjjjw+5bevrMbBI9fJtBCjGQGHRERUdzlQvbf/+9783f3/e85435LbRwTnYZ1KdfBtR8htssEH29Kc/vXmjGeXxNddck/8ekwUiGBmgKlo7Doerm4YqU0ezn+jwGrhabbGfCGC766672u4jgtqKx9sPPJYoq4vOtH5/p8H2k4Kh7js7PY9Rn//zn/9sew67UffHZMxYDWi4Y+nFtRH3bBtuuGFWJtEXFCt13Xzzzc0VRDsJ8lZu1L/cGO21MRLKjWqWG52MH4TbbruttGVvHeulql4b/S4zWl/XDu2teJpriHqk3djUWWed1dw+Jt4Wfy8WDtLeqH97A1JUl3uwVkuWLMl23XXX7Kqrrsr//f73vz874ogjsn7r1Xh4HdOsl+exDHVUndMsJkMW8wP222+/rN/qms+qNm5Zlu9dl3Trd3/YeM7vqmOala1O63ZfXp3TrHXh2X7XaSnlsw984APZV7/61fz3eEJG9MVMnjy54+O5KZE6LQioqIBtt902/39E8cQqxu20PnqmeIpEL7RGZFXpkdJlVbb0pZ5pG4MPRdBMTPyk/Gm7zjrrZGuvvXb+ezwWNx691U4xqDtwFV6qk29/+tOfZvfcc0/++z777CMwpqJp2xrQNNTNRGh9ypdAqPrUt7/5zW+aebmfj6ME6Ib11luvea8w3KNtL7roombbc9111x20XB5uPxEkccMNN7Qtlzvdz3Dle7Gf66+/fsjAjKH2061zU3fD3Xd2mqaxIlGxks1QaTqWun/ZZZfNttpqq/z3yy+/vLkQxVD7iRXJt9xyy6VemzVrVr6v4b5T7P+KK65ovqeTjup+iaClHXfcsbkK1Cc+8YmOVxBVbtS73BjLtdEp5UY1y43Rjh+UreytY71UdmMdW4q+lqL9OJa2hnZotWhv1Lu9ASmq0z1Y63jH7rvv3tzX2972tuyEE07I+q1X4+F1TLPhFN91tOdyvOuouqdZMfk07nEiELWf6pzPqjZuWYbvXad062d/WD/K4ZTSrNfncrzHAOqcZq0Lz8YiHPHUhH5KJZ8dd9xxzbZ5XJvnnXdetvzyy3d0PNsmVKc1NSi93//+9zGLNv856KCDBt3m8ccfbzz72c/Ot1l11VUbjzzySE+O5fbbb28su+yy+eess846PfmM1JQlfSM9pWs90zYcd9xxzWM59thje/IZKelX2r7nPe9pfs6FF17Ydrvtt9++ud2//vWvEX8O459vX/Oa1zQ/909/+pMkqWjannnmmc3POOyww4bcdvfdd29u+4c//GFEn0M569snnnii8cIXvjD/jMmTJzduvvlmSQWMq1tuuaVZPu63334dveftb3978z2XX375oNvE34ttDj744EG3KcrcadOmNR588MFBt/n4xz/e3M8ZZ5zxpNfvvPPOxsSJE/PXd9xxx7bHHK/FNrFtvGegH/zgB83Pic8cTBzj1KlT82023njjnp6bql4b3bjvfPjhhxurrLJK/npcI1F3Dibq82I/V155Zc/q/k9+8pPN/Zx22mlt+8GWWWaZfJtddtll0G123nnn/PVJkybl2w8m9l981gknnNAoi7j2i/ZL/Hz4wx8e8T6UG/UsN7pxbXRCuVG9cqMTUV4Wx/6b3/ymtGVvXeulql4bnfje977XfP8BBxww6DbaoeWqTzrxkY98ZNjrQnujnu0NSFHd7sHCY4891pgzZ05zu3333bdtu6rXejEeXsc0G87ChQsbT33qU/N9rLDCCo2HHnpoVPsZrzqq7mn2l7/8pbn9brvt1ui3uuezwWy33XbN95Vt3HI824J1S7d+9od14i1veUvzOL773e92ZZ91TLPhxHh9Mc/1mc985qj3M15jAHVPs3PPPbf5/ne9612Nfkshn33+859vbrfppps27rnnnhEdy+8TqdNaCaioiNmzZzcL5ssuu+xJr0dBXFws0fk4UHRCDjVYfv311zd+9atfDXvjVBxH/Bx55JFj/Fb0K307IaCimmkbE2H++Mc/DnkMP/nJT5oNxOWXX75xxx13jPFb0a98e9tttzWmTJnSbNjcd999T9omGnXFfl7xildInAqWydFgLfJopDPVTdsFCxbkncvx+korrZR3ag7m/PPPb04QfcYznpHfYFDutA3z589vO3AQg0Zxw1bs46ijjpKkQCUnzUffQDFJb8stt2wsXrx4qdfj3/H3osy94YYbBt3PySef3Pzsd7zjHU96/aabbmqsvPLK+esbbLBB49FHHx10PzEIX+znhz/84ZNej0HG4b5jdNytv/76+TbxmfHZA7WW4d/61rd6em6qeG10874z+pKGGlSIejzOX7wenfG9qvuLdngxkTb6RKKuH1i/77rrrsNO8Iv+tGKbV73qVfn7Ws2bN6+x9tprNzuT77333kYZxETil7/85WMesFBu1K/c6Ma1odyoZ7kR1/qSJUuG3Oazn/1s87utt956T/puZSt761gvVfHaiPQZ7vvEAG6kZbx/woQJjauvvnrQ7bRDy1OfdDOgQnujfu0NSFEd78EicGL//fdv7icWkhrYLutEWcfD65hmP/vZz570+a3uv//+pb7zoYceOuh2nYypjEcdVcc0G+h973tfc59nnXVWx99JPhv99TaaCcPduEcsaz4rY17rRrp16ztFu32otI35AzfeeOOQ+/j617/e3Mfqq6/