diff --git a/translations/bg/.co-op-translator.json b/translations/bg/.co-op-translator.json
new file mode 100644
index 000000000..3fa2924a2
--- /dev/null
+++ b/translations/bg/.co-op-translator.json
@@ -0,0 +1,596 @@
+{
+ "1-Introduction/1-intro-to-ML/README.md": {
+ "original_hash": "69389392fa6346e0dfa30f664b7b6fec",
+ "translation_date": "2025-09-05T00:29:44+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/1-intro-to-ML/assignment.md": {
+ "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
+ "translation_date": "2025-09-05T00:32:12+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/2-history-of-ML/README.md": {
+ "original_hash": "6a05fec147e734c3e6bfa54505648e2b",
+ "translation_date": "2025-09-05T00:32:38+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/2-history-of-ML/assignment.md": {
+ "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969",
+ "translation_date": "2025-09-05T00:35:42+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/3-fairness/README.md": {
+ "original_hash": "9a6b702d1437c0467e3c5c28d763dac2",
+ "translation_date": "2025-09-05T00:20:49+00:00",
+ "source_file": "1-Introduction/3-fairness/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/3-fairness/assignment.md": {
+ "original_hash": "dbda60e7b1fe5f18974e7858eff0004e",
+ "translation_date": "2025-09-05T00:25:31+00:00",
+ "source_file": "1-Introduction/3-fairness/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/4-techniques-of-ML/README.md": {
+ "original_hash": "9d91f3af3758fdd4569fb410575995ef",
+ "translation_date": "2025-09-05T00:26:03+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/4-techniques-of-ML/assignment.md": {
+ "original_hash": "70d65aeddc06170bc1aed5b27805f930",
+ "translation_date": "2025-09-05T00:29:15+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "cf8ecc83f28e5b98051d2179eca08e08",
+ "translation_date": "2025-09-05T00:20:05+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/1-Tools/README.md": {
+ "original_hash": "fa81d226c71d5af7a2cade31c1c92b88",
+ "translation_date": "2025-09-04T23:34:53+00:00",
+ "source_file": "2-Regression/1-Tools/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/1-Tools/assignment.md": {
+ "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a",
+ "translation_date": "2025-09-04T23:39:34+00:00",
+ "source_file": "2-Regression/1-Tools/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Regression/1-Tools/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:40:09+00:00",
+ "source_file": "2-Regression/1-Tools/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/2-Data/README.md": {
+ "original_hash": "7c077988328ebfe33b24d07945f16eca",
+ "translation_date": "2025-09-04T23:40:27+00:00",
+ "source_file": "2-Regression/2-Data/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/2-Data/assignment.md": {
+ "original_hash": "4485a1ed4dd1b5647365e3d87456515d",
+ "translation_date": "2025-09-04T23:43:21+00:00",
+ "source_file": "2-Regression/2-Data/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Regression/2-Data/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:43:49+00:00",
+ "source_file": "2-Regression/2-Data/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/3-Linear/README.md": {
+ "original_hash": "40e64f004f3cb50aa1d8661672d3cd92",
+ "translation_date": "2025-09-04T23:19:25+00:00",
+ "source_file": "2-Regression/3-Linear/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/3-Linear/assignment.md": {
+ "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b",
+ "translation_date": "2025-09-04T23:26:04+00:00",
+ "source_file": "2-Regression/3-Linear/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Regression/3-Linear/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:26:34+00:00",
+ "source_file": "2-Regression/3-Linear/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/4-Logistic/README.md": {
+ "original_hash": "abf86d845c84330bce205a46b382ec88",
+ "translation_date": "2025-09-04T23:26:51+00:00",
+ "source_file": "2-Regression/4-Logistic/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/4-Logistic/assignment.md": {
+ "original_hash": "8af40209a41494068c1f42b14c0b450d",
+ "translation_date": "2025-09-04T23:34:08+00:00",
+ "source_file": "2-Regression/4-Logistic/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Regression/4-Logistic/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:34:36+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "2-Regression/README.md": {
+ "original_hash": "508582278dbb8edd2a8a80ac96ef416c",
+ "translation_date": "2025-09-04T23:18:18+00:00",
+ "source_file": "2-Regression/README.md",
+ "language_code": "bg"
+ },
+ "3-Web-App/1-Web-App/README.md": {
+ "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c",
+ "translation_date": "2025-09-05T00:36:52+00:00",
+ "source_file": "3-Web-App/1-Web-App/README.md",
+ "language_code": "bg"
+ },
+ "3-Web-App/1-Web-App/assignment.md": {
+ "original_hash": "a8e8ae10be335cbc745b75ee552317ff",
+ "translation_date": "2025-09-05T00:39:38+00:00",
+ "source_file": "3-Web-App/1-Web-App/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Web-App/README.md": {
+ "original_hash": "9836ff53cfef716ddfd70e06c5f43436",
+ "translation_date": "2025-09-05T00:36:12+00:00",
+ "source_file": "3-Web-App/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/1-Introduction/README.md": {
+ "original_hash": "aaf391d922bd6de5efba871d514c6d47",
+ "translation_date": "2025-09-05T00:51:52+00:00",
+ "source_file": "4-Classification/1-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/1-Introduction/assignment.md": {
+ "original_hash": "b2a01912beb24cfb0007f83594dba801",
+ "translation_date": "2025-09-05T00:54:35+00:00",
+ "source_file": "4-Classification/1-Introduction/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Classification/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T00:55:12+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/2-Classifiers-1/README.md": {
+ "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
+ "translation_date": "2025-09-05T00:41:49+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/2-Classifiers-1/assignment.md": {
+ "original_hash": "de6025f96841498b0577e9d1aee18d1f",
+ "translation_date": "2025-09-05T00:45:25+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Classification/2-Classifiers-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T00:46:01+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/3-Classifiers-2/README.md": {
+ "original_hash": "49047911108adc49d605cddfb455749c",
+ "translation_date": "2025-09-05T00:49:19+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/3-Classifiers-2/assignment.md": {
+ "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329",
+ "translation_date": "2025-09-05T00:51:02+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Classification/3-Classifiers-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T00:51:34+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/4-Applied/README.md": {
+ "original_hash": "61bdec27ed2da8b098cd9065405d9bb0",
+ "translation_date": "2025-09-05T00:46:18+00:00",
+ "source_file": "4-Classification/4-Applied/README.md",
+ "language_code": "bg"
+ },
+ "4-Classification/4-Applied/assignment.md": {
+ "original_hash": "799ed651e2af0a7cad17c6268db11578",
+ "translation_date": "2025-09-05T00:48:46+00:00",
+ "source_file": "4-Classification/4-Applied/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Classification/README.md": {
+ "original_hash": "74e809ffd1e613a1058bbc3e9600859e",
+ "translation_date": "2025-09-05T00:41:08+00:00",
+ "source_file": "4-Classification/README.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/1-Visualize/README.md": {
+ "original_hash": "730225ea274c9174fe688b21d421539d",
+ "translation_date": "2025-09-04T23:58:32+00:00",
+ "source_file": "5-Clustering/1-Visualize/README.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/1-Visualize/assignment.md": {
+ "original_hash": "589fa015a5e7d9e67bd629f7d47b53de",
+ "translation_date": "2025-09-05T00:03:43+00:00",
+ "source_file": "5-Clustering/1-Visualize/assignment.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/1-Visualize/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T00:04:23+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/2-K-Means/README.md": {
+ "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081",
+ "translation_date": "2025-09-05T00:04:39+00:00",
+ "source_file": "5-Clustering/2-K-Means/README.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/2-K-Means/assignment.md": {
+ "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41",
+ "translation_date": "2025-09-05T00:07:04+00:00",
+ "source_file": "5-Clustering/2-K-Means/assignment.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/2-K-Means/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T00:07:40+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "5-Clustering/README.md": {
+ "original_hash": "b28a3a4911584062772c537b653ebbc7",
+ "translation_date": "2025-09-04T23:57:22+00:00",
+ "source_file": "5-Clustering/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/1-Introduction-to-NLP/README.md": {
+ "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a",
+ "translation_date": "2025-09-05T01:33:38+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/1-Introduction-to-NLP/assignment.md": {
+ "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16",
+ "translation_date": "2025-09-05T01:36:32+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md",
+ "language_code": "bg"
+ },
+ "6-NLP/2-Tasks/README.md": {
+ "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3",
+ "translation_date": "2025-09-05T01:20:43+00:00",
+ "source_file": "6-NLP/2-Tasks/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/2-Tasks/assignment.md": {
+ "original_hash": "2efc4c2aba5ed06c780c05539c492ae3",
+ "translation_date": "2025-09-05T01:23:49+00:00",
+ "source_file": "6-NLP/2-Tasks/assignment.md",
+ "language_code": "bg"
+ },
+ "6-NLP/3-Translation-Sentiment/README.md": {
+ "original_hash": "be03c8182982b87ced155e4e9d1438e8",
+ "translation_date": "2025-09-05T01:37:04+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/3-Translation-Sentiment/assignment.md": {
+ "original_hash": "9d2a734deb904caff310d1a999c6bd7a",
+ "translation_date": "2025-09-05T01:40:54+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/assignment.md",
+ "language_code": "bg"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T01:41:47+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T01:41:25+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/4-Hotel-Reviews-1/README.md": {
+ "original_hash": "8d32dadeda93c6fb5c43619854882ab1",
+ "translation_date": "2025-09-05T01:24:22+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/4-Hotel-Reviews-1/assignment.md": {
+ "original_hash": "bf39bceb833cd628f224941dca8041df",
+ "translation_date": "2025-09-05T01:32:13+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md",
+ "language_code": "bg"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T01:33:00+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T01:32:38+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/5-Hotel-Reviews-2/README.md": {
+ "original_hash": "2c742993fe95d5bcbb2846eda3d442a1",
+ "translation_date": "2025-09-05T01:42:04+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/5-Hotel-Reviews-2/assignment.md": {
+ "original_hash": "daf144daa552da6a7d442aff6f3e77d8",
+ "translation_date": "2025-09-05T01:47:08+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md",
+ "language_code": "bg"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T01:47:56+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T01:47:35+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/README.md": {
+ "original_hash": "1eb379dc2d0c9940b320732d16083778",
+ "translation_date": "2025-09-05T01:19:51+00:00",
+ "source_file": "6-NLP/README.md",
+ "language_code": "bg"
+ },
+ "6-NLP/data/README.md": {
+ "original_hash": "ee0670655c89e4719319764afb113624",
+ "translation_date": "2025-09-05T01:33:17+00:00",
+ "source_file": "6-NLP/data/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/1-Introduction/README.md": {
+ "original_hash": "662b509c39eee205687726636d0a8455",
+ "translation_date": "2025-09-04T23:49:41+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/1-Introduction/assignment.md": {
+ "original_hash": "d1781b0b92568ea1d119d0a198b576b4",
+ "translation_date": "2025-09-04T23:52:37+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/assignment.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:53:32+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/1-Introduction/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-04T23:53:11+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/2-ARIMA/README.md": {
+ "original_hash": "917dbf890db71a322f306050cb284749",
+ "translation_date": "2025-09-04T23:44:51+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/2-ARIMA/assignment.md": {
+ "original_hash": "1c814013e10866dfd92cdb32caaae3ac",
+ "translation_date": "2025-09-04T23:48:30+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/assignment.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/2-ARIMA/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-04T23:49:25+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/2-ARIMA/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-04T23:48:59+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/3-SVR/README.md": {
+ "original_hash": "482bccabe1df958496ea71a3667995cd",
+ "translation_date": "2025-09-04T23:53:49+00:00",
+ "source_file": "7-TimeSeries/3-SVR/README.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/3-SVR/assignment.md": {
+ "original_hash": "94aa2fc6154252ae30a3f3740299707a",
+ "translation_date": "2025-09-04T23:56:46+00:00",
+ "source_file": "7-TimeSeries/3-SVR/assignment.md",
+ "language_code": "bg"
+ },
+ "7-TimeSeries/README.md": {
+ "original_hash": "61342603bad8acadbc6b2e4e3aab3f66",
+ "translation_date": "2025-09-04T23:44:06+00:00",
+ "source_file": "7-TimeSeries/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/1-QLearning/README.md": {
+ "original_hash": "911efd5e595089000cb3c16fce1beab8",
+ "translation_date": "2025-09-05T01:05:29+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/1-QLearning/assignment.md": {
+ "original_hash": "68394b2102d3503882e5e914bd0ff5c1",
+ "translation_date": "2025-09-05T01:11:56+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/assignment.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/1-QLearning/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T01:13:57+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/1-QLearning/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T01:13:35+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/2-Gym/README.md": {
+ "original_hash": "107d5bb29da8a562e7ae72262d251a75",
+ "translation_date": "2025-09-05T01:14:14+00:00",
+ "source_file": "8-Reinforcement/2-Gym/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/2-Gym/assignment.md": {
+ "original_hash": "1f2b7441745eb52e25745423b247016b",
+ "translation_date": "2025-09-05T01:18:12+00:00",
+ "source_file": "8-Reinforcement/2-Gym/assignment.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/2-Gym/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T01:19:34+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/2-Gym/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T01:19:13+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/R/README.md",
+ "language_code": "bg"
+ },
+ "8-Reinforcement/README.md": {
+ "original_hash": "20ca019012b1725de956681d036d8b18",
+ "translation_date": "2025-09-05T01:03:28+00:00",
+ "source_file": "8-Reinforcement/README.md",
+ "language_code": "bg"
+ },
+ "9-Real-World/1-Applications/README.md": {
+ "original_hash": "83320d6b6994909e35d830cebf214039",
+ "translation_date": "2025-09-05T00:09:28+00:00",
+ "source_file": "9-Real-World/1-Applications/README.md",
+ "language_code": "bg"
+ },
+ "9-Real-World/1-Applications/assignment.md": {
+ "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885",
+ "translation_date": "2025-09-05T00:13:45+00:00",
+ "source_file": "9-Real-World/1-Applications/assignment.md",
+ "language_code": "bg"
+ },
+ "9-Real-World/2-Debugging-ML-Models/README.md": {
+ "original_hash": "df2b538e8fbb3e91cf0419ae2f858675",
+ "translation_date": "2025-09-05T00:14:20+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/README.md",
+ "language_code": "bg"
+ },
+ "9-Real-World/2-Debugging-ML-Models/assignment.md": {
+ "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164",
+ "translation_date": "2025-09-05T00:19:24+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md",
+ "language_code": "bg"
+ },
+ "9-Real-World/README.md": {
+ "original_hash": "5e069a0ac02a9606a69946c2b3c574a9",
+ "translation_date": "2025-09-05T00:08:50+00:00",
+ "source_file": "9-Real-World/README.md",
+ "language_code": "bg"
+ },
+ "AGENTS.md": {
+ "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b",
+ "translation_date": "2025-10-03T11:17:32+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "bg"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-09-04T23:17:51+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "bg"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda",
+ "translation_date": "2025-09-04T23:15:28+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "bg"
+ },
+ "README.md": {
+ "original_hash": "da2ceed62f16a0820259556e3a873c95",
+ "translation_date": "2026-01-29T19:05:14+00:00",
+ "source_file": "README.md",
+ "language_code": "bg"
+ },
+ "SECURITY.md": {
+ "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a",
+ "translation_date": "2025-09-04T23:16:03+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "bg"
+ },
+ "SUPPORT.md": {
+ "original_hash": "09623d7343ff1c26ff4f198c1b2d3176",
+ "translation_date": "2025-10-03T12:25:59+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "bg"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "134d8759f0e2ab886e9aa4f62362c201",
+ "translation_date": "2025-10-03T12:54:36+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "bg"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "68dd06c685f6ce840e0acfa313352e7c",
+ "translation_date": "2025-09-05T00:07:57+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "bg"
+ },
+ "for-teachers.md": {
+ "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8",
+ "translation_date": "2025-09-04T23:17:03+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "bg"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "6d130dffca5db70d7e615f926cb1ad4c",
+ "translation_date": "2025-09-05T00:40:07+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "bg"
+ },
+ "sketchnotes/LICENSE.md": {
+ "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f",
+ "translation_date": "2025-09-05T00:56:40+00:00",
+ "source_file": "sketchnotes/LICENSE.md",
+ "language_code": "bg"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "a88d5918c1b9da69a40d917a0840c497",
+ "translation_date": "2025-09-05T00:55:29+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "bg"
+ }
+}
\ No newline at end of file
diff --git a/translations/bg/1-Introduction/1-intro-to-ML/README.md b/translations/bg/1-Introduction/1-intro-to-ML/README.md
index 878852b95..96b13b726 100644
--- a/translations/bg/1-Introduction/1-intro-to-ML/README.md
+++ b/translations/bg/1-Introduction/1-intro-to-ML/README.md
@@ -1,12 +1,3 @@
-
# Въведение в машинното обучение
## [Тест преди лекцията](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/bg/1-Introduction/1-intro-to-ML/assignment.md b/translations/bg/1-Introduction/1-intro-to-ML/assignment.md
index 3ceb525b2..fe21f0197 100644
--- a/translations/bg/1-Introduction/1-intro-to-ML/assignment.md
+++ b/translations/bg/1-Introduction/1-intro-to-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Започнете и работете
## Инструкции
diff --git a/translations/bg/1-Introduction/2-history-of-ML/README.md b/translations/bg/1-Introduction/2-history-of-ML/README.md
index edcc0565b..86af46a09 100644
--- a/translations/bg/1-Introduction/2-history-of-ML/README.md
+++ b/translations/bg/1-Introduction/2-history-of-ML/README.md
@@ -1,12 +1,3 @@
-
# История на машинното обучение

diff --git a/translations/bg/1-Introduction/2-history-of-ML/assignment.md b/translations/bg/1-Introduction/2-history-of-ML/assignment.md
index 8bc62ca83..120ea2c5f 100644
--- a/translations/bg/1-Introduction/2-history-of-ML/assignment.md
+++ b/translations/bg/1-Introduction/2-history-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Създайте хронология
## Инструкции
diff --git a/translations/bg/1-Introduction/3-fairness/README.md b/translations/bg/1-Introduction/3-fairness/README.md
index 7bd06f2fa..be927a095 100644
--- a/translations/bg/1-Introduction/3-fairness/README.md
+++ b/translations/bg/1-Introduction/3-fairness/README.md
@@ -1,12 +1,3 @@
-
# Създаване на решения за машинно обучение с отговорен AI

diff --git a/translations/bg/1-Introduction/3-fairness/assignment.md b/translations/bg/1-Introduction/3-fairness/assignment.md
index 9e8d0278c..e7e540211 100644
--- a/translations/bg/1-Introduction/3-fairness/assignment.md
+++ b/translations/bg/1-Introduction/3-fairness/assignment.md
@@ -1,12 +1,3 @@
-
# Разгледайте инструмента Responsible AI Toolbox
## Инструкции
diff --git a/translations/bg/1-Introduction/4-techniques-of-ML/README.md b/translations/bg/1-Introduction/4-techniques-of-ML/README.md
index b3522549a..c2881a2eb 100644
--- a/translations/bg/1-Introduction/4-techniques-of-ML/README.md
+++ b/translations/bg/1-Introduction/4-techniques-of-ML/README.md
@@ -1,12 +1,3 @@
-
# Техники на машинното обучение
Процесът на създаване, използване и поддържане на модели за машинно обучение и данните, които те използват, е много различен от много други работни потоци за разработка. В този урок ще разясним процеса и ще очертаем основните техники, които трябва да знаете. Ще:
diff --git a/translations/bg/1-Introduction/4-techniques-of-ML/assignment.md b/translations/bg/1-Introduction/4-techniques-of-ML/assignment.md
index 7c74e3784..98d3dd7c5 100644
--- a/translations/bg/1-Introduction/4-techniques-of-ML/assignment.md
+++ b/translations/bg/1-Introduction/4-techniques-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Интервю с дата учен
## Инструкции
diff --git a/translations/bg/1-Introduction/README.md b/translations/bg/1-Introduction/README.md
index 4ef84c770..38a52a430 100644
--- a/translations/bg/1-Introduction/README.md
+++ b/translations/bg/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в машинното обучение
В тази част от учебната програма ще се запознаете с основните концепции, които стоят в основата на машинното обучение, какво представлява то, както и ще научите за неговата история и техниките, които изследователите използват, за да работят с него. Нека заедно изследваме този нов свят на машинното обучение!
diff --git a/translations/bg/2-Regression/1-Tools/README.md b/translations/bg/2-Regression/1-Tools/README.md
index 9ad5c9163..cee531bf5 100644
--- a/translations/bg/2-Regression/1-Tools/README.md
+++ b/translations/bg/2-Regression/1-Tools/README.md
@@ -1,12 +1,3 @@
-
# Започнете с Python и Scikit-learn за регресионни модели

diff --git a/translations/bg/2-Regression/1-Tools/assignment.md b/translations/bg/2-Regression/1-Tools/assignment.md
index 7d83a3342..89ceaae12 100644
--- a/translations/bg/2-Regression/1-Tools/assignment.md
+++ b/translations/bg/2-Regression/1-Tools/assignment.md
@@ -1,12 +1,3 @@
-
# Регресия със Scikit-learn
## Инструкции
diff --git a/translations/bg/2-Regression/1-Tools/solution/Julia/README.md b/translations/bg/2-Regression/1-Tools/solution/Julia/README.md
index c8f7c7937..71ec589da 100644
--- a/translations/bg/2-Regression/1-Tools/solution/Julia/README.md
+++ b/translations/bg/2-Regression/1-Tools/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/2-Regression/2-Data/README.md b/translations/bg/2-Regression/2-Data/README.md
index c8f0a7bf3..b31b820f0 100644
--- a/translations/bg/2-Regression/2-Data/README.md
+++ b/translations/bg/2-Regression/2-Data/README.md
@@ -1,12 +1,3 @@
-
# Създаване на регресионен модел с помощта на Scikit-learn: подготовка и визуализация на данни

diff --git a/translations/bg/2-Regression/2-Data/assignment.md b/translations/bg/2-Regression/2-Data/assignment.md
index 241f85e45..8b4ebc665 100644
--- a/translations/bg/2-Regression/2-Data/assignment.md
+++ b/translations/bg/2-Regression/2-Data/assignment.md
@@ -1,12 +1,3 @@
-
# Изследване на визуализации
Има няколко различни библиотеки, които са достъпни за визуализация на данни. Създайте някои визуализации, използвайки данните за тиквите от този урок, с помощта на matplotlib и seaborn в примерен notebook. Кои библиотеки са по-лесни за работа?
diff --git a/translations/bg/2-Regression/2-Data/solution/Julia/README.md b/translations/bg/2-Regression/2-Data/solution/Julia/README.md
index 540e35636..301aba13a 100644
--- a/translations/bg/2-Regression/2-Data/solution/Julia/README.md
+++ b/translations/bg/2-Regression/2-Data/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/2-Regression/3-Linear/README.md b/translations/bg/2-Regression/3-Linear/README.md
index 60e35928e..d31993664 100644
--- a/translations/bg/2-Regression/3-Linear/README.md
+++ b/translations/bg/2-Regression/3-Linear/README.md
@@ -1,12 +1,3 @@
-
# Създаване на регресионен модел с помощта на Scikit-learn: четири подхода към регресията

@@ -114,11 +105,11 @@ day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.
От предишния урок вероятно сте видели, че средната цена за различните месеци изглежда така:
-
+
Това предполага, че трябва да има някаква корелация, и можем да опитаме да обучим модел за линейна регресия, за да предскажем връзката между `Месец` и `Цена`, или между `ДенОтГодината` и `Цена`. Ето разпръснат график, който показва последната връзка:
-
+
Нека видим дали има корелация, използвайки функцията `corr`:
@@ -137,7 +128,7 @@ for i,var in enumerate(new_pumpkins['Variety'].unique()):
ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)
```
-
+
Нашето изследване предполага, че сортът има по-голямо влияние върху общата цена, отколкото действителната дата на продажба. Можем да видим това с помощта на стълбовиден график:
@@ -145,7 +136,7 @@ for i,var in enumerate(new_pumpkins['Variety'].unique()):
new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
```
-
+
Нека се съсредоточим за момента само върху един сорт тикви, типа 'pie', и да видим какъв ефект има датата върху цената:
@@ -153,7 +144,7 @@ new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
pie_pumpkins.plot.scatter('DayOfYear','Price')
```
-
+
Ако сега изчислим корелацията между `Цена` и `ДенОтГодината`, използвайки функцията `corr`, ще получим нещо като `-0.27` - което означава, че обучението на предсказателен модел има смисъл.
@@ -220,7 +211,7 @@ plt.scatter(X_test,y_test)
plt.plot(X_test,pred)
```
-
+
## Полиномиална регресия
@@ -249,7 +240,7 @@ pipeline.fit(X_train,y_train)
Pipeline може да се използва по същия начин като оригиналния обект `LinearRegression`, т.е. можем да използваме `fit` за обучение на pipeline и след това `predict`, за да получим резултатите от предсказанието. Ето график, показващ тестовите данни и кривата на апроксимация:
-
+
С използването на полиномиална регресия можем да постигнем малко по-ниско MSE и по-висок коефициент на детерминация, но не значително. Трябва да вземем предвид и други характеристики!
@@ -267,7 +258,7 @@ Pipeline може да се използва по същия начин като
Тук можете да видите как средната цена зависи от разнообразието:
-
+
За да вземем предвид разнообразието, първо трябва да го преобразуваме в числова форма, или **да го кодираме**. Има няколко начина да го направим:
diff --git a/translations/bg/2-Regression/3-Linear/assignment.md b/translations/bg/2-Regression/3-Linear/assignment.md
index b427c9a85..5e09e2d82 100644
--- a/translations/bg/2-Regression/3-Linear/assignment.md
+++ b/translations/bg/2-Regression/3-Linear/assignment.md
@@ -1,12 +1,3 @@
-
# Създаване на регресионен модел
## Инструкции
diff --git a/translations/bg/2-Regression/3-Linear/solution/Julia/README.md b/translations/bg/2-Regression/3-Linear/solution/Julia/README.md
index 9eeee41bf..71ec589da 100644
--- a/translations/bg/2-Regression/3-Linear/solution/Julia/README.md
+++ b/translations/bg/2-Regression/3-Linear/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/2-Regression/4-Logistic/README.md b/translations/bg/2-Regression/4-Logistic/README.md
index ca97ef66d..33d838159 100644
--- a/translations/bg/2-Regression/4-Logistic/README.md
+++ b/translations/bg/2-Regression/4-Logistic/README.md
@@ -1,12 +1,3 @@
-
# Логистична регресия за предсказване на категории

