diff --git a/1-Introduction/1-intro-to-ML/README.md b/1-Introduction/1-intro-to-ML/README.md
deleted file mode 100644
index ce3b13ef..00000000
--- a/1-Introduction/1-intro-to-ML/README.md
+++ /dev/null
@@ -1,145 +0,0 @@
-# Introduction to machine learning
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
----
-
-[](https://youtu.be/6mSx_KJxcHI "ML for beginners - Introduction to Machine Learning for Beginners")
-
-> đĨ Click the image above for a short video working through this lesson.
-
-Welcome to this course on classical machine learning for beginners! Whether you're completely new to this topic, or an experienced ML practitioner looking to brush up on an area, we're happy to have you join us! We want to create a friendly launching spot for your ML study and would be happy to evaluate, respond to, and incorporate your [feedback](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-> đĨ Click the image above for a video: MIT's John Guttag introduces machine learning
-
----
-## Getting started with machine learning
-
-Before starting with this curriculum, you need to have your computer set up and ready to run notebooks locally.
-
-- **Configure your machine with these videos**. Use the following links to learn [how to install Python](https://youtu.be/CXZYvNRIAKM) in your system and [setup a text editor](https://youtu.be/EU8eayHWoZg) for development.
-- **Learn Python**. It's also recommended to have a basic understanding of [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), a programming language useful for data scientists that we use in this course.
-- **Learn Node.js and JavaScript**. We also use JavaScript a few times in this course when building web apps, so you will need to have [node](https://nodejs.org) and [npm](https://www.npmjs.com/) installed, as well as [Visual Studio Code](https://code.visualstudio.com/) available for both Python and JavaScript development.
-- **Create a GitHub account**. Since you found us here on [GitHub](https://github.com), you might already have an account, but if not, create one and then fork this curriculum to use on your own. (Feel free to give us a star, too đ)
-- **Explore Scikit-learn**. Familiarize yourself with [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), a set of ML libraries that we reference in these lessons.
-
----
-## What is machine learning?
-
-The term 'machine learning' is one of the most popular and frequently used terms of today. There is a nontrivial possibility that you have heard this term at least once if you have some sort of familiarity with technology, no matter what domain you work in. The mechanics of machine learning, however, are a mystery to most people. For a machine learning beginner, the subject can sometimes feel overwhelming. Therefore, it is important to understand what machine learning actually is, and to learn about it step by step, through practical examples.
-
----
-## The hype curve
-
-
-
-> Google Trends shows the recent 'hype curve' of the term 'machine learning'
-
----
-## A mysterious universe
-
-We live in a universe full of fascinating mysteries. Great scientists such as Stephen Hawking, Albert Einstein, and many more have devoted their lives to searching for meaningful information that uncovers the mysteries of the world around us. This is the human condition of learning: a human child learns new things and uncovers the structure of their world year by year as they grow to adulthood.
-
----
-## The child's brain
-
-A child's brain and senses perceive the facts of their surroundings and gradually learn the hidden patterns of life which help the child to craft logical rules to identify learned patterns. The learning process of the human brain makes humans the most sophisticated living creature of this world. Learning continuously by discovering hidden patterns and then innovating on those patterns enables us to make ourselves better and better throughout our lifetime. This learning capacity and evolving capability is related to a concept called [brain plasticity](https://www.simplypsychology.org/brain-plasticity.html). Superficially, we can draw some motivational similarities between the learning process of the human brain and the concepts of machine learning.
-
----
-## The human brain
-
-The [human brain](https://www.livescience.com/29365-human-brain.html) perceives things from the real world, processes the perceived information, makes rational decisions, and performs certain actions based on circumstances. This is what we called behaving intelligently. When we program a facsimile of the intelligent behavioral process to a machine, it is called artificial intelligence (AI).
-
----
-## Some terminology
-
-Although the terms can be confused, machine learning (ML) is an important subset of artificial intelligence. **ML is concerned with using specialized algorithms to uncover meaningful information and find hidden patterns from perceived data to corroborate the rational decision-making process**.
-
----
-## AI, ML, Deep Learning
-
-
-
-> A diagram showing the relationships between AI, ML, deep learning, and data science. Infographic by [Jen Looper](https://twitter.com/jenlooper) inspired by [this graphic](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
----
-## Concepts to cover
-
-In this curriculum, we are going to cover only the core concepts of machine learning that a beginner must know. We cover what we call 'classical machine learning' primarily using Scikit-learn, an excellent library many students use to learn the basics. To understand broader concepts of artificial intelligence or deep learning, a strong fundamental knowledge of machine learning is indispensable, and so we would like to offer it here.
-
----
-## In this course you will learn:
-
-- core concepts of machine learning
-- the history of ML
-- ML and fairness
-- regression ML techniques
-- classification ML techniques
-- clustering ML techniques
-- natural language processing ML techniques
-- time series forecasting ML techniques
-- reinforcement learning
-- real-world applications for ML
-
----
-## What we will not cover
-
-- deep learning
-- neural networks
-- AI
-
-To make for a better learning experience, we will avoid the complexities of neural networks, 'deep learning' - many-layered model-building using neural networks - and AI, which we will discuss in a different curriculum. We also will offer a forthcoming data science curriculum to focus on that aspect of this larger field.
-
----
-## Why study machine learning?
-
-Machine learning, from a systems perspective, is defined as the creation of automated systems that can learn hidden patterns from data to aid in making intelligent decisions.
-
-This motivation is loosely inspired by how the human brain learns certain things based on the data it perceives from the outside world.
-
-â
Think for a minute why a business would want to try to use machine learning strategies vs. creating a hard-coded rules-based engine.
-
----
-## Applications of machine learning
-
-Applications of machine learning are now almost everywhere, and are as ubiquitous as the data that is flowing around our societies, generated by our smart phones, connected devices, and other systems. Considering the immense potential of state-of-the-art machine learning algorithms, researchers have been exploring their capability to solve multi-dimensional and multi-disciplinary real-life problems with great positive outcomes.
-
----
-## Examples of applied ML
-
-**You can use machine learning in many ways**:
-
-- To predict the likelihood of disease from a patient's medical history or reports.
-- To leverage weather data to predict weather events.
-- To understand the sentiment of a text.
-- To detect fake news to stop the spread of propaganda.
-
-Finance, economics, earth science, space exploration, biomedical engineering, cognitive science, and even fields in the humanities have adapted machine learning to solve the arduous, data-processing heavy problems of their domain.
-
----
-## Conclusion
-
-Machine learning automates the process of pattern-discovery by finding meaningful insights from real-world or generated data. It has proven itself to be highly valuable in business, health, and financial applications, among others.
-
-In the near future, understanding the basics of machine learning is going to be a must for people from any domain due to its widespread adoption.
-
----
-# đ Challenge
-
-Sketch, on paper or using an online app like [Excalidraw](https://excalidraw.com/), your understanding of the differences between AI, ML, deep learning, and data science. Add some ideas of problems that each of these techniques are good at solving.
-
-# [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
----
-# Review & Self Study
-
-To learn more about how you can work with ML algorithms in the cloud, follow this [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-Take a [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) about the basics of ML.
-
----
-# Assignment
-
-[Get up and running](assignment.md)
diff --git a/1-Introduction/1-intro-to-ML/assignment.md b/1-Introduction/1-intro-to-ML/assignment.md
deleted file mode 100644
index dbb448c3..00000000
--- a/1-Introduction/1-intro-to-ML/assignment.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Get Up and Running
-
-## Instructions
-
-In this non-graded assignment, you should brush up on Python and get your environment up and running and able to run notebooks.
