diff --git a/2-Regression/3-Linear/notebook.ipynb b/2-Regression/3-Linear/notebook.ipynb index 2902cce8..813a68a0 100644 --- a/2-Regression/3-Linear/notebook.ipynb +++ b/2-Regression/3-Linear/notebook.ipynb @@ -16,9 +16,209 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", @@ -32,9 +232,129 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_369224/2637987050.py:9: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
\n", + "
" + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", @@ -71,9 +391,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbdUlEQVR4nO3df5Bd9Xnf8fdHawELUSJkFgWEZGHMiLRWLZkNElHqqhBZFBhYU6e1Ai401Iqn9QwuqWyp0qR2BwZcJeA28TgDJrFaCLbr4IUaEqECahoGyVlZghUWqvghBIuMNgbZgBcQq6d/3LPy6ure3Xu09+w959zPa+bOnvPcc/c+Otp99tzv+f5QRGBmZsUzpdUJmJnZ8XEBNzMrKBdwM7OCcgE3MysoF3Azs4J632S+2WmnnRZz586dzLc0Myu8bdu2/X1EdFXHJ7WAz507l76+vsl8SzOzwpP0Yq24m1DMzArKBdzMrKBcwM3MCsoF3MysoFzAzcwKalJ7oVj2ercPsH7jbl45OMSZ0ztZtXwePQtntTotM8uAC3iJ9G4fYM19/QwdGgZg4OAQa+7rB3ARNyshN6GUyPqNu48U7xFDh4ZZv3F3izIysyy5gJfIKweHUsXNrNhcwEvkzOmdqeJmVmwu4CWyavk8pk7RUbGpU8Sq5fNalJGZZckFvGw0zr6ZlUZDBVzSXkn9knZI6ktiMyRtkrQn+XpqtqnaeNZv3M2h4aPXOD00HL6JaVZSaa7A/2lELIiI7mR/NfBIRJwLPJLsWwv5JqZZe5lIE8qVwIZkewPQM+FsbEJ8E9OsvTRawAN4WNI2SSuT2MyI2J9s/xiY2fTsLJVVy+fRObXjqFjn1A7fxDQrqUZHYv5mRAxIOh3YJOmZ0U9GREiKWi9MCv5KgDlz5kwoWRvbyGhLD6U3aw+KqFl3679A+hLwJvAZYGlE7Jd0BrA5Isa81Ovu7g6vyGNmlo6kbaPuPx4xbhOKpFMkTRvZBj4O7AQeAK5NDrsWuL956ZqZ2XgaaUKZCXxP0sjxfxERfy3p74DvSLoeeBH4F9mlaWZm1cYt4BHxPPCRGvGfABdnkZSZmY3PIzHNzArK84GXzNV3PsHjz712ZH/JOTO45zMXtjAjM8uKr8BLpLp4Azz+3GtcfecTLcrIzLLkAl4i1cV7vLiZFZsLuJlZQbmAm5kVlAt4iSw5Z0aquJkVmwt4ifx29xyqFuRhiipxMysfF/ASWb9xN4erprY5HHhBB7OScj/wEvGCDuktu20zew68dWT/3NNPYdONS1uXkFkKvgIvES/okE518QbYc+Atlt22uTUJmaXkAl4iq5bPq9kG7gUdaqsu3uPFzfLGBbxE+l58rWYbeN+LHshjVkYu4CVy79aXUsXNrNhcwEtkuM7qSvXi7e7c009JFTfLGxfwEumQUsXb3aYblx5TrN0LxYqk4W6EkjqAPmAgIi6X9E3gnwA/TQ65LiJ2ND1Da9iKRbO5e8u+mnGrzcU6nd7tA140O0fS9AO/AdgF/PKo2KqI+G5zU7LjdVPPfKDS5j0cQYfEikWzj8TNJqJ3+wBr7utn6NAwAAMHh1hzXz+Ai3iLNFTAJZ0FXAbcDNyYaUY2ITf1zHfBtkys37j7SPEeMXRomPUbd7uAt0ijbeBfBb4AHK6K3yzpKUm3Szqx1gslrZTUJ6lvcHBwAqmaWSt5pG/+jFvAJV0OHIiIbVVPrQHOA34dmAF8sdbrI+KOiOiOiO6urq6J5mtmLeKRvvnTyBX4EuAKSXuBbwEXSbo7IvZHxTvAnwMXZJinmbXYquXz6JzacVSsc2qHR/q20LgFPCLWRMRZETEX+BTwaERcI+kMAEkCeoCdWSZqZq3Vs3AWt1w1n1nTOxEwa3ont1w13+3fLTSR2QjvkdQFCNgBfLYpGZlZbvUsnOWCnSOpCnhEbAY2J9sXZZCPmZk1yCMxzcwKygXczKygXMDNzArKBdzMrKBcwM3MCsoF3MysoLwqfcl4us905q5+8JjY3lsva0EmxbCut9+zXeaIr8BLZGS6z4GDQwS/mO6zd/tAq1PLpVrFe6x4u1vX28/dW/YdWeFpOIK7t+xjXW9/izNrXy7gJTLWdJ9mE+U1V/PHBbxEPN2nZclrruaPC3iJeLpPy5LXXM0fF/AS8XSflqV6a6t6zdXWcQEvEU/3mU693ibuhVLbTT3zuWbxnCNX3B0S1yye414oLaSYxPar7u7u6Ovrm7T3MzMrA0nbIqK7Ou4rcDOzgmp4II+kDqAPGIiIyyWdTWWJtfcD24BPR8S72aRpjfJAnnTOXv0goz+DCnjBTSh1Lbp5E6++8Ytf85nTTmDr2mUtzKi9pbkCvwHYNWr/K8DtEfEh4HXg+mYmZul5IE861cUbIJK4Hau6eAO8+sa7LLp5U4sysoYKuKSzgMuAbyT7Ai4CvpscsoHKupjWQh7Ik069uz/u1VxbdfEeL27Za/QK/KvAF4DDyf77gYMR8V6y/zJQ83O6pJWS+iT1DQ4OTiRXG4cH8pi1l3ELuKTLgQMRse143iAi7oiI7ojo7urqOp5vYQ3yQB6z9tLIFfgS4ApJe6nctLwI+K/AdEkjN0HPAtzQ2mIeyJNOvfGDHldY28xpJ6SKW/bGLeARsSYizoqIucCngEcj4mrgMeCTyWHXAvdnlqU1xAN50nnh1suOKdbuhVLf1rXLjinW7oXSWqkG8khaCvyHpBvhB6lckc8AtgPXRMQ7Y73eA3nMzNKrN5An1YIOEbEZ2JxsPw9c0IzkzMwsPY/ENDMrqNwvqeaRhemct/Yh3h7+RbPYSR3imZsvbWFG+eYlwqzIcn0F7pGF6VQXb4C3h4Pz1j7UoozyzUuEWdHluoB7ZGE61cV7vHi78xJhVnS5LuAeWWhZ8hJhVnS5LuAeWWhZ8hJhVnS5LuAeWZjOSR21C0+9eLvzEmFWdLku4B5ZmM4zN196TLF2L5T6vESYFV3uuxH2LJzlgp2Ci3U63R+YwWPPDPLKwSF+9VdOovsDM1qdklnDcl/AzbIy0k11pKfTSDdVwBcNVgi5bkIxy5K7qVrR+Qq8ZObWWA5sr2fXq8ndVNPzyOh88RV4idQq3mPF252XVEvHI6PzxwXczBriJqf8cQE3s4a4ySl/GlkT8yRJP5D0pKSnJX05iX9T0guSdiSPBZlna2Yt45HR+dPIFfg7wEUR8RFgAXCJpMXJc6siYkHy2JFRjmaWA6uWz6NjytEDxTqmyCOjW6iRNTEjIt5MdqcmD9/nyaEl59QehFIvbpZG34uvMXz46F/94cNB34uvtSgja6gNXFKHpB3AAWBTRGxNnrpZ0lOSbpd0YlZJWmMef672L1K9uFkann43fxoq4BExHBELgLOACyR9GFgDnAf8OpWFjb9Y67WSVkrqk9Q3ODjYnKzNbNJ5+t38SdULJSIOAo8Bl0TE/qR55R3gz6mzwHFE3BER3RHR3dXVNeGEzaw1PP1u/jTSC6VL0vRkuxNYBjwj6YwkJqAH2JldmmbWar4Cz59GhtKfAWyQ1EGl4H8nIr4v6VFJXYCAHcBns0vTzMyqjVvAI+IpYGGN+EWZZGRmZg3xSEwzs4JyATczKygX8BL55RM7UsXN0pg57YRUccueC3iJ/Oyd4VRxszRefePdVHHLngu4mVlBuYCbmRWUC3iJuA3csuQ28PxxAS+RK+qsTVgv3u6++i8XpIq3u61rlx1TrGdOO4Gta5e1KCPzosYlMtZscTf1zJ/kbPKv3lJg6zfu9kK9dbhY54uvwEvEc1Wk4yXCrOhcwEuk3pxwniuuNi8RZkXnJpQSOfmEDt5699g+3yef4JuYtaxaPo/Pf3tHzbjVtq63n3u3vsRwBB0SKxbNdvNcC/kKvERqFe+x4u3uD3r7U8Xb3brefu7esu9Ik9xwBHdv2cc6n6+WcQG3tuWRq+l4SbX8cQE3s4b4Jnn+uICbWUO8pFr+NLKk2kmSfiDpSUlPS/pyEj9b0lZJz0r6tiQPx2ox90JJxyNX01mxaHaquGWvkSvwd4CLIuIjwALgEkmLga8At0fEh4DXgeszy9IaUu+DrD/g1uY28HRu6pnPNYvnHLni7pC4ZvEc90JpoUaWVAvgzWR3avII4CLgd5L4BuBLwNebn6KZ5cVNPfNdsHOkoTZwSR2SdgAHgE3Ac8DBiHgvOeRloObYY0krJfVJ6hscHGxCymZmBg0W8IgYjogFwFnABcB5jb5BRNwREd0R0d3V1XV8WZqZ2TFS9UKJiIPAY8CFwHRJI00wZwEDzU3NzMzG0kgvlC5J05PtTmAZsItKIf9kcti1wP0Z5WgN2nvrZani7c7ny4qukblQzgA2SOqgUvC/ExHfl/Qj4FuSbgK2A3dlmKc1oN6Q5nW9/b7xVIeLtRVZI71QngIW1og/T6U93HLC84GbtRePxCwRD3U2ay+eTrZEOqSaxdpDneubu/rBY2JuVrGi8BV4iXyw6+RU8XZXq3iPFTfLGxfwEnl+8Oep4mZWbC7gJeI2cLP24gJuZlZQLuBmZgXlAl4innA/HY/EtKJzN8ISWbFoNndv2VczbrW5WFuRuYCXyMhoy3u3vsRwBB0SKxbN9ihMs5JSTGIPhe7u7ujr65u09zMzKwNJ2yKiuzruNnAzs4JyE0rJrOvtdxOKWZtwAS+Rdb39R93EHI44su8iblY+bkIpkbGmkzWz8mlkRZ7Zkh6T9CNJT0u6IYl/SdKApB3J49Ls07WxeCi9WXtppAnlPeD3I+KHkqYB2yRtSp67PSL+MLv0LI0pgsM1avUUj+MxK6VGVuTZD+xPtt+QtAuYlXVilt6J75vC0KHDNeNmVj6pfrMlzaWyvNrWJPQ5SU9J+jNJp9Z5zUpJfZL6BgcHJ5atjentGsV7rLiZFVvDBVzSLwF/CXw+In4GfB04B1hA5Qr9j2q9LiLuiIjuiOju6uqaeMZW15nTO1PFzazYGirgkqZSKd73RMR9ABHxakQMR8Rh4E68wHHLrVo+L1XczIqtkV4oAu4CdkXEbaPiZ4w67BPAzuanZ2l87bE9qeJmVmyN9EJZAnwa6Je0I4n9R2CFpAVAAHuB38sgP0thz4G3UsXNrNga6YXyt0CtjmgPNT8dMzNrlPuXmZkVlAt4iZx7+imp4mZWbC7gJbLpxqXHFOtzTz+FTTcubU1CZpYpz0ZYMi7WZu3DV+BmZgXlAm5mVlBuQikZr8hj1j5cwEvEK/KYtRc3oZSIV+Qxay8u4CXiFXnM2osLeIl0qPbSO/XiZlZsLuAlsmLR7FRxMys238QskZEble6FYtYeFJPYPtrd3R19fX2T9n5m41l22+ajptv11ANj8/lKr3f7AOs37uaVg0OcOb2TVcvn0bMw3bLCkrZFRHd13E0o1raqixFU5k5fdtvm1iSUcz5f6fVuH2DNff0MHBwigIGDQ6y5r5/e7QNN+f6NrMgzW9Jjkn4k6WlJNyTxGZI2SdqTfK25qLFZXnkBjHR8vtJbv3E3Q4eGj4oNHRpm/cbdTfn+jbSBvwf8fkT8UNI0YJukTcB1wCMRcauk1cBq4ItNycqO29V3PsHjz712ZH/JOTO45zMXtjAjs/b1ysGhVPG0xr0Cj4j9EfHDZPsNYBcwC7gS2JActgHoaUpGdtyqizfA48+9xtV3PtGijMza25nTO1PF00rVBi5pLrAQ2ArMjIj9yVM/BmY2JSM7btXFe7x4u/MCGOn4fKW3avk8Oqd2HBXrnNrBquXzmvL9Gy7gkn4J+Evg8xHxs9HPRaUrS83uLJJWSuqT1Dc4ODihZM2ayQtgpOPzlV7PwlncctV8Zk3vRMCs6Z3cctX81L1Q6mmoG6GkqcD3gY0RcVsS2w0sjYj9ks4ANkfEmH9W3I0wW3NXP1j3ub23XjaJmZhZM9XrRjjuTUxJAu4Cdo0U78QDwLXArcnX+5uUqx2nJefMqNlcsuScGS3IphgW3byJV99498j+zGknsHXtshZmlG/N6NNszdNIE8oS4NPARZJ2JI9LqRTuZZL2AL+V7FsLPXvgzVTxdlddvAFefeNdFt28qUUZ5VvWfZotvXGvwCPib4F6syFd3Nx0bCKqi9F48Xbn85XOWH2afRXeGrmfC8Uf2czyIes+zZZerofS+yObWX5k3afZ0st1Ac96GKq1t5nTTkgVb3dZ92m29HJdwP2RzbK0de2yY4q1e6HUl3WfZksv123gZ07vZKBGsfZHNmsWF+t0ehbOcsHOkVxfga9aPo+pU47uADN1ivyRrY6TOmp3FqoXN7Niy/UVOHBsB0bXorrOn3tqzYE858/1TL/1ePbGdNb19nvFpxzJ9RX4+o27OTR89FD/Q8Phm5h1eDKrdDx7Yzrrevu5e8s+hpPpN4YjuHvLPtb19rc4s/aV6wLum5iWJf/BS+ferS+lilv2cl3A3e/ULD+G60x8Vy9u2ct1AXe/U7P86FDtG1D14pa9XBdw9zs1y48Vi2anilv2ct8Lxf1OzfJhpLeJe6HkR+4LuJnlx009812wc8QF3MwaVmvVJ6/2NLZlt21mz4G3juw3cxm6XLeBm1l+1Fuyb6yl/NpddfEG2HPgLZbdtrkp33/cAi7pzyQdkLRzVOxLkgaqVugxM7NRqov3ePG0GrkC/yZwSY347RGxIHk81JRszMysYeMW8Ij4G8BD08zMcmYibeCfk/RU0sRSd7YkSSsl9UnqGxwcnMDb2Xg8G6FZvpx7+imp4mkdbwH/OnAOsADYD/xRvQMj4o6I6I6I7q6uruN8O2vE28O1hzTXi7e7WXWmZKgXb3f1epu4F0p9m25ceswF1Ekdam0vlIh4NSKGI+IwcCdwQVOyMZtEtRYLGSve7j60pnZvk3pxq8x4WX0B9fZwNG3Gy+Mq4JLOGLX7CWBnvWPNrBzeq/NBrl7csp/xctyBPJLuBZYCp0l6GfhPwFJJC4AA9gK/15RszMysYeMW8IhYUSN8Vwa5mJlZCh6JWSL1+pq4D4pZayw5Z0aqeFou4CVSrynSTZRmrXHPZy48plg3c91VT2ZVIh1SzdVRPOG+WetkuUi2r8BLxBPup5P1IAuzrLmAl8hNPfO5ZvGcI1fcHRLXLJ7j+Zvr2HTj0mOKdTOn+iwb/8HLH8UkLkja3d0dfX19k/Z+ZtZcWc5tbfVJ2hYR3dVxt4FbW+vdPsD6jbt55eAQZ07vZNXyeV7Cbwwu1vniAm5tq3f7AGvu62fo0DBQGUK/5r5+ABdxKwS3gVvbWr9x95HiPWLo0DDrN+5uUUZm6biAW9t6pc6kVfXiZnnjAm5t68w608bWi5vljQu4ta1Vy+elilvlvsGSWx/l7NUPsuTWR+ndPtDqlNqaC7i1ra89tidVvN2N3PQdODhE8Iubvi7ireMCbm0r6xXDy8Y3ffPHBdzMGuKbvvkzbgFPFi0+IGnnqNgMSZsk7Um+1l3U2MzKwTd986eRK/BvApdUxVYDj0TEucAjyb5ZoXhuj3RWLZ9H59SOo2KdUzt807eFxi3gEfE3QPUCblcCG5LtDUBPc9Myy54ns0qnZ+EsbrlqPrOmdyJg1vRObrlqvkettlBDk1lJmgt8PyI+nOwfjIjpybaA10f2a7x2JbASYM6cOee/+OKLTUnczKxd1JvMasI3MaPyF6DuX4GIuCMiuiOiu6ura6JvZ2ZmieMt4K9KOgMg+XqgeSmZmVkjjreAPwBcm2xfC9zfnHTMzKxRjXQjvBd4Apgn6WVJ1wO3Assk7QF+K9k3M7NJNO584BGxos5TFzc5FzMzS2FSl1STNAgcbzeU04C/b2I6zeK80nFe6TivdPKaF0wstw9ExDG9QCa1gE+EpL5a3WhazXml47zScV7p5DUvyCY3z4ViZlZQLuBmZgVVpAJ+R6sTqMN5peO80nFe6eQ1L8ggt8K0gZuZ2dGKdAVuZmajuICbmRVU7gq4pH8v6WlJOyXdK+mkqudPlPRtSc9K2prMlJiHvK6TNChpR/L4N5OU1w1JTk9L+nyN5yXpvyXn6ylJH81JXksl/XTU+fqDjPI47gVJJF2bHLNH0rW1jmlRXsOjztsDk5DXbyf/j4cl1e0GJ+kSSbuTn7WmrhEwwbz2SupPzldfM/MaI7f1kp5Jfue+J2l6nddO7JxFRG4ewCzgBaAz2f8OcF3VMf8W+NNk+1PAt3OS13XAn0zy+fowsBM4mcqo2v8NfKjqmEuBvwIELAa25iSvpVSmKM46l48BHwV2jor9F2B1sr0a+EqN180Ank++nppsn9rqvJLn3pzk8/VrwDxgM9Bd53UdwHPAB4ETgCeBf9DqvJLj9gKnTfI5+zjwvmT7K3V+xiZ8znJ3BU7lF75T0vuoFIBXqp4fvZjEd4GLkznJW51XK/walYL884h4D/g/wFVVx1wJ/Peo2AJMH5lJssV5TYo4/gVJlgObIuK1iHgd2MSxK1O1Iq9M1corInZFxHgrF18APBsRz0fEu8C3qPx7Wp1X5urk9nDysw+wBTirxksnfM5yVcAjYgD4Q2AfsB/4aUQ8XHXYLOCl5Pj3gJ8C789BXgD/PPnI9F1Js7PMKbET+MeS3i/pZCpX29Xve+R8JV5OYq3OC+BCSU9K+itJ/zDjnEabGRH7k+0fAzNrHNOK89ZIXgAnSeqTtEVST8Y5NaoV56tRATwsaZsqC8xMtt+l8im42oTPWa4KeNLmdyVwNnAmcIqka1qbVcN5/S9gbkT8IypXaxvIWETsovLx7GHgr4EdwHDW7zueBvP6IZX5HT4C/DHQO4kpHhGVz7K560s7Tl4fiMqQ7N8BvirpnMnLrJB+MyI+Cvwz4N9J+thkvbGktcB7wD1ZfP9cFXAqU9O+EBGDEXEIuA/4japjBkiu5pLmjF8BftLqvCLiJxHxTrL7DeD8jHMaed+7IuL8iPgY8Drw/6oOOXK+EmclsZbmFRE/i4g3k+2HgKmSTss6r0QjC5K04rw1tFBK8omQiHieSvvvwozzakRLfs4aMep8HQC+R6XpInOSrgMuB65O/iBXm/A5y1sB3wcslnRy0q59MbCr6pjRi0l8Eni0zsmZ1Lyq2pWvqH4+K5JOT77OodLO/BdVhzwA/KukN8piKs0/+8nYeHlJ+tWRexeSLqDys5j1H+IRjSxIshH4uKRTk09gH09iLc0ryefEZPs0YAnwo4zzasTfAedKOlvSCVQ6GDS1h8zxkHSKpGkj21T+H3eO/aqmvO8lwBeAKyLi53UOm/g5y+rO7ATu6H4ZeIbKSf4fwInAf05OBMBJwP8EngV+AHwwJ3ndAjxN5U7yY8B5k5TX/6XyC/wkcHES+yzw2WRbwNeo3O3uZ4y79ZOc1+dGna8twG9klMe9VO5bHKLSxng9lXsmjwB7qPSQmZEc2w18Y9Rrfzf5OXsW+Nd5yIvKJ7/+5Lz1A9dPQl6fSLbfAV4FNibHngk8NOq1l1L5pPUcsDYPeVHp4fFk8ni62XmNkduzVNq3dySPP63OrRnnzEPpzcwKKm9NKGZm1iAXcDOzgnIBNzMrKBdwM7OCcgE3MysoF3Azs4JyATczK6j/D2eZMEtNk3h8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "plt.scatter('Month','Price',data=new_pumpkins)" @@ -81,9 +424,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjk0lEQVR4nO3df5DcdZ3n8ec74wQGjI6RCQshMRCyoTyDiRtJqHi3EDcbDi2ZtTzXHHhsHUduvfJKxY0mklLZC0V28cDbK2+34HTlDjaCwI2WcGKOkHWXgvEmJDAgcBAXgiOSKISfISST9/3R3046nf5Of/v7/XTPp7tfj6pUuj/d8+7Pd74z7/l+Pz/N3RERkfYzZbIrICIi+SiBi4i0KSVwEZE2pQQuItKmlMBFRNrU21r5YSeddJLPmTOnlR8pItL2tm3b9ht3H6gub2kCnzNnDiMjI638SBGRtmdmz9YqVxOKiEibUgIXEWlTSuAiIm1KCVxEpE0pgYuItKmWjkKR1hvaPsa19zzJr/bu49T+PtasnM/gopmTXS0RCUAJvIMNbR9j3Z2j7DswDsDY3n2su3MUQElcpAOoCaWDXXvPk4eTd9m+A+Nce8+Tk1QjEQlJCbyD/WrvvobKRaS9KIF3sFP7+xoqF5H2ogTewdasnE9fb89RZX29PaxZOT93zKHtYyzbuIXT197Fso1bGNo+VrSaIpKTOjE7WLmjMtQoFHWKisQlUwI3s2eAV4Fx4KC7Lzaz6cCtwBzgGeCT7v5Sc6opeQ0umhksuU7UKaoELtJ6jTShnO/uC919cfJ8LXCvu88D7k2eSwdTp6hIXIq0gV8E3JQ8vgkYLFwbiZo6RUXikjWBO/ATM9tmZquTspPd/fnk8a+Bk4PXTqLSjE5REckvayfmh9x9zMxmAJvN7InKF93dzcxrfWGS8FcDzJ49u1BlZXKF7hQVkWLMvWbeTf8Cs68DrwGXA+e5+/Nmdgqw1d0nvBRbvHixa0ceEZHGmNm2iv7Hw+o2oZjZiWY2rfwY+EPgUeCHwKXJ2y4FfhCuuiIiUk+WJpSTgf9lZuX3/527/9jM/i9wm5ldBjwLfLJ51RQRkWp1E7i7/wJ4f43y3wIfbkalRESkPk2lFxFpU5pKX1DoDRNijyci8VACLyD02iCxxxORuKgJpYDQGybEHk9E4qIEXkDotUFijycicVECLyD02iCxxxORuCiBFxB6bZDY44E2dBCJiToxCwi9Nkjs8dQpKhKXhtdCKUJrobS3ZRu3MFaj/Xxmfx/3r10+CTUS6Q5pa6HoClwya9dO0dBj4dcPjbJp+DnG3ekxY9WSWWwYXBBN/aR7KIFLZqf299W8Ao+5UzR0s8/6oVFufnDX4efj7oef50niapaSItSJ2aXWD40yd93dzFl7F3PX3c36odG6X9OOGzqEHgu/afi5hsrr0Vh9KUJX4F0o71VkO27oELrZZzylzyitvJ52bZaSOCiBd6GJriLrNQOE3OW+FUI3+/SY1UzWPaXllhvWjs1SEg81oXSh0FeRMQvd7LNqyayGyutpx2YpiYeuwLtQ6KvImIVu9infoYQahdKOzVISj8zjwM2sBxgBxtz9o2b2XeD3gZeTt/yJu++YKIbGgcehug287JKlswsNh5M4aFhi5wkxDvxzwOPAOyrK1rj77UUrJ60V+ipS4qFhid0lUwI3s9OAjwBXA1c0tUbSEhsGFyhhd6CJhiUqgXeerJ2Y3wS+BByqKr/azB4xs+vN7LhaX2hmq81sxMxG9uzZU6CqIlKPhiV2l7oJ3Mw+Cux2921VL60DzgI+CEwHvlzr6939Bndf7O6LBwYGitZXRCagJYS7S5Yr8GXAx8zsGeB7wHIzu9ndn/eS/cDfAuc0sZ4ikoGGJXaXugnc3de5+2nuPgf4FLDF3S8xs1MAzMyAQeDRZlZUROobXDSTaz6+gJn9fRillSKv+fgCtX93qCLjwG8xswHAgB3AnwapkYgU0m6zZSW/hhK4u28FtiaPtQC0iMgk0lR6EZE2pQQuItKmlMBFRNqUEriISJtSAhcRaVNK4CIibUrrgUtDWrFU6YrrtvLU7tcPP58340Q2X3Fex8YL/T2NPZ6Eoytwyay8VOnY3n04R5YqHdo+FuwzqpMjwFO7X2fFdVs7Ml7o72ns8SQsJXDJrBU7qFcnx3rl7R4v9Pc09ngSlhK4ZKalSsML/T2NPZ6EpQQumWmp0vBCf09jjydhKYFLZq1YqnTejBMbKm/3eKG/p7HHk7CUwCWzVixVuvmK845JhkVGecQeL/T3NPZ4ElbmXelD0K70IiKNS9uVXlfgIiJtKvNEHjPrAUaAMXf/qJmdTmmLtXcD24BPu/tbzammhBZycsaSqzfzwqtHTv3J06YyfOWKKOrWDi6+8QHu3/ni4efL5k7nlsvPjSbe+qFRNg0/x7g7PWasWjKLDYMLcseTcBq5Av8c8HjF878Arnf3M4GXgMtCVkyaJ+TkjOrkDfDCq2+x5OrNk163dlCdbAHu3/kiF9/4QBTx1g+NcvODuxhPmlrH3bn5wV2sHxrNFU/CypTAzew04CPAf0+eG7AcuD15y02U9sWUNhByckZ18q5X3sq6tYPqZFuvvNXxNg0/11C5tFbWK/BvAl8CDiXP3w3sdfeDyfNfAjXvcc1stZmNmNnInj17itRVAol5ckbMdetG4ymDHNLKpbXqJnAz+yiw29235fkAd7/B3Re7++KBgYE8ISSwmCdnxFy3btRj1lC5tFaWK/BlwMfM7BlKnZbLgf8C9JtZuRP0NKAzGyk7UMjJGSdPm9pQeSvr1g6WzZ3eUHmr461aMquhcmmtugnc3de5+2nuPgf4FLDF3S8G7gM+kbztUuAHTaulBBVycsbwlSuOSdZFRqF028SRWy4/95jkWmTUSOh4GwYXcMnS2YevuHvMuGTpbI1CiURDE3nM7Dzgz5JhhGdQuiKfDmwHLnH3/RN9vSbyiIg0Lm0iT0MbOrj7VmBr8vgXwDkhKiciIo3TTEwRkTYV/ZZqsc/KC12/0LPeYo/XCtpiTDpV1Am8PCuvPLGjPCsPiOIXJnT9yrPeysqz3oBcSTL2eK0Q+hzF/jMp3SXqJpTYZ+WFrl/oWW+xx2sFbTEmnSzqBB77rLzQ9Qs96y32eK2gLcakk0WdwGOflRe6fqFnvcUerxW0xZh0sqgTeOyz8kLXL/Sst9jjtYK2GJNOFnUnZrlTKNYe/9D1K3cEhhrlEXu8Vgh9jmL/mZTuoi3VJDoapidytCAzMUWaTcP0RLKLug1cuo+G6YlkpyvwgkLf7q+4bitP7X798PN5M05k8xXnBY+X93Nqfd0r+w4E2xOzGcP0Yt9zMvQ5VxNU99AVeAGh92+s/kUGeGr366y4bmvQeGeuuyvX56TFC7knZs+UlKGKKeX1xL7nZOhz3m17inY7JfACQt/uV/8i1yvPG+9gSr91vc9ppB5598Q8eKh25dLK64l9z8nQ51xNUN1FCbwAzcqT2Ohnsrtk2RPzeDP7mZk9bGaPmdlVSfl3zeyfzGxH8m9h02sbGc3Kk9joZ7K7ZLkC3w8sd/f3AwuBC8xsafLaGndfmPzb0aQ6Riv0rLx5M05sqDxvvLelNCfX+5xG6pF3T8zQ34PY95wMfbzNmCk6tH2MZRu3cPrau1i2cUvh9vTQ8bpZlj0x3d1fS572Jv/iXb2ohULv37j5ivOO+cUtMiIhLd6SM2onmxnTjms4XryroJTsfrX2Ln9p5fWE3nMy9DkP/TMZulNUnaxhZZqJaWY9wDbgTOBb7v5lM/sucC6lK/R7gbXaE7M9zFl7V+prz2z8yKTFaod43WbZxi2M1Wg/n9nfx/1rl096vG6RNhMzUyemu4+7+0LgNOAcM3sfsA44C/ggpY2Nv5zywavNbMTMRvbs2ZO3/iIyCbQcb9wa3dR4r5ndB1zg7t9Iiveb2d8Cf5byNTcAN0DpCrxIZUOIfVJHaLUmdYSM143O/tqPeWX/kaF67ziuh0euuiCaeEuu3hxsYtWp/X01r5iLLMcbMl63yzIKZcDM+pPHfcAK4AkzOyUpM2AQeLR51Qwj9kkdoaW1Nx7fU7vl+h3H9dQsnyhemnqx0qR1fubtFA0drzrZAryyf5yzv/bjKOJVJ28oNrHqhKm1U0RaeavjdbssV+CnADcl7eBTgNvc/UdmtsXMBij1Y+0A/rR51Qwj9kkdoaVN6khTnUiyxEszrS9fgnxbT+3En1be6nhp36N637tWxUubQJV3YlWrJpfljdft6iZwd38EWFSjXD0OkQvdrthIvFjaSNXmKp1M9y0dLHS7YiPxYtmyTBNbpJN1VQKPfVJHaGmTOtImidSr95qV8+mtWlQqbY2pIluWxRwvrW0/b5t/6Hih2/y77Xem3XRVAg89CSN0vNDSJnW8su9Azfc/vfu1muVHqUrYaWtMXXP3zxurbOKrQ6MNldez9vaHGypvtb6ptRN1WnmrddvvTLvpuvXAQ/+gxP6DN7ho5jGz8D5/646a763X0XXtPU9yYDzbSNC8nWahO/XeTKlvWnk9sXc6ho4H3fc700666gpcilHHn0hclMAlM3X8icRFCbygdlypLW9HV61O0UY/o57QnXppk5bSyuuJvdMxdDyJmxJ4Ae26UtvwlSuO+YXOMt26VqfoN/94Ya5YaR656oJjkmGRqeVPXH3hMcn6+B7jiasvjKJ+6y58b0Pl9eQ9t9KeMq1GGEqnrUaoldqkKJ1zySJtNcKuG4USUqfNGtRu5q032edc2puaUAropFmDWmh/cmimqBShK/AC1qycz7o7R49a4KnI9lWh40H6VXV1+RtvHUzdzbzeVXjoK/duirdm5XyuuHUHhyrKppB/pijA+qFRNg0/x7g7PWasWjKLDYMLcseTeCmBF1D+pQ31yxw6XvmqupyYy1fVI8++yB3bxo4qTzO2dx8Lr/oJZrD3jQPH1CntMyqPJ0SdOzXeyLMvHpW8AQ4l5XnirR8a5eYHdx1+Pu5++LmSeOdRJ2YHS+sg6zFjvMB57+vtObzPYuwdubHHm7vu7prnoseMndc0PlImdDyJQ6Et1aQ9pXWEFUnecKRpZaLPiKUjN/Z4aeci7zkKHU/ipgTewdI6wnqs9iSW/r5eZmbsPCsnrNg7cmOPl3Yu0spbHU/ilmVLtePN7Gdm9rCZPWZmVyXlp5vZsJk9bWa3mpmmegVw8Y0PMGftXYf/Fdmebc3K+ccs9zrFYNWSWfRUvdAzxfhnp07j1y+/mSm2U9rxvVZzghHP8q9rVs6vXkCxcP1Cxlu1ZFZD5a2OJ3HLcgW+H1ju7u8HFgIXmNlS4C+A6939TOAl4LKm1bJLhN5j8/sju45Z7vWQw+bHfs141Qvjh5z7d74Y5Fbbk8/O41v3PdVQeT3fH9lF9REVqV/oeKFtGFzAJUtnH77i7jHjkqWz1YHZobJsqeZAeaHo3uSfA8uBf52U3wR8Hfjr8FXsHq3as7PI0qJFP7ue0Hsmxr4P6qbh51LL8ybdDYMLlLC7RKY2cDPrMbMdwG5gM7AT2OvuB5O3/BKoOebJzFab2YiZjezZsydAlUU6hzodpYhMCdzdx919IXAacA5wVtYPcPcb3H2xuy8eGBjIV0uRDqVORymioVEo7r4XuA84F+g3s3ITzGmA5lwX1Kr9B1uxtGjeOqft15lWnrcesezpqE5HKSLLKJQBM+tPHvcBK4DHKSXyTyRvuxT4QZPq2DVatf/g8JUranZ0VZbB0dtfNnI9WKTOm68475hkPW/GiWy+4rxc8WLf01GdjlJE3ZmYZnY2pU7KHkoJ/zZ3/3MzOwP4HjAd2A5c4u77J4qlmZjtrXoaebXKGZoiEk7u5WTd/RFgUY3yX1BqD5cuce09T6Ymb8i++JWIhKGZmJJZluniWsdapHW0GmGXyrPk6Kn9fROuXAilCQLrh0YLteGGXg612+JJ99AVeBcqLzlaHmtcXnJ0/dDohF+XdVPjLLFC103xpBspgXehiWb/lQ1tH2PZxi2cvvYuFl71Exb9+U/4wq07OO5tU3jXCb0YpcWvGv2MEHVTPJESJfAuVG/2X/X2anv3HeClNw4cfvzmgUNc/8cL2fG1P2z4M4rWTfFEjlAC70L1Zv9lHW2SJVbouimeyBFK4F2o3uy/RkabxL4carfFk+6iUShdqDzCIW3kQ5bRJuUNDOrFCl03xRM5QntiyjE041IkLrlnYkr3KSfma+95kl/t3cc7+3pTd6UXkcmjBC41DS6aqSQtEjl1YoqItCldgUtDhraPqWlFJBJK4JJZdefm3n0HDr82tncf6+4sTf9WEhdpDTWhSGaNTPARkebLsiPPLDO7z8x+bmaPmdnnkvKvm9mYme1I/l3Y/OpKM1Wuf7Js4xaGth+9S56WkxWJS5YmlIPAF939ITObBmwzs83Ja9e7+zeaVz1plermkVpNIo1M8BGR5qt7Be7uz7v7Q8njVynth6lGzg5Tq3mkukmk3nKyfb09rFk5v2l1FJGjNdQGbmZzKG2vNpwUfdbMHjGz75jZu1K+ZrWZjZjZyJ49e4rVVpomremjsnxw0Uyu+fgCZvb3HV5Otry07Mz+Ps3OFGmxzFPpzeztwN8DV7v7nWZ2MvAbSpuw/CfgFHf/txPF0FT6eC3buKVm88jM/j7uX7t8EmokImWFptKbWS9wB3CLu98J4O4vVLx+I/CjQHWVSbBm5fxj1j+p1SRSuf0XgFH6C65FmERar24CNzMDvg087u7XVZSf4u7PJ0//CHi0OVWUVqhe/6TWxJzy9l+Vyvdv5a3AACVxkRap24RiZh8C/gEYBQ4lxV8BVgELKf0OPwP8+4qEXpOaUNrb3HV3190ppseMnddoRKlISLmbUNz9HyndKVe7O0TFpH1k2eZLW4GJtI5mYkpmWbb50lZgIq2jBC6ZZdnmS1uBibSOFrOSzKq3/wKNQhGZTNpSTUQkcmmdmGpCERFpU0rgIiJtSm3gHa5yB50Qu+aEjici+SmBd7AsS8ROZjwRKUZNKB0syxKxkxlPRIpRAu9gWZaIncx4IlKMEngHS9sdJ++uOaHjiUgxSuAdrNYOOkV2zQkdT0SKUSdmB8uyROxkxhORYjQTU6IT+9BHxVO8Viu0I49Iq8Q+9FHxFC8mddvAzWyWmd1nZj83s8fM7HNJ+XQz22xmTyX/19zUWKQRsQ99VDzFi0mWK/CDwBfd/SEzmwZsM7PNwJ8A97r7RjNbC6wFvty8qsYp9tu3GG8HJxL70EfFU7yY1L0Cd/fn3f2h5PGrwOPATOAi4KbkbTcBg02qY7TKt1tje/fhHLndGto+1pHxWiH2oY+Kp3gxaWgYoZnNARYBw8DJFXtg/ho4OWzV4hf77Vu73Q5C/EMfFU/xYpK5E9PM3g7cAXze3V+xiq2z3N3NrOZwFjNbDawGmD17drHaRib227d2ux2E+Ic+Kp7ixSTTMEIz6wV+BNzj7tclZU8C57n782Z2CrDV3Sf8M9VpwwiXbdzCWI1kOLO/j/vXLu+4eCIyOXIPI7TSpfa3gcfLyTvxQ+BSYGPy/w8C1bVtrFk5nzW3P8yB8SN/BHt7rNDtW/B433+YA4cq4k0pxcvbuVnr6yDsFUvsHbndFk/ilaUJZRnwaWDUzHYkZV+hlLhvM7PLgGeBTzalhrGrvoEpOi8qdLzqTeINRp59kTu2jTU81rXWGNk1tz8MzuE/ErGNw1W8uMcxSzFZRqH8o7ubu5/t7guTf3e7+2/d/cPuPs/d/8DdX2xFhWNy7T1PHnV1C6VEVqTTMXi88ap4486m4edydW7W6hQ9MO7H1DmmjlfFi7/jWvKLfiZmzLeXsXc6pn3deEq/R73PaaQesX8PFE86QdSrEcY+Lrr/hN6Gyus5vrf26UgrzxsvTb2xro0cVyzjcBWvWDyJW9QJPPbby7QBPHnXB9t/8FBD5XnjGeQa65r1uGIah6t4cY9jlmKiTuCx316+vO9AQ+X1HEpJkGnleeM5cM3HFzCzvw+jNKzwmo8vqNuUNNFxNRorzeCimbnqpnjNiSdxi7oN/NT+vprjmIvcXsYcr8esZvt0j1UPJSkeb3DRzIZ/qdOON/S48jx1U7zmxZN4RX0FvmblfHqnHJ28yuOY88aL+XZ11ZJZDZW3Ot6alfPp7ak6HwXGqYtIMVFfgQM1xzHnFfu028Xvmc7fPbiLypbrKUl5DPGA8OPUWyDmkUzdGE/CiXpHnm6bCh77VPp2PB/VE1ugdJeUt11Y8YrFk3zSptJH3YTSbWNaY++0bcfzEftIpm6LJ2FF3YQSupMQ4r69bGUna556p8XrP6GXZRu3BPueLrl6My+8+tbh5ydPm8rwlStyxYr9j1i3xZOwor4CD91JGPvEoBOm1j4daeX1zHl37cR/wtQpuep9/lkDNctffuNAsO9BdfIGeOHVt1hy9eZc8U6Y2tNQeT2xT7yJPZ6EFXUCDz2mNfbby6d2v95QeT0P/uKl1Hh56n3fE3tqlldPFyryPahO3vXK63n9rfGGyutJ+yOWVl5P7COjNDEoblE3oUDYMa3ddnuZtuZJmhjWQold2h+xtPJ6Yh8Z1W4bHHSb6BN4SLFP5AnNaGyU3zv7Jl7rJO14a3lb1Pd2+TXjj3bsE3k0MSheXZXA16ycX3NIVJHby5Dxls2dzv07j12Vd9ncfOO2T5ja01BTQb0Jn+efNcDND+7KFOtAvuVboteMP9ohO20BVly39ahmt3kzTmTzFefljnfxjQ8c9XO5bO50brn83GjirR8aZdPwc4y702PGqiWz2DC4oGPjVerQ66TaYl934pbLzz0mWRf54X6jwXbel96YeA2XvM0EneTVfbXb4tPK6wndaVudvKHU57Hiuq254lUnW4D7d77IxTc+EEW89UOj3PzgrsPNhePu3PzgLtYPjXZkvGpZtlT7DvBRYLe7vy8p+zpwOVD+jf6Ku98dpEZNFvvtZZErkWqNNHlk0ant2o14ZX/tP4pp5fWE7rQN3RFe645wovJWx9s0/FxqeZ6r3NjjVctyBf5d4IIa5ddX7tBTuCYSXNoIgrxiadsXKUvrqG+0A79d4lXLsqXaT4Gu2y6tEwwumskHZr/zqLLq541Ys3I+PVOyLUZTZAXFmONJXGL/eWn2z1+RNvDPmtkjZvYdM3tX2pvMbLWZjZjZyJ49akNtpfVDozXbG0+eNrXm++t1lo48+yLjGRcnj2UFxdDx0r53aeWtNm/GiQ2V15P2M5G3Yz10vNh/XkLHq5Y3gf81MBdYCDwP/Oe0N7r7De6+2N0XDwzkm+wg+aS1v/3mtQPHJJyTp02t2/6eFq/avBkn5m7f2zC44JhkE1O84StXcHzVkrrH91juUSMzU5ql0srr2XzFebzjuKObyd5xXE/uUSi3XH5urp+VVsWL/edlw+CCmgMTJnUUiru/4O7j7n4IuBE4J0htJKiJ2t9qjXyo1zOetd3uqd2vF+q1rzWKIqZ4b44f/X14c9xzx0tb7iCtvJ71Q6PHdKi+sn+80PHm+VlpZbyYf16Gto/x0K6Xjyp7aNfLuZeaqJYrgZvZKRVP/wh4NEhtJKhG29nqXWE3Ei/r1XrWr+vUeGnLHaSV1xP78XZbvGav5lg3gZvZJuABYL6Z/dLMLgP+0sxGzewR4HzgC0FqI0E12s5W7wq7kXix9NornuJNZrxmL7eRZRTKKnc/xd173f00d/+2u3/a3Re4+9nu/jF3fz5IbSSoDYMLuGTp7MNXzj1mXLJ0NmkDSeoNMFn8nulNH4WSt26KVxL7KIpui9fs1Ry7aiZmN9owuICd11zIMxs/ws5rLmTD4AKOS1moJK287Np7nmz6KJS8dVO8kqVn1B4QllaueEdrxj6yzVzNsavWQpGSN1MWKkkrL5votq/HLMhaD3nrpnglz/y29jlKK1e8o5V/bkOtXdLs1RyVwLtQ3gWZ0r4u5J6Ysa8YGXu82JdMjj0elJJ4qGF+0NzVHNWE0oXy3ta1YnH/2DckiD1e7DvyxB6v3SiBd6G8qyiGXn2xFZ/RbfFi/wMTe7x2Yx5oUZUsFi9e7CMjIy37PJFuFPPG3e0QL0Zmts3dFx9TrgQuna4bfsGls6UlcHViSkcb2j521K5JY3v3se7O0rRoJXFpd2oDl47W7KnMIpNJCVw6WrOnMotMJiVw6WjdPsxMOpvawKWjrVk5/6g2cCg+zCz2XcvVads9lMClo4WeylzeZbysvMs4kCvpho6nTtvuomGEIg2Yu+7umkuL9pix85oLJz3eso1bmr7cgbRe2jBCtYGLNKDb15+WuGTZ0OE7ZrbbzB6tKJtuZpvN7Knk/3xrN4q0mW5ff1rikuUK/LvABVVla4F73X0ecG/yXKTjxb5rebevDdJtsuzI81Pgxarii4Cbksc3AYNhqyUSp7RdjorsWh4yXisWHJN4ZOrENLM5wI/c/X3J873u3p88NuCl8vMaX7saWA0we/bs33v22WeDVFxEpFs0rRPTS38BUv8KuPsN7r7Y3RcPDAwU/TgREUnkTeAvmNkpAMn/u8NVSUREssibwH8IXJo8vhT4QZjqiIhIVlmGEW4CHgDmm9kvzewyYCOwwsyeAv4geS4iIi1Udyq9u69KeenDgesiIiINaOlUejPbAzRzGMpJwG+aGD8GnX6MnX58oGPsFK08xve4+zGjQFqawJvNzEZqDbXpJJ1+jJ1+fKBj7BQxHKPWQhERaVNK4CIibarTEvgNk12BFuj0Y+z04wMdY6eY9GPsqDZwEZFu0mlX4CIiXUMJXESkTbVNAjezWWZ2n5n93MweM7PPVb3+RTNzMzspeW5m9ldm9rSZPWJmH5icmmc30TGa2X80syeS8r+sKF+XHOOTZrZycmqeXdoxmtlCM3vQzHaY2YiZnZOUt+N5PN7MfmZmDyfHeFVSfrqZDSfHcquZTU3Kj0ueP528PmdSDyCDCY7xluRn8dFkM5jepLxjzmPF639lZq9VPG/9eXT3tvgHnAJ8IHk8Dfh/wHuT57OAeyhNEjopKbsQ+N+AAUuB4ck+hrzHCJwP/B/guOS1Gcn/7wUeBo4DTgd2Aj2TfRw5j/EnwL+sOHdb2/g8GvD25HEvMJzU/TbgU0n53wCfSR7/B+BvksefAm6d7GMocIwXJq8ZsKniGDvmPCbPFwP/E3it4v0tP49tcwXu7s+7+0PJ41eBx4HyKvXXA1/i6GVtLwL+h5c8CPSXV1CM1QTH+Blgo7vvT14rr/54EfA9d9/v7v8EPA2c0/qaZzfBMTrwjuRt7wR+lTxux/Po7l6+MutN/jmwHLg9Ka/cCKVyg5TbgQ8n6+xHK+0Y3f3u5DUHfgaclrynY86jmfUA11LKOZVafh7bJoFXSm5NFgHDZnYRMObuD1e9bSbwXMXzX3Ik4Uev8hiB3wX+eXJb9vdm9sHkbZ10jJ8HrjWz54BvAOuSt7XlMZpZj5ntoLTU8mZKd0d73f1g8pbK4zh8jMnrLwPvbmmFc6g+RncfrnitF/g08OOkqCPOY3KMnwV+6O7PV7295eex7RK4mb0duIPSL/xB4CvAVyezTqFVHqO7v0Jp0bHplG491wC3xX6FVk+NY/wM8AV3nwV8Afj2ZNavKHcfd/eFlK5AzwHOmtwahVd9jGb2voqX/xvwU3f/h0mpXCA1jvFfAP8K+K+TWrFEWyXw5K/6HcAt7n4nMJdS2+/DZvYMpW/yQ2b2O8AYpbbxstOSsqjVOEYoXa3cmdzS/Qw4RGkhnU46xkuB8uPvc6QpqC2Psczd9wL3AedSajYorwBaeRyHjzF5/Z3Ab1tb0/wqjvECADP7GjAAXFHxtk45j+cDZwJPJznnBDN7Onlby89j2yTw5Irz28Dj7n4dgLuPuvsMd5/j7nMoJboPuPuvKW068W+S3u+lwMs1bnmiUusYE0OUfnAws98FplJaBe2HwKeS3u/TgXmU2h2jNcEx/gr4/eTxcuCp5HE7nscBM+tPHvcBKyi19d8HfCJ5W+VGKJUbpHwC2JK0IUcr5RifMLN/B6wEVrn7oYov6ZTzuM3df6ci57zh7mcmX9L689jsXtJQ/4APUeoIegTYkfy7sOo9z3BkFIoB36LU9jgKLJ7sY8h7jJQS9s3Ao8BDwPKKr7kyOcYnSUZxxPxvgmP8ELCN0qiaYeD32vg8ng1sT47xUeCrSfkZlP7APk3pLqM8quj45PnTyetnTPYxFDjGg8m5Kp/bcnnHnMeq91SOQmn5edRUehGRNtU2TSgiInI0JXARkTalBC4i0qaUwEVE2pQSuIhIm1ICFxFpU0rgIiJt6v8DJzIYF0/v704AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "\n", "plt.scatter('DayOfYear','Price',data=new_pumpkins)" @@ -106,7 +472,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3-final" + "version": "3.10.12" }, "orig_nbformat": 2 },