diff --git a/translations/bg/2-Regression/4-Logistic/assignment.md b/translations/bg/2-Regression/4-Logistic/assignment.md
index 63efeeaee..646699e33 100644
--- a/translations/bg/2-Regression/4-Logistic/assignment.md
+++ b/translations/bg/2-Regression/4-Logistic/assignment.md
@@ -1,12 +1,3 @@
-
# Повторно прилагане на регресия
## Инструкции
diff --git a/translations/bg/2-Regression/4-Logistic/solution/Julia/README.md b/translations/bg/2-Regression/4-Logistic/solution/Julia/README.md
index d3391ffe5..71ec589da 100644
--- a/translations/bg/2-Regression/4-Logistic/solution/Julia/README.md
+++ b/translations/bg/2-Regression/4-Logistic/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/2-Regression/README.md b/translations/bg/2-Regression/README.md
index 3f557f3b4..0e459de01 100644
--- a/translations/bg/2-Regression/README.md
+++ b/translations/bg/2-Regression/README.md
@@ -1,12 +1,3 @@
-
# Регресионни модели за машинно обучение
## Регионална тема: Регресионни модели за цените на тиквите в Северна Америка 🎃
diff --git a/translations/bg/3-Web-App/1-Web-App/README.md b/translations/bg/3-Web-App/1-Web-App/README.md
index 2e676f507..8d9ad6d75 100644
--- a/translations/bg/3-Web-App/1-Web-App/README.md
+++ b/translations/bg/3-Web-App/1-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Създаване на уеб приложение за използване на ML модел
В този урок ще обучите ML модел върху набор от данни, който е извън този свят: _забелязвания на НЛО през последния век_, взети от базата данни на NUFORC.
diff --git a/translations/bg/3-Web-App/1-Web-App/assignment.md b/translations/bg/3-Web-App/1-Web-App/assignment.md
index b19eee8c6..903373d7a 100644
--- a/translations/bg/3-Web-App/1-Web-App/assignment.md
+++ b/translations/bg/3-Web-App/1-Web-App/assignment.md
@@ -1,12 +1,3 @@
-
# Опитайте различен модел
## Инструкции
diff --git a/translations/bg/3-Web-App/README.md b/translations/bg/3-Web-App/README.md
index 15302b98b..9c0ede686 100644
--- a/translations/bg/3-Web-App/README.md
+++ b/translations/bg/3-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Създайте уеб приложение за използване на вашия ML модел
В тази част от учебната програма ще се запознаете с приложна тема в машинното обучение: как да запазите вашия Scikit-learn модел като файл, който може да се използва за правене на прогнози в рамките на уеб приложение. След като моделът бъде запазен, ще научите как да го използвате в уеб приложение, създадено с Flask. Първо ще създадете модел, използвайки данни, свързани с наблюдения на НЛО! След това ще изградите уеб приложение, което ще ви позволи да въведете брой секунди, заедно със стойности за географска ширина и дължина, за да предвидите коя държава е докладвала за наблюдение на НЛО.
diff --git a/translations/bg/4-Classification/1-Introduction/README.md b/translations/bg/4-Classification/1-Introduction/README.md
index 4d9024c02..b5466a919 100644
--- a/translations/bg/4-Classification/1-Introduction/README.md
+++ b/translations/bg/4-Classification/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в класификацията
В тези четири урока ще разгледате основен аспект на класическото машинно обучение - _класификация_. Ще преминем през използването на различни алгоритми за класификация с набор от данни за всички невероятни кухни на Азия и Индия. Надяваме се, че сте гладни!
diff --git a/translations/bg/4-Classification/1-Introduction/assignment.md b/translations/bg/4-Classification/1-Introduction/assignment.md
index 9af695715..7cea84eb3 100644
--- a/translations/bg/4-Classification/1-Introduction/assignment.md
+++ b/translations/bg/4-Classification/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Изследване на методи за класификация
## Инструкции
diff --git a/translations/bg/4-Classification/1-Introduction/solution/Julia/README.md b/translations/bg/4-Classification/1-Introduction/solution/Julia/README.md
index f2f00c04d..71ec589da 100644
--- a/translations/bg/4-Classification/1-Introduction/solution/Julia/README.md
+++ b/translations/bg/4-Classification/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/4-Classification/2-Classifiers-1/README.md b/translations/bg/4-Classification/2-Classifiers-1/README.md
index 02eed3e9f..3b6ad445b 100644
--- a/translations/bg/4-Classification/2-Classifiers-1/README.md
+++ b/translations/bg/4-Classification/2-Classifiers-1/README.md
@@ -1,12 +1,3 @@
-
# Класификатори за кухни 1
В този урок ще използвате набора от данни, който запазихте от предишния урок, пълен с балансирани и почистени данни за различни кухни.
diff --git a/translations/bg/4-Classification/2-Classifiers-1/assignment.md b/translations/bg/4-Classification/2-Classifiers-1/assignment.md
index b3ece50a0..bc4811a6b 100644
--- a/translations/bg/4-Classification/2-Classifiers-1/assignment.md
+++ b/translations/bg/4-Classification/2-Classifiers-1/assignment.md
@@ -1,12 +1,3 @@
-
# Изучете решаващите алгоритми
## Инструкции
diff --git a/translations/bg/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/bg/4-Classification/2-Classifiers-1/solution/Julia/README.md
index 29234eac2..71ec589da 100644
--- a/translations/bg/4-Classification/2-Classifiers-1/solution/Julia/README.md
+++ b/translations/bg/4-Classification/2-Classifiers-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/4-Classification/3-Classifiers-2/README.md b/translations/bg/4-Classification/3-Classifiers-2/README.md
index e5ca2ddad..511c2ed3b 100644
--- a/translations/bg/4-Classification/3-Classifiers-2/README.md
+++ b/translations/bg/4-Classification/3-Classifiers-2/README.md
@@ -1,12 +1,3 @@
-
# Класификатори за кухня 2
В този втори урок за класификация ще разгледате повече начини за класифициране на числови данни. Ще научите също за последиците от избора на един класификатор пред друг.
diff --git a/translations/bg/4-Classification/3-Classifiers-2/assignment.md b/translations/bg/4-Classification/3-Classifiers-2/assignment.md
index dda31feea..9d627dbab 100644
--- a/translations/bg/4-Classification/3-Classifiers-2/assignment.md
+++ b/translations/bg/4-Classification/3-Classifiers-2/assignment.md
@@ -1,12 +1,3 @@
-
# Игра с параметри
## Инструкции
diff --git a/translations/bg/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/bg/4-Classification/3-Classifiers-2/solution/Julia/README.md
index 335baa23f..14474d3db 100644
--- a/translations/bg/4-Classification/3-Classifiers-2/solution/Julia/README.md
+++ b/translations/bg/4-Classification/3-Classifiers-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/4-Classification/4-Applied/README.md b/translations/bg/4-Classification/4-Applied/README.md
index 25160c0ab..5199d6746 100644
--- a/translations/bg/4-Classification/4-Applied/README.md
+++ b/translations/bg/4-Classification/4-Applied/README.md
@@ -1,12 +1,3 @@
-
# Създаване на уеб приложение за препоръки на кухни
В този урок ще създадете модел за класификация, използвайки някои от техниките, които научихте в предишните уроци, и с помощта на вкусния набор от данни за кухни, използван в тази серия. Освен това ще изградите малко уеб приложение, което използва запазен модел, като се възползвате от уеб средата на Onnx.
diff --git a/translations/bg/4-Classification/4-Applied/assignment.md b/translations/bg/4-Classification/4-Applied/assignment.md
index 102201eb7..80c51f386 100644
--- a/translations/bg/4-Classification/4-Applied/assignment.md
+++ b/translations/bg/4-Classification/4-Applied/assignment.md
@@ -1,12 +1,3 @@
-
# Създайте препоръчваща система
## Инструкции
diff --git a/translations/bg/4-Classification/README.md b/translations/bg/4-Classification/README.md
index 83ccdaa5f..600b06d6c 100644
--- a/translations/bg/4-Classification/README.md
+++ b/translations/bg/4-Classification/README.md
@@ -1,12 +1,3 @@
-
# Започване с класификация
## Регионална тема: Вкусни азиатски и индийски кухни 🍜
diff --git a/translations/bg/5-Clustering/1-Visualize/README.md b/translations/bg/5-Clustering/1-Visualize/README.md
index a9de6d679..2077ac225 100644
--- a/translations/bg/5-Clustering/1-Visualize/README.md
+++ b/translations/bg/5-Clustering/1-Visualize/README.md
@@ -1,12 +1,3 @@
-
# Въведение в клъстеризацията
Клъстеризацията е вид [Обучение без надзор](https://wikipedia.org/wiki/Unsupervised_learning), което предполага, че даден набор от данни е без етикети или че входните данни не са свързани с предварително дефинирани изходи. Тя използва различни алгоритми, за да сортира данни без етикети и да предостави групировки според моделите, които открива в данните.
diff --git a/translations/bg/5-Clustering/1-Visualize/assignment.md b/translations/bg/5-Clustering/1-Visualize/assignment.md
index 07378f821..86e213d48 100644
--- a/translations/bg/5-Clustering/1-Visualize/assignment.md
+++ b/translations/bg/5-Clustering/1-Visualize/assignment.md
@@ -1,12 +1,3 @@
-
# Изследване на други визуализации за клъстеризация
## Инструкции
diff --git a/translations/bg/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/bg/5-Clustering/1-Visualize/solution/Julia/README.md
index 117d7c66a..71ec589da 100644
--- a/translations/bg/5-Clustering/1-Visualize/solution/Julia/README.md
+++ b/translations/bg/5-Clustering/1-Visualize/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/5-Clustering/2-K-Means/README.md b/translations/bg/5-Clustering/2-K-Means/README.md
index 8e7fc778a..1b4489db4 100644
--- a/translations/bg/5-Clustering/2-K-Means/README.md
+++ b/translations/bg/5-Clustering/2-K-Means/README.md
@@ -1,12 +1,3 @@
-
# K-Means клъстериране
## [Тест преди лекцията](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/bg/5-Clustering/2-K-Means/assignment.md b/translations/bg/5-Clustering/2-K-Means/assignment.md
index ebcafb206..70ccf8027 100644
--- a/translations/bg/5-Clustering/2-K-Means/assignment.md
+++ b/translations/bg/5-Clustering/2-K-Means/assignment.md
@@ -1,12 +1,3 @@
-
# Опитайте различни методи за клъстеризация
## Инструкции
diff --git a/translations/bg/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/bg/5-Clustering/2-K-Means/solution/Julia/README.md
index d82c2c13c..71ec589da 100644
--- a/translations/bg/5-Clustering/2-K-Means/solution/Julia/README.md
+++ b/translations/bg/5-Clustering/2-K-Means/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/5-Clustering/README.md b/translations/bg/5-Clustering/README.md
index d1e70290a..39a358647 100644
--- a/translations/bg/5-Clustering/README.md
+++ b/translations/bg/5-Clustering/README.md
@@ -1,12 +1,3 @@
-
# Модели за клъстеризация в машинното обучение
Клъстеризацията е задача в машинното обучение, която се стреми да открие обекти, които си приличат, и да ги групира в групи, наречени клъстери. Това, което отличава клъстеризацията от другите подходи в машинното обучение, е, че процесът се случва автоматично. Всъщност, може да се каже, че това е противоположността на обучението с учител.
diff --git a/translations/bg/6-NLP/1-Introduction-to-NLP/README.md b/translations/bg/6-NLP/1-Introduction-to-NLP/README.md
index ffecb9569..cf1452dbf 100644
--- a/translations/bg/6-NLP/1-Introduction-to-NLP/README.md
+++ b/translations/bg/6-NLP/1-Introduction-to-NLP/README.md
@@ -1,12 +1,3 @@
-
# Въведение в обработката на естествен език
Този урок обхваща кратка история и важни концепции на *обработката на естествен език*, подполе на *компютърната лингвистика*.
diff --git a/translations/bg/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/bg/6-NLP/1-Introduction-to-NLP/assignment.md
index b37829dd4..3a720336b 100644
--- a/translations/bg/6-NLP/1-Introduction-to-NLP/assignment.md
+++ b/translations/bg/6-NLP/1-Introduction-to-NLP/assignment.md
@@ -1,12 +1,3 @@
-
# Търсене на бот
## Инструкции
diff --git a/translations/bg/6-NLP/2-Tasks/README.md b/translations/bg/6-NLP/2-Tasks/README.md
index 1163242cb..20233532c 100644
--- a/translations/bg/6-NLP/2-Tasks/README.md
+++ b/translations/bg/6-NLP/2-Tasks/README.md
@@ -1,12 +1,3 @@
-
# Често срещани задачи и техники в обработката на естествен език
За повечето задачи, свързани с *обработката на естествен език*, текстът, който трябва да бъде обработен, трябва да бъде разделен, анализиран и резултатите съхранени или сравнени с правила и набори от данни. Тези задачи позволяват на програмиста да извлече _значението_, _намерението_ или само _честотата_ на термините и думите в текста.
diff --git a/translations/bg/6-NLP/2-Tasks/assignment.md b/translations/bg/6-NLP/2-Tasks/assignment.md
index 6e1909c58..b71607cf9 100644
--- a/translations/bg/6-NLP/2-Tasks/assignment.md
+++ b/translations/bg/6-NLP/2-Tasks/assignment.md
@@ -1,12 +1,3 @@
-
# Направете бота да отговаря
## Инструкции
diff --git a/translations/bg/6-NLP/3-Translation-Sentiment/README.md b/translations/bg/6-NLP/3-Translation-Sentiment/README.md
index a05c3f4d4..651c4cd11 100644
--- a/translations/bg/6-NLP/3-Translation-Sentiment/README.md
+++ b/translations/bg/6-NLP/3-Translation-Sentiment/README.md
@@ -1,12 +1,3 @@
-
# Превод и анализ на настроения с машинно обучение
В предишните уроци научихте как да създадете основен бот, използвайки `TextBlob`, библиотека, която включва машинно обучение зад кулисите, за да изпълнява основни задачи в обработката на естествен език, като извличане на съществителни фрази. Друго важно предизвикателство в компютърната лингвистика е точният _превод_ на изречение от един говорим или писмен език на друг.
diff --git a/translations/bg/6-NLP/3-Translation-Sentiment/assignment.md b/translations/bg/6-NLP/3-Translation-Sentiment/assignment.md
index c5753993b..700bc55ea 100644
--- a/translations/bg/6-NLP/3-Translation-Sentiment/assignment.md
+++ b/translations/bg/6-NLP/3-Translation-Sentiment/assignment.md
@@ -1,12 +1,3 @@
-
# Поетична лицензия
## Инструкции
diff --git a/translations/bg/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/bg/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
index d0fd9d363..71ec589da 100644
--- a/translations/bg/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
+++ b/translations/bg/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/bg/6-NLP/3-Translation-Sentiment/solution/R/README.md
index 2e634da7a..4494de920 100644
--- a/translations/bg/6-NLP/3-Translation-Sentiment/solution/R/README.md
+++ b/translations/bg/6-NLP/3-Translation-Sentiment/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/6-NLP/4-Hotel-Reviews-1/README.md b/translations/bg/6-NLP/4-Hotel-Reviews-1/README.md
index 846818478..76c6b444c 100644
--- a/translations/bg/6-NLP/4-Hotel-Reviews-1/README.md
+++ b/translations/bg/6-NLP/4-Hotel-Reviews-1/README.md
@@ -1,12 +1,3 @@
-
# Анализ на настроения с хотелски ревюта - обработка на данни
В този раздел ще използвате техниките от предишните уроци, за да направите изследователски анализ на голям набор от данни. След като придобиете добро разбиране за полезността на различните колони, ще научите:
diff --git a/translations/bg/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/bg/6-NLP/4-Hotel-Reviews-1/assignment.md
index 8bc0b829f..726ef4dfd 100644
--- a/translations/bg/6-NLP/4-Hotel-Reviews-1/assignment.md
+++ b/translations/bg/6-NLP/4-Hotel-Reviews-1/assignment.md
@@ -1,12 +1,3 @@
-
# NLTK
## Инструкции
diff --git a/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
index 120fd553a..71ec589da 100644
--- a/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
+++ b/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
index ade8d7531..7d5d7a15f 100644
--- a/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
+++ b/translations/bg/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо съдържание
---
diff --git a/translations/bg/6-NLP/5-Hotel-Reviews-2/README.md b/translations/bg/6-NLP/5-Hotel-Reviews-2/README.md
index f6fea94ac..24dfd63e2 100644
--- a/translations/bg/6-NLP/5-Hotel-Reviews-2/README.md
+++ b/translations/bg/6-NLP/5-Hotel-Reviews-2/README.md
@@ -1,12 +1,3 @@
-
# Анализ на настроения с хотелски ревюта
Сега, след като сте разгледали набора от данни в детайли, е време да филтрирате колоните и да използвате техники за обработка на естествен език (NLP), за да получите нови прозрения за хотелите.
diff --git a/translations/bg/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/bg/6-NLP/5-Hotel-Reviews-2/assignment.md
index 485ffb649..8a8286649 100644
--- a/translations/bg/6-NLP/5-Hotel-Reviews-2/assignment.md
+++ b/translations/bg/6-NLP/5-Hotel-Reviews-2/assignment.md
@@ -1,12 +1,3 @@
-
# Опитайте с различен набор от данни
## Инструкции
diff --git a/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
index 47ad6a69a..301aba13a 100644
--- a/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
+++ b/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
index 3265f326a..4494de920 100644
--- a/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
+++ b/translations/bg/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/6-NLP/README.md b/translations/bg/6-NLP/README.md
index 275027261..3e87f23cf 100644
--- a/translations/bg/6-NLP/README.md
+++ b/translations/bg/6-NLP/README.md
@@ -1,12 +1,3 @@
-
# Започване с обработка на естествен език
Обработката на естествен език (NLP) е способността на компютърна програма да разбира човешкия език, както се говори и пише – наричан естествен език. Това е компонент на изкуствения интелект (AI). NLP съществува повече от 50 години и има корени в областта на лингвистиката. Цялата област е насочена към това да помогне на машините да разбират и обработват човешкия език. Това може да се използва за изпълнение на задачи като проверка на правописа или машинен превод. NLP има разнообразни приложения в реалния свят в редица области, включително медицински изследвания, търсачки и бизнес анализи.
diff --git a/translations/bg/6-NLP/data/README.md b/translations/bg/6-NLP/data/README.md
index 92cfe1a6d..59ca4afb1 100644
--- a/translations/bg/6-NLP/data/README.md
+++ b/translations/bg/6-NLP/data/README.md
@@ -1,12 +1,3 @@
-
Изтеглете данните за отзивите за хотела в тази папка.
---
diff --git a/translations/bg/7-TimeSeries/1-Introduction/README.md b/translations/bg/7-TimeSeries/1-Introduction/README.md
index 278220535..e77d1fcce 100644
--- a/translations/bg/7-TimeSeries/1-Introduction/README.md
+++ b/translations/bg/7-TimeSeries/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в прогнозиране на времеви серии

diff --git a/translations/bg/7-TimeSeries/1-Introduction/assignment.md b/translations/bg/7-TimeSeries/1-Introduction/assignment.md
index eea5a6474..b92f97a0e 100644
--- a/translations/bg/7-TimeSeries/1-Introduction/assignment.md
+++ b/translations/bg/7-TimeSeries/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Визуализирайте още времеви серии
## Инструкции
diff --git a/translations/bg/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/bg/7-TimeSeries/1-Introduction/solution/Julia/README.md
index 1a3566f92..71ec589da 100644
--- a/translations/bg/7-TimeSeries/1-Introduction/solution/Julia/README.md
+++ b/translations/bg/7-TimeSeries/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/bg/7-TimeSeries/1-Introduction/solution/R/README.md
index a3002d042..4494de920 100644
--- a/translations/bg/7-TimeSeries/1-Introduction/solution/R/README.md
+++ b/translations/bg/7-TimeSeries/1-Introduction/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/7-TimeSeries/2-ARIMA/README.md b/translations/bg/7-TimeSeries/2-ARIMA/README.md
index 497236519..1ddb02ec3 100644
--- a/translations/bg/7-TimeSeries/2-ARIMA/README.md
+++ b/translations/bg/7-TimeSeries/2-ARIMA/README.md
@@ -1,12 +1,3 @@
-
# Прогнозиране на времеви редове с ARIMA
В предишния урок научихте малко за прогнозиране на времеви редове и заредихте набор от данни, показващ колебанията на електрическото натоварване за определен период от време.
diff --git a/translations/bg/7-TimeSeries/2-ARIMA/assignment.md b/translations/bg/7-TimeSeries/2-ARIMA/assignment.md
index 1e5a5d666..b187355e9 100644
--- a/translations/bg/7-TimeSeries/2-ARIMA/assignment.md
+++ b/translations/bg/7-TimeSeries/2-ARIMA/assignment.md
@@ -1,12 +1,3 @@
-
# Нов ARIMA модел
## Инструкции
diff --git a/translations/bg/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/bg/7-TimeSeries/2-ARIMA/solution/Julia/README.md
index 8f283982d..71ec589da 100644
--- a/translations/bg/7-TimeSeries/2-ARIMA/solution/Julia/README.md
+++ b/translations/bg/7-TimeSeries/2-ARIMA/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/bg/7-TimeSeries/2-ARIMA/solution/R/README.md
index 69f621f8f..4494de920 100644
--- a/translations/bg/7-TimeSeries/2-ARIMA/solution/R/README.md
+++ b/translations/bg/7-TimeSeries/2-ARIMA/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/7-TimeSeries/3-SVR/README.md b/translations/bg/7-TimeSeries/3-SVR/README.md
index 87385950a..66c7eb67d 100644
--- a/translations/bg/7-TimeSeries/3-SVR/README.md
+++ b/translations/bg/7-TimeSeries/3-SVR/README.md
@@ -1,12 +1,3 @@
-
# Прогнозиране на времеви серии със Support Vector Regressor
В предишния урок научихте как да използвате модела ARIMA за прогнозиране на времеви серии. Сега ще разгледате модела Support Vector Regressor, който е регресионен модел, използван за прогнозиране на непрекъснати данни.
diff --git a/translations/bg/7-TimeSeries/3-SVR/assignment.md b/translations/bg/7-TimeSeries/3-SVR/assignment.md
index 13ce6e9ed..7c2a538ee 100644
--- a/translations/bg/7-TimeSeries/3-SVR/assignment.md
+++ b/translations/bg/7-TimeSeries/3-SVR/assignment.md
@@ -1,12 +1,3 @@
-
# Нов модел SVR
## Инструкции [^1]
diff --git a/translations/bg/7-TimeSeries/README.md b/translations/bg/7-TimeSeries/README.md
index aa4cbd68f..3d913c791 100644
--- a/translations/bg/7-TimeSeries/README.md
+++ b/translations/bg/7-TimeSeries/README.md
@@ -1,12 +1,3 @@
-
# Въведение в прогнозиране на времеви редове
Какво представлява прогнозиране на времеви редове? Това е процесът на предсказване на бъдещи събития чрез анализиране на тенденциите от миналото.
diff --git a/translations/bg/8-Reinforcement/1-QLearning/README.md b/translations/bg/8-Reinforcement/1-QLearning/README.md
index ce30250bb..19516623a 100644
--- a/translations/bg/8-Reinforcement/1-QLearning/README.md
+++ b/translations/bg/8-Reinforcement/1-QLearning/README.md
@@ -1,12 +1,3 @@
-
# Въведение в Укрепващото Обучение и Q-Learning

diff --git a/translations/bg/8-Reinforcement/1-QLearning/assignment.md b/translations/bg/8-Reinforcement/1-QLearning/assignment.md
index c6fc4ba31..30792fe8b 100644
--- a/translations/bg/8-Reinforcement/1-QLearning/assignment.md
+++ b/translations/bg/8-Reinforcement/1-QLearning/assignment.md
@@ -1,12 +1,3 @@
-
# По-реалистичен свят
В нашата ситуация, Петър можеше да се движи почти без да се уморява или огладнява. В по-реалистичен свят, той трябва да сяда и да си почива от време на време, както и да се храни. Нека направим нашия свят по-реалистичен, като приложим следните правила:
diff --git a/translations/bg/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/bg/8-Reinforcement/1-QLearning/solution/Julia/README.md
index 49510f835..71ec589da 100644
--- a/translations/bg/8-Reinforcement/1-QLearning/solution/Julia/README.md
+++ b/translations/bg/8-Reinforcement/1-QLearning/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/bg/8-Reinforcement/1-QLearning/solution/R/README.md
index 845006806..4494de920 100644
--- a/translations/bg/8-Reinforcement/1-QLearning/solution/R/README.md
+++ b/translations/bg/8-Reinforcement/1-QLearning/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/8-Reinforcement/2-Gym/README.md b/translations/bg/8-Reinforcement/2-Gym/README.md
index 2a6bf283a..b3242acf2 100644
--- a/translations/bg/8-Reinforcement/2-Gym/README.md
+++ b/translations/bg/8-Reinforcement/2-Gym/README.md
@@ -1,12 +1,3 @@
-
# Картофелно пързаляне
Проблемът, който решавахме в предишния урок, може да изглежда като играчка, която няма реално приложение в живота. Това не е така, защото много реални проблеми също споделят този сценарий - включително играта на шах или го. Те са подобни, защото също имаме дъска с определени правила и **дискретно състояние**.
diff --git a/translations/bg/8-Reinforcement/2-Gym/assignment.md b/translations/bg/8-Reinforcement/2-Gym/assignment.md
index 3a5592b4e..f7b51486d 100644
--- a/translations/bg/8-Reinforcement/2-Gym/assignment.md
+++ b/translations/bg/8-Reinforcement/2-Gym/assignment.md
@@ -1,12 +1,3 @@
-
# Обучение на Mountain Car
[OpenAI Gym](http://gym.openai.com) е проектиран така, че всички среди предоставят един и същ API - т.е. същите методи `reset`, `step` и `render`, както и същите абстракции за **пространство на действията** и **пространство на наблюденията**. Следователно, би трябвало да е възможно да се адаптират едни и същи алгоритми за обучение чрез подсилване към различни среди с минимални промени в кода.
diff --git a/translations/bg/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/bg/8-Reinforcement/2-Gym/solution/Julia/README.md
index 02917a6c0..71ec589da 100644
--- a/translations/bg/8-Reinforcement/2-Gym/solution/Julia/README.md
+++ b/translations/bg/8-Reinforcement/2-Gym/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/bg/8-Reinforcement/2-Gym/solution/R/README.md b/translations/bg/8-Reinforcement/2-Gym/solution/R/README.md
index 5d1d22ddd..4494de920 100644
--- a/translations/bg/8-Reinforcement/2-Gym/solution/R/README.md
+++ b/translations/bg/8-Reinforcement/2-Gym/solution/R/README.md
@@ -1,12 +1,3 @@
-
това е временно запълващо място
---
diff --git a/translations/bg/8-Reinforcement/README.md b/translations/bg/8-Reinforcement/README.md
index ce97bd58a..75015839d 100644
--- a/translations/bg/8-Reinforcement/README.md
+++ b/translations/bg/8-Reinforcement/README.md
@@ -1,12 +1,3 @@
-
# Въведение в обучението чрез подсилване
Обучението чрез подсилване (RL) се счита за един от основните парадигми на машинното обучение, наред с обучението с учител и без учител. RL се фокусира върху вземането на решения: доставяне на правилните решения или поне учене от тях.
diff --git a/translations/bg/9-Real-World/1-Applications/README.md b/translations/bg/9-Real-World/1-Applications/README.md
index 140d564c1..321e335af 100644
--- a/translations/bg/9-Real-World/1-Applications/README.md
+++ b/translations/bg/9-Real-World/1-Applications/README.md
@@ -1,12 +1,3 @@
-
# Постскриптум: Машинно обучение в реалния свят