-
-Take this [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), and then get your systems setup by going through these introductory videos:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/images/ai-ml-ds.png b/1-Introduction/1-intro-to-ML/images/ai-ml-ds.png
deleted file mode 100644
index 11c9bf37..00000000
Binary files a/1-Introduction/1-intro-to-ML/images/ai-ml-ds.png and /dev/null differ
diff --git a/1-Introduction/1-intro-to-ML/images/hype.png b/1-Introduction/1-intro-to-ML/images/hype.png
deleted file mode 100644
index 89469139..00000000
Binary files a/1-Introduction/1-intro-to-ML/images/hype.png and /dev/null differ
diff --git a/1-Introduction/1-intro-to-ML/lesson-1.pdf b/1-Introduction/1-intro-to-ML/lesson-1.pdf
deleted file mode 100644
index c0a6778f..00000000
Binary files a/1-Introduction/1-intro-to-ML/lesson-1.pdf and /dev/null differ
diff --git a/1-Introduction/1-intro-to-ML/translations/README.bn.md b/1-Introduction/1-intro-to-ML/translations/README.bn.md
deleted file mode 100644
index 5d1ac4dc..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.bn.md
+++ /dev/null
@@ -1,151 +0,0 @@
-# āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āϏā§āĻāύāĻž
-
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - What's the difference?")
-
-> đĨ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ, āĻāĻāĻ(āĻāϰā§āĻāĻŋāĻĢāĻŋāĻļāĻŋā§āĻžāϞ āĻāύā§āĻāĻŋāϞāĻŋāĻā§āύā§āϏ) āĻāĻŦāĻ āĻĄāĻŋāĻĒ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻāϰ āĻāϞā§āĻāύāĻž āĻāĻžāύāϤ⧠āĻāĻĒāϰā§āϰ āĻāĻŦāĻŋāĻāĻŋāϤ⧠āĻā§āϞāĻŋāĻ āĻāϰ⧠āĻāĻŋāĻĄāĻŋāĻāĻāĻŋ āĻĻā§āĻā§āύāĨ¤
-
-## [āĻĒā§āϰāĻŋ-āϞā§āĻāĻāĻžāϰ-āĻā§āĻāĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
----
-āĻŦāĻŋāĻāĻŋāύāĻžāϰāĻĻā§āϰ āĻāύā§āϝ āĻā§āϞāĻžāϏāĻŋāĻā§āϝāĻžāϞ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻā§āĻžāϰā§āϏ āĻ āĻāĻĒāύāĻžāĻā§ āϏā§āĻŦāĻžāĻāϤāĻŽ!āĻāĻĒāύāĻŋ āĻšā§ āĻāĻ āĻŦāĻŋāώā§ā§ āϏāĻŽā§āĻĒā§āϰā§āĻŖ āύāϤā§āύ āĻ
āĻĨāĻŦāĻž āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻ āύāĻŋāĻā§āϰ āĻ
āύā§āĻļā§āϞāύāĻā§ āĻāϰāĻ āĻāύā§āύāϤ āĻāϰāϤ⧠āĻāĻžāύ, āĻāĻĒāύāĻŋ āĻāĻŽāĻžāĻĻā§āϰ āϏāĻžāĻĨā§ āϝā§āĻāĻĻāĻžāύ āĻāϰāϤ⧠āĻĒā§āϰ⧠āĻāĻŽāϰāĻž āĻā§āĻļāĻŋ! āĻāĻŽāϰāĻž āĻāĻĒāύāĻžāϰ ML āĻ
āϧā§āϝāϝāĻŧāύā§āϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻŦāύā§āϧā§āϤā§āĻŦāĻĒā§āϰā§āĻŖ āϞāĻā§āĻāĻŋāĻ āϏā§āĻĒāĻ āϤā§āϰāĻŋ āĻāϰāϤ⧠āĻāĻžāĻ āĻāĻŦāĻ āĻāĻĒāύāĻžāϰ āĻŽā§āϞā§āϝāĻžāϝāĻŧāύ, āĻĒā§āϰāϤāĻŋāĻā§āϰāĻŋāϝāĻŧāĻž,[āĻĢāĻŋāĻĄāĻŦā§āϝāĻžāĻ](https://github.com/microsoft/ML-For-Beginners/discussions). āĻāĻžāύāĻžāϤ⧠āĻāĻŦāĻ āĻ
āύā§āϤāϰā§āĻā§āĻā§āϤ āĻāϰāϤ⧠āĻĒā§āϰ⧠āĻā§āĻļāĻŋ āĻšāĻŦ āĨ¤
-
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-
-> đĨ āĻāĻŋāĻĄāĻŋāĻāĻāĻŋ āĻĻā§āĻāĻžāϰ āĻāύā§āϝ āĻāĻĒāϰā§āϰ āĻāĻŦāĻŋāϤ⧠āĻā§āϞāĻŋāĻ āĻāϰā§āύ
-MIT āĻāϰ āĻāύ āĻāĻžāĻā§āĻ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻĒāϰāĻŋāĻāĻŋāϤāĻŋ āĻāϰāĻžāĻā§āĻā§āύāĨ¤
-
----
-## āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻļā§āϰā§
-
-āĻāĻ āĻā§āϝāĻžāϰāĻŋāĻā§āϞāĻžāĻŽ āĻļā§āϰā§āϰ āĻāϰāĻžāϰ āĻĒā§āϰā§āĻŦā§, āύā§āĻāĻŦā§āĻ āϰāĻžāύ āĻāϰāĻžāϰ āĻāύā§āϝ āύā§āĻāĻŦā§āĻ āϏā§āĻāĻāĻĒ āĻĨāĻžāĻāϤ⧠āĻšāĻŦā§āĨ¤
-
-
-- **āĻāĻĒāύāĻžāϰ āĻŽā§āĻļāĻŋāύ āĻā§ āĻāύāĻĢāĻŋāĻāĻžāϰ āĻāϰā§āύ āĻāĻ āĻāĻŋāĻĄāĻŋāĻ āĻĻā§āĻā§**. āĻļāĻŋāĻāĻžāϰ āĻāύā§āϝ āĻāĻ āϞāĻŋāĻāĻāĻāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āύ [āĻāĻŋāĻāĻžāĻŦā§ āĻĒāĻžāĻāĻĨāύ āĻāύā§āϏāĻāϞ āĻāϰāϤ⧠āĻšā§](https://youtu.be/CXZYvNRIAKM) āĻāĻŦāĻ [āϏā§āĻāĻāĻĒ āĻ āĻāĻĄāĻŋāĻāϰ](https://youtu.be/EU8eayHWoZg) .