eeOCBBxpjVcc0+/GPfzxkuXnXXXc1Nt988+Y+P/OZz4wqzcarL6+OadatRUjls87S7Jvf/GbehxbbzZw5M88TozG75nXaQAIqKiJuEOPGLy6IpzzlKY2PfexjecTNr3/968aBBx7YvODi4l+0aNGIL8ri9ec+97n5hR2VTqy2FJ8bk/4iWioq6WIfm2yySdsIasqXvp0QUFHtvLv11lvn+/7pT3/auOqqq/KfWIl1jz32aFaO8fPlL3+5R980Pf3Kt60Nj4022ihv8MSAYXzOIYcc0mxMRGeLwZBqpW0h8mWx/ac//ekufQvGK22POeaY5jbxGYcffni+/3jyyM9//vM8qrqYjNHNSPfU9SNtYyLv0572tLyz4kc/+lFeFl9yySWNr3zlK43NNtus+f5YoSI6OAD67eKLL847EYufT33qU82yKVZDaX2t3WSc8MEPfrD5vuhsPv300/P7i/h/a+dz1HHtRGdy6wos0Ska9WBMhDvxxBMbq622Wv73CDCMPod24ulrM2bMaHaOfeADH8i/Z/zE70WdGtu0WxUoxH1SEcwYZXkcQxxLHFNrh+2222475MB/N85NFa+Nbt53Rj0c9XGxbdTTUV9HvR37jno8/h71+lBPbhtr3V/42te+1tw2VqiK+634XrEy0otf/OLma3vvvfeQ53ivvfZqbhvvi/fHfmJ/sd/itRgMK4vXvva1zeN6yUtekg/mXXvttW1/ojO7HeVGvcqNblwbyo16lhvRfxwrq771rW9tfOc738nvh6655pq8non7ota6PyaztXvaapnK3rrWS1W7Nopgz+c85zn5AgXxfWN8KgbTzz777PxpFMUEyfh5//vf3/ZYtEPLU590M6AiaG/Uq70BKarjPdh73/vepeaPRN091HeKn8GUdTy8jmkWEx+j3RYrMn/729/O22vRzv3tb3+bn9tiMmgxLt1uFeNOx0L7XUfVMc0G7m+NNdbI3xPpOJKxKPmsszSLJyAP7CuNvFC8d+Br7SbGd+Mesaz5rK7p1q3vNNxE73g95vi87GUvyyf4X3DBBXn9GeVC3E+3TqCP7WL+ZjfUMc2iL+LpT396Hvz3/e9/P5/oHXVa9DnEPNfp06cvNfbTbuHETgIqxqMvr45p1iqCTpZbbrlmO3Ik5LPh0yz601rnE0ZQ7XDt9HbBW3+seZ02kICKColKsohOHuwnLsp2hVGnjeNOfmIF9P/+9799+MZp6WX6dkJARb3zbqyYXqYB2LroV76NBkNrR+DAn+hsGSwKlPKnbXj+85/fvCGOmxCqnbaxItO73/3uIfNs/EyePDmfzEh10jYCKoZK00jzN7/5zaN+/DXAWEX51el9ffy0E09OivJsqPfGpLbhnrAUK/LMmjWr7T6io/Skk04a9ntdccUVSy3wMPAnXotthjN37tylJuIN/Nlqq63yYx5Kt85N1a6Nbt93Rn284YYbtt1P1OexsmQv6/5WMXFzqLbbLrvsMuyq27EyTmzXbh8xMD7UYMx4GMk1ET/Rb9SOcqNe5UY3rg3lRj3LjaL/eLifNddcM58QUJWyt471UtWujdanZw31E31nRx99dN73MhTt0HoGVGhv1Ku9ASmq4z1Yp22A1p8qjYfXMc1aV5Ie6ie2G+opH52Ohfa7jqpjmrWKyZDF++KJuyMhn3WWZiOZOxc/Qy1cNNZ7xLLms7qmW7e+UycTvTvZ/1Of+tTGOeec0+iWOqZZp+2QCGZbsGBB22PpNKCi3315dUyzVl/96leHfGrsUOSz4dNspOOCw/XJ/LjGddpAAioq5tZbb2285z3vyS/CuCGMxwTFo0w++clPDvnEiOEuykceeaTxi1/8Il/ZJ6LoYgAhMkGs9hiRzVtssUX+CLpYWYjqpW8nBFRUM20jsu973/tenj9jUnasGhH7j4lCsfJqRKkef/zxjbvvvrvH3zBd/cq3ETCx7777NtZdd928Y2WVVVbJO1+OPfbYxsKFC7v8rehX2sZTRYptd9ppJye+RmkbTy9429velkfTr7TSSvmgf+TbaFPFqk1DrRBAOdM2HoEYQTDxBIr11lsv339E4MdnHXTQQR1N5gWoQkBFIVb722233fIVfuL+Iv4f/+5ktbRCPG45ViWO1X9iAGDKlCmN9ddfP1+9+Lrrrut4PzHweMQRR+T1apS98bPpppvmf5s/f37H+4kVVuKz4xjiWOKY4tii43aoR0P34txU6droxX1nrHQT9XPU01Ffx/5iNaOox6M+73XdP9Cll17a2GeffRprrbVW/r0iaH2HHXbIV7YaiVNPPTV/X7w/9hP7i/2WMQC+mwMyBeVGb89Nla4N5UY9y41//OMf+eqJsUJePEkg6oAYP4h73liJLwaoY0Cz0/K3TGVvXeulqlwbsbJuLGIQ/SXRNot77nhvLEYRK0rGqr6xumQEXnRKO7R+ARUF7Y3enhugd+p4D9avgIrxGg+vY5rFCr+f+MQn8s981rOelbe1ot0Wc4Pi33H+4wkKwwWwjnScu191VB3TrFXcIxTHPtIxKfmsszTr9oThsdwjljWflTGvVSmgIuqqk08+OX9SUMwbiIUHYuX3KBfiO8c49Be+8IXGfffd1+imOqZZPF3pox/9aD7PJvJYzG+NOi3yWYwfxfh9J31DnQZU9Lsvr45p1mqbbbbJt4t5NP/+