diff --git a/translations/bg/9-Real-World/1-Applications/assignment.md b/translations/bg/9-Real-World/1-Applications/assignment.md
index e272571e4..0fc3e19ca 100644
--- a/translations/bg/9-Real-World/1-Applications/assignment.md
+++ b/translations/bg/9-Real-World/1-Applications/assignment.md
@@ -1,12 +1,3 @@
-
# Лов на съкровища с машинно обучение
## Инструкции
diff --git a/translations/bg/9-Real-World/2-Debugging-ML-Models/README.md b/translations/bg/9-Real-World/2-Debugging-ML-Models/README.md
index 24a67e8ab..dcb8a850d 100644
--- a/translations/bg/9-Real-World/2-Debugging-ML-Models/README.md
+++ b/translations/bg/9-Real-World/2-Debugging-ML-Models/README.md
@@ -1,12 +1,3 @@
-
# Постскриптум: Дебъгване на модели в машинното обучение с помощта на компоненти от таблото за отговорен AI
## [Тест преди лекцията](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/bg/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/bg/9-Real-World/2-Debugging-ML-Models/assignment.md
index c37e82375..ddd52dd08 100644
--- a/translations/bg/9-Real-World/2-Debugging-ML-Models/assignment.md
+++ b/translations/bg/9-Real-World/2-Debugging-ML-Models/assignment.md
@@ -1,12 +1,3 @@
-
# Изследвайте таблото за отговорен AI (RAI)
## Инструкции
diff --git a/translations/bg/9-Real-World/README.md b/translations/bg/9-Real-World/README.md
index 08ca9b166..0f477130b 100644
--- a/translations/bg/9-Real-World/README.md
+++ b/translations/bg/9-Real-World/README.md
@@ -1,12 +1,3 @@
-
# Постскриптум: Реални приложения на класическото машинно обучение
В тази част от учебната програма ще се запознаете с някои реални приложения на класическото машинно обучение. Претърсихме интернет, за да намерим научни статии и материали за приложения, които използват тези стратегии, като избягваме невронни мрежи, дълбоко обучение и изкуствен интелект, доколкото е възможно. Научете как машинното обучение се използва в бизнес системи, екологични приложения, финанси, изкуство и култура и други.
diff --git a/translations/bg/AGENTS.md b/translations/bg/AGENTS.md
index 0e2b88292..a015605ad 100644
--- a/translations/bg/AGENTS.md
+++ b/translations/bg/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Преглед на проекта
diff --git a/translations/bg/CODE_OF_CONDUCT.md b/translations/bg/CODE_OF_CONDUCT.md
index 1e23c427f..f0b2a4caf 100644
--- a/translations/bg/CODE_OF_CONDUCT.md
+++ b/translations/bg/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Кодекс за поведение на Microsoft Open Source
Този проект е приел [Кодекса за поведение на Microsoft Open Source](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/bg/CONTRIBUTING.md b/translations/bg/CONTRIBUTING.md
index 33632111b..2eef9678b 100644
--- a/translations/bg/CONTRIBUTING.md
+++ b/translations/bg/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Принос
Този проект приветства приноси и предложения. Повечето приноси изискват от вас да се съгласите с Лицензионно споразумение за принос (CLA), което декларира, че имате право и наистина предоставяте ни правата да използваме вашия принос. За подробности посетете https://cla.microsoft.com.
diff --git a/translations/bg/README.md b/translations/bg/README.md
index 742bb7217..bc8d9028d 100644
--- a/translations/bg/README.md
+++ b/translations/bg/README.md
@@ -1,12 +1,3 @@
-
[](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
[](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/ML-For-Beginners/issues/)
@@ -17,16 +8,16 @@ CO_OP_TRANSLATOR_METADATA:
[](https://GitHub.com/microsoft/ML-For-Beginners/network/)
[](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/)
-### 🌐 Поддръжка на много езици
+### 🌐 Многоезикова поддръжка
#### Поддържано чрез GitHub Action (Автоматизирано и винаги актуално)
-[Арабски](../ar/README.md) | [Бенгалски](../bn/README.md) | [Български](./README.md) | [Бирмански (Мианмар)](../my/README.md) | [Китайски (опростен)](../zh/README.md) | [Китайски (традиционен, Хонг Конг)](../hk/README.md) | [Китайски (традиционен, Макао)](../mo/README.md) | [Китайски (традиционен, Тайван)](../tw/README.md) | [Хърватски](../hr/README.md) | [Чешки](../cs/README.md) | [Датски](../da/README.md) | [Холандски](../nl/README.md) | [Естонски](../et/README.md) | [Фински](../fi/README.md) | [Френски](../fr/README.md) | [Немски](../de/README.md) | [Гръцки](../el/README.md) | [Иврит](../he/README.md) | [Хинди](../hi/README.md) | [Унгарски](../hu/README.md) | [Индонезийски](../id/README.md) | [Италиански](../it/README.md) | [Японски](../ja/README.md) | [Канада](../kn/README.md) | [Корейски](../ko/README.md) | [Литовски](../lt/README.md) | [Малайски](../ms/README.md) | [Малаялам](../ml/README.md) | [Марати](../mr/README.md) | [Непалски](../ne/README.md) | [Нигерийски Пиджин](../pcm/README.md) | [Норвежки](../no/README.md) | [Персийски (фарси)](../fa/README.md) | [Полски](../pl/README.md) | [Португалски (Бразилия)](../br/README.md) | [Португалски (Португалия)](../pt/README.md) | [Панджаби (Гурмукхи)](../pa/README.md) | [Румънски](../ro/README.md) | [Руски](../ru/README.md) | [Сръбски (кирилица)](../sr/README.md) | [Словашки](../sk/README.md) | [Словенски](../sl/README.md) | [Испански](../es/README.md) | [Суахили](../sw/README.md) | [Шведски](../sv/README.md) | [Тагалог (филипински)](../tl/README.md) | [Тамилски](../ta/README.md) | [Телугу](../te/README.md) | [Тайски](../th/README.md) | [Турски](../tr/README.md) | [Украински](../uk/README.md) | [Урду](../ur/README.md) | [Виетнамски](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](./README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Предпочитате да клонирате локално?**
-> Това хранилище включва над 50 езикови превода, които значително увеличават размера на изтегляне. За да клонирате без преводите, използвайте sparse checkout:
+> Това хранилище включва над 50 езикови превода, което значително увеличава размера на изтеглянето. За да клонирате без преводи, използвайте sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/ML-For-Beginners.git
> cd ML-For-Beginners
@@ -39,58 +30,58 @@ CO_OP_TRANSLATOR_METADATA:
[](https://discord.gg/nTYy5BXMWG)
-Имаме текуща серия "Учете с AI" в Discord, научете повече и се присъединете към нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за Data Science.
+Имаме текстваща серия „Учи с AI“ в Discord, научете повече и се присъединете към нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за наука за данни.
-
+
# Машинно обучение за начинаещи - учебна програма
-> 🌍 Пътувайте по света, докато изследваме Машинното обучение чрез културите на света 🌍
+> 🌍 Пътувайте из целия свят, докато изучаваме Машинно обучение чрез световните култури 🌍
-Cloud Advocates в Microsoft с радост предлагат 12-седмична, 26-лекционна учебна програма изцяло за **Машинно обучение**. В тази учебна програма ще научите за това, което понякога се нарича **класическо машинно обучение**, използвайки главно библиотеката Scikit-learn и без задълбочено учене, което е разгледано в нашата [учебна програма AI за начинаещи](https://aka.ms/ai4beginners). Съчетавайте тези уроци с нашата ['Data Science for Beginners' учебна програма](https://aka.ms/ds4beginners) също!
+Облачните адвокати в Microsoft се радват да предложат 12-седмична, 26-урочна учебна програма, изцяло посветена на **Машинното обучение**. В тази учебна програма ще научите за това, което понякога се нарича **класическо машинно обучение**, използвайки предимно библиотеката Scikit-learn и като избягвате дълбокото учене, което е разгледано в нашата [AI за начинаещи учебна програма](https://aka.ms/ai4beginners). Сдвоете тези уроци и с нашата ['Наука за данните за начинаещи' учебна програма](https://aka.ms/ds4beginners)!
-Пътувайте с нас по света, като прилагаме тези класически техники към данни от много региони на света. Всеки урок включва тестове преди и след урока, писмени инструкции за изпълнение, решение, задача и още. Нашата педагогика, основана на проекти, ви позволява да учите чрез практическо изграждане, доказан начин за усвояване на нови умения.
+Пътувайте с нас по света, докато прилагаме тези класически техники върху данни от много области на света. Всеки урок включва предварителен и последващ тест, писмени инструкции за завършване на урока, решение, задача и още. Нашата учебна методология, базирана на проекти, ви позволява да учите чрез създаване на проекти, което е доказан начин новите умения да се „захванат“.
-**✍️ Сърдечни благодарности на нашите автори** Джен Лупер, Стивън Хауъл, Франческа Лазери, Томоми Имура, Каси Бревиу, Дмитрий Сошников, Крис Норинг, Анирбан Мукерджи, Орнела Алтунян, Рут Якобу и Ейми Бойд
+**✍️ Сърдечни благодарности на нашите автори** Джен Лупър, Стивън Хауъл, Франческа Лазери, Томоми Имура, Каси Бревиу, Дмитрий Сошников, Крис Норинг, Анирбан Мукерджи, Орнела Алтунян, Рут Якобу и Ейми Бойд
-**🎨 Благодарности също и на нашите илюстратори** Томоми Имура, Дасани Мадипали и Джен Лупер
+**🎨 Благодарности и на нашите илюстратори** Томоми Имура, Дасани Мадипали и Джен Лупър
-**🙏 Специални благодарности 🙏 на нашите автори, преглеждащи и съдържателни сътрудници от Microsoft Student Ambassador**, особено Ришит Дагли, Мухаммад Сакиб Хан Инан, Рохан Радж, Александру Петреску, Абхишек Джайсуал, Науин Табасум, Йоан Самуила и Снигдха Агарвал
+**🙏 Специални благодарности 🙏 на нашите студенти-амбасадори на Microsoft, автори, рецензенти и сътрудници по съдържанието**, особено Ришит Дагли, Мухаммад Сакиб Хан Иван, Рохан Радж, Александру Петреску, Абхишек Джайсвал, Ноуин Табасъм, Йоан Самуила и Снидха Агарвал
-**🤩 Допълнителна благодарност към Microsoft Student Ambassadors Ерик Ванджау, Джаслин Сонди и Видуши Гупта за нашите уроци по R!**
+**🤩 Допълнителна благодарност на студентските посланици на Microsoft Ерик Уанджау, Джаслийн Сонди и Видуши Гупта за нашите R уроци!**
-# Започване
+# Първи стъпки
Следвайте тези стъпки:
-1. **Форкнете хранилището**: Кликнете на бутона „Fork“ в горния десен ъгъл на тази страница.
-2. **Клонирайте хранилището**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
+1. **Форкнете репозитория**: Кликнете бутона „Fork“ в горния десен ъгъл на тази страница.
+2. **Клонирайте репозитория**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
-> [намерете всички допълнителни ресурси за този курс в нашата Microsoft Learn колекция](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
+> [намерете всички допълнителни ресурси за този курс в нашата колекция Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
-> 🔧 **Нуждаете се от помощ?** Вижте нашия [Наръчник за отстраняване на проблеми](TROUBLESHOOTING.md) за решения на често срещани проблеми с инсталация, настройка и изпълнение на уроци.
+> 🔧 **Нужна ви е помощ?** Прегледайте нашето [Ръководство за отстраняване на проблеми](TROUBLESHOOTING.md) за решения на често срещани проблеми с инсталирането, настройката и стартирането на уроците.
-**[Студенти](https://aka.ms/student-page)**, за да използвате тази учебна програма, форкнете цялото хранилище във вашия собствен GitHub акаунт и изпълнявайте упражненията сами или в група:
+**[Студенти](https://aka.ms/student-page)**, за да използвате тази учебна програма, форкнете целия репо във вашия собствен GitHub акаунт и завършвайте упражненията сами или в група:
-- Започнете с тест преди лекцията.
-- Прочетете лекцията и изпълнете дейностите, спирайки се и размишлявайки при всяка проверка на знанията.
-- Опитайте се да създадете проектите, като разбирате уроците, а не просто като изпълнявате кода на решенията; този код обаче е наличен във `/solution` папките във всеки урок, ориентиран към проект.
+- Започнете с предварителен тест преди лекция.
+- Прочетете лекцията и изпълнете дейностите, като спирате и размишлявате след всяка проверка на знанията.
+- Опитайте да създадете проектите, като разбирате уроците, а не просто пуснете решението; кодът обаче е наличен в папките `/solution` във всеки урок, базиран на проект.
- Направете тест след лекцията.
-- Изпълнете предизвикателството.
-- Изпълнете задачата.
-- След приключване на група уроци посетете [Дискусионния форум](https://github.com/microsoft/ML-For-Beginners/discussions) и „учете на глас“, като попълните подходящия PAT рубрик. PAT е Инструмент за оценка на напредъка, който представлява рубрика за самостоятелна оценка и напредък. Можете също да реагирате на други PAT, за да учим заедно.
+- Завършете предизвикателството.
+- Завършете задачата.
+- След завършване на група уроци посетете [Дискусионния форум](https://github.com/microsoft/ML-For-Beginners/discussions) и „учете на глас“, попълвайки подходящата рубрика PAT. 'PAT' е Инструмент за оценка на напредъка, който е рубрика, която попълвате, за да задълбочите ученето си. Можете също така да реагирате на други PAT, за да учим заедно.
-> За по-нататъшно обучение препоръчваме да следвате тези модули и учебни пътеки от [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
+> За допълнително обучение препоръчваме да следвате тези [Модули и учебни пътеки на Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
-**Учители**, ние сме включили някои [предложения](for-teachers.md) как да използвате тази учебна програма.
+**Учители**, включили сме [някои предложения](for-teachers.md) как да използвате тази учебна програма.
---
## Видео уроци
-Някои уроци са налични като кратки видео формати. Можете да ги намерите във всеки урок или в [плейлистата ML за начинаещи в Microsoft Developer YouTube канала](https://aka.ms/ml-beginners-videos), като кликнете върху изображението по-долу.
+Някои уроци са налични под формата на кратки видеа. Можете да ги намерите в текста на уроците или в [плейлиста ML for Beginners в YouTube канала на Microsoft Developer](https://aka.ms/ml-beginners-videos), като кликнете на изображението по-долу.
-[](https://aka.ms/ml-beginners-videos)
+[](https://aka.ms/ml-beginners-videos)
---
@@ -100,79 +91,79 @@ Cloud Advocates в Microsoft с радост предлагат 12-седмич
**Гиф от** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal)
-> 🎥 Кликнете върху изображението по-горе за видео за проекта и хората, които го създадоха!
+> 🎥 Кликнете на изображението горе за видео за проекта и хората, които го създадоха!
---
-## Педагогика
+## Методология
-Избрахме два педагогически принципа при създаването на тази учебна програма: осигуряване на практически ориентирано учене чрез **проекти** и включване на **чести тестове**. Освен това тази учебна програма има обща **тема** за постигане на единство.
+Избрахме два педагогически постулата при изграждането на тази учебна програма: да бъде практически **базирана на проекти** и да включва **чести тестове**. Освен това тази учебна програма има обща **тема**, за да й придаде единство.
-Чрез осигуряване на съответствието на съдържанието с проектите процесът става по-ангажиращ за студентите, а задържането на знанията се увеличава. Освен това ниско рисков тест преди клас настройва намерението на студента за учене на тема, а втори тест след урок гарантира по-голямо усвояване. Тази учебна програма е проектирана да е гъвкава и забавна и може да се следва изцяло или частично. Проектите започват от малки и стават все по-сложни до края на 12-седмичния цикъл. Учебната програма включва и послеслов за реални приложения на машинното обучение, който може да служи като допълнителен кредит или основа за дискусия.
+Чрез гарантиране, че съдържанието съответства на проекти, процесът става по-ангажиращ за студентите и запомнянето на понятията се подобрява. Освен това нисковажно тестово задание преди занятия насочва намерението на студента към изучаване на тема, а втори тест след занятието осигурява по-добро затвърждаване. Тази програма е проектирана да бъде гъвкава и забавна и може да бъде взета изцяло или частично. Проектите започват малки и стават все по-сложни до края на 12-седмичния цикъл. В програмата също е включен послеслов за реалните приложения на машинното обучение, който може да се използва като допълнителен кредит или като основа за дискусия.
-> Намерете нашите насоки за [Кодекс на поведение](CODE_OF_CONDUCT.md), [Принос](CONTRIBUTING.md), [Превод](TRANSLATIONS.md) и [Отстраняване на проблеми](TROUBLESHOOTING.md). Очакваме вашите конструктивни отзиви!
+> Намерете нашите насоки за [Етичен кодекс](CODE_OF_CONDUCT.md), [Сътрудничество](CONTRIBUTING.md), [Преводи](TRANSLATIONS.md) и [Отстраняване на проблеми](TROUBLESHOOTING.md). Очакваме с нетърпение вашите конструктивни отзиви!
## Всеки урок включва
-- по избор скичноут
-- по избор допълващо видео
-- видео урок (само за някои уроци)
-- [тест за затопляне преди лекцията](https://ff-quizzes.netlify.app/en/ml/)
+- опционалната скицникта
+- опционално допълнително видео
+- видео урок (само някои уроци)
+- [въпросник преди лекция](https://ff-quizzes.netlify.app/en/ml/)
- писмен урок
-- за проекти, стъпка по стъпка инструкции за изграждането на проекта
-- проверки на знания
+- за уроци, базирани на проекти: стъпка по стъпка ръководства за изграждане на проекта
+- проверки на знанията
- предизвикателство
- допълнително четиво
- задача
-- [тест след лекцията](https://ff-quizzes.netlify.app/en/ml/)
-
-> **Забележка за езиците**: Тези уроци са главно написани на Python, но много от тях са налични и на R. За да завършите урок по R, отидете в папката `/solution` и потърсете уроци на R. Те имат разширение .rmd, което представлява **R Markdown** файл, който просто казано е вграждане на `кодови блокове` (на R или други езици) и `YAML заглавна част` (която указва форматирането на изходните формати като PDF) в `Markdown документ`. По този начин това е отлична рамка за писане за данни, тъй като ви позволява да съчетаете кода си, изхода му и мислите си, като ги записвате в Markdown. Освен това R Markdown документите могат да се рендерират до изходни формати като PDF, HTML или Word.
-> **Бележка за викторините**: Всички викторини са в [папка Quiz App](../../quiz-app), с общо 52 викторини по три въпроса всяка. Те са свързани от уроците, но приложението за викторини може да се стартира локално; следвайте инструкциите в папката `quiz-app`, за да хоствате локално или да публикувате в Azure.
-
-| Номер на урока | Тема | Групиране на уроци | Учебни цели | Свързан урок | Автор |
-| :------------: | :---------------------------------------------------------: | :-----------------------------------------------------: | ----------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------: |
-| 01 | Въведение в машинното обучение | [Въведение](1-Introduction/README.md) | Научете основните понятия зад машинното обучение | [Урок](1-Introduction/1-intro-to-ML/README.md) | Мухаммад |
-| 02 | История на машинното обучение | [Въведение](1-Introduction/README.md) | Научете историята зад тази област | [Урок](1-Introduction/2-history-of-ML/README.md) | Джен и Ейми |
-| 03 | Честност и машинно обучение | [Въведение](1-Introduction/README.md) | Какви са важните философски въпроси около честността, които студентите трябва да обмислят при създаване и прилагане на модели? | [Урок](1-Introduction/3-fairness/README.md) | Томоми |
-| 04 | Техники за машинно обучение | [Въведение](1-Introduction/README.md) | Какви техники използват изследователите за построяване на модели? | [Урок](1-Introduction/4-techniques-of-ML/README.md) | Крис и Джен |
-| 05 | Въведение в регресия | [Регресия](2-Regression/README.md) | Започнете с Python и Scikit-learn за модели на регресия | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Джен • Ерик Уанджау |
-| 06 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Визуализирайте и почистете данни в подготовка за ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Джен • Ерик Уанджау |
-| 07 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Построяване на линейни и полиномиални регресионни модели | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Джен и Дмитрий • Ерик Уанджау |
-| 08 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Построяване на логистична регресионна модел | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Джен • Ерик Уанджау |
-| 09 | Уеб приложение 🔌 | [Уеб приложение](3-Web-App/README.md) | Създайте уеб приложение за използване на обучен модел | [Python](3-Web-App/1-Web-App/README.md) | Джен |
-| 10 | Въведение в класификация | [Класификация](4-Classification/README.md) | Почистете, подгответе и визуализирайте данните; въведение в класификация | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Джен и Каси • Ерик Уанджау |
-| 11 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Въведение в класификаторите | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Джен и Каси • Ерик Уанджау |
-| 12 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Още класификатори | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Джен и Каси • Ерик Уанджау |
-| 13 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Създайте уеб приложение препоръчител с вашия модел | [Python](4-Classification/4-Applied/README.md) | Джен |
-| 14 | Въведение в клъстериране | [Клъстериране](5-Clustering/README.md) | Почистете, подгответе и визуализирайте данните; Въведение в клъстериране | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Джен • Ерик Уанджау |
-| 15 | Изследване на музикалните вкусове на Нигерия 🎧 | [Клъстериране](5-Clustering/README.md) | Проучете метода на клъстериране K-Means | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Джен • Ерик Уанджау |
-| 16 | Въведение в обработка на естествен език ☕️ | [Обработка на естествен език](6-NLP/README.md) | Научете основите на NLP чрез създаване на прост бот | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Стивън |
-| 17 | Чести задачи в NLP ☕️ | [Обработка на естествен език](6-NLP/README.md) | Разширете знанията си в NLP чрез разбиране на често срещаните задачи при работа с езикови структури | [Python](6-NLP/2-Tasks/README.md) | Стивън |
-| 18 | Превод и анализ на настроения ♥️ | [Обработка на естествен език](6-NLP/README.md) | Превод и анализ на настроения с Джейн Остин | [Python](6-NLP/3-Translation-Sentiment/README.md) | Стивън |
-| 19 | Романтични хотели в Европа ♥️ | [Обработка на естествен език](6-NLP/README.md) | Анализ на настроения със зазиви от хотели 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Стивън |
-| 20 | Романтични хотели в Европа ♥️ | [Обработка на естествен език](6-NLP/README.md) | Анализ на настроения със зазиви от хотели 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Стивън |
-| 21 | Въведение в прогнозиране на времеви редове | [Времеви редове](7-TimeSeries/README.md) | Въведение в прогнозиране на времеви редове | [Python](7-TimeSeries/1-Introduction/README.md) | Франческа |
-| 22 | ⚡️ Световна употреба на електроенергия ⚡️ - прогнозиране с ARIMA | [Времеви редове](7-TimeSeries/README.md) | Прогнозиране на времеви редове с ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Франческа |
-| 23 | ⚡️ Световна употреба на електроенергия ⚡️ - прогнозиране с SVR | [Времеви редове](7-TimeSeries/README.md) | Прогнозиране на времеви редове с Регресор с опорни вектори | [Python](7-TimeSeries/3-SVR/README.md) | Анирбан |
-| 24 | Въведение в обучение с подсилване | [Обучение с подсилване](8-Reinforcement/README.md) | Въведение в обучение с подсилване с Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Дмитрий |
-| 25 | Помогнете на Питър да избегне вълка! 🐺 | [Обучение с подсилване](8-Reinforcement/README.md) | Обучение с подсилване в Gym | [Python](8-Reinforcement/2-Gym/README.md) | Дмитрий |
-| Послеслов | Приложения и сценарии на ML в реалния свят | [ML в дивата природа](9-Real-World/README.md) | Интересни и показателни приложения на класическо ML в реалния свят | [Урок](9-Real-World/1-Applications/README.md) | Екип |
-| Послеслов | Отстраняване на грешки в модели с RAI dashboard | [ML в дивата природа](9-Real-World/README.md) | Отстраняване на грешки в машинно обучение с помощта на таблото за управление Responsible AI | [Урок](9-Real-World/2-Debugging-ML-Models/README.md) | Рут Якубу |
+- [въпросник след лекция](https://ff-quizzes.netlify.app/en/ml/)
+
+> **Забележка за езиците**: Тези уроци са предимно написани на Python, но много от тях са налични и на R. За да завършите урок по R, отидете в папката `/solution` и потърсете уроци на R. Те включват разширението .rmd, което представлява **R Markdown** файл, който просто се дефинира като вграждане на `кодови блокове` (на R или други езици) и `YAML заглавие` (което указва как да се форматират изходите като PDF) в `Markdown документ`. По този начин това служи като отлична рамка за авторство в науката за данни, тъй като ви позволява да комбинирате вашия код, резултата от него и вашите мисли, като ги записвате в Markdown. Освен това, R Markdown документите могат да се конвертират в изходни формати като PDF, HTML или Word.
+> **Забележка за тестовете**: Всички тестове са съдържани в [папка Quiz App](../../quiz-app), общо 52 теста с по три въпроса всеки. Те са свързани в рамките на уроците, но приложението за тестове може да се изпълнява локално; следвайте инструкциите в папката `quiz-app`, за да го хоствате локално или да го разположите в Azure.
+
+| Номер на урока | Тема | Групиране на уроци | Учебни цели | Свързан урок | Автор |
+| :------------: | :-----------------------------------------------------------: | :----------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------ | :-------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------: |
+| 01 | Въведение в машинното обучение | [Въведение](1-Introduction/README.md) | Научете основните концепции зад машинното обучение | [Урок](1-Introduction/1-intro-to-ML/README.md) | Мухамад |
+| 02 | История на машинното обучение | [Въведение](1-Introduction/README.md) | Научете историята, лежаща в основата на тази област | [Урок](1-Introduction/2-history-of-ML/README.md) | Джен и Ейми |
+| 03 | Справедливост и машинно обучение | [Въведение](1-Introduction/README.md) | Какви са важните философски въпроси около справедливостта, които студентите трябва да обмислят при изграждането и приложението на модели? | [Урок](1-Introduction/3-fairness/README.md) | Томоми |
+| 04 | Техники за машинно обучение | [Въведение](1-Introduction/README.md) | Какви техники използват изследователите на машинно обучение, за да изградят ML модели? | [Урок](1-Introduction/4-techniques-of-ML/README.md) | Крис и Джен |
+| 05 | Въведение в регресия | [Регресия](2-Regression/README.md) | Започнете с Python и Scikit-learn за регресионни модели | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Джен • Ерик Уанджау |
+| 06 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Визуализирайте и почистете данни в подготовка за ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Джен • Ерик Уанджау |
+| 07 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Постройте линейни и полиномиални регресионни модели | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Джен и Дмитрий • Ерик Уанджау |
+| 08 | Цени на тиквите в Северна Америка 🎃 | [Регресия](2-Regression/README.md) | Постройте логистичен регресионен модел | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Джен • Ерик Уанджау |
+| 09 | Уеб приложение 🔌 | [Уеб приложение](3-Web-App/README.md) | Създайте уеб приложение за използване на обучен модел | [Python](3-Web-App/1-Web-App/README.md) | Джен |
+| 10 | Въведение в класификация | [Класификация](4-Classification/README.md) | Почистете, подгответе и визуализирайте данните си; въведение в класификация | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Джен и Каси • Ерик Уанджау |
+| 11 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Въведение в класификаторите | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Джен и Каси • Ерик Уанджау |
+| 12 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Повече класификатори | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Джен и Каси • Ерик Уанджау |
+| 13 | Вкусни азиатски и индийски кухни 🍜 | [Класификация](4-Classification/README.md) | Създайте уеб приложение за препоръки, използвайки вашия модел | [Python](4-Classification/4-Applied/README.md) | Джен |
+| 14 | Въведение в клъстеризация | [Клъстеризация](5-Clustering/README.md) | Почистете, подгответе и визуализирайте данните си; въведение в клъстеризация | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Джен • Ерик Уанджау |
+| 15 | Изследване на музикалните вкусове в Нигерия 🎧 | [Клъстеризация](5-Clustering/README.md) | Изследвайте метода K-средни за клъстери | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Джен • Ерик Уанджау |
+| 16 | Въведение в обработката на естествен език ☕️ | [Обработка на естествен език](6-NLP/README.md) | Научете основите на NLP чрез изграждане на прост бот | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Стивън |
+| 17 | Често срещани задачи в NLP ☕️ | [Обработка на естествен език](6-NLP/README.md) | Задълбочете вашите знания за NLP, като разберете често срещаните задачи при работа с езикови структури | [Python](6-NLP/2-Tasks/README.md) | Стивън |
+| 18 | Превод и анализ на настроения ♥️ | [Обработка на естествен език](6-NLP/README.md) | Превод и анализ на настроения с Джейн Остин | [Python](6-NLP/3-Translation-Sentiment/README.md) | Стивън |
+| 19 | Романтични хотели в Европа ♥️ | [Обработка на естествен език](6-NLP/README.md) | Анализ на настроения с ревюта за хотели 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Стивън |
+| 20 | Романтични хотели в Европа ♥️ | [Обработка на естествен език](6-NLP/README.md) | Анализ на настроения с ревюта за хотели 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Стивън |
+| 21 | Въведение в прогнозиране на времеви редове | [Времеви редове](7-TimeSeries/README.md) | Въведение в прогнозиране на времеви редове | [Python](7-TimeSeries/1-Introduction/README.md) | Франческа |
+| 22 | ⚡️ Световна консумация на електроенергия ⚡️ - прогнозиране с ARIMA | [Времеви редове](7-TimeSeries/README.md) | Прогнозиране на времеви редове с ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Франческа |
+| 23 | ⚡️ Световна консумация на електроенергия ⚡️ - прогнозиране с SVR | [Времеви редове](7-TimeSeries/README.md) | Прогнозиране на времеви редове с регресор на опорни вектори | [Python](7-TimeSeries/3-SVR/README.md) | Анирбан |
+| 24 | Въведение в подсилващото обучение | [Подсилващо обучение](8-Reinforcement/README.md) | Въведение в подсилващо обучение с Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Дмитрий |
+| 25 | Помогнете на Питър да избегне вълка! 🐺 | [Подсилващо обучение](8-Reinforcement/README.md) | Подсилващо обучение с Gym | [Python](8-Reinforcement/2-Gym/README.md) | Дмитрий |
+| Постскрипт | Реални сценарии и приложения на ML | [ML в природата](9-Real-World/README.md) | Интересни и поучителни реални приложения на класическо машинно обучение | [Урок](9-Real-World/1-Applications/README.md) | Екип |
+| Постскрипт | Отстраняване на грешки в модели с RAI контролен панел | [ML в природата](9-Real-World/README.md) | Отстраняване на грешки в машинно обучение с помощта на компоненти на контролния панел Responsible AI | [Урок](9-Real-World/2-Debugging-ML-Models/README.md) | Рут Якобу |
> [намерете всички допълнителни ресурси за този курс в нашата колекция Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
## Офлайн достъп
-Можете да използвате тази документация офлайн чрез [Docsify](https://docsify.js.org/#/). Форкнете това хранилище, [инсталирайте Docsify](https://docsify.js.org/#/quickstart) на вашия локален компютър и след това от коренната папка на това хранилище, изпълнете `docsify serve`. Уебсайтът ще бъде достъпен на порт 3000 на вашия локален хост: `localhost:3000`.
+Можете да използвате тази документация офлайн с помощта на [Docsify](https://docsify.js.org/#/). Форкнете това хранилище, [инсталирайте Docsify](https://docsify.js.org/#/quickstart) на локалната си машина и след това в коренната папка на хранилището напишете `docsify serve`. Уебсайтът ще бъде достъпен на порт 3000 на локалния ви хост: `localhost:3000`.
## PDF файлове
-Намерете pdf версия на учебната програма с връзки [тук](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
+Намерете PDF на учебната програма с връзки [тук](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
-## 🎒 Други курсове
+## 🎒 Други курсове
-Нашият екип разработва и други курсове! Вижте:
+Нашият екип създава и други курсове! Вижте:
### LangChain
@@ -189,7 +180,7 @@ Cloud Advocates в Microsoft с радост предлагат 12-седмич
---
-### Серия за Генеративен AI
+### Серия за генеративен AI
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -199,28 +190,28 @@ Cloud Advocates в Microsoft с радост предлагат 12-седмич
### Основно обучение
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Серия Copilot
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Получаване на помощ
-Ако се затруднявате или имате въпроси относно създаването на AI приложения. Присъединете се към съученици и опитни разработчици, за да обсъждате MCP. Това е подкрепяща общност, където въпросите са добре дошли и знанията се споделят свободно.
+Ако се затрудните или имате въпроси относно изграждането на AI приложения. Присъединете се към други учащи и опитни разработчици в дискусии за MCP. Това е подкрепяща общност, където въпросите са добре дошли и знанието се споделя свободно.
[](https://discord.gg/nTYy5BXMWG)
-Ако имате обратна връзка за продукта или грешки по време на разработка посетете:
+Ако имате обратна връзка за продукта или срещнете грешки по време на разработка посетете:
[](https://aka.ms/foundry/forum)
@@ -228,5 +219,5 @@ Cloud Advocates в Microsoft с радост предлагат 12-седмич
**Отказ от отговорност**:
-Този документ е преведен с помощта на AI преводаческа услуга [Co-op Translator](https://github.com/Azure/co-op-translator). Въпреки че се стремим към точност, моля, имайте предвид, че автоматичните преводи могат да съдържат грешки или неточности. Оригиналният документ на неговия роден език трябва да се счита за авторитетен източник. За критична информация се препоръчва професионален човешки превод. Ние не носим отговорност за каквито и да е неразбирателства или неправилни тълкувания, възникнали в резултат на използването на този превод.
+Този документ е преведен с помощта на AI преводаческа услуга [Co-op Translator](https://github.com/Azure/co-op-translator). Въпреки че се стремим към точност, моля имайте предвид, че автоматизираните преводи може да съдържат грешки или неточности. Оригиналният документ на неговия роден език трябва да се счита за авторитетен източник. За критична информация се препоръчва професионален човешки превод. Не носим отговорност за недоразумения или неправилни тълкувания, произтичащи от използването на този превод.
\ No newline at end of file
diff --git a/translations/bg/SECURITY.md b/translations/bg/SECURITY.md
index fb63ebe61..769e6cfa3 100644
--- a/translations/bg/SECURITY.md
+++ b/translations/bg/SECURITY.md
@@ -1,12 +1,3 @@
-
## Сигурност
Microsoft приема сигурността на своите софтуерни продукти и услуги сериозно, включително всички хранилища с изходен код, управлявани чрез нашите GitHub организации, които включват [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) и [нашите GitHub организации](https://opensource.microsoft.com/).
diff --git a/translations/bg/SUPPORT.md b/translations/bg/SUPPORT.md
index cc142ebf4..057650656 100644
--- a/translations/bg/SUPPORT.md
+++ b/translations/bg/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Поддръжка
## Как да съобщите за проблеми и да получите помощ
diff --git a/translations/bg/TROUBLESHOOTING.md b/translations/bg/TROUBLESHOOTING.md
index 5489228ec..9c3f994de 100644
--- a/translations/bg/TROUBLESHOOTING.md
+++ b/translations/bg/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Ръководство за отстраняване на проблеми
Това ръководство ще ви помогне да решите често срещани проблеми при работа с учебната програма "Машинно обучение за начинаещи". Ако не намерите решение тук, моля, проверете нашите [дискусии в Discord](https://aka.ms/foundry/discord) или [отворете нов проблем](https://github.com/microsoft/ML-For-Beginners/issues).
diff --git a/translations/bg/docs/_sidebar.md b/translations/bg/docs/_sidebar.md
index 6b61879c2..06988255a 100644
--- a/translations/bg/docs/_sidebar.md
+++ b/translations/bg/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Въведение
- [Въведение в Машинното Обучение](../1-Introduction/1-intro-to-ML/README.md)
- [История на Машинното Обучение](../1-Introduction/2-history-of-ML/README.md)
diff --git a/translations/bg/for-teachers.md b/translations/bg/for-teachers.md
index 3cadbaecf..38f27c838 100644
--- a/translations/bg/for-teachers.md
+++ b/translations/bg/for-teachers.md
@@ -1,12 +1,3 @@
-
## За преподаватели
Искате ли да използвате тази учебна програма във вашата класна стая? Чувствайте се свободни да го направите!
diff --git a/translations/bg/quiz-app/README.md b/translations/bg/quiz-app/README.md
index 8d4028b03..9eb8056a3 100644
--- a/translations/bg/quiz-app/README.md
+++ b/translations/bg/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Тестове
Тези тестове са предварителни и последващи тестове към лекциите от учебната програма за машинно обучение на https://aka.ms/ml-beginners
diff --git a/translations/bg/sketchnotes/LICENSE.md b/translations/bg/sketchnotes/LICENSE.md
index d71cedfe9..462e3e45d 100644
--- a/translations/bg/sketchnotes/LICENSE.md
+++ b/translations/bg/sketchnotes/LICENSE.md
@@ -1,12 +1,3 @@
-
ПРИЗНАВАНЕ-СПОДЕЛЯНЕ НА УСЛОВИЯТА 4.0 МЕЖДУНАРОДЕН
=======================================================================
diff --git a/translations/bg/sketchnotes/README.md b/translations/bg/sketchnotes/README.md
index 3414f3886..3c54e22c4 100644
--- a/translations/bg/sketchnotes/README.md
+++ b/translations/bg/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Всички скицови бележки от учебната програма могат да бъдат изтеглени тук.
🖨 За печат с висока резолюция, TIFF версиите са налични в [този репо](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff).
diff --git a/translations/ro/.co-op-translator.json b/translations/ro/.co-op-translator.json
new file mode 100644
index 000000000..0ab7ebdf9
--- /dev/null
+++ b/translations/ro/.co-op-translator.json
@@ -0,0 +1,596 @@
+{
+ "1-Introduction/1-intro-to-ML/README.md": {
+ "original_hash": "69389392fa6346e0dfa30f664b7b6fec",
+ "translation_date": "2025-09-05T16:07:43+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/1-intro-to-ML/assignment.md": {
+ "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
+ "translation_date": "2025-09-05T16:08:33+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/2-history-of-ML/README.md": {
+ "original_hash": "6a05fec147e734c3e6bfa54505648e2b",
+ "translation_date": "2025-09-05T16:10:41+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/2-history-of-ML/assignment.md": {
+ "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969",
+ "translation_date": "2025-09-05T16:11:45+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/3-fairness/README.md": {
+ "original_hash": "9a6b702d1437c0467e3c5c28d763dac2",
+ "translation_date": "2025-09-05T16:01:28+00:00",
+ "source_file": "1-Introduction/3-fairness/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/3-fairness/assignment.md": {
+ "original_hash": "dbda60e7b1fe5f18974e7858eff0004e",
+ "translation_date": "2025-09-05T16:02:40+00:00",
+ "source_file": "1-Introduction/3-fairness/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/4-techniques-of-ML/README.md": {
+ "original_hash": "9d91f3af3758fdd4569fb410575995ef",
+ "translation_date": "2025-09-05T16:04:52+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/4-techniques-of-ML/assignment.md": {
+ "original_hash": "70d65aeddc06170bc1aed5b27805f930",
+ "translation_date": "2025-09-05T16:05:59+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "cf8ecc83f28e5b98051d2179eca08e08",
+ "translation_date": "2025-09-05T15:58:07+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/1-Tools/README.md": {
+ "original_hash": "fa81d226c71d5af7a2cade31c1c92b88",
+ "translation_date": "2025-09-05T15:22:38+00:00",
+ "source_file": "2-Regression/1-Tools/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/1-Tools/assignment.md": {
+ "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a",
+ "translation_date": "2025-09-05T15:23:50+00:00",
+ "source_file": "2-Regression/1-Tools/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Regression/1-Tools/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:24:07+00:00",
+ "source_file": "2-Regression/1-Tools/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/2-Data/README.md": {
+ "original_hash": "7c077988328ebfe33b24d07945f16eca",
+ "translation_date": "2025-09-05T15:26:15+00:00",
+ "source_file": "2-Regression/2-Data/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/2-Data/assignment.md": {
+ "original_hash": "4485a1ed4dd1b5647365e3d87456515d",
+ "translation_date": "2025-09-05T15:27:13+00:00",
+ "source_file": "2-Regression/2-Data/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Regression/2-Data/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:27:29+00:00",
+ "source_file": "2-Regression/2-Data/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/3-Linear/README.md": {
+ "original_hash": "40e64f004f3cb50aa1d8661672d3cd92",
+ "translation_date": "2025-09-05T15:12:24+00:00",
+ "source_file": "2-Regression/3-Linear/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/3-Linear/assignment.md": {
+ "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b",
+ "translation_date": "2025-09-05T15:13:59+00:00",
+ "source_file": "2-Regression/3-Linear/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Regression/3-Linear/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:14:19+00:00",
+ "source_file": "2-Regression/3-Linear/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/4-Logistic/README.md": {
+ "original_hash": "abf86d845c84330bce205a46b382ec88",
+ "translation_date": "2025-09-05T15:18:34+00:00",
+ "source_file": "2-Regression/4-Logistic/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/4-Logistic/assignment.md": {
+ "original_hash": "8af40209a41494068c1f42b14c0b450d",
+ "translation_date": "2025-09-05T15:19:53+00:00",
+ "source_file": "2-Regression/4-Logistic/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Regression/4-Logistic/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:20:09+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "2-Regression/README.md": {
+ "original_hash": "508582278dbb8edd2a8a80ac96ef416c",
+ "translation_date": "2025-09-05T15:08:29+00:00",
+ "source_file": "2-Regression/README.md",
+ "language_code": "ro"
+ },
+ "3-Web-App/1-Web-App/README.md": {
+ "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c",
+ "translation_date": "2025-09-05T16:14:11+00:00",
+ "source_file": "3-Web-App/1-Web-App/README.md",
+ "language_code": "ro"
+ },
+ "3-Web-App/1-Web-App/assignment.md": {
+ "original_hash": "a8e8ae10be335cbc745b75ee552317ff",
+ "translation_date": "2025-09-05T16:15:04+00:00",
+ "source_file": "3-Web-App/1-Web-App/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Web-App/README.md": {
+ "original_hash": "9836ff53cfef716ddfd70e06c5f43436",
+ "translation_date": "2025-09-05T16:12:17+00:00",
+ "source_file": "3-Web-App/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/1-Introduction/README.md": {
+ "original_hash": "aaf391d922bd6de5efba871d514c6d47",
+ "translation_date": "2025-09-05T16:26:58+00:00",
+ "source_file": "4-Classification/1-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/1-Introduction/assignment.md": {
+ "original_hash": "b2a01912beb24cfb0007f83594dba801",
+ "translation_date": "2025-09-05T16:27:54+00:00",
+ "source_file": "4-Classification/1-Introduction/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Classification/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:28:12+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/2-Classifiers-1/README.md": {
+ "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
+ "translation_date": "2025-09-05T16:19:16+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/2-Classifiers-1/assignment.md": {
+ "original_hash": "de6025f96841498b0577e9d1aee18d1f",
+ "translation_date": "2025-09-05T16:20:18+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Classification/2-Classifiers-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:20:34+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/3-Classifiers-2/README.md": {
+ "original_hash": "49047911108adc49d605cddfb455749c",
+ "translation_date": "2025-09-05T16:24:14+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/3-Classifiers-2/assignment.md": {
+ "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329",
+ "translation_date": "2025-09-05T16:24:56+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Classification/3-Classifiers-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:25:12+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/4-Applied/README.md": {
+ "original_hash": "61bdec27ed2da8b098cd9065405d9bb0",
+ "translation_date": "2025-09-05T16:22:03+00:00",
+ "source_file": "4-Classification/4-Applied/README.md",
+ "language_code": "ro"
+ },
+ "4-Classification/4-Applied/assignment.md": {
+ "original_hash": "799ed651e2af0a7cad17c6268db11578",
+ "translation_date": "2025-09-05T16:23:02+00:00",
+ "source_file": "4-Classification/4-Applied/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Classification/README.md": {
+ "original_hash": "74e809ffd1e613a1058bbc3e9600859e",
+ "translation_date": "2025-09-05T16:16:42+00:00",
+ "source_file": "4-Classification/README.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/1-Visualize/README.md": {
+ "original_hash": "730225ea274c9174fe688b21d421539d",
+ "translation_date": "2025-09-05T15:43:36+00:00",
+ "source_file": "5-Clustering/1-Visualize/README.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/1-Visualize/assignment.md": {
+ "original_hash": "589fa015a5e7d9e67bd629f7d47b53de",
+ "translation_date": "2025-09-05T15:45:05+00:00",
+ "source_file": "5-Clustering/1-Visualize/assignment.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/1-Visualize/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:45:20+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/2-K-Means/README.md": {
+ "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081",
+ "translation_date": "2025-09-05T15:46:59+00:00",
+ "source_file": "5-Clustering/2-K-Means/README.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/2-K-Means/assignment.md": {
+ "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41",
+ "translation_date": "2025-09-05T15:47:52+00:00",
+ "source_file": "5-Clustering/2-K-Means/assignment.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/2-K-Means/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:48:07+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "5-Clustering/README.md": {
+ "original_hash": "b28a3a4911584062772c537b653ebbc7",
+ "translation_date": "2025-09-05T15:39:48+00:00",
+ "source_file": "5-Clustering/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/1-Introduction-to-NLP/README.md": {
+ "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a",
+ "translation_date": "2025-09-05T17:01:10+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/1-Introduction-to-NLP/assignment.md": {
+ "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16",
+ "translation_date": "2025-09-05T17:02:11+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md",
+ "language_code": "ro"
+ },
+ "6-NLP/2-Tasks/README.md": {
+ "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3",
+ "translation_date": "2025-09-05T16:51:49+00:00",
+ "source_file": "6-NLP/2-Tasks/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/2-Tasks/assignment.md": {
+ "original_hash": "2efc4c2aba5ed06c780c05539c492ae3",
+ "translation_date": "2025-09-05T16:52:48+00:00",
+ "source_file": "6-NLP/2-Tasks/assignment.md",
+ "language_code": "ro"
+ },
+ "6-NLP/3-Translation-Sentiment/README.md": {
+ "original_hash": "be03c8182982b87ced155e4e9d1438e8",
+ "translation_date": "2025-09-05T17:04:46+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/3-Translation-Sentiment/assignment.md": {
+ "original_hash": "9d2a734deb904caff310d1a999c6bd7a",
+ "translation_date": "2025-09-05T17:05:50+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/assignment.md",
+ "language_code": "ro"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T17:06:20+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T17:06:07+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/4-Hotel-Reviews-1/README.md": {
+ "original_hash": "8d32dadeda93c6fb5c43619854882ab1",
+ "translation_date": "2025-09-05T16:56:57+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/4-Hotel-Reviews-1/assignment.md": {
+ "original_hash": "bf39bceb833cd628f224941dca8041df",
+ "translation_date": "2025-09-05T16:58:32+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md",
+ "language_code": "ro"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:59:01+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:58:48+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/5-Hotel-Reviews-2/README.md": {
+ "original_hash": "2c742993fe95d5bcbb2846eda3d442a1",
+ "translation_date": "2025-09-05T17:09:07+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/5-Hotel-Reviews-2/assignment.md": {
+ "original_hash": "daf144daa552da6a7d442aff6f3e77d8",
+ "translation_date": "2025-09-05T17:10:21+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md",
+ "language_code": "ro"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T17:10:51+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T17:10:37+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/README.md": {
+ "original_hash": "1eb379dc2d0c9940b320732d16083778",
+ "translation_date": "2025-09-05T16:49:45+00:00",
+ "source_file": "6-NLP/README.md",
+ "language_code": "ro"
+ },
+ "6-NLP/data/README.md": {
+ "original_hash": "ee0670655c89e4719319764afb113624",
+ "translation_date": "2025-09-05T16:59:18+00:00",
+ "source_file": "6-NLP/data/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/1-Introduction/README.md": {
+ "original_hash": "662b509c39eee205687726636d0a8455",
+ "translation_date": "2025-09-05T15:34:32+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/1-Introduction/assignment.md": {
+ "original_hash": "d1781b0b92568ea1d119d0a198b576b4",
+ "translation_date": "2025-09-05T15:35:34+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/assignment.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:36:04+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/1-Introduction/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T15:35:52+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/2-ARIMA/README.md": {
+ "original_hash": "917dbf890db71a322f306050cb284749",
+ "translation_date": "2025-09-05T15:30:48+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/2-ARIMA/assignment.md": {
+ "original_hash": "1c814013e10866dfd92cdb32caaae3ac",
+ "translation_date": "2025-09-05T15:31:54+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/assignment.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/2-ARIMA/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:32:23+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/2-ARIMA/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T15:32:10+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/3-SVR/README.md": {
+ "original_hash": "482bccabe1df958496ea71a3667995cd",
+ "translation_date": "2025-09-05T15:38:01+00:00",
+ "source_file": "7-TimeSeries/3-SVR/README.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/3-SVR/assignment.md": {
+ "original_hash": "94aa2fc6154252ae30a3f3740299707a",
+ "translation_date": "2025-09-05T15:38:59+00:00",
+ "source_file": "7-TimeSeries/3-SVR/assignment.md",
+ "language_code": "ro"
+ },
+ "7-TimeSeries/README.md": {
+ "original_hash": "61342603bad8acadbc6b2e4e3aab3f66",
+ "translation_date": "2025-09-05T15:28:02+00:00",
+ "source_file": "7-TimeSeries/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/1-QLearning/README.md": {
+ "original_hash": "911efd5e595089000cb3c16fce1beab8",
+ "translation_date": "2025-09-05T16:41:50+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/1-QLearning/assignment.md": {
+ "original_hash": "68394b2102d3503882e5e914bd0ff5c1",
+ "translation_date": "2025-09-05T16:43:57+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/assignment.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/1-QLearning/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:44:32+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/1-QLearning/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:44:19+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/2-Gym/README.md": {
+ "original_hash": "107d5bb29da8a562e7ae72262d251a75",
+ "translation_date": "2025-09-05T16:47:06+00:00",
+ "source_file": "8-Reinforcement/2-Gym/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/2-Gym/assignment.md": {
+ "original_hash": "1f2b7441745eb52e25745423b247016b",
+ "translation_date": "2025-09-05T16:48:33+00:00",
+ "source_file": "8-Reinforcement/2-Gym/assignment.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/2-Gym/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:49:08+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/2-Gym/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:48:56+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/R/README.md",
+ "language_code": "ro"
+ },
+ "8-Reinforcement/README.md": {
+ "original_hash": "20ca019012b1725de956681d036d8b18",
+ "translation_date": "2025-09-05T16:36:06+00:00",
+ "source_file": "8-Reinforcement/README.md",
+ "language_code": "ro"
+ },
+ "9-Real-World/1-Applications/README.md": {
+ "original_hash": "83320d6b6994909e35d830cebf214039",
+ "translation_date": "2025-09-05T15:51:54+00:00",
+ "source_file": "9-Real-World/1-Applications/README.md",
+ "language_code": "ro"
+ },
+ "9-Real-World/1-Applications/assignment.md": {
+ "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885",
+ "translation_date": "2025-09-05T15:53:18+00:00",
+ "source_file": "9-Real-World/1-Applications/assignment.md",
+ "language_code": "ro"
+ },
+ "9-Real-World/2-Debugging-ML-Models/README.md": {
+ "original_hash": "df2b538e8fbb3e91cf0419ae2f858675",
+ "translation_date": "2025-09-05T15:56:17+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/README.md",
+ "language_code": "ro"
+ },
+ "9-Real-World/2-Debugging-ML-Models/assignment.md": {
+ "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164",
+ "translation_date": "2025-09-05T15:57:35+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md",
+ "language_code": "ro"
+ },
+ "9-Real-World/README.md": {
+ "original_hash": "5e069a0ac02a9606a69946c2b3c574a9",
+ "translation_date": "2025-09-05T15:49:21+00:00",
+ "source_file": "9-Real-World/README.md",
+ "language_code": "ro"
+ },
+ "AGENTS.md": {
+ "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b",
+ "translation_date": "2025-10-03T11:16:59+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ro"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-09-05T15:07:34+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ro"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda",
+ "translation_date": "2025-09-05T15:05:37+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ro"
+ },
+ "README.md": {
+ "original_hash": "da2ceed62f16a0820259556e3a873c95",
+ "translation_date": "2026-01-29T19:03:16+00:00",
+ "source_file": "README.md",
+ "language_code": "ro"
+ },
+ "SECURITY.md": {
+ "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a",
+ "translation_date": "2025-09-05T15:06:24+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ro"
+ },
+ "SUPPORT.md": {
+ "original_hash": "09623d7343ff1c26ff4f198c1b2d3176",
+ "translation_date": "2025-10-03T12:24:40+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ro"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "134d8759f0e2ab886e9aa4f62362c201",
+ "translation_date": "2025-10-03T12:54:09+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ro"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "68dd06c685f6ce840e0acfa313352e7c",
+ "translation_date": "2025-09-05T15:48:44+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ro"
+ },
+ "for-teachers.md": {
+ "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8",
+ "translation_date": "2025-09-05T15:07:07+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ro"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "6d130dffca5db70d7e615f926cb1ad4c",
+ "translation_date": "2025-09-05T16:15:50+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ro"
+ },
+ "sketchnotes/LICENSE.md": {
+ "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f",
+ "translation_date": "2025-09-05T16:34:27+00:00",
+ "source_file": "sketchnotes/LICENSE.md",
+ "language_code": "ro"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "a88d5918c1b9da69a40d917a0840c497",
+ "translation_date": "2025-09-05T16:28:32+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ro"
+ }
+}
\ No newline at end of file
diff --git a/translations/ro/1-Introduction/1-intro-to-ML/README.md b/translations/ro/1-Introduction/1-intro-to-ML/README.md
index 5f0d2d921..117203d48 100644
--- a/translations/ro/1-Introduction/1-intro-to-ML/README.md
+++ b/translations/ro/1-Introduction/1-intro-to-ML/README.md
@@ -1,12 +1,3 @@
-
# Introducere în învățarea automată
## [Chestionar înainte de lecție](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/ro/1-Introduction/1-intro-to-ML/assignment.md b/translations/ro/1-Introduction/1-intro-to-ML/assignment.md
index e9a2fbf61..99569cab9 100644
--- a/translations/ro/1-Introduction/1-intro-to-ML/assignment.md
+++ b/translations/ro/1-Introduction/1-intro-to-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Începe și pornește
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/2-history-of-ML/README.md b/translations/ro/1-Introduction/2-history-of-ML/README.md
index fa6aebc2e..de474d03b 100644
--- a/translations/ro/1-Introduction/2-history-of-ML/README.md
+++ b/translations/ro/1-Introduction/2-history-of-ML/README.md
@@ -1,12 +1,3 @@
-
# Istoria învățării automate

