diff --git a/2-Regression/1-Tools/notebook.ipynb b/2-Regression/1-Tools/notebook.ipynb index 0b5684ed..f14d5c24 100644 --- a/2-Regression/1-Tools/notebook.ipynb +++ b/2-Regression/1-Tools/notebook.ipynb @@ -27,6 +27,84 @@ "a = np.array([[1, 2, 3, 4], [ 5, 6, 7, 8], [9, 10, 11, 12]])\n", "print(a[0])\n" ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "483bcfdb", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n", + "import pandas as pd\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "6ffd05a8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "x, y = datasets.load_diabetes(return_X_y=True)\n", + "print(x.shape)\n", + "print(x[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7d5a1b8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfkFJREFUeJztnQe4E9XWhhe99y5NKYIIKjbALiAIItgVuFJEUESlq1xBigUUBLwqeK8FRT0gqIiignQLCIKCCIiANJEDCNLhUM78z7fj5E9yMskkmUxmJt/7PHNyMtmZ2dlT9jdrr71WLk3TNCGEEEIIITnInXMVIYQQQggBFEqEEEIIIQZQKBFCCCGEGEChRAghhBBiAIUSIYQQQogBFEqEEEIIIQZQKBFCCCGEGEChRAghhBBiAIUSIYQQQogBFEou4eyzz5Y2bdokfT/Dhg2TXLlyiRN4++23VV1WrFiR6qq4ji5duqhzJh7Q5g8//LDldSLOYuvWrepY4zoj/3+/QbukM2gD9ANWsWjRIrVNvLoVzwqlCRMmqIPTqFGjVFclbUCb86abPPGqL4ULF5Zq1arJzTffLJMmTZKsrCxxMn/++af6DatWrUpZ56cvBQsWlHPPPVcJwd27d9teH5K+9+8vvvgiJgGSnZ0tkydPVm1QunRpKVasmDp3O3XqJN9//714jbdDrlUs5cuXl+uvv16+/PLLHOX1Mvfff3/Y7T355JP+Mn/99VfQQ2TRokVjqlte8Sjvv/++eqJevny5bNq0SWrVqpXqKqXFza1s2bLqRCTWM3HiRHWBQxjt3LlT5syZI/fdd5+MHz9eZs2aJVWrVvWXff3119WN1ilCafjw4ep6vOiii1JShxEjRsg555wjJ06ckG+//Va1JTquX375RQnPdKR69epy/PhxyZcvnziNVNy/7733XrnnnnukQIECSdk+zrdXX33VtFh69NFHVfl27dpJx44dJW/evLJhwwYlGmrUqCGNGzcWLzLin2sVaWjxMAMB1bp1a/nss89yjKrgweejjz5SfU/+/PmDPpsyZYr6HNd8onhSKG3ZskWWLFkiH3/8sTzwwAPqohs6dGjS93v06FEpUqRI0vdD0pM77rhDCVGdp556Sp3beMK88847g54yndj5pZJWrVrJpZdeqv7HE2iZMmVk7NixMnPmTGnfvn3Kr+dU3Dt0C5vTSNX9O0+ePGpxAhAI6Py7d+8u//vf/4I+w4PR3r17JR2uVdCtWzepUKGCEj6hQunGG2+UTz/9VIlHCEodnD84j26//XYlpBLFk0NvuLBKlSolN910k+pc8N4seAqH4j/rrLPUkybMfuvWrVNPN4GWEt1MuHjxYnnooYeUibBKlSrqs23btql1derUkUKFCqmbMjqy0LFvfRtff/21uiGgXPHixVXH9/fff4etH56GL7/8cnWDw1MFTLNmfRHGjBkj48aNU0+SqNe1116rnqijcfr0aXn66aelZs2a6mkLbfHvf/87aMgH69auXavaQzd3XnfddRG3O3XqVLnkkkuUSRm/u0GDBvLSSy/lKIf99OvXT8qVK6c6k1tvvTXsjQI3lvPPP1/VEcevV69ecuDAAf/n//nPf9SNMHDdiy++qOqK7eucOXNG1enxxx/P0X64aentcNlll8kPP/yQox7Tp0+XevXqqWNUv359mTFjRkI+Q5HAkyY6/mXLlsncuXP968PtD/W/4oor1HmG44+2//DDDw23jesG5zB+B8riPA0Fli1YtXAjQ5ug/d966y3/5/BLQDuBrl27+s+NwCFa1B03vBIlSqhrDufld999F7Sfw4cPS58+fdRvwn5wvd1www3y448/xtVuTZs2Va+4mertBWvd5s2b1dMrjj/aVhcx/fv3VxY77BttgrbEE28gsM7ACgAxi++3bdtWtU+oz4c+lIr7SocOHdS96qqrrvJ//t5776n2xjHCkAusHDt27Aja18aNG1UnULFiRXV8cO9BuYMHD/rL4HzAdkuWLKl+G+qN6zaaj9KCBQvk6quvVtcavosOaP369UFl9N8Aaw/aDuVw/HCMjx07Jnbcv/ft26esQLh3YP+dO3eW1atX5/hNP//8s6oj7pdoK7QZzll8P5qPku4bGu2+e+rUKWU1rV27tiqDawxtr1+T2D+sQyBwaMkInJc4v6688socn+lDUoHgnta3b1//9YHzAf2IPuR08uRJ9WCF8wrHCccWx3jhwoVihp1RrnOdP/74Q2655Ra1fdQRdUrUNQDHFtcCLGqhVK5cWa655hrJyMgIWo9zBv0J7r9W4EmLEhrptttuU6Y4PC3CzI4OTb9hR2LQoEHywgsvKP+Pli1bqgsPr0bmOwgidOA4CXFDBdgXFC1uXDhhceGhDhAOuDmGmvrhL4GTATcfmFZRFmJLd4LTwU0JNw4obNwUcKLiAsTJjxM3Gri40eFAQOD3QJSgw1izZo26AIxAR/zOO++ofaPDQMc2cuRIdfOECNCfch555BF1Q8bYMIi0TdxAcGyaNWsmzz//vFqH7aGD7N27d1BZbBc3TjxVoi2xL7TZBx984C+DtsONqnnz5tKzZ09/O+JYYJuwsODGACGMm57+ZPLNN99I7ty51avOTz/9JEeOHFEXYCC4GNF+ELU4LjhPcJ79/vvvfgvO559/Lnfffbe6SNFGELw4XrigkwU6Cwi4r776SokHI3C80XlDAODGCaEKAY9hO3RKgUDwon3R8ePGCBEKMYOhEP3mg6demP91529cB3iyw+89dOiQEjbnnXeeMqXj+ujRo4c6BgCCTe+U8QSJcxjHF8cCflc4L3FM0DmBBx98UIk67AciFJ0cjiPOmYsvvjjmNoMgAujQAh8IcK2jg4MQwnWKzgpthg4FvwtDhxjyHDhwoOo88OChg2tx2rRp6nigXdCGoe0aCNoeHetzzz3nF13PPvusDBkyRO666y513eGB4OWXX1bnIs5L3Cdw7FBPdEC4NtDxoy44jugw0RHioQXn+AUXXKDaH8cQ949QARrKvHnz1PGAGMA1BfGH/aPDhigNFd+oJ4ZJcK7j8zfeeEN1kPo1naz7N65j3KNxPuJ6r1u3rrIO4r4Y7l6DaxQiDm2FtsH1gldYYaNNXjFz30VboQ1wzHDO4vzHJBS0Ca5J3DMwBI26vPvuu1HbAA+z+kMXzpNIw8O4V+G6wrUAMYPrAQIJlhYIFwh31AfHBu0JKxXuY2+++aY6j9CGkYbEd5u4zgHOFdzPt2/fru4beFjFb8U1HgsQ+6g/rok9e/ao8w+/8V//+lfY8njYQJ+BMuh/cB2j3fDwa8Wwm0LzGCtWrMAdR5s7d656n52drVWpUkXr3bt31O9mZmZqefPm1W655Zag9cOGDVPb7Ny5s3/dpEmT1LqrrrpKO336dFD5Y8eO5dj20qVLVfnJkyfn2MYll1yinTx50r/+hRdeUOtnzpzpX1e9enW17uuvv/av27Nnj1agQAGtf//+EX/Xli1b1HcLFSqk/fHHH/71y5YtU+v79u3rXzd06FC1TmfVqlXq/f333x+0zQEDBqj1CxYs8K87//zztWuvvVYzA45H8eLFc7RdIHr7NG/eXB1HHdQ3T5482oEDB/ztkD9/fq1FixbamTNn/OVeeeUV9f233npLvcdn2Odjjz2m3mObZcqU0e688061vcOHD6v1Y8eO1XLnzq39/fffQe2Hsvv37/dvH8cH6z/77DP/ugYNGqjzTd8WWLRokSqHYxgP+jHZu3dv2M9RT3x+6623+tfhXA3dX+h5iXOufv36WtOmTYPWY1tYcC3pbNu2TStYsGDQPrp166ZVqlRJ++uvv4K+f88992glSpTw7++HH35Q28PxDATtX7t2ba1ly5ZBxxffO+ecc7QbbrjBvw7b69WrlxYr+jk0b9481X47duzQpk6dqo5l4PWA9kK5J554Iuj7n3zyiVr/zDPPBK2/4447tFy5cmmbNm1S71euXKnK9enTJ6hcly5d1Hocw9Dj2b59+6CyW7duVefhs88+G7R+zZo16r6kr//pp5/U96dPn274u8eNGxfxnAk8rwOPy0UXXaSVL19e27dvn3/d6tWr1fXQqVOnHL/hvvvuC9omzg+0bbLv3x999JEqN378eP86XN84l0N/U7j78ZQpU3LcT/VzBe0S6333wgsv1G666aaIvw3nbyxdLtob5UuVKqXadcyYMdr69etzlHvqqadUuY8//jjHZ/p1hftsVlZWjvtGhQoVchzD0PO1m8nrHMcC3502bZq/zNGjR7VatWqp9QsXLoz4e/X2D13Q1m+//XaO8vgMbYp7Mu7/7777rlr/+eefq2sT11O4eyeu9SJFimix4LmhNzyNwJKBITMAFYwnfDw9Y0glEvPnz1dqFFaiQPDUZgTUeei4NsyEgSZZPP3CGRFPg+GGCvCkHehTgickmBnh/BcInqT1J3IAZQ9zOp6WzACTaKBlA08+mFERup9A9M8Ch6YALEu6BSUe0BawwAUOFxmB9gl86kMb4FjC6qY/BeMpG082sEgEHhuY5fU64jNYMvQhJDyB4dg88cQT6ull6dKlaj0sGbCaoI6B4DyCZSuwHkBvfzwxwjoHk3fgrAoMJcHClCz0feEpMRKB5yUsXXhyw28Id042adJEPTHrYJYdhmBgTUHbo70w9o+nevyPJ0B9wVMqth1tWAyz4DCEhCdCHAf9+zgv8GSK46Q7pONYwJKJNo4HWBpxvWD4DJZetBmsoaGWPlx7oec/rm88IYee//jd+myc2bNnq9dY7h2wkgUCnxz8XlhpAtsTVhBYnvRhEliMAI6F0TCXfu7CymLWqX/Xrl3qmMBagiE/HVilYBUJd58I/Q04n3AsYWlI5v0b7Y17Jq5xHVzfsJZHOu9hYUCb6o7QZoZuzdx30d6wUOF8tgpYVl955RVlscO5OmDAAGWhxbUBC6IOrsMLL7xQuSSEot83cQ7rzs44H/bv36/6OvgCRWqDWK7zL774QipVqqSsbzqwhOH+HQsYokS/gAXD0DgXYKnD9REO3JNh7YYPk275x31et8pZgaeEEi4kXFBoWIzxwmSKBWIA5kMIoUjoHW/oDAvcNAI7yEBwEocCEySGGnSfBpg+cXHBLB7oQ6CDm2AguInjhAv1aUJnFQrqZeTPFG0/ANNNI8UNQZvgBhTaJrh54+agt1msoEPBvmHmx/AkTMZ6ZxNK6O/Wj4X+u/U64OYVCG4MGEIIrCNueCtXrlTHCIII7QxTNW40+vAbhnQCb4yx1iPcDJ1kztqByRnALyYSGJpBBwEfCpzTOCcxrGHmnAQ4XuiYMRyEBeczhjCwncAFQxwAZvNI6J0KhjNCt4FhAgwt6XXDMCf86XBNQeBjqMPsA0LgzRdiA8Pf+C5u9IHg4UT3M9TBMcUQQmjbosPSPw+8TkLvB5GOe2hZtAc6I7R9aHtA1Ovtie/hwQVthHsLfgd+X+BxhLjAcBk6GAgPiEMMC0YSTUbXkf57dREbyzWRrPs36oprN3RIKlx7QxRgaAbtANGE9tTbPty5H4qZ+y6GN3E94BrBQxGGZuEblQi68MP9Cm0P0Yv7JYaycDwDh5HN+OLAfQKiV/ehQjvgITJSG8RynW/btk21f+hQZrjzKRK4vvFggwVuAqgjxCqG/fBAHA48bOH6xrDfJ598ot5biad8lHAC4akIFxuWcE8rLVq0sHSfgU8rgU+ReBqAhQNP5ngCxMmDkzuRKdtGMzJCnUqTgdVBKOHHgKdXPBXjqRwL2gzWGFzQyfrd8D+BlQ/WIwgjXRDhFe9//fVXdXMIJ5RS2f6R0B3yI3XK+G3wtYGvC/yN0MngiRxtHuoIaQb9PIbfQDi/EICbspltjB492tBHQreWwcqCY4Ina/hi4Tvwg8FTJjoPMzffwJk04cBDTaBFMtmE3jvQHrjOcC2EO9cCrZSYhADLDzpPtAcsXvCRgc8NxB62DYschCE6GjyEwOcMvl8ob9XsLiuviWTdv3HuwGcU4gXnGdoRbQ0rhJn7sZnfiOsKgkU/HhCx8F977bXXDOP8xAKEDa5fLPB1hf8bhIlZqwksMzhfMKqAdsD9F78L54zur5es6zxRcE1CPMPHEg8T4fxx0S64flFHPGDhmFuJp4QSLiScAPrsgkBwQ8VNFiduOHED9JMOTzGBT3swJcfyhASnUxww3MwCTb6Bs60CwcHXTc26hQA3DMy+sZJwZuHffvst4mwstAkuFnxXf4oGeMLD7wm8UGMVU7D4wKSLBfuAlem///2vcmaNxQKj1wEO3LAg6eDpA0+meDIJ7DCxXwgHLLhp6Dc6xB7Sn1pDHbljqQfOn1DCrbMK3Tk01EISCMzneJKEMA2MEwOhFMu5gid4PE0CWFlgBQhs33AYnReYPQgwPBptGwDiDucIFjzFwhII52czQilecEwxtIthzUCrEgS1/rn+inMY51ugNS6W4472QOeLew8sE9GA5QLL4MGDlRCABQn3t2eeecbfwWCYBgtCIcBpHBMtIJ7CtXfgdRQKfi+sV8kMYRDL/Rt1xe+AhTPQqhTa3rhv45rGRA9Y+XWsHCLTgZUWVhYs+mQQWD51oWTVwyYEP4QS+gi0A86baLOX0Sfh3oh2DKxHtLALuNaLmbzOURfUA+dw4D7CnU+xgmHCQOt5KDgnIAIhCHE/CAyjYgWeGXrDUApOAsz0wBhp6AKzHW52mAlgBG4oML9jOCIQjBPHApR66BMVPPeNfKRg1oSVQwf7x4lhdQcAk2Tg2DZmO8DvI9J+dLGGmWaB4MYLAmf14CZqJAZDCZ2ai5u6/mQS63RSXMAQP5j+H9jumNUBs3JgHSEWMHsG49kw0wZalHAOYRu48aBTjhUM0cAEjtmFgRc0bmrwXUoGsAbh6RWWS5y/kc5J3LwCz0EMueKcCAcsboG+C5iejqdlPNHr8Wb0GCXhbtKB4Rv0zjX03IAPFNoaM8zC3QD1baDOocMD6FDR3smOSo7zH/sPvQfAWoD21K8dXaTCWhd63ZsFM73QrujUQ+8feK9fM/D/0TsOHQgmXEN6e2C4KRTdamfUZjjnUQYW3cBjheMLK4nVD26J3L/R3rhn4uFGB0I1VGTp1qDQ9gy9nyVK6P0MVis87AW2tdF1EI7MzEw1RBwKHv4g/ALdIXAdYna2PgM5EP13h2sH3Pt1v0wjYrnOW7durXwIA0OOQMiGxoGKFRxnnH+4xwc+rIcCHy4IPzxoW41nLEq4gHAhwQQXDvhmQB3jqQXj9+HAGDbGsmEJwnZgmsUJCFM4FKrZJwJc7HjKx5AbxlZxMuKpNHAqcujJj04O5kKob9xsMURk9FviBRcWtguHVVzAuFmgTo899pjhd+C7A+sYTnZc4HBMhsDCzRQKPtASho4PIg9PtNgXOjM9Xk0oeMrCzRyfY6gAZmR0KrhRR7oYwoHjirAO6GBwzNBuejtCFIVOK4UoGjVqlDo+upM16oqxdHwvkcjieGqH0zOe7vFkiSdadLIQUEZPQ2bBDQg3YJwvemRuTPfGMcJ02EhALELcon0wfg+LDDoVHKdwvhSoLzqjwPAAAG2sgzbEUz18SOBUi3MdxxQCC+e73llDDMGfDdYAPJ2iw8B3YDmByIPYgDkd7QXnavw2bBeWJkTjxXWNcwQdJn4r2gDbx5TxQKttMoC1E+c4LDEQltg/btoQjRha161iOPfRoeCaQqephweAFQ6YuXdgW7h2cC5jX7i+0F6wUqEThFMsOgMMUUE4YNo4LE8QTbjf6J2a7jODoTccdzzp43jjGKIdA2M2hYIhTRwPCG9M/9bDA+BasTL/V6L3b7QNrMNwqocVCeEBsA39nNPbG+cQLDvwcUOHi/MLx0+Pn2UVOPcxJIbzAJYlhAbQw1no6JMjcE3h2sLxCvQ1CgTT+vH7cH9E3wCfUBxDPOChT8K5p1tNYBXHvnA+wNcT+0E7oD1wzeGcRZ8EIQqHb5wT+P34DPWOdl8aZfI6x2e418F9An5VEN44L2ONfI/+VrfY4jfjYRAWQEy6wfE0Ar8TS1LQPMLNN9+spi9jOqIRmKqbL1++HNMcA8E0yiFDhmgVK1ZU04cx3RRTMjHl9cEHH8wxlRFTn0PBtMuuXbtqZcuW1YoWLaqmP//6669qqmm4EAOLFy/WevTooaaBonzHjh2DpucCfDfc9FNMx482JV+fBjx69GjtxRdf1KpWraqmXF599dVq6m8goeEBwKlTp7Thw4erKdtoP3x/0KBB2okTJ3KEV0AdixUrprYRqV4ffvihms6PqciY2lmtWjXtgQce0Hbt2hW1jTHNNNx0U4QDqFu3rqojpr327NnTP8U/EEwfxfdbtWoVtB4hELD+zTffNGy/UEKn0gJMP0c90MaYfv/pp59qt99+u1oXD/ox0Rec55gy3aZNGxX6IPQ4GIUHwO/CdHzUC3VB+4Y73vq02/fee89fvmHDhmGn9+7evVuVxTmBdsd106xZM+1///tfUDmEUqhXr56a5h46fRvT3W+77TZ1jWFfqPddd92lzZ8/X32Oac0DBw5UU7BxbmFqL/6fMGFC1LaLdJ2GtpfRlGGEekBIirPOOkv9RrQJzoXAkAYA9x60RenSpdV1jDAjGzZsUPsfNWqU6XAPmPqOsCOoDxYcK2wX2wK///67mtJds2ZNdS5gf9dff70KgaCDtmvXrp2qM64vvCIcwW+//RYxPADAdq688kp1/0M4Ddxb161bF1TG6DeEm2KfrPs39t2hQwd1TmCaOj7/7rvv1P5xDeogBASm15csWVKVQziQP//8M8e1axQewMx9F+EjLr/8crUPtBuOGcI5BIZ9Qd/yyCOPaOXKlVPT1yN1v4cOHdJeeukl1XfgWsfvxu9s0qSJ9vrrr+c499BfPPzww1rlypXV8cZ3cE7rbYXyzz33nPo9+vU8a9assPeJcPe03Savc4QRadu2rVa4cGHV/yGsw+zZs+MOD4BzAiErJk6cmOM36/epSFgVHiDXPzskEYAlBbMc8LSnB1O0AkSCxVM0noyjOZomAp5O8fSOp0U8kRL7gaUMT8RmwiEQ74AJCw0bNlS+E3qkb5I8MJQMqwlmroaLak1IWvsoWQVMzaHo49nRUnIQAvN+qP8IIqzDXM7zJz3vHfAniWdyAImtveFLhmFCDM/EE62dEM/7KFkFptDq2YrhC4EnE4wLw4mVTygkGvCvgXM5/KLgbIyxdvgCwMcgNDgf8Rbwg4FvBnyaMClED3sB3yLEfyLWgjAsEEvwp4LPJXxwMPsPfoJGM5sJiQcKpRAw8wo3Odz0MLtEd/DWp9wSEgkM0cKZEk7KmBECx2U4T8Ih0siZn3gDRAPG0CoSSMNBFoEK4QBt5XA9+X/g6AxnfgRSRfgVTEyARSnQgZoQK6CPEiGEEEKIAfRRIoQQQggxgEKJEEIIIcQA+ij9E9EVEUUR3M3qnGaEEEIISQ7wHkKwUkyeSVauRgolESWSOCuFEEIIcSc7duxQkeeTAYXSP8k99YaOFCKdEEIIIc4Bs9Nh6AhMWm01FEoheYEolAghhBB3kSuJbjN05iaEEEIIMYBCiRBCCCHEAAolQgghhBADKJQIIYQQQgygUCKEEEIIcaJQmjhxokpCq882QxZoZNvWue6665Qne+ASmoF9+/btKulo4cKFpXz58jJw4EA5ffp0Cn4NIYQQQrxGSsMDIDgUsqrXrl1bRdd85513pF27dvLTTz/J+eefr8p0795dRowY4f8OBJHOmTNnlEiqWLGiLFmyRHbt2iWdOnWSfPnyyXPPPZeS30QIIYQQ75BLg0JxEKVLl5bRo0dLt27dlEXpoosukvHjx4ctC+tTmzZtVGTtChUqqHWvvfaaPP7447J3717Jnz+/6YBVJUqUkIMHDzKOEiGEEOISDtnQfzvGRwnWoalTp8rRo0fVEJzO+++/L2XLlpX69evLoEGD5NixY/7Pli5dKg0aNPCLJNCyZUvVcGvXrrX9NxBCCCHEW6Q8MveaNWuUMDpx4oQULVpUZsyYIfXq1VOfdejQQapXr66S3f3888/KUrRhwwb5+OOP1eeZmZlBIgno7/GZEVlZWWrRgbAihBBCiPVGkG+++Ua5xlSqVEmuvvpqyZMnj7iJlAulOnXqyKpVq5TZ7MMPP5TOnTvL4sWLlVjq0aOHvxwsR2jkZs2ayebNm6VmzZpx73PkyJEyfPhwi34BIYQQQkKBUaN3797yxx9/BPkmv/TSS3LbbbeJW0j50Bv8iGrVqiWXXHKJEjAXXnihasRwNGrUSL1u2rRJvcKJe/fu3UFl9Pf4zAgM4UGY6QuS4RJCCCHEOpF0xx13BIkksHPnTrVeHxlyAykXSqFkZ2cHDYsFAssTgGUJYMgOQ3d79uzxl5k7d65y6NKH78JRoEABf0gCJsIlhBBCrB1u6927t5rNHoq+rk+fPqqcG0jp0BssO61atZJq1arJ4cOHJSMjQxYtWiRz5sxRw2t437p1aylTpozyUerbt69cc801KvYSaNGihRJE9957r7zwwgvKL2nw4MHSq1cvJYYIIYQQYi/ffPNNDktSqFjCSA7KYXa700mpUIIlCHGP4OSF6X0QQBBJN9xwg2rEefPmqdAAmAlXtWpVuf3225UQ0oFD2KxZs6Rnz57KulSkSBHl4xQYd4kQQggh9rFr1y5Ly6W1UHrzzTcNP4MwglN3NDAr7osvvrC4ZoQQQgiJB909xqpyqcZxPkqEEEIIcS9XX321mt2GtGPhwHoYQ1DODVAoEUIIIcQy8uTJ45+9HiqW9Pdwq3FLPCUKJUIIIYRYym233aZiI1auXDloPSxNWO+mOEqOy/WWCpjrjRBCCHFfZO5DNvTfKY/MTQghhBBvkidPHleEAIgEh94IIYQQQgygUCKEEEIIMYBCiRBCCCHEAAolQgghhBADKJQIIYQQQgygUCKEEEIIMYBCiRBCCCHEAAolQgghhBADKJQIIYQQQgygUCKEEEIIMYBCiRBCCCHEAAolQgghhBADKJQIIYQQQgygUCKEEEIIMYBCiRBCCCHEgLxGHxBCCCFu4MyZM/LNN9/Irl27pFKlSnL11VdLnjx5Ul0t4hEolAghhLiWjz/+WHr37i1//PGHf12VKlXkpZdekttuuy2ldSPegENvhBBCXCuS7rjjjiCRBHbu3KnW43NCEoVCiRBCiCuH22BJ0jQtx2f6uj59+qhyhCQChRIhhBDXAZ+kUEtSqFjasWOHKkdIIlAoEUIIcR1w3LayHCFGUCgRQghxHZjdZmU5QoygUCKEEOI6EAIAs9ty5coV9nOsr1q1qipHSCJQKBFCCHEdiJOEEAAgVCzp78ePH894SiRhKJQIIYS4EsRJ+vDDD6Vy5cpB62FpwnrGUSJWkEsLN7cyzTh06JCUKFFCDh48KMWLF091dQghhMQAI3OnL4ds6L8ZmZsQQoirgSi67rrrUl0N4lEolAghhFgGrTvEa1AoEUIIsQTmXSNehM7chBBCEoZ514hXoVAihBCSEMy7RrwMhRIhhJCEYN414mUolAghhCQE864RL0OhRAghJCGYd414GQolQgghCcG8a8TLUCgRQghJCOZdI16GQokQQkjCMO8a8SrM9cZcb4QQYhmMzE3shLneCCGEuArmXSNeI6VDbxMnTpQLLrhAqUAsTZo0kS+//NL/+YkTJ6RXr15SpkwZKVq0qNx+++2ye/fuoG1s375dbrrpJilcuLCUL19eBg4cKKdPn07BryGEEEJIIL/9JlKvnkihQiKrV4srSalQwtj1qFGjZOXKlbJixQpp2rSptGvXTtauXas+79u3r3z22Wcyffp0Wbx4sfz5559B49ww8UIknTx5UpYsWSLvvPOOvP322/LUU0+l8FcRQggh6c3hwyJwV6tTR2T9ehg+RC66SOTkSXEdjvNRKl26tIwePVrlBipXrpxkZGSo/8Gvv/4q5513nixdulQaN26srE9t2rRRAqpChQqqzGuvvSaPP/647N27V/Lnz29qn/RRIoQQQhJH00Q6dBCZOjX85ytXilx8sXX7s6P/dsysN1iHpk6dKkePHlVDcLAynTp1Spo3b+4vU7duXalWrZoSSgCvDRo08Isk0LJlS9VwulUqHFlZWapM4EIIIYSQ+Hn1VZHcuY1FErjgAnEdKXfmXrNmjRJG8EeCH9KMGTOkXr16smrVKmURKlmyZFB5iKLMzEz1P14DRZL+uf6ZESNHjpThw4cn5fcQQggh6cS33yLoaPRysF/kTbnqcKFFqU6dOkoULVu2THr27CmdO3eWdevWJXWfgwYNUmY6fUGyRkIIIYSYZ+dOBBSNLpL+8x/fkBycut1IyrUdrEa1atVS/19yySXyww8/qAivd999t3LSPnDgQJBVCbPeKlasqP7H6/Lly4O2p8+K08uEo0CBAmohhBBCSGxkZYlccYXIjz9GLnf33SIZGb7hODfjuOpnZ2crHyKIpnz58sn8+fP9n23YsEGFA8BQHcArhu727NnjLzN37lzl0IXhO0IIIYRYR79+IgULRhZJyH188KDPV8ntIinlFiUMgbVq1Uo5aB8+fFjNcFu0aJHMmTNHebF369ZN+vXrp2bCQfw88sgjShxhxhto0aKFEkT33nuvvPDCC8ovafDgwSr2Ei1GhBBCiDVMnSrSvn30cr/+6gsJ4CVSKpRgCerUqZMKdQ9hhOCTEEk33HCD+nzcuHGSO3duFWgSVibMaJswYUJQBNhZs2Yp3yYIqCJFiigfpxEjRqTwVxFCCCHe4OefRS68MHq5mTNF2rYVT+K4OEqpgHGUCCGEkP/n779Fqlf3BY6MxJAhIqm0TTDXGyGEEEJs48wZkXbtRD7/PHK5a6+FT7BIvnzieSiUCCGEECLPPy/yxBORy+TKhTiFIuXLS9pAoUQIIYSkMV99hawW0cstXy5y2WWSdnhg4h4hhBBCYmXLFp+FKJpImjTJFzAyHUUSoFAihBBC0ohjx0TOPVekRo3I5bp3R2xDkS5dJK3h0BshhBCSBsAqBPHz5puRyyEOEgJKFi5sV82cDYUSIYQQ4nEgju6/39xw3Nln21Ej90ChRAhJOWfOnJFvvvlGBZ+tVKmSXH311SqgLCEkMeCA3aiROYfuf2I9kxDoo0QISSkff/yxnH322XL99ddLhw4d1CveYz0hJD6QHx6O2tFEEkICYEiOIskYCiVCYrB6IBfhlClT1Cvek8SAGLrjjjvkjz/+CFq/c+dOtZ5iiZDYOHVK5JprRCpWjFzu5ptFTp8Weewxu2rmXiiUCDEBrR7WA6HZu3dvCZdFSV/Xp08fClJCTDJ4sEj+/CLffGNcpkQJkf37RT79FPlS7ayde6FQIiQKtHokB/gkhbZpqFjasWOHKkcIiZyQFsNszz4bPcHtgQMipUrZVTNvQKFESARo9UgecNy2shwh6caGDT6BdMstkct98IHPD6lBA7tq5i0olAiJAK0eyQOz26wsR0i6cOiQzwepbt3I5fr18wmku+6yq2behOEBCIkArR7JAyEAqlSpooYww1nscuXKpT5HOWIMQyukD4iSfc89ItOnRy6HVCN4ditQwK6aeRtalAiJAK0eyQOd+UsvveQXRYHo78ePH89OPwKcZJA+vPyyz/k6mkjaudMXO4kiyTpyaeEe5dKMQ4cOSYkSJeTgwYNSvHjxVFeHOOxpHR1PNKvHli1b2KHHCTp1+IEFDnFWrVpViaTbbrstpXVzwySD0PNSF5kffvhhUPu5wfLkhjrazddfi1x7bfRy334rcuWVknYcsqP/hlBKdw4ePIg7jXolJJSPPvpIy5Url1pwnuiLvg6fk8Q4ffq0tnDhQi0jI0O94j0xBu1TpUqVoPMx9NysWrWqvx1xjoaWx3snnbtuqKOd7NgBBRx9efVVLa05aEP/TYsSLUrEBLR6ECeBgKcYZovGwoULZf/+/TFZntxgHfMyWVm+aNqrV0cu16GDyHvv+Wa9pTOHbOi/KZQolIhJOCxAnAKiw8MnKRrvvfeePPHEE4YzN50wdKwPbzu5jnaAnrhPH5H//CdyuSpVRNatEylWzK6aORs7+m/OeiPEJLhJX3fddamuBiGmJw/s3bvXdHiLVJ3bsYTg8Or1N2WKz0JkJm7SuefaUSMSCGe9EUKIS0MrhM4W1MF6DA2XK1fO8eEt0jkEB4bXcAijiaTPPvNZnCiSUgOFEiGEeDS0QuXKlR0f3iIdQ3Ag11rhwiIXXRS53NChPoHUpo1dNSPhoFAihBAXAudmODmHiiFYmnTnZ7OWp1QG9XRDHa0CmY5uvFGkTBmR48eNyzVtKnLqlMiwYXbWjhhBoUQIScgRFzOw4FyMV+a8sxeIoa1bt6rZbRkZGeoVTs/6DDE3BPV0Qx2t4LnnRPLmFZkzx7gMPt+zR2T+fN//xCEkLfCAi2AcJUJih3Fv3H2sEGfJScfKDXWMh9mzzcVDWrEi1TV1JwcZR8keGB6AkNhg3Bv34YbwFm6oo1l+/12kZs3o5d5+W6RzZztq5E0OMY6SPVAoEWJd3BtQunRpmTZtmprO7daOjpB4OHpU5IILfEIpEj17irz6KgNGuqH/po8SIcTSuDcA0aCbN2/OBK1pSLr6rcHk0LWrSNGikUXSeeeJHDsmMmECRZJboFAihMRELPFskEwYQ3QUS+khKHCcIY6RXgWRw/GaDmL5jTdEcuf2DaNFYutWX1TtQoXsqhmxAgolQhyKUzvSWOLZYGQfC/LkOaX+TsCLgkL3Wwu1NnpZLC9b5rMKde8euRxmscHiVL26XTUjVkKhRIgDcXJHGi3uTTjQeT777LNJrZdb8KKggAiGGA7n8qqv69Onj2fEcmamTyA1bhy53JgxPoGEuEjEvVAoEeIwnN6RRop7E4mhQ4emvO6pxquCIpZ8bW4GQSCvvBJW1cjl2rXzBZfs39+umpFkQqFEiAc6UruH6YyiQkfDjSLASrwqKNIhX9ugQSL584ssWWJcplQpkb//FvnkE5/PEvEGPJSEuLwjTdUwnR4Vet68eSocgBncKAKsxKuCwsv52mbM8A2zjRoVudwvv/hyuJUsaVfNiF1QKBHi4o401cN0GIZr1qyZvP7666a/4zYRYCVeFRRezNe2fr1PIEWLmzp9us8P6fzz7aoZsRsKJUJc2pE6yd8F1qXhw4d7UgSkm6CIZxjXS/naDh4UKVdOpF69yOUGDvQJpDvusKtmJGUkLTmKi2CuN+IUTp8+rfJd5cqVKyjnlb5gPfJfodzChQvDlgldUM7OuhvVI7Du6Qxyl6EtQo+xvi6Vuc0Szd/n5nxtZ85o2m23Rc/J1rixpmVlpbq2xM7+mxYlQhxELE/mTvN30euOerrdqpAKR3hYmlKZI8+KYVzdb23hwoWSkZGhXrds2eL4vH/jx+P8RRtELvfnnyJLl/qcukn6EFeutwMHDsjy5ctlz549kp2dHfRZp06dxG0w1xtxGuiUMKwW2GlhSAZCQ+90MCwCx+1ooLNCzjUn1Z04KwFstPx9ELoQchA9XhK6ixaJmLiE1Ey3Jk3sqBHxRFLczz77TDp27ChHjhxRlQp8csT/yPHkNiiUiBs7Ur1zwxN/uMs4lZ2bk0QAiY5TRXey2LFDpFq16OUmThR58EE7akSc3H/njfUL/fv3l/vuu0+ee+45KVy4cFIqRQjxDWVF6pT0oS4Mi0AUBYqlVA91Ras7cZZIddowbrI4cULksst8U/kjce+9Iu+8w6S1xEfMPkp4en300UcpkghxAE71dyGpId6YWl4NW6CDZ4iHH/Ylo40kkpCL7fBhkcmTKZJIAkNvuPHec889ctddd4lX4NAbcTsc6iK6M3boLV23LkYSzk4exk2U997zWYiisXGjSK1adtSIuK3/jtmidNNNN8nAgQNl2LBh8tFHH8mnn34atMTCyJEj5bLLLpNixYpJ+fLl5ZZbbpENGzYElYH5Xp9Foy8Phgwab9++XdULVi5sB/U7ffp0rD+NENeiD3W1b99evRp1ZnanOiH2kGhMLS/FQdL56SefVSiaSJo1y2dxokgihsQaT0CP9RFuyZ07d0zbatmypTZp0iTtl19+0VatWqW1bt1aq1atmnbkyBF/mWuvvVbr3r27tmvXLv8SGC8BMVnq16+vNW/eXPvpp5+0L774