From 8308268831ea023e6704a468792da1528b4c3d4e Mon Sep 17 00:00:00 2001 From: Shimon Lyons Date: Mon, 19 Jul 2021 21:55:09 +0300 Subject: [PATCH] Remove unncecessary view() --- 2-Regression/1-Tools/notebook.ipynb | 145 +++++++++++++++++++++------- 1 file changed, 109 insertions(+), 36 deletions(-) diff --git a/2-Regression/1-Tools/notebook.ipynb b/2-Regression/1-Tools/notebook.ipynb index 121fae3e..692123f3 100644 --- a/2-Regression/1-Tools/notebook.ipynb +++ b/2-Regression/1-Tools/notebook.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 54, "source": [ "print('Hello notebook')" ], @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 55, "source": [ "import matplotlib.pyplot as plt\r\n", "import numpy as np\r\n", @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 56, "source": [ "X, y = datasets.load_diabetes(return_X_y=True)\r\n", "print(X.ndim, X.shape)\r\n", @@ -88,10 +88,10 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 57, "source": [ - "Xview = X.view()\r\n", - "X = Xview[:, np.newaxis, 2]\r\n", + "origX = X\r\n", + "X = origX[:, np.newaxis, 2]\r\n", "print(X.shape)\r\n", "print(X[0])" ], @@ -128,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 58, "source": [ "print(X.ndim, X.shape)\r\n", "print(X[0], X[1])\r\n", @@ -163,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 59, "source": [ "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)" ], @@ -172,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 60, "source": [ "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" ], @@ -196,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 61, "source": [ "model = linear_model.LinearRegression()\r\n", "model.fit(X_train, y_train)" @@ -210,7 +210,7 @@ ] }, "metadata": {}, - "execution_count": 210 + "execution_count": 61 } ], "metadata": {} @@ -226,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 62, "source": [ "y_pred = model.predict(X_test)" ], @@ -249,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 63, "source": [ "print(y_pred.shape)\r\n", "print(y_test.shape)" @@ -275,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 64, "source": [ "print(y_pred[:10])\r\n", "print(y_test[:10])" @@ -285,9 +285,9 @@ "output_type": "stream", "name": "stdout", "text": [ - "[106.13314033 158.77362293 206.44802227 178.63795599 146.8550231\n", - " 141.88893983 306.76290422 180.6243893 140.89572318 108.11957364]\n", - "[138. 151. 242. 296. 141. 81. 242. 270. 60. 93.]\n" + "[102.22273764 110.70519001 89.02781173 146.51998889 176.67981953\n", + " 189.87474543 120.13013708 119.18764237 80.54535937 97.5102641 ]\n", + "[ 60. 102. 63. 198. 172. 202. 190. 125. 101. 70.]\n" ] } ], @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 65, "source": [ "plt.scatter(X_test, y_test, color = 'black')\r\n", "plt.plot(X_test, y_pred, color = 'blue', linewidth = 3)\r\n", @@ -315,8 +315,8 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo1klEQVR4nO2de5QdVZ3vP7s7nYQmIOQkgxHo02HGuTMMipLmqQKiiEZUROYCtpoFaM+0yDiML5ijo4tluxaOdwb0GrDDIIG0RBHnwriWi0F8oDwSO4E8gIkEPR0eIQkkvOyQTvrs+0dVk9PdtetU1anHrjq/z1q1uk7tOlW/XafPt/b5/vbepbTWCIIgCMWiLesABEEQhPgRcRcEQSggIu6CIAgFRMRdEAShgIi4C4IgFJAZWQcAMG/ePN3d3Z11GIIgCLlizZo1z2mt53uVWSHu3d3dDA8PZx2GIAhCrlBKjZjKxJYRBEEoICLugiAIBUTEXRAEoYCIuAuCIBQQEXdBEIQCIuIuCCEYGhqiu7ubtrY2uru7GRoayjokQfDEiq6QgpAHhoaG6OvrY3R0FICRkRH6+voA6O3tzTI0QZiGtNwFISCVSuU1YZ9gdHSUSqWSUUSCYEbEXRACsmXLllDbBSFLRNwFISBdXV2htgtCloi4C0JABgYG6OzsnLSts7OTgYGBjCKKhiSFWwMRd0EISG9vL4ODg5TLZZRSlMtlBgcHc5VMnUgKj4yMoLV+LSksAl88lA3PUO3p6dEycZggJE93dzcjI9PnmiqXy1Sr1fQDEppCKbVGa93jVSYtd0EoOPU2jJewgySFi4iIuyAUmKk2jAlJCqfLnj1w3HFwyCFw6aWwd2/85xBxF4SEsCFx6dU3fyp5TArnFa3hM5+B2bPhoYfgxRdh6VJ4/PH4zyUjVAUhAWwZzepntyil6OrqYmBgIFdJ4bxy001w0UXeZQsXxn++hglVpdRs4F5gFs7N4Mda668qpRYCK4ESsAb4uNZ6TCk1C7gZWAQ8D5yvta76nUMSqkLRsCVxaUscrcyqVXDSSd5lBx0E1SrMnRvt2M0mVPcAZ2itjwXeArxXKXUScDXw71rrvwB2AZe4+18C7HK3/7u7nyC0FLaMZi1K3/w8snUrKGUW9g0b4KWXogt7IxqKu3Z4xX3Z4S4aOAP4sbt9OXCOu/4h9zVu+buUUiqugAUhD9gymrUIffPzxp490NMDb3iDd/nttzve+zHHJBtHoISqUqpdKfUwsB24G3gCeEFrvc/d5SngcHf9cOBJALf8RRzrZuox+5RSw0qp4R07djRVCaFYxJ2IzCKxaVOLube3l2q1Sq1Wo1qtirAnhNZw2WVOsnTNmunlX/6ys8+556YWkA68AIcAvwTeDmyu234ksNFd3wgcUVf2BDDP77iLFi3SgqC11itWrNCdnZ0a59ehBnRnZ6desWKFFccLe+5yuayVUrpcLqdyTiEbbrpJa0e6py9nnqn13r3JnBcY1ia9NhUY3wD/AnwBeA6Y4W47GbjLXb8LONldn+Hup/yOKeIuTFAulycJ8cRSLpetOF4jRNBbi1WrzKJ+4IFaP/dcsuf3E/eGtoxSar5S6hB3/QDgTOAxtwV/nrvbEuAOd/1O9zVu+S/cIIQc0IyFEYf9EXciMs3Epszb0jpMJEtPPNG7fP16eOUVKE0zpFPEpPoTC/Bm4CFgPY7l8i/u9qOA1cBm4DZglrt9tvt6s1t+VKNzSMvdDpqxMOKyP/Lcck/7V4KQPq++qvXxx5tb6z/+cbrxEKctk8Qi4m4HzYhTXMKWZ89dKeV5DZRSsZ9LSJdaTevLLjOL+j//czZxibgLgWhGnOIUtrh967R8cGm5F5ObbzaL+rvelVyyNAgi7kIgbGi555kse+YI8bN6tVnUDzhA6x07so7QX9xl4jDhNZrpm21Tv+6skAFDxeDZZ51k6QkneJevWwejozBvXrpxhcak+mku0nK3h2YsDOkGKOSZPXu0PuEEc2v9ttuyjnA6+LTc5UlMQmEYGhqiUqmwZcsWme1QCMXll8M113iXXXklfOMbqYYTGHkSk2DF3OJJIn3MhSisWOFYMF7C/s53wtiYvcLeCGm5twBT5xYHxw8vkh8sU9sKYRgehuOP9y6bNQueeioHnjr+LXcR9xagFYSvra0Nr/9lpRS1Wi2DiAQb2bYNXv96c/nDD8Oxx6YWTtOILdPi2DK3OCRnD9kyxW5cFN1GS5uxMTj5ZLOw//CHTto0T8LeEFOmNc1Fesskiy190JPsB16kPuZ+dZEeSeG5/HJzD5gvfSnr6JoDGcTU2tgifEnfZIoifKbrVCqVUvsci3Ath4bMon7aaVqPjWUdYfOIuAtWfFll7pVgmK6TaYn7F5gtjYGoDA+bRX3mTK23b886wvgQcReswBZ7KApp3hxN18m0xH1zzOvntG2bWdRB64ceyjrC+PETd0moCqlhwxQFURKVafehN12nkmFy8LiTxjYl4IMwNgannAKHHeZdvnKlI+9veUuqYWWPSfXTXKTl3jpkaQ9FtRuyaMl6Xae07JI8tdw/9zlzS/2LX8w6uuRBbBlBiC5aNuUK0rg55sFz90uWvuMdxUiWBsFP3GUQk9AyRB3o1AqDwKZi6zw9a9fCokXeZTNmwDPPwPz56caUJTKISSgkYf3zqAOdbMgVpE1vby/VapVarUa1Ws1c2Ldvh/Z2s7CvXQt797aWsDfE1KRPcxFbRghLFOug2WfENmuH2NAdNW+MjWn9treZLZhbb806wmxBPHehCNSLY3t7eyT/PCuBzYOPbRtf+IJZ1D//+ayjswM/cRfPXcgFXjNbemHrRGGt6NtHZeVKuPBC77K3vQ1+8QuYOTPdmGxFPHchNZKa8KpSqTQUdrB3orC89R3PgocecuZW9xL2tjZnRsff/hZuu00mVQuEqUmf5iK2jL2EsTGStB6CDMlPw+aIauuk0Xc8r57+9u1az5hhtmDWrNm/r9hbk0E8dyEKYb9ISQqY6djt7e2piVmzCdkkRSmPojc25vRJN4n6D34w/T15GmCVBiLuQiTCfpGSHOxjg3g1KyxJtqzzJnpf/KJZ1P/pn8zvs2lAmQ2IuAuRCPtFKvqUvjYLi82x1bNypVnUTzlF6z17/N+ft5tY0viJuyRUBSNhB/0kPdgn64E1Nj/tyebYwHl8nVJwwQXTy5SCZ5+F++5r3AumFQeURcak+hMLcCTwS+BR4BHgs+72rwFPAw+7y+K691wJbAY2AWc1Ooe03O0k6kChPCb1gmCDNZS32LZv17qjw9xaHx4Of8wi/4+FhWZsGWABcJy7fhDwe+BoV9w/77H/0cA6YBawEHgCaPc7h4i7vcgXaTI2Xw+bYhsb0/rUU82ibtFlyzVNifu0N8AdwJk+4n4lcGXd67uAk/2OKeKeD2wSj2YpUl1s40tfMov65ZdnHV2xiE3cgW5gC3CwK+5VYD1wI3Cou8//BT5W957/AM7zOFYfMAwMd3V1pXc1hEjY8rM/rjlebKhL0fjRj8yiftJJjZOlQnhiEXdgDrAGONd9fRjQjjPKdQC4UYcQ9/pFWu72Y0MvhbhE2Ya6FImHHzaLOmj97LNZR1hc/MQ9UG8ZpVQHcDswpLX+CYDWepvWelxrXQOWASe4uz+Nk4Sd4Ah3m5BjbBg+7zUFwejoKJVKJdRxbKhLEXjuOZg92/z4ut/9zpF30+PvhGRpKO5KKYXT+n5Ma/1vddsX1O32YWCju34ncIFSapZSaiHwRmB1fCELWWBDV7u4RDnruiQ1/05a7N0L73ynM3f6nj3Ty2+5xRH1Hs/prIQJEv8/MDXpJxbg7Tg/W9dT1+0RuAXY4G6/E1hQ954KTi+ZTcD7Gp1DbJl0aMavtsGnjstOybIuNlzHZrjySrP98tnPal2rZR1hPojr/wAZoSrE8c+UdQ+TOIUxq7rk1e+/7TazqJ94otavvpp1hPkirv8DP3GX+dxbhKLMJ27rsz2DEvU5rlmxfj0ce6y5fOtWeP3r04unKMT1f+A3n7uIe4uQN1EpKnm5yT7/PBxxBLz6qnf56tVw/PHpxlQk4vo/kId1CJknEQUH2+dG2bcPzjgD5s3zFvblyx0zRoS9OVL5PzD5NWku4rknT94TeUUi69yFiUrF7Kv/wz9IsjRu4vg/QDx3AeDTn/40g4ODjI+P097eTl9fH0uXLs06LCFjbr8dzjvPu+z44+E3v4FZs9KNSQiG2DICQ0NDLF++nPHxcQDGx8dZvnx57vpYC/GxYYMz3a5J2J95xvHWRdjziYh7ixDX6E7I/yCcVuf556GzE978Zu/yVascM2bBAu9yIR+IuLcIcY3uHBoaoq+vj5GREbTWjIyM0NfXJwKfA/btg3e/20mW7t49vfymmxxRP+GE6WVC/hBxbxHi6i0T5y8AIT2+8hXo6IB77pledtllUKvBkiXpxyUkh4h7ixBX1yuZdCtf/OQnjq/+9a9PL1u0yOnu+O1vO/sIxULEvUXo7e1lcHCQcrmMUopyuczg4GDo0Z3SXz4fbNzoCPZHPuJd/swzMDwsydIiI+LeQsTxgGnbB+G0Ojt3wpw58KY3eZc/+KAkS1sFEXchFHH9AkiLVunZs28fvOc9UCrBn/40vfz733dE/cQT049NyAYZxCQUlomePfUJ4M7OTqtvRlH46lfhqqu8yy69FL7zHfHUi4pMHCa0JHmZpCsq//mfcO653mVvfSvcf7/zpCShuMgIVSExbLY9itqz55FHnJa4SdiffhrWrhVhb3VE3IXXCCvUtg9oKlrPnmeecUT9mGO8yx94wPHV3/CGdOMSLMU0o1iai8wKGZykZhSMMmuk7U8VKspMmGNj5tkaQesbb8w6QiErkMfsFYMkxSqKUCulPN+jlGo6nriwdXrdoJx+ulnU+/tlGt5Wx0/cJaGaI5JMEEZ5UlPRE5ZZcvXVcMUV5vLdu8VTFyShWhiSTBBG8adlQFP8/PrXjq9uEvbHHnPa7SLsQiNE3HNEkgnCKEKdtwFNNrN1qyPqp5/uXf6jHzmi/ld/lWpYQp4x+TVpLuK5ByPpBGHe/Wk/bK1bo2TppZdmHaFgM0hCNX+YxMhWkbIZW3vNnHGGWdSPOEKSpUJj/MRdEqoW0irD5tPCtsTvt74FX/iCufzll53JvwShETL9QM6wTYzyTpSeQElw771w2mnm8kcfhb/+69TCEQqA9JbJGXkZNm/z1AP1ZD1SdSJZahL2lSsdM0aEXYiThuKulDpSKfVLpdSjSqlHlFKfdbfPVUrdrZR63P17qLtdKaW+rZTarJRar5Q6LulKFI2sxSgItk89UE9WXTb37XNE3TQdQH+/I+rnn59oGIHIy41aCIHJjJ9YgAXAce76QcDvgaOBbwJXuNuvAK521xcDPwMUcBKwqtE5JKE6GVsTgPXYPvXAVNJORJ95pjlZumCBXcnSPPy/Cd4QZ28Z4A7gTGATsEDvvwFscte/B1xYt/9r+5kWEffp2N4rJg9TD3iR9HX91rf8uza+9FKsp4uFvN2ohf3EJu5AN7AFOBh4oW67mngN/BR4e13ZPUCPx7H6gGFguKurK61rIcREqVTyFIRSqZR1aEaSbKHee6+/qD/ySAwVSIi83qgFf3EPnFBVSs0Bbgf+UWv9Un2Ze5JQ3W601oNa6x6tdc/8+fPDvFUQIlGpVCZ1LwUYHR2lUql47h/Eh372WcdXP/VU73Peeqsj70cf3XT4iZGHHI8QnkDirpTqwBH2Ia31T9zN25RSC9zyBcB2d/vTwJF1bz/C3SYUiJ07d4babgNheiE1ShhPJEtND5ru63NE/YILYgs/MWSOoGISpLeMAv4DeExr/W91RXcCS9z1JThe/MT2T7i9Zk4CXtRab40xZsEC8tjaCxOzXyv/ve+Fjg7vc7zudbvp6upm2bL89DqROYIKismv0fu98bfjWC7rgYfdZTFQwvHTHwd+DszV+/337wJPABvw8NunLpJQzR957GERJmZvH/offX31ZctW5u6aCPkGmVtGCEuQXiW29+jxImjMk3uQnOIr6hs3er1Hep0IyeMn7jL9gDANmdvGuQaf+tSX2b37jz77wEc/uv+1LdMcCK2DzC0jhKLV57bZt8/sqQN88pOwbNn07a1+3YT0kbllcoBNw7/zMrdNEixebBb2+fOhVvMWdpBeJ4JdiLhbgG3ztOSxJ0yzXHON07XxZz/zLn/xRdi+3dnHhPQ6EazCZManueQ5oRpHUtG2RFySPWGSSMI2c8z77jMnSkHrDRuaDk8QEgPpLZMMcYmgjcO/+/v7dXt7uwZ0e3u77u/vb/qYSdw0oh5z2zZ/Ub/llsghCUJqiLgnRFwt7lZpuSdRz7DH3LfPX9QvuSRyKIKQOn7iLp57E0RNPE5Nni5evNiqRFzYOViCkkSiNswxzz4bZszwPs7cuU6y9IYbIofSEJuS5kILYFL9NJdWarmbWsX9/f3WDAgy2US4VpFNuYUgx7z2Wv/W+gsvRD59YPI4olewH8SWSYYoX1jbLBgvTDE2K0xpe+733+8v6uvXRz5taPLwuQv5Q8Q9QcL21LAxeToVL8GMS5jS6C2zdOltvqK+fHk85wkTex4+dyF/iLhbRF5acPVC5mfR2ESjZOlFF0U/drO/OvLyuQv5QsTdImzxXsO0QvMgTB/4gFnUX/e65p9Z2uw1sOVzF4qFiLtlZD2bYlihsVmYvvMd/9b6kUceE0uccdgqWX/uQvEQcS8QWY2ItU2YHnjAX9ThzbHeiPLw60VoPUTcC0KRR8QGZft2f1EvlT6XyI3L5l8vQusi4l4QijoiNgiNkqWf+ISzX9gbV5hxB7b9ehEEEfeCEFeLu5lWaBYCd845ZlGfM0fr8fH9+4a9cZn2n3qtpZUu2IiIe0GIs8UdRaTTtia++13/1vquXc3H6NfVM0+/bITWRMQ9IdJuxWbt+6Zl5zz4oL+oP/SQ//vj6OaZ15yE0FqIuCdAVkKbpe+bdCJ2xw5/Ub/xxlhOMwmvz9FUT2m5C7Yh4p4AeUxKNktSdW6ULP3Yx+KJ38TUG2Z/f7/0jBFygYi7D1FbwnnuThiVJH6tnHuuWdQPOGBysjRNpGeMkAdE3A00I1at2HLXOj7RW7rUv7W+c2fMgQtCARFxN9CMQGed3MyCOIR99Wp/UV+7NoHABaGgiLgbaNZaaaWf7s3ezJ57zl/Ub7gh4QoIQgHxE3fllGdLT0+PHh4eTv283d3djIyMTNteLpepVqupx2MzUa9VrQbt7ebjXngh/OAHMQQoCC2IUmqN1rrHq6zhM1SVUjcqpbYrpTbWbfuaUupppdTD7rK4ruxKpdRmpdQmpdRZ8VQhGQYGBqx6dmlWBHm2Z5Tnn553nlnYZ82Cm28e4v775ZmigpAIpib9xAKcChwHbKzb9jXg8x77Hg2sA2YBC4EngPZG58hjb5miENRuCZOfuP56fwvm+edbM2chCHFDs5470B1Q3K8Erqx7fRdwcqPj57Gfe1EIKtpBxPh3v/MX9eHh8OcVBMGMn7g3tGV8+IxSar1r2xzqbjsceLJun6fcbdNQSvUppYaVUsM7duxoIgyhGYLaLb29vQwODlIul1FKUS6XGRwcpLe3l507QSk4/njvcyxb5sj7okXhzysIQjSiivt1wJ8DbwG2Av8n7AG01oNa6x6tdc/8+fMjhiE0S1dXV+Dtvb29VKtVarUa1WqVCy/sZcYMKJW8j33++Y6of/KTzZ1XEITwRBJ3rfU2rfW41roGLANOcIueBo6s2/UId5uQEY2SpVGTyuef7yRLx8enl3V0ONtXrjS/vwjJ7CCJaEHIDJNfU78w3XNfULd+ObDSXf8bJidU/4CFCdVWSaIGTVqGuR6Dg42TpWHi8zpvHj4fSQgLNkAzCVXgVhzrZS+Oh34JcAuwAVgP3DlF7Cs4vWQ2Ae9rdHydsri30pcyzqTl8LC/qENPLEKcl89HEsKCDfiJe8sNYmqlgUttbW14fb5KKWq1WqBj7Nxp9tQBZs78DGNj333tdWdn52uJ1ijk5fOJ49oKQrM0NYipaGTZSyNtj7aZpGWtBjNnmoX9b/8WyuXuScIOMDo6SqVSmbZ/0LrnpReNJIQF6zE16dNc0rRlsvo5nYXdEPWcF1xgtl/a2vZPwxt0bp4wcdhidzTy/fNiHwnFBpk4bD9ZfSmzvKkETU7ecIO/r/7cc9HqFKbuNohmEoloQUgCEfcpZPGltPnhHmvW+Iv66tX7962/dqVSSXd0dDQUwbB1z1o0bfn1IAiNEHG3ABsFY+dOf1G/7rrJ+3u1aGfOnKlLpZKvENtYdz9svhELQj1+4t5yCdWsyHrQTn1Cs1xeSEfHOHPneu977rmOvP/9309+/5IlSxgdHZ2079jYGHPmzHlt1KpXL5ms6x4WG5OlMmBKCI1J9dNcWqHlrnV2dsPkFvcK39b6vn2N3h+tRZu11RIGG3x/m+MR7AGxZbIla2FzbJGLfEV9x45G7/cWdiy2V5oh68+snrzZWkJ6iLhnSNRWV1zisnatWdBB61WrGh/D5EE304K0STxtR3IAggkR9wyJ0uryuiFMfMGDCuGuXf6iDv2BW35+LfdSqRRamMVmCIe03AUTIu4ZEqXV1cgG8RPC8XGtDzjAT9R/4nkMv5Z0I889rDCLWIVDboaCCRH3DIkiZH42iN/7P/5x/9Z6V9fCwOJtEv84fHexGcIjNpbghYh7hkRpdTVquU8Vwu9/31/U/ZKlfufzEuw4hFla7oIQD37iLv3cE8bv8XQmvPqFT6Wrq4t165zH2110kfc+Dz7oyPu8ef4xhpmsK44+4Hnr9y4IucSk+mkuRW65R6XeBpnaWj7ggAW+LfVPfGJ1qJ/wWcz9IjaDIDQPYsvkm/1Cr7RSLxtF/YMfjCa+Yd8jwiwIduAn7oW2ZYoyZLu3t5fTT68CNbSe47nPvn1wxx1QqVSmTRFgmmO9/vhhrSMvinK9BaEQmFQ/zSWJlntRuo/ddJPZfgGtt2+fvH/SPVFM17W/v78Q11sQ8gStaMvkvUfGunX+on7//d7vS7repuO3t7cnel6xggRhOn7iXlhbxrbHtQW1LF580ekBc+yx3se59lpH3k8+2bvcrydKHLaJ6fqNj4+H2j8MQ0ND9PX1MTIygtaakZER+vr6xPYRBD9Mqp/mUvSWexCLqFbT+uCDzS31s88Od76prdy4bKosWu42fZaCYBO0oi1jk+feSJwuusjfgvGahjfuGIKShecuI1oFwZuWFHet7fFpzdMJfNxX1Ldtiy8G7/NHE0jTdU3qekvLXRC8aVlxt4Xp4nSMr6jfd1+851+xYoXxBpMHgbTpV5gg2ISfuBc2oWoT+5OcB+No0wbP/a65xpH3U06J9/yVSsW5k09BKZWLIf9x9cMXhFZCeX3p06anp0cPDw9nHUZiaA2nnfYEv/nNn3uWL14MH/3oEJVKhS1bttDV1cXAwEBs4tXW1uYp7k5s2X/+giBEQym1Rmvd41UmLfeEue46aGvDKOzQwapV87j44os9u/rF0X3RNKlXuVwOfSxBEHKCya+ZWIAbge3Axrptc4G7gcfdv4e62xXwbWAzsB44rtHxdZOeuy1J06nce6/ZUwetDzig25jknFhKpVJsk3SJZy0IxYNmEqrAqcBxU8T9m8AV7voVwNXu+mLgZ67InwSsanR83YS42yhaIyP+ov7YY8Hma/dboiRBbb0JCoIQHT9xD+S5K6W6gZ9qrY9xX28CTtdab1VKLQB+pbX+X0qp77nrt07dz+/4UT337u5uRkZGpm0vl8tUq9XQx2uG3bvhuOPgf/7Hu/y//gvOPttZ9/PAg6CUolarRX6/IAjFIAnP/bA6wX4WOMxdPxx4sm6/p9xtXkH1KaWGlVLDO3bsiBREklMMBPW6tYaLL4bOTm9h//rXnX0mhB2CPdiis7OTUqnkWRbmwRh5RWaYFIQmMTXp6xegm8m2zAtTyne5f38KvL1u+z1AT6PjR7VlkhrcEtTuuf56s/1y9tnmkaVex+/o6NClUimRKQPiIi1rx7Z6C4Kt0OwgJg9x3wQscNcXAJvc9e8BF3rt57fY5rk3umn4JUtLJa137Wp8jv7+/tfmY2lvb9f9/f3GOmbhlU89b5pT+sqIVEEIRhLi/q9MTqh+011/P5MTqquDHN+23jLm6QKO9E2WPvpo8Jhtbpl6xZfmCFeZS0YQgtGUuAO3AluBvTge+iVAybVcHgd+Dsx191XAd4EncIZhNrRkdERxT7JFO73lOFvDRqOo33lns8fPpmVqmj3SNMNjWoJbKpWsuD5xIz2WhLhpuuWe9BJW3JNu+U4+/jKjqF91VbTj29AyNfn+M2fODCzsSQjuihUrPGPo6OjItRja/mtNyCeFE/c0Wr4XX/ygUdTf//7mpuGNO/4oLcIofe2n3pSSECdTXKVSKdbzpI0tv9aEYlE4cU+y5fvb33oLOmh96KFa79zZ/M/rZltx9ecvlUrTWrpBjmXOK3gvE3O2J20r2PCrJgmKWi8hWwon7km0gp580izqsD9ZGtfP66g3CK/zR7kWYVru7e3tqdkHWbVwk/bDpeUuJEHhxD1O/3J0VOtjjjGL+vz5l0z6wmf9JQ0qyo1ahEE997R94TS86Sy6eYrnLiRB4cRd6+ZbWrWa1p/6lFnUzz13neeXMaqYxkVQOyXIzcbUWybrHh1JxpBlN08brq1QLAop7s0wOGgW9fe9z0mWmlrIST4IOghBWu5JtAiLIkxh7CjxwwXbEXF3ue8+s6gfcoiTLJ3Ar4Wc5c/roFMXJH3OvFoKYRLJ4ocLttPy4v7UU2ZRB603bpz+Hj9vPWnboNGx025FZ51niBNTXdLo5ikIcdOy4r57t9ZvepNZ1OfP/9Q0gaxPmib1hTeJc5ot5DA3iCJ14zNd4zS6eQpC3LScuNdqWv/d35lF/cMf9k6WevWamBC2uL7wfuKSlp8f9iZSpJa71sXJHwhCS4n7smVmUT/rLK337s02WRrUFkiyhRxWrIvkuQtCkfAT9xkUhAcegFNO8S47+GD44x9h7lzntelhHuPj457b43j4xwReT44C5yZrIu6Hc4R9yElvby8AlUqFLVu20NXVxcDAwGvbBUGwj6hPYrKGp58GpczCPnt2D0uXDr0m7BBeLOMU17a2cJe8o6ODgYGBUO+pf4rRvHnzmDdv3qQnGpnq41fP3t5eqtUqtVqNarUqwi4ItmNq0qe5RLVlrrvObMHAOUa7IegQfhKwH4Kcs3458MADQx2/Ud1MuQWxWQQhf1BEz71W0/rgg71E/WuBPOv6pJqfuMYteGHF3bn/BifIIJ2ku3PGSV7iFIQsKKS4a631SSftF/Uzz9S6q+uoSAnRNHuDmB5EEZe4Bxmkk5cujJLIFQR//MQ91577PffA2rXw8svw3/8N3/jGVXR2dk7ap7Ozs6FnPTAwYHxfvX894Vk3w7XXXktHR8ekbR0dHcyZM8dz/1KpFOr4QfIDcSdok6JSqTA6Ojpp2+joKJVKJaOIBCFHmFQ/zSXOrpDNTKXrNYlWEgNeTOeaOiPjzJkzIx3b72lKeWr5FmnwlCAkAUW1ZZIm7aHqcfnLJusnzXnZ46Bog6cEIW78xF055dnS09Ojh4eHsw5jGm1tbQS9PuVymWq1mmxAATHFrZSiVqtlEFE0hoaG6Ovrm2TNdHZ2Mjg4KF0xBQFQSq3RWvd4leXac0+aMN50nAOdmiVKP3YTceUcohynt7eXwcFByuUySinK5bIIuyAExdSkT3Ox1ZbJ8sEOzRDnowDjOE5/f7/MuigICYB47tHJ4pFscRCHfx+H571ixYpc3BAFIY/4ibt47hEYGhpqiXlW4vDuu7u7jfPp5C0HIAi2IZ57QIL6wrbMsxJ3H/ypxOHd++Ui8tLfXhByialJn+Zigy1j82hIL2vIq7tj3PHGcU38upPacG0FIc8gnntjbO1T3WhQUtLxNuvdm5LS/f39scYpCK2In7g35bkrparAy8A4sE9r3aOUmgv8EOgGqsD/1lrv8juODZ67rX3DDzroIF555ZXA+2cdrxetkqMQhLRJ2nN/p9b6LXUnuAK4R2v9RuAe97WV1HvWpnnWs/SFh4aGQgk72Olj25KjEIRWIomE6oeA5e76cuCcBM7RNBOjH0dGRtBaez6FKcikY0kSdoKsRvEmnYAVBMEiTH5NkAX4I7AWWAP0udteqCtX9a+nvLcPGAaGu7q6krSlPPF7jqotc4cHmb53YimVSr7x2pwwFgQhGiSVUAUOd//+GbAOOHWqmAO7Gh0ni4RqmBkHs3pghN+DN0qlUqh4kkwYywM1BCEbEhP3SQeCrwGfBzYBC9xtC4BNjd6bhbgHFbssW7xx9jRJavpc+UUgCNnhJ+6RPXel1IFKqYMm1oH3ABuBO4El7m5LgDuiniNJ/B7QUU/QB0bE4WdPPQYwbeKsW265haVLl4Y+dpyTidUjD9QQBEsxqX6jBTgKx4pZBzwCVNztJZxeMo8DPwfmNjpWVv3cg9gJQVq8cbRek24BJ3V8eaCGIGQHMogpOkHsmzj87DQGUSXhjds6+EsQWgE/cZe5ZRoQxL4xzZ8SZo73OI7RiCT6mwe1twRBSBcR9wYEeWBEHH52Up540sgDNQTBUkxN+jQXm22ZIOTBcxcEoXggtkyyxNF6lRawIAhxIg/rEARByCnysA5BEIQWQ8RdEAShgIi4C4IgFBARd0EQhAIi4i4IglBArOgto5TaAYxkHUfCzAOeyzqIFGml+rZSXaG16mt7Xcta6/leBVaIeyuglBo2dVkqIq1U31aqK7RWffNcV7FlBEEQCoiIuyAIQgERcU+PwawDSJlWqm8r1RVaq765rat47oIgCAVEWu6CIAgFRMRdEAShgIi4x4hSaq5S6m6l1OPu30MN+y1x93lcKbWkbvuvlFKblFIPu8ufpRd9MJRS73Vj3KyUusKjfJZS6odu+SqlVHdd2ZXu9k1KqbNSDTwiUeurlOpWSu2u+yyvTz34kASo66lKqbVKqX1KqfOmlHn+T9tMk/Udr/ts70wv6hCYJnqXJfwCfBO4wl2/ArjaY5+5wB/cv4e664e6Zb8CerKuh0/92oEncB6OPhPn4ehHT9nn08D17voFwA/d9aPd/WcBC93jtGddpwTr2w1szLoOMde1G3gzcDNwXt124/+0rUsz9XXLXsm6Do0WabnHy4eA5e76cuAcj33OAu7WWu/UWu8C7gbem054TXMCsFlr/Qet9RiwEqfO9dRfgx8D71JKKXf7Sq31Hq31H4HN7vFsppn65o2GddVaV7XW64HalPfm8X+6mfrmAhH3eDlMa73VXX8WOMxjn8OBJ+teP+Vum+D77k+9r1goEo1in7SP1nof8CJQCvhe22imvgALlVIPKaV+rZR6R9LBNkkzn09RP1s/ZiulhpVSDyqlzok1spiYkXUAeUMp9XPg9R5FlfoXWmutlArbz7RXa/20Uuog4Hbg4zg/CYX8sRXo0lo/r5RaBPw/pdTfaK1fyjowIRbK7nf1KOAXSqkNWusnsg6qHmm5h0Rr/W6t9TEeyx3ANqXUAgD373aPQzwNHFn3+gh3G1rrib8vAz/APtvCGLvXPkqpGcDrgOcDvtc2ItfXtZ+eB9Bar8Hxd/8y8Yij08znU9TP1kjdd/UPOLmyt8YZXByIuMfLncBET4ElwB0e+9wFvEcpdajbm+Y9wF1KqRlKqXkASqkO4GxgYwoxh+F3wBuVUguVUjNxEohTewrUX4PzgF9oJwN1J3CB27tkIfBGYHVKcUclcn2VUvOVUu0AbuvujTiJRlsJUlcTnv/TCcUZF5Hr69Zzlrs+D3gb8GhikUYl64xukRYcr/Ue4HHg58Bcd3sPcEPdfhfjJBQ3Axe52w4E1gDrgUeAa7GwNwmwGPg9Tku04m67Cviguz4buM2t22rgqLr3Vtz3bQLel3Vdkqwv8BH3c3wYWAt8IOu6xFDX43G86T/h/Bp7pO690/6nbV+i1hc4BdiA08NmA3BJ1nXxWmT6AUEQhAIitowgCEIBEXEXBEEoICLugiAIBUTEXRAEoYCIuAuCIBQQEXdBEIQCIuIuCIJQQP4/HThS3EnKh+IAAAAASUVORK5CYII=", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:37:25.502360\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAleklEQVR4nO2df5BdZZnnP093uoEGHEKHgQyQ26DiFFr+gB4XGNedUhkgI4JKlUDDukpV12Zrp6Zm1i2CrTMW0FaJfzhYTi0TZxCwWxmNgzC4rguK6wqo0yEhxKkNCWzfSAhr5Jc4HQmk3/3jnktud9/z657f534/Vaf63vPjPe95b5/vec7zPO/7mnMOIYQQ9WKg6AoIIYRIH4m7EELUEIm7EELUEIm7EELUEIm7EELUkFVFVwBgzZo1bmxsrOhqCCFEpdiyZcuvnHMndNsWKu5mdiTwI+AIb//Nzrm/MrPbgH8HvOjt+h+cc9vMzICbgfXAgrf+kaBzjI2NMTc3F/V6hBBCAGbW9NsWxXJ/GXiPc+43ZjYE/NjMvutt+6/Ouc3L9r8IeKO3/Bvgv3l/hRBC5ESoz921+I33dchbgno+XQLc4R33E+A4M1ubvKpCCCGiEimgamaDZrYN+CVwn3Pup96maTPbbmZfMLMjvHUnA7/oOPwpb50QQoiciCTuzrlDzrm3A6cA7zSztwDXAb8P/AFwPHBtnBOb2aSZzZnZ3P79++PVWgghRCCxUiGdcy8ADwAXOuf2ea6Xl4GvAO/0dtsLnNpx2CneuuVlbXLOjTvnxk84oWuwVwghRI+EiruZnWBmx3mfjwLOB/5P24/uZcdcCuzwDrkH+PfW4hzgRefcvgzqLoQQhTE7O8vY2BgDAwOMjY0xOztbdJWWECVbZi1wu5kN0noYfMM5d6+Z/cDMTgAM2Ab8R2///04rDXI3rVTIj6VeayGEKJDZ2VkmJydZWFgAoNlsMjk5CcDExESRVXsNK8OQv+Pj40557kKIqjA2NkazuTLFvNFoMD8/n1s9zGyLc2682zYNPyCEEDHZs2dPrPVFIHEXQoiYrFu3Ltb6IpC4CyFETKanpxkZGVmybmRkhOnp6YJqtBKJuxAiNmXPFMmaiYkJNm3aRKPRwMxoNBps2rSpNMFUUEBVCBGT5Zki0LJayyZu/YACqkKI1Jiamloi7AALCwtMTU0VVCPRDYm7ECIWVcgUERJ3IURMqpApIiTuQoiYVCFTREjchRAxqUKmiFC2jBBCVBZlywghRJ8hcRdCiBoicRdCiBoicRdCiBoicRdCiBoicRdCiBoicRdCiBoicRdCiBoicRdCiBoicRdCZE6/T+5RBBJ3IWpCWQW0PblHs9nEOUez2WRycrI09asrEnchYlJGES2zgGpyj2IIHTjMzI4EfgQcAawCNjvn/srMTgPuBEaBLcDVzrmDZnYEcAdwNvAs8BHn3HzQOTRwmKgKZZ1ibmxsjGazuWJ9o9Fgfn4+/wp1MDAwQDedMTMWFxcLqFF9SDpw2MvAe5xzbwPeDlxoZucAnwO+4Jx7A/A8cI23/zXA8976L3j7CVELymqFlnl2JE3uUQyh4u5a/Mb7OuQtDngPsNlbfztwqff5Eu873vb3mpmlVWEhiqSsIlpmAdXkHsUQyeduZoNmtg34JXAf8ATwgnPuVW+Xp4CTvc8nA78A8La/SMt1s7zMSTObM7O5/fv3J7oIIfKirCJaZgHV5B4F4ZyLvADHAQ8A7wJ2d6w/Fdjhfd4BnNKx7QlgTVC5Z599thOiCszMzLiRkRFH6+3VAW5kZMTNzMwUXTU3MzPjGo2GMzPXaDRKUSeRLcCc89HVWNkyzrkXPHE/FzjOzFZ5m04B9nqf93pij7f9d2gFVkUfUcaMkjQosxU6MTHB/Pw8i4uLzM/Pl6JOojhWhe1gZicArzjnXjCzo4DzaQVJHwAuo5Ux81Hgbu+Qe7zvD3vbf+A9YUSfsDyjpJ2WB9RCcCYmJmpxHaLeREmFfCutAOkgLR/9N5xz15vZ6bSE/XhgK3CVc+5lL3Xyq8A7gOeAy51zTwadQ6mQ9aLMaXlC1ImgVEhNkC1SR3nNQuSDJsgWuVLWjBIh+gmJu0idMqflCdEvSNxF6kTNKKlSRk2V6ioEEC/PPatFee79R5nzxZdTpbqK/oK08tyFSIuyjtHSjTLUVW8OIi6hee5CZEFZx2jpRtF1rXu/AZENstxFIVQpo6bouub55qA3hPogcReFkHVGTZoiVXT2T9w3h16vPWjCj9nZWdasWYOZYWasWbMmN+HXA6dH/JzxeS4KqPYnWQ10lUUAtMhBuRqNxpJraS+NRqNrPXu9dr/zjI6OuqGhoRXrh4eHM28HBbODISCgWriwO4m7SJk4YlgFogrczMyMGxwc7PnazazrsUFL1m1at98ybYLEXW4ZUTuKDoCmTZR+A22XyqFDh7qWEeXae4khZN2mdfst80TiLmpH0QHQLAgbzrdb0LWTKNfuF1sYHV0x106scpNQx98yLyTuonYUHQAtgiBLNuq1+70h3HzzzQwNDa3Yf3h4OPM2retv+e1vg1lrufxyOHgwg5P4+WvyXORzF2nTb7MS+fmmBwcHU7n2mZkZNzo6uiTImleb1uW3PHDAuauuakU6ly87dvRWJgqoCtGdIOGokqgoq6S8bNvm3PBwd1EH5046qSX8vSBxF6ILQYJYRbFc/jDasGFDZR5OdWNx0bnPftZf0NvLtdc69+qrvZ8nSNw1WYfoW/xmjBocHOS4447j2WdXTv1bldmklg9ZAC1fdVnme60rzzwD69fD1q3B+/34x/CHf5j8fJqJSYgu+M0YFURVZpPSVIf58u1vwwc/GLzP+98PX/saHHtseufVTEyismTZ7b2XdLqqpODlNWRBP/Pb38LVV7cyXoKE/bbbWk6Yf/qndIU9FD9/TZ6LfO6iGzMzM5l2e+/mVw9ayu5z7ySvIQv6ka1bgwOk4Nzppzs3P599XVBAVVQRP4HyE6leCOqyPzo6WtmAZBzBVhf/cPIKkMZF4i4qSdBYJ2aW2nnqarlGTeX0a+c027iq7Nvn3NvfHi7qP/5xMfWTuJeAquVMl6GueVjubcpyzUUgy30l//iP4YL+/vc79+tfF1vPROIOnAo8APwL8HPgz7z1nwH2Atu8ZX3HMdcBu4GdwAVh56i7uFfJMixTXbP2uYsWZfrNi+TAAecmJsJF/bbbiq7pYZKK+1rgLO/zscDjwJmeuH+iy/5nAo8CRwCnAU8Ag0HnqLu4V8kyKltdi+z23k/085tLmQKkcUnVLQPcDZwfIO7XAdd1fP8ecG5QmXUX9yr5NPOoa5mEJMu6lOk6xVKiBkg3bnTu0KGia+tPauIOjAF7gNd54j4PbAduBVZ7+3wJuKrjmL8HLutS1iQwB8ytW7cuv9YogLJZw0FkXdcyuQC61aX9cEsqxmW6TnGYqAHSBx8suqbRSEXcgWOALcCHvO8nAoO0OkJNA7e6GOLeudTdcq/SjZ51Xcv0oAsK2Ea9bj/rvEzXKaoTII1LYnEHhjz3yl/4bB8Ddji5ZXyp0it6lnUtk4sqyrRyQWIc9CAs03XWhbj/l1EDpLffntMFZEAicQcMuAP462Xr13Z8/nPgTu/zm1kaUH2SPg+o1omkwl8mizbMcg8T46BrKdN11oE4b5RVDpDGJam4v8trzO10pD0CXwUe89bfs0zsp2hlyewELgo7h8S9GqThsimTiyrK8ANBYhxknZfpOutA2MNycdG56elwK73sAdK4JHbLZL1I3KtBWtZomVxU7bq0RTmOGIe1R5mus+r4u9BOqlWANC4Sd5EKdfYj95JPHzbZh4Q9PVY+SC8NFfSLL3bupZeKrnm2BIm7hvwVkanKTPRxh69tT2zROTnHgQMHQs/jN6E0wOTkJM1mE+cczWaTyclJDaObgOnpaY46ajUwQ0vf7/Ld9/bbW/J+zz1wzDF51bCE+Kl+noss92pQBT9yL3VMO/jZL8HUvN5Otm51bmgo2EqvYoA0jfZDbhmRFmV3N/QirGm7m+rsvmqT9YO+7gHStNpP4i76hl6EtWqWexkesFldY916kPqRVvtJ3EXf0MtNk7YVmqVVWxbXWNpvJ1F6kH7gA/UJkKbVfhJ30Tf0Kn5pW8NZWddl8eenUY8DB5y78spwUa9yD1I/ZLkL0QNhwloGt0avlMWfn+QN4pFH6hkgjYN87kKkTFncGr1SFsvduXgPyboHSHsh62wZa20vlvHxcTc3N1d0NUQfMDY2RrPZXLG+0WgwPz+ff4Vi0s7JX1hYeG3dyMgImzZtYmJiosCadeeZZ+Cii2DbtuD9HnwQzjsvlyrVCjPb4pwb77ZNnZhEX7Fnz55Y68uGX8epLIQ9bmewTu66C8xg7Vp/Yf/AB+Cll1o2u4Q9A/xM+jwXuWVEXpTJrVFmenFfRQ2Q3nFHjhdSc9DwA0K0mJ6eZmRkZMm6kZERpqenC6pR/kSxyKemppa4fgAWFhaYmppase/WrTA0BEcdBV/7Wvdzvv71MD/fkverr07jKkQofqqf5yLLXeRJlbNlkhLVIg/LyllcdO7GGxUgLRqULSPSpp8FsspEdUv57XfKKePubW8LF/Wq9yCtCkHiLreMiE07Y0OjHlaPqAHlle6rSwHHU0/9M48+2r1sBUjLhcRdxCaOP1aUi6jDNk9MTPClL/0dIyN3QcgQu3fc0RL0u+/u8yF2S4bEXcSm7OmESVL46k6UgHI7QPrxj1/BwsKlXctRgLT8SNxFbMo8aYdcRsH45clfeeUE09Ot3PSzzoJXX+1+/MaNcOgQ7N4NjUa+dRfxUA9VEZsy95Kseg/UvHnmGbjwQnz96G3Ug7ScqIeqSJU8e0nGpewuo7LQ2YNUAdJ6Istd1ApZ7v789rdwzTX+HY3a3HGH/OhVQZa76Buq3gM1i2CwepD2KX4J8O0FOBV4APgX4OfAn3nrjwfuA3Z5f1d76w34IrAb2A6cFXYOdWISaRLUwarMna/SHI44ag/S664rVw/SMv8+ZYQkPVSBtW2BBo4FHgfOBG4CNnrrNwKf8z6vB77rifw5wE/DziFxF3nc1GUfyz2NQc2eftpF6kH60EOZXUbPlP33KSOJxH3FAXA3cD6wE1jrDj8Adnqf/xa4omP/1/bzWyTu/U1eN3WYeBZtNSaZZelb3woX9LLPQaoRO+OTmrgDY8Ae4HXACx3rrf0duBd4V8e27wPjXcqaBOaAuXXr1uXVFqKE5HVTB4ln2AMmS+Fvl92tbkHtULchdssyhWCVSEXcgWOALcCHvO8vLNv+vIsh7p2LLPf+Jq+bOughErQtyzeLbmWHneeRR5xbtSpY0F//+urNQSrLPT6JxR0YAr4H/EXHOrllRCrkdVMHiXTQAybL+oVZ7G1hr2qANA7yuccnkbh7Lpc7gL9etv7zLA2o3uR9/hOWBlR/FnYOiXt/k+dN7edeCRLwLN8swsqucoC0F4qOe1SNpOL+Lu8fbjuwzVvWA6Oey2UXcD9wvDv8MPgb4AngMUJcMk7injlVuGGKrmPQA6YIy/2EEyZDBb3sAVKRPYndMlkvEvfs0KtudPweMPn53I90MBsq6p0B0qIfiqJYJO59jIJU6ZCliN5443ccHAwU9De8wblmc2Wd9ODubyTufYxfsE7pZdkT9EBII0CqB7cIEvdViNoyOzuLmbWe4ssow9jrdWb5sMjtceWff/5IvvzlD7N9e/DxDz0E554bvI9GwBRBaOCwGjM1NdVV2M0st4G0sp4VqayzLq2civCDLCz8K3/6p/7C3jnEbpiwQ7knTRElwM+kz3ORWyYb/NLsWj979mTtEy6zz7nV9vEDpHEo8/WLfEA+9/6kaJ+s3/lHR0czLb9on/Mjj7ieAqS9oGyZ/iZI3OWWqTFFj23u5/t99tlnU3GflMnn7BxL5iBtdepeycUX7+DQIdi1C9LwnkxMTDA/P8/i4iLz8/OlmA1LlAOJe40pejq8IN/v1NRUZuXn6XPetw/e9jYYGIBPfcp/v5NO+hAzM7Pcc89bGNBdJ/LAz6TPc5Fbpp7MzMxkmopZpM85yhC7l1zSew9SuVtEFJDPXRTF6Ohopn7xPEVwYcG5K64IF/WvfjXZeRQoFVEJEne9IIpMufnmmzP1++fhc966FVatgpER+PrX/fbaBaxjZORozJLFE1amUcLCwkIqrizRP0jcRaYU7ffvleUB0kOH/Pb8LK3b6AzgF6mIcJkCxaK6SNz7iLQ7/EQtr0oZHVEDpA89BGYDwBQtz8lhkopwGQLFogb4+WvyXORzz560/bh18wtv3hw/QJpVnn3d2lZkBwqoirSFqKwdiOKwsODc5Zf3HiDNeihgZcuIMCTuIvZsQmHiUuXJjB95xLnBwWBBj9qDtCgRlvgL5yTuwsWztKNYpFWz3KMOsfvJT5Z/DlK5bUQbibuIJQhRhLsqAvP008699a3hol6lOUir9mAV2SFxT4Gkr8FleI2OWoeoLpcyXJMfvQRIq0KVXWIiXSTuCUlqpVbFym3jZxm2rcOy1jtpgLQqyHIXbSTuCUl6M5XxZgyyurs9jNJ8MKVt8W/ZEh4gfeMb0xliNw3SeAuskrEgskPinpCg1+AoN2rZXqOjiEP7uoIs+KzOHYXFReduuCHcSi9bgDSt6y+zS0zkh8Q9IUGTTkS5UbO23OPe6HHqk/aDKWlbRA2QPvxwT9XLnDK+xYnqkkjcgVuBXwI7OtZ9BtgLbPOW9R3brgN2AzuBC8LKdxUQdz9rK+qIh1l3dolbdhzBDhKjXqzHXh8WdQmQlu0tTlSbpOL+buCsLuL+iS77ngk8ChwBnAY8AQyGnaPs4u5cd+s4zo2a1Wt0L5Zg0pz39nUvv/4oD6w4565jgFSWu0iTROLeOp6xiOJ+HXBdx/fvAeeGlV8Fce9GGW7UXizBuNZ+p/89aNLtKNce5dxVC5DGYWZmxg0PDy+5/uHhYfnMRU8EiXuSUSH/s5ltN7NbzWy1t+5k4Bcd+zzlrVuBmU2a2ZyZze3fvz9BNYqj6DlKobcRBOMOw9se1bHRaLQf2r6EjYjod+4rr5zgxhtbQ+yefbb/ELuf/GRr2+OPpzMHaREsb8OwNhWiJ/xUv3NhpeV+IjBIa8jgaeBWb/2XgKs69vt74LKw8qtquTtXfNZCnmlxYVY7Pby1VD1AGpcyvO2J+kDabhm/bfSZW6Ys5PWACUqNjPtQiRMgLfoBmiYKqIo0SV3cgbUdn/8cuNP7/GaWBlSfpCYB1SqTljgGBVejlBs1QApXvVZe3TrspJ19JPqbROIOfB3YB7xCy4d+DfBV4DFgO3DPMrGfopUlsxO4KKx8J3HPlCwm6YgrQFECpCed9KI78sgzVtQz6wm288bv99iwYUOtHmIiHxJb7lkvEvfsKMrHu7jo3PXXh1vpU1OtHqRhLp86uTG6PSDlixe9ECTu1tpeLOPj425ubq7oatSSgYEBuv3GZsbi4mLq59u3Dy64AB57LHi/hx+Gc845/N2vnn40Gg3m5+d7q2QJyft3EvXAzLY458a7bdME2TUnr8mWv/WtVhrj7/2ev7Bfeim89FLLZu8U9qD6jI6OFp5umgeaFFukjcS95mSZi3/gAFxxRUvUL7vMf7+ZmZag33UXHHNMvHrefPPNsXLyq0oZ+kyImuHnr8lzkc89W7IYYndgIDxAGrcHaS/1rFOGSRmvpYx1EodBAVWRlMVF584/PzxACjc4sFwyPeqWJlk21L7lJ0jcFVAVgezaBWecEWXPc4CfLlmTddBzbGyMZrO5Yn3dgq1FofYtPwqoiti0x3kJEvZ2gNRsgOXCDuHjzCTFr/xms8nY2Bizs7OZnr/u+LVv1r+rSAeJe82ZnZ1lbGyMgYGBUMF76SUYHm6J+qc/7V/mF7+4NEBaVKZHUPnNZpPJyUkJfAKUwVNx/Pw1eS7yuWdDVJ/pd74TxZfu3GOPRT+PmbkNGzakei3LA3thc72iTkCJkM+9/KCAan8S1Ovx0CHn3ve+cEE/91znXn01/FwbNmzoafKOKASJTNhcr2n0ZA2bTLzO2SR1v76qI3HvU7qPQPiGSFb6N78Z71xZdp+PUnZW5w97sMiyFUUice9TlgrepyKJ+nPP9XauLIeyjVJ2mND2aoEGPTQ0HowoGol7n/LlL9/p4GCooF97bfJzFW25O+cv4Eks7KAHi8ZmF0Ujce8z7r033EIH53bsSO+cWbookpad5MEjy12UGYl7H5B2gLQXsgy+JSk7iYUtn7soMxL3GrNzZzQrPW6AtE4ktbD7OVtGlJsgcdfwAxXlhhvgL/8yfL/nnoPVq7OvT5mZnZ1lcnKShYWF19aNjIzUcnRJ0V9o+IGSEafXaCcvvQRDQ60epEHCfu21h232Kgp7nPaJsu/ExERfDBssxBL8TPo8l35yy/Tipy0iQFoUcdpHPm/R7yC3THmIOtLe4mJrurr77w8u77zz4Ec/gsHBlCtaEHFGItSohaLfqbVbplcXR1GEjbT3+OMtt8vgYLCwb97cstcffLA+wg7xRiLUqIVC+FNpcW8HyprNJs65SowE6Dei3ute93nM4E1vCj7+uedaov7hD2dQuRIQZyRCjVoohD+VFvepqaklGRAACwsLTE1NBR5XpLW/dK7MY4CDgOPFF/+L7zEbN7YEfWZmlne8ozpvKb0QZy5RzTsqRAB+zvj2AtwK/BLY0bHueOA+YJf3d7W33oAvAruB7cBZYeW7BAHVXjqnlCEId8MN34kdIC1DvfMiTu648sxFP0OSTkzAu4Gzlon7TcBG7/NG4HPe5/XAdz2RPwf4aVj5LoG499I5pagu44uLzl1/fbign3de9x6k6ureX+ihJaKQSNxbxzO2TNx3Amu9z2uBnd7nvwWu6LZf0NKruPdizeY92NPTTzv3lreEi/rmzd2vr32Dd6tzu95lEYKggbvKUL+q0E9vaSIZWYj7Cx2frf0duBd4V8e27wPjPmVOAnPA3Lp163q+uLjCkZcF/M1vhgv6UUf5D7EbZZYhwI2OjpZCCPwEacOGDSvWDw0NudHRUYm9D3pLE1HJVNy978+7mOLeufRiufdqDWZpFS0sOPeRj4SLepRT+d3gy+s9Ojrquz1P4fSrb9Bbh6zS7mgoYRGVLMS9ULdMUoFO202wZYtzAwPBgn7GGc7t2RO9zDBXTLveYeKZl3BGEfGgRVbpYWS5i6hkIe6fZ2lA9Sbv85+wNKD6syjlxxX3MvzzRw2QfupTreF44xL1GqNY+Hm0S5R6BC2ySg8jn7uISiJxB74O7ANeAZ4CrgFGablcdgH3A8d7+xrwN8ATwGNEcMm4HsS9yNfWqAHShx9Odp6oN/jMzIwbGhpKXTjjvt1EjRHIco+GgtAiCokt96yXKljuUQKkH/ygc7/5TbLzdN7Uo6OjkQKPQX735e3STTSWr+sWBI1iOS4vJ6xeskqFSEbtxD2v19Y0AqRxO+T0cl1B/u7lk0QvL394eHiF5e9XXtyHZ1AGjaxSIZJTO3F3LtvX1rQCpHHFutc3Er/jBgcHl5wrqiUd9hYQp63lXhAiO2op7mmTRYA0TKyXC1+vPvMoD5GZmZnEwi43ihDlQuIewN692QVIgwK/3QQ5iTskzEJOms2S1EUjhEgfiXsX8giQBlnuUTv9pGUlB/nlw7Jtwt4m5HoRohgk7h5RA6Szs+mcL8hdEiS2WQil38NkdHS0pyyXTteScrKFKIa+F/csepBGtVb99ss7nTPp3KTdjpuZmXGDg4Ny2whREH0p7ln2IE3DWo1bRhquj17HSe+Wbx/2AFCPUyGyp6/EPWqA9Cc/6f0caVndcaz/srk+wgK0styFyJ6+EPcoAdLx8aY79dTfT+zPjjr8QVqBxiJcOGH1jtpxSgiRHbUV9wMHogdI07R+o4jtzMyMGx4eXrJ9eHi4p/PlOZZO1HaK2nFKCJEdtRX39ev9BX15gDRN6zeKAPplnIyOjsY+X56We9RzldFVJES/UVtxP/LIlaLuFyBN2/oNc10E+aN7OVdeQhqnnYrOby/6/EIUTW3F/bbbnDvzzNZVhAVIs7Z+ow4l0Iu4dys/qZDFTdHs5Y0jS/TmIESNxT0OWYpBnLHMyyCSQW3hNz58r/GCrMg7yCxEGZG4eySxfoOODbPUuwl8kRNEhwmjX7wgL+FMkq2j/HrRT0jcExJm9YcNJdAWHb99zMxt2LAht+sJE8YihTNpto4sd9FPBIn7ACKUqakpFhYWlqxbWFhgamoKgHXr1nU9rtFoMD8/T6PRaD1JfXDOccsttzA7O5tepQPwq297fdj2LAlr6zbr16/verzfeiH6Dj/Vz3Mpm+Ued5z1JJY9BVidYfXt5ncfGhrKxX0U9a1BlrsQstxjMTs7y+TkJM1mE+cczWYTM+u6b9uSnZiYYNOmTTQaDcyMRqPBpk2bmJiYWLJfGHv27EnnIkIIqy+w4pr92iBtor41+LVVXm0oROnxU/08l7JY7kGjHCYZZz1qNk1ZrM4irWL53IWIDgqohhNFgJPkmXe6eo4++ugVZZcpR7voTJQo2TLKcxdC4h6JsHTGtC3CvHpX9nKeoLbIsgNVUeUUcS71rhVpkJm4A/PAY8C29kmA44H7gF3e39Vh5ZRB3Os4ymGv1m3UyTryqlPRQpj2W4LeOkRaZC3ua5atuwnY6H3eCHwurJwyiLuftVrlUQ6T+KXbgpr2m0zcOpVBCNP27yteINIiSNyttb03zGweGHfO/apj3U7gj5xz+8xsLfBD59ybgsoZHx93c3NzPdcjDdpZMp051iMjIyuySKrEwMAA3X5fM2NxcTG3MpKUNzY2RrPZXLG+3YcgD4puAyH8MLMtzrnxbtuSpkI64H+a2RYzm/TWneic2+d9fgY40adSk2Y2Z2Zz+/fvT1iN5ERJD6waaXRGSrtDU9zyypDyWHQbCNETfiZ9lAU42fv7u8CjwLuBF5bt83xYOWVwy9SRIuZ6Tbu8Mrgwim4DIfwgj2wZ4DPAJ4CdwFpv3VpgZ9ix/SjuaQYJg8ry29brZNl5Z4qURQiVLSPKSCbiDhwNHNvx+SHgQuDzLA2o3hRWVr+Je5qC1Wv2SRkEMyoSQiG6k5W4n+65Yh4Ffg5MeetHge/TSoW8Hzg+rKx+E/c0XQ29lFV0D1QJtRDpkItbJslSB3GPI1pp9gDtpayieqBW7Y1BiLITJO4aOCwFug02Njk56TuEb5rZEr2UVVS2RtThfIUQyZG4p0Bc0ZqenmZkZGTJupGREaanp2Ofu5ey0jx/HMqQ1ihE3+Bn0ue5VN0t04ubI69smTzOH5UypDUKUSfIqodqWpShh2oSytCLsgrMzs7ysY99jFdeeeW1dUNDQ3zlK1+pdGcxIYoiyx6qguLcHFWkqElAhOg3JO4pUMehC7JgamqKgwcPLll38OBBBVSFyAC5ZURuaMAsIdJFbhlRCjRglhD5IXEXuaHYhBD5IXEXuaHYhBD5IZ+7EEJUFPnchRCiz5C4CyFEDZG4CyFEDZG4CyFEDZG4CyFEDSlFtoyZ7QeawBrgVwVXpyyoLQ6jtjiM2uIwagtoOOdO6LahFOLexszm/NJ6+g21xWHUFodRWxxGbRGM3DJCCFFDJO5CCFFDyibum4quQIlQWxxGbXEYtcVh1BYBlMrnLoQQIh3KZrkLIYRIAYm7EELUkNzF3cyON7P7zGyX93e1z37/w8xeMLN7l60/zcx+ama7zewfzGw4n5qnT4y2+Ki3zy4z+2jH+h+a2U4z2+Ytv5tf7dPBzC70rmG3mW3ssv0I73fe7f3uYx3brvPW7zSzC3KteAb02hZmNmZmBzr+D27JvfIpE6Et3m1mj5jZq2Z22bJtXe+XvsM5l+sC3ARs9D5vBD7ns997gYuBe5et/wZwuff5FmBD3teQZ1sAxwNPen9Xe59Xe9t+CIwXfR0Jrn8QeAI4HRgGHgXOXLbPfwJu8T5fDvyD9/lMb/8jgNO8cgaLvqaC2mIM2FH0NeTcFmPAW4E7gMs61vveL/22FOGWuQS43ft8O3Bpt52cc98HXupcZ2YGvAfYHHZ8RYjSFhcA9znnnnPOPQ/cB1yYT/Uy553Abufck865g8CdtNqkk8422gy81/s/uAS40zn3snPu/wK7vfKqSpK2qBuhbeGcm3fObQeWT75b5/slFkWI+4nOuX3e52eAE2McOwq84Jx71fv+FHBympXLmShtcTLwi47vy6/5K96r+KcreKOHXduSfbzf/UVa/wdRjq0SSdoC4DQz22pm/8vM/m3Wlc2YJL9t3f4vemZVFoWa2f3ASV02TXV+cc45M6t1LmbGbTHhnNtrZscC3wKupvWaKvqLfcA659yzZnY28G0ze7Nz7tdFV0wURybi7px7n982M/t/ZrbWObfPzNYCv4xR9LPAcWa2yrNcTgH2JqxupqTQFnuBP+r4fgotXzvOub3e35fM7Gu0XmerJO57gVM7vnf7Pdv7PGVmq4DfofV/EOXYKtFzW7iWs/llAOfcFjN7AjgDqOrclUl+W9/7pd8owi1zD9COYH8UuDvqgd4/8QNAOzoe6/gSEqUtvgf8sZmt9rJp/hj4npmtMrM1AGY2BLwf2JFDndPkn4E3ehlQw7SChPcs26ezjS4DfuD9H9wDXO5lkJwGvBH4WU71zoKe28LMTjCzQQAzO51WWzyZU72zIEpb+NH1fsmonuUm7wguLR/h94FdwP3A8d76ceDvOvb738B+4AAtv9kF3vrTad3Eu4FvAkcUHZXOoS0+7l3vbuBj3rqjgS3AduDnwM1UMFsEWA88Tis7Yspbdz3wAe/zkd7vvNv73U/vOHbKO24ncFHR11JUWwAf9v4HtgGPABcXfS05tMUfeLrwr7Te5H7eceyK+6UfFw0/IIQQNUQ9VIUQooZI3IUQooZI3IUQooZI3IUQooZI3IUQooZI3IUQooZI3IUQoob8fySJ1MU9sqE7AAAAAElFTkSuQmCC", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-19T21:26:20.798814\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" }, "metadata": { "needs_background": "light" @@ -334,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 66, "source": [ "plt.scatter(X_test, y_test, color = 'black')\r\n", "plt.scatter(X_test, y_pred, color = 'green')\r\n", @@ -348,8 +348,8 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAx1UlEQVR4nO2de5wcVZn3v6c7M4EmYUh6MBuR6QmKSkLwQtZVUddlACEQuQiCTjAv6/uOdLwkvOsloYVMwEYCYsBLgHFXDHSvulzkEu5kxd199+IGxZkkEAgwE2ERdBICcYAkM+f9o6qnu2eq+lrVdenn+/nUZ6qrTlWdU93zq1PP85znKK01giAIQriIeF0BQRAEwXlE3AVBEEKIiLsgCEIIEXEXBEEIISLugiAIIWSK1xUAaG9v152dnV5XQxAEIVA89thjf9JaH2q1zxfi3tnZyaZNm7yuhiAIQqBQSg3Z7ROzjCAIQggRcRcEQQghIu6CIAghRMRdEAQhhIi4C4IghBARd0Gogmw2S2dnJ5FIhM7OTrLZrNdVEgRLfBEKKQhBIJvN0tPTw8jICABDQ0P09PQA0N3d7WXVBGES0nMXhApJpVLjwp5jZGSEVCrlUY0EwR4Rd0GokB07dlS1XRC8RMRdECqko6Ojqu2C4CUi7oJQIel0mlgsVrQtFouRTqc9qlFtiFO4ORBxF4QK6e7upq+vj0QigVKKRCJBX19foJypOafw0NAQWutxp7AIfPhQfphDdcGCBVoShwmC+3R2djI0NDnXVCKRYHBwsPEVEupCKfWY1nqB1T7puQtCyCk0w1gJO4hT2AuyA1k6r+0ksjpC57WdZAecfXuSOHdBCDETY/PtEKdwY8kOZOm5p4eRfeaYid1D9NxjjpmY74yZT3ruguASfnBcWsXmTySITuGgk9qYYuT+FPRq2HkEACP7RkhtdG7MhPTcBcEF/DKatZS5RSlFR0cH6XQ6UE7hoHPbbTB00aDxYd7PYMaz4/t27HbOPFbWoaqUOgD4F2AqxsPgNq31KqXUHOBnQBx4DDhfa71XKTUVuBk4FhgGztVaD5a6hjhUhbDhF8elX+ohQH8/vOc9xnp0xvOMXngUTN1TVCbRlmBw+WDF56zXofomcLzW+j3Ae4GTlVIfBNYAa7XW7wB2AZ83y38e2GVuX2uWE4Smwi+jWcMSmx9khochFssL+/btsP5XvyI2bayoXKwlRrrLue+lrLhrg9zjpcVcNHA8cJu5fT1whrl+uvkZc3+XUko5VWFBCAJ+Gc0ahtj8oLJ/P3R1QXs7vP46PPQQaA1vf7vhNO1b1EeiLYFCkWhL0LeozzFnKgBa67ILEAUeB/Zg9MTbge0F+w8HNpvrm4G3Fex7Bmi3OGcPsAnY1NHRoQUhRyaT0YlEQiuldCKR0JlMxlfnq/SasVhMY3SENKBjsVhDri14TyqltSHlWn/nO+5dB9ik7XTbbodlYTgE+CXwkXrFvXA59thj3Wu9ECicFkUvRdaLh4rgLbffnhf1T39a69FRd6/nmLgb5+JS4GvAn4Ap5rYPAQ+a6w8CHzLXp5jlVKlzirgLORKJRJEQ55ZEIuGL85VDBL056e/Pi/rhh2v96quNuW4pcS9rc1dKHaqUOsRcPxA4EXjC7MGfbRZbAtxlrt9tfsbc/89mJYQAUE9sthNx3U47Ihvp2JS8Lc3H8DAcdBAcc4zx+emnYccOmD7d23oB5XvuwDHAb4F+DJPLpeb2I4BfA9uBW4Gp5vYDzM/bzf1HlLuG9Nz9QT0mDKfMH0HuuTf6LUHwjn37tO7qyvfWH3zQm3rgpFnGjUXE3R/UI05OCVuQbe5KKct7oJRy/FqCd1xySV7Ur77a27qIuAsVUY84OSlsQY2WkZ57uCl0lp59tvvO0kooJe6S8lcYp57RjDIS0jpJVywWk7jygLN5M8yfb6wfdhhs3QoHH+xtnXJIyl+hIuoZzSgjIWXAUNjYudNwjOaE/amn4Pnn/SPsZbHr0jdyEbOMf6jHhCFhgEIY2LdP6xNPzJtgHnjA6xrZg9jchWZAHi5CvVx6aV7U16zxujblKSXuYpZpEvyQW9xNJMZcqIc77wSl4LLL4KyzYHQUvv51r2tVH+JQbQKawdEnDl2hFrZsgaOPNtZnz4YnnwyQTZ3SDlUR9yagGYQvEolg9VtWSjE2NmZxhNDM7NoFnZ3w6qvG56eegiOP9LRKNSHRMk2OX3KLg3vmIb+k2HWKsJvRvGL/fjj5ZJg50xD2++4zLOxBFPay2BnjG7mIQ9Vd/DK4xs3RomFKsVuqLeI0rp1Vq/LO0iuv9Lo2zoBEyzQ3fhE+tx8yYRE+u/sUj8cb9j2G5V5qrfWdd+ZF/cwz/TGy1ClE3AVf/LNK7pXKsLtPdovTb2B+6QzUy5YteVGfNUvrV17xukbOI+Iu+AK/mIdqoZEPR7v7ZLc4/XAM8vektdY7d2rd1pYX9m3bvK6Re5QSd3GoCg3DDykKanFUNjqG3u4+xeNxy/JOO4395ICvhtFRWLjQcJbu3g333mvI+zvf6XXNPMJO9Ru5SM+9efDSPFSrucGLnqzVfWqUucTvPfdMf0Yn1ia06lU6sTahM/0ZvXp1vqd+xRVe17BxIGYZQahdtPzkK2jEw9HPNvdMf0bH0jFNL8Zy3qJxUT/9dK337/e6ho1FxF0QdO0i7feerBv4wQFvRWJtwhD1pUeNizqxl/ThVxztddU8oZS4i81dCCzV2s9rHejkB19Bo+nu7mZwcJCxsTEGBwd9k6Zi6A+74cphWLfV2PCld8HXZ/H83i3eVsyHiLgLgaQWJ2etIu1UnnYZdVo7o6Nw6qnAml3wxkz47KnQq6D9KQA62oI5EtlV7Lr0jVzELCNUQqGpIBqN1mQq8crc4Gc7tt+5/HI9boI558u/Lba596Jj6ZjO9DfnfUSm2ROCjlVmSyv8miisGZK3Oc2GDbBokbG+aBH84hcQjUJ2IEtqY4odu3fQ0dZBuitN93x/mI0ajSQOExqGW6aHVCpVVtjBv4nCgho77gVPPGHkVl+0CNrbjQyOd99tCDsA/cC1wGrzb79HFfU7dl36Ri5ilvEv1Zgx3DQ9VDIkvxFmjlrNOo2IuPFrhEul7NqldTyeN8E88cTkMmLeKgYJhRRqodp/JDcFzO7c0Wi0YWJWj7C4LUpBFr39+7U+7bS8qN9zj33ZZgxLLYWIu1AT1f4juTnYxw/iVa+wuNmzDqrofetbeVG//PLy5f00oMwPiLgLNVHtP1LYU/r6WVj8XDcrNmzIi/ppp1U+sjSoDzG3KCXu4lAVbKl20I/bg328Hljj59me/Fy3Qp580nCWnnYaxOOGs/SeewqcpWVoxgFlNWOn+rkFOBz4JbAV2AIsM7f3Ai8Aj5vLwoJjVgLbgW3AJ8pdQ3ru/qQWU4jXvWs38YNpKIh109rIpd7enu+tb91a+7nC/BurFuoxywCzgfeb69OBp4C5prh/1aL8XOB3wFRgDvAMEC11DRF3/yL/SMX4+X74sW7792u9aFFe1O++2+sahYu6xH3SAXAXcGIJcV8JrCz4/CDwoVLnFHEPBn4Uj1oJU1v8yhVX5EX9ssu8rk04cUzcgU5gB3CwKe6DGEMIfgzMMMv8AFhccMw/AGdbnKsH2ARs6ujoaNzdEGrCL6/9ToiyX9oSVgqdpQsXNl8a3kbiiLgD04DHgLPMz7OAKMYo1zTwY12FuBcu0nP3P36IUnBKlP3QljDy5JN5UZ8xw5juTnCXUuJeUbSMUqoFuB3Iaq3vANBav6S1HtVajwE/Aj5gFn8Bwwmb423mNiHA+GH4vFUKgpGREVKpVFXn8UNbwsTu3TBrFrz73cbnLVtg506YMcPbejU7ZcVdKaUwet9PaK2/W7B9dkGxM4HN5vrdwHlKqalKqTnAkcCvnauy4AV+CLVzSpS9bktYUv+OjcEZZ8Ahh8DLL8Nddxn99rlzva5ZMHD9d2DXpdd5s8pHMF5b+ykIewRuAQbM7XcDswuOSWFEyWwDTil3DTHLNIZ67NV+sFM7ZU7xsi1+uI9OcOWVeRNMb6/XtQkeTv0OkBGqghM/Jq8jTJwURq/aEnR7/3335UX95JPFWVorTv0ORNyFwItKDq8fMPUSlDQBmf6MTqxNaNWrdGJtQl99913jot7WpvXwsNc1DDZO/Q5KibtM1tEkRCIRrL5rv05uEVaCMGlHdiBLzz09jOwbgTemww+2wR7DxbZ5M8yb53EFQ4BTvwOZrEPw3IkoGPg1N0p2IEvntZ1EVkdY8osljLz5OvzsdrjyVUPYzz2DxNpOEXaHaMTvQMS9SfCrqDQbTk227SS5nvrQ7iE0mtF//b9w2Rg8eRb89WpjIuqj7mLHbgkVdYpG/A7ELNNELF26lL6+PkZHR4lGo/T09LBu3TqvqyV4TOe1nQztHoKnPwHZB4yNb38APnsaREfHyyXaEgwuH/SmkoIlpcwyUxpdGcEbstks69evZ3TU+GcdHR1l/fr1HHfccZ72GoXGM3GC6aFnW+D7Ziev9VVY3gmxXUXHxFpipLvkLS9IiFmmSXBqdCeEZxBOM1JkgnljGkOX/Dt8/2ljZ/JouLhtXNijKopCkWhL0Leoj+750gkIEtJzbxKcGt2ZzWbp6ekZf1AMDQ3R09MDIG8APqWwpx5REUZHx+DWW+GJs40C556JOuouNHkTbawlJoIecKTn3iQ4FS3j5BuA4D6TnKX/dpHhLH3ibPjY5aaz9E40mkRbQnrqIUJ67k1COp0u6nFDbdEyknQrWKQ2pox49e0nQuYhY+MRD0H3QnGWhhwR9yYhZzJJpVLs2LGDjo4O0ul01aaUjo4Oy8EXEi/vT4qcpS174KIExHYWlRFnaTgRs0wT4cQE0xIv718KByJ1XDmPmbNGCpyl8yE1fVzYxVkafkTcharw4yCcUjRLZM+4bX3XDvQ//Zzfr9zCrpdjnLSyj1j6IJi1ebxsrCXG+jPXM7ZqjMHlgyLsIUUGMQmhZWJkDxhvGX5+GNVK57WdDN3/KXjoGmPDxy6H4y8l0ZYg3ZUuimtPd6VF0ENCqUFMIu5CaAlCkq5qmTgAKd2V5i1/6Oakk8wCcx6BxSePO0sVirFVkhgurEjiMME1/Gz2CFtkz8SwxqHnoiw+xhB21ToCX4/DkhOLomA62sTR3ayIuAvjVCvUObPH0NAQWuvxAU1+EfgwZcLMDmSNbI37RuDNafDdIfjeMwDM/trJ3LLpF8Ta3ig6RqJgmhy7RO+NXGSyjspxa7KKWmY58vsEIGGZ0i7Tn9GxdExzqdIcddv4pBmc8ylNL1r1qvFyhRNsZPqD1U6hepCZmMKBm2JVi1AHYVahoM7cVCjU0dVRzdyf50X9o9/S9DK+JNYmvK6u4BGlxF0cqgHCTQdhLTM1hdFh6QeKZkLa9H9gQ19+5zdbYcq+8Y+SA6a5EYdqSHDTQViLfVoGNLlDamOKkcGjoFfnhX15h5EHpkDYoyoqwi7YIuIeINx0ENYi1EEb0BQEdu6EoYsG4Ufmm+zikwxRP+T3ReVyA5FE2AU7RNwDhJs95VqF2omUBo3AzyGbAGNjMGUKxOPmhr/uNUT9HQ+Pl5GUAUJV2BnjG7mIQ3Uydo7AoDoIvcRvUTMTo1o+ePJz487SBQsKomMKnKaxdEyiX4RJIA7VYNFMw+YbgV8cvyfcfAIbn9uY3/DY5+Gevx//+MYbMHWqsW41ElV66sJEJP1AwPCLGIWFWiKBnKZI2P/nfdD3m/zO5QkSCSX51IWqkWiZgBGUYfN+t2Pn8GqkamEK3o3PbYTXDzEiYHLC3n2y6SzdwY7d/vpuheBTVtyVUocrpX6plNqqlNqilFpmbp+plHpYKfW0+XeGuV0ppb6nlNqulOpXSr3f7UaEjSAMm/d76oFCvAjZLMoDMwZc/gasMSae5mOXGaJ+5IPj5b3OAROUB7VQBXbG+NwCzAbeb65PB54C5gJXASvM7SuANeb6QuB+QAEfBP6r3DXEoVqM3xyAVvg99cBEGuWITm5IGiNKc87Q+Zn8yNK/eKzISeoXZ2kQfm+CNTiZfgC4CzgR2AbM1vkHwDZz/UbgMwXlx8vZLSLuk/F7VEwQUg9Y4eZ9TW5I5kX7k3+bF3W05putlsLeelmr51EwQXtQC3lKiXtVDlWlVCfwL8DRwA6t9SHmdgXs0lofopTaAFyptf43c99G4Bta600TztUD9AB0dHQca+VAFPxLe3s7w8PDk7bH43H+9Kc/eVCj8rgdhTTlsimM/s98uPG3+Y3LOmGG9W+7a04Xj3zukbqvWy9+cDgLteGIQ1UpNQ24HViutX61cJ/5BKkq7EZr3ae1XqC1XnDooYdWc6gg1EQqlSoSdoCRkRFSqZRl+XJ26KI5S799DKOr9ueFvfsUw65eIOyxlhiZszLoVRq9SvtC2CEYPh6heqZUUkgp1YIh7Fmt9R3m5peUUrO11i8qpWYDL5vbXwAOLzj8beY2IUTs3Lmzqu1+oJoopIm9/JzD+KaXbuLRPY8yqs0JMcYUXLGH3+83HbYf/RZ0XTLpfLnp7vwYq55Opy3faCRHULCpJFpGAf8APKG1/m7BrruBJeb6EgxbfG7758yomQ8Cu7XWLzpYZ8EHBLG3V02dJ/Xy58PI8hE2vroxL+x33AyXjcH+GPzFb42euoWwJxckfT0RteQICieVmGWOA84HjldKPW4uC4ErgROVUk8DJ5ifAe4DngW2Az8CljpfbcFrgpgRspo6F/Xm5wOnA60YMWC//V9GvHr/+cb+1AFwoRnxq4HR/N/IYxGOe+U4p5viOEHJESRUgZ2ntZGLRMv4j0qiSvwe0WNFpXVOJBKa+WiWo1llRrd84T3FETDLOidHwCyXqBOhcSC5ZYRqkNw2MO/KeWx9Y6vRU3+9Dda8kt/52YXwzvsnH7QXuAcYKN4sUSeCW0j6AaEqqo0qCRtL713K1je3Gh+ueDUv7B9NG3Z1C2FPtCWI/3t8krCDv/0QQngRcfcJfhr+HZTcNk6RHcjSflU7arVCrVZcv+l6+MVNsFrD3unwlgHTWfrNScd2zelCr9IMLh/kuv99XeD8EEJ4qSgUUnAXu7A7wBMzSEdHh2VWyjD2QLMDWS648wL2jZnT1z3+Obhzfb5A6gBoeXPScfED41x3ynVFETC57yqVSrFjxw46OjpIp9NNY8oSfIadMb6RS5Adqk44Ff02/NvNXCNuOGFrOWduwoxxR+iF84udpV+ZY5kuwOtUAYJQCE7mlnFjCaq4OyWCfszTkkwmdTQa1YCORqM6mUzWfU43HhrVnrMo/0svmhUHF4v6Z061FHV60V3ru2qupyC4QSlxl2iZOnBqUg2/Tc7hVrSMG+2s9JzZgSwXbriQPXv3GBs0cOUr8Gab8fm4K+HElZbXiKooPcf2sO7UdTXVURDcQqJlXKJWx+NE5+nChQt95YhzK1rGDUdtuXNmB7JM//Z0Ft+xOC/sd/7YcJa+2QaHbjGcpROEvTXaOp4HZv+l+x0Rdj85zYUmwK5L38glqGaZWmzldmaEZDLpmwFBdmYiTFORn3wLpc6Z6c/o1ssLUu2eubjYBJM6wNL8El8Td9y2LjnTBTdAbO7uUMs/rN+cp1bY1bFeYWqUzb3l2BYd/1Y8L9jJoyc4S4+YJOiqV7nqLA3C9y4EDxF3F6k2UsOPztOJWAmmU8LkZrQM89GRFRF7Z+l5i2ydpckN5R3G9dQ9CN+7EDxKibs4VBuM35yndmSz2fF4bbvfiF+G1WcHsiy7fxnDr5uTh2hgzTC8MdP4/OGr4KRvWB47rXUaN5x2Q9mMjfU6mYPyvQvBQhyqPsIv2RTLOfcKswQmEgnLc3g9qCk3snTxHYvzwn7X3xvO0jdmQvsTsEpZCntyQRK9SvPaytcqSsVbr5PZL9+70ETYdekbuQTZLFMLXmdTrNb27UdnYKY/o2PpWIGztNtVZ6kTZhWvv3chfCA29/Dg1YhYvwjTpJGlyXnFov7lt08W9RQ6ua6+QVjiEBX8iIh7SAjziNhyZPozetoV0wqcpdMnOEs/OVnUV6H5Gpr59T+4/Pj2IgilxF0cqgEirCNiS2HpLL3qj/B6u/H5Q9+BT3yt+CANjAAPMJ6C1875a+coXbJkCffdd19RAjCQpGCCvyjlUPW8166l514xTvW46+mFNso8k+nP6PiaeHFP/P035nvq8SfzMyQVLJEVEWMGpQrNJ3bmlon3Wnrpgh9BzDLhwEm7b02ZFBtkmpj7g7nFon3WZ4pNMBcfOEnUE2uNEanV1rHUaFwn7rMguImIu0s02snotd23EU7FrvVdedFeOress9RqZGk130slo3FrfUMSBLcRcXcBr4TWy6iVRjhi6UWzclqxqJ97Rl0jS0th9T3atVN67oLfEHF3gWYMjXO6zbmwRtWrdGJtQt/yu4wm9lJe1D94ja2oO5nca+IDM5lMSmSMEAhE3EtQa084iOGE9eLk20pyQ1KrXpUX7GOvz4v6zKcsnaVuZGu0wy9x/YJQilLi3tShkPXkCwlSOKGTFOacqSUccOm9S7nxsRsZ02ZY4sB5cPtPx/e3fHMG+6a8Mum4ue1z2fLFLfVWXxBCheSWsaGefCHNmCukHmFfeu9SIqsjXL/pekPYXz4KenVe2L/0TuhV7J+ym645XUXHds3pEmEXhCqZ4nUFvKSemYGabab7iW85Q0ND9PT0AJRt8wk3n8DG5zYaH96cBt9+Lb/z02fB3F+Mf+xo6+CRzz3ibOUFoQlparNMs5pWaqHWe5UdyLL4jsWGhf6a/4E9s40df3UtnHJRUVmF4pazbqkoS6MgCHWaZZRSP1ZKvayU2lywrVcp9YJS6nFzWViwb6VSartSaptS6hPONMEdmtG0YkUlc3tW+paTHcjSeW0nkdUROq/tZNn9y2DDD400vHtmwyHPGml4Jwg7Go6ffrwIuyA4RCVmmZ8APwBunrB9rdb6O4UblFJzgfOAecBbgUeUUu/UWo86UFfHaTbTihWVmls6Ojose+6FOd2LzC/A0P/7K7jt5/nCFx8ErcU+DjTwJnAv/Mcz/0F2Vrap7r8guEVFZhmlVCewQWt9tPm5F9hjIe4rAbTW3zY/Pwj0aq3/o9T5JXGYd1RqbikVWcQxcOGGC9mzd4+x44/vhh8+kT/Zl94F7U8VXyAXTPnfwP321xUEwZ5SZpl6HKpfUkp9DtgE/J3WehdwGPCfBWWeN7dZVaoH6AHvZ/RpZio1t1i95bzjK+9g8fbFsN0s9OZB8O09+YPOORvm3W594WeATOX1EQShOmoNhbweeDvwXuBF4JpqT6C17tNaL9BaLzj00ENrrIZQL3YPVqvtuan3jv/J8QxdMMTG10wTjAau+X1e2D/wPehV48IePzBOoi2BQpFoS5A5K0PiXxNV1UcQhOqoSdy11i9prUe11mPAj4APmLteAA4vKPo2c5vgEeWcpdU4lU+4+QTUalVkV+fe7xvO0tfeBm2DhrN04bKi46475ToGlw8ytmqMweWDdM/vDoUzuxJHtCB4ht3Q1cIF6AQ2F3yeXbB+EfAzc30e8DtgKjAHeBaIljt/o9MPNMvQ8krTBVRyPw759iHF6QDOOXtCGt6YZQ6YrvVdJetndd0gfD9eZ+gUBK3rzC0D/BTD9LIPw4b+eeAWjDlu+oG7J4h9CsOiug04pdz5dYPFvZn+KZ1I9JXckCwW7C++q1jUv/guS1FXvaqmjI1B+X6aMXGc4D9KiXvTDWJqpoFLkUgEq+/Xbsq5QiaGNU52lp4D826bfKCGuQfMZcuK2tIFBOX7qefeCoJTSG6ZAupJOVAvjbbRVuMszbH03qXFdnUNfHcoL+x/+QPTWVog7Ll+6xjwa/jzDX+edN5K2+7l91MNtdxbQWgodl36Ri6NNMt49Trthbmhmmtm+jO69bLWYvPKB67Lm18O3mGZhpdVaJaXTntcTT38Yu4oZ/cPivlICDdIPvc8Xv1TevlQKeecnGRXP+dTxXb1lQdZT5qxCs0p5dtUTdv9IJpOOqIFwU1E3CfgxT+lHyf3yPRndHxNPC/WX3rnBGfpu+1FfTE6Ho/rlpaWsiJYbdu9Fk2/vD0IQjlKiXvTOVS9wm+OwiKH6d4YXFFgJz/7XDj6nyyPizwWYeyevMOwtbWV6dOns3PnTtvcPH5reznEWSoEBXGo+gCvB+1ks1mmfGUKqlehek2HqQaufTYv7AvWGc5SC2GfO3Uu0cujRcIOsHfvXqZNm8bY2BiDg4OWSb+8bnu1+NFZKgOmhKqx69I3cgniBNm14JW5IZPJaFZS7BD9q7V588u0F6ydpb3GICQrGzQVmFcm1iEo9mk/2P39XB/BPyA2d2/xUtiSG5KGcOfE+9NnTnCWTrMU9WlXTBufjNrOBp1bwmiL9tPDSHwAgh0i7h5Sa6+rXnHJ9Gf0QemCKJcvv6NY1JceZSnq8TXxcVHPYecQracH6Sfx9Dt+dMYL/kDE3UNq6XVZPRBy/+CVCGHX+q68YF98YLGof+pc6wiYXvs8MKV67vF4vPoHj5gZqkJ67oIdIu4eUkuvq5wZpJQQjsesr0IzY3te1I+93lbUo6ujuuuaLtuedDmbe7XCLGJVHfIwFOwQcfeQWoSslBnE6vhMf0Yn1ia06lWGYH/wmryoH/SirbP0wMsPNI6vQDxyZhQn7O5iZqgeMWMJVpQSd4lzd5lS09PZzRVqFxdeiFKKW353C8vuX8bw68PGxidOh5/fmS+0cjpM3WN5fNecLh753CMlr2cVh+5EDHjQ4t4Fwa9InLuHdHd309fXRyKRQClFIpEoKexgHRdexCmgL9EsvmOxIezD74BenRf2pfOMePUJwh5REZILkuhVelzYobpkXU7EgAct7l0Qgkg9c6gKFdLd3V1SzK3KgzFf6dDQEEqpfG/5QmAWoIC9B8IV+TcCzvosHPNTy3MW9tQn0tHRYdmTthLsdDpt+SZSjTBbzcdqNbJVEITaEbNMAJh35Ty2vrG1eOP3n4KdRxrr7++DT36heH/uax2DyOMRbj73ZlvxrNZ0lM1mRZgFwQc0rVkmDEO2D7vmMLa+udXoqSvgoauNOUt3Hgmxl405SycK+17gDmA1cDmM3TNGKpWyvUYtpiMrwnC/BSEshLbnXosj008svXcp12+6Pr9horN0xcFwwGuTD/wz8ADGJIgFOJX0yu6+LlmyhPXr1wf2fgtCECnVcw+tuAc1IiM7kOUL93yBP+8zk3kNvx2+vz1fIHk0zJo8hd201mnccNoNpBalXG233X2NRqOMjo66dl0xBQnCZJrSLOO36drKmSxOuPkE1GrF4jsWG8K+7wAjAiYn7GcuNiJgLIR9bvtcXlv5Gt3zu0tGojhhNrG7f1bCXqp8NeTeFoaGhtBaMzQ0RE9Pj5h9BKEUdgHwjVzcGMTkp1GQ5QYJFaULWIWmfWt+ENL7flRyZGlyQ9LyehMHvDg1ytHuvkajUdfut5++S0HwEzTjICY/2dwtTRmnAH9J8bvTQ2vg379urB84DF9vN5yoE3jrtLfywt+9UH8dqN5s4oXNXSbPEARrmtIs41QEiBNMMk18DfgA+bv/5CLDBJMT9hVt8I3Jwq5QJBckqxZ2wHbEa7VmE7v7um7dOtfutx8nzxAEvxPanrufGO81zwdOB6IYwr3zCPjeM/mCyfkwa/Ok4yMqwheO/QLrTl1X0/Wz2Sznn3++Ze/X7w5m8NdbmCD4iVI9dxmh2gAWfmMh1//+emjFEPV9B0D69XyBM8+H92Qsj53bPpctX5zsRK2GVCpla9YIwpB/GdEqCNUjPXeXyQ5kueDOC9g3ts/YcOvPYMu5xvp7fwxnfD5fuPCrUKVTBlSDnc0asN0uCIL/aUqbu19IbUwZwt7/GcOuvuVcmPaiMbJ0orD/GmNU6WqIXRXjgugFjoQv2tmmE4lETW0SBMH/lBV3pdSPlVIvK6U2F2ybqZR6WCn1tPl3hrldKaW+p5TarpTqV0q9383Kg/+HvA890W6I+h3/CPFtcHEMvvrWYmepBkaA+/ObRkZGWLZsmSPx3ZKFURCaj0p67j8BTp6wbQWwUWt9JLDR/AxGgN+R5tIDXI+L+GlwS3YgS+e1nURWR+i8tpN1j96GUkCfaW5anoAvvxtaC2ztuYjtl4CrJ59zeHi4yIkIhuiXyhNjhZ8ihwRBaAwV2dyVUp3ABq310ebnbcDHtdYvKqVmA49qrd+llLrRXP/pxHKlzl+rzd0PKQayA9niCTP2t8BPHoXnPwzAxf/wMFe/cGre5p4jZ4a5n6qR+G5BEMAdm/usAsH+A0aGcYDDgN8XlHve3GZVqR6l1Cal1KY//vGPNVXCzRQDlZh7lt67lPPvOD8v7A9eDd/aawj7wi+SWNtJ+m9P5KYzbiJ+YHz8uMgbESNrYwlhj8VixONxy33NEN/td3ObIPgeu6GrhQvQCWwu+PzKhP27zL8bgI8UbN8ILCh3/lrTD7g1LL3cUP3khqSOrI7kUwF86rx8uoBj1o/PWap6recEtTp/S0uLjsfjrqQMcIpGzePpt3YLgl+h3gmyLcR9GzDbXJ8NbDPXbwQ+Y1Wu1FKruLslAqUeGskNybyo97wvL+ozn9JcHCvK/ZJYm7C9RjKZHM/HEo1GdTI5OUdMro1eTIw88brJZLJhgiu5ZAShMtwQ96uBFeb6CuAqc/1UDGODAj4I/LqS89eTOMwN8VNKFQvLfDTLGe+R89VDNWp/XtiXJSYl9YqlYzrTb10Xv/dMreo36Z64KLh211LK+k1IEJqVusQd+CnwIrAPw4b+eSBumlyeBh4BZpplFfBD4BmM6SLKmmR0jeLuZo92vOc4H82KAlG/ZIrm8H/Ni/qSj1tma4yvidsKe9H5Pe6Z2mWPtMvw2CjBjcfjvrg/TuPVW5gQXuruubu9VCvubvd8M5mMjiyK5EW9F82H1+RF/ZQvWYq66lWWKXgn4oeeqZ3dv7W1tWJhd0NwM5mMZR1aWloCLYZ+f1sTgknoxN01R2p/RsfXxItF+1Pn5kV9/i3Fgl+wHJQ+qGRv3c3619IjtKtDuV662+JkV694PO7odRqNX97WhHAROnF3o+db5CjtRfOF9+RFfcbTk5ylrDKXS9Fd13RVda16e3GFYh6Pxyf1dCs5l909tFtisZhOJpOumxX88FbjBmFtl+AtoRN3J3tBk3rrX2vXRPbmhX1Z5+Se+ioMe3wdPdha7a9WD4Za7kU1PfdoNNow84FXPVy37eHScxfcIHTi7oT9MtOf0QelD8oL9iVTNB2/yov65/7Genq7VWhO8e6ftFJRLtcjrNTm3mi7cCNs016EeYrNXXCD0Im71vX1tCaZYI77dl7UT/6KvaivLO6xe/F6Xak5pZKHjV20jNcRHW7WwcswTz/cWyFclBL3psvnnh3Icv4d56PRsPkcuO2fjB3zs3DW4slzlmqMjI0PAAMQjUYZHR2ddN5Eg/LZ2OXTKcSNWYqy2WwoJsuo5P7lkBw+gt+RmZgKSG1MoV88Bm583NhwyLOQPAam/rm4oAbeBO7FiNg3GR0dJRaLTZryrVHpc9Pp9KQp51paWjj44IPZuXOnK8I7cZq7XPZNIHACX03eoWbI4SOEGLsufSOXekaoliLTn9GJtQmtepVOrE3o6391qyb6Rt4E85U5toOQ4h+3H0jjttmg3Lkb/XofJmegXVsaEeYpCE5DGG3u5cj0Z3QsHcs7SxO/LHCWHm9tV+81whpzAuDWP7ydODfS6VbNAyJMYXx297gRYZ6C4DRNJe653vq4YH/kiryof2KZjq+J69bVrZbO0q6LumydbU79w5cSF7th/2449qp5iISp5661ODaF8FBK3EPlUM0OZOm5p4eRfSOw5Wy49VZjx9H/aDhLIxqFYuajMxl+7zC0AbsxsuQ0yFlq59BTSmH3XTjt2Kt2kpOJNndwx2krCEJ1hNqhmh3IktqYYsfuHURUhNEX58IN/cbOtkFYenSRs7SjrYMdv9oBj04+l5WwgzOTf+Swi9Qo9ZB12rFX7SQnOQEPQ7SMIDQLtc7E5DnZgSztV7Wz+I7FDO0eQv95JqOX7ckL+1eOgIvmFAl7rCVGuitdtVg6Ka6RSHW3vKWlpepInMJZjNrb22lvby+a0ciuPaXa2d3dzeDgIGNjYwwODoqwC4LPCaS458wvw68Pw2gUfrIRrv4TjB4A558AvQpmPpc/QEOiLUHfoj6653eTTqeJxWIVXcvpMMdqzSutra1VCenEScOHh4cZHh5G6/wE4gsXLpzU/kaGcwqC0ADsjPGNXKrOLZNzmF4SzTtLT7rIOgLmYmNU6UQKnWqUGOnptLOt1LXslmqoJD2B2+GcThKUegqCFxA2h2pkdcQYYQrw3Mch8SuIFLRjFOOdxHSWJl4t7RCt1sFYD+3t7QwPD1d1TDXfUSQSKVs+KCMvxZErCKUp5VANpFmmo63ANjzn0WJh3wfcCawGroXYM+XNDVZmmpyZotB+nbNZ18N1111HS0tL0baWlhamTZtmWT4ej1d1/kr8A0EZeZlKpYqEHWBkZIRUKuVRjQQhOARS3NNdaWItk23m8QPjJA9Lkng1gVKKRCJRUS+vu7ubvr4+Eoni44Ai+3XOZr106dKaBb+7u5ubbrqp6Fo33XQTN9xwA62trUVlW1tbue666yo+NxgPqonnKSRItvVqo3oEQSjAzl7TyKWmrJATUgtUOgtSNTR6qLpT9mW7OUgbmZfdCcI2eEoQnIaw2dwbRSX26xyNygpZCXb1DoqtPYfY3AWhNKGzuTeKamzTfjIV1BLHbodTPodazmNnLhNhF4QKsOvSN3JxKytkvXg5sUM9OJWAzKnzJJNJybooCC5AMyUOcxovpmRzAifs907YvDOZTCAeiIIQREqJu9jcayAssxKVwwnbfamZj4LmAxAEvyE29wqp1C7slzwrTsfgT8QJ230pX0RQ4u0FIZDYdekbufjBLOPn2emtTENW4Y5O19eJe1IqnNQP91YQggxicy+PX2OqM5mMbm1trTgPjRsTe9Rju7dzSieTSUfrKQjNSClxr8vmrpQaBF7DyOayX2u9QCk1E/g50AkMAp/WWu8qdR4/2Nz9Ghs+ffp09uzZU3F5r+trRbP4KASh0bhtc/8brfV7Cy6wAtiotT4SY46jFQ5cwxUKbdZ2eda9tAtns9mqhB38acf2i49CEJoJNxyqpwPrzfX1wBkuXKNuJuY9t5qFyes8LNUmyCpXX7cdsIIg+Ag7e00lC/Ac8BvgMaDH3PZKwX5V+HnCsT3AJmBTR0eHm2YpS+xs7NFo1De5w8vlmi9c4vF4yfr62WEsCEJt4JZDFTjM/PsW4HfAxyaKObCr3Hm8cKjaCadSalJZryaMKDXxRjwer6o+bjqMZUINQfAG18S96ETQC3wV2AbMNrfNBraVO9YLca9U7Lzs8ToZaVLNw6zeOsobgSA0hlLiXrPNXSl1kFJqem4dOAnYDNwNLDGLLQHuqvUablJqgo5CKp0wwgl79sRzAJMSZ91yyy2sW7eu6nM7mUysEJlQQxB8ip3ql1uAIzBMMb8DtgApc3scI0rmaeARYGa5c3kV516JOaGSHq8TvVe3e8Bund+tNwJBEMqDDGKqnUrMN07YsxsxiMoN27hfB38JQjNQStwlt0wZKjHfODEdXCOmlHMj3rxS85YgCI1FxL0MlUwY4YQ92y2buNvIhBqC4FPsuvSNXPxslqmEINjcBUEIH4hZxl2c6L1KD1gQBCeRyToEQRACikzWIQiC0GSIuAuCIIQQEXdBEIQQIuIuCIIQQkTcBUEQQogvomWUUn8Ehryuh8u0A3/yuhINpJna20xtheZqr9/bmtBaH2q1wxfi3gwopTbZhSyFkWZqbzO1FZqrvUFuq5hlBEEQQoiIuyAIQggRcW8cfV5XoME0U3ubqa3QXO0NbFvF5i4IghBCpOcuCIIQQkTcBUEQQoiIu4MopWYqpR5WSj1t/p1hU26JWeZppdSSgu2PKqW2KaUeN5e3NK72laGUOtms43al1AqL/VOVUj839/+XUqqzYN9Kc/s2pdQnGlrxGqm1vUqpTqXU6wXf5Q0Nr3yVVNDWjymlfqOU2q+UOnvCPsvftJ+ps72jBd/t3Y2rdRXYJXqXpfoFuApYYa6vANZYlJkJPGv+nWGuzzD3PQos8LodJdoXBZ7BmBy9FWNy9LkTyiwFbjDXzwN+bq7PNctPBeaY54l63SYX29sJbPa6DQ63tRM4BrgZOLtgu+1v2q9LPe019+3xug3lFum5O8vpwHpzfT1whkWZTwAPa613aq13AQ8DJzemenXzAWC71vpZrfVe4GcYbS6k8B7cBnQppZS5/Wda6ze11s8B283z+Zl62hs0yrZVaz2ote4HxiYcG8TfdD3tDQQi7s4yS2v9orn+B2CWRZnDgN8XfH7e3JbjJvNV7xIfikS5uheV0VrvB3YD8QqP9Rv1tBdgjlLqt0qpXymlPup2Zeuknu8nrN9tKQ5QSm1SSv2nUuoMR2vmEFO8rkDQUEo9AvyFxa5U4QettVZKVRtn2q21fkEpNR24HTgf45VQCB4vAh1a62Gl1LHAnUqpeVrrV72umOAICfN/9Qjgn5VSA1rrZ7yuVCHSc68SrfUJWuujLZa7gJeUUrMBzL8vW5ziBeDwgs9vM7ehtc79fQ34R/xntrCtu1UZpdQUoA0YrvBYv1Fze03z0zCA1voxDPvuO12vce3U8/2E9bu1peB/9VkMX9n7nKycE4i4O8vdQC5SYAlwl0WZB4GTlFIzzGiak4AHlVJTlFLtAEqpFuA0YHMD6lwN/w0cqZSao5RqxXAgTowUKLwHZwP/rA0P1N3AeWZ0yRzgSODXDap3rdTcXqXUoUqpKIDZuzsSw9HoVyppqx2Wv2mX6ukUNbfXbOdUc70dOA7Y6lpNa8Vrj26YFgxb60bgaeARYKa5fQHw9wXl/hbDobgduMDcdhDwGNAPbAGuw4fRJMBC4CmMnmjK3HYZ8Elz/QDgVrNtvwaOKDg2ZR63DTjF67a42V7gU+b3+DjwG2CR121xoK1/iWGb/jPG29iWgmMn/ab9vtTaXuDDwABGhM0A8Hmv22K1SPoBQRCEECJmGUEQhBAi4i4IghBCRNwFQRBCiIi7IAhCCBFxFwRBCCEi7oIgCCFExF0QBCGE/H+fZBadQPm+HwAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:37:25.751165\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAucElEQVR4nO2df5xcZX3v39/d7AaW0JDMUozAzoZetTeIoqQqirZlsUoslaS2KpvgBV6vrUt7C1VuIUyFRDsI6L0hfanQtUKJM2opgkC4aCFiLa0/GiBmgdtI0N1IjJBECODGEJLn/nHO7MzsnnPmnJkz59d836/Xee3Mc8485znP7HzOc77f7/N9xBiDoiiKki264m6AoiiKEj4q7oqiKBlExV1RFCWDqLgriqJkEBV3RVGUDDIn7gYA9Pf3m8HBwbiboSiKkioefvjhPcaYY532NRR3ETkC+C4w1z7+dmPM1SLyj8DvAvvsQ/+HMWaLiAiwHlgGTNnlj3idY3BwkM2bN/u9HkVRFAUQkUm3fX5G7geAM40xL4lID/CQiNxn7/tfxpjbZxx/NvAae3srcKP9V1EURYmIhjZ3Y/GS/bbH3rxmPr0f2GB/7vvAMSKyqPWmKoqiKH7x5VAVkW4R2QI8C9xvjPmBvasoIltFZJ2IzLXLjgd+VvPxp+0yRVEUJSJ8ibsx5pAx5lTgBOAtIvJ6YDXw28DvAAuBy4OcWERGRGSziGzevXt3sFYriqIongQKhTTGPA88CLzXGLPLNr0cAG4B3mIfthM4seZjJ9hlM+saM8YsNcYsPfZYR2evoiiK0iQNxV1EjhWRY+zXRwLvBv6rYke3o2POBR6zP3I3cL5YvA3YZ4zZ1Ya2K4qixEa5XGZwcJCuri4GBwcpl8txN6kOP9Eyi4BbRaQb62ZwmzFmo4h8W0SOBQTYAnzUPv7/YoVBbscKhbwg9FYriqLESLlcZmRkhKmpKQAmJycZGRkBYHh4OM6mTSNJSPm7dOlSo3HuiqKkhcHBQSYnZ4eY5/N5JiYmImuHiDxsjFnqtE/TDyiKogRkx44dgcrjQMVdURQlIAMDA4HK40DFXVEUJSDFYpG+vr66sr6+PorFYkwtmo2Ku6IogUl6pEi7GR4eZmxsjHw+j4iQz+cZGxtLjDMV1KGqKEpAZkaKgDVqTZq4dQLqUFUUJTQKhUKdsANMTU1RKBRiapHihIq7oiiBSEOkiKLirihKQNIQKaKouCuKEpA0RIooKu6KogQkDZEiikbLKIqipBaNllEURekwVNwVRVEyiIq7oihKBlFxVxRFySAq7oqiKBlExV1RFCWDqLgriqJkEBV3RVGUDKLiriiKkkFU3BVFaTudvrhHHKi4K0pGSKqAVhb3mJycxBjD5OQkIyMjiWlfVlFxV5SAJFFEkyygurhHPDRMHCYiRwDfBeYCc4DbjTFXi8hi4GtADngYWGWMeVlE5gIbgNOAvcAHjTETXufQxGFKWkjqEnODg4NMTk7OKs/n80xMTETfoBq6urpw0hkR4fDhwzG0KDu0mjjsAHCmMeaNwKnAe0XkbcB1wDpjzH8DngMuso+/CHjOLl9nH6comSCpo9Akr46ki3vEQ0NxNxYv2W977M0AZwK32+W3Aufar99vv8fePyQiElaDFSVOkiqiSRZQXdwjHnzZ3EWkW0S2AM8C9wNPAc8bY16xD3kaON5+fTzwMwB7/z4s083MOkdEZLOIbN69e3dLF6EoUZFUEU2ygOriHjFhjPG9AccADwJnANtryk8EHrNfPwacULPvKaDfq97TTjvNKEoaKJVKpq+vz2A9vRrA9PX1mVKpFHfTTKlUMvl83oiIyefziWiT0l6AzcZFVwNFyxhjnrfF/XTgGBGZY+86Adhpv95piz32/vlYjlWlg0hiREkYJHkUOjw8zMTEBIcPH2ZiYiIRbVLiY06jA0TkWOCgMeZ5ETkSeDeWk/RB4ANYETMfAe6yP3K3/f579v5v23cYpUOYGVFSCcsDMiE4w8PDmbgOJdv4CYV8A5aDtBvLRn+bMeaTInISlrAvBB4FVhpjDtihk18G3gT8EviQMeYnXufQUMhskeSwPEXJEl6hkLpAthI6GtesKNGgC2QrkZLUiBJF6SRU3JXQSXJYnqJ0CiruSuj4jShJU0RNmtqqKECwOPd2bRrn3nkkOV58Jmlqq9JZEFacu6KERVJztDiRhLbqk4MSlIZx7orSDpKao8WJuNua9XkDSnvQkbsSC2mKqIm7rVE+OegTQnZQcVdiod0RNWGKVNzRP0GfHJq9dq8FP8rlMv39/YgIIkJ/f39kwq83nCZxM8ZHualDtTNpV6KrdjhA40zKlc/n666lsuXzecd2NnvtbufJ5XKmp6dnVnlvb2/b+0Gd2d7g4VCNXdiNirsSMkHEMA34FbhSqWS6u7ubvnYRcfys19buPs3adxk2XuKuZhklc8TtAA0bP/MGKiaVQ4cOOdbh59qb8SG0u0+z9l1GiYq7kjnidoC2g0bpfJ2crrX4uXY330IuN2utnUD1tkIWv8sK5fEygzcM0rW2i8EbBimPh+tLUHFXMkfcDtA48BrJ+r12tyeE9evX09PTM+v43t7etvdpVr/L8niZkXtGmNw3icEwuW+SkXtGwhV4N3tNlJva3JWw6bRVidxs093d3aFce6lUMrlcrs7JGlWfZvG7XHTZ2YbuXxswhr88ybAGwxpMfl0+UD2oQ1VRnPESjjSJikaVJJ/Dh4255hpLdae3c8+fFnbWYGSNBKrTS9x1hqrSsXjN/ARSNSu00qZCocCOHTsYGBhg2bJlFAoFVq1axcDAAMViMZFtzzq/+AUsWwaPPmq9P+kkODD8DnZ2/8esYwfmh+hLcFP9KDcduStx4GXKqDVBkMIQPB3Jx8+dd9aP0i+/3JhXXrH2lbaWTF+xr27U3lfsM6Wtwb4fNBRSUWbj5oQ8dOgQe/c6r+melhC8JCQ7yzpO0S6//jWsWgUisHy5ddxDD1nyfu210N1tlQ2fMszYOWPk5+cRhPz8PGPnjDF8SohPVm6qH+WmI3fFjXY68txG7l5bWkbubhOSRJxtumnyLySBWSPvP3tj1UGKMX/4h8a88EL724E6VJU0UiqV2jrt3cl04bWlyawRVcqCTiW/Lm+4GsPQFXWml9yHPxZpO1TclVTiNbIOawTtNWU/l8uldjQbRLB1in8wdu0yhlc9UhX1BdsNlw40Fe3SKl7irtEySmLxsm+HZfuuRI/URsaANVFm/fr1qY0ucYqecYuW0Sn+/rjzTlixovLuTfCOa2GoAF2Hp48JNdqlRdShGhFpSlualLZ6TTEPc/q53zVf00ajlAUVsjzFv1V+/WtYudJykFaE/aGHoLS1TN+yT9UJe19PH8WhBM2cdRvSVzbgROBB4AngceASu3wNsBPYYm/Laj6zGtgObAPe0+gcWTfLpMmmmaS2ttvmrlgk6TtPCo8+akxvb9WW7uQgLW0tmfy6vJE1YvLr8oHDGMOAVmzuwCLgzfbro4EfA0tscb/M4fglwI+AucBi4Cmg2+scWRf3NNk0k9bWOKe9dxIaLeM8g/Qf/zHuVnnTkrjP+gDcBbzbQ9xXA6tr3n8LON2rzqyLe9CwtDiJoq1JEpJ2tiVJ16m4s2uXMaeeWhX0k04yZmIi7lb5IzRxBwaBHcBv2OI+AWwFbgYW2Md8DlhZ85kvAR9wqGsE2AxsHhgYiK43YiBpo2Ev2t3WJJkAnNpSubm1KsZJuk7FmTvuqB+l184gTQuhiDswD3gYWGG/Pw7oxnLKFoGbTQBxr92yPnJP0w+93W1N0o2u0SQmP9ftNjpP0nUqVfbvN2Z4uF7UH3oo7lY1T8viDvTY5pWPuewfBB4zapZxJU2P6O1sa5JMVH6WlfMSY68bYZKuMyu08n/px0GaRloSd0CADcANM8oX1bz+K+Br9uuTqXeo/oQOd6hmiVaFP0kjWj/pB7zE2OtaknSdWaCZJ8rDh40pFutH6Ul3kAalVXE/w+7MrdSEPQJfBsbt8rtniH0BK0pmG3B2o3OouKeDMEw2STJR+Uk/4CXGXqPzJF1nFghys0yzgzQoLZtl2r2puKeDsEajSTJRVdpSEeUgYtyoP5J0nWnHj5lrpoP0iiuMOXQoxkZHgIq7EgpZtiM3E0/vNTpXYQ+XfD5vOAXDpVgJuy7FcApmYOC15rzz6kX93/897tZGh5e4a/oBxTdpmaYeNH1CZUWm2hzu+/fvb3get7QFYOWqmZycxBgzvYpTklNOJJnyeJm9F+2FFcAxWF7A/W+EJ37Njh3b+MpX4Jxz4IUXLHl/+9vjbW9icFP9KDcduaeDNNiRm2lj2M7PTnGmRvF0Upc3/WoMZ66uG6Xnzvur0M8ZFWH0H2qWUcIi6eaGZoQ1bHNTls1XFdp1o5+ZryV3Xc7w8eMSk2I3LMLqPxV3pWNoRljTNnJPwg22Hdc4a3WjD55bN0rnjGsMV0nduqP5dc2fL07C6j8vcVebu5IpmvELFItF+vr66sr6+vooFptL3xp2fbVU/ANx2/PbkQO+sKnA1NQh+HoJ1hj4pzutHRe+HdYInHUldJnp4xOXYjcAkeTQd1