diff --git a/translations/ro/1-Introduction/2-history-of-ML/assignment.md b/translations/ro/1-Introduction/2-history-of-ML/assignment.md
index aa37c42f2..8de51e5b1 100644
--- a/translations/ro/1-Introduction/2-history-of-ML/assignment.md
+++ b/translations/ro/1-Introduction/2-history-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Creează o cronologie
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/3-fairness/README.md b/translations/ro/1-Introduction/3-fairness/README.md
index f6d7e1aa6..d393c2de5 100644
--- a/translations/ro/1-Introduction/3-fairness/README.md
+++ b/translations/ro/1-Introduction/3-fairness/README.md
@@ -1,12 +1,3 @@
-
# Construirea soluțiilor de învățare automată cu AI responsabil

diff --git a/translations/ro/1-Introduction/3-fairness/assignment.md b/translations/ro/1-Introduction/3-fairness/assignment.md
index 7c1c00d16..64b719db1 100644
--- a/translations/ro/1-Introduction/3-fairness/assignment.md
+++ b/translations/ro/1-Introduction/3-fairness/assignment.md
@@ -1,12 +1,3 @@
-
# Explorează Responsible AI Toolbox
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/4-techniques-of-ML/README.md b/translations/ro/1-Introduction/4-techniques-of-ML/README.md
index f43dfd0b1..3acc317f6 100644
--- a/translations/ro/1-Introduction/4-techniques-of-ML/README.md
+++ b/translations/ro/1-Introduction/4-techniques-of-ML/README.md
@@ -1,12 +1,3 @@
-
# Tehnici de Învățare Automată
Procesul de construire, utilizare și întreținere a modelelor de învățare automată și a datelor pe care acestea le folosesc este foarte diferit de multe alte fluxuri de lucru din dezvoltare. În această lecție, vom demistifica procesul și vom evidenția principalele tehnici pe care trebuie să le cunoașteți. Veți:
diff --git a/translations/ro/1-Introduction/4-techniques-of-ML/assignment.md b/translations/ro/1-Introduction/4-techniques-of-ML/assignment.md
index 391c2342f..f62fb11af 100644
--- a/translations/ro/1-Introduction/4-techniques-of-ML/assignment.md
+++ b/translations/ro/1-Introduction/4-techniques-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Intervievează un specialist în știința datelor
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/README.md b/translations/ro/1-Introduction/README.md
index 84ce0c9b8..ec6bf1566 100644
--- a/translations/ro/1-Introduction/README.md
+++ b/translations/ro/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în învățarea automată
În această secțiune a curriculumului, vei fi introdus în conceptele de bază care stau la baza domeniului învățării automate, ce reprezintă acesta, și vei afla despre istoria sa și tehnicile pe care cercetătorii le folosesc pentru a lucra cu el. Hai să explorăm împreună această lume nouă a ML!
diff --git a/translations/ro/2-Regression/1-Tools/README.md b/translations/ro/2-Regression/1-Tools/README.md
index c4bb9a2cb..ef5c4156c 100644
--- a/translations/ro/2-Regression/1-Tools/README.md
+++ b/translations/ro/2-Regression/1-Tools/README.md
@@ -1,12 +1,3 @@
-
# Începeți cu Python și Scikit-learn pentru modele de regresie

diff --git a/translations/ro/2-Regression/1-Tools/assignment.md b/translations/ro/2-Regression/1-Tools/assignment.md
index 6449cf1b9..8c8a9840e 100644
--- a/translations/ro/2-Regression/1-Tools/assignment.md
+++ b/translations/ro/2-Regression/1-Tools/assignment.md
@@ -1,12 +1,3 @@
-
# Regresie cu Scikit-learn
## Instrucțiuni
diff --git a/translations/ro/2-Regression/1-Tools/solution/Julia/README.md b/translations/ro/2-Regression/1-Tools/solution/Julia/README.md
index 8c61f87bd..de63b31da 100644
--- a/translations/ro/2-Regression/1-Tools/solution/Julia/README.md
+++ b/translations/ro/2-Regression/1-Tools/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/2-Regression/2-Data/README.md b/translations/ro/2-Regression/2-Data/README.md
index 31a96927c..2cfce794f 100644
--- a/translations/ro/2-Regression/2-Data/README.md
+++ b/translations/ro/2-Regression/2-Data/README.md
@@ -1,12 +1,3 @@
-
# Construiește un model de regresie folosind Scikit-learn: pregătirea și vizualizarea datelor

diff --git a/translations/ro/2-Regression/2-Data/assignment.md b/translations/ro/2-Regression/2-Data/assignment.md
index edc464f7e..02d44e2f2 100644
--- a/translations/ro/2-Regression/2-Data/assignment.md
+++ b/translations/ro/2-Regression/2-Data/assignment.md
@@ -1,12 +1,3 @@
-
# Explorarea Vizualizărilor
Există mai multe biblioteci disponibile pentru vizualizarea datelor. Creează câteva vizualizări folosind datele despre Dovleci din această lecție, utilizând matplotlib și seaborn într-un notebook de exemplu. Care biblioteci sunt mai ușor de utilizat?
diff --git a/translations/ro/2-Regression/2-Data/solution/Julia/README.md b/translations/ro/2-Regression/2-Data/solution/Julia/README.md
index 8f3111cc9..ecf156e94 100644
--- a/translations/ro/2-Regression/2-Data/solution/Julia/README.md
+++ b/translations/ro/2-Regression/2-Data/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/2-Regression/3-Linear/README.md b/translations/ro/2-Regression/3-Linear/README.md
index 3e080fc22..212b67b58 100644
--- a/translations/ro/2-Regression/3-Linear/README.md
+++ b/translations/ro/2-Regression/3-Linear/README.md
@@ -1,12 +1,3 @@
-
# Construirea unui model de regresie folosind Scikit-learn: patru metode de regresie

@@ -114,11 +105,11 @@ Acum că ai o înțelegere a matematicii din spatele regresiei liniare, să cre
Din lecția anterioară, probabil ai observat că prețul mediu pentru diferite luni arată astfel:
-
+
Acest lucru sugerează că ar trebui să existe o anumită corelație, iar noi putem încerca să antrenăm un model de regresie liniară pentru a prezice relația dintre `Lună` și `Preț`, sau dintre `ZiuaAnului` și `Preț`. Iată scatterplot-ul care arată ultima relație:
-
+
Să vedem dacă există o corelație folosind funcția `corr`:
@@ -137,7 +128,7 @@ for i,var in enumerate(new_pumpkins['Variety'].unique()):
ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)
```
-
+
Investigația noastră sugerează că varietatea are un efect mai mare asupra prețului general decât data efectivă de vânzare. Putem vedea acest lucru cu un grafic de tip bară:
@@ -145,7 +136,7 @@ Investigația noastră sugerează că varietatea are un efect mai mare asupra pr
new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
```
-
+
Să ne concentrăm pentru moment doar pe o singură varietate de dovleci, 'tip plăcintă', și să vedem ce efect are data asupra prețului:
@@ -153,7 +144,7 @@ Să ne concentrăm pentru moment doar pe o singură varietate de dovleci, 'tip p
pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
pie_pumpkins.plot.scatter('DayOfYear','Price')
```
-
+
Dacă acum calculăm corelația dintre `Preț` și `ZiuaAnului` folosind funcția `corr`, vom obține ceva în jur de `-0.27` - ceea ce înseamnă că antrenarea unui model predictiv are sens.
@@ -227,7 +218,7 @@ plt.scatter(X_test,y_test)
plt.plot(X_test,pred)
```
-
+
## Regresie Polinomială
@@ -256,7 +247,7 @@ Utilizarea `PolynomialFeatures(2)` înseamnă că vom include toate polinoamele
Pipeline-urile pot fi utilizate în același mod ca obiectul original `LinearRegression`, adică putem aplica `fit` pipeline-ului și apoi utiliza `predict` pentru a obține rezultatele predicției. Iată graficul care arată datele de testare și curba de aproximare:
-
+
Folosind regresia polinomială, putem obține un MSE ușor mai mic și un coeficient de determinare mai mare, dar nu semnificativ. Trebuie să luăm în considerare alte caracteristici!
@@ -274,7 +265,7 @@ Folosind regresia polinomială, putem obține un MSE ușor mai mic și un coefic
Aici poți vedea cum prețul mediu depinde de varietate:
-
+
Pentru a lua în considerare varietatea, mai întâi trebuie să o convertim într-o formă numerică, sau să o **codificăm**. Există mai multe moduri în care putem face acest lucru:
diff --git a/translations/ro/2-Regression/3-Linear/assignment.md b/translations/ro/2-Regression/3-Linear/assignment.md
index 6ad250eb1..99439f88b 100644
--- a/translations/ro/2-Regression/3-Linear/assignment.md
+++ b/translations/ro/2-Regression/3-Linear/assignment.md
@@ -1,12 +1,3 @@
-
# Crearea unui Model de Regresie
## Instrucțiuni
diff --git a/translations/ro/2-Regression/3-Linear/solution/Julia/README.md b/translations/ro/2-Regression/3-Linear/solution/Julia/README.md
index 83f728902..ecf156e94 100644
--- a/translations/ro/2-Regression/3-Linear/solution/Julia/README.md
+++ b/translations/ro/2-Regression/3-Linear/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/2-Regression/4-Logistic/README.md b/translations/ro/2-Regression/4-Logistic/README.md
index 490adcb72..af23722e7 100644
--- a/translations/ro/2-Regression/4-Logistic/README.md
+++ b/translations/ro/2-Regression/4-Logistic/README.md
@@ -1,12 +1,3 @@
-
# Regresie logistică pentru a prezice categorii

diff --git a/translations/ro/2-Regression/4-Logistic/assignment.md b/translations/ro/2-Regression/4-Logistic/assignment.md
index 0fb160dc4..fef13b5d4 100644
--- a/translations/ro/2-Regression/4-Logistic/assignment.md
+++ b/translations/ro/2-Regression/4-Logistic/assignment.md
@@ -1,12 +1,3 @@
-
# Reîncercarea unei regresii
## Instrucțiuni
diff --git a/translations/ro/2-Regression/4-Logistic/solution/Julia/README.md b/translations/ro/2-Regression/4-Logistic/solution/Julia/README.md
index 47bb2a5ad..de63b31da 100644
--- a/translations/ro/2-Regression/4-Logistic/solution/Julia/README.md
+++ b/translations/ro/2-Regression/4-Logistic/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/2-Regression/README.md b/translations/ro/2-Regression/README.md
index d14ef3212..9c8e17b1d 100644
--- a/translations/ro/2-Regression/README.md
+++ b/translations/ro/2-Regression/README.md
@@ -1,12 +1,3 @@
-
# Modele de regresie pentru învățarea automată
## Subiect regional: Modele de regresie pentru prețurile dovlecilor în America de Nord 🎃
diff --git a/translations/ro/3-Web-App/1-Web-App/README.md b/translations/ro/3-Web-App/1-Web-App/README.md
index 135898bb6..164ee2ce8 100644
--- a/translations/ro/3-Web-App/1-Web-App/README.md
+++ b/translations/ro/3-Web-App/1-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Construiește o aplicație web pentru a utiliza un model ML
În această lecție, vei antrena un model ML pe un set de date care este literalmente din altă lume: _Observații de OZN-uri din ultimul secol_, preluate din baza de date a NUFORC.
diff --git a/translations/ro/3-Web-App/1-Web-App/assignment.md b/translations/ro/3-Web-App/1-Web-App/assignment.md
index e82271a25..ea72215db 100644
--- a/translations/ro/3-Web-App/1-Web-App/assignment.md
+++ b/translations/ro/3-Web-App/1-Web-App/assignment.md
@@ -1,12 +1,3 @@
-
# Încearcă un model diferit
## Instrucțiuni
diff --git a/translations/ro/3-Web-App/README.md b/translations/ro/3-Web-App/README.md
index 621ace036..a15947d6f 100644
--- a/translations/ro/3-Web-App/README.md
+++ b/translations/ro/3-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Construiește o aplicație web pentru a utiliza modelul tău ML
În această secțiune a curriculumului, vei fi introdus într-un subiect aplicat de ML: cum să salvezi modelul tău Scikit-learn ca fișier care poate fi utilizat pentru a face predicții într-o aplicație web. După ce modelul este salvat, vei învăța cum să-l folosești într-o aplicație web construită cu Flask. Mai întâi vei crea un model folosind niște date despre observațiile OZN-urilor! Apoi, vei construi o aplicație web care îți va permite să introduci un număr de secunde împreună cu o valoare de latitudine și longitudine pentru a prezice care țară a raportat că a văzut un OZN.
diff --git a/translations/ro/4-Classification/1-Introduction/README.md b/translations/ro/4-Classification/1-Introduction/README.md
index 92cd3aacc..49aab6c80 100644
--- a/translations/ro/4-Classification/1-Introduction/README.md
+++ b/translations/ro/4-Classification/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în clasificare
În aceste patru lecții, vei explora un aspect fundamental al învățării automate clasice - _clasificarea_. Vom parcurge utilizarea diferitelor algoritmi de clasificare cu un set de date despre toate bucătăriile minunate din Asia și India. Sper că ți-e foame!
diff --git a/translations/ro/4-Classification/1-Introduction/assignment.md b/translations/ro/4-Classification/1-Introduction/assignment.md
index 95361c08a..37329ebeb 100644
--- a/translations/ro/4-Classification/1-Introduction/assignment.md
+++ b/translations/ro/4-Classification/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Explorează metodele de clasificare
## Instrucțiuni
diff --git a/translations/ro/4-Classification/1-Introduction/solution/Julia/README.md b/translations/ro/4-Classification/1-Introduction/solution/Julia/README.md
index 14c53e50b..de63b31da 100644
--- a/translations/ro/4-Classification/1-Introduction/solution/Julia/README.md
+++ b/translations/ro/4-Classification/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/4-Classification/2-Classifiers-1/README.md b/translations/ro/4-Classification/2-Classifiers-1/README.md
index abdf8dce6..2b2e916f6 100644
--- a/translations/ro/4-Classification/2-Classifiers-1/README.md
+++ b/translations/ro/4-Classification/2-Classifiers-1/README.md
@@ -1,12 +1,3 @@
-
# Clasificatori de bucătărie 1
În această lecție, vei folosi setul de date salvat din lecția anterioară, plin de date echilibrate și curate despre bucătării.
diff --git a/translations/ro/4-Classification/2-Classifiers-1/assignment.md b/translations/ro/4-Classification/2-Classifiers-1/assignment.md
index 201e69a7d..8931d1571 100644
--- a/translations/ro/4-Classification/2-Classifiers-1/assignment.md
+++ b/translations/ro/4-Classification/2-Classifiers-1/assignment.md
@@ -1,12 +1,3 @@
-
# Studiază rezolvatorii
## Instrucțiuni
diff --git a/translations/ro/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/ro/4-Classification/2-Classifiers-1/solution/Julia/README.md
index bae9eb40b..de63b31da 100644
--- a/translations/ro/4-Classification/2-Classifiers-1/solution/Julia/README.md
+++ b/translations/ro/4-Classification/2-Classifiers-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/4-Classification/3-Classifiers-2/README.md b/translations/ro/4-Classification/3-Classifiers-2/README.md
index a33eb7dd3..ede4017ef 100644
--- a/translations/ro/4-Classification/3-Classifiers-2/README.md
+++ b/translations/ro/4-Classification/3-Classifiers-2/README.md
@@ -1,12 +1,3 @@
-
# Clasificatori culinari 2
În această a doua lecție despre clasificare, vei explora mai multe modalități de a clasifica date numerice. De asemenea, vei învăța despre implicațiile alegerii unui clasificator în detrimentul altuia.
diff --git a/translations/ro/4-Classification/3-Classifiers-2/assignment.md b/translations/ro/4-Classification/3-Classifiers-2/assignment.md
index 8996fdda1..01b823190 100644
--- a/translations/ro/4-Classification/3-Classifiers-2/assignment.md
+++ b/translations/ro/4-Classification/3-Classifiers-2/assignment.md
@@ -1,12 +1,3 @@
-
# Joaca cu Parametrii
## Instrucțiuni
diff --git a/translations/ro/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/ro/4-Classification/3-Classifiers-2/solution/Julia/README.md
index e3fb784a3..de63b31da 100644
--- a/translations/ro/4-Classification/3-Classifiers-2/solution/Julia/README.md
+++ b/translations/ro/4-Classification/3-Classifiers-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/4-Classification/4-Applied/README.md b/translations/ro/4-Classification/4-Applied/README.md
index bf17a6e01..60bc02880 100644
--- a/translations/ro/4-Classification/4-Applied/README.md
+++ b/translations/ro/4-Classification/4-Applied/README.md
@@ -1,12 +1,3 @@
-
# Construiește o aplicație web pentru recomandarea bucătăriilor
În această lecție, vei construi un model de clasificare folosind unele dintre tehnicile pe care le-ai învățat în lecțiile anterioare și dataset-ul delicios de bucătării utilizat pe parcursul acestei serii. În plus, vei construi o mică aplicație web pentru a utiliza un model salvat, folosind runtime-ul web al Onnx.
diff --git a/translations/ro/4-Classification/4-Applied/assignment.md b/translations/ro/4-Classification/4-Applied/assignment.md
index d1c5b6456..d3e894525 100644
--- a/translations/ro/4-Classification/4-Applied/assignment.md
+++ b/translations/ro/4-Classification/4-Applied/assignment.md
@@ -1,12 +1,3 @@
-
# Construiește un sistem de recomandare
## Instrucțiuni
diff --git a/translations/ro/4-Classification/README.md b/translations/ro/4-Classification/README.md
index 88e15934b..c0f93a821 100644
--- a/translations/ro/4-Classification/README.md
+++ b/translations/ro/4-Classification/README.md
@@ -1,12 +1,3 @@
-
# Introducere în clasificare
## Subiect regional: Bucătării delicioase asiatice și indiene 🍜
diff --git a/translations/ro/5-Clustering/1-Visualize/README.md b/translations/ro/5-Clustering/1-Visualize/README.md
index 4c304934a..02d2947f6 100644
--- a/translations/ro/5-Clustering/1-Visualize/README.md
+++ b/translations/ro/5-Clustering/1-Visualize/README.md
@@ -1,12 +1,3 @@
-
# Introducere în clustering
Clustering-ul este un tip de [Învățare Nesupervizată](https://wikipedia.org/wiki/Unsupervised_learning) care presupune că un set de date nu este etichetat sau că intrările sale nu sunt asociate cu ieșiri predefinite. Folosește diverse algoritmi pentru a analiza datele neetichetate și a oferi grupări bazate pe tiparele identificate în date.
diff --git a/translations/ro/5-Clustering/1-Visualize/assignment.md b/translations/ro/5-Clustering/1-Visualize/assignment.md
index 6781c98b6..b3a03f481 100644
--- a/translations/ro/5-Clustering/1-Visualize/assignment.md
+++ b/translations/ro/5-Clustering/1-Visualize/assignment.md
@@ -1,12 +1,3 @@
-
# Cercetare alte vizualizări pentru clustering
## Instrucțiuni
diff --git a/translations/ro/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/ro/5-Clustering/1-Visualize/solution/Julia/README.md
index fd3fe9bbd..de63b31da 100644
--- a/translations/ro/5-Clustering/1-Visualize/solution/Julia/README.md
+++ b/translations/ro/5-Clustering/1-Visualize/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/5-Clustering/2-K-Means/README.md b/translations/ro/5-Clustering/2-K-Means/README.md
index 06f67578f..fb2b40c3e 100644
--- a/translations/ro/5-Clustering/2-K-Means/README.md
+++ b/translations/ro/5-Clustering/2-K-Means/README.md
@@ -1,12 +1,3 @@
-
# Gruparea K-Means
## [Chestionar înainte de lecție](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/ro/5-Clustering/2-K-Means/assignment.md b/translations/ro/5-Clustering/2-K-Means/assignment.md
index 588b58087..f181f43cc 100644
--- a/translations/ro/5-Clustering/2-K-Means/assignment.md
+++ b/translations/ro/5-Clustering/2-K-Means/assignment.md
@@ -1,12 +1,3 @@
-
# Încercați metode diferite de grupare
## Instrucțiuni
diff --git a/translations/ro/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/ro/5-Clustering/2-K-Means/solution/Julia/README.md
index 8651fed23..de63b31da 100644
--- a/translations/ro/5-Clustering/2-K-Means/solution/Julia/README.md
+++ b/translations/ro/5-Clustering/2-K-Means/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/5-Clustering/README.md b/translations/ro/5-Clustering/README.md
index 75bfce295..56aa8e423 100644
--- a/translations/ro/5-Clustering/README.md
+++ b/translations/ro/5-Clustering/README.md
@@ -1,12 +1,3 @@
-
# Modele de clustering pentru învățarea automată
Clustering-ul este o sarcină de învățare automată care urmărește să găsească obiecte ce seamănă între ele și să le grupeze în grupuri numite clustere. Ceea ce diferențiază clustering-ul de alte abordări în învățarea automată este faptul că procesul se desfășoară automat; de fapt, putem spune că este opusul învățării supravegheate.
diff --git a/translations/ro/6-NLP/1-Introduction-to-NLP/README.md b/translations/ro/6-NLP/1-Introduction-to-NLP/README.md
index 89db3b4ab..257777285 100644
--- a/translations/ro/6-NLP/1-Introduction-to-NLP/README.md
+++ b/translations/ro/6-NLP/1-Introduction-to-NLP/README.md
@@ -1,12 +1,3 @@
-
# Introducere în procesarea limbajului natural
Această lecție acoperă o scurtă istorie și concepte importante ale *procesării limbajului natural*, un subdomeniu al *lingvisticii computaționale*.
diff --git a/translations/ro/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/ro/6-NLP/1-Introduction-to-NLP/assignment.md
index e6b287762..162240f67 100644
--- a/translations/ro/6-NLP/1-Introduction-to-NLP/assignment.md
+++ b/translations/ro/6-NLP/1-Introduction-to-NLP/assignment.md
@@ -1,12 +1,3 @@
-
# Caută un bot
## Instrucțiuni
diff --git a/translations/ro/6-NLP/2-Tasks/README.md b/translations/ro/6-NLP/2-Tasks/README.md
index e02fb9ae7..ec9b3e1c7 100644
--- a/translations/ro/6-NLP/2-Tasks/README.md
+++ b/translations/ro/6-NLP/2-Tasks/README.md
@@ -1,12 +1,3 @@
-
# Sarcini și tehnici comune de procesare a limbajului natural
Pentru majoritatea sarcinilor de *procesare a limbajului natural*, textul care trebuie procesat trebuie să fie descompus, examinat, iar rezultatele stocate sau corelate cu reguli și seturi de date. Aceste sarcini permit programatorului să derive _semnificația_ sau _intenția_ sau doar _frecvența_ termenilor și cuvintelor dintr-un text.
diff --git a/translations/ro/6-NLP/2-Tasks/assignment.md b/translations/ro/6-NLP/2-Tasks/assignment.md
index 43477ce5f..f6e20197d 100644
--- a/translations/ro/6-NLP/2-Tasks/assignment.md
+++ b/translations/ro/6-NLP/2-Tasks/assignment.md
@@ -1,12 +1,3 @@
-
# Fă un Bot să răspundă
## Instrucțiuni
diff --git a/translations/ro/6-NLP/3-Translation-Sentiment/README.md b/translations/ro/6-NLP/3-Translation-Sentiment/README.md
index d49dc1581..9f1670a02 100644
--- a/translations/ro/6-NLP/3-Translation-Sentiment/README.md
+++ b/translations/ro/6-NLP/3-Translation-Sentiment/README.md
@@ -1,12 +1,3 @@
-
# Traducere și analiză a sentimentelor cu ML
În lecțiile anterioare ai învățat cum să construiești un bot de bază folosind `TextBlob`, o bibliotecă care încorporează ML în culise pentru a efectua sarcini NLP de bază, cum ar fi extragerea frazelor nominale. O altă provocare importantă în lingvistica computațională este traducerea _exactă_ a unei propoziții dintr-o limbă vorbită sau scrisă în alta.
diff --git a/translations/ro/6-NLP/3-Translation-Sentiment/assignment.md b/translations/ro/6-NLP/3-Translation-Sentiment/assignment.md
index 072bb65a6..408571f22 100644
--- a/translations/ro/6-NLP/3-Translation-Sentiment/assignment.md
+++ b/translations/ro/6-NLP/3-Translation-Sentiment/assignment.md
@@ -1,12 +1,3 @@
-
# Licență poetică
## Instrucțiuni
diff --git a/translations/ro/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/ro/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
index fc34e8386..0850996e9 100644
--- a/translations/ro/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
+++ b/translations/ro/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/ro/6-NLP/3-Translation-Sentiment/solution/R/README.md
index 76b88df76..de63b31da 100644
--- a/translations/ro/6-NLP/3-Translation-Sentiment/solution/R/README.md
+++ b/translations/ro/6-NLP/3-Translation-Sentiment/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/4-Hotel-Reviews-1/README.md b/translations/ro/6-NLP/4-Hotel-Reviews-1/README.md
index 6d107f628..324ea0765 100644
--- a/translations/ro/6-NLP/4-Hotel-Reviews-1/README.md
+++ b/translations/ro/6-NLP/4-Hotel-Reviews-1/README.md
@@ -1,12 +1,3 @@
-
# Analiza sentimentului cu recenzii de hotel - procesarea datelor
În această secțiune vei folosi tehnicile din lecțiile anterioare pentru a realiza o analiză exploratorie a unui set de date mare. După ce vei avea o înțelegere bună a utilității diferitelor coloane, vei învăța:
diff --git a/translations/ro/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/ro/6-NLP/4-Hotel-Reviews-1/assignment.md
index 2036cd5f1..6d8d03ae9 100644
--- a/translations/ro/6-NLP/4-Hotel-Reviews-1/assignment.md
+++ b/translations/ro/6-NLP/4-Hotel-Reviews-1/assignment.md
@@ -1,12 +1,3 @@
-
# NLTK
## Instrucțiuni
diff --git a/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
index 0902240e1..de63b31da 100644
--- a/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
+++ b/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
index afd3ff6b8..ecf156e94 100644
--- a/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
+++ b/translations/ro/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/5-Hotel-Reviews-2/README.md b/translations/ro/6-NLP/5-Hotel-Reviews-2/README.md
index 0c8c3a7a5..91b6a1c9f 100644
--- a/translations/ro/6-NLP/5-Hotel-Reviews-2/README.md
+++ b/translations/ro/6-NLP/5-Hotel-Reviews-2/README.md
@@ -1,12 +1,3 @@
-
# Analiza sentimentelor cu recenzii de hotel
Acum că ai explorat în detaliu setul de date, este momentul să filtrezi coloanele și să utilizezi tehnici NLP pe setul de date pentru a obține noi perspective despre hoteluri.
diff --git a/translations/ro/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/ro/6-NLP/5-Hotel-Reviews-2/assignment.md
index a011af8c6..451bb5639 100644
--- a/translations/ro/6-NLP/5-Hotel-Reviews-2/assignment.md
+++ b/translations/ro/6-NLP/5-Hotel-Reviews-2/assignment.md
@@ -1,12 +1,3 @@
-
# Încearcă un set de date diferit
## Instrucțiuni
diff --git a/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
index 2617884ad..de63b31da 100644
--- a/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
+++ b/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
index be3651189..de63b31da 100644
--- a/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
+++ b/translations/ro/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/6-NLP/README.md b/translations/ro/6-NLP/README.md
index 54053e3ad..48a4959f9 100644
--- a/translations/ro/6-NLP/README.md
+++ b/translations/ro/6-NLP/README.md
@@ -1,12 +1,3 @@
-
# Introducere în procesarea limbajului natural
Procesarea limbajului natural (NLP) reprezintă abilitatea unui program de calculator de a înțelege limbajul uman așa cum este vorbit și scris – denumit limbaj natural. Este o componentă a inteligenței artificiale (AI). NLP există de mai bine de 50 de ani și își are rădăcinile în domeniul lingvisticii. Întregul domeniu este orientat spre a ajuta mașinile să înțeleagă și să proceseze limbajul uman. Acest lucru poate fi utilizat ulterior pentru a îndeplini sarcini precum verificarea ortografică sau traducerea automată. Are o varietate de aplicații practice în mai multe domenii, inclusiv cercetarea medicală, motoarele de căutare și analiza de business.
diff --git a/translations/ro/6-NLP/data/README.md b/translations/ro/6-NLP/data/README.md
index 81dc3052a..6f461e8ba 100644
--- a/translations/ro/6-NLP/data/README.md
+++ b/translations/ro/6-NLP/data/README.md
@@ -1,12 +1,3 @@
-
Descarcă datele recenziilor hotelului în acest folder.
---
diff --git a/translations/ro/7-TimeSeries/1-Introduction/README.md b/translations/ro/7-TimeSeries/1-Introduction/README.md
index 05b60b027..78c6efbd1 100644
--- a/translations/ro/7-TimeSeries/1-Introduction/README.md
+++ b/translations/ro/7-TimeSeries/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în prognoza seriilor temporale

diff --git a/translations/ro/7-TimeSeries/1-Introduction/assignment.md b/translations/ro/7-TimeSeries/1-Introduction/assignment.md
index 5b7feac11..ac8a6b99e 100644
--- a/translations/ro/7-TimeSeries/1-Introduction/assignment.md
+++ b/translations/ro/7-TimeSeries/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Vizualizați mai multe serii temporale
## Instrucțiuni
diff --git a/translations/ro/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/ro/7-TimeSeries/1-Introduction/solution/Julia/README.md
index 4c9fa23ce..de63b31da 100644
--- a/translations/ro/7-TimeSeries/1-Introduction/solution/Julia/README.md
+++ b/translations/ro/7-TimeSeries/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/ro/7-TimeSeries/1-Introduction/solution/R/README.md
index ec1f813ac..ecf156e94 100644
--- a/translations/ro/7-TimeSeries/1-Introduction/solution/R/README.md
+++ b/translations/ro/7-TimeSeries/1-Introduction/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/7-TimeSeries/2-ARIMA/README.md b/translations/ro/7-TimeSeries/2-ARIMA/README.md
index 2aa914e4d..d2cf70cfc 100644
--- a/translations/ro/7-TimeSeries/2-ARIMA/README.md
+++ b/translations/ro/7-TimeSeries/2-ARIMA/README.md
@@ -1,12 +1,3 @@
-
# Prognoza seriilor temporale cu ARIMA
În lecția anterioară, ai învățat câte ceva despre prognoza seriilor temporale și ai încărcat un set de date care arată fluctuațiile consumului de energie electrică pe o anumită perioadă de timp.
diff --git a/translations/ro/7-TimeSeries/2-ARIMA/assignment.md b/translations/ro/7-TimeSeries/2-ARIMA/assignment.md
index 6c70159ad..ce7ed3ed0 100644
--- a/translations/ro/7-TimeSeries/2-ARIMA/assignment.md
+++ b/translations/ro/7-TimeSeries/2-ARIMA/assignment.md
@@ -1,12 +1,3 @@
-
# Un nou model ARIMA
## Instrucțiuni
diff --git a/translations/ro/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/ro/7-TimeSeries/2-ARIMA/solution/Julia/README.md
index b60fd86d3..de63b31da 100644
--- a/translations/ro/7-TimeSeries/2-ARIMA/solution/Julia/README.md
+++ b/translations/ro/7-TimeSeries/2-ARIMA/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/ro/7-TimeSeries/2-ARIMA/solution/R/README.md
index 7aec2eaf6..de63b31da 100644
--- a/translations/ro/7-TimeSeries/2-ARIMA/solution/R/README.md
+++ b/translations/ro/7-TimeSeries/2-ARIMA/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/7-TimeSeries/3-SVR/README.md b/translations/ro/7-TimeSeries/3-SVR/README.md
index 8a5579836..6b09686a2 100644
--- a/translations/ro/7-TimeSeries/3-SVR/README.md
+++ b/translations/ro/7-TimeSeries/3-SVR/README.md
@@ -1,12 +1,3 @@
-
# Predicția seriilor temporale cu Support Vector Regressor
În lecția anterioară, ai învățat cum să folosești modelul ARIMA pentru a face predicții ale seriilor temporale. Acum vei explora modelul Support Vector Regressor, un model de regresie utilizat pentru a prezice date continue.
diff --git a/translations/ro/7-TimeSeries/3-SVR/assignment.md b/translations/ro/7-TimeSeries/3-SVR/assignment.md
index 4ba90dbf8..35ff5182b 100644
--- a/translations/ro/7-TimeSeries/3-SVR/assignment.md
+++ b/translations/ro/7-TimeSeries/3-SVR/assignment.md
@@ -1,12 +1,3 @@
-
# Un nou model SVR
## Instrucțiuni [^1]
diff --git a/translations/ro/7-TimeSeries/README.md b/translations/ro/7-TimeSeries/README.md
index ac12a9044..7f8da4a2c 100644
--- a/translations/ro/7-TimeSeries/README.md
+++ b/translations/ro/7-TimeSeries/README.md
@@ -1,12 +1,3 @@
-
# Introducere în prognoza seriilor temporale
Ce este prognoza seriilor temporale? Este vorba despre prezicerea evenimentelor viitoare prin analizarea tendințelor din trecut.
diff --git a/translations/ro/8-Reinforcement/1-QLearning/README.md b/translations/ro/8-Reinforcement/1-QLearning/README.md
index 188ca8844..a4762ee88 100644
--- a/translations/ro/8-Reinforcement/1-QLearning/README.md
+++ b/translations/ro/8-Reinforcement/1-QLearning/README.md
@@ -1,12 +1,3 @@
-
# Introducere în Învățarea prin Recompensă și Q-Learning

diff --git a/translations/ro/8-Reinforcement/1-QLearning/assignment.md b/translations/ro/8-Reinforcement/1-QLearning/assignment.md
index 94dbbd2bb..16eac0db4 100644
--- a/translations/ro/8-Reinforcement/1-QLearning/assignment.md
+++ b/translations/ro/8-Reinforcement/1-QLearning/assignment.md
@@ -1,12 +1,3 @@
-
# O Lume Mai Realistă
În situația noastră, Peter a putut să se deplaseze aproape fără să obosească sau să îi fie foame. Într-o lume mai realistă, el trebuie să se așeze și să se odihnească din când în când, și de asemenea să se hrănească. Hai să facem lumea noastră mai realistă, implementând următoarele reguli:
diff --git a/translations/ro/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/ro/8-Reinforcement/1-QLearning/solution/Julia/README.md
index 43e780c72..ecf156e94 100644
--- a/translations/ro/8-Reinforcement/1-QLearning/solution/Julia/README.md
+++ b/translations/ro/8-Reinforcement/1-QLearning/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/ro/8-Reinforcement/1-QLearning/solution/R/README.md
index 245e74401..de63b31da 100644
--- a/translations/ro/8-Reinforcement/1-QLearning/solution/R/README.md
+++ b/translations/ro/8-Reinforcement/1-QLearning/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/8-Reinforcement/2-Gym/README.md b/translations/ro/8-Reinforcement/2-Gym/README.md
index 5ccd3ad7a..6cbda3c79 100644
--- a/translations/ro/8-Reinforcement/2-Gym/README.md
+++ b/translations/ro/8-Reinforcement/2-Gym/README.md
@@ -1,12 +1,3 @@
-
## Cerințe preliminare
În această lecție, vom folosi o bibliotecă numită **OpenAI Gym** pentru a simula diferite **medii**. Poți rula codul lecției local (de exemplu, din Visual Studio Code), caz în care simularea se va deschide într-o fereastră nouă. Dacă rulezi codul online, poate fi necesar să faci unele ajustări, așa cum este descris [aici](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7).
diff --git a/translations/ro/8-Reinforcement/2-Gym/assignment.md b/translations/ro/8-Reinforcement/2-Gym/assignment.md
index e5151da7d..5e6995b11 100644
--- a/translations/ro/8-Reinforcement/2-Gym/assignment.md
+++ b/translations/ro/8-Reinforcement/2-Gym/assignment.md
@@ -1,12 +1,3 @@
-
# Antrenează Mountain Car
[OpenAI Gym](http://gym.openai.com) a fost conceput astfel încât toate mediile să ofere aceeași API - adică aceleași metode `reset`, `step` și `render`, și aceleași abstracții ale **spațiului de acțiune** și **spațiului de observație**. Astfel, ar trebui să fie posibil să adaptăm aceleași algoritmi de învățare prin întărire la diferite medii cu modificări minime de cod.
diff --git a/translations/ro/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/ro/8-Reinforcement/2-Gym/solution/Julia/README.md
index 3d90eb70f..de63b31da 100644
--- a/translations/ro/8-Reinforcement/2-Gym/solution/Julia/README.md
+++ b/translations/ro/8-Reinforcement/2-Gym/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/8-Reinforcement/2-Gym/solution/R/README.md b/translations/ro/8-Reinforcement/2-Gym/solution/R/README.md
index a23cfab3a..de63b31da 100644
--- a/translations/ro/8-Reinforcement/2-Gym/solution/R/README.md
+++ b/translations/ro/8-Reinforcement/2-Gym/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/ro/8-Reinforcement/README.md b/translations/ro/8-Reinforcement/README.md
index 418fbe111..e9e61c5d8 100644
--- a/translations/ro/8-Reinforcement/README.md
+++ b/translations/ro/8-Reinforcement/README.md
@@ -1,12 +1,3 @@
-
# Introducere în învățarea prin întărire
Învățarea prin întărire, RL, este considerată unul dintre paradigmele de bază ale învățării automate, alături de învățarea supravegheată și cea nesupravegheată. RL se concentrează pe luarea deciziilor: luarea deciziilor corecte sau cel puțin învățarea din ele.
diff --git a/translations/ro/9-Real-World/1-Applications/README.md b/translations/ro/9-Real-World/1-Applications/README.md
index 1576b146a..ec7e91eec 100644
--- a/translations/ro/9-Real-World/1-Applications/README.md
+++ b/translations/ro/9-Real-World/1-Applications/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Învățarea automată în lumea reală

diff --git a/translations/ro/9-Real-World/1-Applications/assignment.md b/translations/ro/9-Real-World/1-Applications/assignment.md
index 086d03a48..3b69eb5a9 100644
--- a/translations/ro/9-Real-World/1-Applications/assignment.md
+++ b/translations/ro/9-Real-World/1-Applications/assignment.md
@@ -1,12 +1,3 @@
-
# O vânătoare de comori ML
## Instrucțiuni
diff --git a/translations/ro/9-Real-World/2-Debugging-ML-Models/README.md b/translations/ro/9-Real-World/2-Debugging-ML-Models/README.md
index 26f685b1b..4301664c7 100644
--- a/translations/ro/9-Real-World/2-Debugging-ML-Models/README.md
+++ b/translations/ro/9-Real-World/2-Debugging-ML-Models/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Debuggarea modelelor de învățare automată folosind componentele tabloului de bord AI responsabil
diff --git a/translations/ro/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/ro/9-Real-World/2-Debugging-ML-Models/assignment.md
index 094d76f47..5a14f68b6 100644
--- a/translations/ro/9-Real-World/2-Debugging-ML-Models/assignment.md
+++ b/translations/ro/9-Real-World/2-Debugging-ML-Models/assignment.md
@@ -1,12 +1,3 @@
-
# Explorează tabloul de bord Responsible AI (RAI)
## Instrucțiuni
diff --git a/translations/ro/9-Real-World/README.md b/translations/ro/9-Real-World/README.md
index eb1bdb651..0e4344795 100644
--- a/translations/ro/9-Real-World/README.md
+++ b/translations/ro/9-Real-World/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Aplicații reale ale învățării automate clasice
În această secțiune a curriculumului, vei fi introdus în câteva aplicații reale ale învățării automate clasice. Am cercetat internetul pentru a găsi articole și lucrări despre aplicații care au utilizat aceste strategii, evitând pe cât posibil rețelele neuronale, învățarea profundă și inteligența artificială. Află cum este utilizată învățarea automată în sistemele de afaceri, aplicații ecologice, finanțe, arte și cultură, și multe altele.
diff --git a/translations/ro/AGENTS.md b/translations/ro/AGENTS.md
index c7e6e5aad..134d4a770 100644
--- a/translations/ro/AGENTS.md
+++ b/translations/ro/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Prezentare Generală a Proiectului
diff --git a/translations/ro/CODE_OF_CONDUCT.md b/translations/ro/CODE_OF_CONDUCT.md
index 1e31a05b6..58e04ec9a 100644
--- a/translations/ro/CODE_OF_CONDUCT.md
+++ b/translations/ro/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Codul de Conduită pentru Proiectele Open Source Microsoft
Acest proiect a adoptat [Codul de Conduită pentru Proiectele Open Source Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/ro/CONTRIBUTING.md b/translations/ro/CONTRIBUTING.md
index 1b5d9b885..3e612d20f 100644
--- a/translations/ro/CONTRIBUTING.md
+++ b/translations/ro/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuții
Acest proiect acceptă contribuții și sugestii. Majoritatea contribuțiilor necesită ca tu să fii de acord cu un Acord de Licență pentru Contribuitori (CLA), declarând că ai dreptul și, de fapt, acorzi drepturile necesare pentru ca noi să utilizăm contribuția ta. Pentru detalii, vizitează https://cla.microsoft.com.
diff --git a/translations/ro/README.md b/translations/ro/README.md
index a287a2185..58e052c78 100644
--- a/translations/ro/README.md
+++ b/translations/ro/README.md
@@ -1,12 +1,3 @@
-
[](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
[](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/ML-For-Beginners/issues/)
@@ -22,75 +13,75 @@ CO_OP_TRANSLATOR_METADATA:
#### Suportat prin GitHub Action (automatizat și întotdeauna actualizat)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](./README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](./README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Preferi să clonezi local?**
+> **Preferi să Clonezi Local?**
-> Acest depozit include peste 50 de traduceri în limbi diferite, ceea ce mărește semnificativ dimensiunea descărcării. Pentru a clona fără traduceri, folosiți sparse checkout:
+> Acest depozit include peste 50 de traduceri în limbi diferite, ceea ce crește semnificativ dimensiunea descărcării. Pentru a clona fără traduceri, folosește sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/ML-For-Beginners.git
> cd ML-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Aceasta îți oferă tot ce ai nevoie pentru a finaliza cursul cu o descărcare mult mai rapidă.
+> Astfel, obții tot ce ai nevoie pentru a finaliza cursul cu o descărcare mult mai rapidă.
-#### Alătură-te comunității noastre
+#### Alătură-te Comunității Noastre
[](https://discord.gg/nTYy5BXMWG)
-Avem o serie de învățare cu AI pe Discord, află mai multe și alătură-te la [Seria Learn with AI](https://aka.ms/learnwithai/discord) în perioada 18 - 30 septembrie 2025. Vei primi sfaturi și trucuri pentru utilizarea GitHub Copilot în Data Science.
+Avem o serie Discord „Învață cu AI” în desfășurare, află mai multe și alătură-te la [Learn with AI Series](https://aka.ms/learnwithai/discord) în perioada 18 - 30 septembrie 2025. Vei primi sfaturi și trucuri pentru utilizarea GitHub Copilot în Știința Datelor.
-
+
# Machine Learning pentru Începători - Un Curriculum
-> 🌍 Călătorește în jurul lumii în timp ce explorăm Machine Learning prin prisma culturilor mondiale 🌍
+> 🌍 Călătorește în jurul lumii în timp ce explorăm Machine Learning prin prisma culturilor lumii 🌍
-Cloud Advocates la Microsoft sunt încântați să ofere un curriculum de 12 săptămâni, cu 26 de lecții, despre **Machine Learning**. În acest curriculum, vei învăța despre ceea ce uneori este numit **machine learning clasic**, folosind în principal biblioteca Scikit-learn și evitând deep learning, care este acoperit în curriculumul nostru [AI pentru Începători](https://aka.ms/ai4beginners). Combină aceste lecții și cu curriculumul nostru ["Data Science pentru Începători"](https://aka.ms/ds4beginners)!
+Cloud Advocates de la Microsoft sunt încântați să ofere un curriculum de 12 săptămâni, 26 lecții, dedicat în întregime **Machine Learning**. În acest curriculum, vei învăța despre ceea ce numim uneori **machine learning clasic**, folosind în principal Scikit-learn ca bibliotecă și evitând deep learning-ul, care este tratat în curriculumul nostru [AI for Beginners](https://aka.ms/ai4beginners). Combină aceste lecții cu curriculumul nostru ['Data Science for Beginners'](https://aka.ms/ds4beginners).
-Călătorește cu noi în jurul lumii în timp ce aplicăm aceste tehnici clasice pe date din multe regiuni ale lumii. Fiecare lecție include quiz-uri pre- și post-lectură, instrucțiuni scrise pentru completarea lecției, o soluție, un exercițiu și multe altele. Pedagogia noastră bazată pe proiecte îți permite să înveți construind, o metodă dovedită pentru ca noile abilități să „se fixeze”.
+Călătorește cu noi în jurul lumii aplicând aceste tehnici clasice pe date din diverse zone ale lumii. Fiecare lecție include chestionare pre- și post- lecție, instrucțiuni scrise pentru a finaliza lecția, o soluție, o temă și altele. Pedagogia noastră bazată pe proiecte îți permite să înveți construind, o metodă dovedită pentru asimilarea noilor abilități.
-**✍️ Mulțumiri din suflet autorilor noștri** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu și Amy Boyd
+**✍️ Mulțumiri călduroase autorilor noștri** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu și Amy Boyd
**🎨 Mulțumiri și ilustratorilor noștri** Tomomi Imura, Dasani Madipalli și Jen Looper
-**🙏 Mulțumiri speciale 🙏 autorilor, evaluatoriilor și contributoriilor de conținut Microsoft Student Ambassador**, în special Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila și Snigdha Agarwal
+**🙏 Mulțumiri speciale 🙏 ambasadorilor studenți Microsoft autori, recenzori și contribuitori la conținut**, în special Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila și Snigdha Agarwal
-**🤩 Recunoștință în plus pentru Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi și Vidushi Gupta pentru lecțiile noastre în R!**
+**🤩 Gratitudine suplimentară ambasadorilor studenți Microsoft Eric Wanjau, Jasleen Sondhi și Vidushi Gupta pentru lecțiile în R!**
-# Pornirea
+# Începutul
-Urmărește acești pași:
-1. **Fă fork depozitului**: Apasă pe butonul „Fork” din colțul din dreapta sus al paginii.
-2. **Clonează depozitul**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
+Urmează acești pași:
+1. **Fă un Fork al Repozitoriului**: Apasă butonul „Fork” din colțul dreapta sus al acestei pagini.
+2. **Clonează Repozitoriul**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
-> [Găsește toate resursele suplimentare pentru acest curs în colecția noastră Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
+> [găsește toate resursele suplimentare pentru acest curs în colecția noastră Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
-> 🔧 **Ai nevoie de ajutor?** Consultă [Ghidul nostru de depănare](TROUBLESHOOTING.md) pentru soluții la probleme comune legate de instalare, configurare și rularea lecțiilor.
+> 🔧 **Ai nevoie de ajutor?** Consultă [Ghidul de depanare](TROUBLESHOOTING.md) pentru soluții la probleme comune legate de instalare, configurare și rularea lecțiilor.
-**[Studenți](https://aka.ms/student-page)**, pentru a folosi acest curriculum, faceți fork la întregul repo în contul vostru GitHub și finalizați exercițiile singuri sau în grup:
+**[Studenți](https://aka.ms/student-page)**, pentru a folosi acest curriculum, faceți fork la întregul repo în contul vostru GitHub și completați exercițiile individual sau în grup:
-- Începeți cu un quiz de pre-lectură.
-- Citiți lecția și completați activitățile, oprindu-vă și reflectând la fiecare verificare a cunoștințelor.
-- Încercați să creați proiectele înțelegând lecțiile, mai degrabă decât să rulați codul soluției; cu toate acestea, codul este disponibil în folderele `/solution` ale fiecărei lecții orientate pe proiect.
-- Faceți quiz-ul post-lectură.
-- Finalizați provocarea.
-- Finalizați tema.
-- După finalizarea unui grup de lecții, vizitați [Tabloul de discuții](https://github.com/microsoft/ML-For-Beginners/discussions) și „învățați cu voce tare” completând rubricile PAT corespunzătoare. Un 'PAT' este un Instrument de Evaluare a Progresului, o rubrică pe care o completați pentru a vă aprofunda învățarea. De asemenea, puteți reacționa la alte PAT-uri pentru a învăța împreună.
+- Începe cu un chestionar pre-lecture.
+- Citește lecția și finalizează activitățile, oprindu-te pentru reflecție la fiecare verificare de cunoștințe.
+- Încearcă să creezi proiectele înțelegând lecțiile și nu doar executând codul soluției; totuși, acel cod este disponibil în folderele `/solution` din fiecare lecție orientată spre proiect.
+- Fă chestionarul post-lecture.
+- Completează provocarea.
+- Realizează tema.
+- După finalizarea unui grup de lecții, vizitează [Forum discuții](https://github.com/microsoft/ML-For-Beginners/discussions) și „învățăm împreună” completând rubrică PAT corespunzătoare. Un 'PAT' este un Instrument de Evaluare a Progresului, o rubrică pe care o completezi pentru a-ți aprofunda învățarea. Poți reacționa și la alte PAT-uri pentru a învăța împreună.
-> Pentru studiu suplimentar, recomandăm urmarea acestor module și căi de învățare [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
+> Pentru studii suplimentare, recomandăm să urmezi aceste module și trasee de învățare [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
**Profesori**, am inclus [unele sugestii](for-teachers.md) despre cum să folosiți acest curriculum.
---
-## Parcurgeri video
+## Prezentări video
-Unele dintre lecții sunt disponibile sub formă de video scurt. Le puteți găsi pe toate în linie în lecții sau pe [lista ML pentru Începători de pe canalul Microsoft Developer YouTube](https://aka.ms/ml-beginners-videos) făcând clic pe imaginea de mai jos.
+Unele lecții sunt disponibile ca videoclipuri scurte. Le poți găsi integrate în lecții sau pe [playlist-ul ML for Beginners de pe canalul Microsoft Developer YouTube](https://aka.ms/ml-beginners-videos) făcând clic pe imaginea de mai jos.
-[](https://aka.ms/ml-beginners-videos)
+[](https://aka.ms/ml-beginners-videos)
---
@@ -100,96 +91,96 @@ Unele dintre lecții sunt disponibile sub formă de video scurt. Le puteți găs
**Gif de** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal)
-> 🎥 Click pe imaginea de mai sus pentru un video despre proiect și despre cei care l-au creat!
+> 🎥 Apasă imaginea de mai sus pentru a vedea un video despre proiect și cei care l-au creat!
---
## Pedagogie
-Am ales două principii pedagogice în construirea acestui curriculum: asigurarea că este hands-on **bazat pe proiecte** și că include **quiz-uri frecvente**. În plus, acest curriculum are o **tematică** comună pentru coeziune.
+Am ales două principii pedagogice în construirea acestui curriculum: să fie **bazat pe proiecte practice** și să includă **chestionare frecvente**. În plus, acest curriculum are o **temă** comună pentru coeziune.
-Prin asigurarea alinierii conținutului cu proiectele, procesul devine mai captivant pentru studenți și reținerea conceptelor este augmentată. În plus, un quiz cu miză redusă înaintea cursului setează intenția studentului spre învățarea subiectului, iar un al doilea quiz după curs asigură o reținere suplimentară. Acest curriculum este conceput să fie flexibil și distractiv și poate fi parcurs integral sau parțial. Proiectele încep mici și devin tot mai complexe până la finalul ciclului de 12 săptămâni. Curriculumul include și un postscript despre aplicații reale ale ML, care poate fi folosit ca credit suplimentar sau ca bază pentru discuții.
+Prin alinierea conținutului cu proiectele, procesul devine mai captivant pentru studenți și retenția conceptelor este amplificată. De asemenea, un chestionar cu miză mică înaintea unui curs stabilește intenția studentului de a învăța un subiect, în timp ce un al doilea chestionar după curs asigură o retenție suplimentară. Curriculumul este proiectat să fie flexibil și distractiv și îl poți urma integral sau parțial. Proiectele pornesc mici și devin din ce în ce mai complexe spre finalul ciclului de 12 săptămâni. Curriculumul include un postscript despre aplicații reale ale ML, care poate fi folosit ca credit suplimentar sau ca bază pentru discuții.
-> Găsiți ghidurile noastre [Codul de conduită](CODE_OF_CONDUCT.md), [Contribuire](CONTRIBUTING.md), [Traducere](TRANSLATIONS.md) și [Depănare](TROUBLESHOOTING.md). Așteptăm cu interes feedback-ul vostru constructiv!
+> Găsește regulile noastre în [Codul de conduită](CODE_OF_CONDUCT.md), [Contribuții](CONTRIBUTING.md), [Traduceri](TRANSLATIONS.md) și [Depanare](TROUBLESHOOTING.md). Apreciem feedback-ul tău constructiv!
## Fiecare lecție include
-- schiță opțională
-- video suplimentar opțional
-- parcurgere video (în unele lecții)
-- [quiz de încălzire pre-lectură](https://ff-quizzes.netlify.app/en/ml/)
+- schița opțională
+- videoclip opțional suplimentar
+- tutorial video (numai pentru unele lecții)
+- [chestionar de încălzire pre-lecture](https://ff-quizzes.netlify.app/en/ml/)
- lecție scrisă
-- pentru lecțiile bazate pe proiect, ghiduri pas cu pas pentru realizarea proiectului
-- verificări ale cunoștințelor
+- pentru lecțiile bazate pe proiecte, ghid pas cu pas pentru construirea proiectului
+- verificări de cunoștințe
- o provocare
-- lecturi suplimentare
+- lectură suplimentară
- temă
-- [quiz post-lectură](https://ff-quizzes.netlify.app/en/ml/)
-
-> **O notă despre limbi**: Aceste lecții sunt scrise în principal în Python, dar multe sunt disponibile și în R. Pentru a finaliza o lecție în R, accesați folderul `/solution` și căutați lecțiile în R. Acestea includ o extensie .rmd care reprezintă un fișier **R Markdown**, definit simplu ca o încorporare a `blocurilor de cod` (în R sau alte limbi) și a unui `antet YAML` (care ghidează cum să formatezi ieșirile, cum ar fi PDF) într-un `document Markdown`. Astfel, servește ca un cadru de autorare exemplar pentru data science, deoarece permite combinarea codului, rezultatului său și a gândurilor tale scrise în Markdown. Mai mult, documentele R Markdown pot fi convertite în formate de ieșire precum PDF, HTML sau Word.
-> **O notă despre quizuri**: Toate quizurile sunt conținute în [folderul Quiz App](../../quiz-app), pentru un total de 52 de quizuri cu câte trei întrebări fiecare. Ele sunt conectate din interiorul lecțiilor, dar aplicația quiz poate fi rulată local; urmează instrucțiunile din folderul `quiz-app` pentru a găzdui local sau a implementa în Azure.
-
-| Numărul Lecției | Subiect | Gruparea Lecției | Obiective de învățare | Lecția Legată | Autor |
-| :-------------: | :-------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: |
-| 01 | Introducere în învățarea automată | [Introducere](1-Introduction/README.md) | Învățați conceptele de bază din spatele învățării automate | [Lecția](1-Introduction/1-intro-to-ML/README.md) | Muhammad |
-| 02 | Istoria învățării automate | [Introducere](1-Introduction/README.md) | Învățați istoria care stă la baza acestui domeniu | [Lecția](1-Introduction/2-history-of-ML/README.md) | Jen și Amy |
-| 03 | Echitate și învățarea automată | [Introducere](1-Introduction/README.md) | Care sunt problemele filosofice importante legate de echitate pe care studenții ar trebui să le ia în considerare la dezvoltarea și aplicarea modelelor ML? | [Lecția](1-Introduction/3-fairness/README.md) | Tomomi |
-| 04 | Tehnici pentru învățarea automată | [Introducere](1-Introduction/README.md) | Ce tehnici folosesc cercetătorii ML pentru a construi modele ML? | [Lecția](1-Introduction/4-techniques-of-ML/README.md) | Chris și Jen |
-| 05 | Introducere în regresie | [Regresie](2-Regression/README.md) | Începeți cu Python și Scikit-learn pentru modele de regresie | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau |
-| 06 | Prețurile dovlecilor nord-americani 🎃 | [Regresie](2-Regression/README.md) | Vizualizați și curățați datele în pregătirea pentru ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau |
-| 07 | Prețurile dovlecilor nord-americani 🎃 | [Regresie](2-Regression/README.md) | Construiți modele de regresie liniară și polinomială | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen și Dmitry • Eric Wanjau |
-| 08 | Prețurile dovlecilor nord-americani 🎃 | [Regresie](2-Regression/README.md) | Construiți un model de regresie logistică | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau |
-| 09 | O aplicație web 🔌 | [Aplicație Web](3-Web-App/README.md) | Construiți o aplicație web pentru a folosi modelul antrenat | [Python](3-Web-App/1-Web-App/README.md) | Jen |
-| 10 | Introducere în clasificare | [Clasificare](4-Classification/README.md) | Curățați, pregătiți și vizualizați datele; introducere în clasificare | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen și Cassie • Eric Wanjau |
-| 11 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Introducere în clasificatori | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen și Cassie • Eric Wanjau |
-| 12 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Mai mulți clasificatori | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen și Cassie • Eric Wanjau |
-| 13 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Construiți o aplicație web recomandatoare folosind modelul dvs. | [Python](4-Classification/4-Applied/README.md) | Jen |
-| 14 | Introducere în clusterizare | [Clustering](5-Clustering/README.md) | Curățați, pregătiți și vizualizați datele; Introducere în clusterizare | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau |
-| 15 | Explorarea gusturilor muzicale nigeriene 🎧 | [Clustering](5-Clustering/README.md) | Explorați metoda de clusterizare K-Means | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau |
-| 16 | Introducere în prelucrarea limbajului natural ☕️ | [Prelucrarea limbajului natural](6-NLP/README.md) | Învățați elementele de bază despre NLP construind un bot simplu | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
-| 17 | Sarcini comune în NLP ☕️ | [Prelucrarea limbajului natural](6-NLP/README.md) | Adânciți-vă cunoștințele despre NLP prin înțelegerea sarcinilor comune necesare în procesarea structurilor de limbaj | [Python](6-NLP/2-Tasks/README.md) | Stephen |
-| 18 | Traducere și analiza sentimentelor ♥️ | [Prelucrarea limbajului natural](6-NLP/README.md) | Traducere și analiză de sentiment cu Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen |
-| 19 | Hoteluri romantice din Europa ♥️ | [Prelucrarea limbajului natural](6-NLP/README.md) | Analiza sentimentelor cu recenzii hoteliere 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen |
-| 20 | Hoteluri romantice din Europa ♥️ | [Prelucrarea limbajului natural](6-NLP/README.md) | Analiza sentimentelor cu recenzii hoteliere 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen |
-| 21 | Introducere în prognoza seriilor de timp | [Serii de timp](7-TimeSeries/README.md) | Introducere în prognoza seriilor de timp | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca |
-| 22 | ⚡️ Utilizarea energiei la nivel global ⚡️ - prognoza seriilor de timp cu ARIMA | [Serii de timp](7-TimeSeries/README.md) | Prognoza seriilor de timp cu ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca |
-| 23 | ⚡️ Utilizarea energiei la nivel global ⚡️ - prognoza seriilor de timp cu SVR | [Serii de timp](7-TimeSeries/README.md) | Prognoza seriilor de timp cu Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban |
-| 24 | Introducere în învățarea prin întărire | [Învățarea prin întărire](8-Reinforcement/README.md) | Introducere în învățarea prin întărire cu Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry |
-| 25 | Ajută-l pe Peter să evite lupul! 🐺 | [Învățarea prin întărire](8-Reinforcement/README.md) | Învățarea prin întărire Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry |
-| Postscript | Scenarii și aplicații reale ale ML | [ML în sălbăticie](9-Real-World/README.md) | Aplicații interesante și revelatoare din lumea reală ale ML clasic | [Lecția](9-Real-World/1-Applications/README.md) | Echipa |
-| Postscript | Debugging model în ML folosind panoul RAI | [ML în sălbăticie](9-Real-World/README.md) | Debugging model în învățarea automată folosind componentele panoului Responsible AI | [Lecția](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu |
-
-> [găsiți toate resursele suplimentare pentru acest curs în colecția noastră Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
+- [chestionar post-lecture](https://ff-quizzes.netlify.app/en/ml/)
+
+> **Un comentariu despre limbi**: Aceste lecții sunt scrise în principal în Python, dar multe sunt disponibile și în R. Pentru a finaliza o lecție în R, accesează folderul `/solution` și caută lecțiile în R. Acestea au extensia .rmd care reprezintă un fișier **R Markdown**, ce poate fi definit simplu ca o încorporare de `cod` (R sau alte limbaje) și un `header YAML` (care indică modul de format a ieșirilor precum PDF) într-un `document Markdown`. Astfel, servește ca un cadru de autorare exemplar pentru știința datelor, deoarece îți permite să combini codul tău, rezultatul său și gândurile tale, scriindu-le în Markdown. Mai mult, documentele R Markdown pot fi exportate în formate precum PDF, HTML sau Word.
+> **O notă despre chestionare**: Toate chestionarele sunt conținute în [folderul Quiz App](../../quiz-app), pentru un total de 52 de chestionare cu câte trei întrebări fiecare. Sunt legate din interiorul lecțiilor, dar aplicația de chestionare poate fi rulată local; urmați instrucțiunile din folderul `quiz-app` pentru a găzdui local sau a implementa pe Azure.
+
+| Numărul Lecției | Subiect | Gruparea Lecției | Obiective de Învățare | Lecția Legată | Autor |
+| :-------------: | :--------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------: |
+| 01 | Introducere în învățarea automată | [Introducere](1-Introduction/README.md) | Învață conceptele de bază din spatele învățării automate | [Lecția](1-Introduction/1-intro-to-ML/README.md) | Muhammad |
+| 02 | Istoria învățării automate | [Introducere](1-Introduction/README.md) | Învață istoria acestui domeniu | [Lecția](1-Introduction/2-history-of-ML/README.md) | Jen și Amy |
+| 03 | Echitatea și învățarea automată | [Introducere](1-Introduction/README.md) | Care sunt problemele filosofice importante legate de echitate pe care studenții ar trebui să le ia în considerare când construiesc și aplică modele ML? | [Lecția](1-Introduction/3-fairness/README.md) | Tomomi |
+| 04 | Tehnici pentru învățarea automată | [Introducere](1-Introduction/README.md) | Ce tehnici folosesc cercetătorii în ML pentru a construi modele ML? | [Lecția](1-Introduction/4-techniques-of-ML/README.md) | Chris și Jen |
+| 05 | Introducere în regresie | [Regresie](2-Regression/README.md) | Începe cu Python și Scikit-learn pentru modele de regresie | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau |
+| 06 | Prețurile dovlecilor din America de Nord 🎃 | [Regresie](2-Regression/README.md) | Vizualizează și curăță date în pregătirea pentru ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau |
+| 07 | Prețurile dovlecilor din America de Nord 🎃 | [Regresie](2-Regression/README.md) | Construiește modele de regresie liniară și polinomială | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen și Dmitry • Eric Wanjau |
+| 08 | Prețurile dovlecilor din America de Nord 🎃 | [Regresie](2-Regression/README.md) | Construiește un model de regresie logistică | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau |
+| 09 | O aplicație web 🔌 | [Aplicație Web](3-Web-App/README.md) | Construiește o aplicație web pentru a folosi modelul antrenat | [Python](3-Web-App/1-Web-App/README.md) | Jen |
+| 10 | Introducere în clasificare | [Clasificare](4-Classification/README.md) | Curăță, pregătește și vizualizează datele tale; introducere în clasificare | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen și Cassie • Eric Wanjau |
+| 11 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Introducere în clasificatoare | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen și Cassie • Eric Wanjau |
+| 12 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Mai multe clasificatoare | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen și Cassie • Eric Wanjau |
+| 13 | Bucătării delicioase asiatice și indiene 🍜 | [Clasificare](4-Classification/README.md) | Construiește o aplicație web de recomandări folosind modelul tău | [Python](4-Classification/4-Applied/README.md) | Jen |
+| 14 | Introducere în clustering | [Clustering](5-Clustering/README.md) | Curăță, pregătește și vizualizează datele tale; Introducere în clustering | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau |
+| 15 | Explorarea gusturilor muzicale nigeriene 🎧 | [Clustering](5-Clustering/README.md) | Explorează metoda de clustering K-Means | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau |
+| 16 | Introducere în procesarea limbajului natural ☕️ | [Procesarea limbajului natural](6-NLP/README.md) | Învață elementele de bază ale NLP prin construirea unui bot simplu | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
+| 17 | Sarcini comune NLP ☕️ | [Procesarea limbajului natural](6-NLP/README.md) | Adâncește-ți cunoștințele despre NLP înțelegând sarcinile comune cerute când lucrezi cu structuri de limbaj | [Python](6-NLP/2-Tasks/README.md) | Stephen |
+| 18 | Traducere și analiza sentimentului ♥️ | [Procesarea limbajului natural](6-NLP/README.md) | Traducere și analiză a sentimentului cu Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen |
+| 19 | Hoteluri romantice din Europa ♥️ | [Procesarea limbajului natural](6-NLP/README.md) | Analiza sentimentului cu recenzii ale hotelurilor 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen |
+| 20 | Hoteluri romantice din Europa ♥️ | [Procesarea limbajului natural](6-NLP/README.md) | Analiza sentimentului cu recenzii ale hotelurilor 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen |
+| 21 | Introducere în prognoza seriilor temporale | [Serii temporale](7-TimeSeries/README.md) | Introducere în prognoza seriilor temporale | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca |
+| 22 | ⚡️ Utilizarea energiei în lume ⚡️ - prognoza seriilor cu ARIMA | [Serii temporale](7-TimeSeries/README.md) | Prognoza seriilor temporale cu ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca |
+| 23 | ⚡️ Utilizarea energiei în lume ⚡️ - prognoza seriilor cu SVR | [Serii temporale](7-TimeSeries/README.md) | Prognoza seriilor temporale cu Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban |
+| 24 | Introducere în învățarea prin întărire | [Învățarea prin întărire](8-Reinforcement/README.md) | Introducere în învățarea prin întărire cu Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry |
+| 25 | Ajută-l pe Peter să evite lupul! 🐺 | [Învățarea prin întărire](8-Reinforcement/README.md) | Învățarea prin întărire în Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry |
+| Epilogă | Scenarii și aplicații ML din lumea reală | [ML în sălbăticie](9-Real-World/README.md) | Aplicații interesante și revelatoare ale ML clasice în lumea reală | [Lecția](9-Real-World/1-Applications/README.md) | Echipa |
+| Epilogă | Depanarea modelelor ML folosind panoul RAI | [ML în sălbăticie](9-Real-World/README.md) | Depanare a modelelor de învățare automată folosind componentele panoului Responsible AI | [Lecția](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu |
+
+> [găsește toate resursele suplimentare pentru acest curs în colecția noastră Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
## Acces offline
-Puteți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Faceți fork acestui repo, [instalați Docsify](https://docsify.js.org/#/quickstart) pe mașina dvs. locală, apoi în folderul rădăcină al acestui repo tastați `docsify serve`. Site-ul web va fi servit pe portul 3000 pe localhost: `localhost:3000`.
+Poți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Fă un fork la acest repo, [instalează Docsify](https://docsify.js.org/#/quickstart) pe calculatorul tău local și apoi, în folderul rădăcină al acestui repo, tastează `docsify serve`. Site-ul va fi servit pe portul 3000 pe localhost-ul tău: `localhost:3000`.
-## PDF-uri
+## Fișiere PDF
-Găsiți un pdf al curriculumului cu linkuri [aici](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
+Găsește un pdf al curriculei cu linkuri [aici](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
## 🎒 Alte cursuri
-Echipa noastră produce și alte cursuri! Verificați:
+Echipa noastră produce și alte cursuri! Aruncă o privire:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### Azure / Edge / MCP / Agenti
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Azure / Edge / MCP / Agenți
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Serii AI Generativă
+### Seria de Inteligență Artificială Generativă
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -214,13 +205,13 @@ Echipa noastră produce și alte cursuri! Verificați:
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Obținerea Ajutorului
+## Obținerea de ajutor
-Dacă rămâi blocat sau ai întrebări despre construirea aplicațiilor AI, alătură-te altor cursanți și dezvoltatori cu experiență în discuțiile despre MCP. Este o comunitate de susținere unde întrebările sunt binevenite și cunoștințele sunt împărtășite liber.
+Dacă te blochezi sau ai întrebări despre construirea aplicațiilor AI. Alătură-te altor cursanți și dezvoltatori cu experiență în discuții despre MCP. Este o comunitate de suport unde întrebările sunt binevenite și cunoștințele sunt împărtășite liber.
[](https://discord.gg/nTYy5BXMWG)
-Dacă ai feedback despre produs sau întâmpini erori în timpul dezvoltării, vizitează:
+Dacă ai feedback despre produs sau erori în timpul construirii, vizitează:
[](https://aka.ms/foundry/forum)
@@ -228,5 +219,5 @@ Dacă ai feedback despre produs sau întâmpini erori în timpul dezvoltării, v
**Declinare de responsabilitate**:
-Acest document a fost tradus folosind serviciul de traducere AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși ne străduim pentru acuratețe, vă rugăm să rețineți că traducerile automate pot conține erori sau inexactități. Documentul original, în limba sa nativă, trebuie considerat sursa autorizată. Pentru informații critice, se recomandă traducerea profesională realizată de o persoană. Nu ne asumăm responsabilitatea pentru eventualele neînțelegeri sau interpretări greșite rezultate din utilizarea acestei traduceri.
+Acest document a fost tradus folosind serviciul de traducere AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși ne străduim pentru acuratețe, vă rugăm să rețineți că traducerile automate pot conține erori sau inexactități. Documentul original în limba sa nativă trebuie considerat sursa autoritară. Pentru informații critice, se recomandă traducerea profesională realizată de un human. Nu ne asumăm răspunderea pentru eventualele neînțelegeri sau interpretări greșite care pot decurge din utilizarea acestei traduceri.
\ No newline at end of file
diff --git a/translations/ro/SECURITY.md b/translations/ro/SECURITY.md
index 2623337c0..ac657c8a7 100644
--- a/translations/ro/SECURITY.md
+++ b/translations/ro/SECURITY.md
@@ -1,12 +1,3 @@
-
## Securitate
Microsoft tratează cu seriozitate securitatea produselor și serviciilor noastre software, inclusiv toate depozitele de cod sursă gestionate prin organizațiile noastre GitHub, care includ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) și [organizațiile noastre GitHub](https://opensource.microsoft.com/).
diff --git a/translations/ro/SUPPORT.md b/translations/ro/SUPPORT.md
index 8a2535963..c670021c7 100644
--- a/translations/ro/SUPPORT.md
+++ b/translations/ro/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Suport
## Cum să raportezi probleme și să obții ajutor
diff --git a/translations/ro/TROUBLESHOOTING.md b/translations/ro/TROUBLESHOOTING.md
index 74e425062..8e79a18f5 100644
--- a/translations/ro/TROUBLESHOOTING.md
+++ b/translations/ro/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Ghid de depanare
Acest ghid te ajută să rezolvi problemele comune întâlnite în lucrul cu curriculumul Machine Learning for Beginners. Dacă nu găsești o soluție aici, verifică [Discuțiile pe Discord](https://aka.ms/foundry/discord) sau [deschide o problemă](https://github.com/microsoft/ML-For-Beginners/issues).
diff --git a/translations/ro/docs/_sidebar.md b/translations/ro/docs/_sidebar.md
index 3b0aa5f22..cc997e618 100644
--- a/translations/ro/docs/_sidebar.md
+++ b/translations/ro/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introducere
- [Introducere în Machine Learning](../1-Introduction/1-intro-to-ML/README.md)
- [Istoria Machine Learning](../1-Introduction/2-history-of-ML/README.md)
diff --git a/translations/ro/for-teachers.md b/translations/ro/for-teachers.md
index ec05071ed..c7944cfb7 100644
--- a/translations/ro/for-teachers.md
+++ b/translations/ro/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pentru educatori
Doriți să utilizați acest curriculum în sala de clasă? Vă rugăm să o faceți!
diff --git a/translations/ro/quiz-app/README.md b/translations/ro/quiz-app/README.md
index 305c98c3f..3d5ba7f4c 100644
--- a/translations/ro/quiz-app/README.md
+++ b/translations/ro/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Chestionare
Aceste chestionare sunt cele de dinaintea și de după cursurile din curriculum-ul ML de la https://aka.ms/ml-beginners
diff --git a/translations/ro/sketchnotes/LICENSE.md b/translations/ro/sketchnotes/LICENSE.md
index e6f44e23a..f32e91283 100644
--- a/translations/ro/sketchnotes/LICENSE.md
+++ b/translations/ro/sketchnotes/LICENSE.md
@@ -1,12 +1,3 @@
-
Attribution-ShareAlike 4.0 Internațional
=======================================================================
diff --git a/translations/ro/sketchnotes/README.md b/translations/ro/sketchnotes/README.md
index 8c0bc72f7..9c571ac90 100644
--- a/translations/ro/sketchnotes/README.md
+++ b/translations/ro/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Toate notițele vizuale ale curriculumului pot fi descărcate de aici.
🖨 Pentru imprimare la rezoluție înaltă, versiunile TIFF sunt disponibile la [acest repo](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff).
diff --git a/translations/sk/.co-op-translator.json b/translations/sk/.co-op-translator.json
new file mode 100644
index 000000000..1069cb4af
--- /dev/null
+++ b/translations/sk/.co-op-translator.json
@@ -0,0 +1,596 @@
+{
+ "1-Introduction/1-intro-to-ML/README.md": {
+ "original_hash": "69389392fa6346e0dfa30f664b7b6fec",
+ "translation_date": "2025-09-05T16:07:12+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/1-intro-to-ML/assignment.md": {
+ "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
+ "translation_date": "2025-09-05T16:08:28+00:00",
+ "source_file": "1-Introduction/1-intro-to-ML/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/2-history-of-ML/README.md": {
+ "original_hash": "6a05fec147e734c3e6bfa54505648e2b",
+ "translation_date": "2025-09-05T16:10:01+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/2-history-of-ML/assignment.md": {
+ "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969",
+ "translation_date": "2025-09-05T16:11:39+00:00",
+ "source_file": "1-Introduction/2-history-of-ML/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/3-fairness/README.md": {
+ "original_hash": "9a6b702d1437c0467e3c5c28d763dac2",
+ "translation_date": "2025-09-05T16:00:41+00:00",
+ "source_file": "1-Introduction/3-fairness/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/3-fairness/assignment.md": {
+ "original_hash": "dbda60e7b1fe5f18974e7858eff0004e",
+ "translation_date": "2025-09-05T16:02:33+00:00",
+ "source_file": "1-Introduction/3-fairness/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/4-techniques-of-ML/README.md": {
+ "original_hash": "9d91f3af3758fdd4569fb410575995ef",
+ "translation_date": "2025-09-05T16:04:10+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/4-techniques-of-ML/assignment.md": {
+ "original_hash": "70d65aeddc06170bc1aed5b27805f930",
+ "translation_date": "2025-09-05T16:05:52+00:00",
+ "source_file": "1-Introduction/4-techniques-of-ML/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "cf8ecc83f28e5b98051d2179eca08e08",
+ "translation_date": "2025-09-05T15:57:58+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/1-Tools/README.md": {
+ "original_hash": "fa81d226c71d5af7a2cade31c1c92b88",
+ "translation_date": "2025-09-05T15:21:49+00:00",
+ "source_file": "2-Regression/1-Tools/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/1-Tools/assignment.md": {
+ "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a",
+ "translation_date": "2025-09-05T15:23:42+00:00",
+ "source_file": "2-Regression/1-Tools/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Regression/1-Tools/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:24:04+00:00",
+ "source_file": "2-Regression/1-Tools/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/2-Data/README.md": {
+ "original_hash": "7c077988328ebfe33b24d07945f16eca",
+ "translation_date": "2025-09-05T15:25:38+00:00",
+ "source_file": "2-Regression/2-Data/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/2-Data/assignment.md": {
+ "original_hash": "4485a1ed4dd1b5647365e3d87456515d",
+ "translation_date": "2025-09-05T15:27:07+00:00",
+ "source_file": "2-Regression/2-Data/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Regression/2-Data/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:27:26+00:00",
+ "source_file": "2-Regression/2-Data/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/3-Linear/README.md": {
+ "original_hash": "40e64f004f3cb50aa1d8661672d3cd92",
+ "translation_date": "2025-09-05T15:11:10+00:00",
+ "source_file": "2-Regression/3-Linear/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/3-Linear/assignment.md": {
+ "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b",
+ "translation_date": "2025-09-05T15:13:52+00:00",
+ "source_file": "2-Regression/3-Linear/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Regression/3-Linear/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:14:15+00:00",
+ "source_file": "2-Regression/3-Linear/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/4-Logistic/README.md": {
+ "original_hash": "abf86d845c84330bce205a46b382ec88",
+ "translation_date": "2025-09-05T15:16:31+00:00",
+ "source_file": "2-Regression/4-Logistic/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/4-Logistic/assignment.md": {
+ "original_hash": "8af40209a41494068c1f42b14c0b450d",
+ "translation_date": "2025-09-05T15:19:46+00:00",
+ "source_file": "2-Regression/4-Logistic/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Regression/4-Logistic/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:20:05+00:00",
+ "source_file": "2-Regression/4-Logistic/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "2-Regression/README.md": {
+ "original_hash": "508582278dbb8edd2a8a80ac96ef416c",
+ "translation_date": "2025-09-05T15:08:11+00:00",
+ "source_file": "2-Regression/README.md",
+ "language_code": "sk"
+ },
+ "3-Web-App/1-Web-App/README.md": {
+ "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c",
+ "translation_date": "2025-09-05T16:13:37+00:00",
+ "source_file": "3-Web-App/1-Web-App/README.md",
+ "language_code": "sk"
+ },
+ "3-Web-App/1-Web-App/assignment.md": {
+ "original_hash": "a8e8ae10be335cbc745b75ee552317ff",
+ "translation_date": "2025-09-05T16:14:57+00:00",
+ "source_file": "3-Web-App/1-Web-App/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Web-App/README.md": {
+ "original_hash": "9836ff53cfef716ddfd70e06c5f43436",
+ "translation_date": "2025-09-05T16:12:10+00:00",
+ "source_file": "3-Web-App/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/1-Introduction/README.md": {
+ "original_hash": "aaf391d922bd6de5efba871d514c6d47",
+ "translation_date": "2025-09-05T16:26:25+00:00",
+ "source_file": "4-Classification/1-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/1-Introduction/assignment.md": {
+ "original_hash": "b2a01912beb24cfb0007f83594dba801",
+ "translation_date": "2025-09-05T16:27:47+00:00",
+ "source_file": "4-Classification/1-Introduction/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Classification/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:28:09+00:00",
+ "source_file": "4-Classification/1-Introduction/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/2-Classifiers-1/README.md": {
+ "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
+ "translation_date": "2025-09-05T16:18:25+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/2-Classifiers-1/assignment.md": {
+ "original_hash": "de6025f96841498b0577e9d1aee18d1f",
+ "translation_date": "2025-09-05T16:20:12+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Classification/2-Classifiers-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:20:31+00:00",
+ "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/3-Classifiers-2/README.md": {
+ "original_hash": "49047911108adc49d605cddfb455749c",
+ "translation_date": "2025-09-05T16:23:53+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/3-Classifiers-2/assignment.md": {
+ "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329",
+ "translation_date": "2025-09-05T16:24:50+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Classification/3-Classifiers-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:25:09+00:00",
+ "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/4-Applied/README.md": {
+ "original_hash": "61bdec27ed2da8b098cd9065405d9bb0",
+ "translation_date": "2025-09-05T16:21:35+00:00",
+ "source_file": "4-Classification/4-Applied/README.md",
+ "language_code": "sk"
+ },
+ "4-Classification/4-Applied/assignment.md": {
+ "original_hash": "799ed651e2af0a7cad17c6268db11578",
+ "translation_date": "2025-09-05T16:22:56+00:00",
+ "source_file": "4-Classification/4-Applied/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Classification/README.md": {
+ "original_hash": "74e809ffd1e613a1058bbc3e9600859e",
+ "translation_date": "2025-09-05T16:16:32+00:00",
+ "source_file": "4-Classification/README.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/1-Visualize/README.md": {
+ "original_hash": "730225ea274c9174fe688b21d421539d",
+ "translation_date": "2025-09-05T15:42:19+00:00",
+ "source_file": "5-Clustering/1-Visualize/README.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/1-Visualize/assignment.md": {
+ "original_hash": "589fa015a5e7d9e67bd629f7d47b53de",
+ "translation_date": "2025-09-05T15:44:58+00:00",
+ "source_file": "5-Clustering/1-Visualize/assignment.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/1-Visualize/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:45:17+00:00",
+ "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/2-K-Means/README.md": {
+ "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081",
+ "translation_date": "2025-09-05T15:46:29+00:00",
+ "source_file": "5-Clustering/2-K-Means/README.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/2-K-Means/assignment.md": {
+ "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41",
+ "translation_date": "2025-09-05T15:47:44+00:00",
+ "source_file": "5-Clustering/2-K-Means/assignment.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/2-K-Means/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:48:04+00:00",
+ "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "5-Clustering/README.md": {
+ "original_hash": "b28a3a4911584062772c537b653ebbc7",
+ "translation_date": "2025-09-05T15:39:34+00:00",
+ "source_file": "5-Clustering/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/1-Introduction-to-NLP/README.md": {
+ "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a",
+ "translation_date": "2025-09-05T17:00:35+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/1-Introduction-to-NLP/assignment.md": {
+ "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16",
+ "translation_date": "2025-09-05T17:02:04+00:00",
+ "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md",
+ "language_code": "sk"
+ },
+ "6-NLP/2-Tasks/README.md": {
+ "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3",
+ "translation_date": "2025-09-05T16:51:10+00:00",
+ "source_file": "6-NLP/2-Tasks/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/2-Tasks/assignment.md": {
+ "original_hash": "2efc4c2aba5ed06c780c05539c492ae3",
+ "translation_date": "2025-09-05T16:52:41+00:00",
+ "source_file": "6-NLP/2-Tasks/assignment.md",
+ "language_code": "sk"
+ },
+ "6-NLP/3-Translation-Sentiment/README.md": {
+ "original_hash": "be03c8182982b87ced155e4e9d1438e8",
+ "translation_date": "2025-09-05T17:03:50+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/3-Translation-Sentiment/assignment.md": {
+ "original_hash": "9d2a734deb904caff310d1a999c6bd7a",
+ "translation_date": "2025-09-05T17:05:44+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/assignment.md",
+ "language_code": "sk"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T17:06:16+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/3-Translation-Sentiment/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T17:06:04+00:00",
+ "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/4-Hotel-Reviews-1/README.md": {
+ "original_hash": "8d32dadeda93c6fb5c43619854882ab1",
+ "translation_date": "2025-09-05T16:55:34+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/4-Hotel-Reviews-1/assignment.md": {
+ "original_hash": "bf39bceb833cd628f224941dca8041df",
+ "translation_date": "2025-09-05T16:58:27+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md",
+ "language_code": "sk"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:58:58+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:58:45+00:00",
+ "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/5-Hotel-Reviews-2/README.md": {
+ "original_hash": "2c742993fe95d5bcbb2846eda3d442a1",
+ "translation_date": "2025-09-05T17:08:11+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/5-Hotel-Reviews-2/assignment.md": {
+ "original_hash": "daf144daa552da6a7d442aff6f3e77d8",
+ "translation_date": "2025-09-05T17:10:14+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md",
+ "language_code": "sk"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T17:10:48+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T17:10:34+00:00",
+ "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/README.md": {
+ "original_hash": "1eb379dc2d0c9940b320732d16083778",
+ "translation_date": "2025-09-05T16:49:35+00:00",
+ "source_file": "6-NLP/README.md",
+ "language_code": "sk"
+ },
+ "6-NLP/data/README.md": {
+ "original_hash": "ee0670655c89e4719319764afb113624",
+ "translation_date": "2025-09-05T16:59:13+00:00",
+ "source_file": "6-NLP/data/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/1-Introduction/README.md": {
+ "original_hash": "662b509c39eee205687726636d0a8455",
+ "translation_date": "2025-09-05T15:33:49+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/1-Introduction/assignment.md": {
+ "original_hash": "d1781b0b92568ea1d119d0a198b576b4",
+ "translation_date": "2025-09-05T15:35:26+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/assignment.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/1-Introduction/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:36:01+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/1-Introduction/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T15:35:48+00:00",
+ "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/2-ARIMA/README.md": {
+ "original_hash": "917dbf890db71a322f306050cb284749",
+ "translation_date": "2025-09-05T15:30:01+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/2-ARIMA/assignment.md": {
+ "original_hash": "1c814013e10866dfd92cdb32caaae3ac",
+ "translation_date": "2025-09-05T15:31:48+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/assignment.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/2-ARIMA/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T15:32:20+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/2-ARIMA/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T15:32:08+00:00",
+ "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/3-SVR/README.md": {
+ "original_hash": "482bccabe1df958496ea71a3667995cd",
+ "translation_date": "2025-09-05T15:37:17+00:00",
+ "source_file": "7-TimeSeries/3-SVR/README.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/3-SVR/assignment.md": {
+ "original_hash": "94aa2fc6154252ae30a3f3740299707a",
+ "translation_date": "2025-09-05T15:38:51+00:00",
+ "source_file": "7-TimeSeries/3-SVR/assignment.md",
+ "language_code": "sk"
+ },
+ "7-TimeSeries/README.md": {
+ "original_hash": "61342603bad8acadbc6b2e4e3aab3f66",
+ "translation_date": "2025-09-05T15:27:52+00:00",
+ "source_file": "7-TimeSeries/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/1-QLearning/README.md": {
+ "original_hash": "911efd5e595089000cb3c16fce1beab8",
+ "translation_date": "2025-09-05T16:40:14+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/1-QLearning/assignment.md": {
+ "original_hash": "68394b2102d3503882e5e914bd0ff5c1",
+ "translation_date": "2025-09-05T16:43:33+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/assignment.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/1-QLearning/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:44:28+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/1-QLearning/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:44:16+00:00",
+ "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/2-Gym/README.md": {
+ "original_hash": "107d5bb29da8a562e7ae72262d251a75",
+ "translation_date": "2025-09-05T16:46:17+00:00",
+ "source_file": "8-Reinforcement/2-Gym/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/2-Gym/assignment.md": {
+ "original_hash": "1f2b7441745eb52e25745423b247016b",
+ "translation_date": "2025-09-05T16:48:19+00:00",
+ "source_file": "8-Reinforcement/2-Gym/assignment.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/2-Gym/solution/Julia/README.md": {
+ "original_hash": "a39c15d63f3b2795ee2284a82b986b93",
+ "translation_date": "2025-09-05T16:49:05+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/2-Gym/solution/R/README.md": {
+ "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
+ "translation_date": "2025-09-05T16:48:53+00:00",
+ "source_file": "8-Reinforcement/2-Gym/solution/R/README.md",
+ "language_code": "sk"
+ },
+ "8-Reinforcement/README.md": {
+ "original_hash": "20ca019012b1725de956681d036d8b18",
+ "translation_date": "2025-09-05T16:35:50+00:00",
+ "source_file": "8-Reinforcement/README.md",
+ "language_code": "sk"
+ },
+ "9-Real-World/1-Applications/README.md": {
+ "original_hash": "83320d6b6994909e35d830cebf214039",
+ "translation_date": "2025-09-05T15:51:01+00:00",
+ "source_file": "9-Real-World/1-Applications/README.md",
+ "language_code": "sk"
+ },
+ "9-Real-World/1-Applications/assignment.md": {
+ "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885",
+ "translation_date": "2025-09-05T15:53:09+00:00",
+ "source_file": "9-Real-World/1-Applications/assignment.md",
+ "language_code": "sk"
+ },
+ "9-Real-World/2-Debugging-ML-Models/README.md": {
+ "original_hash": "df2b538e8fbb3e91cf0419ae2f858675",
+ "translation_date": "2025-09-05T15:55:18+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/README.md",
+ "language_code": "sk"
+ },
+ "9-Real-World/2-Debugging-ML-Models/assignment.md": {
+ "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164",
+ "translation_date": "2025-09-05T15:57:28+00:00",
+ "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md",
+ "language_code": "sk"
+ },
+ "9-Real-World/README.md": {
+ "original_hash": "5e069a0ac02a9606a69946c2b3c574a9",
+ "translation_date": "2025-09-05T15:49:14+00:00",
+ "source_file": "9-Real-World/README.md",
+ "language_code": "sk"
+ },
+ "AGENTS.md": {
+ "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b",
+ "translation_date": "2025-10-03T11:16:25+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sk"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-09-05T15:07:28+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sk"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda",
+ "translation_date": "2025-09-05T15:05:29+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sk"
+ },
+ "README.md": {
+ "original_hash": "da2ceed62f16a0820259556e3a873c95",
+ "translation_date": "2026-01-29T19:01:13+00:00",
+ "source_file": "README.md",
+ "language_code": "sk"
+ },
+ "SECURITY.md": {
+ "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a",
+ "translation_date": "2025-09-05T15:06:10+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sk"
+ },
+ "SUPPORT.md": {
+ "original_hash": "09623d7343ff1c26ff4f198c1b2d3176",
+ "translation_date": "2025-10-03T12:23:23+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sk"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "134d8759f0e2ab886e9aa4f62362c201",
+ "translation_date": "2025-10-03T12:53:38+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sk"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "68dd06c685f6ce840e0acfa313352e7c",
+ "translation_date": "2025-09-05T15:48:33+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sk"
+ },
+ "for-teachers.md": {
+ "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8",
+ "translation_date": "2025-09-05T15:06:56+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sk"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "6d130dffca5db70d7e615f926cb1ad4c",
+ "translation_date": "2025-09-05T16:15:37+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sk"
+ },
+ "sketchnotes/LICENSE.md": {
+ "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f",
+ "translation_date": "2025-09-05T16:32:56+00:00",
+ "source_file": "sketchnotes/LICENSE.md",
+ "language_code": "sk"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "a88d5918c1b9da69a40d917a0840c497",
+ "translation_date": "2025-09-05T16:28:26+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sk"
+ }
+}
\ No newline at end of file
diff --git a/translations/sk/1-Introduction/1-intro-to-ML/README.md b/translations/sk/1-Introduction/1-intro-to-ML/README.md
index 247e6895f..f71c34431 100644
--- a/translations/sk/1-Introduction/1-intro-to-ML/README.md
+++ b/translations/sk/1-Introduction/1-intro-to-ML/README.md
@@ -1,12 +1,3 @@
-
# Úvod do strojového učenia
## [Kvíz pred prednáškou](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/sk/1-Introduction/1-intro-to-ML/assignment.md b/translations/sk/1-Introduction/1-intro-to-ML/assignment.md
index 63040f339..98b5ba181 100644
--- a/translations/sk/1-Introduction/1-intro-to-ML/assignment.md
+++ b/translations/sk/1-Introduction/1-intro-to-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Začnite a rozbehnite sa
## Pokyny
diff --git a/translations/sk/1-Introduction/2-history-of-ML/README.md b/translations/sk/1-Introduction/2-history-of-ML/README.md
index f89269111..00ac8a50c 100644
--- a/translations/sk/1-Introduction/2-history-of-ML/README.md
+++ b/translations/sk/1-Introduction/2-history-of-ML/README.md
@@ -1,12 +1,3 @@
-
# História strojového učenia