Qitbtqw2aNAg0/VgHCWSDiQaI4c4F6tiark5DpLO3r2alj9/9HhIw4enuqbECuzovx0VcHLPnj3qBy9evDhIKPXu3dvwOxBGEGiZmZn+dRMnTtSKFy+uZZmMCkahRNIlyGG4IJCpDnJIEicjI8OUUEK5aOjBTFEWr24JEHrqlKbdcEN0gYQyKEu8wcF0CziJMUYQmmDz/fffl7Jly0r9+vVl0KBBcuzYMf9nS5culQYNGkiFChX861q2bKnGLdeuXRt2P1lZWerzwIUQr+KkVCckOVjpjG12GNdJPP20SL58InPnGpcpUEBk716Rr74SyRvzfG+SzsQllBYvXiw333yz1KpVSy1t27ZNOCM4AlfiZn3llVcqQaSDmRvvvfeeit8BkfTuu+/Kv/71L//nmZmZQSIJ6O/xmZFvFJy/9AXB8AjxKrg2jQIJ6mJpx44dCV/DJHW4IYdcMvjyS58f0lNPRS63cqUvNEDZsnbVjKS1UIJoad68uXKcRpgALIUKFVIZxBGyPl569eolv/zyi0ydOjVofY8ePZSFCFYjBLqcPHmyzJgxQzZv3hz3viC4YL3SF3QShHiVdImRk8540Rk7Eps2+QRS69aRy2GaP4ymF19sV82IF4lZKD377LPywgsvyAcffOAXSvh/1KhR8jTsn3Hw8MMPy6xZs5TVCE9FkWjUqJF63YQrRUQqVqwou3fvDiqjv8dn4ShQoICaRhi4EOJVvBAjh7P1opMOMbWOHBE5+2yR2rUjl+vVC6MU5sICEBKVWJ2a8ufPr23cuDHHeqwrUKBATNvKzs7WevXqpZ111lnab7/9Zuo73377rXLcWr16dZAz9+7du/1l/vvf/ypn7hMnTpjaJp25iZeBMy5mMoVz5tYdujGzyalOu16frWe187RbnbEjkZ2taffeG91Ru0EDTTt+PNW1JVq6z3qrWbOm9tprr+VYj5lmtWrVimlbPXv21EqUKKEtWrQoaPr/sWPH1OebNm3SRowYoa1YsULbsmWLNnPmTK1GjRraNddckyM8QIsWLVSIgdmzZ2vlypVjeABCwsx6CxVLTp/15vXZeuFEYOnSpbXhw4d7QuBYAbqbaAIJy7Ztqa4pSQWOFEoTJkxQVqUHH3xQmzx5sloeeOABZU0KJ6Ai7txgCitiK4Ht27crUYQbB7YPITZw4MAcDbJ161atVatWWqFChVQMpf79+2unYpj/SaFE0gG3xcjRLWFG9wmnW8LiFYH6UqZMGcceGztYssScQFqwINU1JanEjv475hQmAM7UL774oqxfv169P++881Q07Hbt2okbYQoTki64KdWJlzPa6ylDIs1G1EEGBC/4F5kFcwrOOit6ubFjRfr2taNGJN3777iiSdx6661qIYS4Cz1Gjhvw8my9aCEbAkHYFDyEOlXQWsXJkyLXXCOybFnkctCM06eL5HZUFEDiZXiqEUIciRdm61kh7tIhxtVjj/kCQkYSSYiBdOAALGwUScReTFmUECn7t99+U9GxS5UqZRjUDOzfv9/K+hFC0jyIYrSM9m4MohiruHOj1cwMED133BG9HJIs1KtnR40IiVMojRs3TooVK+b/P5JQIoQQK3yh9CCKd9xxh7rnBIoltwdR1EWg2eE3N1rNogmfgAQMEYVUGrlnEYcSlzO316AzNyHW8fHHH6vccoEiAKIAoicep+Rw20M6DogkNzs543dBBEa6BetWsy1btrhSEIaCobMaNUT+/jtyuccfFxk1yq5aETdzyIb+O2ah9OOPP0q+fPlUShEwc+ZMmTRpktSrV0+GDRsm+fPnF7dBoURIeEvQFVdcIUuWLDFtGTLq/HULULwRot00Wy8W0F5I07Rv374cnyXaZk4CUbLxE2bOjFzuyisxi9GX4JYQx/TfscYTuPTSS7UPP/xQ/b9582YV36h9+/YqxlHv3r01N8I4SoSEj7OUJ08e0xGxvR73KFmgPRBgEvHi3BLjKhZefNFcPKRdu1JdU+JGDjoxjhKUG6xKNWvWlOeff14WLFggc+bMke+++07uueceVyaYpUWJpLt1w8wwUDQrh5fjHnn5vErWfhcsEGnWLHq5pUtFGjdOeHdphRfvQZ6yKBUrVsyfl6158+ba+PHj1f/btm3TChYsqLkRWpRIOucdi2YJMmsZQm4xM98fPHiwp/KQuZlknM9Iw2nGgvS//1n6U9IGL96DPJfC5Prrr9c6deqkUpfky5fPnyAX+dqqV6+uuREKJZLOeccgWMyKpMAF30t0O+l8g/fa+XzokDmB1KWLL8ktiR2v3oOc3n/HHLYLM00w9Pbwww/Lk08+KbVq1fKb4uH4SYhXTd2YeRVuaEpfhwjKKOc24o3RE/o9fcp7LOFDECMJQ34Y+iPuPJ9RvGpVkWijHuecI3LkiMikSRjCjb/u6YqX70FOJ2ahdMEFF8iaNWvUeODQoUP960ePHi3vvPOO1fUjxBUpJ3CjckIEZdwk4Ss0ZcoU9WrmphlvjJ7Q7+lxj4BZscQbvLvP5/79fVGyo4WD2rRJ5PffRYoUibfGxC33IC8Ss1DCgQg8WMuXL1c3ucmTJ6uwAYR4ETfkHYNVBolW4VDdoUMH9Yr30aw1sVqCUA5xjMJFxIaDN6zLlStXNl1v3uDddz7PmuWzCiExbSReftlncapZM55aErfdg7xKzEIJN2DMWgGZmZlyww03KLGEYbgRI0Yko46EpByn5x3TZ62FPnGaGdqKxRJkJiI2xNLWrVvVfSIjI0MGDx5s6jfwBu/883nbNp9AuvnmyN9r2dInkB5+OJFaEjfdgzxNrE5NJUuW1H799Vf1/0svvaRdccUV6v85c+Zo55xzjuZG6MxNzM4MC+dImeoYQVbFLzITRyme2D5mnbxDncOJc87nrCxzjtpYTp5M9a/zJk6+B6USRzpznzp1SgogzbOIzJs3T9q2bav+r1u3Lp8IiWeJZHVJdd4xq3wXQi1BeD127FjQe6TSiDVKdLShvUhDeST15zNCY/1zy48IQuhBKtEDI/3uQZ4nVmV1+eWXa48//rj29ddfq7hJq1atUuuXLl2qVa5cWXMjtCgRs4SzuqQ6grLZ+EUol+ppzaFPw+k8rdnp5/PYseYsSLNnp/pXpBdOvAelEkdG5sZMmltvvVVFw+zcubO89dZbav2///1v+fXXX105zZeRuYmbo+K6JSK2V5Pbeu18zpfvarnqqujn8xNPiIwcaUsVicPvQanEkUlx9YOEypUqVcq/Dib7woULS/ny5cVtUCgRN4PrEbPb4Lgd7nJ2UgZ63uCdy/79ImXKRC9Xu7bIhg2MhUTSp//OG8+XcDNeuXKlbN68Wc2CK1asmOTPn18JJUJIanwXMLsNoihQLDnNdwF1YJ43Z5GdLYJbd1ZW9LIIGMlYSCTdiNmZe9u2bdKgQQNp166d9OrVS/bu3avWI0HugAEDklFHQkgUjOIXwZIULoEtIeC++yBeo4uktWt9HkkUSSQdidmiBB+DSy+9VFavXi1lAuy08Fvq3r271fUjhJgEYggPMBzaSi/iGc6cMgUx8aJvG8kWOnWyrq6EpIVQwgW5ZMkSNdQWiO4jQQhJXQfIoa30IpyDPKyIGIoNZ0WEb1HdutG32769SEaG1bUlJE2EUnZ2dticTLhQ4atECLG/AyTphx6NPdSBX4/GHjjkeuyY+WEz3N6Rv40Q4iPmy6FFixbKMTTQWfTIkSMqQW7r1q1j3RwhxMJ0JCQ9iCWT/AUXmBNJe/b4/JAokghJMDwAIvzeeOON6mLcuHGj8lfCa9myZeXrr79meABCLJjqbxRp20lT/Yk4PHbWMBEZGnVbCNh+1VWWVY0QW3FkeAAEiIMj9wcffKBeYU3q1q2bdOzYUQoVKpSUShKSLsSSjoS+SOlL5HRRTUVkftRtjBol8vjjllaLEE+SN9Y8b8jpNmvWLCWMsBBCrMNsvkTmVUxvp/3wGeIr4syIur/GjUWWLk2gwoSkGTEJpXz58smJEyeSVxtCXBT9ORn7Cd8Bxl+OeNNpX0807IvGDqei06b2h9u3mQS3hJAAYk0O9+yzz2qdO3fWTp06pXkFJsX1dsJIvLc6YWSy9nP69Gm1ndDksYFJZJEAE+WIu9ETBYc7xmYSBeNzkRmmEtdu3mzbzyLEVhyZFBeBJefPny9FixZVEbqLhEyncOOMHDpze3u6tJ7Gw6oI1cnej759EC4dCSNtu59Enfb/9z+RBx6Ivh/cjm+91YoaE+JMHJkUt2vXrhE/nzRpkrgNCiX3Y9dsMbv2E25IBhMpEJqDIildZq2JLFy4MMhpf9UqkYYNo2//oYdEXn010VoS4nwcOevNjUKIeB+7ZovZtZ9UpSOxy78r3YnVaf/QIZESJaKXL1dOZPduCPZEa0gIiVsoEeKV2WLxiAI7Z6XZnY6E0cDtw6wzfsWKlaRiRZ/4icaBA+bEFCEkyUKpYcOGfl+JQLCuYMGCUqtWLenSpYspszIhVhHrbLF4RYFXZ6XFkg6DJE7wrDUt7P20SJE3pGnT6EJ55UqRiy9OUkUJIbGnMEFU7t9//105cUMMYYFj9+bNm+Wyyy5TT9LNmzeXmTNnJqfGhEToeMKJeID18PFBuURShMSyHy+mwyDWAGshRDnIeS61FU3LliNH7ou4jQkTfHPaKJIISTKxTpO7//77tREjRuRY//TTT6vPwFNPPaVdcsklmltgeABvTbcOnXIdON1an34fbuq92en3ZvbjJhYuXGjYHoELyhEtiWEmqpua6n/TTamuNSHp1X/HbFGaNm2atG/fPsf6e+65R30G8PmGDRusUXKEmARDQxgiqly5ctB6WID0oaNYnLET2U8kYJnBrKcpU6ao11RbahgNPHXgXNmwYes/WhSvkTl1SmTWLFuqRgiJ10cJfkhLlixRvkiBYB0+A9nZ2f7/CbGTaLPFrBIF8c5Kc6LDtFf9rtwAktF+9130WYU7d4qcdZYtVSKEJCqUHnnkEXnwwQdl5cqVyicJ/PDDD/LGG2/Iv//9b/V+zpw5ctFFF8W6aUIsIdJsMStFQayz0pzqMG3GsRifu8nvyumMGSMycGD0cl99JXLDDXbUiBBiWcBJ8P7778srr7ziH16rU6eOElAdOnRQ748fP+6fBecGGHAyfdADRkYTBYkGjExVoMp4YTRwe1iyROTKK6OXe/JJkWeesaNGhLibQ06MzO1FKJTSi1SIgngjMdsZDJLRwJPHX3/5gkFGo25dkfXr7agRId7gkBMjc+tg6G39P1f0+eefr+IrEeIGdGfscL5CyRIFifpG2eHblKpo4F4mO1skf36I3Ohljx4VKVzYjloRQpJqUdqzZ4+a4YYn5JIlS6p1Bw4cUE/LU6dOlXJmHpscBi1K9mC1RSTR7dmZriMRi5JdyX6JtXTqJPLuu9HLrVsnct55dtSIEO9xyI7+O9Z4AnfddZd26aWXauvWrfOvW7t2rVp3zz33xLSt5557Tn2vaNGiWrly5bR27dppv/76a1CZ48ePaw899JBWunRprUiRItptt92mZWZmBpXZtm2b1rp1a61QoUJqOwMGDNBOnTpluh6Mo2R3vBjfgvfxxhyyenvJRo/fFBp7KVr8JiviPhF7ee+96LGQsKAcISQx7Oi/YxZKxYsX15YvX55j/bJly7QSJUrEtK2WLVtqkyZN0n755Rdt1apVSuxUq1ZNO3LkiL/Mgw8+qDqC+fPnaytWrNAaN26sXXHFFf7P0UHUr19fa968ufbTTz9pX3zxhVa2bFlt0KBBputBoZRc9ACN4Tr5eAI0Wr09u4gnUCWDQSYH3DfQZhkZGerVCqGJZ0czAuneey35CYQQzaFCCdYfCJJQfvzxR61YsWIJVWbPnj3qBy9evFi9P3DggJYvXz5t+vTp/jLr169XZZYuXareQxjlzp07yMo0ceJEJeiysrJM7ZdCKXlYbRFxu4UlnCUM9TUSd+jIzQgllCOpsUYePWpOIOXLp2lnzlj+cwhJaw46MTJ306ZNlVPpn3/+6V+HqdZ9+/aVZs2aJTQMiDFGULp0ab/D+KlTp1TuOJ26detKtWrVZOnSpeo9Xhs0aCAVKlTwl2nZsqUat1y7dm3Y/WRlZanPAxeSHKyIhJ3M7dkNfIm2bt2qfJEyMjLUK0ICGPkYMRiktSSS5y8c8C0qUiR6ub17RU6eFMkd8x2XEJJqYr5sET8JwgIxYWrWrKmWc845R617+eWX464Ionkj8eaVV14p9evXV+syMzMlf/78fqdxHYgifKaXCRRJ+uf6Z+EYOXKkcv7SF0yBJu5Ij+GFdBt6oEqk+sFrJAfyWJPwOi09ipOwMvnv4MFoe5Fff41c7rvvfPaksmXjrzchJLXEHB4AN+Uff/xR5s2bJ7/+c5c477zzgqw+8dCrVy/55Zdf5Ntvv5VkM2jQIOnXr5//PUQexVJysNoikm4WFj3LPKwdEEXh4j4hpAHKOTE9ipOIxRppFMtq7lyRFi2i72v0aJEBAxKpLSHEMcQyTnfy5EktT5482po1aywd/+vVq5fyEfj999+D1sOBG1X8+++/g9bD4Xvs2LHq/yFDhmgXXnhh0OfYDr4Hvykz0EfJebO97NqeW4jm2+RWB3c7ScTfa+dOc35IV12Vkp9GSNpy0Gk+Svny5VP+QVaZ8/EE9/DDD8uMGTNkwYIFaggvkEsuuUTtc/78+f51SJuyfft2adKkiXqP1zVr1qj4Tjpz585V8RTq1atnST1J4hYREDp8FGoRScX23EIk3yYrh5S8TDzWyNOnfUNslStH/96JE7BaJVJDQogjiVVZvfHGG2oa/759+xJWaT179lQhBRYtWqTt2rXLvxw7diwoPAAsSAsWLFDhAZo0aaKW0PAALVq0UCEGZs+erWIpMTyAu2d72b09N8MQAlpSrJE33WTOirRlS6p/GSHpy0Eb+u+YI3MjVcmmTZvUbLTq1atLkZApH/BfMouRg+qkSZOkS5cu6v8TJ05I//79lXMqZqthRtuECROkYsWK/vLbtm2Tnj17KudV1Kdz584yatQoyZvXnAsWI3OnZ2Rur4BrQ09IHQlYouBAns6YyfO3e/dt8tBD0bc1c6ZI27bJqyshxKVJcYcNG2YocMDQoUPFbVAoETuxWuBZkXA3nTBK/vvoo2/LwIFNo36/d28M7ya5koQQ9wolL0KhROwiGTPTILwQrgOxgMJdzniwwT7g05SOFrdoYrVYsSpy882+8AqRgBEb4eMiPCcSQjzYf5t25j569Kga3qpcubJKfIvEuHsRRY0QkpJgh+nu4J4IaItrr71OHnmkvSmRhFi4CM1FkURI+mFaKA0ZMkTeffddadOmjfKHwCy1Hj16JLd2hHiEZM9MgzUK/jV4kAkEliSsZxylYHr18kXJ3rcvcrmffvK5bNPQTEj6YnroDVP3X3jhBbnzzjv96UUaN24sx48fN+007VQ49EaSjV1+RHRwj8yMGRCV0cv9978i8T4H8hgQ4q3+27TCwXAB0ouExjhCzjfEViKEpD71ip4ehQTz++8iNWtGL9euncgnn8S/H0ZHJ8R75I0lFxuEUdCX8+ZN+yB2JPW44Qk+3VKvOIWsLJGCBc2VPXUK97TEfdBCjfS6DxqHQAnx+NBb7ty5VbLawGG2n3/+WerWrasS18YTR8kpcOjNvbjlCZ4z0+wHwfu//z56OcxkS1Sf6sfXKJccjy8haTD0Fi4+UjvYqUla4ESrjZue4GNJbksSY9QoJL6OXg6ZkZpGD5tkW8JdQohDSVrMbxfBFCaxpwvB+1SmC9HTURil63BqclynpF5BuyClCRLA4tVp7RQP33xjLuXI0KHOSrhLCHF2/+3u6Wokba02bn2CR1shxAbS8GzevFlq1qwpDz30UNDwdbJxy3ClWRDOrXz56OXq1xdZsyY5daAPGiHexXQcJZJ+ODkrvV2zyJIhUiCO+vbtK6+88op6xft4g006JehlKsjO9gWANCOSjh5NnkgCGIqG2DRK74T1SJOCcoQQd0GhRCyx2tiNG5/gUy1SnCx8YwU5gM24c/36q2/ArXDh5NaH0dEJ8S4USsRxVht01AjQOGXKFPUaruN22xO8E0RKKoWvmWNqhsmTfVakKVMil8vI8AmkOnXENmKNjm5VmxBCkowVjk5///235mbozB0eOPmacVBFuVQ4jmMdnLaxhDpyY0mls7kT2tIpDsdWTAb45Rdzjtpdu2opx4yjvBMnSBDiRg7a0H/HLJRGjRqlTZ061f/+zjvv1HLnzq2dddZZ2qpVqzQ3QqEUeWZZqBBJ1swyXfiE24+R8HHKLDI3zIpKlfCN9ZgGcuSIOYFUqJCmnTmjuYJE24QQ4nChdPbZZ2vfffed+v+rr77SSpYsqc2ZM0fr1q2bdsMNN2huhELJGLusNolM93fDVHcnWJTsFr6JHNPsbE2rWdOcSPrrL801uDWsBSFOxZFCqWDBgtr27dvV/48++qjWo0cP9f+GDRuUaHIjFEqRscNq4wQhkUzsFilG2DlcGe8xfeIJcwLp+++1pJBM4e3185wQL/bfMTtzlypVSjl8gtmzZ0vz5s11Xyc6I3oUOKFu3bpVZbbPyMhQr0jFYGXMHbdO93fbrCgjh2O8HzZsmGRlZVnmWBzrMZ092+eojcjakXjxRZ9UatRILAczD5GK5Prrr5cOHTqo1/Lly8uIESNS0iaEEAcQq7Lq1auXVr16da158+ZamTJltMOHD6v1U6ZM0Ro2bKi5EVqUUk+6PGk7xacq0GoyfPjwhB2Lw1lhzB7TadOWmLIgXXddanyH9AX3u0SPU7qc54R4qf82nRRX59SpU+rJGFalLl26SMOGDdX6cePGSbFixeT+++8Xt8GkuKknnZLGOilvnlHkdd3KZSbyulGkb9wTEFDT6JiK5BORk6bqmZUlkszg5dGS2gby0UcfxW1NTafznBDP9N9Jk2AughYlZ+Cm6f5ewArH4mgzuAYOHBj2mIp8acqKtG2bPW1h1tKjWwAT8VvieU6Ix32UwLvvvitXXXWVnHXWWbJt2za/f8XMmTOt1nEkjYg1YJ/VpFsAwEQDUJoJojl16lT54IMPAo5pr390wY0R6/bZZz6pVK2a2EIsPkGJBuVM9XlOCImNmIXSxIkTpV+/ftKqVSs5cOCAvzMpWbKkEkuEON1x3KwTL967KfeZ3Y7FZoVWuXLl5MMPt/4jkF6JuK9+/XwCqU0bsZVYU90k6mydqvOcEBI7eWP9wssvvyyvv/663HLLLTIqYHrKpZdeKgMGDIijCoQEA9+M6667LuV+OnoOtmhP+U7yObIzX545sVBCrr8++rGE5WjrVt+st1Sgp8Qx46NkVQ5Bu89zQohNFiU89egO3IEUKFBAjiJFNyEuItEcbG62RCWaLy+6WPhbRA5ErcehQyIYwU+VSAoM32DUFk7NIUgIcaBQOuecc2TVqlU51iOm0nnnnWdVvQhxvJ+ObokK/b5uiXK6WEo0tpOx0Jr4zzBbyYj7X73aN8xWrJg4At13qEyZMmE/tzPeFSHExUIJ/km9evVSDproRJYvXy7PPvusDBo0SB577LHk1JIQh/npJGqJcgqJOBbnFFq3/yOQHoy4zzfe8AmkCy4Qx4Hfu3v3bhk+fLiULl066DM6WxOSnsQcRwm8//77Korv5s2b1XvMfsONpVu3buJGGEcpfcHsNgyXRQPOtoH+JPF+z6kk4mf16qtz5OGHW0Ytd/vtiMskrsGtvmeEpBOHbOi/Y3bmBh07dlTLsWPH5MiRIyrEPyFuRB8+ihYAMNQnxY5UFHZ21PE4Fp84IVKoEP6LLpJOn8Y+xFXQ2ZoQEtfQW9OmTVVYAFC4cGG/SIKqw2eEuIlIfjoA4mns2LE5BEqiM8ai4XQn8csu00VSZKAToT/dJpIIISRuoYQhh5Mnc6YdOHHiREJB2Ahxmp+ODtJwhAqURGeMRcLJTuLPPuubnbZiReRyCxf6BFLFinbVjBBCJLVDbz///LP//3Xr1klmZmbQEAFmvRl1NIS4QSzhPL7rrrtyfBYunpJuicJ6iKLAYbt4Z0fpkcG7d+9u6CSObcNJvF27drb6y3z9tci110YvN2KEyJAhdtSIEEIc5sydO3dufwcQ7iuFChVSwSjvu+8+cRt05k4PIvn8REuKapSsNFxCWFiSIJJCZ0dF2n+47TjBSXzPHpEKFaKXQ2i1H39MenUIIcS5ztzoICCQatSooUICIC2BTv78+ZWvEmeEEKdilOEeViEImljiKQUKFHwX1p1oTteR9g/CRQZPZgqNaCCqQV6Td4djx8z5KxFCiBsxLZSqV6+uXrOzs5NZH+IwvDBF2kyKkqysrLgFSrTZUdH2j3g9sUbpsCKFhhF33y0ybVr0cr/9JlK7dtKqQQgh7nTmBu+++65ceeWVKn7SNuQeEJFx48bJzJkzra4fSSFOn3llBrOBIc2GuIhVoETbP5Z9+/aZ3l4yU2i8/bbPUTuaSPrgA5+jNkUSISQdiFkoTZw4UUXnbt26tQoToEceLlWqlPLLIN7AyTOvYsHskBpIxiy2aPuPhWSl0PjlF59A6to1crnu3X0CKYy/OyGEeJaYhRIctl9//XV58skng27Wl156qaxZs8bq+pEU4JX0HLH48uzZsyehvGeJ7t8MVqfQOHLEJ5AaNIhcDv6RGHH/3/8s2S0hhHhbKMGpuyGmuIRQoEABOXr0qFX1Ii5NFOs0YgkMmUjes0T3Hwn4MM2bN09de1aIJGjds882l4x2/36Rgwd9gooQQtKRmIXSOeecI6tWrcqxHnGUzjvvPKvqRVKIHek57CLWwJAQIlu3blXT7zMyMtRrIgLFzP71bPWRymDqqxXDbchbnTu3yD+uhYYsW+YTVKVKJbxLQghxNTHneoN/Uq9evVQkblgWECpgypQpMnLkSHkDacGJ62evJTs9h53EExjSyhxfZvb/v3/GtHr06BHWsXv//v05Al7GyhdfiNx0U/RyGH189NG4dkEIId5Ei4P33ntPq1WrlpYrVy61VK5cWXvjjTc0t3Lw4EH0XurVi3z00UdalSpV1G/UF7zH+nCcPn1afY5jG/gdfcH6qlWrqnLJBNtfuHChlpGRoV4T2V+4NsBvwHor9xPP/gPbPFx7J9Lm27ZBmUVfmje3/CcTQogn+u+4hJLO0aNHtd27d2tux8tCCR1xOMGji1wjsaR/L/S70b6XKnFnhnCCyK79RFoP8N5IJAUuKGeGkyfNCSQsKBut7oQQ4kQcLZQgkL7++mu17NmzR3MzXhVKiVopollBnCbunLCfeIUXhIkZoYRy0WjWzJxA2r7dmroTQkiqcKRQOnTokPavf/1Ly5Mnj79DyZs3r9axY0ftwIEDMW1r8eLFWps2bbRKlSqpHzpjxoygzzt37pyjo2jZsmVQmX379mkdOnTQihUrppUoUUK77777tMOHD8dUD68KJSusFHZbGJI1BGXHfhIRXlYcq/HjzQmkL74IX/dI+6VYIoQ4ETv675hnvd1///2ybNky+fzzz1XASSyzZs2SFStWyAMPPBDTthBO4MILL5RXX33VsMyNN96oHJD1BY7jgXTs2FHWrl0rc+fOVfX4+uuvlVMssWb2mu7Y3L59e/Wa7PQldoUmsHo/icaeinV2XiDLl/um7/fpE7mOAwf6pFKrVjnrHu2aweduiJtFCCEpn/UGMTJnzhy56qqr/OtatmypglBC1MRCq1at1BIJxGeqWLFi2M/Wr1+vwhL88MMPKuClHhATUcPHjBmjUqykM26cvWZXaAKr9xNvUt1EZuchxtE/kQUiUqOGyKZNxrGQFi1aFDWNCj5HuWbNmkXfISGEeIiYLUqI+VKiRIkc67EOaUysBjdn5OGqU6eO9OzZM+iGvnTpUilZsqRfJIHmzZtL7ty5ldXLCCRAPXToUNDiRRKxUnhd3Fm9HyuEl9mAl9BQRYuaE0mHD4ts3hw5YCSuMTOYLUcIIWktlAYPHqxiKWVmZvrX4f+BAwfKkCFDLK0cLFSTJ0+W+fPny/PPPy+LFy9WFih9CAD7DU1mmjdvXhXJOLB+oSDmE4SdvkAseBHdSmF1Wg4viDur92OV8IoW8BL51hAwMloQfGQT0gUVIYSQBDDjyHTRRRdpDRs29C9FixbV8uXLp9WsWVMt+B/r8Fm8hHPmDmXz5s2q3Lx589T7Z599Vjv33HNzlCtXrpw2YcIEw+2cOHFCOX7py44dOzzpzJ3q2WvxYldoAiv3k+zYU1OnmnPUnjQp9m3jejLjSK5fd3bAMAWEEKc4c5vyUbrlllvECdSoUUPKli0rmzZtUr4S8F1CMtNATp8+rSIZG/k16X5PWNIFWCPatWtnOjJ3qtGHoOAcHej3AwsQLGBWJYW1cj/x+BiZYeNGkXPPjV7urrtEPvhA4gI+UxhSj+SnhM+tilYejY8//jjsMUH7WnXs7YpyTwjxAJpDMGNRguUHT+YzZ85U79etW6e+t2LFCn+ZOXPmqDI7d+7U0j08gNuxy6pgVwTwWDh2zHzASCuaxSnhAeyKoZVI/RhrihDnYEf/nQt/UiXSjhw5oqxDoGHDhjJ27Fi5/vrrlY8RluHDh8vtt9+urEObN2+Wxx57TA4fPixr1qzxW4Tgs7R792557bXX5NSpU9K1a1fl3A3/DrPAmRu+Skg8Wrx4cXEyfJp1Pokeo4suElm9Onq53btFQlz0Eto3LDmPPvqo7Ny509CSk8zzD9s+++yzDWcPwjKH+sBnKxXnPNoHFsPQW6ZuMdQd7nmNEmIftvTfsSorPG2PHj1au+yyy7QKFSpopUqVClpiwSjIHgJNHjt2TGvRooXyN4IPVPXq1bXu3btrmZmZOQJOtm/fXvlIFS9eXOvatatnA07yadbbDB9uzoK0YEF4C5gV50ck61qyzz+r07hYnX7GTIDSadOm8RolJN0jcw8ZMkRF0h4zZoxWsGBB7emnn9a6deumlSlTRnvppZc0N+IGoeT0IQkSPwsWmBNIzzxjLFYGDhyY1PPDjvPPyjQu8RBJCJoVcUYiitcoIWkklGrUqKHNmjVL/Q8rzqZNm9T/EEmw7LgRpwslu9J6EHvZtcucQLrssshixUxHncj5Ydf5l0qLUjQh2KdPn7iFEq9RQtIshQniEzVo0ED9X7RoUTUuCNq0aaPSmhD3pvUg9oAwYHBrMRN66fhxX4qSSClSohF4fmA7CByJVEB4NZOWxK7zL1UBUs2kn3n//fcT2gevUULcS8xCCTcyPbpwzZo15auvvlL/I41IOk25TxbhOjK70nqQ5AOf6LwmgnJgjgP66IIFzYkVM8ycOVM5S2PCRIcOHdQr3sNJORJ2nX+pCJCK6wtpj6IJwb1790q5cuUMRZxZeI0SkgZC6dZbb1WRssEjjzyionHXrl1bOnXqJPfdd18y6pg2oMMK15FtRDAdl+VsI8G88YbPijRjRuRyH37oE0g1a1rfwUJkhAoCzHDDTK5IYsnOnIFm07hYeb317dvXVHkk4I4k4szAa5QQF5Lo2N2SJUu0F198Ufv00081t+IEH6VIPhJ4hbN8sqI+k+SxerU5P6QHH4y8nUSdifPkyRO3/0yyo46nIoZWPP5eqIdRnKzp06fb3kaEEM37cZScQqrjKJmJH4O4Uog4DsJFfbb6aZskBpLRmjmVSpcW+euvyElrA88RWIAiXbLhooKbvcSRV84o+rYeQ8gL51+06y1a/CajOEleaiNC3MIhG/pvU0Nvn376qQrmqP8faSGxY8ZZFuklhg0bZsuQBIkf9I9VqpgTSX//LYKsIUYiKdBfDecIArIaDf1gQWLqcOdHnz59TNU90vCenUNiySYWf69wvlF4haBs3769etXXe6mNCCEBmDI75cql7d692/+/0ZI7d27NjaR66C2W+DFMFupc+vY1N8z2ww/RtxUpXlKkFCnhzg8rp9174fwze72Ftq1ZvNBGhLiFgxx6S4+hN1gN4LidyNAISR2ffSbStm30cq+8ItKrV+KpMqZNm6aSQ5tNkRFt2C7VqUGcer2NGzdOTVhJhzYhxK0csqH/plBygFBiR+YOQn1TqlW7WmrWjH48brxR5MsvU5vvjP4z/w+vN0K8wyGn+CjpZGdny1tvvaWCS9avX18Fnmzbtq1Mnjw5rkB4JHXxY0gioRs6y/XXX2dKJJ08aV4kJTO4I/1n/h9eb4SQpAgl3KAhiu6//371JAaRdP7558u2bdukS5cuKr4SiR92ZM5Ft8b4BMwiyJ+o39mxw+eRlC9fbPtKZnBHnENbt25VQ7gZGRnqFVaTdDy3eL0RQiwfeps0aZIK84/ovqHj+wsWLJBbbrlFXnnlFRV40m2keugtEKOpxyQ1/P9Q2J0i4pt1FonZs0Vatox/f/RXsxdeb4S4m0NO8lFq0aKFNG3aVJ544omwnz/33HOyePFimTNnjrgNJwkl4iwmTPhRevW6OGq5Dh22yfvvV094f/SfIYQQl/oo/fzzz3IjvFINaNWqlaxevdqqehGSUvT4RtFF0m+QL9KmzRJL9kv/GUIIcRamhRKiQleoUMHwc3z2NyLoEeJisrNFkNu5bFkzpYuISB3Lc3jRf4YQQpyDiTzm/z8kkDdC2nM84Z4+fdqqehFiu59J164ib79tpmQ9EVkfNBSGfVoJxFC7du3oP0MIIW4RSvCXwOy2AnjcDkNWVpaV9SLE9Iw0TDIInFIP4YLhK7OWlylT4GNkpiQmKrxreigsUQGnp8oghBDiAqHUuXPnqGXcOOONuBejCNZwhMb6aMNUGzaI1K0bfT8QUbffDkG2UAJDHEGQQSSF24cVAo4QQkjqYWRuznpzJYlEsD52TKQI3IuikDu3CHJB4zUWC1G0FCT0MyKEEA+GB/AyFEruI954Q/Xri6xdG337e/aIlCsXe72SlYLEazB+ESHEc+EBCHESsUawHjrUN90/mkhCZhA8OsQjkpKZgsS76WA6qFe8x3pCCHEaFErElZidjv/nn+cpgTRiRORyo0b5BNJVVyVWr2SmIPFeOpicfmUUS4QQp0GhRFwJhmowhBUalPH/gZDSZMCAiyJup0kTn0B6/HF7BZyVcZfcNNwGB/dwo/36uj59+qhyhBDiFCiUiCsxjmANPxd0un9G3caJEyJLrAmobVrAYX3VqlUtj7vkBjgsSQhxIxRKxLXkjGD9iYhED3q6ebPPimQQEiwhmILEGA5LEkLcCIUScb1Y+ve/t/1jRWoXseyMGT6BVKNG8uvEFCQ54bAkIcSNMDxAmocHcPM07VWrRBo2jF6uVy+RV14R23Fz2yYDPXQCHLfD3XYYOoEQ4sT+23RkbuI93Bo9+tAhkRIlopfDFP/du31hAVIBU5CEH5bE7DaIokCxlO7DkoQQ58KhtzTFjdO00a9WqGBOJB044AsamSqRRMLDYUlCiNvg0FsaDr25MXp0794i//lP9HI//mhuOI6kFg5LEkKsgENvJOXTtFM9dDRzpsgtt5gp2VM++ugGadiQFgk3wGFJQohb4NBbGuKGadpbtviGzaKLpM9gA5Ncuf7LYIWEEEIshxalNCSRadrJHjLJyhIpWDCW0/eM46xghFgJhykJSS20KKUh8UaPTnYyU+RZMyeSzlJWJF0kBcJghcRLMIEwIamHQikNiSd6dDJnyY0e7Rtm++67aCWb/yOQjMUQgxUSr+DGmamEeBEKpTQllmnayUpmCmEEgfTYY5HLPfmkyOnTZ6RKlQ3MoUbSAiYQJsQ5UCilMRBDW7dulYULF0pGRoZ6RUiA0Fg2Vicz/esvn0DCUFskzjvPFzvpmWeYQ42kF0wgTIhzoDN3mmNmmrZVs+Sys0Xy5fO9RuPoUZHChcNbwcJFE4dIYrBC4hXcMDOVkHSBQonYksz03ntF3nsv+jbWrxepW9f4c4ihdu3acRYQ8TRMIEyIc2Bk7jSMzG1nMlOII4ikaKBcx47/vz8KIZLOMIEwIc7pv+mjRKISj38QLEP4KJpIuuGGTMnImCKVKy9SnUMs06FRftGiRTJlyhT1auTYarYcIU6BPnmEOAhYlNKdgwcP4pFNvVrN6dOntYULF2oZGRnqFe9j+dxJfPTRR1qVKlVUW+lL1apV1XqdI0fw+Bt9yZv3tFa5ctWgbZUpUybovb7kypVLLYH7CVcXvA8sE0u5RHDTMSTuwsw1R0g6czCJ/bcOhVISGzpaJ21HJ241kURBnTrmRNKkSZ8p4RNOFBktKI8OAvtD+4T7fqigMlsuEdx4DIm7oBAnJI2F0uLFi7U2bdpolSpVUj90xowZQZ9nZ2drQ4YM0SpWrKgVLFhQa9asmfbbb78Fldm3b5/WoUMHrVixYlqJEiW0++67Tzt8+HDKGzpaJz1w4MCkd+J28e9/mxNIS5b4bvqhwiKWZd68eRG/rwuqrKwsU+US6XTsEGKEEEJSK5RS6qN09OhRufDCC+XVV18N+/kLL7wg//nPf+S1116TZcuWSZEiRaRly5Zy4sQJf5mOHTvK2rVrZe7cuTJr1iz5+uuvpUePHuL0YHFjx451fTC5r77y+SE991z0yNv4WU2aRI8PEw34GJmJLzNhwoSY49DE4svEgICEEJImaA4h1KIEaxIsSaNHj/avO3DggFagQAFtypQp6v26devU93744Qd/mS+//FI9ze/cuTNlihTm8XgtJoELtuNE/vjDnAXp6qtzfhfDB4m0yeDBg02Ve/jhh02VQ33iGUIze4zHjRvHIRNCCEkSnrcoRQLTXjMzM6V5c+T38oEpgI0aNZKlS5eq93gtWbKkXHrppf4yKJ87d25lgTIiKytLTSkMXKzEqiBwTgsmd/q0z4JUpUr0sjD6ff21tXFfMMPH7CyfmjVrmiqH+sSTU8vssenbty+TmRJCiItxrFCCSAIVKlQIWo/3+md4LV++fNDnefPmldKlS/vLhGPkyJFKdOkLcoRZiVVB4JwUTO6mm3xRtaOxZYvPnlSgQPjPERMJ8V+McrZFAsNYw4cPlzJlykTN+fbQQw9F3I9e7oorrohrCC2eY8NkpoQQ4j4cK5SSyaBBg1RwKn2Br4qVRBMDWB/JMuKkBK8TJvisSF98EbnczJk+gXT22YnHh4FF0IjA70SKL5M/f35TcWiWLFkSV06teAQffZdIPDAOGCGpxbFCqWLFiup19+7dQevxXv8Mr3v27An6/PTp07J//35/mXAUKFBARfAMXKzEjBjo16+f+t+pweRWrvQJpF69Ipfr3dsnkNq2Nb9tPWdb5cqVg9ZDeMBilB0hGRzExr59+2TYsGFhv4/tIsUJOhQMsUYqh3rEm1Mr0jGOBJOZkliIJQArISRJaA535h4zZox/HZy1wjlzr1ixwl9mzpw5KXfmNhsszonB5P7+25yjdqVKOEbWx4cx6+yNcuG+H65NK1eurA0fPjysU7VZp2wjx/pw+4vFiZwQIxh+gpDoeD6OEuId/fTTT2rBDx07dqz6f9u2berzUaNGaSVLltRmzpyp/fzzz1q7du20c845Rzt+/Lh/GzfeeKPWsGFDbdmyZdq3336r1a5dW2vfvn1M9WBkbp/oKV3anEhK4vmYkHCJp2PR4zoZBcA0E28p8BhilpubZzQSZxAt3pgVccAI8QIHvS6UjDrFzp07BwWcrFChgrIkIeDkhg0bcgSchDAqWrSoVrx4ca1r166OCDjpJh56yJxA+umn5NclXuFiJpAlUqQgYGXod3WBFbrPeJ7crRBeJD2I9JCUqKWTkHThoNeFkpcb2imWokig/zcjkP73P7vrFbtwiSV2ldmccPEOg1opvIg3iRa3K5YhaELSmYMUSu5saKfn/9q82ZxAuuWW1NUxVuESSyBLI8Fipbh1ov8ZcQZmhohpUSLEOUIpF/5ImoOAk4inhFABic6A04MXhjarPjNKn22VCrKyRAoWNB9cMoWT7hSYBo3ZYZhxhrhFmJJvNBMQs9wwIygWEI/pgw8+kOuuuy4pMwxjqX8qtkfsB8cQs9aMQlLgPoFZmZs2bVJBUxF7K9wtWi+HwLw8B0g6c8jC/tsICiULG9rsTTAVN7fGjUUiBCv38+efCKYorkNve6OOJRI4JpjqnyoBa1aAIzBm4LnlhnqT+AT9woULVZgTPHSBwHPaCQ9dhKSTUHJsHCU3Ei3haypi6Iwa5YuHFE0kzZ/vG3Bzo0hKJK6RGyJmx5NihTiTWOJ2RYo3RpFEiH1QKFlIvMELk8H69T6BNGhQ5HLDhvkEUtOm4nqMOhY3R8xGfeJJsUKcidnUN3o5nNNbt25VFqaMjAz1Cos0RRIh9kGhlMKbYDI4eFAE6e/q1YtcrkEDn0AaOlQ8hd6xzJs3T+X8c3vEbCdaKUly0xuFpi+CtRR+dO3bt0+aPx0hxBgKpRTfBK0CWT/gzlCypMjevZHLHjsm8vPP4lnQkTRr1kxef/31sGlioln7nJRby0lWSifjpGOWaHqjVKcvIoQEQ6HkgZvg+PG+GWoffRS53IYNPitSoULp0UHFMxS3ceNGR+XWcoKV0um4LR8afY8IcRlJCzzgIuyIo5SMGDqLFpmLh/RPajzLcXq8KB3EQ0JE7tKlS0eMrYTI3U7LrcVI397Nh+aGoLSEOB3GUXLx9MJkxrzZsUOkWrXo5SZMEOnZU5KCk+NFRatzuOnWeI+4Svv27UtZaAejcyZSvZ3a1nbg5HAchBDvhAegRclFud6QC7hBg+gWpI4dfUluk4WbE3YaWfuGDx+ecCTkRCwE0axzjPSdE0avJoQctKH/zpsc+UWsBPLnkUdEXn01crmqVUXWrRMpWjS5lq1YZmJhlo6TgOWlXbt2Odpk2rRpCTlNJxIQ0sg6p8dJ0i1G4eqdzpYSOroTQuyAQsnhvP++yL/+Fb3cb7+J1K5tTzRnt3dQ+nRrq5ymzQqdeOIkYfgIcZIgksLVO52hozshxA44682hrFrlCxgZTSQNHLhYFi5cJDVqnLEtmnOiHZQTZ8rFG9oh0YCQjJPkznAchJD0gULJYcCXGNP3GzaMXK5YsbHoCmT06OtyTIeO1nljSSSacyIdlFOncscb2iFRoeN261wqYUwiQogdUCg5BGiWli1FypYVOXHCuFyDBntEJJ8cPtzf0FIUrfMGiVgp4u2gzFq5UmVxiie+TaJCh8NHicGYRISQpJM0N3EXkepZb08/HX0mW758mpaZaW622eTJk03NBnrvvfcSqncsM7HMzpSbNm1aymMzxTJ7LdGZV4yTZA2MSURIenLQhv6bQimFQumLL8wFjFy5MrZOuVevXqbKjRs3zrYOymzdjcSCU4MHWiF09KCJodtw8u8mhJB06b859JYCNm/2OWq3bh253Dvv+KTSxRfHNsxjNoZouXLlJFHMJuxMxMfGjFO0m/1kOHxECCHOhULJRo4eFTn7bJFatSKXQzRtJLnt1Ck+P5XaoXECDAiXAy1Z/kGJ+tg4efaXFUIHZbZu3SoLFy6UjIwM9YqI0hRJhBCSWpjCxIYQ6GjhLl1EJk+OXK5q1YOyYUMJw6S1esoGOD+HO2x6yoZNmzZJzZo1Izp0Y1ZaaGqHZMVdCqx7NCfzaMCqNG7cOLGDWIN1JjNtDSGEkJwwhYkHxjj/+19zfkgi1U35o5j1ZzFKFqqXDd2PHclFBw4cGLefUuBih8+OWxL+EkJIOnOQztzubei//zYrkK6PeYaT2dlmZsvZkbst2j5icexO9iwwN2ekJ4SQdOKgDUKJQ29JMt0ZxGIMAHGQEDQyJ/BPiZaqwuwwj5ly8EVC4MdomKmXEWb3YZZE6uLWjPQc2iOEEPuH3pjrzXYQVPGOf4wUEvcMMbN5v8yUsyM6tNWRpZMVqdqpCX+t8h+j2CKEkNjgrLckUaNG8PvSpUU+++xbEbk9okhKRRRmO6JDW/2bktVGTkwpYlXePqemjyGEECdDoZTEWEkvvCByzz0iv/7qy+HWqlUTRybxtCO5aLR9mCXZbeS0lCKJJt21I0kyIYR4GQqlJDJwoMiUKSJ16jg7iacd9Yq0D7PY0UZOy0ifaNJdK8UWIYSkIxRKNuPUKMx21MtoH6HoIqVMmTJJq4sRThOzVgwFWiG2CCEkXaEzdwpAR9+uXTtLnWqtcNINV68rrrhClixZoiJ1B76Pdz+h+9i4caO8/vrrOZyUIUasbqNY6jhgwAAZO3ZskJUld+7c0q9fP1vFrNkhvvLly7vK74oQQlxD0gIPuIhUJcV1enDEcNvNkyeP5ftxWub3WIN1pjLprpnjYDYhMcoRQoibOMg4Sh4KgZ4kdCfd0MOoDxPFO1RltN1QEt2P03BiHCX9WACj4xHpOJhNfZOK2FCEEOL0/ps+Si4mWU66kbZr5X6ciBP9efShwEhO8JGOQ6DflRGpmERACCFugEIpDTr1l19+WfkYITq2GTETbbtedgZ2oj8PLEpjxoyR7OzsuI+DLrZCxRDeY70XrIGEEJIMKJRcjNnOum/fvjEFGIxXBHjBGdhNcZRiOQ662AoVyhBfWM84SoQQEh4KJRcTT2dtJsBgvCLA7ojiycBtcZTMHAfGUSKEkPihUHIx8US7NtMxxrrdVEUUTwZujaMU6Tg40e+KEELcAoWSw4GYgW9ROB+jeKNdR+sYY9luKiOKW9GGTg8KGquVLtxxcKLfFSGEuIakBR5wEU6No2Q2PlK4cmYWxC1KNI5S1apVbY0rZGeMKSfEd2IcJUIIMYZxlNI4jlKs8ZECI3Pv3r1bOXBHY+HChXLdddfFFPE70cjcXogxZTfR4igNHz5cnnzyScPjwDhKhBCvcsiG/ptCyYFCKdGgh7F0jCAVaULSMXBkomIJDtmBvwf+SBhqMyP2jMSW20QjIYQEwoCTaUqizrdmHZJnzpypxATCBsQSPsANPPvss55yYIaI2bp1q7ICZmRkqFeIPLPixkl+V1b4kRFCiF0wKa7NmElea4Xzrd4xhloh9ISzINywlB4+wAmdZ7xA6A0dOtRzDsw4T6INldqdjDlZ1jKcpxD7bj0HCSHegUNvNg69me0Q8EQN604yfIz0qeNeGpaKZcgtnjYkycMrfmSEEA/335qDGTp0aI6ZOXXq1PF/fvz4ce2hhx7SSpcurRUpUkS77bbbtMzMTEd6zRtlpMe60Iz00WY6YT1mm8U7C8vLs6DM/jZ9xp6ZNnTC7Dcvop/nRscn0fOcEOJ9DtrQfzveR+n8889X1hB9+fbbb/2fYWbXZ599JtOnT5fFixfLn3/+6cinz1gjIyc76KGX4+rEUmczbQiLh1f9uFINA2ESQtyA44VS3rx5pWLFiv6lbNmyaj3MbG+++aaMHTtWmjZtKpdccolMmjRJTV3//vvvxe0dQjKdb1OdzyyZjrtm64wp9dHaUB8WCj12ZtLAkPQW7IQQ7+B4obRx40Y566yzpEaNGtKxY0fZvn27Wr9y5Uo5deqUNG/e3F+2bt26Uq1aNVm6dGnEbWZlZalxzcDFiR1CojOdnJjPLNkWGjPpV/A54g5FgvnRkk+qBTshhLheKDVq1EjefvttmT17tkycOFGJBHSEhw8flszMTMmfP7+ULFky6DsVKlRQn0Vi5MiRyvlLXyAKnNoh6DOd2rdvr16tcK4OHNozIhkpSeyw0EQbtsSCz6P9Ng4LpV8CYkIIcZ1QatWqldx5551ywQUXSMuWLeWLL76QAwcOyLRp0xLa7qBBg9TQnb6gw0u3DgFWqQEDBuQQDHiP9Vb7etlpobFi2JLDQumXgJgQQlwnlEKB9ejcc8+VTZs2KX+lkydPKuEUCNJ34LNIFChQQE0jDFzSrUOA9WbMmDE5hEl2drZab7X/jd0WmkSHLTksZA9OD4RJCCGuEkpHjhyRzZs3q84Jztv58uWT+fPn+z/fsGGD8mFq0qSJOA0ndQip8L9JhYUmkWFLJ1oBvUqyfPEIIcTzkbkxBHTzzTdL9erV1dR/RFtGZ4eOD75F3bp1k379+knp0qWVVeiRRx5RIqlx48biRJwSGTkW645RMEYzEcYTtdDEug8j4tmObgWE7xREUbj8aBwWck7UcUIISRqag7n77ru1SpUqafnz59cqV66s3m/atClHwMlSpUpphQsX1m699VZt165djgxY5SQQONFMQEaUCweCY4YGCsT7wKCZocQaRDOefVhV12jfRz1jrQchhBDrsaP/drRQsot0E0qJROaOJcK40XdDvx/63Uj7wGufPn1MRchOpK6BMDI3IYSkb//NXG825npzWj40TMsPd/iNcr1Fy6NmJkdcuHx38PXBMBaGJmPJ1RYpcaoVdSWEEOJs7Oi/XeXMTVI7C8+KmWvRHHej7cNs/CXGQSKEEGIFFEppSjyz8KyauRZpNloss94izdBjHCRCCCGen/VGnDULz47YQrF+12iGHuMgEUIIsQL6KKWhj5Ldvk1W7sMIDOPBQmVnXQkhhKQW+igRR2FHhPFI+4jFMuTEaOiEEELcB4UScVyEcaN9xBoh20nR0AkhhLgTDr1x6C0urIqabWYfM2fOVNafUHTLUDTRY0ddCSGEeLP/plCiUHIF0eIvEUIIST8OUSjZA4WSO6BliBBCiN39N8MDENfAxKmEEELshs7chBBCCCEGUCgRQgghhBhAoUQIIYQQYgCFEiGEEEKIARRKhBBCCCEGUCgRQgghhBhAoUQIIYQQYgCFEiGEEEKIARRKhBBCCCEGMDK3iOhZXBAKnRBCCCHu4NA//XYys7FRKInI4cOH/UlWCSGEEOK+frxEiRJJ2TaT4opIdna2/Pnnn1KsWDHJlStXqqvjKaUP8bljxw4mG7YBtre9sL3tg21tL25qb03TlEg666yzJHfu5HgT0aIER63cuaVKlSqproZnwYXm9IvNS7C97YXtbR9sa3txS3uXSJIlSYfO3IQQQgghBlAoEUIIIYQYQKFEkkaBAgVk6NCh6pUkH7a3vbC97YNtbS9s72DozE0IIYQQYgAtSoQQQgghBlAoEUIIIYQYQKFECCGEEGIAhRIhhBBCiAEUSiQh9u/fLx07dlRByUqWLCndunWTI0eORPzOiRMnpFevXlKmTBkpWrSo3H777bJ79+6gMoiQHrpMnTpV0o1XX31Vzj77bClYsKA0atRIli9fHrH89OnTpW7duqp8gwYN5Isvvgj6HHM3nnrqKalUqZIUKlRImjdvLhs3bkzyr0jPtu7SpUuOc/jGG29M8q/wZnuvXbtW3SdQHu04fvz4hLeZbljd3sOGDctxfuN68CSY9UZIvNx4443ahRdeqH3//ffaN998o9WqVUtr3759xO88+OCDWtWqVbX58+drK1as0Bo3bqxdccUVQWVwak6aNEnbtWuXfzl+/LiWTkydOlXLnz+/9tZbb2lr167VunfvrpUsWVLbvXt32PLfffedlidPHu2FF17Q1q1bpw0ePFjLly+ftmbNGn+ZUaNGaSVKlNA++eQTbfXq1Vrbtm21c845J+3a1o627ty5s7o+As/h/fv32/irvNPey5cv1wYMGKBNmTJFq1ixojZu3LiEt5lOJKO9hw4dqp1//vlB5/fevXs1L0KhROIGHQQEzQ8//OBf9+WXX2q5cuXSdu7cGfY7Bw4cUB3K9OnT/evWr1+vtrN06VL/OryfMWOGls5cfvnlWq9evfzvz5w5o5111lnayJEjw5a/6667tJtuuiloXaNGjbQHHnhA/Z+dna1ueqNHjw46HgUKFFA3xHTG6rbWhVK7du2SWOv0ae9AqlevHrbjTmSbXicZ7T106FD1kJwOcOiNxM3SpUvVcNull17qX4ehHOTOW7ZsWdjvrFy5Uk6dOqXK6cBcW61aNbW9QDA8V7ZsWbn88svlrbfeUsNG6cLJkydVWwW2E9oV70PbSQfrA8uDli1b+stv2bJFMjMzg8ogRxLM8EbbTAeS0dY6ixYtkvLly0udOnWkZ8+esm/fPkl34mnvVGzTKySzbTZu3KiS0daoUUO5YGzfvl28CIUSiRt0uugEAsmbN6+ULl1afWb0nfz58yuBFUiFChWCvjNixAiZNm2azJ07V42VP/TQQ/Lyyy9LuvDXX3/JmTNnVLtEaqdAsD5Sef01lm2mA8loawB/pMmTJ8v8+fPl+eefl8WLF0urVq3UvtKZeNo7Fdv0Cslqm0aNGsnbb78ts2fPlokTJ6oHsauvvloOHz4sXiNvqitAnMcTTzyhbuyRWL9+fVLrMGTIEP//DRs2lKNHj8ro0aPl0UcfTep+CbGKe+65x/8/nL0vuOACqVmzprIyNWvWLKV1IyRRWrVq5f8f5zaEU/Xq1dUDLib1eAlalEgO+vfvr4RQpAWm1ooVK8qePXuCvnv69Gk1Ew6fhQPrYQo+cOBA0HrMejP6DsBF+Mcff0hWVpakAxhyzJMnT47ZgJHaCesjlddfY9lmOpCMtg4Hrhnsa9OmTZLOxNPeqdimV7CrbUqWLCnnnnuuJ89vCiWSg3Llyim/oUgLhs+aNGmiBA/Gv3UWLFgg2dnZStiE45JLLpF8+fKp4QidDRs2qLFtbM+IVatWSalSpdImSSPaF20V2E5oV7w3aiesDywPMHSplz/nnHPUjTGwzKFDh5Q/WaS29zrJaOtwQOjDRwmhGdKZeNo7Fdv0Cna1zZEjR2Tz5s3ePL9T7U1O3A2mPzds2FBbtmyZ9u2332q1a9cOCg/wxx9/aHXq1FGfB4YHqFatmrZgwQIVHqBJkyZq0fn000+1119/XU213rhxozZhwgStcOHC2lNPPaWl25RezEh7++231QzDHj16qCm9mZmZ6vN7771Xe+KJJ4KmrOfNm1cbM2aMmkmIWSnhwgNgGzNnztR+/vlnNSuL4QGsb+vDhw+r6dWYybllyxZt3rx52sUXX6yujxMnTmjpTqztnZWVpf30009qqVSpkmpb/I/7g9ltpjPJaO/+/ftrixYtUuc3rofmzZtrZcuW1fbs2aN5DQolkhD79u1Twqho0aJa8eLFta5du6pOQgcXEfT4woUL/evQKT/00ENaqVKllAC69dZbVQyOwBADF110kdpmkSJF1BTU1157TU1pTTdefvllJSoRAwVTfBGvSufaa69VU9ADmTZtmnbuueeq8ohx8vnnnwd9jhABQ4YM0SpUqKBunM2aNdM2bNhg2+9Jl7Y+duyY1qJFC61cuXJKQGGKNWLXsNOOr731+0jognJmt5nuWN3ed999txJR2F7lypXV+02bNmleJBf+pNqqRQghhBDiROijRAghhBBiAIUSIYQQQogBFEqEEEIIIQZQKBFCCCGEGEChRAghhBBiAIUSIYQQQogBFEqEEEIIIQZQKBFCXMd1110nffr0SWgbyHyO/FSEEBIJCiVCiKXs3btXevbsKdWqVVO5+ZBfrmXLlvLdd9+J28iVK5d/yZs3r/pN/fr1C0rODMGFz88777wc358+fbr67Oyzzw4qT4FGiHvIm+oKEEK8xe233y4nT56Ud955R2rUqKGylCMBJxLCupFJkybJjTfeKKdOnZLVq1dL165dpUiRIvL000/7y+D9nj17ZOnSpUGJRt98800lrggh7oUWJUKIZRw4cEC++eYbef755+X666+X6tWry+WXXy6DBg2Stm3bBpV74IEHpEKFClKwYEGpX7++zJo1S30GQdW+fXupXLmyFC5cWBo0aCBTpkyJuF9YeAYMGKC+A9HSqFEjWbRoUVAZWHIgWrDNW2+91bRwg/UHVrGqVatKmzZtpF27dvLjjz8GlYG1qUOHDvLWW2/51/3xxx+qDlhPCHEvFEqEEMsoWrSoWj755JOg4alAsrOzpVWrVmoo7r333pN169bJqFGjJE+ePOrzEydOyCWXXCKff/65/PLLL9KjRw+59957Zfny5Yb7ffjhh5U1Z+rUqfLzzz/LnXfeqaxAGzduVJ8vW7ZMunXrpsqtWrVKibhnnnkm5t/322+/yYIFC5QQC+W+++6TadOmybFjx/zCDHWAGCSEuJhUZ+UlhHiLDz/8UCtVqpRWsGBB7YorrtAGDRqkrV692v/5nDlztNy5c2sbNmwwvc2bbrpJ69+/v/89spj37t1b/b9t2zYtT5482s6dO4O+06xZM7Vv0L59e61169ZBnyPbeYkSJSLuF7dI/I4iRYpoBQoUUO/btGmjnTx50l9m0qRJ/u1cdNFF2jvvvKNlZ2drNWvW1GbOnKmNGzdOq169etjyhBDnQ4sSIcRyH6U///xTPv30U2VRwfDTxRdfrCwsABadKlWqyLnnnhv2+2fOnFH+PxhyK126tLJQzZkzR7Zv3x62/Jo1a9R3sD3dooVl8eLFsnnzZlVm/fr1OaxAgb5EkRg3bpyqM/yTMDwIqxIsXOGAVQk+Tdj30aNHpXXr1qb2QQhxLnTmJoRYDvyObrjhBrUMGTJE7r//fhk6dKh06dJFChUqFPG7o0ePlpdeeknGjx+vxBJ8jhAKAA7i4Thy5Igatlu5cqV/+E4HgilR4J9Uq1Yt9X+dOnXk8OHDyocKQ3f6ep2OHTvKY489JsOGDVNiCr5LhBB3w6uYEJJ06tWrp/yWwAUXXKAcnWGZCWdVgu8SHKb/9a9/+X2aUBbbCEfDhg2VRQmzzq6++uqwZTB1H35KgXz//fdx/RZdjB0/fjzHZ7CAwWkdvkqvvfZaXNsnhDgLDr0RQiwDM8maNm2qnLThVL1lyxYVS+iFF15Q4gdce+21cs0116ghurlz56oyX375pcyePVt9Xrt2bbV+yZIlasgMs+MQYsAIiC1Ycjp16iQff/yx2h4cv0eOHKkcwsGjjz6qtj9mzBjl4P3KK6/49xcNzNDLzMxUw4kYUhsxYoTaZ7i4SQBDjH/99ZfUrVs3jhYkhDgNCiVCiGVgqAu+QPDrgRjCtH8MvXXv3l2JE52PPvpILrvsMjWEBUsRhqtgFQKDBw9WPk0IUokI3Bj6uuWWWyLuF35BEEr9+/dXw2Mo/8MPP/hjGDVu3Fhef/11NaR34YUXyldffaX2YwbETapUqZLyq0J9zz//fCXsjIbVMLRYpkyZGFqNEOJkcsGjO9WVIIQQQghxIrQoEUIIIYQYQKFECCGEEGIAhRIhhBBCiAEUSoQQQgghBlAoEUIIIYQYQKFECCGEEGIAhRIhhBBCiAEUSoQQQgghBlAoEUIIIYQYQKFECCGEEGIAhRIhhBBCiAEUSoQQQgghEp7/AwChA5nCPbzOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = x[:, 2]\n", + "x = x.reshape((-1,1))\n", + "x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, test_size=0.33)\n", + "model = linear_model.LinearRegression()\n", + "model.fit(x_train, y_train)\n", + "y_pred =model.predict(x_test)\n", + "plt.scatter(x_test, y_test, color='black')\n", + "plt.plot(x_test, y_pred, color='blue', linewidth=3)\n", + "plt.xlabel('Scaled BMI')\n", + "plt.ylabel('Diabetes Progression')\n", + "plt.title('A graph plot showng Diabetes Progression Against Scaled BMI') \n", + "plt.show()\n", + "#end of regression example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f3b27b8d", + "metadata": {}, + "outputs": [], + "source": [ + "\n" + ] } ], "metadata": {