979HdG7ks+HTrNsBFXWu0waaEP/JAAAAAAAAAAAAAAAAEjJxvA8AAAAAAAAAAAAAAACg3wRUAAAAAAAAAAAAAAAAyRFQAQAAAAAAAAAAAAAAJEdABQAAAADwf9u762ipyrUB4K+IiYGCHYBiJyJ2YFxbsbjWtePafa1rgL0MbL2Y2IGtmCjYXttrXMHCbsUCC+dbz3vXzHc4Z2bOOTAH0PP7rTXrbGb23rNnD/+8zzwBAAAAAAAA0OooqAAAAAAAAAAAAAAAAFodBRUAAAAAAAAAAAAAAECro6ACAAAAAAAAAAAAAABodRRUAAAAAAAAAAAAAAAArY6CCgAAAAAAAAAAAAAAoNVRUAEAAAAAAAAAAAAAALQ6CioAAAAAAAAAAAAAAIBWR0EFAAAAAAAAAAAAAADQ6iioAAAAAAAAAAAAAAAAWh0FFQAAAAAAAAAAAAAAQKujoAIAAAAAAAAAAAAAAGh1FFQAAAAAAAAAAAAAAACtjoIKAAAAAAAAAAAAAACg1VFQAcAEM2DAgDTZZJPlx4gRI9z5FlS8z3369BnncwwdOrR0ntiuL85dfL2cnj175tfiLwAAADDxiMmUt9NOO+XYRefOnSfwNwIAAAA0RWN5CbQ8cSUAWgMFFQAAAAAAAAAAAAAAQKujoAIA+MNO0QAAAACoS9dEAAAAgD+Wnj175vyR+AsAE0PbifKuAMAkLxaqhUJhnI8fOnRoTa8HAAAAAAAAAAAAoJZMqAAAAAAAAAAAAAAAAFodBRUAAAAAAAAAAAAAAECro6ACgJr55ptv0hFHHJEWXnjhNM0006RZZ501rb322mngwIGNHvvLL7+ku+66K+27776pR48eaaaZZkpTTDFF6tChQ1p++eVTnz590pdffln1HJ07d06TTTZZ2mmnnfK/hw0blnbffff8/FRTTZVmm222tNlmm6Wnn366SZ9nxIgR6fDDD0/du3fP1xHX07Fjx7Tqqqvm63nnnXcqHvvtt9+mU045Ja288spplllmSVNOOWWaY4450sYbb5xuvvnmVCgUKh77448/phtvvDHttttuaemll04zzjhjfu84z+qrr57OOOOM9MMPP6TmGDx4cNpkk03yNUw99dRpvvnmy/f6o48+qnjM0KFD8/2MR2w3V8+ePfOx8bfc91TUt2/f0vsUH8XvcPPNN8//jv8PP/30U9X3++2339Lss8+e999ggw2afb0AAADQmo0ZMyZdeeWVaaONNkpzzjlnjqVEPGSVVVZJ/fr1S6NHj25yDCDiDQcffHDq2rVrjhHFedZdd9107733NularrrqqhwDiXjAdNNNl5ZYYol0/PHHp++++y6/XowfRHymfhxj5513Lj3XpUuXBjGHajGOkSNHpmOPPTYttthiqV27dql9+/ZptdVWS9dee22TrhsAAABag1iPF9fZxfyIE044IXXr1i2vpeP5AQMGjHXM7bffnnr37p3mnXfenLMQ+y277LI5XyByTcZX5BOcf/75aa211sp5A5GjUcxZueyyy3I+QUvmq4SHH344bbPNNjkeEfGQaaedNnXq1CmtsMIK6dBDD82vV/PCCy+kPffcMy200EI5HhKxidjea6+90vDhw9OkmOszvvcvckPi/8sjjzyS/x1/68dyIsek1nk5ANBAAQBq4PXXXy/MOeecsRop+9h5550LV1xxRenf77777ljH77jjjhWPLT46dOhQePzxxyteQ6dOnfJ+ca5bb721MO2005Y9z+STT1644YYbqn6e008/vTDFFFNUvZ7VV1+97LGDBw/O11rt2A022KDw/ffflz0+ztvYvejSpUvhv//9b8XrL+533HHHFfr06VPxPDPOOGPh0UcfLXuOIUOGlPaL7fri3MXXq32O+vep+D1Ve8R3GAYNGlR67vrrry9Uc8cdd5T2HThwYNV9AQAAoDWpFpMJ7733XmGppZaqulbv2rVrYdiwYY3GACJ207Fjx4rniZhLJb/88kuhV69eFY9dYIEFCiNGjBgr7lEujlHtUTfGUYxHRazijTfeKHTu3Lnicfvss894fw8AAADwZ1A3V2D48OFl19MRiwhff/11Yc0116y6Vp911lkLTz31VKPvVclLL73UaB5Cjx49Cp9++mnZ42uRr3LggQc26RzljBkzpnDQQQcVJptssorHtm3bttC/f//CpJbrM773rynHxndb67wcAKivbcMSCwBonugOGF0GP/4TNRIKAAAXcUlEQVT44/zvrbbaKu244465aj2q5KOL4RVXXJFeffXViueIbgAxNSEmSCy33HK5K0Hbtm3Te++9l6crXH755emrr77Kr8d54tyVvPLKK3nCQ1SeH3LIIbmrQdQY3H///enUU0/NnQn22GOPtOaaa+Yq9fqic0J0IwzRFWHvvfdOa6yxRq6ej06F0RXg1ltvHWvKQtETTzyR1l9//fTrr7/miRj77bdfWmqppXJnx7g/cV3XXHNNuueee/I9uuWWW8rei+i8GBMl4trj2Lj+uBe33XZbuummm9K7776bNt100/TSSy/l7g2VDBo0KD333HO5a8Fhhx2WllxyyVylH50ELrnkkrwdnSfjns4zzzxpQnjggQdyh4L4jCG6KcQ9ris6FoT11lsvzT333OnDDz/M/4e23nrriueN10NMEYl7BwAAADQu4i0xheKDDz7IUyli2mdMh4jufzEhM9bx55xzTnrrrbdyzCPiIjFNs5xPPvkkxyvatGmTYzBx3ugO+Pjjj+cJExFXOfLII/N5YgpEfQcccEC644478na8Ht0bF1988Rx7ipjIRRddlONO5UQHxIgJxfFHH310fi5iQRFXqSu6RNY3atSo3L0w7kUcG10YoxPkiy++mDtlRlziggsuyPtEDAwAAAD4ny233DJPqozciPidPn7rf/PNN/Nkhp9//jmvsSOWMPnkk6dtt902bbDBBnltHjkVjz76aM4n+fzzz/PzsQ6P45oj4hURx4jchxlmmCHts88+Oeck8h9inX/nnXem/v37p2effTb16tUrPfbYY3l6Qi3zVe6+++509tln5+3IyYgciEUWWSTHTyIW8tprr+XzPPPMM2U/Q9y7Cy+8MG/HpMyY2hDXExMuXn755XzuOMff//73PH2jVvkQtcj1Gd/7d9JJJ+X4T0wcjdyWyJEp5n4URWyp1nk5ANBAgxILAGimQw89tFThffLJJ5ftLrjOOuuMVQlev2r9rbfeKvz+++8V3+M///lPYbrppsvHHn300WX3qdtxoHv37oVvv/22wT7XXHNNaZ9+/fo1eP2FF14otGnTJr++4IILFj744IOK1/T+++83+JzFzgvrrbde4ccffyx73MUXX1y6hgceeKDB69HBoZoHH3ywdI2XXnpp2X3q3utlllmmbNX9VVddVdqnd+/eE2xCRf1rrNtNspxjjjkm7xefudL38dlnn5UmihxwwAFVzwcAAACtTbVOgttuu22p298777xT9viIl7Rr1y7vd9RRR1Wdthnn+fDDDxvs89hjj5U6Le6///5l36P4+oorrlgYNWpUg31iImXdmEe5mEJjXRMrdUGMKZ6vvvpqg33efPPNwtRTT5332WSTTaqeDwAAAFqDurkC8Tv+/fffX3a/iCHEPu3bty8899xzZfeJSZRzzDFH3i9iFNXeq5yVVlopv9atW7fCF198UXafe++9t5RjEfka9Y1vvsr2229fiolUm4jw1VdfNXguckaKn69S/sfo0aNLUz7iPX799dfCpJLrU6t8n8byS2qdlwMA9bVpWGIBAE0XkwYuu+yyUqX9EUcc0WCfqO6PfepX+dc1//zzl534UBTTDHbbbbe8ffvttzd6XVHhHt0H6ouOB8XOhNF5oL7TTz89/f777/labrjhhjwdoZL6Ex1i/xEjRuSJEVdddVXuFlBOdHqMqvwwYMCABq8vsMACVT9bdHAodhxoyr24+OKLc1fF+rbffvtctR+iy+Onn36aJkW77LJL/j7ie7nyyivL7hPdBaL7QHF/AAAAoHERx4iufeH8888vO70hdOvWLXd4rBTLqOu8885Lc801V4PnY1rF8ssvXzEmE/GL//VfSHmq5jTTTFO262V0M2wJMbG03NSMrl275qkbISZtAAAAAP8vpimss846DW5JTL2MaY/FNXf37t3L3raYSHHMMcfk7YEDB6Yff/yxybc34gtPPvlk3o5cgo4dO5bdb7311ssxhUpxjfHNVynmWiyzzDJlczOKZp555gbPxYTPsMUWW6Rdd9217HGRgxJxmxBTH4YMGZImlVyflsj3qaZWeTkAUJ+CCgDGy/PPP5+++eabvB2j8iotkqIwodwiupI459tvv53HFsbIv3i0b98+v/b666+XkucrLcZiwVdOXF8kAYR33nlnrNciYf/ee+/N2z179izt11QxKjLEOMlZZpml6r4xpjE89dRTjZ73iy++yCMxi/chHsXzx3jHauJeVApM1C0+iBGMQ4cOTZOizp075yKSagvd4sjH+KyVvnsAAABgbIMGDUpjxozJPz4Xmy40Fsv4+OOP0/vvv192n4jdbLjhhhXPUYxR1I/JhMGDB+e/EY8pV9hQtMMOO9T8a4x4UTThaOy6v/766zRy5Miavz8AAAD8UW233XZln3/kkUfSt99+m7eLxQyNxRwiDyRyUJqbo7HQQgvl3IimvMezzz6b8yNqma8yxxxz5L+PPvpoPq6pvvvuu1KeRmP3aJFFFikVjDQlz2Ri5fqMb77PxMrLAYC2bgEA4+OVV14pbffo0aPqvlH9HT/UVzvXWWedlYsaqk1LiMKHWIDNOuusZV9feOGFq15Hser/+++/H+v5d999t/Sj+Kqrrpqa67nnnst/77///qrV93VV+pxPPPFEOvfcc3MyQfxYX8mXX35Z9fxN+U7q3v+tt946TYqiW8GDDz6Y3nrrrdxlou73E/c9FuDBdAoAAABofixj1KhRqW3bpv9cEPGMeeedt+zUzTZt2jQ7JvPTTz/lNX+o1hgiLLvssqnWIiGhQ4cOTeogGddeTAIAAACA1q5Sw8NizKFuwUFTVMsVqfQew4YNa3KORiTzRw5G/XyT8clXieYPMS3hq6++Sosvvnjq1atXWnfddXNeQ0y+rOTFF1/M5wvbbLNNftT6Hk2IXJ9a5vtMyLwcAKhLQQUA46Vusn9jC57ZZput4msxJnDPPfdstBNA0ejRoyu+VmmkX1Hxh/3owFipOKE5C/qizz//vNnHlPscffr0SX379h3n4+tqzndSrXBjYtt0001zckN8RzGNom5BxeWXX57/xkjHat0kAQAAgPGPZRQLMMYnJlNMFiiqO/Whse6Cjb0+Lpp63eXiSQAAANCazTTTTBMk5tCS7zG++SprrbVWOv/889M//vGP/NqNN96YH2GuueZKG220Udprr73SUkst1SLXPzFzfWqd7zOh8nIAoD4FFQDUTFOrv+t74403SourWKjFInPNNddMnTt3TtNPP32aYoopSonzu+66a94uFAqT3DdX/EF9/fXXT6eddto4neOhhx4qFVPMN9986dBDD02rrLJK7vrYrl27UrfIY489Np1wwgkt9p1Maqaccsq0/fbb544GAwcOTOedd16+H9HB8vrrr8/7bLbZZjpEAgAAwDjEMqKJwZAhQ5p8XJcuXdxnAAAAIE0++eRVYw7hhRdeKOV9NGbuuedu8l0tvkcUKlxzzTVNPi6KHGqdr7LPPvuk3r17p+uuuy49+OCD6Yknnkjffvtt+uijj1L//v3TxRdfnI466qh04oknNrj+EPustNJK41XEMq7GJ69kQuf71CIvBwDKUVABwHipu1D77LPP0oILLlhx33i9nAEDBuTFVSy0H3nkkbTwwguX3a+lJyhE8kDRJ5980uzjO3TokD7++OP0yy+/5DGO4+KSSy4p3denn366YtfFpt6LSve83OszzzxzmpTttttuuaDihx9+yEUVO+20U7r99ttLXSx32WWXiX2JAAAA8IcSsYzw/fffp0UWWaRiEkRLa9++fWn7iy++qLpvY68DAAAAk07MIUTeQ3MKJZr7HpFDMK45GrXMV4mCggMPPDA/YjrnSy+9lG677bY8vSLyGk466aTUo0eP1KtXr7Guvzg9c1w/w8TK9ZkY+T61yMsBgHL+f041AIyDJZZYorT97LPPVt230uuvvfZaqWtApcVVeO6551r0O4ruisUf8B999NFmH9+tW7fSdcbibVwU78Uaa6xRsZii+B5N0ZzvZFJfbC666KJpxRVXzNtXXHFFqYtB6NSpUx6jCQAAADQ/lvHzzz+3eNylmqmnnjrNP//8efv555+vum9j1/lnmdYJAAAAf4aYQ4hpDS35Hu+880769NNPx+kcLZWv0qZNm7TMMsukE044IT300EOl52+66abS9tJLL12KY7TUPWrJXJ9a3r+mxnNqkZcDAOUoqABgvHTv3r1UuX711VdXHM0XYwwfeOCBsq9FtXr48ccfK75PTIy48847W/TbigXthhtumLejcv7FF19s1vGbbLJJ/htjG4sJ/83VlHsR1/Xvf/+7Sed75ZVXqn6OYkFCdAvo2bNnmtDJEsWkjeZMqQiPPfZYGjJkSCnwENMqJEwAAABA82y88cal9fTZZ589UW9fsVFCxDGKP8aXc9VVVzUp3tDcmAMAAABQO2uvvXaeuhDOPffcirkk46OYoxHnPuecc8bpHBMiXyUKK4p5NV9++WXp+WiyucIKK+Tt6667boJO5axFrk8t719T80dqkZcDAOUoqABgvEw11VRp5513ztsxrvD0008vu4DafffdK1aHL7DAAvnvm2++mZ588skGr48aNSptu+22afTo0S3+bR166KG5sCIWi1tvvXX68MMPK+5b/7Udd9wxzTPPPKXzNDbl4vHHH8+FG+XuRbz21ltvNTgmFtDbb799sz7THnvsUXbxGgvye+65J29vuummaY455kgTUvH93n777SYfs9VWW6Xpp58+fz/xfyLGZEbiR/H/IAAAANB0Cy20UOrdu3fevuGGG1K/fv2q7v/uu++m66+/vkVuccQvisUdEUcqFwe65ZZb0m233Vb1PHXjG82JOQAAAAC10759+7Tvvvvm7cgDOeigg/Lv+5V89tln6dJLL23We6yzzjppueWWy9uRq1J3+kOlhpR33XVXzfNVbrzxxqqvxzSFb775Jm936dJlrNeOPvro/Pe7775LW265ZRo5cmTF80SxwQUXXJB++umnNCnk+tQy36cYz4lpI9WKb2qRlwMA5SioAGC8HXvssWnuuefO24cffnheDN13333phRdeyD/Gr7TSSunee+9Nyy67bNnjiwUCsXiOCREnn3xyXvQ888wz6aKLLspjDocOHZpWXnnlFv+24r369u2bt4cPH57HHMYCNiYhxCIyriM6Nq622moNChtiwRkL9Pj7ww8/pDXXXDP97W9/SzfffHN6/vnn8xjEqLo/7rjj0pJLLplWXXXVvGCva4cddsh/owBi9dVXT+edd15edMbjjDPOyGMSX3/99bTiiis26fPEPY/FefwdMGBAvo6HH3447b333qXrjwKFOPeEFv8vQtyT/v37p1dffTUXkcTj888/L3tMu3btcqFLKI7sjPvcqVOnCXjlAAAA8OcRsZf55psvbx9yyCE5HnHZZZelp59+Ok+LGDx4cDrzzDPTX/7yl9S1a9dc1NBSnRHjR/rw1FNPpR49eqQrr7wyxzJiSuV+++2XGy0UEyVCuWmV3bp1K3U1POaYY9KDDz6YYzzFmMOEaNgBAAAApHT88cen5ZdfPt+KmCARkxqiIOCJJ57I+Rex3j///PNzA8h55503/etf/2r2bYtGkjPPPHMaM2ZMjhvEBINrr70255tETCFyVSIHJXIsIk+jfnJ9LfJVIk9mzjnnTDvttFO6/PLLcxJ/MabSp0+ftO666+b9Jp988rTbbruNdewGG2yQDjjggLwd77vIIovknJVijkrcq4iPxHFRdBBFKsWpEBM716dW969u/kjkihx88MH5uyvGct57772a5uUAQDltyz4LAM0w44wz5kVVjGyMJPfoVFi/W2EsHOMH+XKTBOIH8lgQxoImqu3/+c9/NtgnftBffPHF82KxpUUBRUypKF7PSSedlB/1xeepL8YxxmLwr3/9a/rggw/yQj0elcwwwwxj/Ts6DsQ9itGEH3/8cdp///3Hej0W2GeddVbuXhDJBY2JBWs84v6Wu/fx/rGY7Ny5c5rQoltALGqji8Kee+7ZoKtAFICUE4GCSy65pPTvXXbZpcWvFQAAAP6sIukg4i0Ry3jsscfyj97VuvvVj2XUUjSWiHjI3XffnV577bUcT6orujhGokQUdoRi4URd0Tgi4imnnXZaTgCIbpV1RbJGz549W+wzAAAAAP8TSe/R6CDW97feemt6+eWXS1MrahVzmH/++XPuxBZbbJGbOMYEivpTKKq9R63yVeLYKHyIR6V7EQUj5YoTIgck4jMnnHBCzrmJIoxKogll5I1MCrk+tbx/0VjzlFNOyRMqoslpPIqiweaIESNqlpcDAOWYUAFATSy22GL5h+7DDjssj/SLxWDHjh3TGmuskX/ojgKBxirfBw0alH/knmmmmdKUU06ZK+E333zz9MADD0zwCQpHHXVUngRx4IEH5oVdLLDatm2bZplllrxYPPHEE9PVV19d9thYvMU4w1gMRzFDdCKIzxM/8sfowfiMUaDxxhtvlCZS1BUdC+LcUSkfSQBxL2OBGJX9Mami2J2gqWKxHYvguJbZZpstX0sUUMSUivjOyhWGTAjRiSACG9tss03uNhGfsymiE+WCCy5YGhMa/0cAAACAcTf77LPnIoooZNhuu+3yxIppp502TTHFFDkWEl0C48fv6OIYcYuWEjGLaPwQcaRVVlkl/7Af1xHdGSNWE50GO3ToUNo/Xi/n1FNPzc0YIrYSCQm1SjQAAAAAmidyHmLaZTRxiOaJCy20UH4u8i9izR4J+fvss0+65557cvHFuIj8gZjmELkpUVgR+QfTTDNNjjPEVIdorBCNNSOuELkptc5XieYNMYEj3nuJJZbIsZT4fJFnEpM0o9lk5J/UbxxRdwJnXENM2Iycmyi6KMYz4l4tuuiiOV4TxRqffPJJ/myTSq5PrfJ9pptuulI+TMSBIh5Uzfjm5QBAfZMVCoVCg2cBACZR3333XU70GD16dNprr73ShRdeOLEvCQAAAJhAHn/88VwoEQYPHpzWWmst9x4AAAAAABhnJlQAAH8oMWIyiinCrrvuOrEvBwAAAJjAcYEQ0zO6d+/u3gMAAAAAAONFQQUA8Ifx22+/pX79+uXtGHMpcQIAAAD+PL788ss0cuTIiq/ff//9qX///nl7k002Se3bt5+AVwcAAAAAAPwZtZ3YFwAAUM3XX3+dH1999VU688wz0/Dhw/PzRx11lBsHAAAAfyKvvvpq6tWrV+rdu3dae+210/zzz5/atGmT3nvvvXTnnXema665Jo0ZMyZNM8006eSTT57YlwsAAAAAAPwJTFYoFAoT+yIAACrp06dP6tu371jPbbTRRumuu+5y0wAAAOBPZOjQoWmNNdaous8MM8yQBg4cmNZZZ50Jdl0AAAAAk5Jff/01DRs2bJyO7dKlS2rXrl3NrwkA/shMqAAA/hDatm2bOnXqlLbZZpt05JFHTuzLAQAAAGps2WWXTQMGDEj33Xdfevnll9MXX3yRRo4cmYsounbtmtZbb7207777pllmmcW9BwAAAFqtjz76KC2xxBLjdOyQIUNSz549a35NAPBHZkIFAAAAAAAAAAAAwB/AiBEj8qSJcaGgAgAaUlABAAAAAAAAAAAAAAC0Om0m9gUAAAAAAAAAAAAAAABMaAoqAAAAAAAAAAAAAACAVkdBBQAAAAAAAAAAAAAA0OooqAAAAAAAAAAAAAAAAFodBRUAAAAAAAAAAAAAAECro6ACAAAAAAAAAAAAAABodRRUAAAAAAAAAAAAAAAArY6CCgAAAAAAAAAAAAAAoNVRUAEAAAAAAAAAAAAAALQ6CioAAAAAAAAAAAAAAIBWR0EFAAAAAAAAAAAAAADQ6iioAAAAAAAAAAAAAAAAWh0FFQAAAAAAAAAAAAAAQKujoAIAAAAAAAAAAAAAAGh1FFQAAAAAAAAAAAAAAACtjoIKAAAAAAAAAAAAAACg1VFQAQAAAAAAAAAAAAAAtDoKKgAAAAAAAAAAAAAAgNTa/B87JGpXcgNlLgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'sklearn'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[5]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01msklearn\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mpreprocessing\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m LabelEncoder \u001b[38;5;66;03m# pyright: ignore[reportMissingImports]\u001b[39;00m\n\u001b[32m 2\u001b[39m le = LabelEncoder()\n\u001b[32m 3\u001b[39m x = df.loc[:, (\u001b[33m'\u001b[39m\u001b[33martist_top_genre\u001b[39m\u001b[33m'\u001b[39m,\u001b[33m'\u001b[39m\u001b[33mpopularity\u001b[39m\u001b[33m'\u001b[39m,\u001b[33m'\u001b[39m\u001b[33mdanceability\u001b[39m\u001b[33m'\u001b[39m,\u001b[33m'\u001b[39m\u001b[33macousticness\u001b[39m\u001b[33m'\u001b[39m,\u001b[33m'\u001b[39m\u001b[33mloudness\u001b[39m\u001b[33m'\u001b[39m,\u001b[33m'\u001b[39m\u001b[33menergy\u001b[39m\u001b[33m'\u001b[39m)]\n", + "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'sklearn'" + ] + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder # pyright: ignore[reportMissingImports]\n", + "le = LabelEncoder()\n", + "x = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "y = df['artist_top_genre']\n", + "x['artist_top_genre'] = le.fit_transform(x['artist_top_genre']) # pyright: ignore[reportUndefinedVariable]\n", + "y = le.transform(y) # pyright: ignore[reportUndefinedVariable]\n", + "\n", + "from sklearn.model_selection import train_test_split # pyright: ignore[reportMissingImports]\n", + "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)\n", + "\n", + "from sklearn.ensemble import RandomForestClassifier # pyright: ignore[reportMissingImports]\n", + "model = RandomForestClassifier(n_estimators=100, random_state=42) # pyright: ignore[reportUndefinedVariable]\n", + "model.fit(x_train, y_train)\n", + "\n", + "y_pred = model.predict(x_test)\n", + "\n", + "from sklearn.metrics import classification_report, confusion_matrix # pyright: ignore[reportMissingImports]\n", + "print(confusion_matrix(y_test, y_pred))\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'sklearn'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[6]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01msklearn\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcluster\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m KMeans \u001b[38;5;66;03m# pyright: ignore[reportMissingImports]\u001b[39;00m\n\u001b[32m 3\u001b[39m nclusters = \u001b[32m3\u001b[39m \n\u001b[32m 4\u001b[39m seed = \u001b[32m0\u001b[39m\n", + "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'sklearn'" + ] + } + ], + "source": [ + "from sklearn.cluster import KMeans # pyright: ignore[reportMissingImports]\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "X = x.values # pyright: ignore[reportUndefinedVariable]\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X) # pyright: ignore[reportUndefinedVariable]\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X) # pyright: ignore[reportUndefinedVariable]\n", + "y_cluster_kmeans" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'sklearn'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[7]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01msklearn\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m