diff --git a/translations/sk/1-Introduction/2-history-of-ML/assignment.md b/translations/sk/1-Introduction/2-history-of-ML/assignment.md
index 6e30bc6da..16d7a6324 100644
--- a/translations/sk/1-Introduction/2-history-of-ML/assignment.md
+++ b/translations/sk/1-Introduction/2-history-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Vytvorte časovú os
## Pokyny
diff --git a/translations/sk/1-Introduction/3-fairness/README.md b/translations/sk/1-Introduction/3-fairness/README.md
index 19495d949..c93b4cd85 100644
--- a/translations/sk/1-Introduction/3-fairness/README.md
+++ b/translations/sk/1-Introduction/3-fairness/README.md
@@ -1,12 +1,3 @@
-
# Budovanie riešení strojového učenia s dôrazom na zodpovednú AI

diff --git a/translations/sk/1-Introduction/3-fairness/assignment.md b/translations/sk/1-Introduction/3-fairness/assignment.md
index 42fff1bf3..713775f7b 100644
--- a/translations/sk/1-Introduction/3-fairness/assignment.md
+++ b/translations/sk/1-Introduction/3-fairness/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte nástroje pre zodpovednú AI
## Pokyny
diff --git a/translations/sk/1-Introduction/4-techniques-of-ML/README.md b/translations/sk/1-Introduction/4-techniques-of-ML/README.md
index 6251792aa..819ac097e 100644
--- a/translations/sk/1-Introduction/4-techniques-of-ML/README.md
+++ b/translations/sk/1-Introduction/4-techniques-of-ML/README.md
@@ -1,12 +1,3 @@
-
# Techniky strojového učenia
Proces vytvárania, používania a udržiavania modelov strojového učenia a dát, ktoré používajú, je veľmi odlišný od mnohých iných vývojových pracovných postupov. V tejto lekcii tento proces objasníme a načrtneme hlavné techniky, ktoré potrebujete poznať. Naučíte sa:
diff --git a/translations/sk/1-Introduction/4-techniques-of-ML/assignment.md b/translations/sk/1-Introduction/4-techniques-of-ML/assignment.md
index 33c8dcba7..7cdc314a6 100644
--- a/translations/sk/1-Introduction/4-techniques-of-ML/assignment.md
+++ b/translations/sk/1-Introduction/4-techniques-of-ML/assignment.md
@@ -1,12 +1,3 @@
-
# Rozhovor s dátovým vedcom
## Pokyny
diff --git a/translations/sk/1-Introduction/README.md b/translations/sk/1-Introduction/README.md
index f3281fbe6..4d233d95d 100644
--- a/translations/sk/1-Introduction/README.md
+++ b/translations/sk/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do strojového učenia
V tejto časti kurzu sa zoznámite so základnými konceptmi, ktoré tvoria základ oblasti strojového učenia, dozviete sa, čo to je, a preskúmate jeho históriu a techniky, ktoré výskumníci používajú pri práci s ním. Poďme spolu objavovať tento nový svet strojového učenia!
diff --git a/translations/sk/2-Regression/1-Tools/README.md b/translations/sk/2-Regression/1-Tools/README.md
index 49248b37b..d4441aaf4 100644
--- a/translations/sk/2-Regression/1-Tools/README.md
+++ b/translations/sk/2-Regression/1-Tools/README.md
@@ -1,12 +1,3 @@
-
# Začíname s Pythonom a Scikit-learn pre regresné modely

diff --git a/translations/sk/2-Regression/1-Tools/assignment.md b/translations/sk/2-Regression/1-Tools/assignment.md
index 788f1d12a..5341124c8 100644
--- a/translations/sk/2-Regression/1-Tools/assignment.md
+++ b/translations/sk/2-Regression/1-Tools/assignment.md
@@ -1,12 +1,3 @@
-
# Regresia so Scikit-learn
## Pokyny
diff --git a/translations/sk/2-Regression/1-Tools/solution/Julia/README.md b/translations/sk/2-Regression/1-Tools/solution/Julia/README.md
index e875ac457..4b995c6de 100644
--- a/translations/sk/2-Regression/1-Tools/solution/Julia/README.md
+++ b/translations/sk/2-Regression/1-Tools/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/2-Regression/2-Data/README.md b/translations/sk/2-Regression/2-Data/README.md
index ebbc15be2..eb1394d10 100644
--- a/translations/sk/2-Regression/2-Data/README.md
+++ b/translations/sk/2-Regression/2-Data/README.md
@@ -1,12 +1,3 @@
-
# Vytvorenie regresného modelu pomocou Scikit-learn: príprava a vizualizácia dát

diff --git a/translations/sk/2-Regression/2-Data/assignment.md b/translations/sk/2-Regression/2-Data/assignment.md
index 8e371cf1f..7692c1e36 100644
--- a/translations/sk/2-Regression/2-Data/assignment.md
+++ b/translations/sk/2-Regression/2-Data/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmanie vizualizácií
Existuje niekoľko rôznych knižníc dostupných na vizualizáciu dát. Vytvorte niekoľko vizualizácií pomocou údajov o tekviciach z tejto lekcie s použitím knižníc matplotlib a seaborn v ukážkovom notebooku. Ktoré knižnice sa ľahšie používajú?
diff --git a/translations/sk/2-Regression/2-Data/solution/Julia/README.md b/translations/sk/2-Regression/2-Data/solution/Julia/README.md
index b4ce5014f..dd3a14dcb 100644
--- a/translations/sk/2-Regression/2-Data/solution/Julia/README.md
+++ b/translations/sk/2-Regression/2-Data/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/2-Regression/3-Linear/README.md b/translations/sk/2-Regression/3-Linear/README.md
index 6032212ad..8cf4df180 100644
--- a/translations/sk/2-Regression/3-Linear/README.md
+++ b/translations/sk/2-Regression/3-Linear/README.md
@@ -1,12 +1,3 @@
-
# Vytvorenie regresného modelu pomocou Scikit-learn: štyri spôsoby regresie

@@ -114,11 +105,11 @@ Teraz, keď rozumiete matematike za lineárnou regresiou, poďme vytvoriť regre
Z predchádzajúcej lekcie ste pravdepodobne videli, že priemerná cena za rôzne mesiace vyzerá takto:
-
+
To naznačuje, že by mala existovať nejaká korelácia, a môžeme skúsiť trénovať model lineárnej regresie na predpovedanie vzťahu medzi `Mesiac` a `Cena`, alebo medzi `DeňVroku` a `Cena`. Tu je bodový graf, ktorý ukazuje druhý vzťah:
-
+
Pozrime sa, či existuje korelácia pomocou funkcie `corr`:
@@ -137,7 +128,7 @@ for i,var in enumerate(new_pumpkins['Variety'].unique()):
ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)
```
-
+
Naše vyšetrovanie naznačuje, že odroda má väčší vplyv na celkovú cenu ako skutočný dátum predaja. Môžeme to vidieť na stĺpcovom grafe:
@@ -145,7 +136,7 @@ Naše vyšetrovanie naznačuje, že odroda má väčší vplyv na celkovú cenu
new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
```
-
+
Zamerajme sa na chvíľu iba na jednu odrodu tekvíc, 'pie type', a pozrime sa, aký vplyv má dátum na cenu:
@@ -153,7 +144,7 @@ Zamerajme sa na chvíľu iba na jednu odrodu tekvíc, 'pie type', a pozrime sa,
pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
pie_pumpkins.plot.scatter('DayOfYear','Price')
```
-
+
Ak teraz vypočítame koreláciu medzi `Cena` a `DeňVroku` pomocou funkcie `corr`, dostaneme hodnotu okolo `-0.27` - čo znamená, že trénovanie prediktívneho modelu má zmysel.
@@ -227,7 +218,7 @@ plt.scatter(X_test,y_test)
plt.plot(X_test,pred)
```
-
+
## Polynomická regresia
@@ -256,7 +247,7 @@ Použitie `PolynomialFeatures(2)` znamená, že zahrnieme všetky polynómy druh
Pipeline môžeme používať rovnakým spôsobom ako pôvodný objekt `LinearRegression`, t.j. môžeme pipeline `fit` a potom použiť `predict` na získanie výsledkov predikcie. Tu je graf zobrazujúci testovacie údaje a aproximačnú krivku:
-
+
Použitím polynomickej regresie môžeme dosiahnuť mierne nižšie MSE a vyššiu determináciu, ale nie významne. Musíme zohľadniť ďalšie prvky!
@@ -274,7 +265,7 @@ V ideálnom svete chceme byť schopní predpovedať ceny pre rôzne odrody tekv
Tu môžete vidieť, ako priemerná cena závisí od odrody:
-
+
Aby sme zohľadnili odrodu, musíme ju najskôr previesť na numerickú formu, alebo ju **zakódovať**. Existuje niekoľko spôsobov, ako to môžeme urobiť:
diff --git a/translations/sk/2-Regression/3-Linear/assignment.md b/translations/sk/2-Regression/3-Linear/assignment.md
index 45cc86784..708dd35fc 100644
--- a/translations/sk/2-Regression/3-Linear/assignment.md
+++ b/translations/sk/2-Regression/3-Linear/assignment.md
@@ -1,12 +1,3 @@
-
# Vytvorenie regresného modelu
## Pokyny
diff --git a/translations/sk/2-Regression/3-Linear/solution/Julia/README.md b/translations/sk/2-Regression/3-Linear/solution/Julia/README.md
index 8d771f3d6..3ed9a4c9d 100644
--- a/translations/sk/2-Regression/3-Linear/solution/Julia/README.md
+++ b/translations/sk/2-Regression/3-Linear/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/2-Regression/4-Logistic/README.md b/translations/sk/2-Regression/4-Logistic/README.md
index b89f33368..8a72406e4 100644
--- a/translations/sk/2-Regression/4-Logistic/README.md
+++ b/translations/sk/2-Regression/4-Logistic/README.md
@@ -1,12 +1,3 @@
-
# Logistická regresia na predpovedanie kategórií

diff --git a/translations/sk/2-Regression/4-Logistic/assignment.md b/translations/sk/2-Regression/4-Logistic/assignment.md
index c08ecf6a7..8dc354eb6 100644
--- a/translations/sk/2-Regression/4-Logistic/assignment.md
+++ b/translations/sk/2-Regression/4-Logistic/assignment.md
@@ -1,12 +1,3 @@
-
# Opakovanie niektorých regresií
## Pokyny
diff --git a/translations/sk/2-Regression/4-Logistic/solution/Julia/README.md b/translations/sk/2-Regression/4-Logistic/solution/Julia/README.md
index eadb024a3..8367b4521 100644
--- a/translations/sk/2-Regression/4-Logistic/solution/Julia/README.md
+++ b/translations/sk/2-Regression/4-Logistic/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/2-Regression/README.md b/translations/sk/2-Regression/README.md
index 22a1e63bc..6a8d2df1d 100644
--- a/translations/sk/2-Regression/README.md
+++ b/translations/sk/2-Regression/README.md
@@ -1,12 +1,3 @@
-
# Regresné modely pre strojové učenie
## Regionálna téma: Regresné modely pre ceny tekvíc v Severnej Amerike 🎃
diff --git a/translations/sk/3-Web-App/1-Web-App/README.md b/translations/sk/3-Web-App/1-Web-App/README.md
index 4034d2274..6ecc3e52e 100644
--- a/translations/sk/3-Web-App/1-Web-App/README.md
+++ b/translations/sk/3-Web-App/1-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Vytvorte webovú aplikáciu na použitie ML modelu
V tejto lekcii budete trénovať ML model na dátovej sade, ktorá je doslova mimo tohto sveta: _pozorovania UFO za posledné storočie_, získané z databázy NUFORC.
diff --git a/translations/sk/3-Web-App/1-Web-App/assignment.md b/translations/sk/3-Web-App/1-Web-App/assignment.md
index ff50b214e..4fd5de852 100644
--- a/translations/sk/3-Web-App/1-Web-App/assignment.md
+++ b/translations/sk/3-Web-App/1-Web-App/assignment.md
@@ -1,12 +1,3 @@
-
# Vyskúšajte iný model
## Pokyny
diff --git a/translations/sk/3-Web-App/README.md b/translations/sk/3-Web-App/README.md
index 0963e386b..a0e752e3b 100644
--- a/translations/sk/3-Web-App/README.md
+++ b/translations/sk/3-Web-App/README.md
@@ -1,12 +1,3 @@
-
# Vytvorte webovú aplikáciu na použitie vášho ML modelu
V tejto časti kurzu sa zoznámite s praktickou témou strojového učenia: ako uložiť váš Scikit-learn model ako súbor, ktorý môže byť použitý na predikcie v rámci webovej aplikácie. Keď je model uložený, naučíte sa, ako ho použiť v webovej aplikácii postavenej vo Flasku. Najskôr vytvoríte model pomocou dát, ktoré sa týkajú pozorovaní UFO! Potom vytvoríte webovú aplikáciu, ktorá vám umožní zadať počet sekúnd spolu s hodnotami zemepisnej šírky a dĺžky na predpovedanie, ktorá krajina nahlásila pozorovanie UFO.
diff --git a/translations/sk/4-Classification/1-Introduction/README.md b/translations/sk/4-Classification/1-Introduction/README.md
index 898493330..aa96ad8fc 100644
--- a/translations/sk/4-Classification/1-Introduction/README.md
+++ b/translations/sk/4-Classification/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do klasifikácie
V týchto štyroch lekciách sa budete venovať základnému zameraniu klasického strojového učenia - _klasifikácii_. Prejdeme si používanie rôznych klasifikačných algoritmov s datasetom o všetkých úžasných kuchyniach Ázie a Indie. Dúfam, že máte chuť na jedlo!
diff --git a/translations/sk/4-Classification/1-Introduction/assignment.md b/translations/sk/4-Classification/1-Introduction/assignment.md
index a72e294ba..9a42a34e2 100644
--- a/translations/sk/4-Classification/1-Introduction/assignment.md
+++ b/translations/sk/4-Classification/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte metódy klasifikácie
## Pokyny
diff --git a/translations/sk/4-Classification/1-Introduction/solution/Julia/README.md b/translations/sk/4-Classification/1-Introduction/solution/Julia/README.md
index 87dc8ab77..dd3a14dcb 100644
--- a/translations/sk/4-Classification/1-Introduction/solution/Julia/README.md
+++ b/translations/sk/4-Classification/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/4-Classification/2-Classifiers-1/README.md b/translations/sk/4-Classification/2-Classifiers-1/README.md
index 9cce88666..5cbd6f4f4 100644
--- a/translations/sk/4-Classification/2-Classifiers-1/README.md
+++ b/translations/sk/4-Classification/2-Classifiers-1/README.md
@@ -1,12 +1,3 @@
-
# Klasifikátory kuchýň 1
V tejto lekcii použijete dataset, ktorý ste si uložili z predchádzajúcej lekcie, plný vyvážených a čistých údajov o kuchyniach.
diff --git a/translations/sk/4-Classification/2-Classifiers-1/assignment.md b/translations/sk/4-Classification/2-Classifiers-1/assignment.md
index 06908edc7..7f246cc94 100644
--- a/translations/sk/4-Classification/2-Classifiers-1/assignment.md
+++ b/translations/sk/4-Classification/2-Classifiers-1/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte riešiteľov
## Pokyny
diff --git a/translations/sk/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/sk/4-Classification/2-Classifiers-1/solution/Julia/README.md
index b7512284e..7f6114d76 100644
--- a/translations/sk/4-Classification/2-Classifiers-1/solution/Julia/README.md
+++ b/translations/sk/4-Classification/2-Classifiers-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/4-Classification/3-Classifiers-2/README.md b/translations/sk/4-Classification/3-Classifiers-2/README.md
index a42a281bf..221b379b1 100644
--- a/translations/sk/4-Classification/3-Classifiers-2/README.md
+++ b/translations/sk/4-Classification/3-Classifiers-2/README.md
@@ -1,12 +1,3 @@
-
# Klasifikátory kuchýň 2
V tejto druhej lekcii o klasifikácii preskúmate ďalšie spôsoby klasifikácie číselných údajov. Tiež sa dozviete o dôsledkoch výberu jedného klasifikátora oproti druhému.
diff --git a/translations/sk/4-Classification/3-Classifiers-2/assignment.md b/translations/sk/4-Classification/3-Classifiers-2/assignment.md
index 6d1450185..3a10c609f 100644
--- a/translations/sk/4-Classification/3-Classifiers-2/assignment.md
+++ b/translations/sk/4-Classification/3-Classifiers-2/assignment.md
@@ -1,12 +1,3 @@
-
# Hra s parametrami
## Pokyny
diff --git a/translations/sk/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/sk/4-Classification/3-Classifiers-2/solution/Julia/README.md
index d3473620b..087b7b86b 100644
--- a/translations/sk/4-Classification/3-Classifiers-2/solution/Julia/README.md
+++ b/translations/sk/4-Classification/3-Classifiers-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/4-Classification/4-Applied/README.md b/translations/sk/4-Classification/4-Applied/README.md
index 82def68e1..9f83392f3 100644
--- a/translations/sk/4-Classification/4-Applied/README.md
+++ b/translations/sk/4-Classification/4-Applied/README.md
@@ -1,12 +1,3 @@
-
# Vytvorenie webovej aplikácie na odporúčanie kuchyne
V tejto lekcii si vytvoríte klasifikačný model pomocou techník, ktoré ste sa naučili v predchádzajúcich lekciách, a s použitím datasetu chutných kuchýň, ktorý sa používal v celej tejto sérii. Okrem toho si vytvoríte malú webovú aplikáciu na použitie uloženého modelu, využívajúc webový runtime Onnx.
diff --git a/translations/sk/4-Classification/4-Applied/assignment.md b/translations/sk/4-Classification/4-Applied/assignment.md
index be58cef92..776c468e1 100644
--- a/translations/sk/4-Classification/4-Applied/assignment.md
+++ b/translations/sk/4-Classification/4-Applied/assignment.md
@@ -1,12 +1,3 @@
-
# Vytvorte odporúčací systém
## Pokyny
diff --git a/translations/sk/4-Classification/README.md b/translations/sk/4-Classification/README.md
index c483af4d7..8a1a0d0bd 100644
--- a/translations/sk/4-Classification/README.md
+++ b/translations/sk/4-Classification/README.md
@@ -1,12 +1,3 @@
-
# Začíname s klasifikáciou
## Regionálna téma: Lahodné ázijské a indické kuchyne 🍜
diff --git a/translations/sk/5-Clustering/1-Visualize/README.md b/translations/sk/5-Clustering/1-Visualize/README.md
index 5230f7c9e..43b9f8f44 100644
--- a/translations/sk/5-Clustering/1-Visualize/README.md
+++ b/translations/sk/5-Clustering/1-Visualize/README.md
@@ -1,12 +1,3 @@
-
# Úvod do zhlukovania
Zhlukovanie je typ [neučenej metódy](https://wikipedia.org/wiki/Unsupervised_learning), ktorá predpokladá, že dataset nie je označený alebo že jeho vstupy nie sú spojené s preddefinovanými výstupmi. Používa rôzne algoritmy na triedenie neoznačených dát a poskytuje skupiny na základe vzorov, ktoré rozpozná v dátach.
diff --git a/translations/sk/5-Clustering/1-Visualize/assignment.md b/translations/sk/5-Clustering/1-Visualize/assignment.md
index 61b2c30d5..a19a17a2f 100644
--- a/translations/sk/5-Clustering/1-Visualize/assignment.md
+++ b/translations/sk/5-Clustering/1-Visualize/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte ďalšie vizualizácie pre zoskupovanie
## Pokyny
diff --git a/translations/sk/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/sk/5-Clustering/1-Visualize/solution/Julia/README.md
index c39423407..6f4072198 100644
--- a/translations/sk/5-Clustering/1-Visualize/solution/Julia/README.md
+++ b/translations/sk/5-Clustering/1-Visualize/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/5-Clustering/2-K-Means/README.md b/translations/sk/5-Clustering/2-K-Means/README.md
index 4bb9571a2..9cdb85e48 100644
--- a/translations/sk/5-Clustering/2-K-Means/README.md
+++ b/translations/sk/5-Clustering/2-K-Means/README.md
@@ -1,12 +1,3 @@
-
# K-Means zhlukovanie
## [Kvíz pred prednáškou](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/sk/5-Clustering/2-K-Means/assignment.md b/translations/sk/5-Clustering/2-K-Means/assignment.md
index 6a7db91ad..aae5b774b 100644
--- a/translations/sk/5-Clustering/2-K-Means/assignment.md
+++ b/translations/sk/5-Clustering/2-K-Means/assignment.md
@@ -1,12 +1,3 @@
-
# Vyskúšajte rôzne metódy zhlukovania
## Pokyny
diff --git a/translations/sk/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/sk/5-Clustering/2-K-Means/solution/Julia/README.md
index 1692eaafc..087b7b86b 100644
--- a/translations/sk/5-Clustering/2-K-Means/solution/Julia/README.md
+++ b/translations/sk/5-Clustering/2-K-Means/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/5-Clustering/README.md b/translations/sk/5-Clustering/README.md
index 7287d065e..6e69e4135 100644
--- a/translations/sk/5-Clustering/README.md
+++ b/translations/sk/5-Clustering/README.md
@@ -1,12 +1,3 @@
-
# Modely zhlukovania pre strojové učenie
Zhlukovanie je úloha strojového učenia, ktorá sa snaží nájsť objekty, ktoré sa navzájom podobajú, a zoskupiť ich do skupín nazývaných zhluky. Čo odlišuje zhlukovanie od iných prístupov v strojovom učení, je to, že veci sa dejú automaticky. V skutočnosti je spravodlivé povedať, že je to opak učenia s učiteľom.
diff --git a/translations/sk/6-NLP/1-Introduction-to-NLP/README.md b/translations/sk/6-NLP/1-Introduction-to-NLP/README.md
index 33a085794..9a0759f98 100644
--- a/translations/sk/6-NLP/1-Introduction-to-NLP/README.md
+++ b/translations/sk/6-NLP/1-Introduction-to-NLP/README.md
@@ -1,12 +1,3 @@
-
# Úvod do spracovania prirodzeného jazyka
Táto lekcia pokrýva stručnú históriu a dôležité koncepty *spracovania prirodzeného jazyka*, podpolia *počítačovej lingvistiky*.
diff --git a/translations/sk/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/sk/6-NLP/1-Introduction-to-NLP/assignment.md
index 09069e680..497ae9ac6 100644
--- a/translations/sk/6-NLP/1-Introduction-to-NLP/assignment.md
+++ b/translations/sk/6-NLP/1-Introduction-to-NLP/assignment.md
@@ -1,12 +1,3 @@
-
# Vyhľadajte bota
## Pokyny
diff --git a/translations/sk/6-NLP/2-Tasks/README.md b/translations/sk/6-NLP/2-Tasks/README.md
index 1aea6af77..4854d0329 100644
--- a/translations/sk/6-NLP/2-Tasks/README.md
+++ b/translations/sk/6-NLP/2-Tasks/README.md
@@ -1,12 +1,3 @@
-
# Bežné úlohy a techniky spracovania prirodzeného jazyka
Pri väčšine úloh *spracovania prirodzeného jazyka* je potrebné text rozložiť, analyzovať a výsledky uložiť alebo porovnať s pravidlami a dátovými súbormi. Tieto úlohy umožňujú programátorovi odvodiť _význam_, _zámer_ alebo len _frekvenciu_ termínov a slov v texte.
diff --git a/translations/sk/6-NLP/2-Tasks/assignment.md b/translations/sk/6-NLP/2-Tasks/assignment.md
index 2174e1751..2fc91cf74 100644
--- a/translations/sk/6-NLP/2-Tasks/assignment.md
+++ b/translations/sk/6-NLP/2-Tasks/assignment.md
@@ -1,12 +1,3 @@
-
# Naučte bota odpovedať
## Pokyny
diff --git a/translations/sk/6-NLP/3-Translation-Sentiment/README.md b/translations/sk/6-NLP/3-Translation-Sentiment/README.md
index 976fad320..c199001c1 100644
--- a/translations/sk/6-NLP/3-Translation-Sentiment/README.md
+++ b/translations/sk/6-NLP/3-Translation-Sentiment/README.md
@@ -1,12 +1,3 @@
-
# Preklad a analýza sentimentu pomocou ML
V predchádzajúcich lekciách ste sa naučili, ako vytvoriť základného bota pomocou knižnice `TextBlob`, ktorá využíva strojové učenie na vykonávanie základných úloh spracovania prirodzeného jazyka, ako je extrakcia podstatných fráz. Ďalšou dôležitou výzvou v oblasti počítačovej lingvistiky je presný _preklad_ vety z jedného hovoreného alebo písaného jazyka do druhého.
diff --git a/translations/sk/6-NLP/3-Translation-Sentiment/assignment.md b/translations/sk/6-NLP/3-Translation-Sentiment/assignment.md
index 20382ebe3..aafa2a832 100644
--- a/translations/sk/6-NLP/3-Translation-Sentiment/assignment.md
+++ b/translations/sk/6-NLP/3-Translation-Sentiment/assignment.md
@@ -1,12 +1,3 @@
-
# Poetická licencia
## Pokyny
diff --git a/translations/sk/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/sk/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
index 176fd9bef..3ed9a4c9d 100644
--- a/translations/sk/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
+++ b/translations/sk/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/sk/6-NLP/3-Translation-Sentiment/solution/R/README.md
index 0e23b2fbf..5f88233ad 100644
--- a/translations/sk/6-NLP/3-Translation-Sentiment/solution/R/README.md
+++ b/translations/sk/6-NLP/3-Translation-Sentiment/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/4-Hotel-Reviews-1/README.md b/translations/sk/6-NLP/4-Hotel-Reviews-1/README.md
index 049c1a550..d11edc7e0 100644
--- a/translations/sk/6-NLP/4-Hotel-Reviews-1/README.md
+++ b/translations/sk/6-NLP/4-Hotel-Reviews-1/README.md
@@ -1,12 +1,3 @@
-
# Analýza sentimentu pomocou recenzií hotelov - spracovanie údajov
V tejto časti použijete techniky z predchádzajúcich lekcií na prieskumnú analýzu veľkého datasetu. Keď získate dobré pochopenie užitočnosti jednotlivých stĺpcov, naučíte sa:
diff --git a/translations/sk/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/sk/6-NLP/4-Hotel-Reviews-1/assignment.md
index 6d63c5e26..e101e0961 100644
--- a/translations/sk/6-NLP/4-Hotel-Reviews-1/assignment.md
+++ b/translations/sk/6-NLP/4-Hotel-Reviews-1/assignment.md
@@ -1,12 +1,3 @@
-
# NLTK
## Inštrukcie
diff --git a/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
index 7a5b14022..dd3a14dcb 100644
--- a/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
+++ b/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
index 9cb5d331e..3ed9a4c9d 100644
--- a/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
+++ b/translations/sk/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/5-Hotel-Reviews-2/README.md b/translations/sk/6-NLP/5-Hotel-Reviews-2/README.md
index 5c33a5c2b..4146a1b64 100644
--- a/translations/sk/6-NLP/5-Hotel-Reviews-2/README.md
+++ b/translations/sk/6-NLP/5-Hotel-Reviews-2/README.md
@@ -1,12 +1,3 @@
-
# Analýza sentimentu pomocou recenzií hotelov
Teraz, keď ste podrobne preskúmali dataset, je čas filtrovať stĺpce a použiť techniky NLP na získanie nových poznatkov o hoteloch.
diff --git a/translations/sk/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/sk/6-NLP/5-Hotel-Reviews-2/assignment.md
index 34c481fef..a02c11b04 100644
--- a/translations/sk/6-NLP/5-Hotel-Reviews-2/assignment.md
+++ b/translations/sk/6-NLP/5-Hotel-Reviews-2/assignment.md
@@ -1,12 +1,3 @@
-
# Vyskúšajte iný dataset
## Pokyny
diff --git a/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
index 20a148951..dd3a14dcb 100644
--- a/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
+++ b/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
index cb890e0a2..6ac8c66b4 100644
--- a/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
+++ b/translations/sk/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/6-NLP/README.md b/translations/sk/6-NLP/README.md
index f40611fcf..956ebc01f 100644
--- a/translations/sk/6-NLP/README.md
+++ b/translations/sk/6-NLP/README.md
@@ -1,12 +1,3 @@
-
# Začíname s prirodzeným spracovaním jazyka
Prirodzené spracovanie jazyka (NLP) je schopnosť počítačového programu porozumieť ľudskému jazyku tak, ako je hovorený a písaný – označovaný ako prirodzený jazyk. Je to súčasť umelej inteligencie (AI). NLP existuje už viac ako 50 rokov a má korene v oblasti lingvistiky. Celá oblasť je zameraná na pomoc strojom pri porozumení a spracovaní ľudského jazyka. To sa potom môže použiť na vykonávanie úloh, ako je kontrola pravopisu alebo strojový preklad. Má množstvo praktických aplikácií v rôznych oblastiach, vrátane medicínskeho výskumu, vyhľadávačov a obchodnej inteligencie.
diff --git a/translations/sk/6-NLP/data/README.md b/translations/sk/6-NLP/data/README.md
index 48b6ec7ec..f1051d91f 100644
--- a/translations/sk/6-NLP/data/README.md
+++ b/translations/sk/6-NLP/data/README.md
@@ -1,12 +1,3 @@
-
Stiahnite údaje o recenziách hotela do tohto priečinka.
---
diff --git a/translations/sk/7-TimeSeries/1-Introduction/README.md b/translations/sk/7-TimeSeries/1-Introduction/README.md
index 2ef7532fa..8c021cb64 100644
--- a/translations/sk/7-TimeSeries/1-Introduction/README.md
+++ b/translations/sk/7-TimeSeries/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do predikcie časových radov

diff --git a/translations/sk/7-TimeSeries/1-Introduction/assignment.md b/translations/sk/7-TimeSeries/1-Introduction/assignment.md
index 7bad6acd2..f64ba4732 100644
--- a/translations/sk/7-TimeSeries/1-Introduction/assignment.md
+++ b/translations/sk/7-TimeSeries/1-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Vizualizujte ďalšie časové rady
## Pokyny
diff --git a/translations/sk/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/sk/7-TimeSeries/1-Introduction/solution/Julia/README.md
index 25a722f33..8367b4521 100644
--- a/translations/sk/7-TimeSeries/1-Introduction/solution/Julia/README.md
+++ b/translations/sk/7-TimeSeries/1-Introduction/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/sk/7-TimeSeries/1-Introduction/solution/R/README.md
index 2d74c9f7b..37b0b338a 100644
--- a/translations/sk/7-TimeSeries/1-Introduction/solution/R/README.md
+++ b/translations/sk/7-TimeSeries/1-Introduction/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/7-TimeSeries/2-ARIMA/README.md b/translations/sk/7-TimeSeries/2-ARIMA/README.md
index 7efdd2aac..7dc12715b 100644
--- a/translations/sk/7-TimeSeries/2-ARIMA/README.md
+++ b/translations/sk/7-TimeSeries/2-ARIMA/README.md
@@ -1,12 +1,3 @@
-
# Predpovedanie časových radov pomocou ARIMA
V predchádzajúcej lekcii ste sa dozvedeli niečo o predpovedaní časových radov a načítali ste dataset zobrazujúci výkyvy elektrického zaťaženia v priebehu času.
diff --git a/translations/sk/7-TimeSeries/2-ARIMA/assignment.md b/translations/sk/7-TimeSeries/2-ARIMA/assignment.md
index 0d5bb4f18..d1a1bb4e8 100644
--- a/translations/sk/7-TimeSeries/2-ARIMA/assignment.md
+++ b/translations/sk/7-TimeSeries/2-ARIMA/assignment.md
@@ -1,12 +1,3 @@
-
# Nový model ARIMA
## Pokyny
diff --git a/translations/sk/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/sk/7-TimeSeries/2-ARIMA/solution/Julia/README.md
index 8046eefae..dd3a14dcb 100644
--- a/translations/sk/7-TimeSeries/2-ARIMA/solution/Julia/README.md
+++ b/translations/sk/7-TimeSeries/2-ARIMA/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/sk/7-TimeSeries/2-ARIMA/solution/R/README.md
index 325767e1e..3ed9a4c9d 100644
--- a/translations/sk/7-TimeSeries/2-ARIMA/solution/R/README.md
+++ b/translations/sk/7-TimeSeries/2-ARIMA/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/7-TimeSeries/3-SVR/README.md b/translations/sk/7-TimeSeries/3-SVR/README.md
index 89e645afe..4419a70dc 100644
--- a/translations/sk/7-TimeSeries/3-SVR/README.md
+++ b/translations/sk/7-TimeSeries/3-SVR/README.md
@@ -1,12 +1,3 @@
-
# Predpovedanie časových radov pomocou Support Vector Regressor
V predchádzajúcej lekcii ste sa naučili používať model ARIMA na predpovedanie časových radov. Teraz sa pozrieme na model Support Vector Regressor, ktorý je regresný model používaný na predpovedanie spojitých údajov.
diff --git a/translations/sk/7-TimeSeries/3-SVR/assignment.md b/translations/sk/7-TimeSeries/3-SVR/assignment.md
index 5b5843c00..02c163d91 100644
--- a/translations/sk/7-TimeSeries/3-SVR/assignment.md
+++ b/translations/sk/7-TimeSeries/3-SVR/assignment.md
@@ -1,12 +1,3 @@
-
# Nový model SVR
## Pokyny [^1]
diff --git a/translations/sk/7-TimeSeries/README.md b/translations/sk/7-TimeSeries/README.md
index 4e2206267..6cdbe854e 100644
--- a/translations/sk/7-TimeSeries/README.md
+++ b/translations/sk/7-TimeSeries/README.md
@@ -1,12 +1,3 @@
-
# Úvod do predikcie časových radov
Čo je predikcia časových radov? Ide o predpovedanie budúcich udalostí na základe analýzy trendov z minulosti.
diff --git a/translations/sk/8-Reinforcement/1-QLearning/README.md b/translations/sk/8-Reinforcement/1-QLearning/README.md
index e5dfde303..f179811b9 100644
--- a/translations/sk/8-Reinforcement/1-QLearning/README.md
+++ b/translations/sk/8-Reinforcement/1-QLearning/README.md
@@ -1,12 +1,3 @@
-
# Úvod do posilňovacieho učenia a Q-Learningu

diff --git a/translations/sk/8-Reinforcement/1-QLearning/assignment.md b/translations/sk/8-Reinforcement/1-QLearning/assignment.md
index 8690be186..d7c8c0150 100644
--- a/translations/sk/8-Reinforcement/1-QLearning/assignment.md
+++ b/translations/sk/8-Reinforcement/1-QLearning/assignment.md
@@ -1,12 +1,3 @@
-
# Realistickejší svet
V našej situácii sa Peter mohol pohybovať takmer bez toho, aby sa unavil alebo vyhladol. V realistickejšom svete si musí občas sadnúť a oddýchnuť si, a tiež sa najesť. Urobme náš svet realistickejším zavedením nasledujúcich pravidiel:
diff --git a/translations/sk/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/sk/8-Reinforcement/1-QLearning/solution/Julia/README.md
index a469aebb9..dd3a14dcb 100644
--- a/translations/sk/8-Reinforcement/1-QLearning/solution/Julia/README.md
+++ b/translations/sk/8-Reinforcement/1-QLearning/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/sk/8-Reinforcement/1-QLearning/solution/R/README.md
index 1e172ddc3..dd3a14dcb 100644
--- a/translations/sk/8-Reinforcement/1-QLearning/solution/R/README.md
+++ b/translations/sk/8-Reinforcement/1-QLearning/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/8-Reinforcement/2-Gym/README.md b/translations/sk/8-Reinforcement/2-Gym/README.md
index d0e5762c7..660949c8f 100644
--- a/translations/sk/8-Reinforcement/2-Gym/README.md
+++ b/translations/sk/8-Reinforcement/2-Gym/README.md
@@ -1,12 +1,3 @@
-
## Predpoklady
V tejto lekcii budeme používať knižnicu **OpenAI Gym** na simuláciu rôznych **prostredí**. Kód z tejto lekcie môžete spustiť lokálne (napr. vo Visual Studio Code), v takom prípade sa simulácia otvorí v novom okne. Pri spúšťaní kódu online môže byť potrebné upraviť kód, ako je popísané [tu](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7).
diff --git a/translations/sk/8-Reinforcement/2-Gym/assignment.md b/translations/sk/8-Reinforcement/2-Gym/assignment.md
index ee6c2f5ea..958650a4d 100644
--- a/translations/sk/8-Reinforcement/2-Gym/assignment.md
+++ b/translations/sk/8-Reinforcement/2-Gym/assignment.md
@@ -1,12 +1,3 @@
-
# Trénovanie Mountain Car
[OpenAI Gym](http://gym.openai.com) je navrhnutý tak, že všetky prostredia poskytujú rovnaké API - teda rovnaké metódy `reset`, `step` a `render`, a rovnaké abstrakcie **akčného priestoru** a **pozorovacieho priestoru**. Preto by malo byť možné prispôsobiť rovnaké algoritmy posilneného učenia rôznym prostrediam s minimálnymi zmenami kódu.
diff --git a/translations/sk/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/sk/8-Reinforcement/2-Gym/solution/Julia/README.md
index a5826600e..b459e77d9 100644
--- a/translations/sk/8-Reinforcement/2-Gym/solution/Julia/README.md
+++ b/translations/sk/8-Reinforcement/2-Gym/solution/Julia/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/8-Reinforcement/2-Gym/solution/R/README.md b/translations/sk/8-Reinforcement/2-Gym/solution/R/README.md
index 1c732511d..3ed9a4c9d 100644
--- a/translations/sk/8-Reinforcement/2-Gym/solution/R/README.md
+++ b/translations/sk/8-Reinforcement/2-Gym/solution/R/README.md
@@ -1,12 +1,3 @@
-
---
diff --git a/translations/sk/8-Reinforcement/README.md b/translations/sk/8-Reinforcement/README.md
index eb73eeb31..f8d7a132e 100644
--- a/translations/sk/8-Reinforcement/README.md
+++ b/translations/sk/8-Reinforcement/README.md
@@ -1,12 +1,3 @@
-
# Úvod do posilňovacieho učenia
Posilňovacie učenie, RL, je považované za jeden zo základných paradigmatov strojového učenia, vedľa učenia s učiteľom a učenia bez učiteľa. RL je o rozhodnutiach: robiť správne rozhodnutia alebo sa aspoň z nich učiť.
diff --git a/translations/sk/9-Real-World/1-Applications/README.md b/translations/sk/9-Real-World/1-Applications/README.md
index 5cc884864..087ca85d3 100644
--- a/translations/sk/9-Real-World/1-Applications/README.md
+++ b/translations/sk/9-Real-World/1-Applications/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Strojové učenie v reálnom svete