P9KDcduSth0ezjbtij4XaNrpNizw+7HY88YgxdB6qj9NfeZVg9r26UXrvlrsvFkmI3LKIYuccu7EbFXQmZRsKaBLNGsyTFnh/0JuqU+9xpBinnrnIU8rjzpoeN2twVJWTSEPHjRVJG7sb4v0nOsqV//Dgji7ZMC3plBums49Zg+op9mRBzJzRaRlFCJEni2AxpvDnl1+UdHaS/MfT5WTNIk7C6UZpQcVcUm6SYNVohKrNSGOfZv98YTinVm14uPD3VYYxJwkvc54TnmlWU5DMwMMDk5KRjeVoYHh5u++LdlaicqakpgOmonMr5G/Hoo/DWt8LBgwDD8Lq7YMUwzP3V9DED89PT52lEQyGVjqKdYYppwU96hkKhMC3sFaampigUClYd42X6r+9H1gqyVui/vp/S1jLXXAMi8OY3W8K+YQOUtpbpO/+8OmFPcxhjanAb0ke5qVlGiZI0R8u0il+bvaP5qpK4a2Zo4owZpL/1W7NT7KotvT3gYZYRa3+8LF261GzevDnuZigBKJfLFAoFduzYwcDAAMVise2mAqV1BgcHHc1S+XyeiYkJ9+POBt6ClbSrwv87tzrRCOCMTzOwfIzJj/005FYrbojIw8aYpU771OauBKZVe6wSH35nRhaLRS5YdwEHzzwIFSuWAAfnwt1fgvGa7/nCt8PA9wD42YuCkgx05K4Exu/oT0kejb678niZwqYCk/tmHLPrVPjiD+Fwj/XewUEKkJ+fZ+LSifY0XpmF18hdHapKYCLJi9ECQfO5dxJuDuVlly+j//p+Vt6xsirsBvjulVael79/1BL25ausPC8fPneWsPd09aiTNEGoWUYJTJLDCdVk5E2lD2r9JcsuX8atz93K1EE7OubF46D0TXjmVOv9gu3wkSE4xv3mnTsyx/qz1zN8ivZxUlBxVwJTLBbrBBSSE07oFcKn4m7zBuBSYB8wH2578TZL2B0cpJxZqMvEWEEQPrr0o3zhfV+Ips1KYFTclcA4jf6SEi2TdJNR3JTHy4zcMzI9Sp/c8wtPB6kTOkpPB+pQVTKFOnu9Gbxh0LKp+3SQ1qKinjzUoap0DGmfgRqGM7g8XmbwhkFkrTDnk3OQtcLgDYOUtpaZvGelbwdp7sgcpRUlzNUGc7Vhz1/vUWFPE26zmyobcCLwIPAE8DhwiV2+ELgfeNL+u8AuF+DvgO3AVuDNjc6hM1SVMPGagZrk2alhZHx0SpvLx48zHPdoNXHXgien1yBNWs70JH8/SYRWskICiyoCDRwN/BhYAlwPXGGXXwFcZ79eBtxni/zbgB80OoeKuxLFjzrp6XJbTUc8unG0XtT/dHl9NsYzrjELP92f2JzpSf9+kkhL4j7rA3AX8G5gG7DIVG8A2+zXfw98uOb46ePcNhX3ziaqH3Uj8Yx71BgkHXElVwtrMN1ru6tiXZjrmmK3kmY3qXle0p5rPw5CE3dgENgB/AbwfE25VN4DG4EzavZtApY61DUCbAY2DwwMRNUXSgKJ6kftJZ6NbjDtFP5K3U5tc+qH0Y2jRtZI/Sj9z041dL1cFfTXfcOw+qhZSb7y6/KObUgCWci1HzVe4u47FFJE5gFfBy41xrwgUs0hYcz0F+MbY8wYMAZWtEyQzyrZIqrwRa/JV41S3LZrYtTMSVczqTiDHdMCGODfroRv1ziLl6+CN5ac60p4mt0kT45LI76iZUSkB0vYy8aYO+ziZ0Rkkb1/EfCsXb4Tywlb4QS7TFEccfvxhv2j9oqk8brBNBL+VnCqu0I+n2dsbAzeACP3jFSF/cVXwY2PwlpjCfuC7XBp3op6cRH2/Pw8Y+eMJTraJe2RTonDbUhv6k0uG4AbZpR/hnqH6vX26/dR71D9YaNzqM29s4nSkeZmXvEyDbXTXOBWN2fPsKU7OkiLhqtkdn71mm1042jLbYySuP0eaYMWo2XOsP/htgJb7G0ZkMOypz8JPAAsNNWbweeBp4BxHOztMzcV9/aShh9M3G30usG00ydQV/cpGP4XhqvtzYeD1G3rXtudOmFXgtOSuEexqbi3Dw0v84/bDaadfVgqlUzPaT1VUQ/oIGVN9WbQfVm3Gf2CCnon4SXumn4g4+h0/HAIe+WpVh2kgmAwyD7BPGCsZ2QsG/XY2Fgi8vwo7ccr/YCKe8apjWqaWX748OGIW9NZuN0QztpwFpt+uql64IuvgtJ9vlLsCsLA/AGKQ0UK5xT0xt3h6DJ7HUq5XEZEcLqBa3hZe3HLK3/LM7ew6UVb2J9YDrfdUf3QGdfAmX/jmGIXYHTpaF2K3VU7VjkepxkwFdDEYZmmUCg4CruIRBZe1u5VkZK66lKhUGDqd6fgE8DVwCdg6nen2LTn3+H2spW8qyLsF77dCmM8yzl3epd0zRJ2iC6EVEknapbJMF1dXY7iDriWh4nTBJ0wbcLtrr8VZJXAb2HFjkFbUuwm+fqVaFCbe4cStzPV7fy5XI49e/a0rf64bc7l8TIrv77SejPTQXruKjjVeaIRWJONikNF35ONwnb0KulCxb1DiXtk5/XkUCqVWm6DW/1ROotnOkeHFg/xXz/dx84b/wGeeaNVuPBJOH8IjvmZaz1Di4d44PwH2t1cJWPoYh0dyvDwMGNjY+TzeURkejp7VCM7L9tvGFP347I51y6GURf18sRyNn3kAXau+U9L2M+4Bq7qgr987bSwd0s3o0tH6Zbuuvcq7ErY6MhdaRvlcpmVK1c67gtjdB3lk8ms8MUKB4+Au74Ej51XLbvodDjx+471ODlGnVBzi+IHNcsosdHf38/evXtnlYdlF49CBE/+/Mk8seeJ+sIGDtK+nr7pRagr+DW9xG1OU9KDirsSG2kWqvJ4mUvuu4S9++2bU4AZpKUVJQqbCuzYt2N60pFfJ2lSHcVK8lBxV2IlLSaGi++9mLGHxzhkDiEI3V3dvHL4FXsG6Tf9OUgN9O7s5cAXDzTdjiQ4ipV0oA5VBQh/wo/f+oaHh5mYmODw4cNMTEwkUthP/vzJ3Lj5Rg6ZQwAYDK889kfWZKP/vcvVQWofXN2egoNfOthSW3RykhIGmn6gQ3CbDg/NrSYUdn1xcfG9F3PT5psw2CPlIA5SA+zDSnw9Xi0eyLcmwsVi0dGUpYtWKEFQs0yHELYdN6124Vl29Ao/f5PlIDX2eOd134AVK11nkC7pX8KVx1zZNn9CWkxZSryoWUYJvE5pI5NLVOuehkV5vEz/9f2svGNlvYP0u1dappexRyxhX77KyvPy4eWOwp47MkdpRYnH//zxts4jaGTKSmpOHSU56Mi9Qwgy0vYT4ZKmkXt5vMzIPSPV0MQADtJ5vfP41cu/Chzx0k7SHIGkhItGyyiBBMGPcCdZYGba0SsLW/DECrjt69UD31mE3/+Ea4rdJf1LePzPH4+iyYFI041VaS9qlgmBVh+D436MDmJC8GNyiTu1gRPl8TJHf/pobtx8Y52D1NxeslPs2sJ+0emW6WXIO3d6EoUd0mcSU+JBR+4+aHWUmuRRrhNuI0OwRodJcu65pgUI6CAFK8/LyGkjvtIDxImO3JUKXiP32BfHNilYILtuhfqaLZ/PR/L5duC2GHRl38wFoWu3VheH9jp3EF792VfPXij6zCuri0pjDMtXOi8qbW+563KmtDXaxcJbvX5d9FypgMcC2bELu0mBuIuIo8iJiK8fqtfn48CPOFSuy03gm70xhSVMoxtHqyL98VcZjttSFfSFPzZceuIsIe9e221kjZj8unzkgl4hrOsP6wappBsV9xZxE7lcLufrh9rukXvQH3qQ9oR9Y2qmL4ZuHaoT6SM+dYSRNWL40xX1o/R3/q3hKnEcoc/55JzYBL2WJD7FKemlJXEHbgaeBR6rKVsD7AS22Nuymn2rge3ANuA9jeo3KRB3t9FWLpfz9UNt52N0M3UHEWwvMWpm9Bj0ZrHkc0vqhbpwhOH1X6kX9Yve5ml6mXfNvEQIuzHJe4pT0k2r4v4u4M0O4n6Zw7FLgB8Bc4HFwFNAd6NzJF3cjXEeHQf5obbrMbqZkWCQzzjdPCrXPfP6/dyw/Jx7dOOo6V7bXS/SI28yyMGqoL/uTsPqo1wFPU7Tixc6clfCpCVxtz7PoE9xXw2srnn/LeD0RvWnQdydSMIPtZmRYNDRfq393e18fq/d7dyjXxg1uetyLTtIX/3ZV7fSnW2nVCqZ3t7euuvv7e1Vm7nSFF7i3kqc+1+IyFYRuVlEFthlxwO10/yetstmISIjIrJZRDbv3r27hWbER7FYpK+vr64s6gRPzWQQDBqjXpkKn8/nKzdtVxrFWteem1Og+7Jupv56ihufvbGaFuDFV8GNW2CtsXKnL3wSLh2wYtNrcqfP6503a7m6nR/f6Xn+JDCzDxv1qaI0g684dxEZBDYaY15vvz8O2IM18vgUsMgYc6GIfA74vjGmZB/3JeA+Y8ztXvUnPc7di7gTPEUZQ++14HUFP7HWjisbQaAZpF3SxYblGxKRDiAIGqOuhIlXnHtTKX+NMc/UVP5FYKP9didwYs2hJ9hlmWV4eDjWCT2Vc0dxgxkYGHCd3AT+nloWXLuA5w88Xy04eATcdTM89uFqmccapBhrlH7r8ltTJ+ygs0uV6GjKLCMii2reLgces1/fDXxIROaKyGLgNcAPW2ui0oioMgg6maFEBMDVtHPxvRcja2V6mxb2n78J1h6E4n5L2F/3DVg9zzK9zBT2inX6eeAOmHv9XNja1CXEjpcZLe4UFUrGcDPGVzbgq8Au4CCWDf0i4MtYyxNsxRL0RTXHF7CiZLYBZzeq36TYoZoGwg7D9Bv1U9paMvOumTfbQfr7Bf8O0qsxXIXh7OxEl7g6lEdHddapEhg8HKqaWybjRGnjrV2DtA6/KXZr/xWngG9St8JRLWleT9TJT1MoFNQWrwRGU/52MFEstlweL3PhNy7k5cMv1+8IkmL3FeAuXMV8JlkTPV0UW2mG0B2qSnpwc4KGsdiyY0ZGRwfp2+DEH7jWc8zcY5h/y3zHduZyOfbv35/59UTb+T0pnYnmc884YcfiX3zvxcz55BxkrdQL+0wH6W/fWeMgdRb2Smz6c1c859rO9evXJy5vfDtIwpwJJWO4GeOj3NSh2l5aTX0wM3FXvYP0b+odpCvO85xBKmvEjG4cDa2dWcqOmMRrSWKblCqoQ1VpFkfTS4A1SAHy8/NtWX80bYugpA3t3+SjDlUlEBffezE3br5x9o4t58M3bq2+93KQGujd2cuBLx5oWzt1tmd70f5NPiruim9mCfuBeXDdL+FwT7XMzUFa+VeywxjlsfZGenilQ8gnbDnANKIRPMlHF8juYPzMeiyPlxm8YZCutV1VYf/xMmtR6U+/WBX2yxe4O0gN8AywFvgMMN7+SA+v+icnJxkZGdFZni3QTFI6JTmouGeYis10cnISY0yd4J214azplAAr71jJ5L5JzGHg1vstUf/KvVYl77jOEvQ1Akc+73ie3JwcPRt74KZqmYiwbNmyUK9l5k3KKcKklqmpKQqFQmht6DQ0gifluHlao9w0WqY9zMo3f7Y9nf/qGVEsf/Ga+ogXjGH09a4RL0O3Ds061+joaFOLd/jBK4VCo7Vew1jhqNFi4lmOJsn69aUdNFqmM5m2mZ4N/A4g9lbhXwvw4N9W3x//fbjoHdDlbE999bxXu+ZLb6fzzU/d7Tq/V8QIoNEkSqyoQ7VDGRwcZHL5JMynKupODtI/+QCc/HWnKqbxEnZor/PNT92NwvaazbvvddMANJpEiRVNP9BBlMfLFDYV2LFvB10XdFnGCcFykFbs6BUuX+BoR+/r6WPsnLFAcentnD7vp26vvPYzhb/ie6j9nBvN5F/X3OxKEtCRe0Yoj5e55L5LqkvVARwW+PK/wE/Pqpa94zp49xWu9TQ74aidE15arbsVk42O3JUkoyP3jDNr2bo9r4HP/bj+oNHXw3GPu9YxtHiIB85/oOk2tHNFqFbrbmX1o2Kx6HhjqUSMeO1TlFhx87RGuWm0TPPU5X2Zmefl+O8ZrupyjXqZd808U9qa/egHt2gavwt+dHK0jJJs0GiZbFBrTx+YP0BxqMjKr340sIO0kXM0a2iOFCWr6AzVhNHMWpkX33sxq+5YZU02wjD5nyez8g3DzjNIa4Rd6mIfLfNL0oU9SP/4OXZ4eLgj0gYrSh1uQ/oot04yywRZ07S0tWTy6/JVU8pVYlh8f73p5R3XuppdctflUmd2CdQ/Ia8PqyhpAzXLJIdGkRsV08vkvkkEwWCacpAu6V/C43/uvj+pBIls0ayFSqeTabNMMyaOOPGK3CiPlxm5Z4TJfZZgme/8jZXnpSLsJ3wPruq2TC+2sOfn5xlaPFRX19DioVQKOwSLbGklCkZRsk6qQyFbmZwSF3UTck4BhoD50PWrLi657xKmXuqCaw+CqflqXBykgrRlEYw4CTIZStcdVRR3Uj1yLxQKdREQ4C8TYJyj/WKxSNc5XXA1sAI4BhA49PP3sPfyPZaDtCLsDg7SaQycefSZmRJ2CJaJULMWKooHbsb4ygbcDDwLPFZTthC4H3jS/rvALhfg74DtwFbgzY3qNy04VGdmIaxsXpkA43LCOa5D6ugg/bT7GqRX29ulGE7JrvMwSOy4xpkrnQytOFRF5F3AS8AGY8zr7bLrgV8aY64VkStscb9cRJYB/xNYBrwVWG+MeWujG0yzDtVmHGpRO+HK42UuuusiDhyqWW7uhUVQ+hY8e0q1zMVBWnGqdr/UzaFvHYLxaNqtxEuzic6UzqIlh6ox5rvAL2cUvx+oLKZ5K3BuTfkG+6byfeAYEVnUVKt90MxjeZROuLM2nMXKO1ZWhf3xP7YcpP/n55awn/7ZWQ7S3JE58vPzCEJuTo6F31mIrBUOfXa2sFfanRSnsls7ktK+tOC1yIqi+MZtSF+7AYPUm2Wer3ktlffARuCMmn2bgKUudY4Am4HNAwMDTT+WBH0sb3UquhujG0dN99puwxpM99pus+RzSyxTSuEIw8lfrTe9XPRWV9NLJS7dyXzktOVyuUTEeruZu0ZHR2eV9/T0mFwup6YUF9r1P6pkDzzMMi2Lu/3+ORNQ3Gu3Zmzuzdpa22FzH904OluoR95kkFeqgv7bdxhWH+VuT19Tv8KR1+pCte3O5XKu+6MUTrf2uvlF4r4ZJZlmfElKZ9IOcd8GLLJfLwK22a//Hviw03FeW1Bxb1Wgw3DCzZo9WnF4zkzeteI8T0GvbKMbR+vq9xLF2nY3Es+ohNOPiHttOiqtoiN3xS9e4u5rhqqIDAIbTdWh+hlgr6k6VBcaY/5aRN4H/AVVh+rfGWPe0qj+oA7VuGcmViYbTR20wzBnOkhz2+D8s2D+0651NEqx6/ca3Y7z+kw78NMOL8JYsSkraKIzxS9eDlU/o/avAruAg8DTwEVADsvk8iTwAJa4g2V//zzwFJb7r6FJxjQxco/jsbXWpj69/ckf14/S3/kpK7zRp+nFC79PJ6VSyfT09HiOipvpl6BPN359BG6bjkrr0RBPxQ+0apZp9xZU3KN+bK2zqQdwkC753JI6J+tM04sTtT/qXC7ny/HoZXef2S9OojGzzMkJ6se8M7OeRu0KUreiKLPJnLi3eyJSxZ4ua2T6r6OD9Mq+hjb0oBNymrkuL3t37eed6u/t7Z018nerL+jN0yuCRkelitI6mRN3Y9rz2FraWjK563ItOUj7in2e4YxeYt3sE4nb57q7u+vO5Xck3egpIEhfq3lBUdpHJsU9bEpbS6avaI/EP7bI8Jtbq4Ke+y/DX53gKugV00t+Xb4uf3ojsZ4pfM3azP3cREqlUsvCrmYURUkWKu4zmGl2mQ5rnOkgfdcnPR2kjWzoXo5fJ0FuxRzSaITsJ24+6AheUZR48RL3jlqsozxe5pL7LmHv/r3VwoNH0H33Bg6N/0m17KK3wYk/qPvsvN557D+4n0PmEN3SzchpI3zhfV/wPJ9XOCPguE9EqP1OwgqB6+rqwu277unp4eDBg4Hqqw1d1DwoihIPLYVCRrFFMXKvM7usYbaD9L+7O0hr7eiBzulhLvFygrbDRu02cs/lck1FudSalpKQ/kBROhHULGMss8vVGH7vE/WmlxoHaZ3425vbOqR+HYVux0Udztnq2qROnyuVSqa7u1vNNooSEx0v7jt3moYO0lrbe60t3okwRqtB6wglZUKTedKd4u0b3QA0D4qitJ+OFfd//ueaETrG1UEa1OwS1qg7yOg/aaaPRg5aHbkrSvvJpLjXJu6qDUW8+YdfNR/8YL2of+971vG9a3t9m1288Jv+IKwY7zhMOI3a7XfilKIo7SNz4j7LObpmtoN0+XJjXnqp5jOlkuk5rcdaou5qDJdiek7raUqE/IhtqVQyvb29dft7e3ubOl+UuXT8PiX4nTilKEr7yJy416Xaffdlsxyk+XX52Z8JcfTrRwDdIk5yuVzg80U5cvd7riSaihSl08icuMsa225+VZejg1TWzB7Rhj36bWS68LJHN3OuqIQ0SD/FnVog7vMrStxkTtxnLZIxY2v3yN0Jv6kEmhF3p/pbFbKgIZrNPHG0E31yUJQMirujzX2Nd+RLO8UgSC7zJIikV1+45Ydv1l/QLqJ2MitKEsmcuBvjHi3jFfnSyujX67NB87b4zdPeLhoJo5u/ICrhbCVaR+PrlU4ik+IeJY1G/Y1SCVREx+0YETGjo40X8giLRsIYp3C2Gq2jI3elk/AS9y6UhhQKhbr1LAGmpqYoFAoADAwMOH4ub69dms/nrTupC8YYbrrpJsrlcniN9sCtvZXyRvvbSaO+rrBs2TLHz7uVK0rH4ab6UW5JG7kHzbPeysieGEadjdrrZHfv6WluTkBQ/D416MhdUXTkHojKyvOTk5MYY5icnEREHI+tjGSHh4cZGxsjn88jIuTz+bo0vX5HvDt27AjnIhrQqL3ArGt264Ow8fvU4NZXUfWhoiQeN9WPckvKyN0ry+HMEWWQSBu/0TRJGXXGOSpWm7ui+Ad1qDbGjwC3Emdea+o56qijZtWdpBjtuCNR/ETLaJy7oqi4+6JROGPYI8KoZlc2cx6vvmjnBKq46onjXDq7VgmDtok7MAGMA1sqJwEWAvcDT9p/FzSqJwninsUsh82Obv0u1hFVm+IWwrCfEvSpQwmLdot7/4yy64Er7NdXANc1qicJ4u42Wk1zlsNW7NIVQQ37SSZom5IghGHb99VfoISFl7i3tEC2iEwAS40xe2rKtgG/Z4zZJSKLgO8YY17nVU9UC2R7UYmSqY2xDmtx6rhwWxS7dnHrKOpopT6vRcYnJiYCn78Z4u4DRXHDa4HsVkMhDfAvIvKwiIzYZccZY3bZr38BHOfSqBER2Swim3fv3t1iM1rHT3hg2ghjMlLYE5qC1peEkMe4+0BRmsJtSO9nA463//4m8CPgXcDzM455rlE9STDLZJE41noNu74kmDDi7gNFcYMoomWANcBlwDZgkV22CNjW6LOdKO5hOgm96nLb1+xi2VFHiiRFCDVaRkkibRF34Cjg6JrX/wG8F/gM9Q7V6xvV1WniHqZgNRt9kgTB9IsKoaI40y5xP8k2xfwIeBwo2OU5YBNWKOQDwMJGdXWauIdpamimrrhnoKpQK0o4RGKWaWXLgrgHEa0wZ4A2U1dcM1DT9sSgKEnHS9w1cVgIOCUbGxkZcU3hG2a0RDN1xRWt4Tedr6IoraPiHgJBRatYLNLX11dX1tfXR7FYDHzuZuoK8/xBSEJYo6J0DG5D+ii3tJtlmjFzRBUtE8X5/ZKEsEZFyRK0a4ZqWCRhhmorJGEWZRool8tccMEFHDx4cLqsp6eHW265JdWTxRQlLto5Q1UhPjNHGolrERBF6TRU3EMgi6kL2kGhUODll1+uK3v55ZfVoaoobUDNMkpkaMIsRQkXNcsoiUATZilKdKi4K5GhvglFiQ4VdyUy1DehKNGhNndFUZSUojZ3RVGUDkPFXVEUJYOouCuKomQQFXdFUZQMouKuKIqSQRIRLSMiu4FJoB/YE3NzkoL2RRXtiyraF1W0LyBvjDnWaUcixL2CiGx2C+vpNLQvqmhfVNG+qKJ94Y2aZRRFUTKIiruiKEoGSZq4j8XdgAShfVFF+6KK9kUV7QsPEmVzVxRFUcIhaSN3RVEUJQRU3BVFUTJI5OIuIgtF5H4RedL+u8DluG+KyPMisnFG+WIR+YGIbBeRfxKR3mhaHj4B+uIj9jFPishHasq/IyLbRGSLvf1mdK0PBxF5r30N20XkCof9c+3vebv9vQ/W7Fttl28TkfdE2vA20GxfiMigiOyv+T+4KfLGh4yPvniXiDwiIq+IyAdm7HP8vXQcxphIN+B64Ar79RXAdS7HDQHnABtnlN8GfMh+fRMwGvU1RNkXwELgJ/bfBfbrBfa+7wBL476OFq6/G3gKOAnoBX4ELJlxzMXATfbrDwH/ZL9eYh8/F1hs19Md9zXF1BeDwGNxX0PEfTEIvAHYAHygptz199JpWxxmmfcDt9qvbwXOdTrIGLMJeLG2TEQEOBO4vdHnU4KfvngPcL8x5pfGmOeA+4H3RtO8tvMWYLsx5ifGmJeBr2H1SS21fXQ7MGT/H7wf+Jox5oAx5qfAdru+tNJKX2SNhn1hjJkwxmwFZi6+m+XfSyDiEPfjjDG77Ne/AI4L8Nkc8Lwx5hX7/dPA8WE2LmL89MXxwM9q3s+85lvsR/FPpPCH3uja6o6xv/d9WP8Hfj6bJlrpC4DFIvKoiPyriLyz3Y1tM618t1n7v2iaOe2oVEQeAF7lsKtQ+8YYY0Qk07GYbe6LYWPMThE5Gvg6sArrMVXpLHYBA8aYvSJyGvANETnZGPNC3A1T4qMt4m6MOcttn4g8IyKLjDG7RGQR8GyAqvcCx4jIHHvkcgKws8XmtpUQ+mIn8Hs170/AsrVjjNlp/31RRL6C9TibJnHfCZxY897p+6wc87SIzAHmY/0f+Plsmmi6L4xlbD4AYIx5WESeAl4LpHXtyla+W9ffS6cRh1nmbqDiwf4IcJffD9r/xA8CFe94oM8nED998S3gD0RkgR1N8wfAt0Rkjoj0A4hID/CHwGMRtDlM/hN4jR0B1YvlJLx7xjG1ffQB4Nv2/8HdwIfsCJLFwGuAH0bU7nbQdF+IyLEi0g0gIidh9cVPImp3O/DTF244/l7a1M5kE7UHF8tGuAl4EngAWGiXLwX+oea4fwN2A/ux7GbvsctPwvoRbwf+GZgbt1c6gr640L7e7cAFdtlRwMPAVuBxYD0pjBYBlgE/xoqOKNhlnwT+yH59hP09b7e/95NqPluwP7cNODvua4mrL4A/tv8HtgCPAOfEfS0R9MXv2LrwK6wnucdrPjvr99KJm6YfUBRFySA6Q1VRFCWDqLgriqJkEBV3RVGUDKLiriiKkkFU3BVFUTKIiruiKEoGUXFXFEXJIP8fFwJIw3d19OgAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-19T21:26:20.991128\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" }, "metadata": { "needs_background": "light" @@ -388,9 +388,9 @@ }, { "cell_type": "code", - "execution_count": 236, + "execution_count": 67, "source": [ - "X = Xview[:, np.newaxis, 9]\r\n", + "X = origX[:, np.newaxis, 9]\r\n", "print(X.shape)\r\n", "print(X[0])" ], @@ -400,7 +400,7 @@ "name": "stdout", "text": [ "(442, 1)\n", - "[0.06169621]\n" + "[-0.01764613]\n" ] } ], @@ -415,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 68, "source": [ "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\r\n", "print(X_train.shape, y_train.shape)" @@ -440,7 +440,7 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 69, "source": [ "bloodSugarModel = linear_model.LinearRegression()\r\n", "bloodSugarModel.fit(X_train, y_train)" @@ -454,7 +454,7 @@ ] }, "metadata": {}, - "execution_count": 238 + "execution_count": 69 } ], "metadata": {} @@ -468,7 +468,7 @@ }, { "cell_type": "code", - "execution_count": 239, + "execution_count": 70, "source": [ "y_predict = bloodSugarModel.predict(X_test)" ], @@ -477,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 243, + "execution_count": 71, "source": [ "plt.scatter(X_test, y_test, color = 'black')\r\n", "plt.scatter(X_test, y_pred, color = 'green')\r\n", @@ -491,8 +491,8 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACSm0lEQVR4nO2dd3gUVRfGf7PpARIgJPQk9F5FiihFEBBpdqWIglSxUaQpoIi9YflU7JgAKhYEURQUFUG6FJEOofdOIG3P98fZze4mu8mmhzDv88yzu1Pu3Jmdee+5pxoiggkTJkyYKFqwFHQHTJgwYcJE7sMkdxMmTJgogjDJ3YQJEyaKIExyN2HChIkiCJPcTZgwYaIIwregOwBQpkwZiY6OLuhumDBhwsQVhbVr154QkXB32woFuUdHR7NmzZqC7oYJEyZMXFEwDCPO0zZTLWPChAkTRRAmuZswYcJEEUSm5G4YRqBhGKsMw9hgGMa/hmE8bVv/qWEYewzD+Me2NLatNwzDeNMwjJ2GYWw0DKNpHl+DCRMmTJhIA2907gnAjSJywTAMP2CZYRg/2raNEZG5afa/GahhW1oA79o+TZgwYcJEPiFTyV0UF2w//WxLRglpegIzbcf9DZQ0DKN8zrtqwoQJEya8hVc6d8MwfAzD+Ac4BvwiIittm6bZVC+vG4YRYFtXEdjvdPgB2zoTJkyYMGFDbGws0dHRWCwWoqOjiY2NzdX2vSJ3EUkRkcZAJaC5YRj1gfFAbeBaoDQwNisnNgxjsGEYawzDWHP8+PGs9dqECRMmrmDExsYyePBg4uLiEBHi4uIYPHhwrhJ8lrxlROQM8BvQRUQO21QvCcAnQHPbbgeByk6HVbKtS9vWDBFpJiLNwsPd+uCbMGHCRJHExIkTiY+Pd1kXHx/PxIkTc+0c3njLhBuGUdL2PQi4Cdhq16MbhmEAvYDNtkO+B+6zec20BM6KyOFc67EJEyZMeEBeqzpyC/v27cvS+uzAG2+Z8sBnhmH4oIPBlyKywDCMXw3DCAcM4B9gqG3/hUBXYCcQDzyQa701YcKECQ+wqzrsErFd1QHQp0+fguxaOkRGRhIXlz64NDIyMtfOYRSGSkzNmjUTM/2ACRMmcoLo6Gi3hBkVFcXevXvzv0MZIO1ABBAcHMyMGTOyNBAZhrFWRJq522ZGqJowYaJIID9UHbmFPn36MGPGDKKiojAMg6ioqCwTe2YwJXcTJkwUCVxJkntuwZTcTZgwUeQxbdo0goODXdYFBwczbdq0AupRwcIkdxMmTBQJ5Ieq40qCqZYxYcKEiSsUplrGhAkTJq4ymORuwoQJE0UQJrmbMGHCRBGESe4mTJgwUQRhkrsJEyZMFEGY5G7ChIl8wZWS1KuowJvEYSZMmDCRI1xJSb2KCkzJ3YQJE3mO/MhfbsIVJrmbMGEiz3ElJfUqKjDJ3YQJE3kOT3nKczN/uQlXmORuwoSJPIeZ1Cv/YZK7CRMm8hxmUq/8h0nuJkx4iavNlS+3r7dPnz7s3bsXq9XK3r17TWLPY5iukCZMeIGrzZXvarveoggz5a8JE17gaqvyc7Vd75UKM+WvCRM5RG648sVuiiX6jWgsT1uIfiOa2E2FS63jrIZxR+xgui5eSTDVMiZMeIHIyEi3hOetK1/splgGzx9MfJJNzXE2jsHzbWqOBgWv5kirhvEE03XxyoEpuZsw4QVy6so3cclE4g9GwWe/wMFrAIhPimfiksIRoekugjQtTNfFKwsmuZsw4QVy4sqXlARx3/eD99dD4Bkovz51276zhUPNkZG6xXRdvDKRqUHVMIxA4A8gAFXjzBWRyYZhVAHmAGHAWqCfiCQahhEAzASuAU4Cd4vI3ozOYRpUTRRVrF0LAwbAxo1AtUVwbw/wTUzdHhUaxd7H9hZY/+wwDahXJnJqUE0AbhSRRkBjoIthGC2BF4HXRaQ6cBoYaNt/IHDatv51234mTFxVuHQJxo6Frl3h+HGo0eg4QX37uhB7sF8w0zoUDjWHGUFa9JApuYvigu2nn20R4EZgrm39Z0Av2/eett/YtncwDMPIrQ6bMFHY8ccf0KgR7N0Ld98NZcrAyt/C+eD2N4gKjcLAICo0ihndZxQKYyqYEaRFEiKS6QL4AP8AF1BJvAyw02l7ZWCz7ftmoJLTtl1AGTdtDgbWAGsiIyPFhImCRExMjERFRYlhGBIVFSUxMTFZbuPsWZFhw0QqVhT59luRt98WqVZN5NCh3O+vCRMiIsAa8cDbXhlURSRFRBoDlYDmQO1cGFRmiEgzEWkWHh6e0+ZMmMg27G6AcXFxiEhqNGZWwu0XLoT69SExETZvhosX4YUX4JdfoHz5POy8CRMekCVvGRE5A/wGtAJKGoZh95OvBBy0fT+ISvLYtoeihlUTVzkKa26WnBSSOHEC+vWDESPgk0/gww/hzz9h1Cj46SeoUiWvem3CRMbIlNwNwwg3DKOk7XsQcBPwH0ryd9h26w/Ms33/3vYb2/ZfbdMHE1cxckM6zitkJ/pUBL78Eho0UJ36pk3QoQMsXareMd9/D/Xq5VGHTZjwAt64QjZEDaQ+6GDwpYg8YxhGVdQVsjSwHugrIgk218nPgSbAKeAeEdmd0TlMV8iij8LsapfVvh06BMOHw44d8NFH0LKlrl+zRr1j5syBG2/M406bMEEOXSFFZKOINBGRhiJSX0Sesa3fLSLNRaS6iNwpIgm29Zdtv6vbtmdI7CauDhTmMmveugGKKJk3bgwNG8K6dQ5i/+8/6N4dPvgg/4m9sKq7TBQwPFla83O55pprcmQxNlH4ERUVJagLrcsSFRVV0F0Tkcy9ZXbtErnxRpFrrhHZsMH12L17RSpXFvnss3zssA0xMTESHBzsck+Dg4Oz5e1j4soDGXjLFDixi0nuVwWuVBJKThZ5/XWRsDCRl14SSUpy3X7kiEiNGiLTpxdI9wr9oGkib5ERuZtZIU3kC+zBMBMnTmTfvn1ERkYybdq0Qh0ks2ULDBwI/v6wYgXUqOG6/cwZ6NwZ+vSBRx4pkC4WanWXiYKFmTjMRL7hSimzlpgIU6dC27bQvz/89lt6Yo+Ph27ddJ9Jk/KmH97o0j2l4L2aUvOaNgcP8CTS5+diqmVMFBasXi3SsKFI164i+/a53ychQaRLF5H+/UVSUvKmH96qsa5UdVdu4Wq/fkyduwkTGSM+XmTMGJGICJGYGBGr1f1+yckid90l0rNnev17biIruvTcSJ3gDnnVbm7iarc5ZETuZg1VE1c9fv8dHnwQmjWD6dMhIsL9fiIwZAjs2gU//ACBgXnXJ4vFgrt30zAMrFZr3p3YBneVmYKDgwtdMrGCvk8FDbOGqgkTbnDuHAwbpgbRV1+F2bM9EzvA+PGwYQN8913eEjsUvC49JykZ8hMFfZ8KM0xyN3FVwp7oKyVFE3316JHx/i++CPPn63ElSuR9/wo6v7q3XjgFbcws6PtUqOFJX5Ofi6lzN5FfOH5cpE8fkapVRZYs8e6Y994TqVJF5MCBjPfLbR11Qeq8vdFlFxZj5pVgG8grYBpUTVztsFpF5swRKVdOZORIkQsXvDtuzhyRChVEdu7MeL/CQnS5BW+u52o3ZhYGmORu4qrGwYMiPXqI1K0r8vff3h+3cKF6z6RNN+AORZHoMpOIDcNwe82GYRRQj68+ZETups7dCbGbYol+IxrL0xai34gmdpMZDFHYkZHOV0TzqzduDE2aaKKvFi28a/fPP+G++9R42rBh5vsXxUjRzILOTGNm4YaZfsCG2E2xDJ4/mPgk9RCIOxvH4PmDAQpNnUsTrkjrrmfPEQ/QqlUfBg1Sj5glSzTvurdYvx5uvx1mzYJWrbw7JjIy0m3a4KJMdNOmTXPrLmkaMwsJPIn0+bkUBrVM1OtRwhSEJ0oJFVYKXR4RxoVI1OtRBd01Ex7gXhViEcMYKcWLX5KXXxb57LPYLBnbtm0TKV9eZO7crPWlqOncRbwzVF7NxszCAEyde+YwphhK7lMQ2k8UEMH/nHDtO7JlS0H3zoQ7pNf51hVYIfCbBAbWl2HDhmWJcPftE4mKEvnoo+z1pygRXVEcrIoiTHL3AqmSu325aZTgd0GKNZsrZcuKdOgg8t13Gn5uwjPyk+AckrufwFMCxwQGC7g39NkXd0bOY8dEatUSefXVPOtuoYfzf+fj41PkDMRFESa5e4GYjTESPC3YheD9uj0uYeUvyObNmm+kRQuR6GjN633yZEH3uPAhv6W9mJgYCQi4XmCDwHyBihmSun1J681x5oxI06YiEyfmSTevCLj777y5d4UdRWk25Q4muXuJmI0xEvV6lBhTDIl6PUpiNsbIjBkiFStKqmpm1SqRfv1ESpYUGThQ5J9/CrbPhQneugPmxgt38aLI6NEioaHxYhh9vCJ1d/2Jjxdp00Zk+HDPycKuBnj6765kyf1qUC2Z5J5DzJypRjZnf+ejR0WefVaJ/4YbRL74QiQxseD6WBjgjd9zbrxwv/0mUr26yD33qDrFW6kz7bkSE0VuuUWkd++8S917pcDTf3clE2NRjD1IC5PccwFffCFStqzImjWu6xMTRb78UqW/ihVFpk5V4r8a4c3LlJMX7swZkSFD9D7Pm+e6LSYmxqOe2MfHJ90sISVFSb1bN3NQFvH8v7i7d1cKroYgK5PccwnffisSHi6yfLn77f/8I/Lgg6qy6dtXZOXKfO1egcMbqTy7L9yCBSKVKokMGqQkn93zi6j6ZfhwHZDj43N82UUCRVGFYUruJrlnCQsXKsH//rvnfU6eFLn33rXi47NP4G8JC3tUPvlkVv51sgCRmT49qy/csWMqYXub6Msbff7EiWpAPXs2O1dYOJEbdoyiZnwsigNWWuSI3IHKwG/AFuBf4FHb+inAQeAf29LV6ZjxwE5gG9A5s3NcSeQuIrJ4sUiZMiK//OJ+u+Ohsgh0F/hZ4Ij07Lkx08yCRR1Zka5nz1ZV2MiRakDNDbzyiro8HjuWO+0VBlwNJJZdFLUBKy1ySu7lgaa27yWA7UBdG7mPdrN/XWADEABUAXYBPhmd40ojdxGRP/5QCX7BgvTb3EuntaVEiU+lVCkt0/bHH1evd0ZmL9yBAyLdu4vUq5e1RF+Z4aOPNEjJU23UKxVXg/rBhHvkqloGmAfclAG5jwfGO/1eBLTKqM0rkdxFlHgiIkS++cZ1fUZ65bNnRaZPF6lRQ6RRI5EPPyw6et+cSklWq8iMGTormjxZC1Hn1rm/+ko9nrZty702CwuuBsOhCffINXIHooF9QIiN3PcCG4GPgVK2fd4G+jod8xFwh5u2BgNrgDWRkZH5dzdyGWvXqupg9mzHOm8kqZQUkZ9+Ule8MmW0OPOePfne/VxDdlQDzuRZocINUrfuYbn2WpGNG3N+bjvhRUVFydixiyU8XGT9+ry9noKCKblfvcgVcgeKA2uB22y/ywI+aKm+acDHkgVyd16uVMndjk2bVCr89FP9nVVi2LlT5PHHRUqXFunZU3X6V5rKJqsE42qXeFzguPj5jZOZM2Nz7dy6tBQ4Jk89tcjj8e4k9CuJMK+kgchE7iLH5A742dQrIz1sjwY2y1WmlnHGf/+pq9777+vv7EzpL1zQkm716onUqSPyzjsi58/nccdzCVlVDSh51hP4W+BXgWrZJk/PATgNBI4IdPFikHElRk+DRWFVdVwpKiQTuYsckTtgADOBN9KsL+/0/XFgju17PVwNqrspggZVd9i5Uw1206fnrB2rVaMwb7tNpflHHxXZvj0XOpiHyIqkm5AgApNFE30NEudEX9khT/fnriZwQOAuLwYZ98E7V4rkbuLqRU7J/Xrbg70RJ7dH4HNgk23992nIfiLqJbMNuDmzcxQVchcR2btXfbJfeCF32ouLExk3Tj1zunQR+eGHwhkq761qYOVKkfr1RYKCfhF3ib6yQ57pz11BYJdt4Mi43YzC7k1Vh4nCjhyrZfJ6KUrkLqKufLVqiUyZknu68/h4kU8+0eCbatVEXntN5PTp3Gk7txATEyNh7cKExxAmI2HPhknMRiXDixdFRo1S4/OsWSKff567emKHnry0wGaBJ7xqN6MZh6nqMFHYYZJ7AeDIEZVQx43LXeOo1Sry11+aNKtkSZGhQ0U2b8699nMCd2mTg6cFy4QPf5Fq1TTS1Dl4KLfJ89w5kWuvFenWbbPX7ZrGSBNXMkxyLyAcPy7SpInIY4/ljffLoUPqD16unEj79upvn5SU++fxFqkFT0aW12pWT5QSrnlPfEoelO+/z9tzX7qk92Dw4Kzfa1NCdw93KbBNFC5kRO6Gbi9YNGvWTNasWVPQ3cgTnD4NN98MTZrAO++AxZL750hMhK+/hrfegoMHYdgwePBBKFMm98+VESxPWxAEvvwSttypK5t+AJ3GIM+fybPzJifDHXdAQIAWtfbxybNTXTVIWzAeINgvmBndZ5gF4wsRDMNYKyLN3G3LA6ox4YxSpeDnn2HzZhg4EFJSMt4/dlMs0W9EY3naQvQb0cRuis30HP7+cO+9sHw5fPMNbN0KNWrAgAGwfn0uXYgXiAyNhI29ldgDT4GRAil+RIaXzrNzWq16XxMS4PPP0xN7bGws0dHRWCwWoqOjiY3N/H6agIlLJhKfcAn+6Qd/PwxAfFI8E5dMLOCemfAWJrnnA0JC4KefYN8+6NdPJU13sEtLcWfjEIS4s3EMnj/YK4K345pr4NNPYft2JfiePaF1a5gzB5KScud63EEEOp2fDd/EQpktMLISjA/Bcq4K0X/+gtWaN+d8/HHYtUtnLv7+rttjY2MZPHgwcXFxiAhxcXEMHjzYJHgvELe+OsxYCysfgcrLU9fvO7uvAHtlIiswyT2fUKwYLFgAZ87A3XerKiUtJi6ZqNNgqwWSlamyKy2Fh8P48bB7N4wcCe+9B9HR8MwzcORIzq4lLQ4cgB494INJrSgZHk/UxK4Y/peJCg9nxuzDyMlqDB5MKsHnljT9zDPw++96X4OD02+fOHEi8fHxLuvi4+OZONGUPj1hyxa45RawfDMbmr8Ng5pDxbWp2yNDI7PddnZmpSayD5Pc8xFBQfDtt6qaue02uHzZdXuqVPTP/fDqQfhtClwIz5G05OsLt98OS5fq7OHgQahTB/r0gb//Vuk3u7Ba4f331Z4QHg4lSsD6VcHsfWwv1slW9j62l4Et7mHhQlUVDRsGn3+eO9L09OkQGwuLFkHJku732bfP/X3ztP5qxpEjMHSozvzq1IH3Fv1GcIs5mh3ChmC/YKZ1mJat9nNjVmoiazDJPZ8REABffaWSfI8e4CxYpkpFDWZB0GnYfDe8vZViiz5n+/acn7tBAyXj3bv1Je7TB5o3h5kz0w80mWHnTujQAT7+GH77DU6ehLFjdXaQFsWLw48/wqZNMHy4NcfS9MyZ8Oqr8MsvULas5/0iI91LmZ7WX424eBGmToXq1VVt+M8/8MorMOi6u5jRfQZRoVEYGESFRuXImJo6K70QAcl+gKnDz3N4cqPJz6WoukJmhKQkkX79RNq2Vf9skTR+4ve1F0LiJHBkPbl1yAYJDxfp1Utk2bLc60Nyssj8+SKdOmnq4gkTRPbvz7zfL78sEhamgVT2NmrUELl8OeNjz54VgRUCb2U7Z8t336nr55Ytme9r+rB7RnKyyMcfi1SooP/dDz/k7fmY5CN0elzwvSjc3yY1DsKYkre5eoq6Oyemn3vhREqK1lxt1cpRF9T5YSzW/Evp1Ps/EdEIz3fe0ejUVq1Evv5aX9DcwtatIg8/LFKqlMjtt4ssXZreX3zjRg0Sat9e8+iIaORslSoiizwnXXRB5cr1RZOFvZHltANLlmgahrRFyjOC6cOeHj//LNKwoUiJEjpQZyVvfnawcaOIf+R6IfCUEL5ZmGSkknvU61F5dl5PQXVFieBNci/ESEkRGTFCpFkzrb3qjBMnVEp1rkaUnCwyd65IixYi1auL/O9/uVeCTkSl67fe0vQJDRpo8YzTp0UmTdK88x984Er6kyaJ3HGH9+3HxMRIUFB5gVUCr3otTa9cqedfujR712VCSbZLFxHDEBkwQOTw4bw93+XLjudm4KQVYqn6m9Drvnwj2tSgusm4EHxeDij5DZPcCzmsVpHRo1WaSlvbc9YsJdnExPTH/Pmn5n+PiNBI1dyqCxoTEyORkdECN4nFckzU7Krnc8aOHaqecVbleCMpx8TESKVKDQTWSEjI+/L55xm/4Js3a06avI5yvRLhnHvensky7X0/dEhk4EARi0VnfatX532/li/XtNU9emiupdWrRcLKXZDIl6vnuookIUFnkosXa2WzJ58U6dtXhMg/hJB9QtAJ4SnffFMF5SdMcr8CYLWKPPWUvhCHDrmu79JF5LnnXPd3Vt9UGN9e2t+xXUqV0lwzOUkP7NBTB9sk68Pi5zdJunb9V8LCtLbpokU647j5ZpEXX3R3rHc67pMnRRo3FnniCc8pA3bv1jz5pjYlPdzdb+f7/uGHc2TKFJHgYNWtf/553heBOX9eU1SXKyfyxReO891xh9posoPLl1WQ+OUXnTlOnCjSp49I69YiFSuK+PuLREeLtGsncv/9mrBvxgwR/0obhNA9wqBmpuReUItJ7g5Mm6YGLuciznv2qIRsJ21PusR3fpsrTz2leulbb9UEY1mFSoHtBXYKfC4QlioNXryoL02DBpIqzTurkrJTvejECZ2xjB+fnngOHVIbw9tvZ/06igIyMwZ6rkBlERgoPj5HJSBADeX5UfRl0SIl2fvu0//Vju3bVTXjqQ+XL+s+P/+sz9eECZpk7rrrHORdpYraeh54QOTpp0U++0zk9981xXbafEpxcaq2bNJ2vwRNrGjq3AtyMcndFa++qi/J7t2u69q3VwJM1SVOCBbqzRZGR7hIJBcuKCFWrarT8G++8c74euaMCMwQiBPo6tGb5cIFfXLKlFED7MMPq0E2u4Wajx3TDJpPPukg+JMndRCZOjWrd69owBtjoPv73Vlgo23w/UZ27cr7vp48KdK/vxaq+emn9Nv79xe56y4l//ff14HcTt4VKih5V60qcuONagt45hmRmTOVvOPispYM74cfVIX30kv6LJneMia5Fzq8845I5coi27bp76QkkWuuUfc1Y4rN22BwE8GSIJT9R3iiVDpdYnKyyFdfiTRvrrOBd99V7xZ3+P57VX8UL/65QIkMpW/7yymiM4wJE1TvHxj4u8AtNskxa54wR4+K1K2rtoMLF0RathQZObJga8kWJDFEvR6lhsCOY4THK7pVKbhK7g0FFtlIfZNAhzyvGmW1inz5pQ7wnTurof+99/T5uPdeFSwMQ1mmRAmRDh1U928n7z/+0OcnN7y+kpL0vJUqpbcNFWWY5H6F4sMPVbL591/9vW6dqlwqPXONvux33CnU/lpo9YpQ8W+p/Hxdt+1Yrfoi9eihJDxlisP4euyY5oavXl09UTLTm//3n0rsznYBEU25O3jwX2KxrLWpdEYKlMySX/mRI6qGAZ1+FzSxF6QbnTHFECZZhLZThKDjQtfhwiSLywAeExMjgYHVBD4SSBE4KfCQgE+u+vPHx+v//uOPSt7jxom0aSOpqjnQ56djR3XtnTpV9ft//qmGzaFDc6UbHnHokMaLdOyoQsLVBJPcr2B8/rkap/75R3+PGSPS6uY9Sjw3jhdavyBMRnyv/VBqNzuSqVvkf/+JDBqkhT5CQ/UJGDPG1Z3Sk8eL1arS1+uvZ9TfGClXrpdAjFgsZ6R9++2ycaN315qUpEYyUOkuo77kNVJVX49UEboNzndjXOr5pyAMryNU/lOotFzKj+kkIhr49tRTIv7+SQLJAu+IxRLh1lsmM1y8qEFhP/6os7uxY0Xuvlv11mXLigQE6MzvpptU8o6O1v/oxhtFdu3yXPbx7Fm1FTmrF3MbS5aIlC+vAktuxn1cKTDJ/QrHV1+pxL1qlb6IVauKjHnnVynW/Auh+yCJej1KZq6Pld691YMls6CUffvUr94udd12m7quZYY5c1QP7q0O9PBhNX6VL6+S1dy5no+1WlXf2rGjGpBr1hS56651BRZhakwxhLGhQpktKjn3eCBf3ejSzRwmGeLXc4QUC7ksYWEiISH637Vt6xj4PcFO3gsXalzEE0+oDrx5c32uAgL0ft90kw7806aJxMaqQf7gQQd579ypdp9mzUQ2bMj8Gl56SdUzeYGUFBUAypVTL5qrFSa5X8Gw6325t7tYih+XSTN/kp9/VuNVkyYiv/7q2DcxUVMU3H67exJNSdFpdZky+mIkJKh++6231BuhdWuRb791L4mdO6eeC9nRZyYkiMyere1Xrqxunc4++Var1ldt2dLhUXHggIiv726B0VnyvsktRL5SVaj2o3DtW8JDtYTgo8LAFvnqRues8498LUpGvf2rlCrlGJSHDdN7d+GCqu5++EFtNWPGiNx5p0YTh4eLBAYqeXfqpJWqnntO4yeWL1eVRmYF15OSRF55RaXwV17xbnC/fFlViuvX58qtcMGxY6rjv+EGHXyuZpjkfoUinfTWt5NQ7JhM+Ohn6ddP/z1nl0kRfak6dVJ3NOeXdvt2lfJatHBfczUpSY1j116rU/D33nM1vo4apV4POcXatapPDw3V9tasEXn2WfWWSRuhC5UEdgg8niXvm9xA5z7/iaXaEuEpH733994iRsgBeWvx13l+7rT44w9VjzjruNMutWop4Q0ZIvL88zqYrlihs6fMyDsjbNigkrpzyglv8OGH2p/cxl9/qYAwdmzBlpQsLDDJ/QpFqt71KV/hSX/93r+dWIqdkBkz9N9buTL9cRcvilx/vcjw4a6Jvl5/PXO9pNWqLmjduyuhPP20GlrDw90bq7LrUXL8uJKQnZxefVUlfOf2fEb7CLUq2Qy0j7pI7nnpyTJjhg5w7y/70uUcd45YLy1aqPE4N3HunMimTZqA7a23dCC94w73hH7LLSIvvKAqsl9+UWN4RIQGeeWmAfryZXVNDQ9Xos5K28nJOtg4zypzCqtVZw0REXqfTChMcr9Ckery2GmkujyWWyc0+VCoPyv1ZW/UKH1qAhH1Wff31306dJBs+Ttv2aJ6cPu5duxw3Z5Tj5LYWNWZ2n34Q8vEi++NzwqjyjnanIhQK1Jgl8AICQ4OlmH/G5Znniz2gWzr1vTbrFYlXU+ePJ6Mv+fOaV6X778XefNNJe/bb1fX1rAwkaAgjUy++WZVtUycqN4n9vveuLFK756wcqUGgnXqlL3/OS3++kv706tX9tQeX3+tM8DcGmxOndI0G82ba9CSCQdyRO5AZeA3YAvwL/CobX1p4Bdgh+2zlG29AbwJ7AQ2Ak0zO4dJ7u7hkvjojjuFEvsFn0sSVP/ndBLdSy9pbo2TJx0JmywWcfE8yQ4+/1x1p+PGqa7+9tt1up/av0eqCjc8K0QtFW6cIIyo4ZVeev58lUydVUTln+goNPuf4HdBuKdHKnH7jPYRiBYfn/3Sv/9Kx3150k+oM1d4qHaueLLs2qV9+vln99tjNsZI5RfqCGX/kVK3TkodTM6eFXnuuQXi73+HwAiBVwTmimGsk+LFL0twsPrwd+2qs6mXXtLQ/JUrdTZkJ8HERDV4hofr/1amjM4ivPECSUzUVBBhYfrpbsDPDOfPa0Ba+fJqxM8OOVutSsJz52b9WHdYs0btQY88kvfZK69E5JTcy9sJGigBbAfqAi8B42zrxwEv2r53BX60kXxLYGVm5zDJXZFW8ksnoY4vJr5tXpHiJS9J2bIa4Wcn927d1MDkTPhDh2oujuDg9O6LGbkYphpxx5YUn5AjMiXmRxHRl//NN1XaTj1P0HGh5avCvd2E5m8KxQ8J5dbJtGmec9zYpWN7tsth/xumBD4Z4Z7uQkicMDo8XaKn3btFIiNFuGWoTV3l4+hD75tz5Mly9qwS8Ftvpd925ozItK8WiH/fO4QuDwu1v0m9/mIhl6VYMRE/v60C80Vz1Y8WuEOgmVSq1CRTkrRaRebNE6ldW9v09RV57DHNxplV7NypHkeNGql3lbf48Uc10t9/f3rbR1bw22+q0sqpW6LVqsbh8HAdaEy4R66qZYB5wE3ANqC8OAaAbbbv7wP3Ou2fup+nxSR3z8FDw/43LJ1u+b//HOT6zjuO7489ppLntGkqGY4bp1N1Z8IfP17kkUd+l8DAem5dDF1ULc2nC03fT1V5rF8v8tBDIsHBCY42S+4Wug0SJgbYXPYsUnbEnfLQQ9qXJk3UO8Ou0lmzRl/YxYv197D/DVPVyxSEh6uneqV4SvS0c6eIT8kDes4pCIEndWApflBKdnsuQyK1WnWAOnRII3/XrFG98CefOO5PxYqu98vt4ndeaPaOgEi5x7uL1Zr91AurV6uh2952587eFSLJCFarRoCWLavPREZ5ZU6cUON7dLT3OfkzQpcuOtvICc6dU1tCo0Y5S4J3NSDXyB2IBvYBIcAZp/WG/TewALjeadsSoFlG7ZrknvWkW23bqmdE5cquxOOcsMkOq1VJDFQ6DApaJJo/5rTAbwKvCfSV8uVvUhfAiQFCna+0zRE1hFuGin+ljRIZqcEiFStep/2rj9CnjVBjvlDssND+SQmaWClVXZGcrJLc8OFKNMHB2ofevdekzhp4zEbiD9XS890yxIXYg54Jkff+/FL27lWj4/LlIv0nrNJ9I//Qz4afiU+jOS4EeeONqvetXVukWDEvCNtlOSuwTOBdgeESEHCr8MD1wpBGKrV3flT71+URoew/cuFC1v+/vXs1s6H9nNWqqU4+N42ix4+rR1JkpMiCBemfiS++0FlYZgOAt/jnH1XpZFaRKyNs3Khum4MGeU6VkRZFPX9MRsgVcgeKA2uB22y/z6TZflqyQO7AYGANsCYyMjJ/7kQhRlYlv0qV1If43ntdiemJJzyfY+NGuwdGD1v7YQIdBcYIzBbY6pnwegxInWq79LUBStDD6wj1PpTgEpfl/vvVKLd9u7o+Ll0qMn26h3arLBYiNjp+l10vlNopBB8TfC+LYUmRkiV1EKtbV105O3YUqVT9dOoxfuW3SPNOe6VVK8+EHRZ2QSyWHwWmi7pW3iqBgddJ795rpHp1x6DoiaRT1UYh+4QRNVNtIcWu/UruvFMjc70JuDpzRt34AgK0X8WLq448J4SYGRYv1sHjrrvUNfLAAU1FUbeud8Fr3qJ3b9cU0FnFJ5+onWHmTO+PKeg0EQWNHJM74AcsAkY6rTPVMllERhJGViS/+Hj958qVU++Ks2dVzWAnsk6dPJ/z6VkLxWI5LtDB6Tw+AiUlPHywV5Ktj89+gV9sy98C/wrsE8M463b/WrUc34sXnyVaYu/39PuWOCAMaSw8XE0sw8rLxYsqYZ48qYPE11+rZ83DDys52b2BQL1FevTQbRERuu7dd9XTwmr1dH+vF4vluIsaxNMgSwMk8JFmqoaa7CCRj1fPkubNVRWWkR0jMVH1+eHhIj4+2r/+/dPn6MkrxMfroGK/X089lTsDSqp95tFosQSfkhl/fZHlNi5eVA+kOnXcx2BkhFTj+iTDpeJSUcrZnhFyRO42lctM4I0061/G1aD6ku37LbgaVFdldo6rgdwzkzDc6dz9rvGTsGfDXAaDo0dF6tXTf+7LL1WXvW6d+qbPmeNKlu1u2yG+rVVvTr3ZQo0FYon+Mw2pJron8cCTqoJo+Jn4XPOJ1Gh8zP1+7BH4VPz9h8orr8xLDSw5f16l9ZIldb8mTTSYxpU8b/YsaVfcLw0aaDbB0FDVv/bsqYUg+vZdLeHhgwQai5/fdoH0xTzmz1ci/ewz/Z2etKMEDgt0cTkuo0H23pFrpXjrmekG54MHVVefVvUhogPLt9+qkTEkRKNFmzd3LZ2YH9ixQ4tZBAWpmur663Ou23e1z7wptH4+y1Lz1q2a0qJPH+9VQ5cv62D/4YciNH9L8+74n3PJAVSUqi1lhJyS+/W2B3wj8I9t6QqE2VQuO4DFQGlxDAbvALuATe5UMmmXq4HcHTnYg1SF8WBzoV8HCX9gsHz6qUp1d921XkJC3hZ4SwLKzhKjzrdC1Z+Fiiu0sHAaAixTRt3EGjXSl/Xmmx05R1KX4KM2qXi/Gkj7dJFyI7tKly5b0rX33nvqYdPx7m0Z6jDXrhWpXXuZ07EbpXz57RIaquqiHj00de/s2Up6dpdMEPH13SmaM94NqVdZLIRtSv0dEKCBNM6+zTExMeJ3jZ+qgiYjXPOCGKU/l5IlL8qsWa73/N9/VR0xcqRIZGRVJ7IuLprz/NF0M6OMsmLeeKN6tbjD8uU6mPz3n2PdypX6v4SFqTqsQgUdbHISMZpVJCWp62VYmFZCSk7W5a23dN3kyd5J8PHxmvNnxQodrN59VyS08+vCNe8Ktb7V4te2+ARvpeY5c/QZfv99z7aGU6fUbvPaa2r4bdhQvYnsz4il+DH11hrSqMhWW8oIGZG7odsLFs2aNZM1a9YUdDfyFJanLQgCP70G6wZCma0QcB78z8O28xQvDu3aNaVly3qUKAHPrBjDyZQ9ENcWIjbDnxPgcigRD4zg8agYjhyBN95wf64+fSAwED6OPQMJJb3q3y+/wPLjP/LMkGtIGV6bqHIhTOswjT4N+qTbNzY2lsGDBxMf7wP0Bp4EKlGlykmaNg1j2TI4etTbO/MaaqaZisoRisjIanzwwU6+/BK++w6qV4e77oKpXzXizI0bwd+241+j4UJZaPwpPjG/Muyp7bw1xtHOqVNw991w9Oghdu68lkuXjgDfAkcJCnqMDz6YQZ8+rtcYGxvLxIkT2bdvH5GRkUybNo2ePftQvjwcOgQlSri/ko8+gpdegi++gBdf1HtaujQcPw5DhsDEiZ6PzQts2AADB0LJkjBjBlSt6rp97169p6tXw/jxUKMGHDnifrl8GcqVc11mbHsGih+G4kcgfAuU2Q6AgYF1stVjvxISYORIWLQIvvoKmjRRqj5wANavh3/+cXyePAkNG0K9evpMbdwIhw9Djx5w331wovwshv80iPik+NT2g/2CmdF9httnt6jBMIy1ItLM7UZPrJ+fy1UluQ+vKxQ7Iowvpr8fc2+A03zehkOqrTFfeMpXjCmGDB2acem5o0dV71x2+D1CpeXpJWSfBBk61HXdzfdtEYJOCj37u6iNPt8QI8eOqc/0l1+qFFi8+GcCCwQ2C1wQzSOeXhKPilJD5aFDqrJ45hn3KhhdFgj4pt4LZ0NyYqJW+BkwQITAE3pNnR8TxpQRet4vNPpE+zy0gVD8iDz8ims4Z1KSva7nWQkK+kngN4mMrJ6l7JLff68eOBnh1CnH9TRurDaRHj3SR/bmJaxWVRPdeqv2o2NHDdsfM0akXz/N/NiggT4fvr4O+4R9GTxYYyJmz1aJecsWh90iLVzSEnspNe/erfemVi19hkeN0vtaurTer5tvVnfdL75QO9Lq1RrAFB6uiefefz+9/7/pLZNDb5m8XK4GcnfRT9aPFTqMFSbYvE3S6HZFRCpMaKtRn4jgc0nVKx3HiGWUr9Svf8htOTNnvPaa/rtGqT2Ol7fRJy4vcmCgyLJlrsFQaVU6hv9FCQvTUPnbb9eXER4W6CZQX5yrNhmGIadPO46PjFRiOXFC5LPPYqVYsS8FlkupUk9JsWKX5a23RCAhzXlXCbwvpUtPkL//Tu8Ox5N+Qp8uDjVOre/0+9iSem+HNBJLiWPytZv8XnZ/8qx4Y9gxbJgObO6QkCDyxhtKQM2bO64lN/zG7bhwQX38ly3T6M+331aV1YMPagBbs2bp3WJr1VJ/8cce03w0n36qg+T69eo145x468wZvcby5V0LW2cEbzxVLlxQldX//ueaK6dGDfXeef55DaA6fNjR7sGD6nVTr57630+alL8D5JUEk9wLCVI9Cx6qLQQdFeqmL2cHvvLiiyLFS14Sv1tGCwNbCuGbhMcihUrLhOI/ClyUV1/9Ll37KSlavKB3b4fuvdH1BzRkvurPEtzke3n+6/kuBODjo37FqetC96orov136e0yZowSlZ1oMzI6jhun/uXnzikR9esn4uubbGvvnEALgWMSGNhCYmJi5NNP7XlyJgkcF0gUi+VnueGGna6RsJktE5xIZnBTiYhQ3bAdf/3lCOcvX95RY9MbWK1KMps2pV8/d67q9Vu10hw+Zcoo6VasqCSZERISRPbvV+l0/nyNJp46VQPFbr9d9fXVq6u7ZGCg2ldatVKpfNgwTer2/vsi332nScS6d1cJOLuh/zEbY6Tsw7cJ4ZslqO5ieWPRN14dY5eaKz3TVJ54d4m88IIW+6hVS2MbGjVy/E+vvurecHrxohrFO3XSsn0PPqj5dPLTPnElwiR3L+BuapeX071ixeYKPJmGIBuKv/8G6dhRp68xG2PEMspXpfYBkUJ9X9G8JSIREf1S2zpwQNPmVq2qU+7p01Va3rFDjWbr16taIUNyLL9GaDtZyb35dGFciPCUr1gGtJHJk3VKXKyYTqHvumu9BARcL861UoODg6Vly2/Ez2+bQJlUV8CTJyXVo0XJWwRWCpSUyMgo+fZbPX9Y2GiBl9L1q0EDNaKFhbnpc+ApodGn+t1WJNyuFlizRlUO33+vBtny5R3eLPv2iTRtqiXgvMnwuG2bkrXzYLBihc546td3ZHAcMkRLBR47prMDUGPuSy/pZ58+OgDUq6fX4+urRtamTTXvzIABWo92+nQdGH7/Xc999mzGA9HChTpLGjBAVSjZgYsU/qSf0H6iEHxc+o5ZnS6VQEqKPltffqn97dpV72+pUpoAbuRIvf5Nm9QIe911uk/aALuUFFX9PPCAelXdfLOqg7wNXjJhknumcDe99J/qL37P+OVJcETMxhgp+XgzDdQZGirU8xd4RuCYDBq03OVFVhe+TwWG2ojUFsnJUalXT6MxS5VSYlm1SqXB1at12n7ffQ4irFHD8b1OHX2BLl3S41PJsuWrQvGDNuI8KdzXXpiCY8YxLkTCH3xAOvX+TypWPC0WyymBr6R06QnSuPEiMYw9AhVSCT8wsLpUrHhaYKbADRkOLv36qU5+9mzt/7ffqr7YeZ9u3WyfAzZLhXE3Crfdq1ky7f0tcUAstX6QXkM2yjffaE4Se1TsK6+4/gcXL6p02bx55pkP33hDi19s26YFyt3132JRovbzU+K2u6uC/g8vvaSE9/PPGkx27FjOpdLjx3WAqlIl59WIKk5qqXlzon5Tt9kpCCNqSkD0GrFYNH5gxAidTZQoofaUnj01Yvm773QATTsALVqkevTnnnO91m3bdHYTFaWD9yuv5J+/f1FDRuRuessA0W9EE3c2zkZJFrA4WfrPVYBl46D1SxB6gKjQKPY+tjfb54rdFMvg+YPVuj/vQzhbGc5Wws/Yw2uTExgx4jbXvkVHE2dtAb794L7u8OtI+PNVwApYAHjqKTh7FlatUm+CatWgRQto3hyaNoWWLSE5GaZOhbFjbV4GJ+Drr6FtW7jzTnh6xjoS45q6djboJDSMgQ4TwD+9N0L7sD4sXgyDB6sHhCIR2AsEA5UAsFhOYbWWtm1/Fk0uepaQkK6cOzcCgHfegb59oXhxWL4cYmJg7lxISYEzZxxdKl8e9u0DX1/9/fmGWO5rehdMKE5F41ruKD2NEifbsn49rFnj8NqpV0+9VZo0Ua8QHx/1AHn0UfUkGT8eoqJ0/7SeInv2eP4/O3aERx7RfpUrBxER4O/v2D5+PPz9N/z8M/j5eW4nKxBRj5zHH4d779X/tVixrLezc6c+A998A6vWXobKK9TrJeQAnKgFR5rAyZqQHAToPZs3D1q1Ui8gT0hJgaefVu+hWbP0GTt1Cr78EmbOhN27oXdvfQ4bN87ePTChML1lMkFq3vTb79akUFV+EdpNEu67UXiilFD9B8H3otDmaWF88Rydy8XDoO4XKt11GyyRr0WJSPooxw6PdxAerqD7ldydKg2GlDnmUnKtdWsN80+rz1yxwrGPfVqcnKzRkaCGOKtVZxMB9/VylUj9z2mGRkRo9Yp6pwxoJfTqJ6E3TZe7704rwZ5zI9V+IF27/itwyiHVN0CMxw1hkkWMwLMy/PllUreu63HTpumU3o6ffnJsu+su14yHEREOg1xysn5fv16NwF7r7NGI1yef1FnP3LlqM1izRrf5+ensYtgwh394ZsXI7f25+WaVfHMD+/erbr1evawHQlmtOmuYPFlcnh0QsQSd0f+78jItLdh9oDC4qUS+VFNE1APr3nt1lpCRMf/IEVXd3Xij9vX779V+EBKi/9sPP5gVlHITmGqZjOHID+6vuU3qzBVaP6+Rb34XhLL/OF4ES6J88kn2p9SpA8kkQ6P67O1e95I8+eTPEhRkN7IGCjzikYjK3D8kdSq7fLlOcR9+2DUgZd489eBYuFBdAe1l8i5eVH2uva1x4/TYZh3iMifBcuuEBjFC2ymp7pTz5zsbWW8SOCbQS+A6m4eM7hcYuEwoO04YcK0wySL07iogYpTbIKUiLkq/fkoA0dGqh54xQwerS5c0OOqJJ5QsnD1S7Lp4i0+KWEocEyyJGthi2965s7oB3nab41r/+ktTGbzyiqo1nFUooDrvv/5yVcFMnqx67bvuynrBiNOn1Wj98cfZe2ZEXOvfPv2097nNExM1Z0ulSun/y4YN9X588YXIy9/Pk6CpxTJVQ/74o/4/ffqkr8y1dKmqpm65RY3CdvfFGTOyl77YROYwyT0TuOjcH6otBB0Xv4cbqs59YqBmBGz3VLqX4/771bCUlUx+6XyDH4sUEAmo7sYf3b7cOF5o8LngG+8iVd98s+pyV69W/euttyoBffWV6kNBpcaBA/Ul81qKLXZYqLDSdV3HMUKNBUK5tcKwelJ+9M0SEeGQ4mJiYsTfv7/AEQHNGhkUVEqqVDkhr76qRsH580WKXftV+vM1/kjK9B8q//ufur09+KBr3hj7UrOmSJs2SrDDhqkx077NiPhXeDRKc7w/2FwIPibPz3XNB/DHH0qO9nTDzrh4UQfBjO7L5MnZN1hu2aJkZy90khVkVv/WjgsXtP233nLkhndegoJ0m7PboTO8dSC4cEFk9GidMX3yic5ORoxwnKdKFb1XWam5aiJ7MMk9E8RsjJGwF8NSCbfYbY9J5Rqn5OPVs1we9pnrY2XgQHVLcyYWUI+JN97Q0PyMpp0xG2MkaGxVrTR0/TRVAbklkySBc0LFpcJNo4XbegsWWx6YGvMzJCHnl7laNZWm0k7DQQ2UTz6png528urRwzYAjQ3VmUvatAc1v0/97uzqN326SOnSF6R8+ZsFKki5cl2lZMmLApqkyqs86SgpTZ2qBtUVK1RKBTWMtmih0q+zOsRqFTECz+jxRpLmw/G9KNzT3W0wzdKlSvDu6nvu2OEYFMHh/+/vr2mLr79e3RKjo3UmMHWqqhm8NQZ+/73eB29L1yUlOaorpa1/e/SoGixfeEF92atWdX8/hwzR3EO5mUrYjj//dD1Xly6m+2J+wyT3DODOUybo2WBpftNet3pSq1VVHI0bq0vdc8/pXSxbVr0v6tZVb4KbblLvj5Fv/iYRg/sLN42R4IY/SFi5C1I89LIE1v5NaPKR+EetTX05AgLWiKpixgm8LfCTexL0vSTt79guDzzgHWH26qUS1l9/Oao1OVe3sVqV2EEl4reWzBWj7Cah5WuqPhob6rHttGl2fX3Fo396x44i4QMGacpc5zZ73i/lx3aQ6dN1wAkJ0URjAwfq9u++U2KbP1+n/PZBYNAgkRtv3O6+by3eEB6Ndvuf//qrEvzSpfr7+HGNggwL08HkhRdc23Imq5QU9faYPVvVRB076nH26MoJE1Rfv2uXe0J99lnxqsj2+vWqmurQQT1svvpKa6t27aqDdcmSIi1bpif10qWV0H//PW9I1tl90fm8fn5qJzFL4eUvTHLPAKlqkodqqbHw4WrCuBJSaVoDiYx0X2ndatUXrU4dlcIOH1ZVQliYhm9PnZo+rDt1sSRlSMQ+PrMFXhCtxXmrBAR0ly5D3pWwPo96PKZ1a1fJuH9/fbn9/BzrwsPVna94cf29fr3qs3fsUAnsq6/St+tfaaOtbmvaKNL0yy+/qDFt3TrNPgg6w3nxRR0E7UgdTEfU0GP7dBaKHZMnP3YULk1MVAnQm4Er3VJznjCygtD6BbEEn5K771ajaFosXqyDcPfuSvTDh2vB7rp1lbA3b3YU03jllYwlX6tVJC5OB6FJk7TNihWVgNu1U7/vzz/XRGZJSZ6LbF++rPYT58GxRAlVtdmTsc2cqYPP7bc73DyDg9XYOX9+3pFrWvdFuw7/u+90+549OrjVr5+7OeJNZAyT3DNAqoGz/ZOODIqIhvzbvjdurIQ5ZozIyy9rZr9581zDqT0u/meF0tvcbmvYUFU569fr9B5EOnTYZgtwWiYWy3EJCEiURo2UEOzH/fGHyIYNqqK4/XbXNt9/X6U70KAje+7wjJaICJXunde9/rp6pMTFifBkgErbiHpSjCqXqWooo6LcMRtjpPTdYwREyj3eTfpPUP3+gw+qT3izZo52rr9eg3O6d1fvl3LlVDq9/Xat56r1Sp3OPbShLfsmMmP5HHn1VQ3Lb9dO73FKii6zZjmO6fHgJgmqv0gotVPCBzwon29QXXP37jo4NWminjLeBDw549gxVZ08/7zaCapX1//EWaXXr5+jpJzzdYwZo9HGJ07o8vHHOqux2yJ8ffX3rFmqA88LnDypaQNattRn/fHHdbZz2236X+ze7bq/1aqZHsuVU4Pq2bN50y8TDpjkngFcDJyTNXCDzo+Jf+T67EmOaZdm72iSK+d1tb6VBg08HzNihKoODh3SFyY5WXWsvXvr9rfeUtJ5/HFXzxGvlrLrVWoOPClG2c1y3S27pUIFx/auXbWoQ6VKmmtbRKTyizUdx09GVSrO1ZPcLP/+63qfExM1He7XX+vMxnnfqCjH91dfVZWHn5+WbXOHgwdVgnUO0gJRN1YjSaj0qxSv82Cq51Biooa2N27s2Ld+fZV0o+uc0HU156XWgQ2eFiyfrJklISFKrBcvKjl7E/CUFlarwyXwmWdUzZLRfWvfXmdS27drfdwOHVwH6LZt1WvGXTnF3EBiogou7twX161TG87w4RmnCT55UgfqSpVcU0CYyH0USXLPTmqA5GQlzNWrdTr59tsi3QduEp8mMbZc4v+pr6/P5UxJsl8/VUWcP6+uXkFBKtG/+abq3r2S6rOwONcBDQ5Wb4V77tHft92mod7Hj6tUumWLetHccIOqYVw8T4od0QLUI2oIQcel4lPXybx5ju133+2qUho50qmk3cAWGsVob6v2V8KtfYUmH2gVJQ99r1FDVTTVq6t6Ydw4x7ZPP3X8Pw8/rP7RLVvqDCkzpC/dN0/gYrqBcscOVSs4G0vti6X4caH8ap1hjQ5PHegjht0rLVo4zmW1qk65YkXN0+4OSUk6qMXE6P9j18dHRKhL5rhxKtlu26bP4pIljn40bCjpMnU6L507ex7scgqrVVVXztkXnd0XrVadEZYpowOvt1i6VD2cbr1VU2SYyH1kRO5XZISqS5SnDUGU4tlrP6FZ8Z4cPKi5oQ8exOX7kSNQqhRUrKhLpUpQoQKs3b+ZxRv+4+KJUPwuRmM5W5Ua1X1TozzLlYP779f80xUqaJTdJ5/Ajh3u+9ekiUZanuMgmw5vxbqzQ+o2o/w/lEypyeljwdm9XQBERmqk5h13aIRoRIQuZcq4RkKeOqVRhQMGpGlg0LWwswv8NhUfn2NUqwYDBkQwdqzSyX//wYMPwooV6c9tBJxHBtQAa3nY1QmWjYXLGYQsAl37b2FD9AAOGauoYG3Bubd+485bA2nZEgYN0n2Skx19T0kBi8VzezNmwIgRkJQEPXps5qefrCQlNaZy5arcf///sFg68e676fPKjxwJr73mpsGbRkOr12zpcoCfX2ZKp9FMnuy62/ff63159lnNM+6ce3zzZn2uGjfWpUkT/SxfXo91zhNfsWIjIiO/YfnyKgDUrAnbtzvOExWl0cW1asGlS45zlCyp7TZt6visUAEMI8Pb7xYHD0JsrD7P8fEaMdqvn0Y423HhAgwbprnhv/pK+5MVXL4Mzz8P//ufRq0OHZrx/2oiayhyEaqpqpSnfDS3d5AmpDICzkvr1iItOu+VEu1mCJ1GSpn7HpJJny2SPXtEPlkzSypNbSz07iqhnV+XRtcfkLAwnT7edpuqOn77TVUgGzao18MLLzi8NrKzNLjuoIR2ekNoMT113UsvpdeT7tmjelW7vhw0wOajj1Qq37gx4/OUKOHI0V26tHqTtGmjRtTU/W4eoV4klZYLRrLT8evEMNbLuHGaoMQuyeXWrMM34JLb9TUaHZOBAx35wtes0epLISE6AxJxP0P79FOViEuVckSypi01Gx+v6gNPfWrUSN1WK05uIVz3ohB0Qqg/SxjcRJiC+JX/LzUC1K47f/HF9AXJ779f1WTLlmkmTE9wrfD0ots+lS2r6XlXrXJvwHVO2DVunErz4eG62GcG9tKLnjxlLlxwn33R3fn+/VedBh54wLto3Izw7786I2jVKn12TRPZB0VNck+tagRwsBnsaQ/7r4P9rQkLCeZMxEJSKv4B5deBWPA72oqoi3eya1MYcjEMKqyBiE34FT/Hvc1vpl7Ja9mxQyXxnTtVonGGYahUbJcC77svfVUa+7J8OXTrppVi/P3hzz9VGr3hBl0SE+HDD3UG8dpr0MzNmDtpEixdqrlWfv0VfvsNAgJg/36oUkVzncycCXXrwrJlutjPc911ur5WLQgPV4lvzBi47pY9rDq2hOTzpeFiWdjfOlv/1bffatst37yJc7sbwrbuENfOaQ8r8CAwBKgGhAJ+EHAWfC+B1RculXFpMyQEzp1z/K5eXf+HClXOcrz6ayQFHoRix6HYMfziOmNZ9iR1avtSt67moLl4Uf+flSvhjz9UorejRg04f15nbY89Bu3aaXWikycd+/g0/Vyfl1PV4K9xqes7d4ZNm1SqTSuNR0RoxauAAJg9G0JDPd8zqxUqVLiNo0fvBu522nIJiyWRe+4JZdYseOYZzROUFYhodah16/S/tn+eOePa3/PnteLS/PmaG+a++6BnTwgKct/u55/rLOell+CBB7LWJ0+wWuGDD+DJJ7Uy1ZNPasUwE9lH0ZXc0yyRr0VpkYue/R0BP/YlZJ/Q6XHNFVN+tUCKEHhKfCN2SLt2qmt+9FH1bPjkEw2zTlvU4MIFzVGdWQGfpUtVmlqwQCWi7dtVAr//fjVIhYY6+lWzZnqvg9OnVb9pL1BgtYqLXty+DBmiOtyjR3WfHTu07wMGaLv28wQGqnT28epZUunpZg7vndBYgf+yLIlXq6ZSt1HLEdBEgxivbBVMDBTK/KuzCNu6AQPU2NmunRrtfvpJZy05mS306qWue76+aqTcts31Hp85o1JyZu1kVGM0MVHtBLVqpW8/KUndLYcPd+f3f1HgC4GeAgEiojrpChXcF9nODk6cUINs2kjfypX1uXnvPZ0hpPUAio/X+IGaNUWen7sgT1JeHzyo3l81argPJjPhPShqBtWMKsCkujZODBTu7qnFe9O+tCX2ax7wXv2ER6plKXpv3Tol3l27Mt5vypQfxWI5JnBHam5zOw4d0uhOe/Iu+zJqlMjY9xdrcY32T0mxZnMlZmOMxMc7DKpnzij5BQVptaVu3ZTE69VT4+E336i3wqFDavTNCiFGRPSRjz5SNdWcOa5eGvakWaC+3BmXzPNiuWWIBDf9Tvz9xcVbp3JlDd5xNiBzzbse+qtGY+fUCpUrZ8ODyIvl9ts9e6jMmKF9mTdPyfmBB1Rt1KhR2niHvQL9xLl6lXOBbndFtrOKtO6LI0c6DLH2Aipvvql9bNRIn6MGDdTz6KGHtJ9du4p8sGJOplWWcop58/T/euCBvPP+KeoocuQu4tlbxq1UP8kilgFthOteEkrucrxsAafFUvy4lC2rFv2XX9YXLLNq8K+/rgSSmOihb6n61UYChwT6udRHTYsNG1yleXwvCmFbBUR8r39dykWdFXAk/rp8WfXSx46pH/r8+Q7PGXfLtGlqP3C/fbfL71Kl1AXSHrFqJ3N3uV5AhNYvStkRd8j7y75Mo1dGIFJ8fBbkOtGWaPOhnDqlM5Zhw3SwBR307rpLv5curX7qVaroQNGggYbHDxyo1/P22zpLGzlSZwmdO6sE7s35K1VSqXjtWr1XMTFpEnPV/loCa/6e+rtmTZG3356b5t7g9pn48EPtx5kzXr8KLu6LoaE6C/U2++Lly2rrcM7rHxws4ltmt2Yt7TBWa9NOybw+anZw7px66ZQrp0FkeZEmoSijSJK7HWlJftiCYW4lDpf1D9USOj4hlsjlElwiQVq0UAm4Tx8NWAkOVmlwzBh1mTx2zPWcVqujkK87uJahqy2wX2CIi5TmDuUevVWouCJDYqlXTw2l9t8VKqjL3cMPi7z7rkamHjwo0qCBrehGmjS8N9+ss46YmBiJjKwm0CxTMuvXT43AP/6oZNb21h2O7WFbhVavSMDALvLp2th0KYtjYmJkyxbvSNPPP9mr/YJLZK7+qVpVXQu//VYHAW9D8f/4Q2cOS5c6fNItFlUj9OiR9YGoS98tEhurbrPTpi2QihWbCfilm80546GHNM1C2gpIzs965GtRMnXOQo/ui94iIUHJtUoVveYlS7QAR2qpxdA9wk2jUt8lY4qReaPZwMqV6g7auXN6NaUJz8iI3K9Ig6od7lwig/2C6d+oPwt3LGTf2X1EhkYyrcM0+jToQ+ymWCYumeiyvmNEH374Qd0Ff/tNDZwdOkDZsnD4MPz1lxZbiIhQY2Xr1voZFqZuaDExcOONrv2yWCy43teqwGLgbURe9Xg9xiQ/OFUdvp6lhRK8wDvvqKG2Xj2Hi9nYsb/y0ks3ApcBAwgAjtCz53HWrWvA/v1eNQ2o613r1nqO669X97/whmtICN4NW+6CsG1QcRUcq4/lbFXu7BFKt25qjDx4UA3Cv/4KP/zg/TkBiP4Ni8XAurtdlg6bNAmOH4djx1yX8+fVTdTuMpp2KVtWP994Qw3jdnfJ8+e14MTUqekN7Zmi2buUCAyia8X7OXbM0a9Tp6BECT1feHj6z1Kl1CWxRw81QIaFwZwttmf9ZEnY2Ac23IeRXIxed5/n5dENXdwXvYGIGu3tz250tPatcWM1uH52cignSn8PIYddjstpsZqMkJSk9/3ll2HcODWA24uymHCPjAyqVzS5p1ZQ+nMcHKsPpXZB6V2UrXyR9ePnUq5c1vx/4+Nh8WIl+gUL9IXv0QO6d1evghUrlOz/+ktf0PPn1R/7q6/g5psd1XCio6OJi4tL03olfH1/Z9Kkqowdq545W7a4Lv9uu4wUPwAXykFS8XT9u+MO9RtetUpfxMzxKXC/7ftyDKM+FsslUlJ24OcXRnBwNGfPpneXqFdP/a47doTbbnN45CxbBmvX2nZq/QJs6A8XbE7cPgmQEuC2F23bwu+/q3/4hx+672lA9RUk3HIvBJ6BPR3gu08gMcTjlb3/vpLTn3+qR8eyZVC7Njz8sPv9ExO1+lRa0k+7rF6t+xcrptWlkpM9dsEz7rwDTtaCNUPh7tuRGatcNlut+vw4D0L27/ZP+zPhFk0/gEYzIXIZUSW9I9tLl7Qy1YoV6tE1b55j2yuv6ADepIl6/4BnwWlG9xn0adAnizcka9i1S/3hT5zQwc2dR5kJRY68ZYCPgWPAZqd1U4CDwD+2pavTtvHATmAb0Dmz9iUHaplU4+nD1YSuw7SeZrl1qZ4ywcEaZt6zp+pW33lH9bI7dnjWl9uRnKxZFMeOVZ/xChXUy2DhQvUwOHxYQ+md9ZTNmukUd8SIPyQwsLpowY1GAveKr+8LUqOGo4iEPXJv4kTVNa5fL/Lxqtnif/d9muOmf1thfDExwh3eLK+8onpUe6Iq79UD8wRuESjtovP19a2Vbl/ntAgTJ6pHhV13+/nnaqQr03+YVqUKcV/cw57QytPy/PP6aU81nLr4n82y2uOuu1QVMXmy6tJzgsOHtc0771xvK/Qt4uu7U5o33ytNm2ZRJdPgc819j8ZQ/PmnetScPu2dXnnmzBjx8xuTvt27e6WzKbnzZNm3T43ijz4qcu21judz+HBNWQxqXM0IeVkgPjNYrZpiwu77n7bCmAkFOVHLGIbRBrgAzBSR+rZ1U4ALIvJKmn3rArOB5kAFVBdRU0RSMjpHjiX3NIgsVoOv221n3Tr1+127VmuLJiY69vHx0SjPatXcL8XTCM7bt2t04rx56vvcsaP6CXfsCO3bq4qmeHGVTN3d0qZN9zN6dGUqVFDpsm1bmD7dNVrvtdfguZcv4t/vNo4U+4XI0Eieafsc/Zv2zvRe9OypUteXX2a25zvAr8Au4BtUZQQwGV/f5wkNDeHkyTlAR665Zj+XL1fmwAH14963T1VWl4P2sPxPP8RqQKW/4b/b3Z6pUSOtIbpwod6z9eszvQwHSm+HUzVTf1osKvHa4Vd+K0lnwyA+3OWw8qNu4cV+venXyDvpUkQjS7/+WiMoAXx9PyA5+Xv03kx32b9NG+jSRf+/o0d1ZmOHUX4DUnKn+v5btZBq6bIXOXVUp3RVqqh//eXLDjVM2uXMGe2Lc7QqAL2bQM1/3F9Esj8Bx1txR8ir7PinDGtX+ZOS5ENQ1X/o0TGch25rwjXXaNv33APBwerHHh7uvrnChBMnYNQonfm98w7ccktB96hwIcd+7kA06SX30W72Gw+Md/q9CGiVWfvZldwzcolMi8REdQn7+GM1WLVqpW5gzlJRsWIqoQcFqQtbq1bqSWFPtbpwoRronn9evTHSSlXFimm+7m++UXe2f/9Vv/MHH3Tkeb/xRpXu7RJdcrIa+x5/XPeJi9NEUwsXakRkhu6MDT8Tv3JbU6934kRdHxISLwEBNwr4CVwjMFQgJhNps4pNovcT9fCZIxbLGhk+fFlqDnhPi1/5LRJR2WG43bJF5IMP1L3Onm/cXizE7pXx4ouu0bOlIi56bD9tYZTUxZKoOW2KH0y3rXGbAzJ9uvpqR74a7SJ9Wq1qwBs7VvPdREbq/fd8jc9KuXI9JClJDdGVKjURiBVf3z0yYYJG9Z48KdJ3zGrxjdghlPlXQtq9L21v3SGlS+s1lyqlLoZnzujMb98+9VJZuFBdWqtU8XRupxTR5Veqa2+FVW7vhX+D78T/9kHCI1U1wZvT+/DLLzpTmjr1yiym8csvGl9x112eK0ldjSCn3jIeyH0vsBFV25SyrX8b6Ou030fAHR7aHAysAdZERkZm++K8mTp62icpSfN2z5ypU78bblACtuc8z2zx8U2Wm29WDxT7ushI9aL5++/0L9HJk+oHPWGCa1pb+xIYqDnAy5ZVD5guXVx9wO1LwAPdNNNk4Ek9bkQLefn7eQIihqGpCtJ6rYSFhdnIu5xX1+ZuadxYB7Bq1fQ6y5d39Peee1zD/e3upJcv6+8HnnQt21e72ZHUwWjChMw9UcqUcU17nD/LYYEDqYu9spRjOSWGcVBKlbooFSrof5VO1eRhCQ/PeLthZF1FBaJpJUL3CuNCUt2AQ7u8KuXLqyfMlYz4eH23wsNVeLgSB6ncRkbk7pVB1TCMaGCBONQyZYETShZMBcqLyADDMN4G/haRGNt+HwE/isjcjNrPrlrGG3gyDL3fbQYdI/qkM2pu3uwamu4MS62FWMuvVMNt4Fn8pSS9IkZR4mJjdu1SA5879O2r3iZWqxqLNm9WNYU33hcjRsDWrWrw+vhjON/gJc4svR9avAmXS8GKUS77796t0/909yE2lkGDHubSpa/ApyH4A83ehz+fhAYxsKlvhv1o2VITQLVq5Wp0m7hkInF7LRQ72I2kXdeTuP6u1GNeflkTYI1+6hRHb7iHhA9/VmNgp9EEHGlHF/9nmTejgeuJqiyGPR3Tnf+996B48Vj6vnUcgk5D/Tmw/RY4fA0cbgon6uiOrV6F5EBY96BHA697pAA+VKzYgoMHD6TbWq5cc06enEZSUgQwEJVLFBUrVmLlypXpjjlxAj79VJOc+fhomgVP/3mDBuqxsmKFHpcpan8LbaZC8aPpt/kkQrETcCEcvomBFH8OrWiXmsDsSsfGjZpsLiBA723t2gXdo4JDjr1l0pK7p22GYYwHEJHnbdsWAVNExE1uQQfyktxT9fInq8H2bnC8Lhyvi+VkfUoFlaRePc3FYl/q1NEsfs5eNjEbY+n/8RSshxrBvuth9UNg9YNiRwiK3MKo22+kaVN9OZs21UySoF4tnmDPn1KihJ7r3DklzhUr9KGtUkVz0+zapblTqlTRvi1ctw5u7Q/vbnLb7jffQK9ejv6nEvCpg/jN+pmkXe11g5EC4uOhd7OA3cA9QPV0W4OCoFPfzfxcuieXgna7bhTgQEv4yMNfPuha/UwoATuugxXPer5J/uc8e8z4n4eAc7bP85AQoh4q9m2JJTy3mwHGjl3Cm2/25NKli7Y1Bn5+jxAY+ALnzz8LvAi4utAYhoHV2SCQBps36+B+5ox3faheXXXjCQm/Mnv2Yxw4sJXSpZ/g1Cm9V8Oe/4vPrJ1cBJZ0iGsNX8+GRjOJ7PkxcaN2eXfyKwQpKfDuuzBlitqwxo1zCB1XE/JC517e6fvjwBzb93rABtSxugrKED6ZtZ+XxTpSPWruuEuIWqpBGUaS4H9OWrfWwKUJEzQAZNEiDdKJj3ccn06v33y6UNpD3c40y623ahDU5csaXv3JJ5mHxleooOqHsWO1T/acMj16aI6U1H2r/pxhO6tWqfdNwICbhRuedb+fJVGjYdNte0zgNgGR3r3XCKgnyvjxGakDnHTDpXYKwcfc7+d/NsPc76nL7fcIvbsK97cRBlwnhnEh/T6NPxbuulXL6vV4wP31Vf9BcwkVO6yZH5u+L9x/g9aGfRSBaElXzSnN4uOTLGvXpg1OcyxRUVHy6aexUqFCe4EeUrLkNGnVak+W1CnFi2tUqXPgUkqKpqmoXl1r8q5Z4yiy/dbir1NVjT5P+zhFYxtaUL3YEaH3zbmeMqCwYd8+fTdq19YAtIL08CkIkENvmdlAO6AMcBSYbPvd2PZw7wWGiMhh2/4TgQGoePOYiPyY2eiTL5K7M1J8KJlUn4ALNTl6IIjQhIY0DuyJ77nq7N2r+d9LllRJfFPCAuKL/QvFjmomRbtnSPAxKHEIP18/6kfUS/V6SfUDT4P69eGmm+CXX1SSc0ZEBPTvD198oR4p77wDp0+r1L5zp/pyQ5qc3yH74FykSzsPP6zeMmlzmLtF0AmI+Fe/J5SAc5UgPiLDQ9LmHE+FJUlnMmnR836Y96njd9g29WM/WRPKbkiTTdKGdpOg3VSXVVGhUewbuQ+RBqjskAO0fhFusmV+FOBpgDBgF5GRzdi7dwd//qneMO5gGFsQ2QlcAi7h4xNO8eLNOHs2FDgElAM85+pv105naC1a6P80ZIjr9r591Tvk5EmVRq1WeOEFfXbsmDZNszsuXaoZIauNfADiboBtPTTjZqUVcMfdUHI/MbfF5LlfekFDRLOVPjgsnvNRs0m+cRQEnQXyzze/oFBkg5i8gTudu7+PPyJCkjUpdZ3zQ2C1anRqXBy0fq03nInSwKKVDysh3tcRih9z++CI6LEVK6p6p0cPDbjxhL59dSDZvx9Wrz7LoUOhAJQuPY6XX25Mly73UKfBJULHNmZ/nC/Fz1/Dhc9nZu9m1Juj6Y4DzuMTeIkUv9MOtcb6BzCONWTGnMP8+e7dJCRohOCECRq564znnoP/pTThQMo/rht+fAMulYJSe+D3yVnv3y1DYeWjUGE1dB0BgecJ9gvmjfYfM/n2Tzh8uBswItNm0sGSCHW+VX1/lV8dBTnOAG8A3IOPT28+++wcder0oXdvDVAbOVKDf775JotunE6IiNDUtq1ba3Rv2ohLERg+XG0KaTFggAbx2AUHq1XtQr//7khrXKKE9jUVTT+Arg+Bb1KeRpMWNC5e1IHt0CF93w4dgslfzebCyrtUEHukBvjrO1+U78NVTe5AurQDFxIvcPLSSThbSaWd0jugzDYiK1uIG7nH5dhUyf98WXhnCwyvDyGH8TF8+OzWzzxKBCtWaJoC0IpPp05pBOyLL2re9WXLlDQyg2/AZZITAmF0BASfgJ03w6yMY/mDSyQSf97f43af0MME3/YY50suh+JHYMvt8NtU6DmAkLjenPt1GO3b6yykXj2Nvq1cWfN6N22qs4uA0DMcLf8pydXmQeW/wCcJlk6BdQOh+Tuqd9/WM+OLK/MPXEyCS9dCvS8g6neV6lc+lvmNyQiVVsDxOpBQEiI2Qf8bCS4Z7zLA+0kAxRbV5MzfZYFf0jVRp47mrXdeatbU1AAvfL2QydMukrLxzgw6cR6YyQcfPETjxnofPeVOB41xGDXK/bZGjVRQWLVKz9+mja577LE0O951G9T9FrhyJdb4eAdZOxN32t9JSVqBqkIFvTcVKsAb/z4BJQ5Cyb0QuTy1TQMD62TPNpErGVc9uadFarGPU1WUkOLawNlo8I2nYd1gatVSC3ytWrDb50ee3/IAlxaPgRQ/6PqoxxfnzBmYO1dLl23cqEbNkyehePHPuXChORUqDOSll4bRp4+rpL9/P1x77f0coyok9IGzWUgUEnTCUfzi+udh/QME9OnN672H8/JD7dkXNI+UthP0OtcO9brZp59WjwRnD4v//U+vbckSLVAx4elzHIlzY/Bs9YoaNNcOSb/NA/yqLSXpbAScrg4p7gemwMAkEhPPYbX6ACU9N1bna2j5hg6G76+lZKd3uPeG65j12xrOHiyH3+kGWE7VpHQpX2rWVEkYVAr+6Sc1iDtL2PHxGrr/xx+ZFNPwSYCUROA0cIqAgEt07tyKvXtVnVWtmqPoh32xWrVk3yefJBAf/ytW6822xrYDNV2aHzpUVTSrVulAsH+/w0j76g/zeHP7o+nyKRUWXL6cMWnb1126lJ60nRf7utDQ9KlFPAU1mpJ7ASK/yd3tQ3AmEra2oX3CJA4dqsG2bW4OLL2d4rVW0/P62vRudw21aunD9tNPmkBsyRKNWO3bF7p2hTlzZnH//fbo0jLASYKDg5kxY4YLwQMYDQ3ojrooAlgNWPQirByT7et88EFo+3AsT/6qs5bKJaLomhDDexMyr8JksSjBBQdrHU13OVZKlNAoR6sV9u7Ndje9wujRcPasQ0V08aKe9+GH1UXz4kU3BzkNfDVqwL33qvRtl8JF9P9as0Yjj3v0cAy2y5c78rCkezQDzqgq61xl/T0mXF0PBXjaF2iGn18natUayt695alVS2dxZcvqPdu1S+0omat6oomM9GH69F0MGeKaT2jQINW5i2g+mvXr3bvA5jUSErTKVWakfeGCg5gzIu1SpbJXDxYKNh9OQcEk9zSI3RRLvy/7Ib5O154IzIeoc1Hs3buXo0fhudg/+OS7XZz/U+uMGYZQpoxBmTJaQDothg5VQ1mtWqpzr1XrDy5fTgCqQ6UpcMdMCAWfiz58dp+rSsd3jC8pxVPgeC3wTdCppQFMcerj3b2g1nyI+Ql234Q3CA1VF8/Tp9XH+vx5LW12+XIWb1om8Pd3Te+QXXTpogbDevWUtGbNgrFjdVtwsJai++svNaA5IzrazQDjcxl63Y+/v4XgxR+ybmVwKgHOn6+67gMHVAXz4IMOQk9OVv/83bt15lWunPbn0iX4919IqjaP+Aavw49vwfkK0GECNJuBzwUfrK9aiYyMZNq0afTp04eEBJW0f/tNDebukoE1aACbNv2FZvGsDkQAdh3OS/zwwxPMnatF2dPi6Vk/8saXqzi9oheWB2/A6ncenws+pCxKIepcVGo/soqkJO9I++xZvT+ZkXZYWPZJOytwl/m1qBI7mOTuFkZDAzqgJT7PAkuATQ6f5VQp4EwwvLUNHmiL347bSVo8xaWd22/XrHVlyujDvm2bTvMPpMbBLIcgH7jUAjqNhJo/QKndBAf6u0gUxtMGXC4Bb+wFv3hVa5TdCPtucJzs/rYQeBpmLoaH6sHetvDXWBjUHH58E1Z5SImYQxQr5pCMGzWCDRs0KGfDBiW/CROUcHOC8k90ouHBN1kU611Eir2W7KuvwrBhqs+eNg1e/Pkjzqcc1yCmlm/A1l4ABJU5SeWEzrz7rg4gSUmu7dW75XcOB//EqeP+BB7qiM+R5nTuGIBhKKGLwODBWnt00WHbs/H8Trj9Xpj7BQG9+/LRw/e7EElcnKpy/vhDn4kdOxznCwtTNc2//6p6ZvPmNzl79jtgBUrsjdDgb4c4HhqqZApqnN24Mc1Nqfsl3Hm3CgU2YSV4l+tMMTlZvXTc6bGdlzNn1BicGWmXKeOaH8lE/sIkdzdwn5YXoqJUck9V3Sx6RaNAwzdDYnFCrv2B5W88RHS05nn/8099eVetUom9XDlNlNWp91YWh9yENb46nKgFP72l7oLBx9X1sGQcQeX2UbM8bLR8hVT4D3Z1hlM14M57IL40/DgdNvUlrPxFTh4u5trRGydiCf0X64KPoPMTsL+NpuDNBdhdHg1DSVRESe3WW1Wa/vVXVYU4IzgY4sv+CHtudt9oyd1wvmIWo0Zdcf/9SmgXLqjO/5dfHK6joF5JQz+YAd2HwPHa4H9BvZwWveY6SAK+7V4kuezf8MW30Odm+PcuHQgq/Q2lduMTX5GAfV25tYc/gwdrEFLawLZ+Te+E8SFEHL+ThK9nMOfzIOLiHM9EQoIaPxMSNJ99o0Yatduhg6Odixd1xvDWW5v54YeLWK31gLVAOFCXwMAkLl/244EHHJL7wIE6c1zusBm64s474FIYHC8PKysQFFSN2rU7cOiQDsbh4ZmTdni4DuAmCjeKXIHs3ED6knCuZc+MKYYwJkyDTIKOC/7ntOTYmHC37V2+rAmgUgNTAs5oIehr3hVuu1d4vJJjW/snhYEtNACn3Tih0SdCxb8d29NUY/rwQy3llpWgGHfL1KkiL7zgqDCUr0vgSaHMltTflmIn3e5X4vpP5MsvRUaPdl1/zTUig6f+JZVfrCXcfo9Yih+XtrfukAoVND1szMYYKX3HBA1cuv45DVjzOy+EbxKq/Zj+XEMbCp1Guu9rmX+Fzo9KpWcbeXx+TpzQfV97TYPV7MfecYfmPdm2TYOOOnbUIKQvvsg8F0pMTIxERPTJ5Xu/UmCK/PmnVujypvSeiSsHFOUyezmBu5JwdkS9HqWRnU3f1wx7D14rNP5YjMCz0ru35ud2zss9f74mNFqwwHbsJIvQ8QkllvKrdYBI++K1mSI8UVqJv9JyXVd5Wa692IGBmtDr+ee1hFlIiKOw97lzjv1yTPZZ6HNI6Xj9PsniKHloJ9s0+95wg6Pg92NvLBVLzR91kGj2jnDn7TrgIlIs5LIYYU6l/9pOFu66TXjgeqH6wtT1vXop0Wbaz9bPC5NdS8pduqQRkNOmudYbHTJE8/Hv26cZPO++W+sF3HOP1gX93/8ctQOsVi3ZuG6dRppOnap1XsuVy/o9r1hRJKTjW8LAlioc3PCsI0q1X0eNyLXta7GcksBAza7Zt6/WBVi8WOT48fx4y0zkJTIi96tWLZMZ3l/2FUM73QiDr4FSqr4J9gvmtTafEr/6Tt57T42Iw4apcfLll9XjonlzJ1fL72fAukHqtZEc6La6kieULavGz/h4nR6nZJgR347ZwL1YLIuYPFno2LELO3aobnzDBlWngKvu1tcXvvsOVq5UX2u3XifZReA/cLkxNP4I/hkIqDfE6dPgH/kPifU/gICz8G2M7l/1F3wvVKWcfzXeeUd16gsXqvohIfRfkvyPQHIA7L8+/bk6jIda8+D99eB3ES6XTt1U59oj3HdbOfYby/jm8GscOXsCPv3DqZ+nYGhjKLlf1WGxC6HkHiKu+4lBEZ/yxx9aF6BOHVXPtGmjeubnnlPVHKgx+e+/XSNb3Rp5M8HYsfoMXb4Mjz6qwU8zZ2rSMatVA6umT1fvm33Hzqht53JJPXhwUyi3ASxW1bl/HYXvrtEEBAzillsC6NpV2/jnH8cSEpLePbNKFVOPfqXAVMtkA08+qYWgPeWpsFo1hapdOmrfXqspidgk9ykIT/kKdb4San4vjI4Qy8DrcyyN+/uLBAf/4LTuPYFw2/cfBFYLiPj5bZPAQE3Ne9NNKmEOGpR5+02bigwcmCaPjctyRNVG4Zuy0f8Yefttz9t920+Tse8tljfe0N+9e2tfIiPT7Nu7qzCmjNC3k2uemrLrhQGthBav60yp6/BUVcjQt4cLfToI9eYIAaeFqov0mPYThYafqToneolw7Vsu6qNRo0S++kpTOH/xhaqL2rb1/pp9fbUuwCOPaGrpv/4S2bNHKwu9846mSx4wQFUmdnzzjc4C33zTfdWmb77RFMizZ4u889tXUrLri3q+Mlt0ZlP9O6H8I1K+fGeZOTNGTp0See45TUfcubPmRrdaddm9WyuKPfWUziIqV9a019dfLzJihKoE16zRmYuJwgdMtUzWcOqUFuOwqzDcISlJi3Bcc42S+jPPiFSqJNKypciQZ/8S36dKOBH8XDFqzZdP1sySsWOVaEGkZNnDQr1Yr0giOFgTmy1Y4LzeXZk724te8XfhhmkSEL06xwOKxeImCVj7icKQxqqyqrRcVTO+l7PcdlCdJZnuM3euSOQrVdV+4ax+mIJEvlpFMFKE+mnu4+AmEvV6lBw5InL33euE0B1CxEbhhqnC4CaqCrv+uRzfG/sSGamDfXy8yIoVSs5btqR/bqxWTRBWp44WbrELBCKqvhk5UsvgrVyZ8TP63HMLxMdnn8BzUrpNhOB/XhhbUipOaSbDX/hTBg1SFVSZMiK33y7y9tuqDvroIy0K07ix2nHclZs8cUKv5dVXVdXUoIG4VeucOOHN22QiL2GSexYxebLIAw943n7hgki3bioFOdd2TErSLI4NWx/UrIitXhH6txPu7ukdid7aU+57bpxMm6bSU0b7+vklS/HiMwVm55iY6tdXnXydOq7rDcMuwS8TWCOwx30bTgZgex1SwziU7f6UK+day9VluX6a8GBz4Um/1IyH192yWyVv/3PZPqe75ZprdMAOCVFp246UFEf/unRRgk6bjXDw1OVSo4YKCnZs2KCzqFq11EbjLJXv26cSfrduamPICA5ngDCh2G9C9e91JnV/m3TVyPbt0xnDAw/ooFG2rFYz6tFD9faVKyuJnz2bcUbFS5dE1q7VweHhh9UeEhKi96dbN53pzp2rApFZRCP/YJJ7FnD6tEhYmBrF3OHYMZEWLbSEnKci21GvRwmPVMmQOMLCdLH/Tjv9vnjRsS0iQl/AbJFU2H9C+TVCWMZqlBdeEGnSRMvBPfmkln97800tSRgY+IfoLCFeYHeuEqjzcscdmoK5b1+dAWU2wGV7if5V6Hm/MKy+VH6+rnzxhZJUXJzee6tVVRU1a+rgdvPNIjVqKMEvWqT3CbRsnojnco9d+m6RTp1EDhzQWV5EhErQaZ+bH39U0n3xRe+I0SX18MO+wrVv63V1edilaLY77NmjpSb79dNrtt+ToOIJ4nvDq5o+2ekaMkqZm5KiZJ5WrRMSouT/8MM6GKxda6p18gomubuBJ0+ZZ55R4naHXbv0JZ8wIeMK9sYUQxhbUqVMDwTTvr1ISKlL+rvSX6mSUmKilsmbPj1viM0w5tq+t7d9jk23T40a+qI+8YQSweTJP0lQUAWBYIFGAneJj8/X2etDl4eFxh8JiFgqrZKBk1fIddep2smjtJ7DxcfnsFDqQyHwlFDrO+HebsJTPmI8aaSS12uv6czFWdJOStKc+mlLHX71lQ5An3yi+1V+saa22eoV4eFqqeRY+fm6qceMHq2CgzOSkrTubcWKIr//7v2zaxiGg9wn2waUnvcLfbqkntvZ08cTrFYVYmbMEAlu+p1Q/JBgSRDaPJPpIJERPKl1GjTQ36++qttNtU7OYZJ7GnjycZ8xY46UKSOyfXv6Y9au1Zf87bfdt5mSooanqVNFAqqs0qIUNRYowQeeEhp9IuVG3uLZqOlzSfBzU5DChZgd38eN02LLIs6SXLhjf3e+3SzPlAj//lt1xd98o25//fqJXHutSGBgok33/psULx4jffuulpYt84aMM1uKFcv6MYaxWahdUeg4QG0ExQ5I0y4LZfdux3/4+OMqcTpLmdu3q9rBua2vv9Z7cued6l5JwBkh6je1CZTeLowOF27tI4TESYcO+r/NnOn6vBw+LNKunfrBHz2atefXRXJ/DJcZQ3ZJ2Zhi6EDxUC1hULMsDRLewJNap3JlFSSeekrv665dGQtOJlxhknsaeKqoU7LkS9K3b/r9Fy1Sw9Q337iuP3FCPRbuu0+n1bVqiTz6qMgT7y6RoCmlHS/buBAxymwTyLyAckC1v2XECNd1P/zgOKfVqj7SLVqo2uDjj0U+/TTWMVjVLeE49ilf4da+GRNfxyeEDo+rZOu0vm1bkaFDVTWzeLF6c6xcqesCAvKWvMPCRGbNUtuGc7BQvXoejqn+g1D7GyHyD+H2u9XGceNEadfO8zmqVTsu11+v57rpJvWEuXRJ9dHNO+2VUhPrqT990HEJ6vysfPj3bFm1Ks2AEXhWhjz7l1R6tpHjv45aqtsjNkrZh28TES3CHh7uMJL+9psKClOmuFZe8hYuwkkDhAmkUwlltQJRqodXDgeJrCArah17wXUTrjDJPQ1cprWpS3GBo7J1q6thKaz34xJSOl7+/FMfxlWrRJ5+2qET7tZNXdrsnjXHjysZ9hmzRopd+5VQbp0YfvFSNtJRzf6OO0QoadNdl9ylXiftJgmRv2twT9fhqfuuWOH+GqxWkV9/VckvMlLkvvtWSeXKNfXa7rlRj49eIoTsE9o9peXXyq1NT3TBx4TaX4vR/nGZOvUHKVPmYQGREiVmZLlUnKfFN3ynBFRf7mE2kfWla1eV3t97T6T8EzcJve4TWryh5O5/Tii1U4IbLZDnntOB+fBhnY20aZN525Wqn3b8bvmaqjpumCpGxCYJKnlGfJp9rK6Ttn38bh4rg755WAJH1hfqzBVC4gRLgvjUni8z18em/l/ffaeEPmKEGox//jlnz7CzWjGsXZiEPRuWo9JynuwGBVGmzlTreA+T3NPAveQ+VoKDv3M85JPRdAP+Z8W33Qty3S27JTxc9bIjR6oRbO1alTDHjlWviQoVREJDVeoYMULD0FeuVOPo9OkqlYwapYa1VAKpsUB94Z/0F6osVj/rwFNKim1e8erl+vtvkZ49lTReeEGEcSHalicSu7eb0OZp9eTpdV+2SdcuZZUoIeIfuT79PjXmC4g0abNfmvf4Tqg/M/0+jT/OMdn79xouPFHKVkPUIoGPNZbhzy+TUaNU9REaqn3t2VN950EH54MH1cOjU6cM2i+5W2j9gjCwpVgm++o5JuN239CbXxYmBknky9WlfstDMny4Q8Vw/Lhjv4xcbJ2R1i40bNgwjxHVuYHCXH/00iVVe374ob5b11+vz93VrtbJiNyvygjV2NhYBg8eTHy1eM0MGVQMpu/inlHvs6L0x5ow7Jfn4a9xWoau3D8Elz7LoLbdOHtWoz23btUKS40a6dKwoX5GRmqCKXvq0bgz+whd/gZB2+/n799DiIqCTz/VqkYA9LsJ/n4U/C5Bp9Hwhi2ZWYkDcOfdRDU46HWhgU2btJjDnHmnsJZfqVWb8gAdOui1xsdrGtxDh2DF6stcOBOYJ+fLDq65RnO933ijJsLau1crS61bp2l9/7AFqAYEQPHimlDLLZrOgB62oiMXy8DGPrB+AIgFqv0Cfz8OaIbHoCBNqHbLLXDunEaz9u2rn3ffDffco5khS5aEjz/OOAVu6jMaH+9xH0+1Aa4WWK0axewccfvPP3rvGzVyjbqtV0//66IGMyukGwx/dzjvHXpPc7ovGwOHmxJ092AuHakERxvBr1M1i6H/ec1kWHYjD3W/IZXI69fXVLjukJouOOEy/PAOHGpG0AO388E9z9GnQR/GjNHBYcEC2wETg+HLr7SSjyUFttjKt/VvBwHnWXbfWi5dcpCp8/L3nn9YtO1Pzp1PprglnCZlWhG3tTT7tpfK0/vn4wOdO2uxi/Llldg+3PQmC7f/iPVzR030kPbvc+5EcdjkgYAafaapjX9+lcDAP7h8uQUQD3jX/3vu0fQJly9rGl2PJG2DxaJVjJo0gd69PexUbRGUX6v/xR9PwXUvwemqsKcj1JwPQSdhxy1Qahe0fgn/JW8ysEd9brpJ66WGhWk5xcqVdQH4/nvo3l0zWrZurfVRH33Ucz89ZS1NC3sWUxMOnDihApgz4e/apQVbnAm/USMoXTqjlgo/THJ3g9SUvik+8Ooh8EmES6Uh9ABEbNQcHWU3KPGUjCOqpPelulLbnv+elpqrvhAsyQRSilpBN7Bhg0oRCQmZNBS2Fb/AFK6NqkdQEOmWuIv/sXj/fJIt51Ty972MZUdPrDs6uW+v4kq45n2osJTI6hb2X9hNZGgkk69/njFd/ubkyafQilF2HCcwcBuXL2sulzlzlKBWrnTkKV+1CqpXh4i6W1kqU0mM94d5n2hN1H/v1mbK/AdVlkC5lbCjCewaAknFwO+CF/l2GgPbSU6O588/NX976qDoBr17K+HXqaO5xp+f8ytvf3Ce+HU9MzmPVkmq2GI5Wy//DqerwL/3uGwPrxHH8R1RWnD7nl5Q88fUAt6x4+8mIWgvB9t3Zv/y1hg/TUcSSqQe+9tv0K6dft+7F1q21OpdHTu674vFYsGbd9Nef8BExrh8WXPnOxP+hg2a6yhtbp3o6PwpLJIbKNLkHhsby8SJE9m3b59LBZzMkJrcS4Atd0DIfojYDAEXCfYLzlGprtS2d96k0r/vJSVfv0vcm/wzf/0FP/6oBN2ihSadCok4zfEe13N53itwtAGcr4T/rcP4+OnrPZ43dRDZewMsG++ihilW7Bsuhi6GSyO1LqklSZN0Vf0JEl9Atm9myxb44AMlmXLlDrN9+xMkJn6JZp2CwMDqdOz4HQsW1Ett19d3L126XGTIkHpcd50mNHvrLZj6rFVVFXZc9xKE7YBl46DLY1DLxsiJvrDxAVgwQ383fxOu+QDe3YSPzyFSUpKAGcA0YAeQANSgWrUA6tYldalSRSsFLV2qtV3dwcfXSkqy+wxYDzyg1bLefTcDaT/yD+j6MGzoBytGO9oteYiU+OIEVPqP9teF0LtTHeL8f2TKFCspSb5wwzT4ejacr0hQ8UTKhfuzZw9s3qzqAdB+33OPFjmp5qZkrim55z08qXXOn0+v1qlbt3CqdYps4rDMcrJnhIxcv3JqWPLUduSr0VKzpmvAyosvakKv558XCSt3Qco9emuq4S24xGXZutXzeYwphvBIVYdRr/bXwqhyNoOfbal6g257NEoYVkKIeNrFCDhhgsPAl9aA9/zzCyQ0NF78/e+2tWfPxZLs3vDYbZAwvrgjsMZufJyM8Gi05oUpflC9Wm7tK0wMFCYECa1eFhC55561EhQULDBUYH7q//npp7Hy339qMJs6VeTee0UaNRIJChKJilJjdufO6hqaFWPwTTepca53bw3Nd9mn8p9Cif3pjvvmG/XSOHlSvaJefFHT/PqG7xJ84x373jJUA5meayDjxjmO37zZ8f+98466d547l/6/dfdsp128fdZNZA12j7dXXtFgtfr19Vlr2FDdnl97TT3VMksTkR8gJ94yaK2vY8Bmp3WlgV9Q0eoXoJRtvQG8CewENgJNM2tfckDunvzVo6Ki3O6f1n3M/2n/PHH98uRWNuadX6VJE1dr/p496kOfmKiRj2XKuEZqNmjg3sf35EmREm0/EIJOCDdOUJK0n+8x5/sxytbWHIH/CZyUunUPS8eO6nPfsaM+qGk9DP77T7eXLPm8QD+BGQJbU/sVGPir/Pmnumq++aZIcJPvlQyLHVaXwE6PCwOuU7/zaj9plsaWrwlD6zj6eV97odQOoUGMWIofk40b1Wffx2e/QMtMPUKSk0V27tQIy2rVvCD1Xv3U1XSSjyxb5sE10l3ys/YTpfTtE52uXaNKu3YVGT9eZM4cER6qox47/dsK9WdpwY/HK6YGAR044Ghv4kRNMGa16sDes6f7tAP57S1jwjM8eetERmqenkmTdODfvTt/vXVySu5tgKZpyP0lYJzt+zjgRdv3rsCPNpJvCazMrH3JAbm791dHDCN9VJ07ScjvGr8c+wd7gjvpv1MnkU8/Tb9vixYiP/2k3+2BMlWqKPGCpou14/Jl9fMtU0akw53bJGh8tOsMYYItsAUEQl1IKiTkPZk+/evUthISNAiqZk1NWvX99ypZulZBOizwhcAIgYYCFoEbBY7K7Nmu1xv0bLDwWKRWmkpLkK1ekYD7esmAOSMl6MnyQtMZ6hPeu6sETwuWmk2Oyu+/a386dsz8/v73n7p9tmqlro53361uqadPK1GuXet07hB32TN1mTZN5NAhxwv58Ct/pNvHKLlX/PyTpUYNx7rJk3XWM2qUVmLyDdurEcYVVglNPhBC9+o9H3JTap+tVkkNrCpbVokiPl6kdWslBxNXFlJSVLiYO1fzMXXrpvl6QkNVcHjkEX2e161zL6Dlhutpjshdjyc6DblvA8rbvpcHttm+vw/c626/jJb8kNyzKuXnNjZv1hfa3Z/82muuWSgrV9Z/xh7AAZpF8IsvlPS7dRP591/dN+0DUrptmEBLgY+cCKqTBAd/J1Onup43KUlk9WqRl19OT3rXXKOh95GR7u9baOj1UrmyqiWsVh0oHn7lDwms+YcQfExKtJsh97z7tFR+rr7Qp4uE3jRd6l572PU8XYdLxaday+cbYqR7d31JqlcXWbo0/T1KSdFc6E88oZHAFSuKDBumg6Kn6MVP1swSn8azVF1Sf5YQfFTwvZSphF+zyVGJGNJPGNRMAmv9LjUaHZMtW0Q2bRL57DPHfk2aaE6cChVE6jY/LJZGn+t56szVHP5ObfbooQQwZ45I7do6oLZpo3ET772nEuAjr/5eaP3MTXgPT2qdRo1E+vcXef11kQkf/SxBT1bIseYgL8j9jNN3w/4bWABc77RtCdDMQ5uDgTXAmsjIyGzdxKzo3LMi5ecFBg/WcHN32L9fszEmJOjvsmVFtm4VueUWkeuucxBEuXKqQnGHkydF3nhDpFKl00LAduH6MVre76b7xe8aP3nllXlSvLhK588+q4E7ISGq8x06VKXeFSsc56pRQyXLTz+dJX5+fjobeMymP38M8WnsI9Onfy1BQbp/WJhKpbNmuc8AeOSI5mKpUkVnHq+/rnnGy5VzTcwVFOSo8xkfr4Pagw/qPalfX1Uaq1aJzJzpuUSiiCYAe+cdkSp1T6S2XeK+vhL2omOm9tHK2fLpp+nJvUYNve/lyokUL+5Y37ix5tNfvVr3efNNHXTi4jQSNrj6eKHB/zTrZPAhweKagrhuXVUfhYQ41qUrRDK0gceXPaOykCbyFlarChGnT2vw286dmuBv5UpNJ7FwoQonn38u8v77+i4+95wO6KNGqfDWoIFrfigQtVU9UjXb6R4yInevvGUMw4gGFohIfdvvMyJS0mn7aREpZRjGAuAFEVlmW78EGCsiGbrCZMdbxu4lExcXh4+PDykpKURFRXn0lvHkfZAf3gYnT6q74NatWj7PHa6/HsaN0zJt5cqpP/S2berS54ykJC2NB/p4LF2qHi8LF2rwTHSHX3h5fzeSTlWE9zbArf2wHGpJjYsD2LYuAtBSbTfcoOcsY/N8PHJEXfUGDoTRo9XN8bnn4L//4KhlDIl3vQPFLunOyf6wuRe+Sx/C51IbEhKgdm0NEgoOdu2viJaJe+IJbXvSJAgMdN2+Zw80a6bl99xhyhQNBrJ7lbgL8AkODua992ZQrlwfPvlE70eXLupP3qEDPPLyX/zv2Zpwa1+o/jMk++O3ZhSBKyfRv08gkybB4cPqZvnDD+rZ0r69lrOrUkVdGd99V88VEqKBMqAeT089pd4UvXrVBHYBdtfEkkAtYAigUWs1a0JcXCZusNV+gsrLoexGKtQ4wYFnljFrlvtrvpqDmEDfB3sMiD0OJCufWdnXYtHnOygo409v9uk1t7OWg/S/oO7WFuVhAwPrZO9dW3PsCumG3LcB7UTksGEY5YGlIlLLMIz3bd9np90vo/azSu6eXu6MHvTsHJNTpEapLriXYueu4f2PEjy6Nb71lvqMjxoFXbvCnXdCbKwSrb+/Eoi96wcPwuefw4cfqnvWoEHQr58GZKS6R654FBa/AJVWQtQfRNTZzi/DP+fGG2H7dtfgjRMnlNjvukvJ1xmrV0Pze7+BI9dBi7e0Xuc//aHsJqg9g8vffoFhaB+2boX58yFCxxD27oUhQ+D4cfjoIw0ccoc9e6BqVf1eogQ0baptlCypba5bpwEorVvrgDR6dCsOHvzbqYVo4H58fAbSqFElHnhA/d2drzH6jWjiNlaCL+dCwxjYeiuEb6HCbW9w8Pkl6fp04gT89JMS/aJFSvDt28OSJXDmDLz/vgbGDB8OrVrpuRYt2kdychnUz+A/YAuwhfLlzzBv3mJ69oSnn4b+/WHnTg1sGj9eB9gT/qvhSCOw+qfrS0gIJCSsIiFhFbDBtmwGLhVKV8jkZEeQXXaJ1NtjrNbMCdUbss3smKAg8PPLvXuU+p6mQVSo9/E0kDfk/jJwUkReMAxjHFBaRJ4wDOMWYARqWG0BvCkizTNrP6vknl0pPLs+8dlBapTq5USYvhvu7UFw5HaP/vKHDyvB1awJGzfCQw/B5MkQHq7bf/xRSd+O++9X4mzRwjXgItXH3moBqy/4qs+6XSIYPFjbnDZN9z99WkP0b75Z17kL3jCmGHC8Lqx4HIJOqV962E4QkCn6/IjowDB7tkq/0z5Zw6x3qmBt9TKRXb7iuU7PpF63iBL2d99pUfEjR3QAAH1pg4Jcz5+YqPsvW6Z+4d99dwzVBoY77fU28BEi693+H6n35WQ1+H0SNP4Mqv7qlaSUnKxFuu1S/ZYtur5xY51tPfKIzqDWrYtl0KDHuHSpMlAXqIuPTwPCw9ty5kwIKSkqafr46OBcr57O6u66C3zvu4UjJRbC+QpwvA6cqK3LyTpwvLbGS7ggBR1ENvLss3elpsGoVMn9f2i15q4Um9Exycm5R7KZHevnd+UEHDkjlR9yEE8DOSR3wzBmA+3Q0MWjwGTgO+BLIBKIA+4SkVOGYRjoW9YFjSF/IDOVDGSd3D1F79mj9fKTxD0hdWTefBf8/LIG8hhCeLFwPugxA4tFH0r7g/nFF/rCA+AbT8SDgxjQ9AHqBHTk009VLeCMChX0GB8fRzsWC/SY3Z0jFw8BAnYzgyGUL1GOn+9bxP79Okj88YdK/Z06qYrm9dcd7TgvFgs0fKsBZ1JOpWuzlF9Jto/c5rL/qFHwySe2Tg5pAmHbASHIJ5Rh4bM5t7Ed8+dr6oZbb4VevXSA6dFD86/MmeP5noroTKJNm89ISOhvW3sGOAWEERi4gfHj23D99TroOaeHyC1JCXSm8f77mmLAGUuXwoED7p+9y5c1r8ySJfC4pqOhVi1VvdlhVFiPRP0KJfdA6D4wrJAUDMlBcKEcHGwCu5pCYs0s9Rf0vwkMzHuyDQ7WmeaVSLj5DfvMft/ZfUSGRjKtw7QsETsUwQjVjCT3adOmFQrdpPG07ene2h3+uR8wQAzAoHvNnqkmld9/V/16ZihRQiXFo0dVrWLHtdfqi2Rv78TFk8Sd2W+zluv5DHyoWKISIf4lEVE9ujPsKhF3viNWK8QnxXP60hltz9YmGBT3C8HfEoiIStcXL3p/fywWxzlcb1wKFouBxbCkDhiJiZ5aOYvDNp5xLhrDYoUShxCxpg5QhgXKBIcREljCZYBKSNBw9UuX9NPz+fMJ9WdBwDnwi4eUS7A6HriEn18y/fv3JiqqJfv2qS7fvly+7NpE3bqOJHf2pVy5TJKX5QL5mMhbFDlyz0h/bjeypkV+6iZjY2Ppt7YfEpr+3tolxW3bYOxYDXd+/nkYd7gK+/6LgA9X6o6Vl0HTD6ncaiX7xrqy8YkTDnXNAw+o7t3iFGWf2Uu5c6fqsLt2VR2587EerymDNletUmNpdLQaHSM/siCHGsM3sVBqN9SaB7XmQ/EjxNSIcRlkJ3y4mBfGRyI9HoAfp8ODLQnyK8bbnd8nZN89fPQR/Pqrqo3uuQdGjbqRQ4dOAcVclmLFIpg69TXi43WQOXlSZydbt3q+psDgJJIS/EhJyfz6AwJU8g0KSv+5aZOGrHtCtWpw222qt7cfI6JGYsPQGVhgoM56tm3T33d/c6se7BcP1X7W8RR00vSMkemMVETVXVu3Opb//tPP/ft1n/Dw9IRfu7ZK3rmlNjCRtyhy5A6e9eeZqWzyA9HR0cSFxEF3wMk+ZiQbvNPxS/796g6++EI9SIYMUX36PeMXazbKxOJwfzuotEqP8aATXrNGpXZQYp0xwzuSTkhQVchPP0GJGz7hQoeB2ZbKLl5UPXtsLLzxhqpVDMOzCoQzEPVtFNPmT0sdKOSzJdDoU6j8F7y7yaaKSJ9u089Pp/xnzx5GNX6X0n326XObR7VBYKCS2rp1uhw8qO1WqQI33aRL27ZqGPXxybp95vx5uKXfLv6cV00zXfa6Hy6G47+nF43PT2T7qiiqV4du3dSrqWlTzcszYIAanufPV8Ppvfdqe3+3qMK+83vTnSc7aqS0uHBBZ392srcT/44dOijUqQO7/L/mYunlmjyv4moIPJdr5zeReyiS5O4JBenyaEfqANMAzRcfCpwMhK8exXL8CazWGMqW/YOmTaeyZk0dGjSAjRUf5kTUjFQDaGq/M3iZXnkFxoxRMrqh5052t76J/efjPJJ1UhLccQccjt/HpiYdufzW3zC8PoQczrJUtmQJDB6sroKvv+5wqQSV+vrO6esysJEIzNevwffYErPtuw6++RwGN4P/bocF74L4Qs3v4dp3OfLqj6nkbHf/zM3/9+hRNdDal02boEEDKF36P5YseYbExF/RzBveqfai34gmbllLWPAeXPcqtH1W+xYaxY6H9rJsmRpkFyyAs2d15tS1qw7uq1frgFuqlNpBSlTZwtJa1+ar5JycrAPN1q3Q/c0n4EQtNepW/gs6jQWy7qpnIm9xVZF7Qbg8poUrARlAbzTL4RZgLdAWqI6vbywvvFCDUaN6ZmsabLWquuLg2cP8u9kXan0L3YaCRdIdm5ys7oGXLsHGtjXYd3En/PSaZqzsOBHwTio7fVrdMxcvhvfe0/NDekn3RPkTXGx5UQe2s2g42ybwGe1DSnGbHiTmBzheDxJCIPo3aPIxVP8JfFI89iUv/9/4eCXZXr1e4syZ+kAr4ATwF7CMChX2cODAEo966lSPnDORcKgZ1P0GcE+IO3cq0f/wgxYPsdtdFi1Sn//WrSGszZf8XbE3KZKCj+HD4GsG879bPKTAzGXkpgHaRN6hyGaF9ISCjuRzRM62E1gjEC/wj8AJgQUCvQR8hTTpD7KTa+LwYRGfEke1XF6Zf4XrXkoX7ZacrGHQnTpp9KgxxdB9ug0Smr7vdaX7r7/WaNKHHnLNZOg2b4+fn/j7+7usCw52TaZG7a+Fzo8Jo8OzFIad1/+vI5rZEKgnMERgpsAuKV1a0z+88ILIn3+6RuNmt8j0uXOadMrZlH1txzjBSBbuurVAapoWppqqJjwDs8xe3sGdobGpbx/69DnA+vWVAPDxOUhKygw0weYBl+Ozagtwpwvuu3CWqjQeaAsna0D1X7RtDJKfsjJkiENSDA52ksrWDFIJ01ZGzpNUduQIjBihUZsffqiBRM7wpCoJCwujePHiLn2deHyiW4nQx/DBKtZC4ZWRkepn+fK9qWqcZctUV924sUrayZWW8t7R+7jkvz/1mKyqUr76Sv3eA2ss4/JFfzhRB54ok6quy0/J2fSWKfy46iT3nMJbyTCddDM6QnybzxCLT4r4+mq2wIULVXLOjcRlnnLphD0bJrR4XRNWTXbKH/9alDz0kOZJOX/eTb+dJHd3eUw0adj9YrEcl549N7nNGSOSxeycV4BEmJWcRefPiyxZIvL00zozCiqeIL4RO4UmH0nYPaPl5e/nZTkF7C+/iCY5u7ebMDHA5V5lNrsycXWBnCYOy+ulMJF7Vl7s1Gn4ZIQOYwX/c0KpHVLylhfk8OHM2wUkLCwsU7WCfbBxR6CAhLULk6CnSwpl1yth2/oUeMPbUqXeCTlzxk2bG2Ok9J3jhKYz0qmAYmJiJDCwjsAim1qpUYaFIbKcVz8XUp3mNbKr+klOFlm/XuTtt7WoSOXKIuHhIr16afbNFSscCeIyQrnHuwvFD6m6LQsqHhNXF0xyzwKyQlSpuusn/VVyvq+9MMnwKF3FxMRIWFhYurYzIk5vKvIYhiExG2MkdGRLIfiYMLyO0OYZoex6CZpY0SN5vv++FotwRnKySKlSTwscExgt4JM5WeegItbVgH37RGbPVltF48YixYqJ3HCDyLhxmmXy1Kn0x8RsjJHAxxprXvhOIwvlDMdEwcMk9yzAk4rBTqLOUlx2DGgZDR7upMWMJPa0pBv1epTQ/UGtehS+WRhTJsP+pCX3zZu1cAj8JlDdKzWLHQVtxL6ScPaspgieNEmkQwdNK1y3rqaF/uwzLXtotSrBV5zUUijzr4R0eEeGzh9W6Gc8JvIXGZG7aVBNA28KE9td72hIlt0XM6pqHxwc7OLi5+/vT2Imse/OboCWp21trxoBdedCiSOAe1e82E2xPDJ1M6d2VSXy3pdotvtr/viqIdOmwbRpVdi3b2+6cxXGDIRFAcnJsGGDw0j711/q5tq6tS516sDQx09xoPg8Um4eBD7qSmpGjJowDapZgDdqEJyk5azqjz1J4j4+Ppme010fnCVkTzMJn9E+LhK1i0E18g8hfJP41J4vb/7ytcd7UJjVLEVt1mC1am3dzz/XQioNGohgSRQQoe4XLkZzUwd/dQNTLZM1OJOFJ2L1poKTO9LxRJxZIXVPROvOE4WJONVUdfKumYJwa1/1yrjjTmGyK1HkBmFmp42sHnOlDUTZBWNLCn26CF2HuZC76T1zdcMk9xwguy6MGZFOdnXr9iUj4nKeSfiM9nEh9tTFTg5P+QgTA/OEKLJDutk5pqBr4+YXshsgZaJoIyNyN3XumSC74e5ZzYESGxtL3759M+1PWFgYJ06c8KrvHvX7j6EV4NK27RvGiYnetZ0ZspMDJjvHFIZEcfkBM0ujCXfISOfuRR7Bqxf2aND4+Hh8fHwAJRpv8pjs27cvS+v79OlDWFhYpn06d+4csbGxme4HEBkZ6Xa98auhibyckQgs9qpZr+DpOuPi4oiOjnZ7DVm9Z+D5Gj2tv1LRp0EfZnSfQVRoFAYGUaFRJrGbyBieRPr8XAqjWianutzsqAuyaszN7jWATQ//mE1F85j+9saOkLZ9T/rxzNRM7u5lbt2zoqhzN2HCHTB17llHTnW52SWd3DLmumsvM/1+bqRCsF+fNwNV2vMNGzYs3XVn9Z4VBW8ZEya8hUnu2UBWgpk8Iaekk1fGwtyQdj31LSwszOU8GUnwzoOUuz4ZhiHDhg3L0bWaMFGUYZK7l3AmY2/8zvN6+p+XKoecDjwZDX7ZUbdcLV4vJkzkJkxyzwSecr54s+Q1+RRWlUNGEnnae+LNIJWVzJImTJhQmOSeATLTDfv4+OSa/js/kF+DQUxMTJbuSWb9MiV3EyayDpPcM0BmXh12ospIx1xYJOv81lt7mu1kh5Dzw+slNwe+wjqjMnF1Ic/IHdgLbAL+sZ8EKA38AuywfZbKrJ28JveMXsSMpHJnospKKbn8fNG9sRMYhpEnfcptQs5LwszNvprulyYKC/Ka3MukWfcSMM72fRzwYmbt5CW5Z/YiZiS5p31h05JPbkquuXVtmQ1SedGHK0GCzU21j6lCMlFYkN/kvg0ob/teHtiWWTt5Se6ZvYieCLJYsWIybNiwDImroI2AmamUCqJP2UF+DBC5+V8V9P9uwoQdeUnue4B1wFpgsG3dGafthvPvNMcOBtYAayIjI/Ps4r15Ed0Fz3ijciloCS4zldKVIFXml4rDlNxNFEXkJblXtH1GABuANmnJHDidWTsFKblntE9mxxW07tXbfhdmfXB+EaWpczdRFJFn5O7SEEwBRlPI1DI58bH2ZupdkDpnT9eWmTqpMCE/VRymt4yJooY8IXegGFDC6ftyoAvwMq4G1Zcya6sgvWVEsi+552YfsosrnWRMFYcJE9lHXpF7VZsqZgPwLzDRtj4MWIK6Qi4GSmfWVmGIUM1LN8cryWUwv2GqOEyYyD7yRS2Tk6WgyV3Ec0m83CDR3JROiyIZFqXByoSJ/ERG5G5WYsoH5Ga1oOxUKzJhwkTRhFmJqYCRm9WCslOtyIQJE1cfTHLPB0ybNo3g4GCXdcHBwUybNi3LbV0tZeVMmDCRM5jkng/o06cPM2bMICoqCsMwvK7D6g65OVCYMGGi6MLUuV+BsBfu3rdvH5GRkUybNi1bA4UJEyaubGSkczfJ3YQJEyauUJgGVRMmTJi4ymCSuwkTJkwUQZjkbsKECRNFECa5mzBhwkQRhEnuJkyYMFEEUSi8ZQzDOA44x9SXAU4UUHcKAlfb9cLVd81X2/WCec35gSgRCXe3oVCQe1oYhrHGk3tPUcTVdr1w9V3z1Xa9YF5zQcNUy5gwYcJEEYRJ7iZMmDBRBFFYyX1GQXcgn3G1XS9cfdd8tV0vmNdcoCiUOncTJkyYMJEzFFbJ3YQJEyZM5AAmuZswYcJEEUSBkLthGKUNw/jFMIwdts9SHvb7yTCMM4ZhLEizvophGCsNw9hpGMYXhmH450/Ps48sXHN/2z47DMPo77R+qWEY2wzD+Me2RORf772HYRhdbP3caRjGODfbA2z/2U7bfxjttG28bf02wzA652vHc4DsXrNhGNGGYVxy+k/fy/fOZxNeXHMbwzDWGYaRbBjGHWm2uX3GCzNyeL0pTv/x9/nWaU/FVfNyAV4Cxtm+jwNe9LBfB6A7sCDN+i+Be2zf3wOGFcR15PY1A6WB3bbPUrbvpWzblgLNCvo6MrlGH2AXUBXwBzYAddPsMxx4z/b9HuAL2/e6tv0DgCq2dnwK+pry+Jqjgc0FfQ15dM3RQENgJnCH03qPz3hhXXJyvbZtFwqi3wWllukJfGb7/hnQy91OIrIEOO+8zjAMA7gRmJvZ8YUM3lxzZ+AXETklIqeBX4Au+dO9XEFzYKeI7BaRRGAOet3OcL4Pc4EOtv+0JzBHRBJEZA+w09ZeYUdOrvlKRabXLCJ7RWQjkLYC/JX4jOfkegsMBUXuZUXksO37EaBsFo4NA86ISLLt9wGgYm52Lo/gzTVXBPY7/U57bZ/YpnZPFVJyyKz/LvvY/sOz6H/qzbGFETm5ZoAqhmGsNwzjd8MwbsjrzuYScvJfXYn/c077HGgYxhrDMP42DKNXrvYsA/jmVcOGYSwGyrnZNNH5h4iIYRhFwh8zj6+5j4gcNAyjBPA10A+dApq4cnEYiBSRk4ZhXAN8ZxhGPRE5V9AdM5GriLK9u1WBXw3D2CQiu/L6pHlG7iLS0dM2wzCOGoZRXkQOG4ZRHjiWhaZPAiUNw/C1SUGVgIM57G6uIBeu+SDQzul3JVTXjogctH2eNwxjFjpVLGzkfhCo7PTb3X9j3+eAYRi+QCj6n3pzbGFEtq9ZVCGbACAiaw3D2AXUBAp7zcmc/Fcen/FCjBw9m07v7m7DMJYCTVAdfp6ioNQy3wN2K3l/YJ63B9peiN8Au0U6S8cXILy55kVAJ8MwStm8aToBiwzD8DUMowyAYRh+QDdgcz70OatYDdSweTP5o8bDtN4BzvfhDuBX23/6PXCPzbOkClADWJVP/c4Jsn3NhmGEG4bhA2CT6mqgBsbCDm+u2RPcPuN51M/cQrav13adAbbvZYDWwJY866kzCsj6HAYsAXYAi4HStvXNgA+d9vsTOA5cQvVcnW3rq6Iv/k7gKyCgIK4jj655gO26dgIP2NYVA9YCG4F/gekUUk8SoCuwHZVMJtrWPQP0sH0PtP1nO23/YVWnYyfajtsG3FzQ15LX1wzcbvs//wHWAd0L+lpy8Zqvtb2zF9GZ2b9Ox6Z7xgv7kt3rBa4DNqEeNpuAgfnVZzP9gAkTJkwUQZgRqiZMmDBRBGGSuwkTJkwUQZjkbsKECRNFECa5mzBhwkQRhEnuJkyYMFEEYZK7CRMmTBRBmORuwoQJE0UQ/weCMVBV4P6wDQAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:45:40.975176\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACVAElEQVR4nO1dZXhUVxN+727clRBIssHd3d2l2Ae0aJHQULxQJHihhaItLbTQognQUqC4FSvFPbgnQQIkgQQixHa+H7Ob3c1KduMk932e8+zu3Svn2pw5M+/MCEQEESJEiBBRsCDJ6w6IECFChIjshyjcRYgQIaIAQhTuIkSIEFEAIQp3ESJEiCiAEIW7CBEiRBRAmOV1BwDAzc2NfH1987obIkSIEPFR4fLly5FE5K7rv3wh3H19fXHp0qW87oYIESJEfFQQBCFU33+iWUaECBEiCiBE4S5ChAgRBRCicBchQoSIAogMhbsgCFaCIFwQBOG6IAi3BEGYo1i+XhCEJ4IgXFO06orlgiAIPwqC8FAQhGBBEGrm8DmIECFChIh0MMahmgigJRHFCoJgDuA/QRAOKP6bRER/pVu/A4AyilYPwCrFpwgRIkSIyCVkqLkTI1bx01zRDGUb+wTARsV25wA4CYLgmfWuihCRdQQFBcHX1xcSiQS+vr4ICgrK6y6JEJEjMMrmLgiCVBCEawBeAzhCROcVf81XmF6WCYJgqVhWHMBTtc2fKZal36efIAiXBEG4FBERkfkzECHCSAQFBcHPzw+hoaEgIoSGhsLPz08U8CIKJIwS7kSUSkTVAXgBqCsIQmUAUwGUB1AHgAuAyaYcmIhWE1FtIqrt7q6Tgy9CRLYiICAA8fHxGsvi4+MREBCQRz0SISLnYBJbhoiiARwH0J6IwhWml0QA6wDUVaz2HIC32mZeimUiROQpwsLCTFpuLERTj4j8CGPYMu6CIDgpvlsDaAPgrtKOLgiCAKAbgJuKTXYDGKhgzdQHEENE4TnQdxEiTIKPj49Jy42BaOoRkV9hjObuCeC4IAjBAC6Cbe57AQQJgnADwA0AbgDmKdbfD+AxgIcA1gAYme29FiEiE5g/fz5sbGw0ltnY2GD+/PmZ3qdo6hGRXyHkhzJ7tWvXJjG3jIjcQFBQEAICAhAWFgYfHx/Mnz8f/fr1y/T+JBIJdL1DgiBALpdnpasiRGQIQRAuE1Ftnf+Jwl2EiMzD19cXoaHauZtkMhlCQkJyv0MiChUMCXcx/YAIEVlATph6RIjIDojCXYSILKBfv35YvXo1ZDIZBEGATCbD6tWrs2TqESEiOyCaZUSIECHiI4VolhEhQoSIQgZRuIsQIUJEAYQo3EWIECGiAEIU7iJEiBBRACEKdxEiRIgogBCFuwgRIkQUQIjCXYQIESIKIEThLkKECBEFEKJwFyFChIgCCFG4ixAhQkQBhCjcRYgQIaIAQhTuIkSIEFEAIQp3EbkGsdaoCBG5B7O87oCIwgFlrVFlSTplrVEAYnpcESJyAKLmLiJXINYaFSEidyEKdxG5grCwMJOWizANoslLRHqIwl1ErsDHx8ek5SKMh9LkFRoaCiJKM3mJAr5wQxTuInIFYq3RnINo8hKhC6JwF5EryI5ao6LpQTdEk5cIXciwhqogCFYA/gVgCWbX/EVEswRBKAFgKwBXAJcBDCCiJEEQLAFsBFALQBSAPkQUYugYYg1VERkhPdsGYM1fLEYN+Pr6IjQ0VGu5TCZDSEhI7ndIRK4hqzVUEwG0JKJqAKoDaC8IQn0ACwEsI6LSAN4CGKpYfyiAt4rlyxTriRCRJYimB/0QTV4idCFD4U6MWMVPc0UjAC0B/KVYvgFAN8X3TxS/ofi/lSAIQnZ1WEThhGh60I/sMHmJKHgwyuYuCIJUEIRrAF4DOALgEYBoIkpRrPIMQHHF9+IAngKA4v8YsOkm/T79BEG4JAjCpYiIiCydhIiCD5FtYxj9+vVDSEgI5HI5QkJC8r1gF/0nOQ+jhDsRpRJRdQBeAOoCKJ/VAxPRaiKqTUS13d3ds7o7ER8xjHnRRdNDwYFI3cwlEJFJDcBMAJMARAIwUyxrAOCQ4vshAA0U380U6wmG9lmrVi0SUTgRGBhINjY2BDb1EQCysbGhwMBAnevKZDISBIFkMpnOdUTkf8hkMo37rWwymSyvu/bRAcAl0iNXjWHLuANIJqJoQRCsARwGO0kHAdhORFsFQfgFQDARrRQE4UsAVYjoC0EQ+gLoQUS9DR1DZMsUXohMj8IHiUQCXXJHEATI5fI86NHHi6yyZTwBHBcEIRjARQBHiGgvgMkAJgiC8BBsU/9dsf7vAFwVyycAmJLVExBRcCE6SgsfRP9J7iDDrJBEFAygho7lj8H29/TLPwD4X7b0TkSBh4+Pj07NXXzRCy7mz5+vM2ZB9J9kL8QIVRF5CtFRWvggUjdzBxna3HMDos29cCMoKAgBAQEICwuDj48P5s+fL77oIkQYgaza3EWI0Ivs4Ct/bBxtESI+BojCXYQWjBXYIl9ZhIj8C1G4i9CAKQLb1HwvYlSiCBG5B9HmLkIDpvDOTeEri1kdRYjIfog2dxFGwxTeuSl8ZTGrY8GBOAP7OCAKdxEaMEVgm0JjFIOVTEd+FKKin+Ujgr68BLnZxNwy+Qem5HpRrm9MvpfczifyseehMfU+5BbEvDD5CzCQWybPBTuJwj3fIScEY24Kq/wqGE1BTgrRrNxfXX1SNhG5D1G4i8gWBAYHkmyZjITZAsmWySgw2DRhmVvadH7WLo29BoIg6DwHQRCyfPysDHxSqVRnv6RSaZb6JSJzEIW7iCwjMDiQbObbEGYjrdnMtzFZwOcGckowZhWmCNacGqCyut/CqLnnZxOfIeEuOlRFGIWAowGIT44HokoBSexEjU+OR8DR/Md2ya9ZB01hDOVUzp2sOrZlMplJyz92fMwOZFG4izAKYTFhwFtfYM1FYMcm1tWUy3UgL5ke+TUZmSmCNaeSa2V14Muv1zan8FFTePWp9LnZRLNM/ofLrGIEz0uE1l8Tip0ntB1PmA1yneeqtW5+cGjmx6l0fvAFZMe9yY/XNqeQX018SkC0uYvIKiw91xHK/0mYBcJYGcH2JWFAQ3Jtri3c84MQy4/IrkEvq8K1MAnnrCK/P8uicBeRJWzcSATcJVS0J4wDC/iunQjmYQS4a62f37WdvER2COa8nhVlBz6WASa/X29RuIvINIKDidzciDw92+oQ2N+SldVJSknR3Ca/aztZQVbpoFlFQbi2+V1gpkd+HohE4f6RIb88TDExRGXLEm3YoPuFtLa2p/LlX9KsWdr9/5heXmORH+igBWFWVBAGqPwCUbh/RMgvglEuJ/rf/4j8/DT7ln7QefGCqFgxokOHtM8jPwxQ2QnZMhkL9cFNCC2nEiYWIcwGyZbJcq8PBUAwFoQBKr9AFO4fEfLLy7t8OVHNmkQJCRmve/w4kYcH0dOnOd6tPIUwW2DhLjtOKHmYYPWGUHUDYXidXOtDfhn8s4L88owXBBgS7iLPPZ8hP2RPPHsWmD8f+OsvwMoq4/WbNwfGjgV69waSk3O8e3kGH0cfILIMEFke+KwTMKYU4HED0u3bUb8+EBQEJCXlbB8KQnHpwsaVzyuIwj2fIa+jKyMigD59gN9/B0qUMH67yZMBFxf+LChIH4jV0bIjzIJHANU2AWbJgM1b2DRfiXVHT2HqVGDdOkAmA2bNAl68yLl+few1ZwvCAPVRQJ9Kr2wAvAEcB3AbwC0AYxXLZwN4DuCaonVU22YqgIcA7gFol9ExRLOMCnk57U5JIWrThmjKlMxtHxVF5OtLtH179vYrL6DbgexANg7RVGxKS71smVu3iPz9iZyciPr2JTp9mv0XIkTkBJAVmzsATwA1Fd/tAdwHUFEh3CfqWL8igOsALAGUAPAIgNTQMUThrom8ckbOnEnUvDlRcnLm93HhApG7O9GDB9nXr7yAbrtwV7K0PG/U9m/fEi1bRlSqFPsu1q0zzn+R3SiIjm0RKmRJuGttAOwC0MaAcJ8KYKra70MAGhjapyjc8x4HDjDrJTw86/v66SeiatWI4uOzvq+8gm5Gx24CBpu0n9RUon37iNq350Fv6lSisLAc6nQ6FATnqwjDMCTcTbK5C4LgC6AGgPOKRaMEQQgWBGGtIAjOimXFATxV2+yZYln6ffkJgnBJEIRLERERpnRDRCahL5lXWBgweDCwZQtQtGjWjzNyJFChAjB6dNb3lVfQ9nEUA9AI3t7nTNqPRAJ07AgcOAD89x8QFwdUqwb06gWcPAmw/pMz+KiTXhUC5HhyPX1SP30DYAfgMoAeit8eAKRgp+x8AGsVy38C0F9tu98B9DK0b1Fzz3no0+LWr99MdesSff999h7v3TuicuXYHJHfoct0oX29ppKZ2Zps0XrfvePZTfnyRFWrEq1eTRQXlw0nkg4inzz/IrtmVciqWQaAOdi8MkHP/74AbpJolsm30McttrdfR598kjNOv5s3OXVBcHD27zu7YOglUwp9QEJmZiE0Z87+bD22XE50+DBRly5Erq5EEycSPXmSffsX+eT5F9l1b7Ik3AEIADYCWJ5uuafa9/EAtiq+V4KmQ/UxRIdqnkO3FteHgAf09m3OHXfjRk5hEBOTc8fICox5yY4eZQ07OwZAfQ7OR4+IJkxgIf/JJ0T//JP144k29/wLXc+cspm4nywJ98aKgwZDjfYIYBOAG4rlu9MJ+wAwS+YegA4ZHUMU7jkPbSFWnoDX5OnZIceP7efHqQzyIyXQGNPFZ58R/fhj1o9ljLCNjSX65ReiSpWIKlYkWrmS6P37rB1TZMvkP2RXLdosm2VyuonCPeehKVhsCbhFFhZf5MrLnpBAVKOGaQIyPxTTDgwMJC+vqgS8JS+vqlnugylTcbmc6Ngxou7diVxciMaN+/jppSJUyBeae240UbjnDgIDA8nHR0ZAINna/qFXWOVEWtuHD5kKeO6ccf3MLXOCvmP5+/srlo8iIChb+pBZB2dICNHkyey/6NiRaaupqZnuhoh8gHxhc8+NVhiEe36ZHq9cyfZjfeyMnExru3MnkY8PUWSk4fVy2xGo696o+nCNgBbZ0oesnld8PNHvvxNVr05UpgzRDz/kvC8jr/PXF1TkG7ZMTreCLtzzi2NLGT16/77+ddLS2s4UCN37E8aUzNa0thMnEnXoYFjzzA8UPu5DLQIeESBkSx+y6zmQy4lOnSLq3ZvI2Znoyy+J7tzJdLf09zcf5K8vyMgOhU8U7nmM/EBJi4wkkskyzvuSltZ2hpTgEEpAKsHjKqH5TLpxI+tO0aQkosaNiebN07+Ovuvl2tw117RI7sMqAqZl6z3T90Jn9kV/9oxo+nROudymDdHu3aRVGSuz8FlUmtCzL6HEEcKwOmkCPjfz14swDFG45zHyWhNNTWVt+auvMl43TXOfDUKfbgTXO4SBLcm+6W/k48PmgMmTic6fz7zd99kzoqJFmWKoC7o0XPNa5mQxxyLXtMjffttCQBQBxTLUsvNDXdQPH5h2WqcOUcmSRIsXE715Y1I30vDiBdHs2USwe07wPUoodoHQbWDadRdmi0FQ+QWGhLuY8jcXkNdpfL/9Fnj/Hvjuu4zXnd9qPmzMFbm2y/8NOD+G+asGWPWTFUJCgK1bATMzTlcgkwFjxgDHjwMpKcb3p3hxYNMmoH9/3alxdaWEdejugCRKAj44APc6A3IB8cnxCDgakCNh3GZmfVGjRjxkMnODaWmDgoLg5+eH0NBQEBFCQ0Ph5+dnUh+yI02ApSUwYABw4QKweTNw9SpQsiQwYgRw82bG2xMBZ84An30GVKwIvHwJeI4cDAxuBXidAz44pa3r45g7z62ILEKf1M/NVtA197y0uR85QuTpSfT8ufHbqDvRigU0ITunBJ3Jrm7fJpo/n6hWLWZyDBlCtHcva5HGYO5coiZNjMtCiVkCocenrE06PSZU2kIIsGQNPgeubePG7ADOCNlhcsupmV14ONGcOXz/mzcn2rFD+1onJHCKiJo1OYPl0qWUFtSWZnNv8g2h+QzR5p4PAdEsk/fIC7ZMRuYPYzF7NlGPHobXCQnhFLdNmhA5OnIu8z//NByAk5pK1K4d0ddfG9737dtElqVPs+1/aH1CgBWh4h8En39J8qV7tvsz7tzh67b+clCGNn5DgtnYe57TPpnERKLNm4kaNGC20oIFRFeucN5+d3fOWLlvn24zW2BwIDl1mU9osERky+RDiMK9ECIpiahhQ9ass4qEBNbqDhwwbv2XL4l+/ZUFt709UdeuROvXczGP9IiIYIHz99/a/8XGsgBydSUaMPkiWc+1V9ncZwpk1mQpweIuASWzVeudNImo85CbRjFF9Dp/XV2NnlHk1sxOLidatIjfemX788+Mt1u9mmjo0GztiohsgijcCyHGjyfq1Cn7gl0OHGABb2rBibdviTZt4khLBwei1q2Za//ihWqds2dZg3z0iH/L5WwSkck49F+5ri7OtYtLAAEvCKiXLVpvYiJRkSJExaY2Z6E+2UlDwKdniugTzK6uriZp4zk5s3v/nmjVKs2UBo8f88Dv5cUmqD/+YIVAF/74g6hXr2zrjohshCjcCxn++ovL3enSlLOCHj3YRJNZxMWx3bd/f+ZnN2zIrI5Hj4iWL2e77+3bPCiVL2+cOSkwMJAsLbsT8JqAHlnWerdvJ2raVEEJnWFGsHxLaDbLIFNEl2DOa4YUEacrGDeO0xd068bXMz2VNTmZaNs2PufixYm++Ybo1SvNdQ4eZJrlx4r8EkCYExCFeyHCvXusBV+8mP37DgtjE8nDh1nfV2IiCw0/P9aUy5dXmQq+/ZZo/frNRr+QgYGBVLRoRwKekrPzXNq0KfMvb8eOTCmULZMRhtUluNwnuN8kNJtNmGU8xzuvYhtSU4n272fqq5sb01ZDQozb9to1omHDuP7rgAEc9EbEM6s6dXKuzzmJ/BJAmFMQhftHhsyGfMfFEVWpwlPwnMLChSw4sjPD44EDKsGubGZmiwmoY9ILGRrKpodRozIXyBMWxjOKuDi+B+btAgh1fyBMLEJwv0lmLb6lTdeNuxd6c9as9M+RQKzoaHZoly7NSdrWrs18mcOoKC7eIpMR1avHQVK+vtnSzTTkh8RwBQGicP+IkNmQb7mcaNAgon79cja1bmIi22137Mj6vp4941TAJUoQ7dnDy65dUwr4nQTcJiCMgB8IaEYuTYtkKBijo4lateICGLGxpvVn7lwif3/V72qNn5H7534kzBbIa25N8ir1lqZPN/76phdg/iv9sz2c/+ZN7rOzMzOU/vsv++5/Sgo7uitW5Hsyc6amrySzyE1tOj+Yx3ISonDPp9CZsEoZIVryEAu5ofWNCvles4a1VlMFWmZw/DgzXEw9liohlzk5O88lO7sEmjFDW8MEPlcIdlvivPPTCFaXCNavCTXWED7rQJhuoVcwJiYSDR7M/HtjC36nprJ2evky/05OZgdwRIRqndeviSpXJpo2LXMCNO3eTrcgfFk+0+H8yck8uLZsyZTNWbP0xzFkR+KvuDiWFP7+bLLp25fo9OnMDyK5qU2Lmrso3HMd+rSXNK1urEzTVDG6tN59Xb7M9tWcSB6lD/37sz1XH9ILFf+VyhS6jQkIJuAgWVnpzpHOL+RvpEy1C4AwTnFN2o0jeJ1mR2flzeQ2yF8nl14u5wAeX1+iW7cyPp8jRzjbohIXLhB5lX6rJRhfv2bT15Qppgs3YbZAGO9FKH6O4POvyeH8ERHMUffxYc56UBAPZPqQXYm/5HIiMzMOTnv7ls0/pUqxA3zdOtMZVLmpTYs29wIu3PNj2lJ9GoV0olTjZcTwWmkCPr0mScT5Q0qWJNq6NXf7Hx7OA4ouwalLqGB8EYLTOoWZpZdBDSowMJCsrV2I0+1+wevOUvHbYRFDqBJIaDORUOqAQS79hg3ssD12zPD59OnDRauV6Dv+MpnVX6lTMEZEcNrkyZNNE/BF/D8l2L0gFLlOqPOT0Zr7lStEn3/OWvPgwUSXLhl3PK9vahA+7Uzo7GeQzmkMXF01WTSpqRyN3K4dX99p04iePjVuX/khpXNBQaEW7vk1bak+7QVVoLO/E348nibka9ViU0ZqKgu10aM1951bD/OKFRzWnl7ApZkfRpfiFAGdviDYvCLUXESAnVHaWmBgIBUr1oyA11S0aGdyneequialDjCLxe45uX42jt68McylP3qUGUQbN+o+j8hIjqpVT7RlXeEooeVUTpw13UJLMEZGElWrxgFPGQl4uZw1bke3eLIc0oFQZROh6+cGn8XERKItW5gu6u3NDKLXr/UfIzGRGVIrVrDfpVQpxYzP5jVTOWfB5JmCOkqW1J8q+u5dfgadnZkPf/Kk4WtS0LXp3EShFu4aWQ6n2hFmSvJF2lJD2ouhmcbPP5OGuaZ2bc2peW6+OCkpzMwICtJcnpY2uOgV7qf7DYJ/ZRYwJmprSs7+51u+Ut3HbgMJ5f4mDKtL7qVDqHFjdsQSsR9g+3YWcE5OKi79nj3M/pgzR1vwLF/O6yuRnKx2jW3D9QrGyEg25UycqF+YRUfzoFOvHrNxAoMDyazIQ8IXVXXOIsPDOZbA05OoRQs+F125d54+ZX76V18RNWpEZGvLfHZlvxs3JnLtP0ZjYMqK5l6jRsb02nfveHApV45nNmvWGCgKU4C16dxEoRbuaYLmKw+CNIEffosYgkMoVa7ML0HnzmxD/vJLooAADtFes4ZDsw8fZvvr/fusORmycZqCrAhhuZyFuvJFDghQCZfcnvKePcuCKDpatcxrfhVC7Z8J1pHcR5f7hFFlSBgvZOp8x40jsq54hE0y080J/+tFsIwmfO1MPktK0C+/sGlg9GhV0isivlcHDqi49EWL8vWqU0d1H+VydpIeP67abulSxbWt+Cehwl8GBWNUFAu+CRO0BfzNm0Rly7IjUplMLSaGyMZGU2DL5URnzhB9+ikPSCNGEN24ofo/Pp6LcyxaRNSzJwcbubszI+ibb9j+X7n+C5LYvCXU+Zk8J7WlwODAbJ21tmhB9M8/xq2bmkp06BC/V25uPLt58sTkQ4owAoaEu8D/5y1q165Nly5dypF9+y73RWhMKP+IKQ6cmQRcGQrrsmexbWEbODgA0dGaLSbG8G9zc8DJiZujo+q7Mb+dnAArK0AQOF1sQEAAwsLC4OPjg/nz52ullNWF8HCgdm1g9Wpuu3fz8jVrAD8/CXTdU0EQIJfLM3cRM4CfH2BtDSxfzql8x3yVgLiSm5DSYjJg8R7YtRZ40Bld/Tbi+t/LTT7fpCTAstRZTkGcZAtc/BLwPQ6UPgih1lrIZ8kRFQUEBAC7dnFq44EDAYlaQuvUVE5pu3Ej8NtvvOyLLzi97Q8/AA8e8D3Ztw/o3Bnw9I1BhMdWpDjeAxouAwDYmNtgdZfV6FdFs89v3gBt2gBNmwJLl/J+tm4FRo8GFi8GBg1SrXvyJDBlCnD2LPDhA6+3YgU/Y19+yamU37wBzp3jdvYscOcOUKkSUL++qjk4AOvXA7/+CiRJ3yC8/CwkV1wPWMZq9BUAAo4GICwmDD6OPpjfar5W/41B9+6cUrhHD9O2e/QIWLkS2LABaNyYr0nLlnyNRGQdgiBcJqLaOv8r6MI96EYQ/Pb4IT5ZlS/bOtEXrV7uxZldldCjB79spUoZtz8iID4+4wEg/W/1Zamppg8IymV2dkC3bkCLFsDs2dyn9+/5hb99W9nL9gAOafRbJpMhJCTE2MtmEqKiADc3wN4eKFsWWLUKuG8VlCZUvO1lKHPuEE7uLItVq4Bhw0w/htesBng+9yz/sI4CuvgBF0dCNmYoQsaFpK136RIwahQL9p9+AmrW1N5XSgrQpAkLTyVGj2Zhu2MHb/vzz8DEGW+Q1GEIXjntzlAwvn3LAr5ePR789+wBtm8HqlfXXG/JEuDff3lQ+f13vl716vG9vXCB+2RlpSnIa9bkwZOI/1+1ivfftSvg7w/0OeuLsHehPB9SE5oyR5nGtckKBg8GmjUDPv88c9vHxQGBgTyQEfE9GjCAn2cRmYch4Z7nJhnKYbMMkX62TGQk0YwZzATo35/zmuQGEhI4c+Ki3buo6LiuhP5tyW3gSBoy8xx9/z0zD0aO5KRZnTqxTbVSJZ6OK00xjo4c/FOjBk+Zu3UjattW0x7PwT+fkKVlO5o/fx89fsxOQ/XoTf+V/szQmcVMHf+V/nr7rQvv37PNWXlMfcmn5HI2XQC8vqkRpGsvbNE8twArgtUbWvGPdt3A1FQuJO3hwSYRXTl2lFRJgG3yxYppXrsffmD6nylmuNu3VdunP6ZczmYN9WNYWLCtvHFjviZ//aWbcfLuHUcdV6vGEaiLF2sWGcc0W0KnEQS3W4SW03KkYtKYMWyuyirkcmYude/OPoJx4zgHjojMAVmxuQPwBnAcwG0AtwCMVSx3AXAEwAPFp7NiuQDgRwAPAQQDqJnRMfKa5x4dzTU93d05YlLpnMtJZMYeumsXc5zDw/nlfviQaXFHj7Lj7fffiZYsIapdO1RDiLi5vadq1dih6OhIJJEwq8TOOYppeT4nCWV3EapuJNT+kWp12EeLF7PfYds25oBfvMgvodLvIJfzf15eHBkbHs7c6zVr9J+zXM6DKcAsH0O53tNj/HiiImWPEaqt4PMaIyXPigdp2TL927x5w36UIkU4bW36DJm//64pbB8/5uuovuzTT/k8M+rrqVM8QIwbx/6QUaOYtvrHH/xcqe+zVCmmXV66pH8wJCIKDlZFn/bowfdB/RxCQzkXvsQ2klBuJ8HjGqHbgBypdTpjBgdLZSdCQphO6ubGOX0OHMi+LKaFBYaEe4ZmGUEQPAF4EtEVQRDsAVwG0A3AYABviGiBIAhTFMJ9siAIHQGMBtARQD0APxBRPUPHyEmzjCmIjWUb5pIlQJ06bMOtWzdnjqXhC1CDvqn048c8Rd+9mz+NwT//sKkAAEqUAL7esA0LLk9C6Nun8LaqiKdP3wPkCNzpDjxpBZQ6BFi+g/DOBePqzdZraoqK0jxOgwZsVggJYfvwsGFA6dL6zUy//ALMmQNUq8bmBW9vw+dx8iTQqVM04uJKAZACeA1gPoB/UaTIL3j1qoTB7a9dY3t2cjKbW+rU4eUNGwIREcDDh/x71So2uT16BLi7A2FhbDLZsYPNIS1asM25c2fAxYW3IQJ+/BGYOxeYMAFwdgYOHVL5QZQYPx4YOZLNNNHRXKpQFz58AP76i69RSAgwfDhfz+LFVcc7e5b9G0ePsj3fu80uTL/6GeK/vwUMaAe43dfrH8gsli4Fnj4Fli3Llt0h6IbKbOdlXQbtP6zHxZ0NEB+v8j04OGTPsQoystUsA2AXgDYA7oGFPgB4Arin+P4rgE/V1k9bT1/La809PeLjmdLl5cWmjlOnsv8YaSyeKfbMAS9+llD3R0K3gXT7tqYGk5DA5pcff8zcsdatU9McSx4iTFPMGJQUvy/LEbxP8f/epwgdRtLLl9r7iY/n/CIuLkzXe/KEGSH//ccBLYGBbMoAmCExfDhR7958DevWZeaIhwebI9Q1WUHglLL/+x9vM3Eiz6R++onNEbzOAgIqEVBVsd1TAroS8JIWL/47Q1pdaioHOTm6xZNd/SDCoBYEEJWoFElRUTwrKVOGj7V1K3PllfluiEiLS1+pEs9UNM1gt0gqfaGxrGNH1b08doy30YWHD/maubvz9UpfEi8xka9v7dqs+f/4I5trlPjp2F/MlpkpyZFAvd9+40Cq7IC+Weum64F06hQ/B87OPOvKzajrjxHILiokAF8AYQAcAESrLReUvwHsBdBY7b+jAGrr2JcfgEsALvn4+OTWtdBARpGriYk8nS9RgqhZM54WZ1dSJg3+/VdFCW3Hq3jh4ApGzZvzC+/kxDzprBzbZ3EppiQqBU+tVUwrVPZhFgi9exCcHxDApps2bTi74Nu3XIatZEkOUjEUiRgdzeaJ2bMPGBS4CQlcLELZn6FDWaj+8gtnnpw6lU0SKkH5HwE3CUhIJ1CV7SgB2wn4nSSS5dSz5zVavpwF+t9/E504QTT/z31k9WV9rr+q2M56hkfafX/1ipc1bswDkNKunZDAVMUlS1jwqPPJVe0tAUkEXCYLixG0du0WWn1mK1n6XiLUXkU+S3zp0wmXNQLOkpO5KEm7dmyamDhR2/78+jXTHT09OSHanj26TRd//837ySls25ZxqcWMIJfz+bn2G0uos4JQZg/TW3WYkZ4+ZYpvkSI82O3Zk7lMnwUd2SLcAdiBTTI9FL+j0/3/lkwQ7uotLzR3U2zeyckc3ViuHFH9+qylZlXI6zv+d9v30NdfazpPAXa8ubtzut1Zs7gP6Ysq6EJSEgtoOD8gyE4Qqq3XFEotp2i8YJhiTg17biNnZ3Y0e3ur1v38c+OShY0c+R8JwlUCpAQY5rRv3kwklfL+583TvK5793IAU0wMkVSq3JcLAZEEmBHwrdq5tCIu1jGEgAlkbb2IRo/mvORdunBtV/Nitwnm73UODk2b8kxN98DBrX59vvZTpvCAO2YMkZ1dOkcvrhIwnRzrNCTreTY8M/P+j1DrF5JW2UZ+35ym58/ZmevlxUFWmzZp52e5dk2VcmDYMLa/G8LUqTyrym4oFSAMaENWZf4zaUbw7h07kefNU3He02ZtjiGEPp9oPP+6HMAJCZxConZtVi6WLNGMZSjsyLJwB2AO5tZNUFv2UZtl0jTn0vs5EVWLAIJfDfJZ4qt3m5QUdpBVqcJmku3bs+YAMjRzSEnhBE1KodGhAwexBAXxi9y6Nb/4Pj4c2LJgATtWlcFEiYlcx9TXlzU+jy97q3KzlN9BqLSVk1cphVK3AST5SsWWeflSU7AtX86aoaMjOxl37VIF5qSHj49MoUmPShPugP5Aqp07VS99//6838hIngEog4v8/f3TCXflfncq+lhV41hscdQEPm+iOifPS1xCr/G3pCmctVu7dsxIqlpV3zpvFDOLA8S5cxTLXe/y/seUYAEPIjP3R+TkRPTFF9qOe2WK3ebNeXCfP187l5A+tGzJs6vshIYCMqwOwfOiXgUoNZXZQmvXsmmtShUO1mrUiKNoN29mJ7OrK5Fjmx8I06xNipyVyzlg7rPPdAd6FVZkSbgrTC4bASxPt3wRgCmK71MAfK/43gnAAcV29QFcyOgYeSHchdkCP2DmsZxCtv4Sgusdgt0L+vxznoaqR12qIzWVX8LatTnXdVBQ9k8Zo6PZBhwYyNpyYCALGWXyqGPH+Jj37/Pxx43jF0mpBSvb4sVsK9d4UafaEdxvknnXMbTin+3k4aFa//Bh3neFCmwvPnyYBw9vb9YwX73ivC1NmrB5YuhQNlepnz/nzSlPXPrOI03YGsr6d/Agz05cXfk8Wrbkc1JHq/GtCCNcOPJ1HPg3HBV9f6xXuKemMqtEQyCbv2d2iXksSYveSlsudX5K9dqF0Nq1bCIqWpRNMnfvqrYtVYrvR2QkUfHi9Yl9AY0I6ERAPwJGElpMIzT8nlBhG6HGbwSzuLTt0z9XMTE8kJcsyea3zZsNs2jSIyWF/QDq9MisIjmZyPvbyoQJnoQxJdkv43I/TQi/ecPsllmz2Gzi5MT9/+wz9gdcuKCikR46xP6WTp3YLJPVyNn0KRrS+ycKE7Iq3BsrXpZgANcUrSMAV4XJ5QGAfwC4kGow+BnAIwA3MjLJUC4Id7150wc1Y0em2kNWLKAJrVjBmrK9PdvaFy5kLSG9KUYuZ6HUqBEL4rVrTXsp9UEuZ/vmF19o//fiBU9Nq1dngTtlCmdmjI9n7drDg5cPH85h9zVqEFlbK/jwve6TS5+vCV9Uo2JTWpKDSzz9+y/v9+ZNTeE3Y4bm+Z46xU7R2rU5MRQR20UXL+ZlHh6smZ0+rdTcQcB3BGzKUHNX4sQJFu7KPqhnPwwMDiSLbywIXyuE+2yQxTcWZFvfloBBim3Kpx3L1dWVoqK06Y6QJPNn60mE4bXJbKYN73emwMvdbxJANHzuGSLS9AsAROfOafZZVxoJa2sbchjRllBtHcHqDVNMWwQQPK6SZclzNGQIDzgPHrBpx9mZqH77J1R0bDeTMpempPDAcOQI9+3qVXZuHzrEAm/TJh6gFi9mM9DXX7OTcvBg9p106MDmqFq1uMyhtzf3Jb3DGxbvONUyiFB9LcH1DtnZsWCdOpVncboc8CEh/ByXLKnpnFbez6xmak1M5IGwQQOewS5YkL0D3McAQ8K94EeoBgXBz88P8fGqCFUbGxsMWjwIv+10R/J7R6D9V7w8HX0sPh44cQLYv5/D0lNTgY4dgU6dOITa1pb3R8R0vXnzmFY3ZQpH8llaZtA3NTqYegTksmXA5s3Af/8Z3sfNm0yZ+/ln1bL9+4EOHTTXS0gArl8HLl5UtadPOWoQ4H6/fAls2QKUKaOK3HR0BC5fVkXvyuXAH38AU6cCNWoACxdyhCXA4ftbt/I+IiJiER29Gikp2wFsBjAINjYXsXr16gzTDfz9N4e6FyvG1MVNm4B27QC3790QFR8FPKsP/H4WmM2hmHYSO3yYm4iUlCTFHr6CIFRD0aKfIDzcMW2/jo7AvXvAyDnBOHLjKmJbfw4fRx/EJsUiKiEKeF4L2BEIDGwNLHums2+LFzPdMX3ovDKNRGhoFFxcRsHefhIS5OZ4W2kBkiuvAcwTgBOzIXlTAdMDpJg7sF3atjIZULN9MPY+DUJyggWnV0i2hTTFEbXdm8FVKkNcHLRabCxfHxsb/g4AVavyM6lsdnaav/Uts7AAbt1iiuXZs8Ddu2onZx4LQABsIoAYX6DzCDjK7iJy+UmDdM5Fi5iuOW4cMGkSR93mJC5f5ujXXbuYrjp6tHZ0cEFEoY5QNZRIq1qTZ+Q2eIRR2oNczrSsJUvYhm1vz9PR5cs1U6GeOcPmjOLF+T+9WfH0TE1nbjhERYpknGjp3Tui775jNkGPHtyvgQN5etyhA6eLNVRDMyaGzS/p7cetWvFsoFcv1bKaNTXLqyUksJbk6sqap7q2JJcTXb9O1KXLDZJKVfbn777bo90JHde4Uyd2vjk6xpONzS4CiCSSCELpfayxKx2iXxVlh1yj76h8+Zca5/Dpp5epRg3V70WLeP8pKazhXb2qOiZmSghdhrF5rtYvGuYTZXNwYA1V+XvSJE5SNmQI54F3L/5OaxsXFyILq2SCkKrXiQvw9nb1g7jCVNryVILLPbKqcIzGjGEzx/79PHsMCSFatWobeXuXJYBnoi1a3DeJJiuXs4N26VL23aTvk4UFP9vWsu8JfdoRvnbmZ1T6gfC1Jbk2d9W77z17WFPv3j1vkoW9fs2zLS8vZj398Uf2zKbzK1Cos0Lqy5sOCTk7G1+GLT3eveOp77Bh7PgrXZoF3cGDLPwuX+YH3MODBaE6J5lIzaE7w4xze0+3IEx0J6nTc9q7V/9xo6OZGufmxo7Nmzc1/1e3zzs7M+Pi2DE2A6hPhb3mVaMWPe+Tpyc/Bf368dR67162o3bsqE35s7JJomIBTdIGw5UnttHIkdyXRYu0HaxKJ5hye5ksipyc5hPgo0WPTE5mgQkQNWz4WLcwLL1Pe5ntSxo1ip12urZR1hbt0kW1rFIldjTrE7jqTT0tQYkSqu8zZ7JfIG1dn5NMJfWvRFZfVaCVJ7ZRXBybrqZN43VKlVLRaWNj2awxYAAR/GoSXO4Raq4m9OpNaDeW0HAhoepGatWK/TpKc4mrayxJJBeIHckrCZhBAFH37tfp0iUut6fL/hwaymbDZs20z9HTk814v/9OGjEWgiAQqoCrYM0CwfoVobyHTt/Jw4c8KJcty+9AXiM5mf1mTZuyovXNN8axyz42FGrhrk9z9/RsTSVLZs8x5HJmPnz7LWsL9vb8oK9cycLy009ZAM6ZoyoIkRbENNmRNTXXuwSzeEKT+TqP8eYNC11XVxYIxgR3vHjB9tZq1Yhci8aSWdNFhJEVCV2HEGzDyazBz7T69B8UF8c2/CVLtM8rJIRpoFqCr+wuMm8/lQLWHqYLF1h4lijBtLXXr3m7mzeJzp/nABjWwA8SkGKUUM2O1rMnxykEBbED3MWFZzcXLvBsR7me4BTCNuXJTmnL+k+6mOZzkMs574uPD9unletUrkzk/rkfD9CzQPiiStosrOi4rvTppyyU+/fn9dM73WNj1frbvX+G7JGEBKLixRsRUJ+A7gSMJGAZD7xWp6h6dVYmzMx02M3TtWHDmF0TE6P/+dF+d+4TUFbDdxIXp8rPtGBB9qXEzk5cu8bn6+TE786FC3ndo+xDoRbu+vKmDxlyjgYMyJljRkVxQM7AgcxNr1iRc6nIZCz4p01TlEBTvsiel9JeOrsGQRovXEQEr+/iwmaAzCZZ8pzUlrVB5Qvuco8wvniaAAkJYWbIkSO6t5ctk7Ez0wThWqECO1u1IzmNaQ8JWEPADdWyctu5eAaI0LMPmc81p43XAmnDBt37kHzplpYQbfDCSeToqJarHTzo7dtHtPFaIPks8SU04usz+VfNxOUpKew0bNpUc//FihFhZCVmXVXaQnAIY83b6wzB6TEtXcozrSNHmF2kjnfveNAvXZrIxSOWpNW2pBWSMcQe0Z6JNiPgDAFW9Pvv+mckpUqxCaZrV3aMe3vzAODszM9nq1Y8CE2axNdoyxaigIDDZGVVlVTVsy6QpWUTCgwMJLmcqcAyGZuWjC2xl5eIjGRyhEzGMQsZ1aD9GFCohTuRbrbMoEEc2p7TSE1lTWH2bH6p1F84adU/2XasYGhYjWNTiZcXa5yTJvHL5+dHtHT/ziyxC9JmCgNaE4oEa/SjUiWeSh88yDb8R48MbD+iOkGSqCk8Wk4jDGpO6OhP0pobMhDalwmYR8AqAq5o/V+9OpGb2ygCWhNwQSG4uhJwk6x9lpJju6UEEFlXOkybrgfSzz/zNbK3V+2jRHW1/dZaxedc9GLasrJlie7dU53bmzds6wdYOCrx4gVP5729WRisX89+jPv32a+h8/xkxwl9PiGfJSXS9rNggSat8/p17sPw4by/uDgutmFTcydhhpnB+6vSpu0IGK+zD5068YCiz9+jRGoqKw/BwcywWb+e/ThjxnAkbuPGREWKvCNBiCNA5TeoVk11rMGDmS578yYrNdkVwZ2TSEnh2IqWLVmhmTVL06f0MaHQC3ddKF0646i/nMCrV2y6aNRI+6XceDWIXrwgDWfg+fPZUwdWI92Bso0vTjY1dusUELt2aQoHzXKFtux8TL+d9APBNpyk9q+ocWNDAp4UQrsveXq2J1dXnpEo/Qma63UlwIKsrb1JJouifv00/y9TRlUvtEgRFpqSrr3Yh6HjuGvWaEaDXrvGDsCxY9mO/tVXHAzWqxdP4/38uEB1eiidvxr77/SFznvTqxf7QeRyPr6bG/9WR3w8p3vo21fbZi6XM89+5kwiQUjVcV6p9O23e3NMsMrlbL5RnxV4e/OA1a8fC8kKFfh6WVqqNOPu3Tl19TffsGlu3z6+luHh+SeVwM2bTDl2cuKZ1JkzH8cApYQo3NPh5UuOtMzr9KIaNle15urKfOpp09is49JnEtt0J3gyd7ruD4TmM8m5xwzavJm1rkuXmJ3w7p3uhzOjAeLFC9Zg0velYUNminy96ihZz/DgYJZPBrFGrE9wu92mChWI7OxY2CqXm5n9SkAcAR8I2EGAiuUyYYJqUJs5k2j58p3k4hJAwEmSSN5Qs2YPaMySk2Tm9kTnMatXZy10zBjFMmUiNPXWfjQ1a8b3vndvFs5WVkQjF5zi0oCK9bxKvaWfftIdxJaayn4U9ePaOnzg32bx5LOojNagW6IEp0zu14/t9Pr8JfHx7Ahv357ZMaNG6b6+rVrdo2LFmhAgkFT6kpYu3an3GcuOWqVyOZtplMc3pOXGx3Pq5NOn2U+xYgU/P4MH87lVrcrPtJkZO3Jr1uT7MGwY2+5XrmSt+tw5dgJnh9nEGE7927dsjipViv0q69drp4TIjzAk3As8z10Xdu7k8nQHDuTaIXXiyy+B8+e5ZN6vv2r/X68ep3rdsQOA7ATQfjzw9zpAbg5U2A7Eu6N3SX9ERUGjpaQArq7a7aX8Fk5F/I1o4RHc3STwb9obn9ZtC1dXTlWr5C1fvJhxqmPz4rcglZ3Bh8e1gJc6yh2BU+1Wq8bfb9wAOvW5jacPfIEUG0iGlkPt14sQ/6QrKlYE/vxTtV3x4pyWV9mKFgUWbLiMLRvsQJHldB6rRw/u9/v3nFIXzg+BuCKA7wngflegwWKg3iTQMsKzZ8zdT0rSsaM+3WFd5TDWdNVMl/v+PZeKW7oUePKEl12/ztzy6dOB48e5jB/AaYw7d+bvyipVZcpwGb4ff2RuuhJyOadJPnuWU/hu3ardpcmTuWxghQqaHPunT4FatYBXr3SXrdMX42FMvIESt24xZzwqivnwffsCX31l1KYGkZzM/Q4PN9xev+bUv56eGTdl3InGNdBRic1QOmS5nOXCihXA1aucbtnfH/Dyyvo55wQKNc9dFyZOJJo7N1cPqQWl+UEqZV758OGcBS86mnm6Tk6swbduTWTm/lCludk95+LQnb7Qm4sjIYHo2TO27R47xpSwX37h/U6YwI7eTp146lymjL4shya2YucJSCXzdtPJ1TM2bbmDA88o0mYO/dppbOfiEUu1anFkJRFriY8esUP6q6/YiWlnZ1wfjh7lkPi0ZV95cKoFEME9mFBZQk+fct4TgE1zEps3XLDE6g2vV/IwodMXVHx2bSJiLXTCBL5GrVpxtG+7dqrkVXI57+fCBZ6JKdM/tGzJTurevfn3xo28fmQkmyemT+ccMunPwc6OfS2OjlxdyxBHe9s2ZmXpQ1aKpcfEcIEUd3dOvZyczDO7GTMy3DRbkZrKpsxr1/jerl3Lz/GoUcyGatiQZ0ZWVux3KVuW6Z59+3L/nbrMJ3Tvx9HoejJQ6sPdu0zPdXZm09rJk/nPZAPRLKOJBg1YEOQF7t0jqlOHr3yXLqoAoCNHNHN9v3/PNEZPT6KazcPIom9/TbYLiHwrRNL165l74J4/Z57+11+zALW2Zhpd48Y8oKjb/bOtfd6IA2JGVtRYHhKiv59JSTz4Gdqvem4cgMjW9k+C5wE2ZXUZSii7m+BxjCSSSNV6ZXeRpGdHfuFngVA5iE1NvbsTqgRq7O9//2PBUro0Dzjq9uIrV1i4KO9BSgoP1On7aFv7L/LwidFaXqwYDx7792tWe0pI4FiDnj31C3hl3nt90BfjYSjHj1zOA5GnJ+cNUueGL1vGZq/8CLmcB+LffmPbucYzYRZPKHqZzZqz9Weg1IeYGDYvlSvHzuQ1azJ2VucWROGuhoQEzlZnTOra7MTCnbuZDSHlfOT9Jl3S+D8ujhNnpQ92UhYOcS0aS1blThI+b0IuvSdrCIjixVmg/P237nJwCQlsA1XmI/f2Zk20Y0cWnDNmsH2/Rw8WNu7uTJn79ltOBFWsmKb9+flzzaCh/v05x8eBA2o2b2Nb/aXk4sLHVz/3iAi2vRvc1uY1WVc6rP9/v5qcO6j675rLx3lr5rHv9AUnEZvsyP6EolfIzCWUunZlQaHcrmxZ7Tq7kydzI2JH4c6dOhytas25SBwNGcLXS1c+FnV8+MD76t5dt+25cWP91FUi0zX3q1fZ0V+rlnYOHSLWmgcNMtznnIZcztf52DGeUXz5JQeDeXjwrKduXe7jwoVEu3cTOY2vpUExVTbXefqjbPUhNZX9W8r0xZMm5U0UrjpE4a6GU6f44c0tBAcT1WsXQrB9TWg5lVBmL6HGGp1sl6ZNWYPThfXrN5OLy9cEPCRLy7P05ZenyMeH7+CAAapQcjs7Zn/Urs0h5LVr82BWqxYXv5g5k9vIkbzMxoZfiDFjWOA8fqw9E/D35wda3QHdqxebka5fZw2yWDHe3w8/sLb3338c9FOzJpvA9Ak7iV0EPX7MpiKAmRbqlNGqVVlgunjEkrTWOoJVVJrmrb4fe3s2lahHxGq1rp8zT354bcL44vzSD6/F/1UO4v9KHSDLQZ/QxmvM5f7uO6bLffutqo8AC0H1qFejmtstKhbQ2KTn58MHPk63bpoCPimJlQF9mUuJ9Md4pHeqqtea/fVX/UyW7du5H7kBuZwdqgcO8LM9bBibYJydWTFp3JiZTMuWscB9+lT3DNa1uSthWjqW2DQYTKFgDB4+VJnrPvmE89bnhclGFO5qWLAgd6aWV66o0g84dZnP9MFPBrFtd0IxnXa/2bNZG/Bf6U/SidK0AJxW41upvaRSAvqTINyl0qVfa9jLGzRg84pOISphYeDtzdr7kiWszRvKP6NEYiIH4Uyfzr/37GEThfq2KSnMdx4wgP0F1Zs+4wyUrnfT+mA5oIdJwvDWLQ40cXdn4eriEUuObZenzX4AJS+eWSilS/P9hUOY5r4qbyaMLkXwr0go93eGx5WapWjw5rPcrN4Q2o8htJpCsI6gWbOMu+5KpgtgSdbWh6lWrbA0AX/lCtMPjd2HLrZMaiqbMTw8eADPKKPiP/+wnyA7MjoqoUxbvWsXD6QDBrBCYmenqj41ahSzaE6cYMXBFCGqlUJhHAhVDJumTEFsLPuzKlXiYLBVq0wr/J5ViMJdDV27srMup6AMxff0ZI0jLk4tAOiLqlwkwzKaC2b07qGRj+XkSSJ3nxBCgLamgQ4gjBVYQLUeQnD+TacgKV2aI1krVWJh7uSk+X/HjjydffzYtPN69Yo18fXr+dOQz+K3c1vJvMMUnf2z9L1I6DDKJOHo0IJpl/378/1T/2/cOCP3Y/+U4HaL4HlR+z/XW1ShAmvolpaG91OiBJtK0vPt1ZunJ5HHqF6E/m0Jvsc4H7rrXULD76n4jIbUqxfvZ9cu/YJKW+s2J6l0N9Wo8ZQ+fGAhkpWaphcv8gypfn3Og2TsNrLyUZmKuUhMZE75n3+yEtOnDzu2rayYP9+hA5v6fv+duebZVW0pK05lUyCX8zvRrRtr8+PHs3af0zAk3AsVFZIIKFKEKU7ZTW06exb45hum/E2eDAwdClhb83++y30RGhOqWvmDA3C7FyxvDYdddH306gUMGMC0NmuH98AEH+DKMOBBByDREfjgBHxw5O+OoYDXOcDxIXCfMGnQHCxapN2fHTuYjmdurloWHQ0cOcJpgQ8cYPqjMoVx48ZMdTOEy5eZtlmrFqDvdiUmAkV7fI/o/V8DZXcD5XcB+38CUqw11vPxYZrj9u0ZXlqdsLHhlMxKSOwiII9111zJ+RHwthTgch/oMQBCaHPQhZFAjEy1zrC6sHxXDv7FNuHMGeDCBdVfxYtHIyoqGB8+EIBmmesoAHT6AkiyB47wjVq2DDh1SkFxBTBqFFCyJNPwlG3Bgu8RHR0NQKLWrMB1cRgODsDw4aptiDT3oau9fg0cPKjqWs+e/JnRdkTA/fvAs2cAfE4BJAHK7QIa8znJHGUIGReC+HhOGXz7NlM8lZ8hIZzeuGJFbhUq8Ge5cropjNmF7KCDmorQUGDlSmDtWqYzjx4NtGkDSCTZfyxDVMhCJdzv3QPatuWLn104dQqYO5cf/KlTdedxN8S1bezQD5s384Pw8KHaRtIPQGrGSbAbN+ZjdukCtGrFg4sSixYB48cDUqn2dnI5cOUKC/r9+/mFbNmShX2HDsw1B1iAKvnzhw/zwAVwnm4iTX69umA0BpUq8UCxcaNp26lj5sZDWBTWAwkp8cCbEsCPj9P+E7r6gfb/wIIo1RKwfwb06A9sOJHp43l6xsDMzBFPn2a+zwDnwa9eXZPfP2IE51uXSIBFixYCSAUgT9fMAMwEwHnvGzTg9Q01QeB79dtvfI9cXfmZdXHRva6+/URFAX36AKgSBNz6H9B2EmDxHoioCERWgG9yJ7x8yZx+dQFeoQIvy6i+QU5BmW8/LCwMPj4+mD9/vkmCXV/dhYyQkMB1GVas4O+jRgGDBvGgnJX9qkPkuSvw++/Mfsgq5HL21jdvztPr337LOJIuvZ3yh8Pbads2noo2asSOTY3pvUUMmy8muapSAw9qziYdHaYAJycu0abrvwsX2L4aFcX2zTNn2G6+fj3b3pVMGX1mBg8PtiemX/7997yP9NWKBMv3hPLbOfvkBE9C1Q2EOj+l+RiCg7X35ejILVts3LYvtZbZ2upYz/cowTqSvL6pkcZ9t7Fh56yV1THi3C1VCBAIMCegD1lantPYhz7WFZsDwojL73UmQDerx8mJfQbK340acWRn0aKdiOvFapsTIiJ43bZtjYuiPHOGqa1NmrAD3BS8fs227pUrdVA8i13ge9tqMrkPGUb37xe8cnfZkfpDLif691/2dTk7sw/h+127srxfIsNmmTwX7JSLwn3oULY3ZxZyOXvmlWX11q83rhBAfDyzdBYtYt5y8eL8Qnfpwjzlf/5RpV7tMWkh24Y/68COQMtodgL+rychwJIfhABLwqBmTK3MhPCTSPhF79+fc6p88w2/vH/8wX25dIn9EuPHs1BwdlZt+/Ilv8ANG2rb80eNYqfqukubuXTdbBD6dCO43CfzGU5pD+6jR+w0U27Xp4/mflz+N1V33yXJ9Nln/F0pjNF0rup/NUdrZlqtWkz3i4wkhUAHAT7Eic7CiYt+7yUHB14/fS59dQDuBLxV24+yOVFgoOZxlc+lOvvG3DyZuPD2e+LMmHvJzOwX6tv3Cg0bprqH7dvrF/AvXzItsFgxdkzrs+/L5cw2OXSIC8z4+fG+XV35HjdsqEpbDBBZDm+lERCUGaGUnxEezukWRoxIF0DYp5tJQVBKpKYy6yk2VpXLRrCII5Q6SPi0Ezt6M7FfIsPCvVCZZSpU4GlSjRr61xm5aiRWP16NVNtUSOOk8Cvph5+/WIn9+3kq++4dh5v36QOdZcaIgEePuFSdst25wyaI+vVVrUQJXj8mRtO08eoVm1mEar+AzFOBqBLAk47aB7J7BS8PS5Qs7gQzM7aHx8Ror2ZlxWXP0kMQuJRdhQpA+fLclN89PTXD2c+cARo14lJ1uo5x9izbFpXbBN0Iwud/f47kd07AL9eB3j1h7nsJaz9Zh+TL/fD118C0acDYsRxy37Ytb9e3r+7we12w8LqBpGdVdP/pdQbubdfhj/5r0LIlL/r1VzZ7GELdukBEBIe9a1+zGwD4eJa+l5EYUgtFx3fBlPZDMKJpd60ych4eg/D69UAArTWWy2QyhISEAGB/Q69e7OuwseFnpEsX4MULfk7r17+Fq1c/x/PniXB3r4MOHUbAza0Oli7lfTk5KVItgFMblCsH+PqySW3fPmDbNjbLzZ7NpoDUVLZ9q9vClZ82NtqmlIoVAQ8P4M0b4JNPeL+HDgHztu/A4hsTsmROkMs5TUZKCqciMPQ9o/9N+Z6czPf3+HG+FibB6TFgEwnIzQC5Gcq7VDWqr0Ts+zIzU32+SXwFSJIBaRIwoB3gyjZZAQLks+RGd0m0uYMFZ4kS/KDqq/04ctVIrHq+ClA6IQnAra5wO78CRR19MGMGO6DUbdgxMWzHPHWKbdeXL/NyMzO2M5Ypw46kuDiVAI+M5M+3b9np6uammQNm82agcmUWRsplF94ewE+nf8er69Vhfq83nKTFMGKIHQYMUNUxBfgFPncOCAzk+qoA8Omn3IdVq7SFc7FimrU0Q0LYPli+PFC6tMrWDrCNNjVVex8VKwIzZrCQdnFROJCjQ4EV9wCf/4BuQ4F4F9gcDEQp6oCgIKBKFa7b2qMHC6g7dzT3OWX1Uazc/AjvLnUGYosZd5OHNAR8zsLG3AaLGm6Ec3hPbNvGuYSUWLJEMzfK3Lnch+bNeWC5dIkHgsTEGLx+vQopKQcB1AHAjkNJ7TWQXxrOGxe9AiHeA9KEorC2kqJIEcDdnZ32u3crjzAOwGsAr2Fl9R6LFn2NESN6pjm6r11jgf7FF6x0/Pkn8Ndf/J+yxu3SpWxfVwqN9u2B/v1Z4EZGsp8E4Fqzhw4Zd6mUaN6cBbmDg27hdO+eKmdO1658XjIZPxtZEcByuaawU35m9buZGb9XV64onL8moGZNdnxWr87+ATMzYNjeQXid8ByQpADSZP6UpMDT0R3/DD5oVJ90+by0SBYKKB3TxkIU7uBkTj/+yGwRfTCbZIZUu1RALgB3uwMnZwCvKwNl/saPo3ohIoKF+IkT+vfh6MiCS1firvTNxUU3Q6XfxMvYfe424toM0qkZEbFQ2LSJC1L7+PDL3rcvCxclwsNZ26pcmYX46dP8Il+8qFrH2Rlo0oSdzPfvc5+ePzd8LS0suFB0+fIqDbFuXRbQ1aoB/1lOA+JdgLMTNTes9Ac+XO4DS0vW9hs21H+MffuAx4+5SPgffxjujz4Ilu9BsuOcOEyBkpUj8fimm8Z6JUqokoEBzDKqXh24fv0W9u0rCrncFYIQB4tafyHxgzlw8zNeseKfgNwM1hIHVHdsjefPWetOSclcf41B2bJ8n9zcWKt+9Ej3zCyzsLNjwV26NM9iTp4ELEueR2LNpXC3d0LEul8xaxY78rMijJXOW1NBxLPb69dZ+z5xgpPvGYK1NQ9iLVpwq1LFeOeuqYnHjEV27VcU7mAmi6UlT1H1QZgtAAKAFzWAP7fz9Oudt9Z6EgnTBzt14oemaFHWfDLzsKZH0I0gDPv1Z3zYuhYYXQGA9k0nYg06OZlf7IMHgXXreOCqWpU19fbt+SW6cwf43/9YW23ViimQO3eartUo4e7OL2h4eNbPNcchOwFAAEKbmbTZjBmcMXLhQv49dCgL+9ErtwN3eqpW7DgSsHsJSFKxf+AuDeHVpAkPSuXKaQs3iYTNe2/fcnvzhgfXmUyCQdu2zFJ6/ZoFmS5TmCG8ecODtjFITuZnITSUZ23Kz/Xr1VayewE4hQJOIcDNT1Gr5VN8M9Ebvr6sxatnucwq5HJ+tu7eZcF94gQP8IYglaoEd/PmLLzt7bOvT9nBasmp/YrCHWyTnDGDp126kJQEWA9pAHlUHeBZfW4JLoDXeQhFLmDfjBmoW5c17pyE73JfhL4NA+Yq7G42rznFr9wcQrIZiMwAmEEikcPcXAJBmowkiodcSIKQag1KtNPap5IKB/DD/+EDm270oX591sB1pSFOjxo1mPu+Zg3/btCAtXJTUb0636MmTXh2Ubmy6fsAeObx5o3ih+dl4GU15tqHNgHii2iuXHo/0HAJHO3kcNhzHAMHsmmtbl2eodWqxXzlN2/Ydr37RBhr5XVWAe89AZICnUZpTaVfveJZzZs3pg34L1/yNXjwgAdkpbnq1Ss+L7mctWldcHDgWaOSounqyoK3SBHNpjQbqf9WxmMA/JwsX87mq9Q+nfDS+ijwuA1gHg/EFgV2BEGweofWTRwQGgqEhbG2rxT06T9lMu6XEqmpPLt5+JBnksePc8tIDDVtqhLelSvz+WWHMvWxw5Bw12N91th4LYDOAF4TUWXFstkAhgNQPmrTiGi/4r+pAIaCSbpjiMhEK2DWoGs0/F+5frhyhZ1+AD9IT59qOj2vXwecXf5ElPs+oNQRoNk3gOs9IJXwRXF/dOhg3LGyOqKHxYQBEgJK/APYh3MgzvN6wPO6oKR4AKcBnIEgXMKAhVWxOe43yBVTO4JKy2/uwvz5TZtY80tKYuFx4wYHGrVqxeaHTp34d4cOKm1eeU0A4PffFQ5etRcpPp6v1+XLbKNWF+Zp34fVBd6WBLYb5yG9do2dv61ba5pItFB2N5tZJrnD6kNJuO0/hFXLndClC/+dJtgBILwWf6pr2+p4Xxwofh4xFnG4c55t2Fevchs+nPnJS5ZwGzMG6Pj1WQxr1QKo9Cdg9Rb46S6sGqzH/B7jNHZ7+TIPDLqEDxFrpkpnprpjMzGRBzaATV0LF/IAK5OpAmDGjmWhqPTtODjwQPLwIccpdOvGfPY7d7jfcXE8A4iI4EHixg3V79evuVlYsKB3ddU02WHpPtX3bgP5vai2HuR9Fof38MivDIxSavyPHvHs8MQJ9t0YiwYNWHA3a8Y+nGLFWCNXvmOnYsIQ6uiDMq7z0dwtZ4KPChoy1NwFQWgKIBbAxnTCPZaIFqdbtyKALQDqAigG4B8AZYko1dAxMqO56xKsAHTascYW2YXvhrfGwoUqwZWayg+Ukr1SuzZrILrYMiv9V+o8fk7Y4tIcLedHsdb5icJ59xbAD6UB1FM1s0qA230gzh3wCAaqbQTK7YHM3R0PvgzBf/+x7XrJEs1jDBzIAU5F1BTZ1FQWHD//rLtfY8ey469JE91+grg4ZhEtX57xOQYFsfY2aVLG66pj0spj2PJmAp7NPwrZt7UQUPd7jG/bG+/fsyB9905TS8wQTk8Ay3dAx26I++kJhg7VZOvYOSYi1etfJLT6ArISqfjU9jf8sbwG5MNrISwmDE7XZ6B4+BcIPuOpIcjnzgViY4GRI7UF+J07fP2UbBR1Zoo6SykoiGcLW7bwQAyw8FeycmbMYLbMggXAZ5/xYHTsGEe9XrrExwd4QPfw0H8J3rzh2cqmTSrHuRISl8eQvynJP4rc4OcsrqgJF1gdcsD5CSTOz1ClWGl42hVHeDgPCCkpujX/O8kHsfCWPxIsQthciux5xwoSshzEBMAXwE2137MBTNSx3lQAU9V+HwLQIKP9m8pz1xdY4LrQlfm3tX/Wy2Vu0oSTUB04wGlN793jQA1j+OrqSKspOtWOMKpMGlfVVJ6q3nMbWZHg9EiVW6aKdn4MBFgShtYjOD/Ue74ABxk9fsznqCweAXCemS1buGza+PHMax49WvX/oUPMw1f+trLiQKNevYjWrePEYxs3ci6b9MeUVttCGFmB0HSO1n8lSnBWypUrOYukl5fpnHR7+7U0atS/BBCFhamuX0oKkd83p43bj8U7QpV1ab/79ye6cSPdOmp8brM6v1HfcaqCqklJHO+weDHnxp8/XzPnTPHiXBd17FhOLvXvv5zK2FicOMGZGtev52yhyiygN26o1omI4IyJRYvyesriFr/8oupHy5Z8v6KiOF3z1q2cBbJKFU7QVbkyr+fjw9z4e/f43tuUCjD5vgD8jBQrRiRYviMIyZxts8MoDS63elCf97eV6du/9tKuXUQ//sjZFrt1U2wP4nzsZXdnmgtekIGs8twFQfAFsJc0NffBAN4BuATgKyJ6KwjCTwDOEVGgYr3fARwgor907NMPgB8A+Pj41Ao1ISeABo0owQl4XldlJ39Wj+NGkq0BkgAQOPRcAWtrdnK5u7NNU+nUio7m/5yduTk5qb7rap12NASs3gAvawAHfuRjeZ0DvM7h6PRvULcuzwQyg6AbQZj2TwDCZpxH8Qk98fzv00yzTo+xApBQA7jfCbjXFQjXPYDrQ/XqbA5RYutWdkY1bQpMmcIaf+/e7IxetYo10owQF8e5U9b9EYlws7OIv9oFEFLx/d/78FXnrmjVSj/bqFkznlU8ewbMmmXSqeiE1Ok5Up3vAk9aGbeBkAKJ9Xt0HxyG41Gb8eavuUDTb4Bm84FEW+C7WDh1XoAxNaekaeK3bvGmbduyn6JiRTZjXb3K1zer2L+fTWcAkwF27tS8Z0pcuMBlGy0sePZVvTrPxmrWBIKDtdc3N7+H5OTzMDevh+Rk3aULNeB2Byh2HHhQE0gAXr+uDzc3bdOTXA78+y/TedcERgFFbgJVNgOV/gCsVZ5hG3MbjVmvNblivM8WWL9og9On2bwXY3aXqbQ+p4ESxwCnMACmc8ELMrLsUNUh3D0ARII1yG8AeBLREFOEuzpMNctI5khAICBVCix5oXCUyYFyu4F6P3LdTInivAiQLI7Cnxtc8OIFPzRnz7Idun59Ns00bMhJrACVsNfV1AeDY3euIinWBkhwBj44s9NTD0qVYi5ynTq6B4r0ATBK9O3L3OVJk9wQFRWlWGoHDozpBMG8M+D4DlR6L1B2L+DzH2yszbGs2TrgVm+sX890wnr1eOr/8iXz31MNGskYn33GgkKdNVG7tnbCsDJlIvDkSQJSUnwAAK1b38fAgWUxcCD/P3gwX+NjxzhgycpKk6nj6so25Fev2I783Xcqp2H9+uk547kDs6aLkeJ0G7g2GAhryuabaEXUWYXtmN6zZ5oppWxZDkRq04bNKOHh7PCLjMyawy8hgW3uK1YwzfXECRbSgwczM0oXkpPZPLNhg+nHK1LkPbp0sUejRvy8ensDZcuGISVlIICTamsOhK1tV8TGqvwYSmpuUBArCG5u/Pz8GNcQzyXpvOtyAZL3vpCHNATufQI4PAWeNgJeV4Zl8bsY879aaNRI8U4GZQ8XvCAj280y+v5DLpll0kwis0GYbkEYVpfQfjRZVN9GgstDDtkvcYTQZB6Zd/yaJNJUrdDrFy+4+MDEiZxOwNaWC0OMGMHT23v3DOeN1jANzQJhqi1ZTSpD3/61l44fZ3NGzZqGp692dkQWFmzu8PTk/C2NGnFhjP79Veln27S5S4JwRW3b5ySRLKZvv91Lm64bzq199y5Xny9enEP+x4/XLIYB6Mhrk1GziiLLEufJ3iWSJJKziuWfE1CBOGRec/0WLTjFQZ3WoRrL67d/ktbP1FS+Zp6eRMePczqGEyfY5KHKUZ+sv092LwjWEQQQCVWDqOPsFeTUdR6h9P5MmRbSWosANi9V3UBoO15nBZ/btzmdREQE5+xp08akx1kDcjlX1PL1ZfNXaCgvj41V9enkSU4XvHix7pw/hpqT07cEtCVOqUAEPCbgFVlYBNO8eapKUxs2EJUv/1Kr2IeFRW/yrXqN38Expcixw2IqViKafH05R9HNm3wOERFEMzceJIuefoRG33FKDV19arSA8HljQoCVVum77MjrUtCBHDDLeBJRuOL7eAD1iKivIAiVAGyGyqF6FEAZymaHqiFnJgBM2bUYz+4Ug2NkW8QcHguAA33q1VO1mjWBnTtV2eK8vUth6NAVcHRsjzNnWLuPj2etU9nq1NE0tRjLlpHLVUEXx47xtPX9e0AikcPM7DaSki7CySkcQ4Y0RLduzfH6NWururMlXoe5uTVsbb3w4YMN5HLds4H0ZiVBYHOBOhwc2AkJsJkqIoJZGVWrMuvh/XsDN8HmNaexTZfKV4mAAKb0qWc9TMOX5QHb1xDWnsVAv3dYPqkOBg5kbXfbNlVGSiWIAIlkv+JXfQAuBjqmQIvpQKVt7HDetwJmZhJYPvgUcZFGEsB1wa8yXO+/ROTxSK2/xo5lzdnDg6mm331n+u4fPODUz+fPszO2dGmOED15knnfGaFFC3Z6lyypisaeosgQvGIF01XXrDkNuP8LfPgM6NcZsLoJ/CMFbjbG6NEnsGMH89YfPGCne9GiQZg+XZVRsUyrGfhn7VCg+DkO8PO8CjOv6/ikRhPYvKuG+/eZkaOejjkNbsFo2Ow+npT6FeFWR4GFb4BxvmnmGl0aeU5xzAsKsmSWEQRhC4DmANwAvAIwS/G7Ong0DwEwQk3YBwAYAiAFwDgiOpBRB7OLLaPrpn/xBVPFOnbkl0bZgoNTkJx8E0RnAZwHcB7W1k8xePBA7N+/H2FhYShWrA569lwEM7OmOHuWBXTZsipTToMG/CKZOv1OSQG+/fYg5s07g+TkRgAaA9BOat26NfDPP/xil9NjFl13aQtm7FuK56/j4SEtj/5lR6OaY/M089Ht23oEbD7E1KlMgXNzUzU7Ox4QR4x4DaAIgG0A/oc0+kSHkcABNYqPYwgQ46u9875dgePzgFdVNZcXvQK8rGlSP318AH9/zgVTvjwL0nfv+LutLbB4MaepINLOa/LyJQvOhw+53btnOOLZEBo1UqUlSJ8GQPmZlMTUSC1TnMt9wOURkGoOpJrBLNoaNcvXQ1KSbpu+TkiSAbe7gE0kzBM94ZxaHhERfN41awJubndx4sQ8JCUdA8BRbzY2Nhi0eBA2vN2A+LnP04S7yILJHAp1EFOVKmyjrJ3u9GWycggLc4EGtRAuAC5CKeyB87CxiUtL7J+YyDkrlHb7s2f55Umv3RsTsSeTlUBYmCuATgB6AKhmcP3Ro1XHkMl4QNGawSQ4wiKsE+rFzcXt06WQZqZXwMmJB6PUVNaSX7zgF9EgzOKBlGwMQcxJuN4FnJ8A5nEccBNZAUjIIOqs6kYgeGDu9C8bMHAgR7vu3ct+ijJlmNuePkeLubnm9/BwHU7qnn0BmyhAkgIHcxscGroPEgnPbBcv5udk5kymYKbB4zrwqhoXIAmvBTxtCMR4A17nMHtgWzRuzNtzYJMvdBElZDIZ5u+ZjwF1u4DGyiAr6ihq5JlEoRXu0dHsGHrzRrMiEQBIJBJon7s72KKkFPZ1AETDxuYm5s3rgnr1OCJTPaLv6VOkmXHOngVu3mTnpbrA9/VV8bCPHGHu+bp1LwFEA9gLYB+A/wCkQBAExMfLcewYmyg0wsAzARcXLhLg7q5KUKbUigF2sE6blm4jy2jA9yTwohazgJSJu6QfgOIXALNEjloUYTIkxS9BXnofYBUNHFoGAHAv/h52FvZ4947jCJTtjtlmzDw5DWExYXA4swzNfFph1xpV6O7586y5T5rETl1lUJJ6gNLr18zc0cWYQeuv0yopCRCQPF0OPz8uHOPszOa53r3ZPHT7Nj+L16+n20fzWUCDJZAVcdMyqeh+xwBBECCXy+HkxDx3J6dMXkwRhVe4HzgAfP8927rTQ59WgSoAWgFwBBAtAPvLAg/qw99/Pc6f5yCUihU17fdlyqgiCBMSVNr9mTOaGQmVqFkTePDgN7x//xRs7XJVfLpBKvWApWVxpKSwQI6L40FKX7pdfZgzB5g4UXsWkZrKpp7ff+eglZgYDp559ozt7GVrvgBaTQNSrIB9irSSljFAzd9g4XUbSbfbArf6ZHh8NzdmXehM6mQWDxS5BctPJmBak2nwSeyg5Q8wGeV3AC4PAeu3EKzeQWKejNS/V6f9La29FpW9fXDzYTRSb/TK4sGyEUWvwrHqvzgweyxq12YlJCUFWP3fdny1YyE+xNgBcUWA7VsheNxE88aWcEgpkybE1at3VavGeY7U0wu8fMnU1B49mNra9M/yeBp/D7g+APhnAVBmP1BpG+yf9YLNneF49YoVkcGDOer0wgU2OzVqxMnCXjrtwsSunYAxJZntcqcH8LIG6jWLwYQhMnTooMrrYkhzDwkJEYV7NqDQVmKaPp0oIED3f9oFiBWBQtO0i1O7NlcxJN6+5SK/gwcTOThrF4ewsjKVkXGagCkEtCMrq4a0bNlOev9ek6lTooRmYYjoaGZl2DdfTSh6mYBUvfsfO5bo7FmiO3eIPvkkmKTS5wRcIBeXAJo27QgVKcJBL0oUndCRYPOKMKgZn/+osoQm8/Tu//vvuVCzio3BxR46duRglv79iXbu5Mr2GttKP5DELCntd+/eRE2bErVurRlQ9v49B53xekkGriMRJIkE+2day81cQ8jW4YPpTJn81pwek2P7JbRjB9F//3FVrehoDk5q2pTZNfHxqmt36BCRuzvR5s1qz72SgTK6NKHBYp3HadqUmS/79+suVG1plUze31VMY2j9fHwbrVnDRa7t7bnoyLp1RL/88qfWO2ZjY0OBgcx2cXTMvkLYhRUorJWYWrTgB1QfAgMDSSaTkSAIJJPJyG6GHQu0CcUI9ZcSqmwilDpA0uJXyNeXqYtmZhwN6FX6LUlKnCBU/JPgpTsi0tKSaM4cLnOmXi0nLo7pbH36XCFr60MEvCSpNJzq1AmlxYt5/Q8fVOsPHcqRe1r9Dw4kyxHNCS73+ZjFzpNQ5BZZ2yUaEBKHCehJgBdJJJdo+PAzWvuUDm7NAn5EdcIMKUnaTdK5rypViBwcuFRgZCRvv3s3kbc3R63eucOVfWrVUtvOPFZjH1KzVKpTh/dTooRq+ZEjRLNmsXDq3ZvIw6MXwW4/wV2NEmr+iJwb+5LgFMr3of6SnBGqkgwGFSOb1Pkpwfs/QvkdhBq/ESr+QfA9Ruaed8jDg0gQeD0bGyIUCSaU2UOo8xOhwjbeR8nDBKs35OXFEZzz5hEdPMi0ww8fuIRkgwYccf377xzdevKk6t4+e6Y7mriI97u07/qUIXV4enLlJl14+5YoMJDLNjo4EFWu/IJcXAII8CSZTJYm2IlE4Z4dKJTCPSmJhbEpD48wWxFqPrEIoeFC5kjbPyWA64j27Uu0YgW/MF7zqyjKyH2i8aKYFXlI7dqx4JNItF8ke3t+MX/6icP3g4M5NcD581yLdeRILm1nY0NUvz7z0rt1I6pTR7OvYWFEn31G5Fwkjlw/G0eYKSHZMhltuh5Ie/cSubgYJ3BsbPbQ8uV8/MREFu4W31gQenfXu03z5pq/K1XiWdLq1cy9HjfOSIFnHksS20iaM4cHh5s3iebOTbeOZTRZlT/O30vvIXzlofqv6EWynWNHqLUqS0LX3PwrAloTUJOAamRp2Znseo0gNJ9JcAwxfZ/WkWnfy5XjWqf16xNZ2b0j1P6BMKKaamYYAPJf6Z92X5OTeVB0GzyC0HwGodJW1X5d7pN1pcPUuzdrx61b834dHJgX36OH5jN35Qpz5kuV0uxf8eJ8r9RjOYKCVP8NGsRpCPShQgXDJQaViIvjWJJ+/XhG16gR1+x98oT/F4V71mFIuBdYm/ulS2w3vHnT+G30VUfxMquKoCbXERzMHN4bN4Czl99x0qkiNwHb18zScHoCOLzA3j6HERvLPPH37zmJ0+vXzFe+oSuNgBrMzNhmKQjpMhzqgIUFRzEWLcrc6l27gL//5v++/JJbuXLMlPCq3x+w6Qnc7665E7tDGNGvHc6eZZt7SpELSHS5AtzuBSS4aR1THRUqMGNDvZ/m5lxBqmRJdtZeuaK2QbUNQL0fgEftgKP6ieDeNW7j6dWKQJfhQLQvcCpAe6Xi5zlbpr7lFf4C7hwAEAcgDhYWjvj007GQyeoYlUbBJNi8BprN5SyY7b5ilma8M6xXvMGXX6oyTcbHn8IHaRIgKQPYRgHl1gGvgyCLt08rvaeEBhNq78+A8xNYVTwKP+/lcIltilu3OPXB48ccF2BhwUU89EYf2z+Dp/8QLOo/SIuVkprKrLLly5kAMHcuO09nzGC+ffrKZQ0asP3eULGV9EhK4gjlHTv4OfX25mfjzBnen4jMoVDa3JWFfk2BKRFxPkt8CWN9CX27EFpOI1TaQnC7RYJ5AlWqxFr+/PlspggJ0R3tGh7OmtXUqZzcycGBTRrt2nHypN9+42jNw4dN0xxLluSZhq0tT/VtbYlg+0JlvslCO3xY97VLSeH/lAWs1Vv9+kSCTRSho78qEdd0C4LHVd3HsXzL5gv1ZdIPHHms/O1xTXu7Ev+ovkuSCIgi4A4BJwnYRnZ2G2nWLNX6Vasqv28iwJ+APyhDuz6I/Rxl9ug+/sQihNkg14WutGIFUatWqgLUwGTiYtchxL6WC8RFtLfR3r2stavDf68/SedICZ6XSDKsEfnvVWn4cjlr+CtX8qzO2PsnOD+mRp0f0/LlbLePjeXkcaWrviafpapI54U7d1PLljwDVTftEPHzacjcmRGSkzn6GOBns3x5Ngddvmw4KlyENlAYzTK9e3MItalQz1anK5xfCf+V/oSAdM7XANDwH0bT1aucLXHiRH4RihVjwd2wIVc+//lnzhCYfkqaksLT3d9/54GpWjU2z6hPtdeuZUfatGm8T4AHhMaN2RQjk/HA8sMPRBcvsi323TsiTPDk7JXpbN651QT7l6rflTcTfE6atg+JIT+CovXsw5/9mhEqmxGgnUmTSLV+q1bq24cQcImA88Q+kKfUvz/Rr7+yEE1JIR7M+7fhDIcDWvM9H1ZX5zW1GzCAPnxgE8bu3Xx/ZTKZoh/VCVhCwAsC7pC5+W0qVYqfk8mTOWVEmqIxzZr3P8WBLP1aUN9xV6hrV87g6etLVLq05nFHjGBH6tmzRPaN1/Ny81i22xsa3K0jCR1HcpbRACuymW9Dm64H0h9/cNbOfv04ZYfy3dqyxfR3Kz0cHdkZfP48n3fp0nxOEybwwJOamvVjFHQYEu4F0ixDxNO+kyeZjpcT8PX1RahDqIo2GQPgKCB7J9OaYgNcaFpp0lG2mzeZT1yliqpVrcqmFAsLDjIaO1ZVMDk9evUChgxBWoUoIp6aq/Punzxh6uV181/wzuEssPs3YFALQHYaAOBtUQXN7wRj0yZOR0DSD3j/Vk8mM3BBi9hY5jtHakfh5z7sDgOxbfm7+03AIhYo2x04Hg1AWVy0KIAWEIRW8PUdmlYMxNeXqXgq/ArgX1hZXcJvv81Ev36a5gsNsx2BoztTrLg96ATc7gnITgH/LNTq5q+/AhcvnsOGDVuRnCwBYAXAFoLQFURVsuNKoFgxTsxmacmfVyPOcEyC0xMuUg4AKRZAVDlsaRqMW7eAefN07MgsHnC9Dzvfu1g0uC/Kl1elw5g2jZ/bunU5+jsrSE+FJOJ979gBbN/OVM/u3ZnG2ayZdqyKiEJmlgkMDqTiMxoSbMPJZ6l+zTurEARBp2YoCELGGyuQmkr06BGbZubOJfrf/3iKml6rsrdX+92rDxWf0YjGLjtBkyczI8jenrWefv2YVaN0jhIxVe7wYaKeI9XMGM4PCVU2kbR6UJoG+/Ah96VrV7VjGaBAZtQaN+bZxZ49zOYoPqMhwfWOah2v04S+XUgyzYHQWsHGafxtrs8ostQkiZwT3uY1wSGMNWP3GwTPi8yM0bGNs3Mc2dltIuA7cnRcSn36XKFly5hSmt5RrdHqLWfmjN1zkpqlkl29LYTG35LENpLGLjuh8/nSSLD3tTPh80aEzsPJvunv1LYtzxTS9l91I6HVFF4nwJIwrA6h40j6/HM2zVhbM0FBuX7RosbVQEjPSDOFLXP/PtHChUT16vGsdNAgngWpM88KO1BYzDJpU9kenxLKb8/RLHKqKbZmk8lkJvVX3QS06XogbdvGL45+gZJEqP0zmXcdQzPWH6LoaDYZ3LjBNvrhw9mWbGPDL8WYMcyE2LiRyMk9jrzmVSUMbcA2bD3HaNOGB4c1aziz5b17PPiYzuHX0zyuEszfZ7xekeC8F+BZaLrYUuqtf3/O7njhAtGtW+ybiYhgoebU+bs0ppZ6M/M9Q1ZfVSR0+oIzYQ6rm/aMy+XMcjl2jNlYbfreJUnJE1wswyKGUPwsSWtuoAZDtlOR4YMIbSaRhfc1clngqmlenK1dFCMujtldy5dr9sfLiwt/rFvHz6C630BXLElmee5hYay4NG/O2/XuTfTHH2xyLMwwJNwLlFkmbdp8YDkQ0hzwPgOYJcDBzhITm34Ja2tOHWBlBZO+S6XaxwoKCoKfnx/i1dLf2djYpOWhyQhaeWHCq0Ny6EfIQ5rAxobDvocM4ajAEj8ozmv7JuCdFyD7F3hRB5LwepDHcYZEZ2eOlC1blpuyHubJk/prktasmY7Nko9QqvFlPLpelOucArBwiETSOzfALA74ZCiwew2QnFGJ+zsAVgDYCBsbwsqVaxAQ8BmeP2eW0ddfc6bMJk2APn3YHLZtm272Rmoqm6PUWVBRURwBevD6Vey/cgXv31jDKlEGN3klJEQ7aeX2yXZU28CMrRhvWMSWhm08pyaoVElVwi/c+igCX0zDc1yEzMkHHct0xIbrGxCfmAD8ch1oPRkWFY6CiJAsT07btaFEXj/9xLn3HR2BH37gTJiNG3OKgxcvuFBI7dpAYOA4REUdBHAfLNsZWY1QVWZN3bED+O8/rr3aowfQtSun2yhMKDTpB9KKeESU56pMKVZckSnFBtMbzkNCAtLahw8Zf1f+lkp1C/64uAiEhT1AYuJb2NgIqFGjAipUKGHUwDFsfz+8TgoBJCnA4cVAWBPA6TGcmm7Bg98DNKq7p53Xo1bAHzsBaRJg9gEw+4ByRUohPFyVujcraNcOmDyZ+6hLwFWsyDZQHx+mOyphZsapZgcMALy8gA5d4xD1Ui3Lpc8pQHZc0c6yHTiyPHD+C+DS2Kx3XB2yk1z554MjbM40Qnx8GQhCCfj4JODlS5e0JFjTpgHz5zPdz8yMk2pt2AD88gv7LLJSaEMX3rzhrJFr17Jg2r6dB5a+fYGDB7kf6nAtGoe3pX6FPLIU8KQFkORg1HHs7bnZ2en+3Hr/N7zHcyDelSmjw+sCAmAnsUPCu4QMawcDXG/10CGmuj58yH6hx485rXDt2kz7vHQJ+PrrPwDUBudsugIu2nYJwGXI5Q/g7Jz19AMxMZxEbccOTqtRty4L+u7dmSJc0FFohLs+nnpWKrcQcfpUfYLf2AEi/fd9t4/y4JPgwtkLAcD2JZBiDXO5I1JSVANCTGo4UqWxCoGeAJgnAGYfYG0t4JPKbXUOIgBr7Lt363d8NmkCnDrF3+vVY2309m3NdX79FRg2jNMHnz/PTlp1J5yzM6fqPXyYX6409OsA2EQAZycANz/TPrgkCZBzpW0XF34R0x/bKFTeDJQ+CDg/BuI8gEdtgdu9YOZ5F79Ma4RevdgRd+MGV3YqXhx4/pw3LVFCNavZtYud2T16cA703r15dqbM9+/j44P58+cbNSvTh59+4jiEI0dYqHXrppnQq25djhvQSsfi/BDwPgsED+DKRQNbA08b8O+X1YEK2+HR8AieLt2G+HhVbIWuzy92TAQS7YAkO6BqIOCpyARGAOaoDmloFrp7N7B6NQtVgN+RPXuAceN4Nrh0KSsAqtwyLgBqggV9bUil9WBv74XoaFYSWrXiQUGZYC+ziI/ngXLHDi5PWLEi388ePXjfBRGFRrgbKuKR39KJZjQQpaaqBoLNV3di8oFZ+JAALo6RYgVLcsYX1cejnkczrYHkYuhNHH9wDu/v1gZeVc+R/stkLCRTUkzc0OcUp+R91B5otBBoPgt3+n9As2Y83TYa1ddx8JgkmUvgvSnFQUTJtoD9c+BN2bRV7e25DN7Zs5wgTSoFvv2Wc65/9x0H7HTowHnMwzntOFq3vo9//12EpKTzAO4CSDbJ7KYL8fGc790Qhg3j4KAhp5oA8W7A49bAxS/5T68zwJDGsLG0Vj3jMV4wvz0YHg+/grncCf378wyqTBnd+9f33CEawHLNRUrzSXqcPAlMn65SDJRQLw341VdAsWJb8OWXw3SaLtu06QcPD2DCBNb+L13iZ7d2bc3m5ZU5gZ+UxHUAtm9XBU0pBX2FCqbvL7+i0LFljOGp5zVMLSFm7HkFBgeS9fRiGiH5Eu/z5OzznCz69+KSgCOqERyfkLR6EHUecpPc3Ih8fJito9xGydAxM0vH1tHTmjXjBGK+vrnsuLR4x2kims8gfO1CmGJP+KIq2X06kJyc5hGwVe+28+dz8AzA6Q+UDkkrKyKJJIKAIAJuERBHwGUCfidn59l04oRhR2BCAtG1a5ywa/p0dmxrHV92nNC9P1mNbEi/ndtCjx7x9XN15Zw63t8q0lsMrc/BWx5XCS73yML7Go1ccIp8FpfSeBbkck43MG4cB7DVq8dO1YiIjJ87TFMkzYNm08f8unaNGTT6oGRdlSlDNGnSUaPZMs+fMxtm5kxOPOfuzvlxOnbkZbt3q7j2pkAZNDVmDDuAK1QoOEFTKCxsmY8N2T0QyeVEbgNGE+yea9as/GQQSWaZ84vc63+q5daRZN/0N7p7l7efM4eDrpQPfFwcB0KNHm2coC1alHPhjPr+FFlNLE+YIeXkY+3GEszi9G5nZcWCACAaOJDI1uEDSWuv1VhHqLKVpD0HE7oM5Yhg17ua+/E+RRhTQiWwZqkLKl8CIuibb/bT4MGax1Ye19GRW40aLLj4/6kEtCKgIgENCBhOwEpq0IAjK93cWFiULMkU1qpVOY+LlVU6miG4fq37sMGEmRJCyUOEtuN1slIePuSMo3ZOCSQUDWa65WcdCLNB1t/Y0oQfj1OzZnzc77/XPcgkJ3ME6aef8jl17Ur011+qZHTpnzvX5q5agh3Qz/x68oSVgYywbx9fj08+UeWTUUdGbBm5nFkyO3YwrbZtW6ZEFivG5zR3Lp+nelbTjJCaWrCCpkThng+Q0zOKhw/54YflW03BZ/GOswlWX6sdsu96l1B+O02YQGlC79AhDklXYt06FmJjx7Lg9/ZmLWrvXqKlS1nbrF3bgNB3u0WCVYz+/yWJVKkSf1fOENq21VzHte9ECgwO1HkNi01rRmjyDcEhlNMCtB9NmORKGKcuqBYT8H2asAI4GZu/P2vKACc8e/SIaYlbt6od3+uYZtoDE1vp0pw1s39/IhQ/y5GgFjGEWr+kCff0haHlcu5b2n6azyTvbytrPDOXLikSxznzvXn8WPdzERPD97BlSxaMfn5Ep05paqwZURbT480bFszGICGBs1e6urLyoM5Rz0ziMLmcz/XPP4m+/prPy9GRB5sePTg99OHDHPlqzL6Cg4lmz+aBuWhRvu5HjhjH4c8PKJDC3VBwRH5DTlZxT0zkB1rJQResYghN5xCmOLD22ut/LPDVhY75exbsxc+Reemj9Mknqv/KleN9KVMbqLcePZjLrJ6OWImUFIUAg5F8+A6jCCOqk/fCsjRnju51Zs/mNAqWlix0DV7bmRLCgFacptnyLcFhOwFdCHAmIJIA7zQzA8DBMcrrB/BUHVCZAUrVvKQ5QBa5Tih+hmB7goADBPxNnLPGeEFv5v6IA8MGNSNMdtSpuaekEI0axZk2Q0OZ8z5wIA+wc+eysFZHWBgLOVdXzud+RjODs9a6331HVLEip1eeMYP3T2Ta+5SSwhx+UzTdkBB+fkqW5MA2ouzLCpmaSvTgAadE+OorNhHa2/OxevfmGc6xYxzQZwjqQVOurqzw5PegKUPC/aN0qGaVY57bSHNiBX8GXP2c2S7m8bC1kWJg7V6wtuaKSTY2SPtuzOeVK8CYMcwyMTNj5kHFXtsx8diXSLjcE7j0BZBqDvN6a2FusRnxFZ8DFgASHJll8bwGLG7UR9IrrqxUtSqXEXR1ZcaDEqVKcSWeZ8+Y5fHsGVda8vbmKlFPn2pXu//pJ+aBL1zIDJUHD4y/Xnv3ct1OZQqF05wpAd26McWtQQMu/aZ0tKUvlv5uu4C3/7UCMBhcfBwAqkIme4d5u+djQLV+QKlDcK52GjXN+uPon2W1+pAGp8fA/3oDb0sBUWWAl2WAO2UAaKdE7NyZz1UiYXbK48ecafPlS/27l5Q5gm6tPTCwXVWUKcNMnbg4dgSqUwTv3we++YbZIOPGcU1dBzV25Pv3XCt4+XLmnX/1FV+v9BkdAR5qrl5lSuOWLcwaGjCAuf6uGZScVcLenp8DR0fj1lfi8GHue9myfJ/fvs2ZSkxyOV+zS5dU7do1TtGg7rCtUUNVOUodT58ys2nHDr5W7dqxA1690lR+QIFjy2RUviu/IY2nHusOPGkFRFRg+mNEBZhHV0ayKnYE9vbMRJHJOEdIfDy3hATV5/Pn6YoW64OQAuuKx1HNuwzOHTwOuMQDJeIB2wQgNR54nACE1wQwCMuXM2c4fRFlS0ugaVMW7lWqMC30zh0WCvfvq9azsGBmQ2KiimqojqFDgWJNDmPtkxl4TpfgJa2Jhm9W488faujtfo0azB7p1QsYNIgFW7duHECTkMDURvXC5HZ2vF1QUBCGD/dDQkIRAE/0X5/aq2Be9CEsT32L1i0s8emnPAg9eABs2PE8LYAKRYIB1/uA3Ax4UUex/B2ApQCCADyEofcoLo4pl48fA3/+dxm7z97E+3AP4HFbgCQ6t6lXj4VJmzZM6bNg1iju3WMhf/iwSsirC5vUVBZKS5dyQNG4cRwMp08gpaQwNXPjRi5L2bw5C/rOnfnepx84lYWsvb150PXx0X959SExkUv/TZ3K/V+wwLii8llFSgpw966mwL9xg981dYFfvbpmf9SDpk6f5jw3PXtybEdeB00VOOGeUeHd/AZDtMeHo0Lw+DFr33fuqNrduyysKlTQbNeusTYcEQG0b8+UtOBgzq/96BEHxfTrx9qQ+qAwatTXePMmHoANAGvFpzuAIbC1ZRqaei7wcuVY4zSmbqunJ0dF2tqy8N+/P3PXadIkfnGCgzmg6N493et9/z0POE+fcoTili2GaZT29uvQqVN17LoZiYSbaoW9fU6xNh6njHbZDgeH1+jduwb2WC7DK8tTAEmBm32AG/2AWA+g7BbgymZwUA5DKpUixWROKENZ07Z9e54JtW3LwllfdGvZsixYKlZkit/Jk8D48VwEPb0AP3eOheg//7CAHzOGj6EP797xjGHTJk4MV63lA5xx9kdisaOcox4qavF3n/bDli084GcWgsDne/8+9/OTT7I/eCwjJCdzXnx1gX/7Ns8M1QV+1aocQ5LfgqYKnHD/2DT3zPDviXjaqxT2e/ZwsQN9WLKEX3ClhqfVh6AgfL7scyQ3SU7LYikJ/BVW8YPg6WmJR494vcWLOYjm1CnmH9ety8FOTZoAtWrxy3fvHmswZ84A/5yMR3SEYbVr0iQeZC5e1FMwOzfhdodnTaX3A3VWAh7BwMN2wN4GADhzorV1cdTtvhCnznpDHl4ZqLCDo16LnQT2yQEdBVcy8x4RcfH2Hj04WrZfPxY2KSnAtm07MXnydHz4YAugGoCeANpnuM8WLXig9fFhYZ+czPfxxx9V63TowMW0U1JUx1P/npzMM41z5xQbOD/ioDQ3tq3JHGUovi0ECxdy2oHMQpl+4PJl1uBlMk5nUNaAlSw3kJjIGr26wL9/nyOM1QV+yZLMpc/LoKksCXdBENYC6AzgNRFVVixzAfAHAF8AIQB6E9FbQRAEAD8A6AggHsBgIsowe0lBt7kD+qe3Ga3rbVsKdUP/wp411eDtzeaRmzf5hXBwYA1WaSqJiODglQoV+EFTavtlygB/3Q/CkJ1DkERJgFwA9qwGrg7TOK6NDdCyJQvypk052lDfYKHsZ9qgdaMvsH0LAMC5SDyKONvo1LznzAEmTlSldADYLNC6NX9PTOSXaft2YOtWVVDRxwwLC46SNTNjW7C6MFXCxka1jrk5EBHxAqmpiQCSAaSkfZrZA3KXRMgphf0AStORETA31zxmo0ascVpa8nGVx1Z+9tnek4PEpEmA7wnAnG2BAgS0Py/Hl18CnTpl/rqo55ZJSuIBaMECwM8PCAjIOOArN5GQwLMZdYH/+DFQubJKs3/3jt/DfftyL2gqq8K9KYBYABvVhPv3AN4Q0QJBEKYAcCaiyYIgdAQwGizc6wH4gYh01ELTRGYiVLM7NDy/QENghjYG9vwKvCkLd88EmJM9fHwAf3/gf/9TpRlQIjaWteo7dzTNPCEhQKr9E6Skylkg6ICyJJ9S+Khrcbo0u5QUYEvwNsQlJHJk6DOFg7HUIVhJrdGgeFNcusSOvo8POwEkoG6bRrgRfg8JicmwEhzgQh54+SgKcrkUgDkAcwiCBdzcPGFhYY/kZGg1XVbC9EK2bl1tZ3lg4GqwfhQPIEH12SYecGSHPHyPA5ZxAFSRzSdOsEB5+9a0M54zh00spUqxRmpnZ9ic2OB8CDp35tlGZqErcdiLFzzTO3WK/QYfPgRh+vT8+Z7HxrKZVF3gP33KM6fERJ4Bx8SwcFcK+ho19BMBDCl8+pBls4wgCL4A9qoJ93sAmhNRuCAIngBOEFE5QRB+VXzfkn49Q/vPiRqqHyvSXqhTk4GjC3ih9APs6uzAvys/Qw39/kcNJCczm+bUKTbnHDyY8TaCwBpIlSrMKlBqcek1OuWyEfuHsGYnSQFIYIEjTQZiZPC5sRJhYTxtL1WKbegAAMdQIEaWYV9sbXkWUaYMt9Kl+dPLi7X+BQtYuz91SjUDAFRMkFq12I7777/Azp3GXTMVbsCq+GnIG59BkucJwPEpILApbZDzIOxfuD9TwoaIBcLgwdzvbds4N4+6b0T5ffz4AB0+Emugmg0nw0u2Abr4AQ78agkQIJ+lGklu3uRaqP/+ywN3kybsKL52jduFC7pTRzg5sWCytwccikbgiXAUqY73AZdHgPNjWBV5gdWfzsXpVf1QtSrXWDUEQwLMUFbIkyeB/v2j8eLFFcjlIwHwNDC/z9DfvVMlTlO2hw9V//v6spC3q3YYi8J6ICE1Lu2/zKRKyQnhHk1ETorvAoC3ROQkCMJeAAuI6D/Ff0cBTCYig5K7sAp3XbOP/jdGAdcHcKZI2wig8XdAtU0QrN5rvLzpER/P9ux//2XBceECU9yaNuUX+4vgSnhrfhu43R34cwdQZh/QfSCcBBmCml7RcObeucOCPr0zt0IFtuVKFAQPDc0uwQl40AHYsTmtT4LwHkQGeGMu92Hu8QQj27aDVKpKqRsZyVPglBRmLtSooWply7JwJ2LnsZUV54ZRd8RNn84UzZ9+Ui27fRuo9MV84PxozrAoO8GpkwU5F+G+PhhcTksHt88uHPD5D/A6i6IVQhCycAcsLQ3cWD14944TkkkkwB9/GKbU6TM9Wk+zRlSKtrdVX3K8GzdYyJ86xRqxvz/PDuRydsArhf1ff2myn8qW5YH5RdIdnHlxAu8i7GHxriKs3ldAcoI1EhJ4vbFjWdNXavwlSqgG24x8TRml/JXJSiMsrDOA6QDWAvgGQGy+9a3pw9u3rGipC/yQEPBzVX4n0GoaYM3MBVOTHOaocFf8fktEzqYId0EQ/AD4AYCPj08tXQ7Sggztl7cmpNLRkJt3A5U6yM4+2ak0lkL6m/72LTs1T51igR4czE4ypfOzUSPWCpVw+94NUQlRwA8PgGqbgKbfABKCq7UrIr/WTBtJxOwTdWGvNPO8eGHKWSYDeAzgAVDvIWvsd7vzX937A9WC+HizdD+D4eGsBam3V694ZqEU9OPHA33GXcU5WXeExYTBy7oMYhZcx6XzVrCyYibN5s3sjwgvthRUaxNQ9FradQUAyTsJpCvuIDm5F3x8EjB27GJ8dX0F8NYXSHBlh+qzesCzBsDTBrB5VxNVqzIFs2FD/iyuw/StrrUWo7qQbjmADi2c8dNPuvnnWtvrGPxRFZlKjhcczKaXM2dYyH/xhW764b17rI0fO6ZaZmnJzsTq1bmVKgWsXMlO1+HDeZBQcvrDwgB3d17n8odtiLO9zhk7SxwH7Jnwr3yWMxLuKlacB4DvAbQEMBHAnyDKf6w4UyB87c405FdVFUnweMBOPwPLcD+iWSb/gRk/rwD0AeAPrvP5K5wb7kRipzCtl3dh/Y0oEtkzTTN//Ji50ErNvF49w1zhNK59kg1godq3roeJiIW4UqirN2MKUFhYBCMp6S8AhwDcBGAHdOwB3O4NhLTglWZKAQkfV59w14WYGNY0lcL+z+3J+BCnKK5ZbQMzX+KKwqfcG8RGuKBnT+Czz/gamdUQgC7gQC4lkgDsAdoVI4wdy0wSwLC9+eawEFy6pFmr1sZGxblv0AC4a74FIw8O4/v4sgqweS/MG6zB2u/Lo3/VrJkUsmKrvX6dhfy5c1ysZMQIbd8NwA7OP/4AZsx4g2fP4pGaehDOzs9Qq9ZnCItywv2rRQAA1pUPo33jovisVVXY2fH9OXyY6YKvXwMQUplt0+RboAbb5pTPXEbCXZsV1wjAT7C0jMflyw1RqZKRFywfIrvSk+eEcF8EIErNoepCRF8LgtAJwCioHKo/ElHdjPZf2IT7/ftAuXLLAAwAcAHASgAHAMghCAI2XtuEyX+sxotbpWAb3h624R2QEmePxo1VTJYaNUwrGOw23017Oi8X4BRXFZtbXdMS4urFP6RSthUq7d8ODkz/unOH6ZfTp3Ok4oMHvG3fvnMANAXQQvN4zo/YoVt7JdByBmDzRufMwRT4LvdF6MWKwGZtcr2XFw96SpOOn18dPHe5pFXU3NXVFYkfViDW7QRkrQ5hfqv5AIzXkInYrqoU9GfOADfuxoE8rgKeV5kn32EMUOWPLNUWyE5cu8ZC/vx5LtDi56ct5FXBYHUBfAWgDiRF10FodxCp58cAd3sAQgpA2tMQNzcgseJavC+zBvC8DJipPMjGau66TFPW1vb43/+OYv/+OhgwAJg9WzNS92NBdqUnz1LKXwBbAISD59jPwGRgVwBHATwA8A9YuAM82f0ZwCMwG7h2RvunTOaW+diQnEy0fTtR69acv8TBYSVxtkIQIBBQhYCRZGOzhzw9iYoXJ+rbl2jlSs7noi+PhzE5QVJSiJzq1ib06kJoNZlQdQPB8yLBPDYt74lEwrk42rXjmpjLl3NWv/v3VUmUIiI4j4mLC2eKfP5c8zivXxP98guRldV/BLwlTpnbg4BKBFlnQqkDfLxiFzh5lu0rKl/rJY0Ywcc7dIjzn5iShlWYLXCOlk87EyoHEZwecU6dmVK6fZvrx06cyEXA7ew+EPCSgP0EzCOgJ5lVLkfmsywJzWcSms7VyPuTlWRvmGpPGNiS0HIqp+3VkyQsr3HlCmdtLFaM8/go86ikpBAVK9acgG4EBBCwmQAddXe79yOMqE4us4oTET8DR44QLVpE1LDTYxKK3OKMoB5XCdXWkXnHSTTt98Npyccyyi2j7/l+9YpoyBDu96ZNH2fq3uxIJoiCllsmv8AYOubz58CaNdxKlmSHVteuwJIlBzF//n9ITq4Hnm5GQCo9i6FDy2LKlIZaVWl0TcURjHSajRmsrKrAz2853Nyapmnh9+4p0xWkAg6hgNtDwO4BEPEACH+Au3f3oUQJ/Zz2N2+YlrZqFTsEp01TRTpGRDAbZds2DlLq0AHw8DiJ1at7ICHhTdo+rK1tYOlyFjHVFoPqbIIkVop+rpMwsM53Ws7c+Hi28aZ35pYsqW2r1pjebjoAVN4K1NigU0MmAn78cSfmz9+PiAgvWFs3RKJFBcg/2AOWMUDJf4BuHMiUVQ07J6qC5QRSU9nEt2kTpzVQQiIB5PLHAG6ptdvAtDvM1LnkD4CAZjzLAQE0W1uWBN0IwtQDc/H0oQNc3rVELWEI4p+Ww/Xr7Dxv1oxTHijt+TKZaVGq584xG8jGhh3o1apl8kJ8pChwEar5AYYCqT79tB+OHWNhePw4C/Pq1ZnB8e+/LARLlwaKFLmLK1d+QGTk35DJLPXS6rSmcMmWsHpXDWb/VEXsHW8AFRWtDAAppNIXaNHCS4NG2K1bJcjlD8FGZhUMhc7HxHAiqhUrONglIIDNM1FRLND//JOn9R06MO++QweV3T/9wFe16jjs3dsRRBUBpGpcr/Tn/Patbmfuy5fsqFMX+Dsjv8W2V98Ab0sAG44B42WAWRL8a/tjZaeVGd5HyRwJKM6FE6nZvQI8bgIw3bGVHvmtKlhqKptAbt3SbPfucaIxZVHtDx+YOfPhAyAIM/DmzSIAaomMxgFw0nGAaICWGS9L5HI2961Zw/1SsnZiY1WCXtnUc+voO7c1a4CZM5lBNXduziQjy48QhXsOwNfXF6EOoZr220POcH45Hm5uM/DgAVPdvL05mKFaNZXzs2FD0x6+NC3wTUkgaD8HDdm/ABweAE8fAHgItpA9APAYgpCslWNHMKAOpX8G3r/naMHlyzkCccYM7u/ff7NAP3eOs+T17g107Jhx0iciwNr6PBITfwIQqPGfKbS2+HhVkJay7f7vPpIjfbjodoOlQPO5vF8jNWRTNWxTgueyI0jFVMjl+oW4mxsLcfVWoYIq4Zo6Ll0Chg9/juvXCUTfAvgdQBJQBTqd0q5nXBF53DTfiS6be0QEO32Vwv7aNWbhlC2rKfCrVdNO2hUZybPKPXu4fOLAgSrabkGFKNxzAEJVBfPCHMDzusBFf+BWHyDFGra2LMCVzs+6dXUzEoxFGtNFLuFaoY5hHApO0ChqrIQugWlMPp7YWODnnzlPTdu27Cy9fZsF+tmzvEwp0E0JDT9+HGjZ8j54dpGq8V9Wk71J5khAqVLW3J1CATOemRireZuiYeentBdyOSsN6YX43buctleXEM9Mqtq5cw9iwQILJCSUhovLavTq9Q7rLv+ikaPI/JQ51o1fZ/I1yMihqkRCAp+busC/fp2Fe3ot39eXB6Yvv2QT3s8/A7fNcn+QzS0UqhqquQXpRCk7yfp8QrCOIJTbSWg7niT96lFyctb2nd6J5DrPVbPmpaK5znM1uoKOoWo7cXFcicjDg6hNG6JOnW6RldUxAqLJxmY/jRp1it6/z/z5NGtG5Oo6XuPYyqavlJsx1yUwkB1Suq6NegGMDPdrpGNLJpNl+RxMRWoql6jbu5eLTgwaxJWvbG251F67dlwm7rffiM6e1S7mkV04d46oQweuePT55+fIx6d0lgvlZKVYh7JAx7ZtXA+1UycmITg6EjVtygVPGjYkEiSpZFbvF8LXztleKCc/AKJDNfshzFEzcxA0gmJM4W2nhy7t0LyWOYSuAif9UkCpXSIYRpsJRq4aidWPVyPVNhXSOCmGeI9EZfyI775je7a3NxARkYzExH0g2gpgL4A4mJubY9060zUzADhxggNdZszYDH//4ZnWevVpzYMWD8KGtxtyxbadk6mmiTgA6PZtTU38zh2mmVasqKmJV6xoeqGM7MC5c0w/vHOHfTCDBxu2hxuCsZq7KUhv1vnz6D0kvyoFWL8F/KtqBVJ97BA19xxAdmiMOverRzt0be6aJdqURqm/6RaEjv4kODwjgMvYdetGtHkzkYuLnuO7uppUik2pDcP3GLl+OoGphVkojWhIa87p+rTG9MFYKIs+HzjAs6XPPyeqW5fLwnl6MlV27Fii1auJTp/OnjJ0OYEzZ7jWrUzGfc1MzdHsKrNnCMJsgRBgRfCvzKUY8yklNbNAQayhmtfIqbqogiDoFCDK+p+ZRdpg1L0/wTGEIP1AKPc3ufYfozGV13VsZTPaBKS8NoObEJwfEGZIs3xtcuq6GEL6wcjf39/oayCXEz19SnTwINGSJczJrlePhXjRosy7HzOG6NdfuWD1mzc5dho5itOn2ZTn60u0Zo1pQj43hHtOKWH5BYaEu2iWyQJygg2RU4VI0sxIRxYARW4A5fYAVhyGqm5GMsSq0QWdzlslA2XLTuCdN1DpT8D1PjxlsXg854hGFkdjkdsFWvSagQYNwv79qqyQ8+bNR4sW/dLMKEqzyu3bnEBLaUJRN6nkdWm2nMB//3HE66NHHLE8YEDGEdQ5YZZJj/xGSc1uFCqzTFam/vkBhhyfWUGaAzhdk06Uaqzn6upqUHtP33RpzmlRoyMrEDoPJzRYRCi7i+B6hywtiUqUYEfg6NFEK1ZwZOqTJxwVmdvXRR90m2A8qUiRz2j5cqLhw9lh5+RE5O5O1Lw5R/auXEl08iRRZGSOdCvf499/iVq25GjntWsNa/K5obkTZU8kaH4FCotZJrcFQE4hJwYoVAFhWjrhPg2EKtA6toWFhcY1tLCw0Cv0ddmbDU2Fk5OZ5bBvH9GyZUT+/iwMvLyIrKyIKlUi6t6daMoUFg7//cch7XJ57gzccjlReDgR0IqA0QT8QsApAqIIeE3AcRo5kujnn4lOnOC+idDGyZNELVoQlSpFtG4d6WSQ5ZZwL8goNMI9t6lqH9MsQSaTsYAfB869Mo4Fu65ro+u8TBk4M+uPiI0lunaN6M8/iebNIxo4kKh+fSJnZ9aQ69Yl6t+faO5coq1bia5e5W109lePtqZcFxDIy6sWTZ16hH78kWjECKLGjTlvjqsrkZnZaQJ+JuBLApoT4J7mWBZhPE6cYCpsqVJE69erhHxgcCAJVjGEyU4FTpvOTRQa4Z6bTrePbZaQHf3NDFsmO6bCcjknLTt9mrXAqVOJevYkqlKFyMIimQThGQFHCVhFwHiSlvqEzEdXIsww48FlojtZDm1PjXtvJTOz1QScICCCgCiSSP6jli3v048/Eh09SvTyJR9P30xFFO6Zw/HjzD8vXZpoxLzTZD3XnmD5ljDZscBxz3MThUa456bmnhcBLVnFxzTTMBY+Pr4EeBPQmoCRBCwnyPYTnB8SpAkEqyiC1RuC9ykSqv6qMLW0JMBDQ2Cnvy55wc4p6JDLiY4dI7IseY7gco8gSUwT7gWJwZKbMCTcCxRbJjfDw3MyoEWE8dB5H2aBg8pSLIAPjlyuUACLZx3pGtLDxsYG1tbWiNJRmcQUdk5BLeKeVQizJcCT5kBwf6DLCEDKieuymqytMMIQW6ZApdXp168fVq9eDZlMBkEQIJPJcizvh4+Pj0nLTUFQUBB8fX0hkUjg6+uLoKCgLO+zoELn9Y5RfJolAXYRadHD0jipUftUKgc26TKi2djYcKk7I6BUNEJDQ0FECA0NhZ+fn3gvAcicfICSxzm9slSVkdTHMevvjgg16FPpc7N9lEFMJtqwjTWJ6Nuvv79/lk0qBdEso4vdI60uJYs5FloOXf+V2kFI+pogCDkWUVvYkVMBgIURKCw299xGVgW2rvX1CYX0NuDMOEM/JgewsQgMDCRzc3ON8zI3Nyf/lf4G2TJpSdlMoHiaAtFmbxgFmXuemxCFex7DFC1On1DIqgD62DRJYwfOrJ5XTg16H9v1FvFxQhTueQxTtDh9QiGrWmB+0CRzYqaTHeeVE+aqgjpTEpG/IAr3PIYpWpwuoaBPgH1Mmnt2mKZ0RsPmYw25IPo4ROQviMI9j5FV56sp2Qizqw/ZjewwTenSxv39/XWu6+/vnwtnJUJE3kIU7vkAWdXiskMLzEtNMjtMUx+b5i5CRE5DFO4i8hxZNU3pm2UY8knogmgqEVGQYEi4F6ggJkAMAMpJmHJt06/bsWNHo4OC9AWjAdA6vlSqOzBJ13IxsEhEoYI+qW9MAxAC4AaAa1CMIABcABwB8EDx6ZzRfsSUv/kfJmWF1Mc9z0Iglr7jwwTNXTThiChoQE6ZZRTC3S3dsu8BTFF8nwJgYUb7+RgTh+UX5JaZwZRrmxMZFfUdXyqV5oijVoSIjwG5LdzvAfBUfPcEcC+j/XyMKX/zA3JzpmLKtTVFm87q8XVp8PqugZjGV0RBgyHhnlWbOwE4LAjCZUEQ/BTLPIgoXPH9JQAPXRsKguAnCMIlQRAuRUREZLEbjJxM5pUfERAQoJEBE+CkVwEBAdl+rLy+tvqOI5PJMGjQoDQbu1QqxaBBg8TsiyJE6JP6xjQAxRWfRQBcB9AUQHS6dd5mtB/R5p455NfiJPo0ZDs7u2y3uZsSA1DYZnYiCj6QG1RIALMBTEQemmWIChfVLbd9DKakD0ifqdHMzEzLyZodlaDyAye+ID9zBfncCgJyRLgDsAVgr/b9DID2ABZB06H6fUb7EnnumUN+nqnkx+yLOXG98vM9yCoK8rkVFOSUcC+pMMVcB3ALQIBiuSuAo2Aq5D8AXDLalyjcM4/8qlml75cuAZwdJhFTtfHsvl4FmaFVkM+toMCQcC9QZfZE5A/oKncoCAJ0PWsyE8rWGXusnCqtqAsFudxiQT63goJCU2ZPRP6ALhYPEUEQBI1lppSt04fcLK2oC3nNIspJFORzKwwQhbuIbEdYWJjO5USUI0K4X79+CAkJgVwuR0hISK7SIOfPn5+lWqv5GQX53AoF9NlrcrOJNveChcJmq82vfo/sQEE+t4IAiDZ3EbmJvLaDixBRWCDa3EXkKvLaDi5ChAiImrsIESJEfKwQNXcRIkSIKGQQhbsIESJEFECIwl2ECBEiCiBE4S5ChAgRBRCicBchQoSIAoh8wZYRBCECQKiRq7sBiMzB7nwMEK8BQ7wO4jVQorBeBxkRuev6I18Id1MgCMIlfdSfwgLxGjDE6yBeAyXE66AN0SwjQoQIEQUQonAXIUKEiAKIj1G4r87rDuQDiNeAIV4H8RooIV6HdPjobO4iRIgQISJjfIyauwgRIkSIyACicBchQoSIAoh8J9wFQXARBOGIIAgPFJ/OetY7KAhCtCAIe9MtLyEIwnlBEB4KgvCHIAgWudPz7IUJ12GQYp0HgiAMUlt+QhCEe4IgXFO0IrnX+6xBEIT2ir4/FARhio7/LRX39qHiXvuq/TdVsfyeIAjtcrXj2YzMXgdBEHwFQUhQu/e/5HrnsxFGXIemgiBcEQQhRRCEXun+0/l+FAroq+KRVw3A9wCmKL5PAbBQz3qtAHQBsDfd8j8B9FV8/wWAf16fU05dBwAuAB4rPp0V350V/50AUDuvzyMT5y0F8AhASQAWAK4DqJhunZEAflF87wvgD8X3ior1LQGUUOxHmtfnlAfXwRfAzbw+h1y8Dr4AqgLYCKCX2nK970dhaPlOcwfwCYANiu8bAHTTtRIRHQXwXn2ZwBWYWwL4K6PtPwIYcx3aAThCRG+I6C2AIwDa5073cgx1ATwkosdElARgK/haqEP92vwFoJXi3n8CYCsRJRLREwAPFfv7GJGV61CQkOF1IKIQIgoGIE+3bUF8P4xGfhTuHkQUrvj+EoCHCdu6AogmohTF72cAimdn53IRxlyH4gCeqv1Of77rFNPyGR/RS5/ROWmso7jXMeB7b8y2Hwuych0AoIQgCFcFQTgpCEKTnO5sDiIr97QgPQ8mwywvDioIwj8Aiur4K0D9BxGRIAgFlquZw9ehHxE9FwTBHsB2AAPA01YRBR/hAHyIKEoQhFoA/hYEoRIRvcvrjonIPeSJcCei1vr+EwThlSAInkQULgiCJ4DXJuw6CoCTIAhmCk3GC8DzLHY3x5AN1+E5gOZqv73AtnYQ0XPF53tBEDaDp7cfg3B/DsBb7beue6hc55kgCGYAHMH33phtPxZk+joQG5wTAYCILguC8AhAWQAfYy3LrNxTve9HYUB+NMvsBqD0ag8CsMvYDRUP9XEASo+5SdvnMxhzHQ4BaCsIgrOCTdMWwCFBEMwEQXADAEEQzAF0BnAzF/qcHbgIoIyC9WQBdhTuTreO+rXpBeCY4t7vBtBXwSIpAaAMgAu51O/sRqavgyAI7oIgSAFAEISS4OvwOJf6nd0w5jrog873I4f6mf+Q1x7d9A1sMzwK4AGAfwC4KJbXBvCb2nqnAEQASADb0toplpcEv9APAWwDYJnX55TD12GI4lwfAvhcscwWwGUAwQBuAfgBHxFrBEBHAPfBLIkAxbK5ALoqvlsp7u1Dxb0uqbZtgGK7ewA65PW55MV1ANBTcd+vAbgCoEten0sOX4c6ChkQB57B3VLbVuv9KCxNTD8gQoQIEQUQ+dEsI0KECBEisghRuIsQIUJEAYQo3EWIECGiAEIU7iJEiBBRACEKdxEiRIgogBCFuwgRIkQUQIjCXYQIESIKIP4P9+4R8FUde1AAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-19T21:26:21.323569\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" }, "metadata": { "needs_background": "light" @@ -519,7 +519,7 @@ }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 72, "source": [ "y_pred = bloodSugarModel.predict(X_test)\r\n", "plt.scatter(X_test, y_test, color = 'black')\r\n", @@ -534,8 +534,8 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxsUlEQVR4nO2df5gcVZnvP2c6MyEdIJBJxEiYnnBF2SCoJCKoi7sEBaIRRNiNTCAqmqVHWdAFTRggE9hZL/gjqChh7oIEullR5EFMUC5EwN3rKk4UZxAFgswEslECQgQHyI957x9VPd09U9Vd3V1VXV39fp6nnqmuX31O9fS3Tn/Pe95jRARFURQlXrTUuwCKoiiK/6i4K4qixBAVd0VRlBii4q4oihJDVNwVRVFiyJR6FwBg1qxZ0tnZWe9iKIqiNBSbN29+TkRmO+2LhLh3dnYyMDBQ72IoiqI0FMaYEbd9assoiqLEEBV3RVGUGFJW3I0x+xhjHjLG/MYY81tjzBp7+03GmKeMMQ/by9vs7cYY83VjzBZjzKAx5uiA66AoiqJMwIvn/hpwgoi8bIxpBf7LGPMje9/FInL7hONPAQ6zl3cC19l/FUVRlJAo23IXi5ftl632UiohzanAzfZ5PwcOMMbMqb2oiqIoilc8ee7GmIQx5mHgWeBeEfmFvavPtl7WGmOm2tsOBp4uOP0Ze5uiKIpik81m6ezspKWlhc7OTrLZrK/X9yTuIrJXRN4GzAWOMca8BVgFHA68A5gJfKGSNzbGrDDGDBhjBnbs2FFZqRVFURqYbDbLihUrGBkZQUQYGRlhxYoVvgp8RdEyIvIicD9wsohst62X14BvA8fYh20DDik4ba69beK1+kVkoYgsnD3bMQZfURQllvT09DA6Olq0bXR0lJ6eHt/ew0u0zGxjzAH2+jTgfcDvcz66McYApwGP2KfcBZxjR80cC+wUke2+lVhRFMWFoK0Ov9i6dWtF26vBS7TMHGC9MSaB9TD4rohsMMb8xBgzGzDAw8B59vF3A4uBLcAo8HHfSqsoiuJCzurItYhzVgdAV1dXPYs2iY6ODkZGJg8u7ejo8O09TBRmYlq4cKFo+gFFUWqhs7PTUTBTqRTDw8PhF6gEEx9EAMlkkv7+/ooeRMaYzSKy0GmfjlBVFCUWhGF1+EVXVxf9/f2kUimMMaRSqYqFvRzaclcUJRY0UsvdL7TlrihK7Onr6yOZTBZtSyaT9PX11alE9UXFXVGUWBCG1dFIqC2jKIrSoKgtoyiK0mSouCuKosQQFXdFUZQYouKuKIoSQ1TcFUVRYoiKu6IoodAoSb3igpfEYYqiKDXRSEm94oK23BVFCZww8pcrxai4K4oSOI2U1CsuqLgrihI4bnnK/cxfrhSj4q4oSuBoUq/wUXFXFCVwNKlX+Ki4K4pHmi2Uz+/6dnV1MTw8zNjYGMPDwyrsAaOhkIrigWYL5Wu2+sYRTfmrKB5otll+mq2+jYqm/FWUGmmGUL5CG8ZJ2CFe9Y07Ku6K4oG4h/LlbJiRkRFK/ZqPS32bARV3RfFA3EP5nEaQTiRO9W0GVNwVxQNxD+UrZbfEsb5RIDuUpfOaTlrWtNB5TSfZIX+jr8p2qBpj9gF+CkzFiq65XURWG2PmAd8B2oHNwNkisssYMxW4GVgAPA/8o4gMl3oP7VBVlPqiHajhkh3KsuKHKxjdnf+1lGxN0r+kn64jvT9Aa+1QfQ04QUTeCrwNONkYcyxwFbBWRN4IvACcax9/LvCCvX2tfZyiKBEm7rZT1OjZ1MPorlH47Udg9z4AjO4epWeTf4nUyoq7WLxsv2y1FwFOAG63t68HTrPXT7VfY+9fZIwxfhVYURT/ibvtFCVEYOS2C2GNwPduh1dmju/butO/aCRPnrsxJmGMeRh4FrgXeBJ4UUT22Ic8Axxsrx8MPA1g79+JZd1MvOYKY8yAMWZgx44dNVVCUWql2UafOqEjSINFBM4/H1pagJ9fCG/+AVzWCvv/z/gxHTP8i0byJO4isldE3gbMBY4BDq/1jUWkX0QWisjC2bNn13o5RamaiWGAudGYzSjwiv+MjUE6bYn6tdfC6afDTZtvJXnOWZDYM35csjVJ3yL/bLCKomVE5EXgfuA44ABjTC59wVxgm72+DTgEwN4/A6tjVWlyoto61okklCAYG4NPfQoSCVi3DpYuhd274fvfh+VHn0X/kn5SM1IYDKkZqYo7U8siIiUXYDZwgL0+DfhP4IPA94Cl9vZ1QLe9/mlgnb2+FPhuufdYsGCBKPEmk8lIMpkUrP4aASSZTEomk6l30cQYU1Su3GKMqXfRlAZk716Rj31MxDJiRJYtE9mzJ5j3AgbERVe9tNznAPcbYwaBXwL3isgG4AvA54wxW7A89Rvs428A2u3tnwNWVvncUWJElFvHcR99qoTD3r1w9tlWS/2mm+BjH4M9e+CWW6xtYeMlWmZQRN4uIkeJyFtE5Ap7+x9E5BgReaOInCkir9nbX7Vfv9He/4egK6FEnyjnZmn0MMCo2l3Nwp498NGPwpQpkMnAJz9pCf23v10fUR/HrUkf5qK2TPxJpVKO1kcqlap30UTEso1SqZQYYySVSkXCLvJClO2uuLN7t8gZZ+Ttl/POsyyZMKGELVN3YRcV96ZARSgYov7QjCO7domcdlpe1D/zGZGxsfqUpZS4a24ZJRR0kEwwRNnuihu7dsGSJdDWBnfeCRdeaEXEfOMbEMVhmiruSmjoIJnK8OKla2dw8H0Or70GJ58MU6fChg1w0UWWqK9dG01RH8etSR/moraMohTj1cZqdrsryPq/8orICSfk7ZeVK+tnv7iBeu6K0lhU4qUH1RncCJ3MQfQ5jI6KHH98XtQvvTR6op6jlLjrHKqKEkFaWlpw+m4aYxgbGwv8/SdOkA1WeGjU+kn8vE+jo/C+98HPfma97u2F1at9KGSA6ByqitJg1NtLj/Kgs0L8uE9//Su8850wfbol7FdeabXZoy7s5VBxV5QIUu+BVV6jcOo9gKqW+/Tyy7BgAey7Lzz0EHzxi5aoX3ppUKUNGTe/JsxFPXclDvjtUdfT8/biZUelM7fS+7Rzp8hRR+U99S99KaSCBgDaoaoowRIVofMLL/VphAFUmcGMpNamxPQaOeTf3iIH/68XxkV97dp6l652VNwVJWAaQegqpVyLOOrZNDODGUn2JYUvzBDafz8u6ueseqjeRfONUuKunrvS0NTb880Rx5Gi5Qad1bvT14nsUJbOazppWdPCOdkLGf3yIFz1Ijz/ZvjAedBrePB1Z9atfGEypfwhihJNJobr5WZQAkIP1+vo6GBkZMRxe1zp6+tzDJcMO5tmdihLz6YeRnaOYDDI6IFw/VPIzpR1wJJPwoIbxo/3c57SKKMtd6VhcQvXW758+XgLPqyWfb2jW4Kg3L2LQr6g7FCWFT9cwcjOEfjrLOQrT8PVz8POFJz6Meg1RcIO/s5TGmnc/JowF/XclWpw83yxO//S6XSonZyNMKLTK43SQZxamxIuep0w/Y/jnjofXib04rgk+5KSGYxWHWoBHaGqhEU2m6Wnp4etW7fS0dFBX19fYC25zs5ORyukHKlUiuHhYf8L1OAUfnYtLS3s3bt30jFRunfbt8MbDn0BXj3Q2nD6WXDUf0w6LmESjMkYHTM66FvU5+88pXWm1AhV9dwV3wjbA3fyfL3QyJ2cQTHxs3MSdojGvdu2DQ4/3BqEBAfCGf8Ab/me47Ftpo397t+PPz/4Z+jAmhH6yBALW0fUc1d8w+uQdb988Jznm6hwLrM4d3JWi9Nn50Q9790zz8C0aTB3riXst98OmcEsybdvLDrOYOXhbZ/SjtwlPP/A84jIeGOjaaYhdPNrwlzUc48HXuKeg/Byna7ptkTRN44Cpfov6n3vRkZEpkyRcU/9zjuL9xcOVEqtTY176nEcezARdBCTEgZevkxBfeEymYwkEgnHaycSiVh0cgaJ2+dSz3v31FN5QQeRH/6wsvOjPsjKD1TclVDw0ioP8gvXKBEeUSRK927LlmJRv/vu6q6jLXcV90CIU1hcJZSrd9BfOL3v1de73vfu8ceLRf2ee2q7XpQeWEFRk7gDhwD3A48CvwUusLf3AtuAh+1lccE5q4AtwGPASeXeI27i3gz/VNWi98Z/Gv2e/v73xaJ+333+XbveD6ygqVXc5wBH2+v7AY8D821xv8jh+PnAb4CpwDzgSSBR6j3iJu7N8HOwFuL+hQubRvl/m9jxedWddxWJ+gMP1LuEjUcpcS8bCiki20XkV/b6S8DvgINLnHIq8B0ReU1EnrJb8MeUe584EcckUl7wGuJYLiFVkO9d72sGQSP8vxWmCZBn/4aRzw7zhdOWAPDTn1ry/t731rmQccNN9Z0WoBPYCuyP1XIfBgaBG4ED7WOuBZYVnHMDcIbDtVYAA8BAR0dHKE+5sGiUlpSfVGMN+NWCd3rvXMdtLf5zo1gdjfD/llqbEs47sqilzieOk9TaVL2L1tDgR4cqsC+wGTjdfn0QkMAaCNUH3CgViHvhEjdbppGEwS8qFRg/75Hbe9fykGkEwcwR9f+3X/+62FPnk8eM53oxvfEJS6wHNYs70ArcA3zOZX8n8Ii9vgpYVbDvHuC4UtePm7iLNJ+vXGmIo5/i6WUATqUPGbfrRDVGOor/bwMDE0T9UwsnJfLSlnttlBL3sonDjDEGWA/8WUQuLNg+R0S22+ufBd4pIkuNMUcAt2L57G8ANgGHiYhzsgo0cVgccEvi5ZZoqqWlBaf/PWMMY2Njvry3l+u6nZtIJCKfOCsK5HKpb925dTwx15te7eKYgl62zZvhd62W5z66uyD3e2uS/iX9sUrkFTalEod5yS3zbuBs4ARjzMP2shi42hgzZIwZBP4e+CyAiPwW+C5W6OSPgU+XEnYlHlSaz9zPWXyc3tvrdd06Hffu3Ru7/Ox+U9RJijDyyOtZdlRe2B9+2GqzH300dB3ZRf+SflIzUhgMqRkpFfagcWvSh7nE0ZZpRiqxBvz2iQt98ok2TanrlrKHomh1RInU2pRlr3ziXUX2y5yL31/vojUN6AhVJYoEJZ71fMg0E3z8b4s99e752kkaMqXEXSfrUJqeMCcYiQP33w8nnFCw4dOHw+zHxl+mZqQYvnA49HI1IzpZh6KUoKurS8XcgRNvPpFNT20af/320Yv59dVXj7/+0l13sXroo5M6SfsWab9EFNDJOpRY0yijTKNGkbBveT/0yriwb9liGTEXLfmQdpJGGLVllNgyceo4sCJe+vv7taXuQPfGbvo397M3F9z2+Clw6935Ay6YBwcOI6vrrxmKRa2hkIriK2G1pr1O+6dYwn7dwHWWsD/2QegVS9jNXrigE3oNHDhc72IqFaCeuxIqYU6i3QgJtaJC/+Z++N2pcNud1obEa3D+YXDA03Utl1I92nJXQiXM1rSfA6XizO23w97Veyxhb30ZPjsXLtvHUdgXzVsUfgGVqlBxV0IlzNZ0paNmm43bbgNj4MwzgX1egM+9AXr2gxnbHI9fNG8R951zX7iFVKpGxV0JlTBb011dXfT395NKpTDGkEqltDMVuPVWS9SXLoVZs2D7dkjf3gP7b590bHphGlktyGpRYW8wVNyVUAm7NR3ExCCNys03W6Le1QWvfz386U+wY4e1/q0PfIv0wjQJkwAgYRKkF6b51ge+VedSK1XjNnQ1zEXTD0SLWtICeDlXc7b4R2FOnUQiIRyJJC5KjKfTzQxm5MYb8ykC5s4V2bGj3qVW/ALNLaN4pZZcK5qnJVyK7vcpCJcjrC7Il77kk+Oi3tkp8txz9S6x4jelxF0HMSlFVJqX3a9zlcrp7OxkZP8RWII1nY6xd/zyPNh4nbU+8wnm/stHePqSwTqVUgkSzS2jeKaWaBaNKw+P7FCWkX8YgSR5Uf/FZ+BH37DWZ/0Ozj0Opu1k227jdhklxqi4K0V0dHQ4tr69RLPUcq7indwkGUy3N/z3hXDPWmv9dUPwiXfDPi+NH98xQ+9/M6LRMkoRtUSzaFx5sHRv7GbKFVNYdscyKxPj/7vIShNwz1p4/a9h1X7QfVSRsGuWxuZFxV0popbY8CDiyjWro0VR7pf/XGmJ+r1fgjf8ElbtC+cdDVNfLjpneut0zdLYxGiHqhJZmj2r48R86jx4Kdx/pbU+97/hnBOhbdTxXB1N2hyU6lBVcVciSzNH34wLuwAP9MKDq60dHT+Fs0+C1lcdz2uf1s7XTvmattabBI2WURqSZou+yQ5l6dnUw9adW61BKDf8DJ45zto5bxOc9QFofW3SeakZKfoW9amgK0WouCuRpZmib3IRMKO7RqF/ALYvyO+8ZLqr/aIpAhQ3tENViSyNFn1TS+fvJff1MHrNL2CN5IW9Z5o1SYaDsGvuF6UcZVvuxphDgJuBg7AcwH4R+ZoxZiZwG9AJDAP/ICIvGGMM8DVgMTAKfExEfhVM8ZU4k+s07enpYevWrXR0dNDX1xfJztRqJyERgTe/GbY+MZzf2LOPo/0C2lGqeMdLy30P8C8iMh84Fvi0MWY+sBLYJCKHAZvs1wCnAIfZywrgOt9LHVPCDPur9b38LGupazVKVkcvk5Bkh7J0XtNJy5oWUl+dx+yDX6alBZ54wj7g0qlWS12FXfEDt6QzbgvwA+B9wGPAHHvbHOAxe/164KMFx48f57Zo4rBwk27V+l5+ljWKycaqyVppjCmqQ24xxljXHMxIsi8pXG6EfbeNJ/QyZkxee61gf28+8VeyLymZQU26priDX1khsSyYrcD+wIsF203uNbABeE/Bvk3AwlLXVXGX8bStE5dUKhW596r1/ELxTCQSodXbazriah425e5Jx1fmCdN2jIs6iVeEy6ZIam2+npnBjKTWpsT0mvF0vYpSCl/EHdgX2Aycbr9+ccL+F6QCcceybAaAgY6OjnDuRIQp1/KL0nvVcr6TeIZRb6+iXe2DK5PJSMuSlnza3dUIq5B/+sanZb/9JC/qU18ULkuMt85Nr/+fr9I8lBJ3T9EyxphW4PtAVkTusDf/yRgzx94/B3jW3r4NOKTg9Ln2tiJEpF9EForIwtmzZ3spRqwJc/q5Wt+rlvOdvOlayuIVrxNzVxtb/+2932ZswZjVi2WAsSlw9Stcf/61vPQStEx/Hi5PwKoDILF3/DxN6qUERVlxt6NfbgB+JyJfLdh1F7DcXl+O5cXntp9jLI4FdorI5MkZlSLCDPur9b1qOd/LAKTW1taS16qmM9eraFfz4MoOZfNpAva0Qu9euHI37N0H9nuGjq/M4+b//jHJqfsUnadJvZRAcWvSS94+eQ/WT9NB4GF7WQy0Y1kuTwD3ATMl779/E3gSGKKM3y7quY8T5vRztb5XOp0e98sTiYSk02lP57nZHoVLW1uba3mC8sQrvX6hP55YkxAubctbL4hwwJNW52mB9aKeuuI36DR70aRR5xL1eyo+L6KboxZP3GuZ3T6XzGBG2q9qL4pooWdqsajPerR4qrteijpNFcVPVNwjSBRDAL3iZ7SMm7i7dajW2plb9cTfgxlpvaK1QNT3KRb1gx6eJOr0Ii29LdpCVwJDxT2CVCKQUWvhVyOwbnWo9EERZsjoJOulF+GSZLGov+EhR1GnF2m7ok2FXQkUFfcI4lUgo9jCr1RgS9Wh0vqFdT/SG9Jiek1erFdNLxb1Q/5rkqgn1iTUT1dCRcU9gngVyDBbql5xE9h0Ol1V67zSXyZB/5JZtH5RXrRX7lcs6p0/cWyl62hSpR6UEnedrKNOeJ1lqKWlBafPyBjD2NhYKGV1IpvNFiX0Wrx4MevXr3esz9lnnx3JOhSSy6U+stNOMfzq/vC/d+YPOPT/wjknOZ6rE2Qo9UJnYoooEwXSKeNho8xGVKqcQKTr0L2xm3UD6xAEXjkArnohv/OwDdC1ZPylwVjHoaKu1J9S4l53S0aa1JZxY6LlkE6nI+e5O1GqDyGK/Qa5ztJxa+XzM4vtl8O/P8l6Mb1GrRclUlDCltGZmCKEU07w9evXs3z5cu6+++5I5zQvNWtSVPKyd2/spn9zP3slP/yfv86CL+3Ivz7iO3DmRx3PP2/hedpKVxoGtWUiRKNYME547UOoF+MTTud4+XXw5T/lXx91C5x+juv5mktdiSKlbBmdZi9CNPKE0F1dXfT395NKpTDGkEqlQhP2Urlmujd207KmJS/sL70eeiUv7G+/wZogw0XYc9PZqbArjYa23CNEI7fc64XTL4bWBa3s/+H9eX7P8/kD//IG+GpBctKF18EHux2vaTCct/A8nZ9UiTzacm8QGm1C6CgwKZXvKbD7g7vzwv7iIVZLPSfsx3zdaqlPEHaDASA1I8Utp9+iwq40PCruEaKe1kY1hDnnqxtbt261Zu1dbS/HYOUlfaHTEvVrbEvruC9bor74gknXyAm6rBaGLxzWTlMlFqgto1RFVDpQp35qKrsO3oXd8IY/HwpffzJ/wHu+CCde4niudpIqjY4OYlJ8p579A90bu7l+8/WMScHo1ucOg2sfz78+/go4YbXj+fu27cu6D67TFrrS8KjnrkyiVkvFLYJnZGQkUKume2M31w1clxf2HYdb9ktO2P/+Ust+cRD2XOTLS6teqouwR8HGUpoIt9FNYS46QjVc/Bgx6pYMbOJIVT9HomYGM/kRo+kjikeUnvh5x4ReptdIeoO3WaKCJIqjdJXGB00cphTih6Xi5LkbYxwThNVi1RQm9DIY5I9Hwrrf5A94/7/Au77qeO701ulcv+T6SNgvGuaqBEEpW0bTDzQhfgyWckop4CRelV63kOxQlhU/XMHo7lH4n7cj/b/K7zz5n+HYb7iem16YjlQ4YyMPUFMaE/XcAyLK/mpHR0dF293o6upieHiYsbExhoeHxzNAVnvd7FCW/b64H2aNwawxLLtjGaPD8y1PPSfsH0hbnrqDsLdPaydzegZZLZESdvDvniuKV1TcAyBnWYyMjCAijIyMsGLFisgIfFCDpaq97ok3nzgu5i/vetna+PQ7LVH/P7+0Xi/5lCXq71g36fzprdPJnJ7huc8/FwkLxgkdoKaEjpsZH+YStw7VKMyeVG62oqBmM6rkupnBjEy9cmpxJ+jH313cUXrqcseO0kac/Shqc+EqjQ/aoRou9Z49KSoDjNw44ptH8OhzjxZvHD4ebnow//rDy+Ctk3/p5CbLSM1I0beoL7ItdUUJA41zD5l6+6uT8q0Ao6OjXHDBBXXtB8gOZWm9srVY2P9wgmW/5IT9I0st+2WCsBtM06UJiHK/jdIAuDXpcwtwI/As8EjBtl5gG/CwvSwu2LcK2AI8BpxU7voSQ1um3jHNbrMiTVxaW1ulvb09FJtg/rXzi22VZe8rtl/O/Iir/RJ2nHoU7JN6/w8pjQElbBkv4n48cLSDuF/kcOx84DfAVGAe8CSQKPcecRN3kfoKhJvnH7bYpzekJbEmUSzWZ51SLOpLP+Qq6vUYgBQVUY1Cv40SfWoSd+t8Oj2K+ypgVcHre4Djyl0/juJeT5wEqpqlFlFbtH5RsVgvXVIs6mctdhX1ResX+XxHvFNOVMN6aJeak1ZRcpQS91o8988YYwaNMTcaYw60tx0MPF1wzDP2tkkYY1YYYwaMMQM7duxwOkSpEqfUwe3t7RVfZ3R0lJ6eHs/Hd2/sHo9RH5/56NEPW576d+6yXi87yfLU33R30blTzJTxGPUwMjW6+dmlBhuFGeJa734bJQa4qb5IyZb7QUACq0O2D7jR3n4tsKzguBuAM8pdX1vuwVNta95rS3FSS/2MM4tb6mcvcm2pz792vuc6+NFqLmW9lGq5h2mVRMUeUqINftsybvtQWybSFIpje3u7tLW1lRX3UsKV3pCWljUtxWJ9+lnFor78vc6ivhrhPDyLtJ9iV0qkS71P2FZJFDp2lWjju7gDcwrWPwt8x14/guIO1T/QpB2qjUA5sS8lnpOiX047p1jUP/4e15Y6qxGWVSbSfraay4m0m6iWeyioECthU5O4A/8BbAd2Y3no5wK3AEPAIHDXBLHvwYqSeQw4pdz1RcU9MngVqPSGdF6ol5xbLOrnHluyo7Rakfaz1VxtGdxa9el0Wi0UpS7U3HIPelFxt4hq6y8zmJHpfdOLxfoD/1Qs6p98h6uoT1kzZTxNQLUi7WfLvRaLx+kz0rBFpV6ouDcAUe1AywxmpKW3wFc/5dPFor7iaHf7pXdyZ6nfreZaOlX9epD69asiqg93JbqouLsQxpfJ63tEqfWXGcxI+1XtxUJ90oXFov5Pb3UffLTSCEc6d5b63WqOAn58dlF9uCvRRsXdgTC+TJW8RxQGrThGv5x4cbGop99SckRp64LWsvWNqkhXS5DTFqq1o5RCxd2BML5MlbxHvb/cRZ2kvQgnXFIs6t1/4yrqiTUJSW9I170O9aTWB5ZaO0o1lBL3pk35G0Za3kreox5penPzk27duRXBLuf9q+HB3vxBn3kzzHrc8fyJU9nVO9VxIxPUvLZRSvWs+I+m/HUgjOHdXt4jNwz+7LPPZtq0abS3t4+nDCj1pawlHWx2KMuUNVNYdscyRnaOWMK+6V+tNAE5YT//jVaaAAdhbzEtjnOU6pD56vFjpia3VM+VpJBQYoRbkz7MpVk992rLUPV5Th2l77qq2H7553mO1kvrFa1lZz1yS3HQ3t6u9oAHomLtKI0D6rk7U+9omWo9arfzcuc61SMzmJFkXzIv2Md+tVjUL+xw9dTbr2r3PJ1dJpOR9vb2SeXSyI/gaeY+j2allLg3receBar1qN3Oy5FMJln+5eXc/drdjOyc4ONuvBZ++en868/OhRnbJl0jYRKsWLBi3HrJZrP09PSwdetWOjo66Ovrc7WM/PCPlcpRz735KOW5173VLnVsudebIFrugJW3ZfWEFvjR/cUt9c/NcWylO7XQK7WBomgPNEsUSbPUU7FAbZlo4qfnzpEIF9qiXijsb72pWNT/5aCKU+9W+hCKmj0QxwFCKuKKiIp7pKn2S1qU0+QUh5b6W7LFon7R7JJpAkrNflRpSzxqYhq1h02tRO3+KvWjlLir596g5GLUR3aOWF9vY++47XvwuzPyB148C6Y/P+n8xMsJ9t6zl9RfUiX9c6jOQ6/Eow+auMXfa5+GkkPj3B2oJU683nRv7ObsO87Od5Ya4NYfWHHqOWH//EwrTn2isAvwJOz98l4YwtNUcdXEYHd1dTE8PMzY2BjDw8N17dCLW/x9qakAFSVHU4p7mHNh+k33xm6uG7jOGngE8NNLLFF//EPW6y8cYIl68oX8SYU/4J/EysZfQLmBLk5zsjZSBIYfA4SiRNweVkowNKUt02g/a7s3dtO/uZ+9sje/8YHL4YE11vq05+GCebDPS5NPzgl6pvR7NKpF4ZUo2US1oiGPSg61ZSbQKD9rs0NZpl45lesGrrOEXYCfXGG11B9YA533Q880+MKsYmG3n9eJlxNwB2WFHaxWXyNbVeWIkk1UK43+S0oJh6YU90b4WZsdyvKJH3yCXWO7LLG+799gjcBPL4ND74WefeBjJ0Drq0XnGQzpd6SR1cL6t60n+WSxHdHa2kpbW1vRtmQyyeLFiwO1qrw+OOL8gKmUifeiu7t7/HVPTw99fX2xeFgpAeEWRhPmEnYoZFRDyRatXzR5Iul3XZ0PZ3zj3cKlba7hjKm1qUmDkNLptCQSCQEkkUhIOp0Ofao4r/c7qp9LPXDL06P3RikEjXOfTFQGgWQGM5Jam5os6oW5X950l3Bpq+sEGekNaedrR2SyEK8PjrjFo9dC2VHITXxvlDylxL0pO1SjQvfGbtYNrMtHvgjwo6/DQ+dbrw+/A878R0jscTw/NSNF36I+uo6sPcdLkJ3MXuPM4xaPXgvl8gflaMZ7o+SJdYdqI3q02aEss66elQ9pHDOw4VuWp/7Q+XDEbXDZFFj6EUdhXzRvEbJaGL5w2FHYc/fESazBueO4VLhgrffYax9HI/SFhIXXOjfjvVE84takD3Op1pZpNI92Uj71y01xQq8jM8LlLa6eupfUu168Wref8k5WlR/3WD33ylHPXfECtXjuwI3As8AjBdtmAvcCT9h/D7S3G+DrwBZgEDi63PWlBnGv1KOth8/u6KlfboS33ZgX9bfeVFLU3Tx1J8p5tfWauNnrvY9KX0gUmHgv0um03huliFrF/Xjg6AnifjWw0l5fCVxlry8GfmSL/LHAL8pdX2oQ90o6AevRKkxvSIvpNQWi3iIcdXNe1N/+75bQu4h6pcIu4n5PcoKss/sEiz6clDCpSdyt8+mcIO6PAXPs9TnAY/b69cBHnY4rtYTRcg87EmP+tfPzIn1ZQnjLrXlRX7DOUdRLRb54xe96ul2vvb29pnLGEbWVlLApJe7VdqgeJCLb7fU/AgfZ6wcDTxcc94y9bRLGmBXGmAFjzMCOHTuqKkQlOUPCHJV64s0n8uhzj8LeKXDb7XDlHnjko/COb8LlLbDkPGgpjoRon9bOLaffMmnS6UrxO49KX18fra2tk7a/9NJLde28jmJHetATVEexzkqEcVP9woXJLfcXJ+x/wf67AXhPwfZNwMJy16+m5V448CY3SKfUz+CgWu45T930mvFBRFw2RXjznfmW+juvmZxvvdd7J2nFZfLZGnCaE9WPe1ctUW0hB2lhRbXOSn0hbrZMNf/oQXw5Jk06fWmrtLzpR3lRP+7LrqLuhwUTFlHz3aM62CnIckW1zkp9KSXu1doydwHL7fXlwA8Ktp9jLI4FdkrevvGNan7+BpFsqWdTD6O7R2FPG9zyY/jXXYw9fjK8+ypYbeCki/KTaBSQmpHyxYIJi6jFn0c18VuQqYWjWmclwripvuRb3/8BbAd2Y3no5wLtWJbLE8B9wEz7WAN8EyvJ7BAeLBmpouVeriUZVMTCRAuGnqnCvPvyLfW//VfXlnqpOUqjTtQsgajZRIUE9b+nLXfFCeKWW6bUP3pQ9kvR4KOefYTUA3lRf29vkain1qZk/hfn5yerXo3M/2JjCnuOakQrCKHLZDLS2to66bNva2uLtf8ctQesEg1iJ+6l/tH9bOGkN6SlZU3B4KJLpgmH/Fde1P/usuI49l4k2ZeU9LfSTf9FDEqMmjk0U2PolYnETtxF3P/R/ej8ywxmZHrf9AJRTwoH/zwv6iesmpRqtzBaRn9CB2cjhNW5q0KqNAKlxD12WSGrzW6YHcpywY8u4PlXCiaUfm063PQgbF9gvT7x8/CeLxVfd0aK4QuLr1sqo18qlYrFVG/lCCrDYxhTJOo0dkqjEOuskBOpJmKhe2M3y+5Ylhf2V/eD6x6GL75sCfv7P2dNOj1B2JOtSfoWTb6uWxSJMaYhJ+X2wsQBNjNnznQ8rtYImzAmuw56MJKihIJbkz7Mxe/JOrz8pJ7USdqLsHJ/YfYjefvl5POrytDo5De72QlxsGqc6tva2iptbW2B9DsEbZlELa5fUdwgjp57LWQGM9J2ZcF0dV+YIbT/Pi/qi9Ouoj69b7qnEaUTBchJLKoRjCh6waU6OaNWVi9on4nSKKi420xKv/v5A4UDnsyL+gc/5SrqLWtaahpR6odghBkOV8lDJG4tXQ07VBqFphf3SRbMxe3C/lvzov6hjzuL+mqEi5HWBa01f7HdJl9ob28ve+1SIZ5BtCgrFbc4tnSj+AtJUSbS1OJelP/l4lnCvv+TF/XTznEX9ZUIR/orVJlMxnF0ZSnh9DIjj98t5ErFWlu6ilIfmk7cC9MEJNYkhIteJySfzYv66We5T5BxcbGoTxTRWltx5UbXTmwtlmqxB9VCrsZm0ZauooRPKXGPXZx7dijLih+usBJ6vfR6+Oaj8OqB1s6PLIUjb3M8r31aO1875Wv0LOlxnVg6Ry0xz6Vi4JPJZFEIXltbG7t27QqsLG6EEUuuKErtxDrOPTuUpfOaTlrWtNB5TScX/OgCRp8/AP7tL/CV7Zawn3mGFac+QdiTrUkyp2eQ1cJzn3+OriO7HOOoJ1JLzLNbnHcikZgUW11O2FMeMltWM8FDGLHkfqKTWCiKA25N+jCXqtIPOMWpf3auMGU0b7/842lVx6nnLAZq8LmdrAo3f9rtfZwWr352LV64HzZLGMnG1O9Xmhni5rlPmiTjwg6hZVde1JcumSTmiTWJovwvXqk2EqSU6FTrrecWr8JVqb/vJ2FNqBLHSB1F8UrsxH08Vn01wn5P50X9rMWOrfRkX7LqqeyqbRlWE3HiRdgryX5Y6pdH0K3dakS3mnPiFmOvKJVQStwb0nPfutOefUZaYPbvoOtky1N/092A1TmampHCYEjNSNG/pJ+uIyvvcMxms+N5RhKJBODN54bKZ87p6uqivb29bJn+8pe/ePaUK/H3/c6d4lbPkZERV1+8mtmGojZLlKJEBjfVD3OpuuXucyu9kFq93GpaoV5i2stdw0sd3K7rZyqEcjaT0730656p5640C8TNlpnkudtLqU7SSqnVy61WdPzqzHW6Xjl/389UCF4eVBPfL51OT6p3pfdMY+yVZiJ24i4yeT5Tv0Q9Rzlx9RrJUYvoBNVZ6Edr161shX0C5TqKCx9Sbpk00+nq8/koStyJpbgHQaEYJxKJsvZI0D//g7Qcan3wlHr4VWO3aNSLolSOinsZ3HK+eFmCFp+oWg6lWuQT74mXh5RGvShK5ai4l6CcN5xIJHzzv8MgrIdBqdBNp3tSrlzacleUylFxL0G5qI6cUJXymKPSsg7bt3b7tVONIIcR9eLngy+qv6iU5iIwcQeGgSHg4dybADOBe4En7L8HlrtO4PncS3wRS7XKC4Uq7KnkqqmbWz+BMSawCT38FOQgBdPPsmr4pRIVghb3WRO2XQ2stNdXAleVu06g+dzLfBFLtdwnfmEnio+fLVe/6lbuIRVEGRqhBeun7aMWkhIVwhb3x4A59voc4LFy1wlS3Mt9Ed0Ecvr06ZJOp0sKV707ActZSvUoUzWE8YDw87Oq9+euKDmCFPengF8Bm4EV9rYXC/abwtcTzl0BDAADHR0dgVXeyxfRafCMF8ul3i24cpZSI7Qqw7I4tOWuxJEgxf1g++/rgN8Ax08Uc+CFctepZ8u91DHlzqu39+q13FH2g8MSSvXclTgSmLgXXQh6gYuImC1TS4y1l5/e9fSc3epWzk6KEmFaHBoto8SNQMQdmA7sV7D+M+Bk4EsUd6heXe5a9YyWEam+5e5nGaql0UVGLQ5FqZ6gxP1Q24r5DfBboMfe3g5swgqFvA+YWe5aURihGmSYYyOFDIaNWhyKUj2h2DK1LPUWdxH3KfH8EFE/W6dxFMM4PawUJUxKibux9teXhQsXysDAQL2LERgtLS043WdjDGNjYxVdq7Ozk5GRkUnbU6kUw8PD1RZRUZQGxBizWUQWOu1ryJmYGg0/ZwuqZrYiRVGaDxX3EOjr6yOZTBZtSyaT9PX1VXwtnVZOURQvqLiHQFdXF/39/aRSKYwxnudhdcLPB4WiKPFFPfcGJDdx99atW+no6KCvr6+qB4WiKI1NKc9dxV1RFKVB0Q5VRVGUJkPFXVEUJYaouCuKosQQFXdFUZQYouKuKIoSQyIRLWOM2QEUjqmfBTxXp+LUg2arLzRfnZutvqB1DoOUiMx22hEJcZ+IMWbALbwnjjRbfaH56txs9QWtc71RW0ZRFCWGqLgriqLEkKiKe3+9CxAyzVZfaL46N1t9QetcVyLpuSuKoii1EdWWu6IoilIDKu6KoigxpC7iboyZaYy51xjzhP33QJfjfmyMedEYs2HC9nnGmF8YY7YYY24zxrSFU/LqqaDOy+1jnjDGLC/Y/oAx5jFjzMP28rrwSu8dY8zJdjm3GGNWOuyfan9mW+zPsLNg3yp7+2PGmJNCLXgNVFtnY0ynMeaVgs90XeiFrxIPdT7eGPMrY8weY8wZE/Y5/o9HmRrru7fgM74rtEK7Ta4a5AJcDay011cCV7kctwhYAmyYsP27wFJ7fR2Qrkc9/K4zMBP4g/33QHv9QHvfA8DCetejTB0TwJPAoUAb8Btg/oRjuoF19vpS4DZ7fb59/FRgnn2dRL3rFHCdO4FH6l2HgOrcCRwF3AycUbDd9X88qkst9bX3vVyPctfLljkVWG+vrwdOczpIRDYBLxVuM8YY4ATg9nLnRwwvdT4JuFdE/iwiLwD3AieHUzxfOAbYIiJ/EJFdwHew6l1I4X24HVhkf6anAt8RkddE5Clgi329qFNLnRuVsnUWkWERGQQmzgDfiP/jtdS3btRL3A8Ske32+h+Bgyo4tx14UUT22K+fAQ72s3AB4aXOBwNPF7yeWLdv2z/tLouoOJQrf9Ex9me4E+sz9XJuFKmlzgDzjDG/NsY8aIz526AL6xO1fFaN+DnXWuZ9jDEDxpifG2NO87VkJZgS1IWNMfcBr3fY1VP4QkTEGBOLeMyA69wlItuMMfsB3wfOxvoJqDQu24EOEXneGLMAuNMYc4SI/KXeBVN8JWV/dw8FfmKMGRKRJ4N+08DEXUROdNtnjPmTMWaOiGw3xswBnq3g0s8DBxhjptitoLnAthqL6ws+1Hkb8HcFr+diee2IyDb770vGmFuxfipGTdy3AYcUvHb6bHLHPGOMmQLMwPpMvZwbRaqus1iG7GsAIrLZGPMk8CYg6nNO1vJZuf6PR5ia/jcLvrt/MMY8ALwdy8MPlHrZMncBuV7y5cAPvJ5ofyHuB3I90hWdX0e81Pke4P3GmAPtaJr3A/cYY6YYY2YBGGNagQ8Cj4RQ5kr5JXCYHc3UhtV5ODE6oPA+nAH8xP5M7wKW2pEl84DDgIdCKnctVF1nY8xsY0wCwG7VHYbVwRh1vNTZDcf/8YDK6RdV19eu51R7fRbwbuDRwEpaSJ16n9uBTcATwH3ATHv7QuDfC477T2AH8AqWz3WSvf1QrC/+FuB7wNR61COgOn/CrtcW4OP2tunAZmAQ+C3wNSIaSQIsBh7Hapn02NuuAD5kr+9jf2Zb7M/w0IJze+zzHgNOqXddgq4z8BH783wY+BWwpN518bHO77C/s3/F+mX224JzJ/2PR32ptr7Au4AhrAibIeDcsMqs6QcURVFiiI5QVRRFiSEq7oqiKDFExV1RFCWGqLgriqLEEBV3RVGUGKLiriiKEkNU3BVFUWLI/wcXKDnOEHI3qAAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-15T22:46:34.966164\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuPElEQVR4nO2de5wcVZn3v093JiEdkCSTiOEyPUFxfQdwkYys4HVJFAgiiKi4I2TxMssEV1x31eBwSXRHBdfFdTXoeFngnVkQlHdlA74Kedn19bLoxIWEoECAmQAvSgj3hEsy87x/VM1MV091T9d017Wf7+dTn+4+farq1KmqXz31nOecI6qKYRiGkS1ycRfAMAzDaDwm7oZhGBnExN0wDCODmLgbhmFkEBN3wzCMDDIr7gIALFq0SNvb2+MuhmEYRqrYtGnT46q62O+/RIh7e3s7Q0NDcRfDMAwjVYjISKX/zC1jGIaRQUzcDcMwMoiJu2EYRgaZVtxFZB8R+bWI3CkiW0VknZt+pYg8KCJ3uMtRbrqIyNdEZJuIbBaRo0M+BsMwDKOMWhpUXwSOV9XnRKQF+LmI/Nj971Oq+oOy/CcBh7nLnwFXuJ+GYRhGRExruavDc+7PFnepNtrYqcDV7nr/BcwXkSX1F9Uw6mdwcJD29nZyuRzt7e0MDg7GXSTDCIWafO4ikheRO4DHgFtU9Xb3rz7X9XK5iMxx0w4CHipZ/WE3rXyb3SIyJCJDO3bsmPkRGEaNDA4O0t3dzcjICKrKyMgI3d3dJvBGJqlJ3FV1VFWPAg4GjhGRI4ALgNcArwcWAp8JsmNV7VfVTlXtXLzYNwbfMBpKb28vu3fv9qTt3r2b3t7emEpkGOERKFpGVZ8CbgNOVNVHXdfLi8C/AMe42R4BDilZ7WA3zTBiZfv27YHSa8VcPUYSqSVaZrGIzHe/zwXeDvx+3I8uIgKcBtzlrnIjcLYbNfMG4GlVfTSEshtGINra2gKl14K5eoykUovlvgS4TUQ2A7/B8blvAAZFZAuwBVgE/L2b/2bgAWAb8G1gdcNLbRgzoK+vj0Kh4EkrFAr09fXNeJvm6jGSiiRhmr3Ozk61sWWMKBgcHKS3t5ft27fT1tZGX18fXV1dM95eLpfD7x4SEcbGxuopqmFMi4hsUtVO3/9M3A1j5rS3tzMyMnXspmKxyPDwcPQFMpqKauJuww8YRh2E4eoxjEZg4m4YddDV1UV/fz/FYhERoVgs0t/fX5erxzAagbllDMMwUoq5ZQzDMJoME3fDMIwMYuJuGIaRQUzcDcMwMoiJu2EYRgYxcTcMw8ggJu6GYRgZxMTdMAwjg5i4G4ZhZBATd8MwjAxi4m4YhpFBTNwNwzAyiIm7ERk216hhRMesuAtgNAfjc42OT0k3PtcoYMPjGkYImOVuRILNNWoY0WLibkTC9u3bA6UbwTCXl1GOibsRCW1tbYHSjdoZd3mNjIygqhMuLxP45sbE3YgEm2s0PMzlZfhh4m5EQiPmGjXXgz/m8jL8mHYOVRHZB/gZMAcnuuYHqnqJiCwFrgVagU3AWar6kojMAa4GlgE7gfer6nC1fdgcqsZ0lEfbgGP522TU0N7ezsjIyJT0YrHI8PBw9AUyIqPeOVRfBI5X1T8FjgJOFJE3AJcCl6vqq4AngQ+7+T8MPOmmX+7mM4y6MNdDZczlZfgxrbirw3PuzxZ3UeB44Adu+lXAae73U93fuP8vFxFpVIGN5sRcD5VphMvLyB41+dxFJC8idwCPAbcA9wNPqepeN8vDwEHu94OAhwDc/5/Gcd2Ub7NbRIZEZGjHjh11HYSRfSzapjpdXV0MDw8zNjbG8PBw4oXd2k/CpyZxV9VRVT0KOBg4BnhNvTtW1X5V7VTVzsWLF9e7OSPF1HKjm+shO1joZkSoaqAFuBj4FPA4MMtNOxb4ifv9J8Cx7vdZbj6pts1ly5ap0ZwMDAxooVBQHFefAlooFHRgYMA3b7FYVBHRYrHom8dIPsVi0XO+x5disRh30VIHMKQVdLWWaJnFwB5VfUpE5gI/xWkkXQX8UFWvFZFvAptVdb2InAccqarnisiZwOmq+r5q+7BomebFIj2aj1wuh5/uiAhjY2MxlCi91BstswS4TUQ2A78BblHVDcBngE+KyDYcn/p33fzfBVrd9E8Ca+o9ACO7WENp82HtJ9Ew7aiQqroZeJ1P+gM4/vfy9BeA9zakdEbmaWtr87Xc7UbPLn19fb59Fqz9pLFYD1UjVqyhtPmw0M1omNbnHgXmc29uBgcH6e3tZfv27bS1tdHX12c3umHUQL0+d8OoSCPildMWo20YacDE3ZhCrYJt8cqGkVxM3A0PQQQ76Hgv1ivRMKLDfO6GhyBx50HilW1UR8NoPOZzN2omSNx5kHhlG9UxO9gbWDowcTc8BBHsIGGM1lkpOEkUUWtnSRGVxiWIcrGxZZJDkLFexvPXMt5L1OOJpH0cmqDnISpsXJhkQZWxZWIXdjVxTxxhCGOUYpVUYQxCmCJaz/n1K9P4YkSPibuRCKKyppNsXdZaByLiewwiUvf+63nw5fN533Ll8/m6ymXMDBN3o6kISxjrJYiwhvWAqne7zWi5J9nFZ+JuNBVJtdyDlCss11K9D76k1m1YJN3FZ+JuNIQgFkyc1k5Sb8igwhpGHdYrzkmt27BI+sPMxN2om6AzJsUtAEl8lU6CUDTi3CSxbsMiqS6+cUzcjboJIkxJELEk0qiHXr3i2kziXC9Jv5ZN3I26CWLBJN3aiZNGCHPcb0WNIC0PmKTXt4m7UTdmuSeDLNRt0gWznCQ/iEzcU0YSL6a0+dyzShbeirLwgEoKJu4pIsnCmJZomSyTBWHMwgMqKVQTdxvyN2EEGXLXaD6yMHSyXeONw4b8TRE2eqJRjSxMLm2TokeDiXvCCDLkrhEuSRxyF9I/52wWHlCpoJK/ZnwBDgFuA+4GtgLnu+lrgUeAO9xlZck6FwDbgHuAE6bbh/ncJ0myz72ZsPNgpAHqaVAFlgBHu9/3A+4FOlxx/zuf/B3AncAcYClwP5Cvtg8Tdy/WGBk/WWi4VLVrKetUE/dZNVj2jwKPut+fFZHfAQdVWeVU4FpVfRF4UES2AccAv5puX4ZDV1eXvaLGTBbaPsobX8dnTQLs+moCAvncRaQdeB1wu5v0MRHZLCLfE5EFbtpBwEMlqz2Mz8NARLpFZEhEhnbs2BG85EZgkupDTiJZaPuweWuTzYp/XIFcIshaQS4RVvzjioZuv2ZxF5F9gR8Cn1DVZ4ArgFcCR+FY9l8JsmNV7VfVTlXtXLx4cZBVjRlgc19Wxu+hl4WIjiy8fWSVFf+4go3PbHQUWIAcbHxmY0MFviZxF5EWHGEfVNUbAFT1j6o6qqpjwLdxXC/gNLIeUrL6wW6aESNmxflT6aEHpD6iIwtvH1ll49MbYfitMHAT7F7oJIqb3igqOeN1soFUgKuBr5alLyn5/jc4fnaAw/E2qD6ANajGjvUK9CfqhtMoGzgt4id5/OpXqgcf7ISyTCyf2V9Zi7NcQqDtUU+DKvBG4Cxgi4jc4aZ9FviAiBzlXjTDwF+5D4utInIdTujkXuA8VR0N+tAxGktbW5tvr8Bmt+KidF1E3cA5vs3e3l62b99OW1sbfX19qXr7yAJ33AHvfz/ce29J4hu+AssvhJYXvJnHGrjjSqof5WKWe/ikzYpLwmTajS5DVsIrjem5+27Vo47yWujnnqv67LPO/5zkWOkTFrtrtXNS4yz32IVdTdwjIy0xz1E+iCrtq6enp+FlMNdYttm2TfW447yCfvbZqk88MTVvsVh0BP4iV9QvcoQ96IPexD0BpEVYk0AS/OBhlMEs93QysHlAi5cXVdaKFi8v6sDmyXv3oYdU3/EOr6CfcYbqY49Ns80GGTAm7jGTNpdI3CTBwg2jDHYdpI+BzQNa6Ct43CdzL2jXZcdv9wj6ypWqjzwScNsNMPhM3GPGLLZgJKG+wipDpRva3uySSfHyoiPqn16gHDHoEfS3vU31wQfjLZ+Je8wkwRJNE0mwcIPOPFWPMCfheI2pPP20Kq/7jjds8aD/Uj52mMraZNy7Ju4xkwRLNG0kYdanWrbbCGG26yM57Nql+vGPq1fQX75Z6TnC45opXl6Mu6iqauIeO2aZhUfcddsIYbY3u3h54QXVNWu8gr50qeqvf+3vcy/0FTyNqnFi4p4AzKcaDnFbvdWEudZzHvcxZJ2eDT2aX5dX1qL5dXnt2dCjL72kum6dV9Bf8QrVn/1s6vrVomXixsTdyCxxW72VhLm1tTWQz97e7MKhZ0PPpNV9cU55xyc9gv6yl6n+9Kdxl3LmmLgbmSVuq7eSMLe2tgYql73ZhUNubV45+VyvDz33kuY+cFrcRWsIJu5GZkmC1esnzHG/UTQzY2OqV16pXkFHlfec6enynwWqibtNkG0kklonFknCZMt+E1bbcLvRc/31IAK5HPzlXzpp8q6PwCUCawWOvNYZ4xbINYH0Zf8IjdQRdGIRP3GNmyxM9hEmtT68B7cM0v7VdnLrcrR/tZ3BLd58GzbAnDmOqL/vfU7a178Oo6OOvV7Y59qpG1WYe/fcRh9S8qhk0ke5mFvGKCVuP3qjMD+6P7W60iqFIa7pv0Xnz/e6XC69VHXv3qn7EhHfAbqy4h7DfO7JpNlu/lqP1/zV2abWh/dE1/+1KB86VtnvYY+gX3yx6osvNmZfacXEPYEkoSEwSoIcb9ZvyGan1oc33UcrC+/1Nooed6nSu0/N+8r6fWbinkCaTcCCHG/Wb8hmp1gsKh903STjyweda+Guu1Rf+1r1CvoxX1M+W5hx1/8svyFXE3drUI2JMKd3q7WxKkqCHG8SImCM8Jh37jx4JU7kigBPvBL+45eMjAxzxBGwebMT7dL/i+so9M2DlR+H2c7UhIWWAn3LgzVKJ7HBPRIqqX6Ui1nujbPck2r1NtubiuHg1/WftSifOERZeqvXQj/8Wt2xw7t+krv+JwHMLZM8whLhpIpoUh86Rnh4uv6vRfnbVyivvtEr6K/+kZOeoY5FUVJN3GdF9YZgeAlrZvow3T31ENbxGsmlf1M/7GqFm78BW98/+cfSjXDqOTD/ofgK1wSII/7x0tnZqUNDQ3EXIxO0t7czMjIyJb1YLDI8PBx9gYym4+mn4ROfgCuvLEk8+Ffw7rOhdVvF9ZYvXc6tZ98advEyhYhsUtVOv/+sQTVjBO0ZmcTGVyPZrLh6BbJOJpYVV69g1y447zynp+j8+a6wH3AnrD7c6fr/keMmhD0veZYvXe7Zpgl7CFTy14wvwCHAbcDdwFbgfDd9IXALcJ/7ucBNF+BrwDZgM3D0dPtoRp97mNQa+pU2P3hPT4/m83kFNJ/Pa09PT9xFajqWX7V80ofeO0c57jKPD/2ww1Q3bXLyTvG5u0vPBjtvjYJ6GlSBJeMCDewH3At0AJcBa9z0NcCl7veVwI9dkX8DcPt0+zBxj4ekNr760dPT41tWE/hw6fh6h1ecL5qlvHWtt1F0v4eVDx3nu75ftIzROOoS9ykrwI+AtwP3AEt08gFwj/v9W8AHSvJP5Ku0mLjHQ5q6+Y9b7OVLPp+PvZNK3PtvBH4hhxPCfnFOWfFpr6Dv84Ry9vEe4Teip2HiDrQD24GXAU+VpMv4b2AD8KaS/zYCnT7b6gaGgKG2trao6sIoIUzLvdGC51fO8WX27NlTfkclsGlzbfnhN0DX3M/PU076mFfQ8y8oHzjZ19Vi4h4P1cS95mgZEdkX+E+gT1VvEJGnVHV+yf9PquoCEdkAfElVf+6mbwQ+o6oVw2EsWiYexofW3b1790RaoVCouzdoGNudNWsWo6OjNedvbW3l8ccfn9G+gpDG6KTVN62mf1M/ozpKXvLsM2sfdu3Z5Tya/vtDcON3vSuc8T444vqq27QG0XioO1pGRFqAHwKDqnqDm/xHEVni/r8EeMxNfwSnEXacg900I2GE1c2/t7fXI+wAu3fvpre3d8bb7O7uDpR/586dM95XEJLar6ASq29azRVDVzCqzoNydGyUXb89BdYqrNNJYT9t1eQkFybsqWRay11EBLgKeEJVP1GS/mVgp6p+SUTWAAtV9dMicjLwMZyG1T8Dvqaqx1Tbh1nu2SKXy+F3XYkIY2NjM97u6tWr6e/vZ3R0lHw+T3d3N1dccUXF/LW+ldZD0i33cit9TMdQFH7/Lvj+DaD5ycwn90DnNydmK8qTZ5Spb0sdizrYet7WiI7AqEa9lvsbgbOA40XkDndZCXwJeLuI3AescH8D3Aw8gBMK+W1gdb0HUC8Wyx0tYU0xt379evbu3YuqsnfvXtavX09ra6tv3krpjSbJMy5NsdLvOx79wtOOlX7tjxxhf8ffwsV5x0J//aSwF1oKXHX6VRyYP9DTwnFg/kAT9rRQyRkf5RJmtEwWGrzSRpR1PjAwoC0tLZ59tbS0xD5BdtT4Rbvk1+WVc96kzPuDt2H0zy90QhpLGkNz63JT1rd7J/nQzAOHpSmWO0vUK3hB1k+CuEZJ+fH2rO/xRrt8tFNlwYNeQX/TF5QLZ1eMdPGLP7d7J/lUE/fMjy0Tlv/XCM7g4GBNA4eFFcWTBQYHBzn7+2czdtSY41QdA/YCTx4JP7wGdhw+mfnP/gmWXwCzn5+ynbzkJ/zw3cu6WX/y+il57N5JPtV87pkX96Q3eDULQQTbzlll9n3/vuz6H7sc3/jjr4YbBuD/vX4yw9Hfdvzo+zxbcRs9nT2+Yl6OnYfk09QDhyW5wauZCBIe2Yjwwiw0ovsO0LX/q5yQxbUKX7/HEfYjB+HTC51G0Xd1Twh7cf8iPZ095MWJiMlLvmZhB7t3Uk8lf02US9jDDzSbTzaJBBnqoF5fbxobAssbRD1junzs1V7/+fhyfnEyzyVeH3qhr9CQWYvs3kk2NLPP3UgGQV7x6/W5p82dMLhlkO5/72b3npI3myeL8E/DUzOv7oCX/25KsiC07d/G9qe307Z/G33L++g6srnbJ5qBam4Zm4nJiIS+vj5fwfZ7xa931iY/Ya+WHiUrrl7Bxgc3TvxevnQ5257Y5gj7s6+Ar90He/b1rtS9DA78bdXtntt5rq+7pdZGbCN7mOVuREZUQlNpHJp8Ps/evXsbvr9aKRd2AHYvhCs2w7MHedPPeTMUf+67nZ7OHk+v00rRLhZ1lH2aOlrGaD6cETP8ifJ69xVzgBf3hW/fDo93eNM/eAK86qdVtxlkHJe0uaeM4DR1tIzRfBSLxYrpUUXRTBH2PfvAd37pRLl88dlJYX/fe2CtUOib5xH2QkuBjkVe8Q86QFfaBjULiyxETs0E87kbmaOSf3/lypWe9JGRkYnRJutxUxz+jcO5+/G7J353LOpwfu9tccZw2XaSd4XTVsFRV3uS+k/pp3djb0MbRNva2nwt93rH+EkT5a6pRp3zVFApjCbKxWZimh4LSQuGX32F0Z1+yjR0F+eUw6+ZGrZ40scqdv1fftXyxh14CWkMCW00WR9CgWYeWyaNTBk7pKen6W/SRtCIaQU9E0SXxpgf/a2pgn78ZysKei3C3ogHerMbBWmaSnImVBN3a1BNGH4RDiLi2xBoDWPBqLeB0eNHV+CWy+CXn/JmeuOlsGLNxNC55dTqN7dIl8aQ9UZli5ZJEZUuRj9sAKdgBBXM2etms0f3TCYI8LvT4Pv/y5tx2TfhnT1TBL1jTgd3v1Dii9+ng61rahsLPeuiFBVZf0haJ6YUESSSoZkaxhpBkM5RE8IuwH0nwHU/hD3zJjMccQ2c/kHI+T9cD8wfyPDnh6Gk0+lwYZjBQwZrEhWLdGkM9XaISzNmuSeMShZbuWsmS9ZH3PhGu/xmMVz3A3h+0WTG5RfAcV+GfPWJujsWdbDry7vqsrzNcjdqwSz3FFEpjG/VqlXcfPPNTWd9NJrC3xd4fnTq+OYAPHwMXHc9dz9T8kb0ls87yyzXPeNjC/n50XN/7d+FpFbLO8hwDYbhh3ViKiPuDg9dXV309/dTLBYREYrFIv39/axfv57h4WHGxsYYHh42YZ8BvsL+h9fC1+92Ohd953Z4pg2O/Qp8dq4zhO7xF08Kuw+VGkjrnUe20nVg592oFXPLlJD1xpdmYsGXFvDUi09N/J4/Z/7k7x1/AjcMwqPLJlfovALe/imYs2syTfE2kiq0SAsvXfLStPu3a8mIAouWqRHzc2aDcmEH4Iml8G9XwfY3T6b96VVw4vkw92nf7bTQ4omWqVXYx7ERGY2wMXGvEZszMp3k1+UZw+f8PH0Q3PhduP+EybSO6+Hk1TDv8arb7FjUwdbzagtbNIy4sIHDaqReP2mYxN0WkFSmCPtzL4drb3B86Jc/7Aj7YTfBJw90fOjvfZ9X2H1sGxN2IwtMGy0jIt8D3gk8pqpHuGlrgY8CO9xsn1XVm93/LgA+DIwCH1fVn4RQ7lBIaoTC4OAg55xzDnv2OC6CkZERzjnnHKAJBj8qoVzIc+Sc37sXwI//GbaU1EX7bXDqObCgxM2mwIvAnJKNvgjFa8ztVglzLaWXad0yIvIW4Dng6jJxf05V/6EsbwdwDXAMcCBwK/BqVa0aGJwUtwwk82JetGgRO3funJLe2trK449Xdy9khSkW+gv7wU+/Ar/96GTaQbfDu8+CRff5b2QX8OWpyeZ288cahZNP3T53EWkHNtQg7hcAqOoX3d8/Adaq6q+qbT9J4p5EkjL5RJSUdywC4KW5sPGLcPv5k2kv3wLv+Qs44K6q25s/Zz77f3N/azAPgAUYJJ+wfO4fE5HNIvI9EVngph0EPFSS52E3za9Q3SIyJCJDO3bs8MtiNCkeYd87G279guND/8JuR9gX3A8ffb3jQ1/9Wl9hz5FDL9GJ5ck1T9LX10ehUPDkS4LbLWpqbb+xIRDSzUzF/QrglcBRwKPAV4JuQFX7VbVTVTsXL148w2I0B62trYHSo6QRDb2DWwZp/2o7uXU52r/azt1/vBf+80JH0P/+Rfj5BbDvo868omsFzn8VHOS+6akj5KXkyDF6yVRPYNCOQVlsxB53tYyMjKCqE5NX+B1bkgMMjBqoNBZw6QK0A3dN9x9wAXBByX8/AY6dbvs2nnt1BgYGdPbs2Z7xqGfPnh372NxBJ4NoWdfiGcu8ZV2LDmwe0EJfwZnk4h2f9I6HPucp5awV3nHTy8dRv5BEHFtaCDJ5RVbrIEtQ72Qd5eIOLCn5/jfAte73w4E7ceIRlgIPAPnpth+XuMc9kUGQ/cddVj+CCEW5sE+I88nnegU995Jy5in+k1tcUrZciObz+diPLU0Enbyi3usuiddtlqhL3HGiXx4F9uD40D8M/E9gC7AZuLFM7HuB+4F7gJOm277GJO6VrJKenp5ILsYsWEXVhGL+F+dXFujTzp46a9EZ76s+a9ElKOdO3Zfz8hntsaWZKB9aWbjGk041cW/aHqpxD62bhUiEihOLfAaYW5a29Qy4/npv2qnnwFFX+s5aNCs3i71jeyd+53fmGf3nqX70sOorC+fHjyjDG7Nah0nCeqj6UKnFv/xht3v3bnp7eyPbf5oiEfr6+sidkoOLgEuAi3B+jwv7vSvh8y84DaPjwr7yPLg45zSMvu5KECi0lEWwtBS48rQrPdEu3Xu7fcuwcuXK0I4ti5E1UY42mYVrPM00rbgHafEP42LMQiTCL+b/grFlY5DHsb7zMLbgrfClJxxB/9ebYHSOM9rixXlH0I9ZD7nJB2iLtNB/Sj/F/YsIQnH/Iv2n9NN1pFdsbr75Zt8yVEqvlywPudvV1RXJ8NFZuMZTTSV/TZRLUnzulfysWfFH1tu4tfyq5f7+8A8dq+z3sNeH/raLlYtmVfWjt6xrqXnfWfWBZxnzuYcP9UbLhL0kJVqmp6cn0osxykiCem+0KcLe/Tpl4b1eQX/jl5TeORXFfP4X58+4/GE2BEZ9HpopeqTZjjdqTNwDkNWLMYg4lgv5xO/VHcoBd3gF/ZivKZ8tePLn1+WnRMvUI+yqwR9OtZ7HKK1Ls2SNRmPibtTs1phiof/1K5WDf+kV9Nd9R1nzsooWes+GnlCOIQzBjjI0MKux80Z8VBP3pm1QbQRp6p5eqRFr4VsXerr+b3xwIzx1CFx1q9Mo+s/b4OFj4Yhr4NOtTqPoqR+BfZ6Z2EZe8hOfPZ09rD95fSTHNE75eTj//PM9oX5QOeopyogOix4xIqWS6ke5pNFyT9srtl95W5a16Ox1sx2L+28PUF59o9dC/5N/c9KrNIouv2p5bOUf73RWnl5tKccsdyPNYJ2YGk8aO2jMXjfbMycozy+Em9bD1vdPph16C7zrwzD/oSnrL1+63LHsS37fevatYRZ5gkr1nc/nGR2tOl2AJ+/evXs9aVF26rHx0Y1GU60TU+xWu6bUck9yaN7A5gEtXl5UWStavLyoA5sHdO7n5zrW9pqXKUd9z2uhH/Jzx7eeAAu9EpXqO+jih0XLhEezHW/UYJZ740mq5T64ZZDuf+9m955J63CuLuL5m9fCb86bzPiK/4bTu+Dlv5uyjdm52bw09tLE70ZZ6PXMctUIyz3uc9Ns2JtK+JjlHgJJ8bn3bOjR/Lr8RAjivL55jrXdO0c57jKvhd76eyc+vYqFXugr6MDm5IUBBvG5t7S0TBkiOcntIVnF2hjCBwuFDIe4Xzl7NvR4xfmiWcpb13oF/WXblQ+/oaqgl7twwqARN3ql+vZLj/vcpI0w6ivJrsusUE3czS2TEsrnFO1Y1ME9O+9hdFThl38Ht146mXnuTnjve+HQ26bd7tz8XHZfuHvafPWSy+Xwu9aSPDl1EidLD4Ow3CdJdV1mCRsVMuVMmSx6TLj7puMZvWQvfG7UEfZZz8NfnOzEoX9mkUfYCy0FBk4fYG7eOw5vVMIO6RtEKsh0dGmnt7e35n4BQcjqyJqpoZJJH+WSVrdMWHR8vcN/sop3fcjrckGV954xJW9uXS4SV0sQom6jqNfN0Ez+4jDdJ+YeCxfMLZMePFa6AnedCT+8xpvp3WfBawd8J7kAYuklWgtRuTka4WZIoxtpppj7JL1YtExCqThA15mnKLLHa6G/s3vqBNFrmRItU21cl2axohphdVfaRmtra+bqMCmRX0ZwyGK0TNqFasoAXR98uzL7Ga+gn/AJ5eJcxSiXjq931Ly/ZrqBG+Fm8B2uIcMhlmm/n5qVauKeSrdMGjtHrL5pNf2b+hnVUfKSZ1RHYeRNcN0PYNcBkxn//EJ406WQ31t5YzjRMlvP21rz/pvp1btRx1ruRnruuefYuXNn3ds1jEZRzS2TSnFPm1Ctvmk1Vwxd4fx4ZBlcfx08dehkhjf3wVs/B7Ne8t8AwcW8nGbyIYf18Bep0MgBvnVrGGGTuVDItA2d+q2bfwnf2OIMofvtIUfY33A5fLbghC4uv9Aj7B2LOjzr1yvskL5QxHoIOv9prUM35/P5QOn1kqYhpY0EUslfE+US1OeelDA1vwbRcX7/e9XOTvX60I/+lnLBvrEM0NVMPvcgBKkXv2tufImzXEbzQj2TdYjI90TkMRG5qyRtoYjcIiL3uZ8L3HQRka+JyDYR2SwiRzfmEeQlCZ0jVly9wjP8LcDG325jwWvuRARe8xoYGoKuLsh9ZrFjob/rr2DOcxW3GeYQukGt2WYhSAeeYrHou41K6VGVyzB8qaT64wvwFuBo4K6StMuANe73NcCl7veVwI9xIrDfANw+3fY1pdEyE9b2J5coh23wWOinn676xz9O5p0yBkxJGKMRL0Eia6K0pm1cFoe47/OkQ72hkEB7mbjfAyxxvy8B7nG/fwv4gF++akva4twfe0yVjuu8LpdX3ax88kBlrf8repB4dCM8ysWitbU1kIsvKrFJiusxTsw1NT1hiPtTJd9l/DewAXhTyX8bgc7ptp8kca8kwk88oXrWWWU+9LafKR9fOsUir5UsWyVJPLY0xa6bsNkDrhZCFXf395MaUNyBbmAIGGpra4ukIqZjivvkgnlK53qPoC9bpnr33T6dkAI2iGb55k3qsaWt12kSH5BRYq6p6TG3TAXKp6PLrcspvfsox/6D10JffJfeccfU9atFy0xHHFZJs7sUTCyCE+cDJqnXUZIIQ9y/jLdB9TL3+8l4G1R/Xcv24xD3gc0DWugrOMJ8YYvyls95BX3/YeUjxwR2tdRK1EJjjYEmFkGpNvtVFIKf1DfAJFGXuAPXAI8Ce4CHgQ8Dra7L5T7gVmChm1eAbwD3A1squWTKl7DF3W/C6LZ/OFRZvsYr6IXHlFVvneJqya/LN7xMjRKaWi2rKIUtqSJqYhGMSuex/OGd5KGbs07dlnvYS5ji7rHQLxblxI97Bb3lOaXrhKodiypFttRz4TVCaNLWAScqi2+6ssVdhrRQ6Q0siQ/uZqWpxH3qhNH7Kqd8xCvojGruzNN9hXxe37yaQhYbJc71CE0QCzmfz/vmzecb/1aiOvXY/CayNqs52VS6vpLocmtWqol7KgcOAxjcMkjvxl62P72dtv3b6Fvexy+2/8IZoEuBLX8BN5SNxXF6Fxz5rxOTXBRaCuzeUzK4VEuB/lP66Tpy+l6bSRi8LMhgYHEPepWE+moEzTKvKvgPwCYivtdL2s5jVsjcZB0eV4u7FPoKyvvfXWahq2O1XzLVQh/3vc90OrokNBoGsdzj9oMnob7qpRl99vYGlmzImlumeHnRO8lFy3NeQT/x445/vYIPvdBXqHte0TDFslZ3TRCxCZq30X7pRtRX3P7yuB+QSSHu82BMkjlxl7UyGcI4LujL1ygX5X3FfNwyb+SE0WFZcUG3G+RGqyXvwMCAtrS0ePbf0tIS+XE1ev1GkIW3DyNbZE7cPZZ7ybLvF/yH0w1rHJekWrj1UGmsldbW1rqPt571466XpJTBMErJnLhX8rkPbB5I/QBdYVqHtYir375LLeW4LOc4rGbzNxtJJ3PirurfMSkLhGUd1urWqCbucVqtUVvNSY7VN4xxMinulUh7Y09YvuVaxbGSW6bSEpW/OWqfu7lgjDTQNOKehEa3RhDGA6pWt8bAwMCUIXBnz54deNzzMIjywW2Np0YaaBpxj+PVPS1vCUHqxu+4kvzgbHTEkGr1hmXDSApNI+5RWltJFjs/kjBcQhiEFetv4m6kgaYR9ygt9zT6ZJMozvUS5DxUyus3WYe5ZYw00DTibmOWNx9BzkOtoxwWCoWGtDFk8WFqJItq4p4jQ3R1ddHf30+xWEREKBaL9Pf3hzKwU1tbW6D0IAwODtLe3k4ul6O9vZ3BwcHpV2pSgpyHWs/N+EBZhULBk14oFOjr66tpG+ODbo2MjKCqjIyM0N3dbefSiI5Kqh/lkqQJsmslrGECwoyvzqIlWSm6p1afe6VFRFLfo9bIPjSLWyZqwhjgq5Io1Dv7TdoagGsl6Fg45ecsrBBPc9sZUWDiHjNBrLiwZr9JmyVZ64Oz3uOKu9OYYdSDiXvMBLHiKolCvVZgEizJMN50GnFcYbirsvqmZCQLE/eYCdqBqFwUKglYmiz3RrimgoQ3JsFCzmIbh5EsTNxjpt7G10aMRhi3JdkI15SfNd7T0+Obt6cnXaOBGsZMMHFPAHGOhd7IbcyURrim0ma5G0bYmLgbsVOva6rSW0a1Ngk/zFViZIlq4p6pTkxgHYDCJEjdludduXJlzZ2CKnVGA6bsP5/P++7fL906FhlNRSXVr2UBhoEtwB24TxBgIXALcJ/7uWC67aRx+IFmI+gAXX6x5/V0xKq0fwJY7ubCMbIGYbllXHFfVJZ2GbDG/b4GuHS67aRx4LCkEJWbIUjdhjGiYqX95/P5UBpqDSMNRC3u9wBL3O9LgHum204ah/xNAkkdKC2INV3v/v0seBvG12gWqol7vT53BX4qIptEpNtNO0BVH3W//wE4wG9FEekWkSERGdqxY0edxXAIczCvJNLb2zsxyNU4u3fvpre3t+H7irtuK+2nWCyyatWqCR97Pp9n1apVoQwWZxipopLq17IAB7mfLwfuBN4CPFWW58nptmM+95mR1MlJKlnI++67b8N97kH6ADTbm52RfYgiFBJYC/wdMbplVJsr1C3qNoYgwweUj9Q4a9asKY2sjZgJKgkx8Vm+5rJ8bFkgFHEH5gH7lXz/JXAi8GW8DaqXTbcti3OfGUl+U0ni6Ith1FeSz0G9ZPnYskJY4n6o64q5E9gK9LrprcBGnFDIW4GF023LxH3mJNWyKi+XnwA3wiUS1BpvdH1lOUIry8eWFaqJuzj/x0tnZ6cODQ3FXQyjQYx3Fipt7BUR/K61YrHI8PBwQ/dVKBRCm4GrnFwu53tcIsLY2Fjo+w+TLB9bVhCRTara6fdf5nqoGvHjF8WjqoiIJy3ItHWViHJqRT/ijiIKkywfWzNg4m40nO3bt/umq2ooItzV1cXw8DBjY2MMDw9HGgbZ19dX11yrSSbLx9YUVPLXRLmYzz1bNJuvNqntHo0gy8eWBTCfuxElcfvBDaNZMJ+7ESlx+8ENw8Asd8MwjLRilrthGEaTYeJuGIaRQUzcDcMwMoiJu2EYRgYxcTcMw8ggiYiWEZEdwEiN2RcBj4dYnDRgdeBg9WB1ME6z1kNRVRf7/ZEIcQ+CiAxVCv1pFqwOHKwerA7GsXqYirllDMMwMoiJu2EYRgZJo7j3x12ABGB14GD1YHUwjtVDGanzuRuGYRjTk0bL3TAMw5gGE3fDMIwMkjhxF5GFInKLiNznfi6okO9/i8hTIrKhLH2piNwuIttE5PsiMjuakjeWAPWwys1zn4isKkn/DxG5R0TucJeXR1f6+hCRE92ybxORNT7/z3HP7Tb3XLeX/HeBm36PiJwQacEbzEzrQUTaReT5knP/zcgL30BqqIe3iMhvRWSviJxR9p/v/dEUVJrFI64FuAxY435fA1xaId9y4BRgQ1n6dcCZ7vdvAj1xH1NY9QAsBB5wPxe43xe4//0H0Bn3cczguPPA/cChwGzgTqCjLM9q4Jvu9zOB77vfO9z8c4Cl7nbycR9TDPXQDtwV9zFEWA/twGuBq4EzStIr3h/NsCTOcgdOBa5yv18FnOaXSVU3As+WpokzA/PxwA+mWz8F1FIPJwC3qOoTqvokcAtwYjTFC41jgG2q+oCqvgRci1MXpZTWzQ+A5e65PxW4VlVfVNUHgW3u9tJIPfWQJaatB1UdVtXNwFjZulm8P2omieJ+gKo+6n7/A3BAgHVbgadUda/7+2HgoEYWLkJqqYeDgIdKfpcf77+4r+UXpeimn+6YPHncc/00zrmvZd20UE89ACwVkf8Wkf8UkTeHXdgQqeecZul6CMysOHYqIrcCr/D5q7f0h6qqiGQ2VjPkeuhS1UdEZD/gh8BZOK+tRvZ5FGhT1Z0isgz4NxE5XFWfibtgRnTEIu6quqLSfyLyRxFZoqqPisgS4LEAm94JzBeRWa4lczDwSJ3FDY0G1MMjwNtKfh+M42tHVR9xP58VkX/Feb1Ng7g/AhxS8tvvHI7neVhEZgH745z7WtZNCzOuB3Uczi8CqOomEbkfeDWQxrks6zmnFe+PZiCJbpkbgfFW7VXAj2pd0b2obwPGW8wDrZ8waqmHnwDvEJEFbjTNO4CfiMgsEVkEICItwDuBuyIocyP4DXCYG/U0G6eh8MayPKV1cwbwf9xzfyNwphtFshQ4DPh1ROVuNDOuBxFZLCJ5ABE5FKceHoio3I2mlnqohO/9EVI5k0fcLbrlC47PcCNwH3ArsNBN7wS+U5Lv/wI7gOdxfGknuOmH4tzQ24DrgTlxH1PI9fAh91i3Aee4afOATcBmYCvwT6QoagRYCdyLEyXR66Z9DniX+30f99xuc8/1oSXr9rrr3QOcFPexxFEPwHvc834H8FvglLiPJeR6eL2rAbtw3uC2lqw75f5olsWGHzAMw8ggSXTLGIZhGHVi4m4YhpFBTNwNwzAyiIm7YRhGBjFxNwzDyCAm7oZhGBnExN0wDCOD/H8gwmUvzBCzgAAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-19T21:26:21.549320\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" }, "metadata": { "needs_background": "light" @@ -564,6 +564,79 @@ "And I'm still not sure why we are using test data, we didn't actually test it" ], "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "I am probably jumping the gun a bit, but what happens if you include more than one property in the set?" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 73, + "source": [ + "X = origX[:, :4]\r\n", + "print(X.shape)\r\n", + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\r\n", + "print(X_train.shape, y_train.shape)\r\n", + "multiModel = linear_model.LinearRegression()\r\n", + "multiModel.fit(X_train, y_train)\r\n", + "y_predict = multiModel.predict(X_test)\r\n", + "\r\n", + "plt.scatter(X_test, y_test, color = 'black')\r\n", + "plt.scatter(X_test, y_predict, color = 'green')\r\n", + "plt.plot(X_test, y_predict, color = 'blue', linewidth = 1)\r\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(442, 4)\n", + "(296, 4) (296,)\n" + ] + }, + { + "output_type": "error", + "ename": "ValueError", + "evalue": "x and y must be the same size", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_16176/27852843.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0my_predict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmultiModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 9\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'black'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 10\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_predict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'green'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_predict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'blue'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlinewidth\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\pip\\packages\\matplotlib\\pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[1;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, data, **kwargs)\u001b[0m\n\u001b[0;32m 3066\u001b[0m \u001b[0mvmin\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m edgecolors=None, plotnonfinite=False, data=None, **kwargs):\n\u001b[1;32m-> 3068\u001b[1;33m __ret = gca().scatter(\n\u001b[0m\u001b[0;32m 3069\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mc\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmarker\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcmap\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcmap\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnorm\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnorm\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3070\u001b[0m \u001b[0mvmin\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvmax\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlinewidths\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\pip\\packages\\matplotlib\\__init__.py\u001b[0m in \u001b[0;36minner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1359\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1360\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1361\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1362\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1363\u001b[0m \u001b[0mbound\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\pip\\packages\\matplotlib\\axes\\_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[1;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, **kwargs)\u001b[0m\n\u001b[0;32m 4496\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4497\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4498\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"x and y must be the same size\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4499\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4500\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: x and y must be the same size" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAANT0lEQVR4nO3cYYjkd33H8ffHO1NpjKb0VpC706T00njYQtIlTRFqirZc8uDugUXuIFgleGAbKVWEFEuU+MiGWhCu1ZOKVdAYfSALntwDjQTEC7chNXgXItvTeheFrDHNk6Ax7bcPZtKdrneZf3Zndy/7fb/gYP7/+e3Mlx97752d2ZlUFZKk7e8VWz2AJGlzGHxJasLgS1ITBl+SmjD4ktSEwZekJqYGP8lnkzyZ5PuXuD5JPplkKcmjSW6c/ZiSpPUa8gj/c8CBF7n+VmDf+N9R4F/WP5YkadamBr+qHgR+/iJLDgGfr5FTwNVJXj+rASVJs7FzBrexGzg/cXxhfO6nqxcmOcrotwCuvPLKP7z++utncPeS1MfDDz/8s6qaW8vXziL4g1XVceA4wPz8fC0uLm7m3UvSy16S/1zr187ir3SeAPZOHO8Zn5MkXUZmEfwF4F3jv9a5GXimqn7t6RxJ0taa+pROki8BtwC7klwAPgK8EqCqPgWcAG4DloBngfds1LCSpLWbGvyqOjLl+gL+emYTSZI2hO+0laQmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqYlBwU9yIMnjSZaS3HWR69+Q5IEkjyR5NMltsx9VkrQeU4OfZAdwDLgV2A8cSbJ/1bK/B+6vqhuAw8A/z3pQSdL6DHmEfxOwVFXnquo54D7g0Ko1BbxmfPm1wE9mN6IkaRaGBH83cH7i+ML43KSPArcnuQCcAN5/sRtKcjTJYpLF5eXlNYwrSVqrWb1oewT4XFXtAW4DvpDk1267qo5X1XxVzc/Nzc3oriVJQwwJ/hPA3onjPeNzk+4A7geoqu8CrwJ2zWJASdJsDAn+aWBfkmuTXMHoRdmFVWt+DLwNIMmbGAXf52wk6TIyNfhV9TxwJ3ASeIzRX+OcSXJPkoPjZR8E3pvke8CXgHdXVW3U0JKkl27nkEVVdYLRi7GT5+6euHwWeMtsR5MkzZLvtJWkJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNTEo+EkOJHk8yVKSuy6x5p1JziY5k+SLsx1TkrReO6ctSLIDOAb8GXABOJ1koarOTqzZB/wd8JaqejrJ6zZqYEnS2gx5hH8TsFRV56rqOeA+4NCqNe8FjlXV0wBV9eRsx5QkrdeQ4O8Gzk8cXxifm3QdcF2S7yQ5leTAxW4oydEki0kWl5eX1zaxJGlNZvWi7U5gH3ALcAT4TJKrVy+qquNVNV9V83NzczO6a0nSEEOC/wSwd+J4z/jcpAvAQlX9qqp+CPyA0Q8ASdJlYkjwTwP7klyb5ArgMLCwas3XGD26J8kuRk/xnJvdmJKk9Zoa/Kp6HrgTOAk8BtxfVWeS3JPk4HjZSeCpJGeBB4APVdVTGzW0JOmlS1VtyR3Pz8/X4uLilty3JL1cJXm4qubX8rW+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmBgU/yYEkjydZSnLXi6x7R5JKMj+7ESVJszA1+El2AMeAW4H9wJEk+y+y7irgb4CHZj2kJGn9hjzCvwlYqqpzVfUccB9w6CLrPgZ8HPjFDOeTJM3IkODvBs5PHF8Yn/s/SW4E9lbV11/shpIcTbKYZHF5efklDytJWrt1v2ib5BXAJ4APTltbVcerar6q5ufm5tZ715Kkl2BI8J8A9k4c7xmfe8FVwJuBbyf5EXAzsOALt5J0eRkS/NPAviTXJrkCOAwsvHBlVT1TVbuq6pqqugY4BRysqsUNmViStCZTg19VzwN3AieBx4D7q+pMknuSHNzoASVJs7FzyKKqOgGcWHXu7kusvWX9Y0mSZs132kpSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmhgU/CQHkjyeZCnJXRe5/gNJziZ5NMk3k7xx9qNKktZjavCT7ACOAbcC+4EjSfavWvYIMF9VfwB8FfiHWQ8qSVqfIY/wbwKWqupcVT0H3AccmlxQVQ9U1bPjw1PAntmOKUlaryHB3w2cnzi+MD53KXcA37jYFUmOJllMsri8vDx8SknSus30RdsktwPzwL0Xu76qjlfVfFXNz83NzfKuJUlT7Byw5glg78TxnvG5/yfJ24EPA2+tql/OZjxJ0qwMeYR/GtiX5NokVwCHgYXJBUluAD4NHKyqJ2c/piRpvaYGv6qeB+4ETgKPAfdX1Zkk9yQ5OF52L/Bq4CtJ/j3JwiVuTpK0RYY8pUNVnQBOrDp398Tlt894LknSjPlOW0lqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpoYFPwkB5I8nmQpyV0Xuf43knx5fP1DSa6Z+aSSpHWZGvwkO4BjwK3AfuBIkv2rlt0BPF1Vvwv8E/DxWQ8qSVqfIY/wbwKWqupcVT0H3AccWrXmEPBv48tfBd6WJLMbU5K0XjsHrNkNnJ84vgD80aXWVNXzSZ4Bfhv42eSiJEeBo+PDXyb5/lqG3oZ2sWqvGnMvVrgXK9yLFb+31i8cEvyZqarjwHGAJItVNb+Z93+5ci9WuBcr3IsV7sWKJItr/dohT+k8AeydON4zPnfRNUl2Aq8FnlrrUJKk2RsS/NPAviTXJrkCOAwsrFqzAPzl+PJfAN+qqprdmJKk9Zr6lM74Ofk7gZPADuCzVXUmyT3AYlUtAP8KfCHJEvBzRj8Upjm+jrm3G/dihXuxwr1Y4V6sWPNexAfiktSD77SVpCYMviQ1seHB92MZVgzYiw8kOZvk0STfTPLGrZhzM0zbi4l170hSSbbtn+QN2Ysk7xx/b5xJ8sXNnnGzDPg/8oYkDyR5ZPz/5LatmHOjJflskicv9V6ljHxyvE+PJrlx0A1X1Yb9Y/Qi738AvwNcAXwP2L9qzV8BnxpfPgx8eSNn2qp/A/fiT4HfHF9+X+e9GK+7CngQOAXMb/XcW/h9sQ94BPit8fHrtnruLdyL48D7xpf3Az/a6rk3aC/+BLgR+P4lrr8N+AYQ4GbgoSG3u9GP8P1YhhVT96KqHqiqZ8eHpxi952E7GvJ9AfAxRp/L9IvNHG6TDdmL9wLHquppgKp6cpNn3CxD9qKA14wvvxb4ySbOt2mq6kFGf/F4KYeAz9fIKeDqJK+fdrsbHfyLfSzD7kutqarngRc+lmG7GbIXk+5g9BN8O5q6F+NfUfdW1dc3c7AtMOT74jrguiTfSXIqyYFNm25zDdmLjwK3J7kAnADevzmjXXZeak+ATf5oBQ2T5HZgHnjrVs+yFZK8AvgE8O4tHuVysZPR0zq3MPqt78Ekv19V/7WVQ22RI8Dnquofk/wxo/f/vLmq/merB3s52OhH+H4sw4ohe0GStwMfBg5W1S83abbNNm0vrgLeDHw7yY8YPUe5sE1fuB3yfXEBWKiqX1XVD4EfMPoBsN0M2Ys7gPsBquq7wKsYfbBaN4N6stpGB9+PZVgxdS+S3AB8mlHst+vztDBlL6rqmaraVVXXVNU1jF7POFhVa/7QqMvYkP8jX2P06J4kuxg9xXNuE2fcLEP24sfA2wCSvIlR8Jc3dcrLwwLwrvFf69wMPFNVP532RRv6lE5t3McyvOwM3It7gVcDXxm/bv3jqjq4ZUNvkIF70cLAvTgJ/HmSs8B/Ax+qqm33W/DAvfgg8Jkkf8voBdx3b8cHiEm+xOiH/K7x6xUfAV4JUFWfYvT6xW3AEvAs8J5Bt7sN90qSdBG+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElq4n8BzPZculjwdYoAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-07-19T21:26:21.749619\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Ah right, obviously you can't make a graph out of it because there's no X axis.\r\n", + "But the model happily accepted it, so maybe you could still make predictions.\r\n", + "\r\n", + "But enough jumping the gun for one day." + ], + "metadata": {} } ], "metadata": {