metrics \u001b[38;5;66;03m# pyright: ignore[reportMissingImports]\u001b[39;00m\n\u001b[32m 2\u001b[39m score = metrics.silhouette_score(X, y_cluster_kmeans)\n\u001b[32m 3\u001b[39m score\n", + "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'sklearn'" + ] + } + ], + "source": [ + "from sklearn import metrics # pyright: ignore[reportMissingImports]\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'sklearn'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[8]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01msklearn\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcluster\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m KMeans \u001b[38;5;66;03m# pyright: ignore[reportMissingImports]\u001b[39;00m\n\u001b[32m 2\u001b[39m wcss = []\n\u001b[32m 4\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[32m1\u001b[39m, \u001b[32m11\u001b[39m):\n", + "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'sklearn'" + ] + } + ], + "source": [ + "from sklearn.cluster import KMeans # pyright: ignore[reportMissingImports]\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans # pyright: ignore[reportMissingImports]\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/6-NLP/2-Tasks/solution/assignment.py b/6-NLP/2-Tasks/solution/assignment.py new file mode 100644 index 000000000..266a82a74 --- /dev/null +++ b/6-NLP/2-Tasks/solution/assignment.py @@ -0,0 +1,40 @@ +from textblob import TextBlob +from textblob.np_extractors import ConllExtractor +extracctor = ConllExtractor(); + + +def mani(): + print("Hello, I am Paskal, the friendly robot") + print("You can end the conversation at any time typing 'bye'") + print("After typing each sentence presthe Enter for the sentiment analysis") + print("How are you feeling today?") + + while True: + user_input = input("You:") + if user_input.lower() in ('bye', "exit", "quit"): + break + + user_blob = TextBlob(user_input, np_extractor=extracctor) + polarity = user_blob.polarity + noun_phrases = user_blob.noun_phrases + + if polarity <= -0.5: + response = "Oh Dear, that sounds really bad!" + elif polarity <= 0: + response = "Hmm, that's not great." + elif polarity < 0.5: + response = "Thats sound positive! " + else: + response = "Yay! That sounds awesome!" + if noun_phrases: + np = noun_phrases[0] + try: + plural_np = np.pluralize() + except Exception: + plural_np = np + response += f"Can you tell me more about {plural_np}?" + else: + response += "Can you tell me more about that?" + print(response) + print("Goodbye! It was nice talking to you.") +mani()