diff --git a/translations/sk/9-Real-World/1-Applications/assignment.md b/translations/sk/9-Real-World/1-Applications/assignment.md
index 88212dec2..74b583536 100644
--- a/translations/sk/9-Real-World/1-Applications/assignment.md
+++ b/translations/sk/9-Real-World/1-Applications/assignment.md
@@ -1,12 +1,3 @@
-
# Lov na poklady ML
## Pokyny
diff --git a/translations/sk/9-Real-World/2-Debugging-ML-Models/README.md b/translations/sk/9-Real-World/2-Debugging-ML-Models/README.md
index 2f1035992..15c07d2d9 100644
--- a/translations/sk/9-Real-World/2-Debugging-ML-Models/README.md
+++ b/translations/sk/9-Real-World/2-Debugging-ML-Models/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Ladenie modelov v strojovom učení pomocou komponentov zodpovedného AI dashboardu
## [Kvíz pred prednáškou](https://ff-quizzes.netlify.app/en/ml/)
diff --git a/translations/sk/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/sk/9-Real-World/2-Debugging-ML-Models/assignment.md
index f56949cd7..dae62e440 100644
--- a/translations/sk/9-Real-World/2-Debugging-ML-Models/assignment.md
+++ b/translations/sk/9-Real-World/2-Debugging-ML-Models/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte dashboard Responsible AI (RAI)
## Pokyny
diff --git a/translations/sk/9-Real-World/README.md b/translations/sk/9-Real-World/README.md
index d1829e229..558d19002 100644
--- a/translations/sk/9-Real-World/README.md
+++ b/translations/sk/9-Real-World/README.md
@@ -1,12 +1,3 @@
-
# Postscript: Skutočné aplikácie klasického strojového učenia
V tejto časti kurzu sa zoznámite s niektorými reálnymi aplikáciami klasického strojového učenia. Prehľadali sme internet, aby sme našli odborné články a štúdie o aplikáciách, ktoré využívajú tieto stratégie, pričom sme sa čo najviac vyhýbali neurónovým sieťam, hlbokému učeniu a umelej inteligencii. Zistite, ako sa strojové učenie používa v obchodných systémoch, ekologických aplikáciách, financiách, umení a kultúre a ďalších oblastiach.
diff --git a/translations/sk/AGENTS.md b/translations/sk/AGENTS.md
index 4eaa60920..f318f1a13 100644
--- a/translations/sk/AGENTS.md
+++ b/translations/sk/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Prehľad projektu
diff --git a/translations/sk/CODE_OF_CONDUCT.md b/translations/sk/CODE_OF_CONDUCT.md
index 30a1f11d4..3ad099fb4 100644
--- a/translations/sk/CODE_OF_CONDUCT.md
+++ b/translations/sk/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kódex správania pre otvorený zdroj od Microsoftu
Tento projekt prijal [Kódex správania pre otvorený zdroj od Microsoftu](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sk/CONTRIBUTING.md b/translations/sk/CONTRIBUTING.md
index 7e2fad64f..0dfce09eb 100644
--- a/translations/sk/CONTRIBUTING.md
+++ b/translations/sk/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Prispievanie
Tento projekt víta príspevky a návrhy. Väčšina príspevkov vyžaduje, aby ste súhlasili s Licenčnou zmluvou prispievateľa (CLA), ktorá potvrdzuje, že máte právo a skutočne udeľujete práva na použitie vášho príspevku. Podrobnosti nájdete na https://cla.microsoft.com.
diff --git a/translations/sk/README.md b/translations/sk/README.md
index 4b601151a..0447a7a25 100644
--- a/translations/sk/README.md
+++ b/translations/sk/README.md
@@ -1,14 +1,5 @@
-
-[](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
+[](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/ML-For-Beginners/issues/)
[](https://GitHub.com/microsoft/ML-For-Beginners/pulls/)
[](http://makeapullrequest.com)
@@ -19,41 +10,41 @@ CO_OP_TRANSLATOR_METADATA:
### 🌐 Podpora viacerých jazykov
-#### Podporované cez GitHub Action (automatické a vždy aktuálne)
+#### Podporované cez GitHub Action (automatizované a vždy aktuálne)
-[Arabčina](../ar/README.md) | [Bengálčina](../bn/README.md) | [Bulharčina](../bg/README.md) | [Barmčina (Myanmar)](../my/README.md) | [Čínština (zjednodušená)](../zh/README.md) | [Čínština (tradičná, Hong Kong)](../hk/README.md) | [Čínština (tradičná, Macau)](../mo/README.md) | [Čínština (tradičná, Taiwan)](../tw/README.md) | [Chorvátčina](../hr/README.md) | [Čeština](../cs/README.md) | [Dánčina](../da/README.md) | [Holandčina](../nl/README.md) | [Estónčina](../et/README.md) | [Fínčina](../fi/README.md) | [Francúzština](../fr/README.md) | [Nemčina](../de/README.md) | [Gréčtina](../el/README.md) | [Hebrejčina](../he/README.md) | [Hindčina](../hi/README.md) | [Maďarčina](../hu/README.md) | [Indonézština](../id/README.md) | [Taliančina](../it/README.md) | [Japončina](../ja/README.md) | [Kannadčina](../kn/README.md) | [Kórejčina](../ko/README.md) | [Litovčina](../lt/README.md) | [Malajčina](../ms/README.md) | [Malayalam](../ml/README.md) | [Maráthčina](../mr/README.md) | [Nepálčina](../ne/README.md) | [Nigérijská Pidžinčina](../pcm/README.md) | [Nórčina](../no/README.md) | [Perzština (Farsi)](../fa/README.md) | [Poľština](../pl/README.md) | [Portugalčina (Brazília)](../br/README.md) | [Portugalčina (Portugalsko)](../pt/README.md) | [Pandžábčina (Gurmukhi)](../pa/README.md) | [Rumunčina](../ro/README.md) | [Ruština](../ru/README.md) | [Srbčina (cyrilika)](../sr/README.md) | [Slovenčina](./README.md) | [Slovinčina](../sl/README.md) | [Španielčina](../es/README.md) | [Swahilčina](../sw/README.md) | [Švédčina](../sv/README.md) | [Tagalog (Filipínčina)](../tl/README.md) | [Tamilčina](../ta/README.md) | [Telugčina](../te/README.md) | [Thajčina](../th/README.md) | [Turečtina](../tr/README.md) | [Ukrajinčina](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamčina](../vi/README.md)
+[Arabčina](../ar/README.md) | [Bengálčina](../bn/README.md) | [Bulharčina](../bg/README.md) | [Barmčina (Myanmar)](../my/README.md) | [Čínština (zjednodušená)](../zh-CN/README.md) | [Čínština (tradičná, Hongkong)](../zh-HK/README.md) | [Čínština (tradičná, Macao)](../zh-MO/README.md) | [Čínština (tradičná, Taiwan)](../zh-TW/README.md) | [Chorvátčina](../hr/README.md) | [Čeština](../cs/README.md) | [Dánčina](../da/README.md) | [Holandčina](../nl/README.md) | [Estónčina](../et/README.md) | [Fínčina](../fi/README.md) | [Francúzština](../fr/README.md) | [Nemčina](../de/README.md) | [Gréčtina](../el/README.md) | [Hebrejčina](../he/README.md) | [Hindčina](../hi/README.md) | [Maďarčina](../hu/README.md) | [Indonézština](../id/README.md) | [Taliančina](../it/README.md) | [Japončina](../ja/README.md) | [Kannada](../kn/README.md) | [Kórejčina](../ko/README.md) | [Litovčina](../lt/README.md) | [Malajčina](../ms/README.md) | [Malayalam](../ml/README.md) | [Maráthčina](../mr/README.md) | [Nepálčina](../ne/README.md) | [Nigérijský pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Perzština (Farsi)](../fa/README.md) | [Poľština](../pl/README.md) | [Portugalčina (Brazília)](../pt-BR/README.md) | [Portugalčina (Portugalsko)](../pt-PT/README.md) | [Pandžábčina (Gurmukhi)](../pa/README.md) | [Rumunčina](../ro/README.md) | [Ruština](../ru/README.md) | [Srbčina (cyrilika)](../sr/README.md) | [Slovenčina](./README.md) | [Slovinčina](../sl/README.md) | [Španielčina](../es/README.md) | [Swahilčina](../sw/README.md) | [Švédčina](../sv/README.md) | [Tagalog (Filipíny)](../tl/README.md) | [Tamilčina](../ta/README.md) | [Telugu](../te/README.md) | [Thajčina](../th/README.md) | [Turečtina](../tr/README.md) | [Ukrajinčina](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamčina](../vi/README.md)
-> **Preferujete klonovanie lokálne?**
+> **Preferujete klonovať lokálne?**
-> Tento repozitár obsahuje viac ako 50 prekladov jazykov, čo výrazne zväčšuje veľkosť sťahovania. Ak chcete klonovať bez prekladov, použite sparse checkout:
+> Tento repozitár obsahuje vyše 50 jazykových prekladov, čo výrazne zvyšuje veľkosť stiahnutia. Pre klonovanie bez prekladov použite sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/ML-For-Beginners.git
> cd ML-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Toto vám poskytne všetko potrebné na dokončenie kurzu s oveľa rýchlejším stiahnutím.
+> Týmto získate všetko potrebné na dokončenie kurzu s oveľa rýchlejším sťahovaním.
#### Pridajte sa k našej komunite
[](https://discord.gg/nTYy5BXMWG)
-Máme prebiehajúcu sériu Discord „Learn with AI“, dozviete sa viac a pripojte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Získate tipy a triky na používanie GitHub Copilot pre Data Science.
+Máme prebiehajúcu sériu Discord Learn with AI, dozviete sa viac a pridajte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Získate tipy a triky na používanie GitHub Copilot pre Data Science.
-
+
-# Strojové učenie pre začiatočníkov - Kurikulum
+# Strojové učenie pre začiatočníkov – kurikulum
-> 🌍 Cestujte po svete, keď skúmame strojové učenie cez kultúry sveta 🌍
+> 🌍 Cestujte po svete a spoznávajte Strojové učenie prostredníctvom svetových kultúr 🌍
-Cloud Advocates v Microsoft ponúkajú 12-týždňové, 26-lekčné kurikulum úplne o **strojovom učení**. V tomto kurikulume sa naučíte o tzv. **klasickom strojovom učení**, používajúc predovšetkým knižnicu Scikit-learn a vyhýbajúc sa hlbokému učeniu, ktoré je zahrnuté v našom [kurikulume AI pre začiatočníkov](https://aka.ms/ai4beginners). Spojte tieto lekcie s naším [kurikulom 'Data Science pre začiatočníkov'](https://aka.ms/ds4beginners), tiež!
+Cloud Advocates v Microsoftu s radosťou ponúkajú 12-týždňové kurikulum so 26 lekciami zameranými na **strojové učenie**. V tomto kurikule sa naučíte o tom, čo sa niekedy nazýva **klasické strojové učenie**, používajúce primárne knižnicu Scikit-learn a vyhýbajúce sa hlbokému učeniu, ktoré je pokryté v našom [kurz AI pre začiatočníkov](https://aka.ms/ai4beginners). Spojte tieto lekcie s naším [kurzom Dátová veda pre začiatočníkov](https://aka.ms/ds4beginners)!
-Cestujte s nami po svete, keď aplikujeme tieto klasické techniky na dáta z rôznych oblastí sveta. Každá lekcia obsahuje pred a po lekcii kvízy, písomné inštrukcie na dokončenie lekcie, riešenie, zadanie a ďalšie. Naša projektovo orientovaná metodika vám umožní učiť sa pri budovaní, čo je overený spôsob, ako si nové zručnosti udržať.
+Cestujte s nami po svete, keď aplikujeme tieto klasické techniky na dáta z rôznych oblastí sveta. Každá lekcia obsahuje kvízy pred a po lekcii, písomné inštrukcie na dokončenie lekcie, riešenie, úlohu a ďalšie. Naša projektová pedagogika vám umožní učiť sa počas tvorby, čo je overený spôsob, ako si nové zručnosti zapamätať.
-**✍️ Srdečná vďaka našim autorom** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu a Amy Boyd
+**✍️ Srdečné poďakovanie našim autorom** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu a Amy Boyd
-**🎨 Vďaka aj našim ilustrátorom** Tomomi Imura, Dasani Madipalli a Jen Looper
+**🎨 Poďakovanie aj našim ilustrátorom** Tomomi Imura, Dasani Madipalli a Jen Looper
**🙏 Špeciálne poďakovanie 🙏 našim Microsoft Student Ambassador autorom, recenzentom a prispievateľom obsahu**, najmä Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila a Snigdha Agarwal
@@ -62,39 +53,39 @@ Cestujte s nami po svete, keď aplikujeme tieto klasické techniky na dáta z r
# Začíname
Postupujte podľa týchto krokov:
-1. **Vytvorte Fork repozitára**: Kliknite na tlačidlo „Fork“ v pravom hornom rohu tejto stránky.
+1. **Forknite repozitár**: Kliknite na tlačidlo "Fork" v pravom hornom rohu tejto stránky.
2. **Klonujte repozitár**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
-> [najríte všetky doplnkové zdroje pre tento kurz v našej kolekcii Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
+> [nájdite všetky doplnkové zdroje pre tento kurz v našej kolekcii Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
-> 🔧 **Potrebujete pomoc?** Skontrolujte náš [Sprievodca riešením problémov](TROUBLESHOOTING.md) pre riešenia bežných problémov s inštaláciou, nastavením a spustením lekcií.
+> 🔧 **Potrebujete pomoc?** Pozrite sa do nášho [Príručka riešenia problémov](TROUBLESHOOTING.md) na riešenia bežných problémov s inštaláciou, nastavením a spustením lekcií.
-**[Študenti](https://aka.ms/student-page)**, použite tento kurz tak, že si vytvoríte fork celého repozitára do svojho GitHub účtu a cvičenia absolvujete sami alebo v skupine:
+**[Študenti](https://aka.ms/student-page)**, aby ste mohli používať toto kurikulum, odforknite celý repozitár do svojho vlastného GitHub účtu a vykonávajte úlohy sami alebo v skupine:
- Začnite kvízom pred prednáškou.
-- Prečítajte si prednášku a dokončite aktivity, zastavujte sa a premýšľajte pri každej kontrole znalostí.
-- Pokúste sa vytvoriť projekty pochopením lekcií namiesto spustenia riešacieho kódu; tento kód je však dostupný v priečinkoch `/solution` v každej projektovo orientovanej lekcii.
-- Absolvujte kvíz po prednáške.
-- Splňte výzvu.
+- Prečítajte si prednášku a dokončite aktivity, zastavujte sa a rozmýšľajte pri každej kontrole vedomostí.
+- Pokúste sa vytvoriť projekty pochopením lekcií namiesto spustenia riešenia, pričom daný kód je dostupný v priečinkoch `/solution` v každej lekcii zameranej na projekt.
+- Spravte kvíz po prednáške.
+- Dokončite výzvu.
- Dokončite zadanie.
-- Po dokončení skupiny lekcií navštívte [Diskusnú tabuľu](https://github.com/microsoft/ML-For-Beginners/discussions) a „učte sa nahlas“ tým, že vyplníte príslušný PAT hodnotiaci formulár. PAT je Nástroj na hodnotenie pokroku, ktorý vyplníte na zvýšenie svojho učenia. Môžete tiež reagovať na iné PATy, aby sme sa mohli učiť spoločne.
+- Po dokončení skupiny lekcií navštívte [Diskusné fórum](https://github.com/microsoft/ML-For-Beginners/discussions) a „učte sa nahlas“ vyplnením príslušného hodnotiaceho listu PAT. PAT je Nástroj na hodnotenie pokroku, ktorý vyplníte, aby ste zlepšili svoje učenie. Môžete reagovať aj na ostatné PAT, aby sme sa učili spoločne.
-> Pre ďalšie štúdium odporúčame sledovať tieto moduly a vzdelávacie cesty [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
+> Na ďalšie štúdium odporúčame tieto moduly a vzdelávacie cesty [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
-**Učitelia**, máme [uvedené niekoľko návrhov](for-teachers.md), ako používať toto kurikulum.
+**Učitelia**, pripravili sme pre vás [niekoľko návrhov](for-teachers.md), ako používať toto kurikulum.
---
## Video prechádzky
-Niektoré lekcie sú dostupné ako krátke videá. Všetky ich nájdete priamo v lekciách alebo na [ML for Beginners playlist na YouTube kanáli Microsoft Developer](https://aka.ms/ml-beginners-videos) kliknutím na obrázok nižšie.
+Niektoré lekcie sú k dispozícii ako krátke videá. Všetky ich nájdete priamo v lekciách alebo na [playliste ML pre začiatočníkov na YouTube kanáli Microsoft Developer](https://aka.ms/ml-beginners-videos) kliknutím na obrázok nižšie.
-[](https://aka.ms/ml-beginners-videos)
+[](https://aka.ms/ml-beginners-videos)
---
-## Spoznajte tím
+## Zoznámte sa s tímom
[](https://youtu.be/Tj1XWrDSYJU)
@@ -106,73 +97,73 @@ Niektoré lekcie sú dostupné ako krátke videá. Všetky ich nájdete priamo v
## Pedagogika
-Pri tvorbe tohto kurikula sme si zvolili dva pedagogické princípy: zabezpečiť, aby bolo prakticky **projektovo orientované** a aby obsahovalo **časté kvízy**. Okrem toho má toto kurikulum spoločnú **tému**, ktorá mu dáva jednotnosť.
+Pri tvorbe tohto kurikula sme zvolili dva pedagogické princípy: zabezpečiť praktickú **projektovú výučbu** a zahrnúť **časté kvízy**. Okrem toho má kurikulum spoločnú **tému**, ktorá mu dodáva súdržnosť.
-Zabezpečením, že obsah korešponduje s projektmi, sa proces výučby pre študentov stáva záživnejším a lepšie si zapamätajú koncepty. Okrem toho nízko rizikový kvíz pred hodinou nastavuje intenciu študenta na učenie témy, zatiaľ čo druhý kvíz po hodine zabezpečuje ďalšie zapamätanie. Toto kurikulum je navrhnuté tak, aby bolo flexibilné a zábavné, a môže byť prebraté celé alebo čiastočne. Projekty začínajú malé a postupne sa komplikujú ku koncu 12-týždňového cyklu. Toto kurikulum tiež obsahuje postskript o reálnych aplikáciách ML, ktorý sa dá použiť ako dodatočné hodnotenie alebo ako základ diskusie.
+Zabezpečením, že obsah úzko súvisí s projektmi, sa proces výučby stáva pre študentov pútavejším a zvyšuje uchovávanie poznatkov. Nízko-stávkový kvíz pred hodinou nastavuje študentov na učenie témy, zatiaľ čo druhý kvíz po hodine zabezpečuje ďalšie upevnenie vedomostí. Kurikulum bolo navrhnuté tak, aby bolo flexibilné a zábavné a možno ho absolvovať celé alebo čiastočne. Projekty začínajú jednoduché a počas 12-týždňového cyklu sa čoraz viac komplikujú. Kurikulum tiež obsahuje posvscriptum o reálnych aplikáciách ML, ktoré možno použiť ako bonusové body alebo ako základ na diskusiu.
-> Nájdete naše [Pravidlá správania](CODE_OF_CONDUCT.md), [Príspevky](CONTRIBUTING.md), [Preklady](TRANSLATIONS.md) a [Riešenie problémov](TROUBLESHOOTING.md). Radi prijíme vašu konštruktívnu spätnú väzbu!
+> Nájdete tu naše [Pravidlá správania](CODE_OF_CONDUCT.md), [Prispievanie](CONTRIBUTING.md), [Preklady](TRANSLATIONS.md) a [Riešenie problémov](TROUBLESHOOTING.md). Radi prijmeme vašu konštruktívnu spätnú väzbu!
## Každá lekcia obsahuje
-- voliteľnú skicu poznámok
+- voliteľnú skicovú poznámku
- voliteľné doplnkové video
-- video prehliadku (iba niektoré lekcie)
-- [zahriatie pred prednáškou pomocou kvízu](https://ff-quizzes.netlify.app/en/ml/)
+- video prehliadku (len niektoré lekcie)
+- [kvíz na rozcvičku pred prednáškou](https://ff-quizzes.netlify.app/en/ml/)
- písomnú lekciu
-- pre projektovo orientované lekcie, krok za krokom návody na vytvorenie projektu
-- kontroly znalostí
+- v projektovo orientovaných lekciách krok za krokom návod na stavbu projektu
+- kontroly vedomostí
- výzvu
-- doplnkovú literatúru
+- doplnkové čítanie
- zadanie
- [kvíz po prednáške](https://ff-quizzes.netlify.app/en/ml/)
-> **Poznámka k jazykom**: Tieto lekcie sú primárne napísané v Pythone, ale mnohé sú dostupné aj v R. Na dokončenie lekcie v R choďte do priečinka `/solution` a vyhľadajte lekcie v R. Obsahujú príponu .rmd, ktorá predstavuje **R Markdown** súbor, ktorý je jednoducho definovaný ako vloženie `kódových blokov` (v R alebo iných jazykoch) a `YAML záhlavia` (ktoré riadi formátovanie výstupov, napríklad PDF) v `Markdown dokumente`. Slúži ako príklad autorovacieho rámca pre dátovú vedu, pretože umožňuje kombinovať kód, jeho výstup a poznámky tým, že ich píšete v Markdown formáte. Okrem toho môžu byť R Markdown dokumenty vyrenderované do formátov ako PDF, HTML alebo Word.
-> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v [zložke Quiz App](../../quiz-app), celkovo 52 kvízov so 3 otázkami v každom. Sú prepojené v rámci jednotlivých lekcií, ale kvízovú aplikáciu je možné spustiť miestne; postupujte podľa inštrukcií v priečinku `quiz-app` pre miestne hostovanie alebo nasadenie na Azure.
-
-| Číslo lekcie | Téma | Skupina lekcií | Ciele učenia | Prepojená lekcia | Autor |
-| :----------: | :---------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------ | :----------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------: |
-| 01 | Úvod do strojového učenia | [Úvod](1-Introduction/README.md) | Naučte sa základné pojmy zo strojového učenia | [Lekcia](1-Introduction/1-intro-to-ML/README.md) | Muhammad |
-| 02 | História strojového učenia | [Úvod](1-Introduction/README.md) | Spoznajte históriu tohto odboru | [Lekcia](1-Introduction/2-history-of-ML/README.md) | Jen a Amy |
-| 03 | Spravodlivosť a strojové učenie | [Úvod](1-Introduction/README.md) | Aké sú dôležité filozofické otázky spravodlivosti, ktoré by mal študent zvažovať pri vytváraní a aplikovaní ML modelov? | [Lekcia](1-Introduction/3-fairness/README.md) | Tomomi |
-| 04 | Techniky pre strojové učenie | [Úvod](1-Introduction/README.md) | Aké techniky vedci používajú na budovanie ML modelov? | [Lekcia](1-Introduction/4-techniques-of-ML/README.md) | Chris a Jen |
-| 05 | Úvod do regresie | [Regresia](2-Regression/README.md) | Začnite s Python a Scikit-learn pre regresné modely | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau |
-| 06 | Severoamerické ceny tekvíc 🎃 | [Regresia](2-Regression/README.md) | Vizualizujte a vyčistite dáta pre prípravu na ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau |
-| 07 | Severoamerické ceny tekvíc 🎃 | [Regresia](2-Regression/README.md) | Postavte lineárne a polynomiálne regresné modely | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen a Dmitry • Eric Wanjau |
-| 08 | Severoamerické ceny tekvíc 🎃 | [Regresia](2-Regression/README.md) | Postavte logistický regresný model | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau |
-| 09 | Webová aplikácia 🔌 | [Web App](3-Web-App/README.md) | Postavte webovú aplikáciu na použitie vášho vytrénovaného modelu | [Python](3-Web-App/1-Web-App/README.md) | Jen |
-| 10 | Úvod do klasifikácie | [Klasifikácia](4-Classification/README.md) | Vyčistite, pripravte a vizualizujte svoje dáta; úvod do klasifikácie | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen a Cassie • Eric Wanjau |
-| 11 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Úvod do klasifikátorov | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen a Cassie • Eric Wanjau |
-| 12 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Ďalšie klasifikátory | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen a Cassie • Eric Wanjau |
-| 13 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Postavte odporúčaciu webovú aplikáciu s vaším modelom | [Python](4-Classification/4-Applied/README.md) | Jen |
-| 14 | Úvod do zhlukovania | [Zhlukovanie](5-Clustering/README.md) | Vyčistite, pripravte a vizualizujte dáta; úvod do zhlukovania | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau |
-| 15 | Preskúmavanie nigérijských hudobných vkusov 🎧 | [Zhlukovanie](5-Clustering/README.md) | Preskúmajte metódu zhlukovania K-means | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau |
-| 16 | Úvod do spracovania prirodzeného jazyka ☕️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Naučte sa základy NLP vytvorením jednoduchého bota | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
-| 17 | Bežné úlohy NLP ☕️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Prehĺbte svoje znalosti NLP pochopením bežných úloh spojených so štruktúrami jazyka | [Python](6-NLP/2-Tasks/README.md) | Stephen |
-| 18 | Preklad a analýza sentimentu ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Preklad a analýza sentimentu s Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen |
-| 19 | Romantické hotely v Európe ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Analýza sentimentu na základe recenzií hotelov 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen |
-| 20 | Romantické hotely v Európe ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Analýza sentimentu na základe recenzií hotelov 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen |
-| 21 | Úvod do prognózovania časových radov | [Časové rady](7-TimeSeries/README.md) | Úvod do prognózovania časových radov | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca |
-| 22 | ⚡️ Svetová spotreba energie ⚡️ - časové rady s ARIMA | [Časové rady](7-TimeSeries/README.md) | Prognózovanie časových radov pomocou ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca |
-| 23 | ⚡️ Svetová spotreba energie ⚡️ - časové rady so SVR | [Časové rady](7-TimeSeries/README.md) | Prognózovanie časových radov pomocou regresora vektorov podpory | [Python](7-TimeSeries/3-SVR/README.md) | Anirban |
-| 24 | Úvod do posilňovacieho učenia | [Posilňovacie učenie](8-Reinforcement/README.md) | Úvod do posilňovacieho učenia s Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry |
-| 25 | Pomôžte Petrovi vyhnúť sa vlkovi! 🐺 | [Posilňovacie učenie](8-Reinforcement/README.md) | Posilňovacie učenie Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry |
-| Postskriptum | Scenáre a aplikácie ML v reálnom svete | [ML v praxi](9-Real-World/README.md) | Zaujímavé a odhaľujúce aplikácie klasického ML v reálnom svete | [Lekcia](9-Real-World/1-Applications/README.md) | Tím |
-| Postskriptum | Ladenie modelov v ML pomocou RAI dashboardu | [ML v praxi](9-Real-World/README.md) | Ladenie modelov v strojovom učení pomocou komponentov Responsible AI dashboardu | [Lekcia](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu |
-
-> [nájdite všetky dodatočné zdroje pre tento kurz v našej kolekcii Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
+> **Poznámka k jazykom**: Tieto lekcie sú primárne napísané v Pythone, ale mnohé sú tiež dostupné v R. Ak chcete absolvovať lekciu v R, choďte do priečinka `/solution` a vyhľadajte lekcie v R. Tie majú príponu .rmd, čo predstavuje **R Markdown** súbor, ktorý možno jednoducho definovať ako vloženie `kódových blokov` (v R alebo iných jazykoch) a `YAML hlavičky` (ktorá usmerňuje formátovanie výstupov, ako PDF) do `Markdown dokumentu`. Slúži tak ako vzorový rámec na tvorbu obsahu pre dátovú vedu, keďže umožňuje kombinovať kód, jeho výstupy a myšlienky umožnením ich zápisu do MarkDownu. Navyše, R Markdown dokumenty možno vykresliť do výstupných formátov ako PDF, HTML alebo Word.
+> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v [zložke Quiz App](../../quiz-app), spolu 52 kvízov s tromi otázkami každý. Sú prepojené z lekcií, ale quiz app možno spustiť lokálne; postupujte podľa pokynov v priečinku `quiz-app`, aby ste ho mohli lokálne hostiť alebo nasadiť do Azure.
+
+| Číslo lekcie | Téma | Skupina lekcií | Ciele učenia | Prepojená lekcia | Autor |
+| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------ | :-----------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: |
+| 01 | Úvod do strojového učenia | [Úvod](1-Introduction/README.md) | Naučte sa základné pojmy zo strojového učenia | [Lekcia](1-Introduction/1-intro-to-ML/README.md) | Muhammad |
+| 02 | História strojového učenia | [Úvod](1-Introduction/README.md) | Spoznajte históriu tohto odboru | [Lekcia](1-Introduction/2-history-of-ML/README.md) | Jen a Amy |
+| 03 | Spravodlivosť a strojové učenie | [Úvod](1-Introduction/README.md) | Aké sú dôležité filozofické témy okolo spravodlivosti, ktoré by mali študenti zvážiť pri tvorbe a aplikácii ML modelov? | [Lekcia](1-Introduction/3-fairness/README.md) | Tomomi |
+| 04 | Techniky pre strojové učenie | [Úvod](1-Introduction/README.md) | Aké techniky používa výskumník ML na vytváranie modelov ML? | [Lekcia](1-Introduction/4-techniques-of-ML/README.md) | Chris a Jen |
+| 05 | Úvod do regresie | [Regresia](2-Regression/README.md) | Začnite s Pythonom a Scikit-learn pre regresné modely | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau |
+| 06 | Ceny tekvíc v Severnej Amerike 🎃 | [Regresia](2-Regression/README.md) | Vizualizujte a vyčistite dáta na prípravu ML | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau |
+| 07 | Ceny tekvíc v Severnej Amerike 🎃 | [Regresia](2-Regression/README.md) | Postavte lineárne a polynomiálne regresné modely | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen a Dmitry • Eric Wanjau |
+| 08 | Ceny tekvíc v Severnej Amerike 🎃 | [Regresia](2-Regression/README.md) | Postavte logistický regresný model | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau |
+| 09 | Webová aplikácia 🔌 | [Webová aplikácia](3-Web-App/README.md) | Vytvorte webovú aplikáciu na používanie vášho natrénovaného modelu | [Python](3-Web-App/1-Web-App/README.md) | Jen |
+| 10 | Úvod do klasifikácie | [Klasifikácia](4-Classification/README.md) | Vyčistite, pripravte a vizualizujte svoje dáta; úvod do klasifikácie | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen a Cassie • Eric Wanjau |
+| 11 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Úvod do klasifikátorov | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen a Cassie • Eric Wanjau |
+| 12 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Viac klasifikátorov | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen a Cassie • Eric Wanjau |
+| 13 | Lahodné ázijské a indické kuchyne 🍜 | [Klasifikácia](4-Classification/README.md) | Vytvorte odporúčaciu webovú aplikáciu pomocou vášho modelu | [Python](4-Classification/4-Applied/README.md) | Jen |
+| 14 | Úvod do zhlukovania | [Zhlukovanie](5-Clustering/README.md) | Vyčistite, pripravte a vizualizujte svoje dáta; úvod do zhlukovania | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau |
+| 15 | Preskúmanie nigérijských hudobných chutí 🎧 | [Zhlukovanie](5-Clustering/README.md) | Preskúmajte metódu K-Means zhlukovania | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau |
+| 16 | Úvod do spracovania prirodzeného jazyka ☕️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Naučte sa základy NLP vytvorením jednoduchého bota | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
+| 17 | Bežné úlohy NLP ☕️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Prehĺbte svoje znalosti NLP pochopením bežných úloh potrebných pri práci so štruktúrami jazyka | [Python](6-NLP/2-Tasks/README.md) | Stephen |
+| 18 | Preklad a analýza sentimentu ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Preklad a analýza sentimentu s Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen |
+| 19 | Romantické hotely v Európe ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Analýza sentimentu v recenziách hotelov 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen |
+| 20 | Romantické hotely v Európe ♥️ | [Spracovanie prirodzeného jazyka](6-NLP/README.md) | Analýza sentimentu v recenziách hotelov 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen |
+| 21 | Úvod do predikcie časových radov | [Časové rady](7-TimeSeries/README.md) | Úvod do predikcie časových radov | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca |
+| 22 | ⚡️ Svetová spotreba energie ⚡️ - predikcia časových radov s ARIMA | [Časové rady](7-TimeSeries/README.md) | Predikcia časových radov pomocou ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca |
+| 23 | ⚡️ Svetová spotreba energie ⚡️ - predikcia časových radov s SVR | [Časové rady](7-TimeSeries/README.md) | Predikcia časových radov pomocou metódy Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban |
+| 24 | Úvod do posilňovaného učenia | [Posilňované učenie](8-Reinforcement/README.md) | Úvod do posilňovaného učenia pomocou Q-learningu | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry |
+| 25 | Pomôž Petrovi vyhnúť sa vlkovi! 🐺 | [Posilňované učenie](8-Reinforcement/README.md) | Posilňované učenie s Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry |
+| Poslovenie | Skutočné scenáre a aplikácie ML | [ML v praxi](9-Real-World/README.md) | Zaujímavé a odhaľujúce reálne použitia klasického ML | [Lekcia](9-Real-World/1-Applications/README.md) | Tím |
+| Poslovenie | Ladenie modelov v ML pomocou RAI dashboard | [ML v praxi](9-Real-World/README.md) | Ladenie modelov v strojovom učení pomocou komponentov RAI dashboardu | [Lekcia](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu |
+
+> [nájdite všetky ďalšie zdroje k tomuto kurzu v našej zbierke Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
## Offline prístup
-Dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Naklonujte tento repozitár, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na svojom lokálnom počítači a potom v koreňovej zložke repozitára zadajte príkaz `docsify serve`. Web bude servírovaný na porte 3000 na vašom lokálnom hostiteľovi: `localhost:3000`.
+Túto dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Vytvorte si fork tohto repozitára, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na svojom počítači a potom v koreňovom adresári repozitára napíšte `docsify serve`. Webová stránka bude sprístupnená na porte 3000 na vašom localhoste: `localhost:3000`.
## PDF
Nájdite pdf učebného plánu s odkazmi [tu](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
-## 🎒 Ďalšie kurzy
+## 🎒 Iné kurzy
-Náš tím pripravuje aj ďalšie kurzy! Pozrite si:
+Náš tím produkuje aj iné kurzy! Pozrite si:
### LangChain
@@ -181,15 +172,15 @@ Náš tím pripravuje aj ďalšie kurzy! Pozrite si:
---
-### Azure / Edge / MCP / Agenti
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Azure / Edge / MCP / Agentov
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Séria Generatívnej AI
+### Generatívna AI séria
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -209,24 +200,24 @@ Náš tím pripravuje aj ďalšie kurzy! Pozrite si:
---
### Séria Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Získanie pomoci
-Ak uviaznete alebo máte otázky ohľadom tvorby AI aplikácií. Pridajte sa k ostatným študentom a skúseným vývojárom v diskusiách o MCP. Je to podporná komunita, kde sú otázky vítané a vedomosti zdieľané slobodne.
+Ak sa zaseknete alebo máte otázky ohľadom tvorby AI aplikácií. Pridajte sa k ostatným študentom a skúseným vývojárom v diskusiách o MCP. Je to podpůrná komunita, kde sú otázky vítané a vedomosti sa zdieľajú slobodne.
[](https://discord.gg/nTYy5BXMWG)
-Ak máte spätnú väzbu k produktu alebo problémy počas tvorby, navštívte:
+Ak máte spätnú väzbu na produkt alebo chyby počas tvorby, navštívte:
[](https://aka.ms/foundry/forum)
---
-**Vylúčenie zodpovednosti**:
-Tento dokument bol preložený pomocou AI prekladateľskej služby [Co-op Translator](https://github.com/Azure/co-op-translator). Aj keď sa snažíme o presnosť, vezmite prosím na vedomie, že automatizované preklady môžu obsahovať chyby alebo nepresnosti. Originálny dokument v jeho pôvodnom jazyku by mal byť považovaný za autoritatívny zdroj. Pre dôležité informácie sa odporúča profesionálny ľudský preklad. Nezodpovedáme za akékoľvek nedorozumenia alebo nesprávne interpretácie vyplývajúce z použitia tohto prekladu.
+**Vylúčenie zodpovednosti**:
+Tento dokument bol preložený pomocou AI prekladateľskej služby [Co-op Translator](https://github.com/Azure/co-op-translator). Hoci sa snažíme o presnosť, prosím, berte na vedomie, že automatizované preklady môžu obsahovať chyby alebo nepresnosti. Pôvodný dokument v jeho rodnom jazyku by mal byť považovaný za autoritatívny zdroj. Pre kritické informácie sa odporúča profesionálny ľudský preklad. Nie sme zodpovední za akékoľvek nedorozumenia alebo nesprávne interpretácie vyplývajúce z použitia tohto prekladu.
\ No newline at end of file
diff --git a/translations/sk/SECURITY.md b/translations/sk/SECURITY.md
index 2b16217f9..479aa6d70 100644
--- a/translations/sk/SECURITY.md
+++ b/translations/sk/SECURITY.md
@@ -1,12 +1,3 @@
-
## Bezpečnosť
Microsoft berie bezpečnosť svojich softvérových produktov a služieb vážne, čo zahŕňa všetky repozitáre zdrojového kódu spravované prostredníctvom našich organizácií na GitHube, medzi ktoré patria [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) a [naše GitHub organizácie](https://opensource.microsoft.com/).
diff --git a/translations/sk/SUPPORT.md b/translations/sk/SUPPORT.md
index 18516529f..b14a79f73 100644
--- a/translations/sk/SUPPORT.md
+++ b/translations/sk/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Podpora
## Ako nahlásiť problémy a získať pomoc
diff --git a/translations/sk/TROUBLESHOOTING.md b/translations/sk/TROUBLESHOOTING.md
index 6738d30c0..63e1f7667 100644
--- a/translations/sk/TROUBLESHOOTING.md
+++ b/translations/sk/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Príručka na riešenie problémov
Táto príručka vám pomôže vyriešiť bežné problémy pri práci s učebnými osnovami Machine Learning for Beginners. Ak tu nenájdete riešenie, pozrite si naše [Diskusie na Discorde](https://aka.ms/foundry/discord) alebo [otvorte problém](https://github.com/microsoft/ML-For-Beginners/issues).
diff --git a/translations/sk/docs/_sidebar.md b/translations/sk/docs/_sidebar.md
index f75282ba9..2b6ff9617 100644
--- a/translations/sk/docs/_sidebar.md
+++ b/translations/sk/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Úvod
- [Úvod do strojového učenia](../1-Introduction/1-intro-to-ML/README.md)
- [História strojového učenia](../1-Introduction/2-history-of-ML/README.md)
diff --git a/translations/sk/for-teachers.md b/translations/sk/for-teachers.md
index f31536e1e..5c3d77960 100644
--- a/translations/sk/for-teachers.md
+++ b/translations/sk/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pre pedagógov
Chceli by ste použiť tento učebný plán vo svojej triede? Neváhajte!
diff --git a/translations/sk/quiz-app/README.md b/translations/sk/quiz-app/README.md
index 27a4057fe..7518185e6 100644
--- a/translations/sk/quiz-app/README.md
+++ b/translations/sk/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvízy
Tieto kvízy sú prednáškové a po prednáškové kvízy pre ML kurikulum na https://aka.ms/ml-beginners
diff --git a/translations/sk/sketchnotes/LICENSE.md b/translations/sk/sketchnotes/LICENSE.md
index 5e0ce9b16..7426d5c09 100644
--- a/translations/sk/sketchnotes/LICENSE.md
+++ b/translations/sk/sketchnotes/LICENSE.md
@@ -1,12 +1,3 @@
-
Attribution-ShareAlike 4.0 International
=======================================================================
diff --git a/translations/sk/sketchnotes/README.md b/translations/sk/sketchnotes/README.md
index 5e46a17e5..e784dcf6e 100644
--- a/translations/sk/sketchnotes/README.md
+++ b/translations/sk/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Všetky sketchnoty z učebných osnov si môžete stiahnuť tu.
🖨 Pre tlač vo vysokom rozlíšení sú TIFF verzie dostupné v [tomto repozitári](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff).