diff --git a/7-TimeSeries/2-ARIMA/README.md b/7-TimeSeries/2-ARIMA/README.md index 90c7f75c..ec6d90f1 100644 --- a/7-TimeSeries/2-ARIMA/README.md +++ b/7-TimeSeries/2-ARIMA/README.md @@ -111,25 +111,27 @@ Now, you need to prepare the data for training by performing two tasks: 1. Filter the original dataset to include only the aforementioned time periods per set and only including the needed column 'load' plus the date: - ```python - train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] - test = energy.copy()[energy.index >= test_start_dt][['load']] +```python +train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] +test = energy.copy()[energy.index >= test_start_dt][['load']] - print('Training data shape: ', train.shape) - print('Test data shape: ', test.shape) - ``` +print('Training data shape: ', train.shape) +print('Test data shape: ', test.shape) +``` + You can see the shape of the data: - Training data shape: (1416, 1) - Test data shape: (48, 1) - - 1. Scale the data to be in the range (0, 1). +```output +Training data shape: (1416, 1) +Test data shape: (48, 1) +``` + 2. Scale the data to be in the range (0, 1). - ```python - scaler = MinMaxScaler() - train['load'] = scaler.fit_transform(train) - train.head(10) - ``` +```python +scaler = MinMaxScaler() +train['load'] = scaler.fit_transform(train) +train.head(10) +``` 6. Now, visualize the original vs. scaled data: