diff --git a/OpenForce.ipynb b/OpenForce.ipynb
new file mode 100644
index 00000000..1998ca59
--- /dev/null
+++ b/OpenForce.ipynb
@@ -0,0 +1,464 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "bfd08331",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "dc96a636",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pumpkins = pd.read_csv('C:/Users/admin/Downloads/baltimore_9-24-2016_9-30-2017.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "a5e6e008",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Commodity Name | \n",
+ " City Name | \n",
+ " Type | \n",
+ " Package | \n",
+ " Variety | \n",
+ " Sub Variety | \n",
+ " Grade | \n",
+ " Date | \n",
+ " Low Price | \n",
+ " High Price | \n",
+ " ... | \n",
+ " Color | \n",
+ " Environment | \n",
+ " Unit of Sale | \n",
+ " Quality | \n",
+ " Condition | \n",
+ " Appearance | \n",
+ " Storage | \n",
+ " Crop | \n",
+ " Repack | \n",
+ " Trans Mode | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " PUMPKINS | \n",
+ " BALTIMORE | \n",
+ " NaN | \n",
+ " 24 inch bins | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 04/29/2017 | \n",
+ " 270 | \n",
+ " 280.0 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " E | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " PUMPKINS | \n",
+ " BALTIMORE | \n",
+ " NaN | \n",
+ " 24 inch bins | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 05/06/2017 | \n",
+ " 270 | \n",
+ " 280.0 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " E | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " PUMPKINS | \n",
+ " BALTIMORE | \n",
+ " NaN | \n",
+ " 24 inch bins | \n",
+ " HOWDEN TYPE | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 09/24/2016 | \n",
+ " 160 | \n",
+ " 160.0 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " N | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " PUMPKINS | \n",
+ " BALTIMORE | \n",
+ " NaN | \n",
+ " 24 inch bins | \n",
+ " HOWDEN TYPE | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 09/24/2016 | \n",
+ " 160 | \n",
+ " 160.0 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " N | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PUMPKINS | \n",
+ " BALTIMORE | \n",
+ " NaN | \n",
+ " 24 inch bins | \n",
+ " HOWDEN TYPE | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 11/05/2016 | \n",
+ " 90 | \n",
+ " 100.0 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " N | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 25 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Commodity Name City Name Type Package Variety Sub Variety \\\n",
+ "0 PUMPKINS BALTIMORE NaN 24 inch bins NaN NaN \n",
+ "1 PUMPKINS BALTIMORE NaN 24 inch bins NaN NaN \n",
+ "2 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n",
+ "3 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n",
+ "4 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n",
+ "\n",
+ " Grade Date Low Price High Price ... Color Environment \\\n",
+ "0 NaN 04/29/2017 270 280.0 ... NaN NaN \n",
+ "1 NaN 05/06/2017 270 280.0 ... NaN NaN \n",
+ "2 NaN 09/24/2016 160 160.0 ... NaN NaN \n",
+ "3 NaN 09/24/2016 160 160.0 ... NaN NaN \n",
+ "4 NaN 11/05/2016 90 100.0 ... NaN NaN \n",
+ "\n",
+ " Unit of Sale Quality Condition Appearance Storage Crop Repack Trans Mode \n",
+ "0 NaN NaN NaN NaN NaN NaN E NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN E NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN N NaN \n",
+ "3 NaN NaN NaN NaN NaN NaN N NaN \n",
+ "4 NaN NaN NaN NaN NaN NaN N NaN \n",
+ "\n",
+ "[5 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pumpkins.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7d5eb162",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Month | \n",
+ " Variety | \n",
+ " City | \n",
+ " Package | \n",
+ " Low Price | \n",
+ " High Price | \n",
+ " Price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 70 | \n",
+ " 9 | \n",
+ " PIE TYPE | \n",
+ " BALTIMORE | \n",
+ " 1 1/9 bushel cartons | \n",
+ " 15 | \n",
+ " 15.0 | \n",
+ " 13.636364 | \n",
+ "
\n",
+ " \n",
+ " 71 | \n",
+ " 9 | \n",
+ " PIE TYPE | \n",
+ " BALTIMORE | \n",
+ " 1 1/9 bushel cartons | \n",
+ " 18 | \n",
+ " 18.0 | \n",
+ " 16.363636 | \n",
+ "
\n",
+ " \n",
+ " 72 | \n",
+ " 10 | \n",
+ " PIE TYPE | \n",
+ " BALTIMORE | \n",
+ " 1 1/9 bushel cartons | \n",
+ " 18 | \n",
+ " 18.0 | \n",
+ " 16.363636 | \n",
+ "
\n",
+ " \n",
+ " 73 | \n",
+ " 10 | \n",
+ " PIE TYPE | \n",
+ " BALTIMORE | \n",
+ " 1 1/9 bushel cartons | \n",
+ " 17 | \n",
+ " 17.0 | \n",
+ " 15.454545 | \n",
+ "
\n",
+ " \n",
+ " 74 | \n",
+ " 10 | \n",
+ " PIE TYPE | \n",
+ " BALTIMORE | \n",
+ " 1 1/9 bushel cartons | \n",
+ " 15 | \n",
+ " 15.0 | \n",
+ " 13.636364 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Month Variety City Package Low Price High Price \\\n",
+ "70 9 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15 15.0 \n",
+ "71 9 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18 18.0 \n",
+ "72 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18 18.0 \n",
+ "73 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17 17.0 \n",
+ "74 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15 15.0 \n",
+ "\n",
+ " Price \n",
+ "70 13.636364 \n",
+ "71 16.363636 \n",
+ "72 16.363636 \n",
+ "73 15.454545 \n",
+ "74 13.636364 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
+ "\n",
+ "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date', 'City Num', 'Variety Num']\n",
+ "\n",
+ "\n",
+ "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n",
+ "\n",
+ "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
+ "\n",
+ "month = pd.DatetimeIndex(pumpkins['Date']).month\n",
+ "\n",
+ "\n",
+ "new_pumpkins = pd.DataFrame({'Month': month, 'Variety': pumpkins['Variety'], 'City': pumpkins['City Name'], 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n",
+ "\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n",
+ "\n",
+ "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n",
+ "\n",
+ "new_pumpkins.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "bde5818a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = new_pumpkins.copy()\n",
+ "y = X.pop('Price')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "5ce08713",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.25, random_state = 0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "efad6351",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import OrdinalEncoder\n",
+ "ordinal_encoder = OrdinalEncoder()\n",
+ "s = (xtrain.dtypes == 'object')\n",
+ "object_cols = list(s[s].index)\n",
+ "label_x_train = xtrain.copy()\n",
+ "label_x_test = xtest.copy()\n",
+ "label_x_train[object_cols] = ordinal_encoder.fit_transform(xtrain[object_cols])\n",
+ "label_x_test[object_cols] = ordinal_encoder.transform(xtest[object_cols])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "7f8943bc",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.9791305564379404\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(label_x_train['Package'].corr(ytrain))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "1c5c2b3c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.9759780821029631\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(label_x_test['Package'].corr(ytest))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}