-- **āĻĒāĻžāĻāĻĨāύ āĻļāĻŋāĻā§āύ**. [āĻĒāĻžāĻāĻĨāύ](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) āĻāϰ āĻŦā§āϝāĻžāϏāĻŋāĻ āύāϞā§āĻ āĻāĻžāύāĻž āĻĨāĻžāĻāĻž āĻāϰā§āϰā§āĨ¤ āĻāĻ āĻā§āϰā§āϏā§āϰ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽāĻŋāĻ āϞā§āϝāĻžāĻā§āĻā§ā§ā§āĻ āĻĄā§āĻāĻž āϏāĻžāĻāύā§āϏāĻāĻŋāϏā§āĻ āĻāϰ āĻāύā§āϝ āĻā§āĻŦāĻ āĻā§āϰā§āϤā§āĻŦāĻĒā§āϰā§āĻŖāĨ¤
-- **Node.js āĻāĻŦāĻ JavaScript āĻļāĻŋāĻā§āύ**.āĻā§ā§āĻŦ āĻ
ā§āϝāĻžāĻĒāϏ āϤā§āϰāĻŋāϰ āĻāύā§āϝ āĻāĻ āĻā§āĻžāϰā§āϏ⧠āĻāĻŽāϰāĻž āĻāĻžāĻŦāĻžāϏā§āĻā§āϰāĻŋāĻĒāĻ āĻŦā§āϝāĻžāĻŦāĻšāĻžāϰ āĻāϰāĻŦāĨ¤ āϤāĻžāĻ, āĻāĻĒāύāĻžāϰ [āύā§āĻĄ](https://nodejs.org) āĻāĻŦāĻ [npm](https://www.npmjs.com/) āĻāύā§āϏāĻāϞ āĻĨāĻžāĻāϤ⧠āĻšāĻŦā§āĨ¤ āĻ
āύā§āϝāĻĻāĻŋāĻā§, āĻĒāĻžāĻāĻĨāύ āĻāĻŦāĻ āĻāĻžāĻāĻžāϏā§āĻā§āϰāĻŋāĻĒāĻ āĻĄā§āĻā§āϞāĻžāĻĒāĻŽā§āύā§āĻā§āϰ āĻāύā§āϝ [āĻāĻŋāĻā§ā§āĻžāϞ āϏā§āĻā§āĻĄāĻŋāĻ](https://code.visualstudio.com/) āĻā§āĻĄ āĻ āĻĻā§āĻā§āĻ āĻāĻā§āĨ¤
-- **āĻāĻāĻāĻŋ āĻāĻŋāĻāĻšāĻžāĻŦ āĻ
ā§āϝāĻžāĻāĻžāĻāύā§āĻ āϤā§āϰāĻŋ āĻāϰā§āύ**. āϝā§āĻšā§āϤ⧠āĻāĻĒāύāĻŋ āĻāĻŽāĻžāĻĻā§āϰ āĻā§ [āĻāĻŋāĻāĻšāĻžāĻŦ](https://github.com) āĻ āĻĒā§ā§ā§āĻā§āύ, āϤāĻžāϰāĻŽāĻžāύ⧠āĻāĻĒāύāĻžāϰ āĻāϤāĻŋāĻŽāϧā§āϝā§āĻ āĻāĻāĻžāĻāύā§āĻ āĻāĻā§āĨ¤ āϤāĻŦā§ āϝāĻĻāĻŋ āύāĻž āĻĨāĻžāĻā§, āĻāĻāĻāĻŋ āĻāĻāĻžāĻāύā§āĻ āϤā§āϰāĻŋ āĻāϰā§āύ āĻāĻŦāĻ āĻĒāϰ⧠āĻĢāϰā§āĻ āĻāϰ⧠āĻāĻĒāύāĻžāϰ āĻŦāĻžāύāĻŋā§ā§ āύāĻŋāύāĨ¤ (āϏā§āĻāĻžāϰ āĻĻāĻŋāϤ⧠āĻā§āϞ⧠āϝāĻžāĻŦā§āύ āύāĻž,đ )
-- **āĻā§āϰāĻŋā§ā§ āĻāϏā§āύ Scikit-learn**. āύāĻŋāĻā§āĻā§ āĻĒāϰāĻŋāĻāĻŋāϤ āĻāϰā§āύ [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) āĻāϰ āϏāĻžāĻĨā§, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āϞāĻžāĻāĻŦā§āϰā§āϰāĻŋ āϏā§āĻ āϝāĻž āĻāĻŽāϰāĻž āĻāĻ āĻā§āϰā§āϏ⧠āĻāϞā§āϞā§āĻ āĻāϰ⧠āĻĨāĻžāĻāĻŦ
-
----
-## āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāĻŋ?
-'āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ' āĻļāĻŦā§āĻĻāĻāĻŋ āĻŦāϰā§āϤāĻŽāĻžāύ āϏāĻŽāϝāĻŧā§āϰ āϏāĻŦāĻā§āϝāĻŧā§ āĻāύāĻĒā§āϰāĻŋāϝāĻŧ āĻāĻŦāĻ āĻĒā§āϰāĻžāϝāĻŧāĻ āĻŦā§āϝāĻŦāĻšā§āϤ āĻāĻāĻāĻŋ āĻļāĻŦā§āĻĻāĨ¤ āĻāĻĒāύāĻŋ āϝ⧠āĻĄā§āĻŽā§āĻāύ⧠āĻāĻžāĻ āĻāϰā§āύ āύāĻž āĻā§āύ āĻĒā§āϰāϝā§āĻā§āϤāĻŋāϰ āϏāĻžāĻĨā§ āĻāĻĒāύāĻžāϰ āĻĒāϰāĻŋāĻāĻŋāϤāĻŋ āĻĨāĻžāĻāϞ⧠āĻ
āύā§āϤāϤ āĻāĻāĻŦāĻžāϰ āĻāĻ āĻļāĻŦā§āĻĻāĻāĻŋ āĻļā§āύā§āĻā§āύ āĻāĻŽāύ āĻāĻāĻāĻŋ āĻ
āĻĒā§āϰāϝāĻŧā§āĻāύā§āϝāĻŧ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āϰāϝāĻŧā§āĻā§āĨ¤ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻŽā§āĻāĻžāύāĻŋāĻā§āϏ, āϝāĻžāĻāĻšā§āĻ, āĻŦā§āĻļāĻŋāϰāĻāĻžāĻ āĻŽāĻžāύā§āώā§āϰ āĻāĻžāĻā§ āĻāĻāĻŋ āĻāĻāĻāĻŋ āϰāĻšāϏā§āϝāĨ¤ āĻāĻāĻāύ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āύāϤā§āύāĻĻā§āϰ āĻāύā§āϝ, āĻŦāĻŋāώāϝāĻŧāĻāĻŋ āĻāĻāύāĻ āĻāĻāύāĻ āĻ
āĻĒā§āϰāϤāĻŋāϰā§āϧā§āϝ āĻŽāύ⧠āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤ āĻ
āϤāĻāĻŦ, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϏāϞ⧠āĻā§ āϤāĻž āĻŦā§āĻāĻž āĻā§āϰā§āϤā§āĻŦāĻĒā§āϰā§āĻŖ āĻāĻŦāĻ āĻŦāĻžāϏā§āϤāĻŦ āĻāĻĻāĻžāĻšāϰāĻŖā§āϰ āĻŽāĻžāϧā§āϝāĻŽā§ āϧāĻžāĻĒā§ āϧāĻžāĻĒā§ āĻāĻāĻŋ āϏāĻŽā§āĻĒāϰā§āĻā§ āĻļāĻŋāĻāϤ⧠āĻšāĻŦā§āĨ¤
-
----
-## āĻšāĻžāĻāĻĢ āĻāĻžāϰā§āĻ
-
-
-
-> Google Trends āĻ 'āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ' āĻļāĻŦā§āĻĻāĻāĻŋāϰ āϏāĻžāĻŽā§āĻĒā§āϰāϤāĻŋāĻ 'āĻšāĻžāĻāĻĒ āĻāĻžāϰā§āĻ'āĨ¤
-
----
-## āĻāĻ āϰāĻšāϏā§āϝāĻŽāϝāĻŧ āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦ
-
-āĻāĻŽāϰāĻž āϰāĻšāϏā§āϝ⧠āĻāϰāĻĒā§āϰ āĻāĻāĻāĻŋ āĻāĻāϰā§āώāύā§ā§ āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦā§ āĻŦāĻžāϏ āĻāϰāĻŋāĨ¤ āϏā§āĻāĻŋāĻĢā§āύ āĻšāĻāĻŋāĻ, āĻāϞāĻŦāĻžāϰā§āĻ āĻāĻāύāϏā§āĻāĻžāĻāύ āĻāĻŦāĻ āĻāϰāĻ āĻ
āύā§āĻā§āϰ āĻŽāϤ⧠āĻŽāĻšāĻžāύ āĻŦāĻŋāĻā§āĻāĻžāύā§āϰāĻž āĻāĻŽāĻžāĻĻā§āϰ āĻāĻžāϰāĻĒāĻžāĻļā§āϰ āĻŦāĻŋāĻļā§āĻŦā§āϰ āϰāĻšāϏā§āϝ āĻāύā§āĻŽā§āĻāύ āĻāϰ⧠āĻāĻŽāύ āĻ
āϰā§āĻĨāĻĒā§āϰā§āĻŖ āϤāĻĨā§āϝ āĻ
āύā§āϏāύā§āϧāĻžāύ⧠āϤāĻžāĻĻā§āϰ āĻā§āĻŦāύ āĻā§āϏāϰā§āĻ āĻāϰā§āĻā§āύāĨ¤āĻāĻāĻŋ āĻŽāĻžāύā§āώā§āϰ āĻļā§āĻāĻžāϰ āĻāĻāĻāĻŋ āĻ
āĻŦāϏā§āĻĨāĻž: āĻāĻāĻāĻŋ āĻŽāĻžāύāĻŦ āĻļāĻŋāĻļā§ āύāϤā§āύ āĻāĻŋāύāĻŋāϏ āĻļāĻŋāĻā§ āĻāĻŦāĻ āĻŦāĻāϰā§āϰ āĻĒāϰ āĻŦāĻāϰ āϤāĻžāĻĻā§āϰ āĻŦāĻŋāĻļā§āĻŦā§āϰ āĻāĻ āύ āĻāύā§āĻŽā§āĻāύ āĻāϰ⧠āϝāĻāύ āϤāĻžāϰāĻž āĻĒā§āϰāĻžāĻĒā§āϤāĻŦāϝāĻŧāϏā§āĻ āĻšāϝāĻŧā§ āĻāĻ ā§āĨ¤
-
----
-
-## āĻļāĻŋāĻļā§āĻĻā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ
-āĻāĻāĻāĻŋ āĻļāĻŋāĻļā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ āĻāĻŦāĻ āĻāύā§āĻĻā§āϰāĻŋāϝāĻŧāĻā§āϞāĻŋ āϤāĻžāĻĻā§āϰ āĻāĻļā§āĻĒāĻžāĻļā§āϰ āĻāĻāύāĻžāĻā§āϞāĻŋ āĻāĻĒāϞāĻŦā§āϧāĻŋ āĻāϰ⧠āĻāĻŦāĻ āϧā§āϰ⧠āϧā§āϰ⧠āĻā§āĻŦāύā§āϰ āϞā§āĻāĻžāύ⧠āύāĻŋāĻĻāϰā§āĻļāύāĻā§āϞāĻŋ āĻļāĻŋāĻā§ āϝāĻž āĻļāĻŋāĻļā§āĻā§ āĻļā§āĻāĻž āύāĻŋāĻĻāϰā§āĻļāύāĻā§āϞāĻŋ āϏāύāĻžāĻā§āϤ āĻāϰāĻžāϰ āĻāύā§āϝ āϝā§āĻā§āϤāĻŋāĻ āύāĻŋāϝāĻŧāĻŽ āϤā§āϰāĻŋ āĻāϰāϤ⧠āϏāĻšāĻžāϝāĻŧāϤāĻž āĻāϰā§āĨ¤ āĻāĻ āĻĒā§āϰāĻĨāĻŋāĻŦā§āϤ⧠āĻŽāĻžāύā§āώā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻā§āϰ āĻļā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϰāĻŋā§āĻž āĻ
āύā§āϝāĻžāύā§āϝ āĻĒā§āϰāĻžāĻŖāĻŋ āĻĨā§āĻā§ āĻā§āĻŦāĻ āĻ
āϤā§āϝāĻžāϧā§āύāĻŋāĻāĨ¤ āĻā§āϰāĻŽāĻžāĻāϤ āĻļā§āĻāĻž āĻāĻŦāĻ āϞā§āĻāĻžāύ⧠āĻĒā§āϝāĻžāĻāĻžāϰā§āύāĻā§āϞāĻŋ āĻāĻŦāĻŋāώā§āĻāĻžāϰ āĻāϰ⧠āĻāĻŦāĻ āϤāĻžāϰāĻĒāϰ āϏā§āĻ āĻĒā§āϝāĻžāĻāĻžāϰā§āύāĻā§āϞāĻŋāϤ⧠āĻāĻĻā§āĻāĻžāĻŦāύ āĻāϰ⧠āĻāĻŽāĻžāĻĻā§āϰ āϏāĻžāϰāĻž āĻā§āĻŦāύ āĻā§ā§ā§ āύāĻŋāĻā§āĻĻā§āϰ āĻāϰāĻ āĻāĻžāϞ⧠āĻāĻŦāĻ āĻāύā§āύāϤ āĻāϰāϤ⧠āϏāĻā§āώāĻŽ āĻāϰā§āĨ¤ āĻāĻ āĻļā§āĻāĻžāϰ āĻā§āώāĻŽāϤāĻž āĻ āĻŦāĻŋāĻāĻļāĻŋāϤ āĻšāĻā§āĻžāϰ āϏāĻā§āώāĻŽāϤāĻž āĻā§ āĻŦāϞ⧠[āĻŦā§āϰā§āĻāύ āĻĒā§āϞāĻžāϏā§āĻāĻŋāϏāĻŋāĻāĻŋ](https://www.simplypsychology.org/brain-plasticity.html)āĨ¤ āĻŦāĻžāĻšā§āϝāĻŋāĻāĻāĻžāĻŦā§, āĻāĻŽāϰāĻž āĻŽāĻžāύāĻŦ āĻŽāϏā§āϤāĻŋāώā§āĻā§āϰ āĻļā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻž āĻāĻŦāĻ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āϧāĻžāϰāĻŖāĻžāϰ āĻŽāϧā§āϝ⧠āĻāĻŋāĻā§ āĻ
āύā§āĻĒā§āϰā§āϰāĻŖāĻžāĻŽā§āϞāĻ āĻŽāĻŋāϞ āĻāĻāĻāϤ⧠āĻĒāĻžāϰāĻŋāĨ¤
-
----
-## āĻŽāĻžāύā§āώā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ
-
-[āĻŽāĻžāύā§āώā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ]((https://www.livescience.com/29365-human-brain.html)) āĻŦāĻžāϏā§āϤāĻŦ āĻāĻāϤ āĻĨā§āĻā§ āĻāĻŋāύāĻŋāϏāĻā§āϞāĻŋ āĻāĻĒāϞāĻŦā§āϧāĻŋ āĻāϰā§, āĻ
āύā§āĻā§āϤ āϤāĻĨā§āϝ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻž āĻāϰā§, āϝā§āĻā§āϤāĻŋāĻ āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ āύā§āϝāĻŧ āĻāĻŦāĻ āĻĒāϰāĻŋāϏā§āĻĨāĻŋāϤāĻŋāϰ āĻāĻĒāϰ āĻāĻŋāϤā§āϤāĻŋ āĻāϰ⧠āĻāĻŋāĻā§ āĻā§āϰāĻŋāϝāĻŧāĻž āϏāĻŽā§āĻĒāĻžāĻĻāύ āĻāϰā§āĨ¤ āĻāĻāĻžāĻā§āĻ āĻāĻŽāϰāĻž āĻŦāϞāĻŋ āĻŦā§āĻĻā§āϧāĻŋāĻŽāϤā§āϤāĻžāϰ āϏāĻžāĻĨā§ āĻāĻāϰāĻŖ āĻāϰāĻžāĨ¤ āϝāĻāύ āĻāĻŽāϰāĻž āĻāĻāĻāĻŋ āĻŽā§āĻļāĻŋāύ⧠āĻŦā§āĻĻā§āϧāĻŋāĻŽāĻžāύ āĻāĻāϰāĻŖāĻāϤ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāϰ āĻāĻāĻāĻŋ āĻĒā§āϰāϤāĻŋāĻā§āϤāĻŋ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽ āĻāϰāĻŋ, āϤāĻāύ āĻāĻāĻŋāĻā§ āĻā§āϤā§āϰāĻŋāĻŽ āĻŦā§āĻĻā§āϧāĻŋāĻŽāϤā§āϤāĻž (AI) āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤
-
----
-## āĻāĻŋāĻā§ āĻĒāϰāĻŋāĻāĻžāώāĻž
-
-āϝāĻĻāĻŋāĻ āĻāĻāĻž āĻŦāĻŋāĻā§āϰāĻžāύā§āϤāĻāϰ āĻšāϤ⧠āĻĒāĻžāϰā§, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ (āĻāĻŽ. āĻāϞ) āĻāϰā§āĻāĻŋāĻĢāĻŋāĻļāĻŋā§āĻžāϞ āĻāύā§āĻāĻŋāϞāĻŋāĻā§āύā§āϏ āĻāϰ āĻāĻāĻāĻŋ āĻ
āĻāĻļāĨ¤ **ML āĻ
āϰā§āĻĨāĻĒā§āϰā§āĻŖ āϤāĻĨā§āϝ āĻāύā§āĻŽā§āĻāύ āĻāϰāĻžāϰ āĻāύā§āϝ āĻŦāĻŋāĻļā§āώ āĻ
ā§āϝāĻžāϞāĻāϰāĻŋāĻĻāĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻāĻŦāĻ āϝā§āĻā§āϤāĻŋāϏāĻā§āĻāϤ āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ āĻā§āϰāĻšāĻŖā§āϰ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋāĻā§ āϏāĻŽāϰā§āĻĨāύ āĻāϰāĻžāϰ āĻāύā§āϝ āĻ
āύā§āĻā§āϤ āĻĄā§āĻāĻž āĻĨā§āĻā§ āϞā§āĻāĻžāύ⧠āύāĻŋāĻĻāϰā§āĻļāύāĻā§āϞāĻŋ āĻā§āĻāĻā§ āĻŦā§āϰ āĻāϰāĻžāϰ āϏāĻžāĻĨā§ āϏāĻŽā§āĻĒāϰā§āĻāĻŋāϤāĨ¤**
-
----
-## āĻ āĻāĻ, āĻāĻŽ āĻāϞ, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ
-
-
-
-> āĻĄāĻžā§āĻžāĻā§āϰāĻžāĻŽāĻāĻŋ āĻāĻāĻ,āĻāĻŽāĻāϞ, āĻĄāĻŋāĻĒ āϞāĻžāϰā§āύāĻŋāĻ āĻāĻŦāĻ āĻĄā§āĻāĻž āϏāĻžāĻāύā§āϏ āĻāϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ āĻŦā§āĻāĻžāĻā§āĻā§āĨ¤ āĻāύāĻĢā§āĻā§āϰāĻžāĻĢāĻŋāĻ āĻāϰā§āĻā§āύ [āĻā§āύ āϞā§āĻĒāĻžāϰ](https://twitter.com/jenlooper) āĻāĻŦāĻ [āĻāĻ āĻā§āϰāĻžāĻĢāĻŋāĻ](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) āĻĨā§āĻā§ āĻ
āύā§āĻĒā§āϰāĻžāĻŖāĻŋāϤ āĻšā§ā§āĻā§āύāĨ¤
-
----
-## āĻāĻāĻžāϰ-āϧāĻžāϰāĻŖāĻž
-
-āĻāĻ āĻāĻžāϰāĻŋāĻā§āϞāĻžāĻŽā§,āĻāĻŽāϰāĻž āĻļā§āϧ⧠āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻŽā§āϞ āϧāĻžāϰāύāĻž āĻā§āϞ⧠āĻāϞā§āĻāύāĻž āĻāϰāĻŦ āϝāĻž āĻāĻāĻāύ āύāϤā§āύ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āϰ āĻāĻžāύāĻž āĻĒā§āϰā§ā§āĻāύāĨ¤ āĻāĻŽāϰāĻž āϝāĻžāĻā§ 'āĻā§āϞāĻžāϏāĻŋāĻā§āϝāĻžāϞ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ' āĻŦāϞāĻŋ āϤāĻž āĻāĻŽāϰāĻž āĻĒā§āϰāĻžāĻĨāĻŽāĻŋāĻāĻāĻžāĻŦā§ Scikit-learn āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻāĻāĻžāϰ āĻāϰāĻŋ, āĻāĻāĻāĻŋ āĻāĻŽā§āĻāĻžāϰ āϞāĻžāĻāĻŦā§āϰā§āϰāĻŋ āϝāĻž āĻ
āύā§āĻ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§ āĻŽā§āϞāĻŋāĻ āĻŦāĻŋāώāϝāĻŧāĻā§āϞāĻŋ āĻļāĻŋāĻāϤ⧠āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĨ¤ āĻā§āϤā§āϰāĻŋāĻŽ āĻŦā§āĻĻā§āϧāĻŋāĻŽāϤā§āϤāĻž āĻŦāĻž āĻāĻā§āϰ āĻļāĻŋāĻā§āώāĻžāϰ āĻŦāĻŋāϏā§āϤā§āϤ āϧāĻžāϰāĻŖāĻž āĻŦā§āĻāĻžāϰ āĻāύā§āϝ, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻāϝāĻŧā§āϰ āĻāĻāĻāĻŋ āĻļāĻā§āϤāĻŋāĻļāĻžāϞ⧠āĻŽā§āϞāĻŋāĻ āĻā§āĻāĻžāύ āĻ
āĻĒāϰāĻŋāĻšāĻžāϰā§āϝ, āĻāĻŦāĻ āϤāĻžāĻ āĻāĻŽāϰāĻž āĻāĻāĻŋ āĻāĻāĻžāύ⧠āĻ
āĻĢāĻžāϰ āĻāϰāϤ⧠āĻāĻžāĻāĨ¤
-
----
-## āĻāĻ āĻā§āϰā§āϏ āĻĨā§āĻā§ āĻāĻĒāύāĻŋ āĻļāĻŋāĻāĻŦā§āύ:
-
-- āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻŽā§āϞ āϧāĻžāϰāĻŖāĻž
-- āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻāϤāĻŋāĻšāĻžāϏ
-- āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāĻŦāĻ āĻā§
-- āϰāĻŋāĻā§āϰā§āĻļāύ āĻāĻŽ āĻāϞ (āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ) āĻā§āĻāύāĻŋāĻāϏ
-- āĻā§āϞāĻžāϏāĻŋāĻĢāĻŋāĻā§āĻļāύ āĻāĻŽ āĻāϞ (āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ) āĻā§āĻāύāĻŋāĻāϏ
-- āĻā§āϞāĻžāϏā§āĻāĻžāϰāĻŋāĻ āĻāĻŽ āĻāϞ (āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ) āĻā§āĻāύāĻŋāĻāϏ
-- āύā§āϝāĻžāĻā§āϰāĻžāϞ āϞā§āĻā§āĻā§ā§ā§āĻ āĻĒā§āϰāϏā§āϏāĻŋāĻ āĻāĻŽ āĻāϞ (āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ) āĻā§āĻāύāĻŋāĻāϏ
-- āĻāĻžāĻāĻŽ āϏāĻŋāϰāĻŋāĻ āĻĢāϰāĻāĻžāϏā§āĻāĻŋāĻ āĻāĻŽ āĻāϞ (āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ) āĻā§āĻāύāĻŋāĻāϏ
-- āϰāĻŋāĻāύāĻĢā§āϰā§āϏāĻŽā§āύā§āĻ āϞāĻžāϰā§āύāĻŋāĻ
-- āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻāύā§āϝ āĻŦāĻžāϏā§āϤāĻŦ āĻāĻāϤā§āϰ āĻ
ā§āϝāĻžāĻĒāϞāĻŋāĻā§āĻļāύāĨ¤
-
----
-## āĻāĻŋ āĻļāĻŋāĻāĻžāύ⧠āĻšāĻŦā§ āύāĻž:
-
-- āĻĄāĻŋāĻĒ āϞāĻžāϰā§āύāĻŋāĻ
-- āύāĻŋāĻāϰāĻžāϞ āύā§āĻāĻā§āĻžāϰā§āĻāϏ
-- āĻ āĻāĻ (āĻāϰā§āĻāĻŋāĻĢāĻŋāĻļāĻŋā§āĻžāϞ āĻāύā§āĻāĻŋāϞāĻŋāĻā§āύā§āϏ)
-
-
-āĻāϰāĻ āĻāĻžāϞ⧠āĻļāĻŋāĻāĻžāϰ āĻ
āĻāĻŋāĻā§āĻāϤāĻž āϤā§āϰāĻŋ āĻāϰāĻžāϰ āĻāύā§āϝ, āĻāĻŽāϰāĻž āύāĻŋāĻāϰāĻžāϞ āύā§āĻāĻāϝāĻŧāĻžāϰā§āĻ āĻāĻŦāĻ 'āĻĄāĻŋāĻĒ āϞāĻžāϰā§āύāĻŋāĻ'āĻāϰ āĻāĻāĻŋāϞāϤāĻžāĻā§āϞāĻŋ āĻāĻĄāĻŧāĻžāĻŦ - āύāĻŋāĻāϰāĻžāϞ āύā§āĻāĻāϝāĻŧāĻžāϰā§āĻ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻŦāĻšā§-āϏā§āϤāϰ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻŽāĻĄā§āϞ-āĻŦāĻŋāϞā§āĻĄāĻŋāĻ - āĻāĻŦāĻ āĻāĻāĻ, āϝāĻž āĻāĻŽāϰāĻž āĻāĻāĻāĻŋ āĻāĻŋāύā§āύ āĻĒāĻžāĻ ā§āϝāĻā§āϰāĻŽā§ āĻāϞā§āĻāύāĻž āĻāϰāĻŦāĨ¤ āĻāĻŽāϰāĻž āĻāĻ āĻŦā§āĻšāϤā§āϤāϰ āĻĒā§āϞāĻžāĻāĻĢāϰā§āĻŽāĻāĻŋāϰ āĻĻāĻŋāĻā§āϰ āĻāĻĒāϰ āĻĢā§āĻāĻžāϏ āĻāϰāĻžāϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻāϏāύā§āύ āĻĄā§āĻāĻž āϏāĻžāϝāĻŧā§āύā§āϏ āĻĒāĻžāĻ ā§āϝāĻā§āϰāĻŽāĻ āĻ
āĻĢāĻžāϰ āĻāϰāĻŦāĨ¤
-
----
-## āĻā§āύ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ?
-
-āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ, āĻāĻāĻāĻŋ āϏāĻŋāϏā§āĻā§āĻŽā§āϰ āĻĻā§āώā§āĻāĻŋāĻā§āĻŖ āĻĨā§āĻā§, āϏā§āĻŦāϝāĻŧāĻāĻā§āϰāĻŋāϝāĻŧ āϏāĻŋāϏā§āĻā§āĻŽā§āϰ āϏā§āώā§āĻāĻŋ āĻšāĻŋāϏāĻžāĻŦā§ āϏāĻāĻā§āĻāĻžāϝāĻŧāĻŋāϤ āĻāϰāĻž āĻšāϝāĻŧ āϝāĻž āĻŦā§āĻĻā§āϧāĻŋāĻŽāĻžāύ āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ āύāĻŋāϤ⧠āϏāĻšāĻžāϝāĻŧāϤāĻž āĻāϰāĻžāϰ āĻāύā§āϝ āĻĄā§āĻāĻž āĻĨā§āĻā§ āϞā§āĻāĻžāύ⧠āĻĒā§āϝāĻžāĻāĻžāϰā§āύāĻā§āϞāĻŋ āĻļāĻŋāĻāϤ⧠āĻĒāĻžāϰā§āĨ¤
-
-āĻāĻ āĻ
āύā§āĻĒā§āϰā§āϰāĻŖāĻžāĻāĻŋ āĻĸāĻŋāϞā§āĻĸāĻžāϞāĻžāĻāĻžāĻŦā§ āĻ
āύā§āĻĒā§āϰāĻžāĻŖāĻŋāϤ āĻšāϝāĻŧ āĻāĻŋāĻāĻžāĻŦā§ āĻŽāĻžāύā§āώā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ āĻŦāĻžāĻāϰā§āϰ āĻāĻāϤ āĻĨā§āĻā§ āĻĒā§āϰāĻžāĻĒā§āϤ āϤāĻĨā§āϝā§āϰ āĻāĻŋāϤā§āϤāĻŋāϤ⧠āĻāĻŋāĻā§ āĻāĻŋāύāĻŋāϏ āĻļāĻŋāĻā§āĨ¤
-
-â
āĻāĻ āĻŽāĻŋāύāĻŋāĻā§āϰ āĻāύā§āϝ āĻāĻŋāύā§āϤāĻž āĻāϰā§āύ āĻā§āύ āĻāĻāĻāĻŋ āĻŦā§āϝāĻŦāϏāĻž âāĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻâ āĻā§āĻļāϞ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϤ⧠āĻāĻžāϝāĻŧ āϝā§āĻāĻžāύ⧠āĻāĻāĻāĻŋ āĻšāĻžāϰā§āĻĄ-āĻā§āĻĄā§āĻĄ āύāĻŋāϝāĻŧāĻŽ-āĻāĻŋāϤā§āϤāĻŋāĻ āĻāĻā§āĻāĻŋāύ āϤā§āϰāĻŋ āĻāϰāĻž āϝāĻžā§ āĨ¤
-
----
-## āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻ
ā§āϝāĻžāĻĒā§āϞāĻŋāĻā§āĻļāύ
-
-āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻ
ā§āϝāĻžāĻĒā§āϞāĻŋāĻā§āĻļāύ āĻāĻāύ āĻĒā§āϰāĻžā§ āϏāĻŦāĻāĻžāύā§, āĻāĻŦāĻ āĻāĻŽāĻžāĻĻā§āϰ āϏāĻŽāĻžāĻā§āϰ āĻāĻžāϰāĻĒāĻžāĻļā§ āĻĒā§āϰāĻāϞāĻŋāϤ āĻĄā§āĻāĻžāϰ āĻŽāϤāĻ āϏāϰā§āĻŦāĻŦā§āϝāĻžāĻĒā§, āĻāĻŽāĻžāĻĻā§āϰ āϏā§āĻŽāĻžāϰā§āĻ āĻĢā§āύ, āϏāĻāϝā§āĻā§āϤ āĻĄāĻŋāĻāĻžāĻāϏ āĻāĻŦāĻ āĻ
āύā§āϝāĻžāύā§āϝ āϏāĻŋāϏā§āĻā§āĻŽ āĻĻā§āĻŦāĻžāϰāĻž āĻāϤā§āĻĒāύā§āύāĨ¤ āĻ
āϤā§āϝāĻžāϧā§āύāĻŋāĻ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻ
ā§āϝāĻžāϞāĻāϰāĻŋāĻĻāĻŽā§āϰ āĻ
āĻĒāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻžāϰ āĻāĻĨāĻž āĻŦāĻŋāĻŦā§āĻāύāĻž āĻāϰā§, āĻāĻŦā§āώāĻāϰāĻž āĻŦāĻšā§āĻŽāĻžāϤā§āϰāĻŋāĻ āĻāĻŦāĻ āĻŦāĻšā§-āĻŦāĻŋāώāϝāĻŧāĻ āĻŦāĻžāϏā§āϤāĻŦ-āĻā§āĻŦāύā§āϰ āϏāĻŽāϏā§āϝāĻžāϰ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻžāϰ āĻāύā§āϝ āϤāĻžāĻĻā§āϰ āϏāĻā§āώāĻŽāϤāĻž āĻ
āύā§āĻŦā§āώāĻŖ āĻāϰ⧠āĻāϞā§āĻā§āύ āϝāĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻŦā§ āĻāϤāĻŋāĻŦāĻžāĻāĻ āĻĢāϞāĻžāĻĢāϞ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§āĨ¤
-
----
-## āĻŦā§āϝāĻŦāĻšā§āϤ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻāϰ āĻāĻĻāĻžāĻšāϰāĻŖ
-
-**āĻāĻĒāύāĻŋ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻŦāĻŋāĻāĻŋāύā§āύ āĻŽāĻžāϧā§āϝāĻŽā§ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§āύ**:
-
-- āϰā§āĻā§āϰ āĻāĻŋāĻāĻŋā§āϏāĻžāϰ āϰāĻŋāĻĒā§āϰā§āĻ āĻĨā§āĻā§ āϰā§āĻā§āϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āĻ
āύā§āĻŽāĻžāύ āĻāϰāĻžāĨ¤
-- āĻĻāĻŋāϤ⧠āĻāĻŦāĻšāĻžāĻāϝāĻŧāĻžāϰ āĻĄā§āĻāĻž āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻāĻŦāĻšāĻžāĻāϝāĻŧāĻž āĻāϰ āĻĒā§āϰā§āĻŦāĻžāĻāĻžāϏ āĻĻā§āĻā§āĻž
-- āĻāĻāĻāĻŋ āĻĒāĻžāĻ ā§āϝā§āϰ āĻ
āύā§āĻā§āϤāĻŋ āĻŦā§āĻāĻžāϰ āĻāύā§āϝāĨ¤
-- āĻ
āĻĒāĻĒā§āϰāĻāĻžāϰ āĻŦāύā§āϧ āĻāϰāϤ⧠āĻā§āϝāĻŧāĻž āĻāĻŦāϰ āĻļāύāĻžāĻā§āϤ āĻāϰāĻžāĨ¤
-
-āĻ
āϰā§āĻĨ, āĻ
āϰā§āĻĨāύā§āϤāĻŋ, āĻāϰā§āĻĨ āϏāĻžāϝāĻŧā§āύā§āϏ, āϏā§āĻĒā§āϏ āĻāĻā§āϏāĻĒā§āϞā§āϰā§āĻļāύ, āĻŦāĻžāϝāĻŧā§āĻŽā§āĻĄāĻŋāĻā§āϞ āĻāĻā§āĻāĻŋāύāĻŋāϝāĻŧāĻžāϰāĻŋāĻ, āĻā§āĻāĻžāύā§āϝāĻŧ āĻŦāĻŋāĻā§āĻāĻžāύ āĻāĻŦāĻ āĻāĻŽāύāĻāĻŋ āĻŽāĻžāύāĻŦāĻŋāĻ āĻā§āώā§āϤā§āϰāĻā§āϞāĻŋ āϤāĻžāĻĻā§āϰ āĻĄā§āĻŽā§āύā§āϰ āĻāĻ āĻŋāύ, āĻĄā§āĻāĻž-āĻĒā§āϰāϏā§āϏāĻŋāĻ āĻāĻžāϰ⧠āϏāĻŽāϏā§āϝāĻžāĻā§āϞāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻžāϰ āĻāύā§āϝ āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻāĻā§ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻā§āĨ¤
-
----
-## āĻāĻĒāϏāĻāĻšāĻžāϰ
-
-āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ āĻŦāĻžāϏā§āϤāĻŦ-āĻŦāĻŋāĻļā§āĻŦ āĻŦāĻž āĻā§āĻĒāύā§āύ āĻĄā§āĻāĻž āĻĨā§āĻā§ āĻ
āϰā§āĻĨāĻĒā§āϰā§āĻŖ āĻ
āύā§āϤāϰā§āĻĻā§āώā§āĻāĻŋ āĻā§āĻāĻāĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻĒā§āϝāĻžāĻāĻžāϰā§āύ-āĻāĻŦāĻŋāώā§āĻāĻžāϰā§āϰ āĻĒā§āϰāĻā§āϰāĻŋāϝāĻŧāĻžāĻāĻŋāĻā§ āϏā§āĻŦāϝāĻŧāĻāĻā§āϰāĻŋāϝāĻŧ āĻāϰā§āĨ¤ āĻāĻāĻŋ āĻ
āύā§āϝāĻĻā§āϰ āĻŽāϧā§āϝ⧠āĻŦā§āϝāĻŦāϏāĻž, āϏā§āĻŦāĻžāϏā§āĻĨā§āϝ āĻāĻŦāĻ āĻāϰā§āĻĨāĻŋāĻ āĻ
ā§āϝāĻžāĻĒā§āϞāĻŋāĻā§āĻļāύāĻā§āϞāĻŋāϤ⧠āĻ
āϤā§āϝāύā§āϤ āĻŽā§āϞā§āϝāĻŦāĻžāύ āĻŦāϞ⧠āĻĒā§āϰāĻŽāĻžāĻŖāĻŋāϤ āĻšāϝāĻŧā§āĻā§āĨ¤
-
-āĻ
āĻĻā§āϰ āĻāĻŦāĻŋāώā§āϝāϤā§, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻāϝāĻŧā§āϰ āĻŦā§āύāĻŋāϝāĻŧāĻžāĻĻāĻŋāĻā§āϞāĻŋ āĻŦā§āĻāĻž āϝ⧠āĻā§āύāĻ āĻĄā§āĻŽā§āύā§āϰ āϞā§āĻā§āĻĻā§āϰ āĻāύā§āϝ āĻāĻāĻŋāϰ āĻŦā§āϝāĻžāĻĒāĻ āĻā§āϰāĻšāĻŖā§āϰ āĻāĻžāϰāĻŖā§ āĻ
āĻĒāϰāĻŋāĻšāĻžāϰā§āϝ āĻšāϤ⧠āĻāϞā§āĻā§āĨ¤
-
----
-# đ Challenge
-
-āϏā§āĻā§āĻ, āĻāĻžāĻāĻā§ āĻŦāĻž āĻāĻāĻāĻŋ āĻ
āύāϞāĻžāĻāύ āĻ
ā§āϝāĻžāĻĒ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠[āĻāĻā§āϏāĻžāϞāĻŋāĻĄā§āϰ](https://excalidraw.com/) AI, ML, āĻĄāĻŋāĻĒ āϞāĻžāϰā§āύāĻŋāĻ āĻāĻŦāĻ āĻĄā§āĻāĻž āϏāĻžāϝāĻŧā§āύā§āϏā§āϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ āϏāĻŽā§āĻĒāϰā§āĻā§āĨ¤
-
-# [āϞā§āĻāĻāĻžāϰ-āĻā§āĻāĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
----
-# āĻĒāϰā§āϝāĻžāϞā§āĻāύāĻž āĻ āϏā§āϞā§āĻĢ āϏā§āĻāĻžāĻĄāĻŋ
-
-āĻāĻĒāύāĻŋ āĻāĻŋāĻāĻžāĻŦā§ āĻā§āϞāĻžāĻāĻĄā§ āĻāĻŽāĻāϞ āĻ
ā§āϝāĻžāϞāĻāϰāĻŋāĻĻāĻŽ āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϤ⧠āĻĒāĻžāϰā§āύ āϏ⧠āϏāĻŽā§āĻĒāϰā§āĻā§ āĻāϰāĻ āĻāĻžāύāϤā§, āĻāĻāĻŋ āĻ
āύā§āϏāϰāĻŖ āĻāϰā§āύ [āϞāĻžāϰā§āύāĻŋāĻ āĻĒāĻžāĻĨ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)āĨ¤
-
-āĻāĻŽ āĻāϞ āĻŦā§āϏāĻŋāĻ āĻāĻžāύā§āύ [āϞāĻžāϰā§āύāĻŋāĻ āĻĒāĻžāĻĨ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)
-
----
-# āĻāϏāĻžāĻāύā§āĻāĻŽā§āύā§āĻ
-
-[āĻāϞā§āύ āĻļā§āϰ⧠āĻāϰāĻŋ](assignment.md)
\ No newline at end of file
diff --git a/1-Introduction/1-intro-to-ML/translations/README.es.md b/1-Introduction/1-intro-to-ML/translations/README.es.md
deleted file mode 100644
index 024dc814..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.es.md
+++ /dev/null
@@ -1,113 +0,0 @@
-# IntroducciÃŗn al machine learning
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, IA, deep learning - ÂŋCuÃĄl es la diferencia?")
-
-> đĨ Haz clic en la imagen de arriba para ver un video donde se discuten las diferencias entre el machine learning, la inteligencia artificial, y el deep learning.
-
-## [Cuestionario previo a la conferencia](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1?loc=es)
-
-### IntroducciÃŗn
-
-ÂĄTe damos la bienvenida a este curso acerca del machine learning (ML) clÃĄsico para principiantes! Asà se trate de tu primer contacto con este tema, o cuentes con amplia experiencia en el ML y busques refrescar tus conocimientos en un ÃĄrea especÃfica, ÂĄnos alegramos de que te nos unas! Queremos crear un punto de lanzamiento amigable para tus estudios de ML y nos encantarÃa evaluar, responder, e incorporar tu [retroalimentaciÃŗn](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 "IntroducciÃŗn al ML")
-
-> Haz clic en la imagen de arriba para ver el video: John Guttag del MIT presenta el machine learning
-
-### Empezando con el machine learning
-
-Antes de comenzar con este currÃculum, debes tener tu computadora configurada y lista para ejecutar los notebooks localmente.
-
-- **Configura tu equipo con estos videos**. Aprende mÃĄs acerca de como configurar tu equipo con [estos videos](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
-- **Aprende Python**. TambiÊn se recomienda que tengas un entendimiento bÃĄsico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un lenguaje de programaciÃŗn Ãētil para practicantes de la ciencia de datos, y que se utiliza en este curso.
-- **Aprende Node.js y JavaScript**. TambiÊn usamos JavaScript unas cuantas veces en este curso cuando creamos aplicaciones web, asà que necesitarÃĄs tener [node](https://nodejs.org) y [npm](https://www.npmjs.com/) instalados, asà como [Visual Studio Code](https://code.visualstudio.com/) listo para el desarrollo con Python y JavaScript.
-- **Crea una cuenta de GitHub**. Como nos encontraste aquà en [GitHub](https://github.com), puede que ya tengas una cuenta, pero si no, crÊate una y despuÊs haz un fork de este curriculum para usarlo en tu computadora personal. (SiÊntete libre de darnos una estrella đ)
-- **Explora Scikit-learn**. FamiliarÃzate con [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), un conjunto de bibliotecas de ML que referenciamos en estas lecciones.
-
-### ÂŋQuÊ es el machine learning?
-
-El tÊrmino "machine learning" es uno de los tÊrminos mÃĄs frecuentemente usados y populares hoy en dÃa. Es muy probable que hayas escuchado este tÊrmino al menos una vez si tienes algÃēn tipo de familiaridad con la tecnologÃa, no importa el sector en que trabajes. AÃēn asÃ, las mecÃĄnicas del machine learning son un misterio para la mayorÃa de la gente. Para un principiante en machine learning, el tema puede parecer intimidante. Es por esto que es importante entender lo que realmente es el machine learning y aprender sobre el tema poco a poco, a travÊs de ejemplos prÃĄcticos.
-
-
-
-> Google Trends nos muestra la "curva de interÊs" mÃĄs reciente para el tÊrmino "machine learning"
-
-Vivimos en un universo lleno de misterios fascinantes. Grandes cientÃficos como Stephen Hawking, Albert Einstein, y muchos mÃĄs han dedicado sus vidas a la bÃēsqueda de informaciÃŗn significativa que revela los misterios del mundo a nuestro alrededor. Esta es la condiciÃŗn humana del aprendizaje: un niÃąo humano aprende cosas nuevas y descubre la estructura de su mundo aÃąo tras aÃąo a medida que se convierten en adultos.
-
-El cerebro y los sentidos de un niÃąo perciben sus alrededores y van aprendiendo gradualmente los patrones escondidos de la vida, lo que le ayuda al niÃąo a crear reglas lÃŗgicas para identificar los patrones aprendidos. El proceso de aprendizaje del cerebro humano nos hace las criaturas mÃĄs sofisticadas del planeta. Aprender de forma continua al descubrir patrones ocultos e innovar sobre esos patrones nos permite seguir mejorando a lo largo de nuestras vidas. Esta capacidad de aprendizaje y la capacidad de evoluciÃŗn estÃĄn relacionadas a un concepto llamado [plasticidad cerebral o neuroplasticidad](https://www.simplypsychology.org/brain-plasticity.html). Podemos trazar algunas similitudes superficiales en cuanto a la motivaciÃŗn entre el proceso de aprendizaje del cerebro humano y los conceptos de machine learning.
-
-El [cerebro humano](https://www.livescience.com/29365-human-brain.html) percibe cosas del mundo real, procesa la informaciÃŗn percibida, toma decisiones racionales, y realiza ciertas acciones basadas en las circunstancias. Esto es a lo que se le conoce como el comportamiento inteligente. Cuando programamos un facsÃmil (copia) del proceso del comportamiento inteligente, se le llama inteligencia artificial (IA).
-
-Aunque los tÊrminos se suelen confundir, machine learning (ML) es una parte importante de la inteligencia artificial. **El objetivo del ML es utilizar algoritmos especializados para descubrir informaciÃŗn significativa y encontrar patrones ocultos de los datos percibidos para corroborar el proceso relacional de la toma de decisiones**.
-
-
-
-> El diagrama muestra la relaciÃŗn entre IA, ML, deep learning y la ciencia de los datos. InfografÃa hecha por [Jen Looper](https://twitter.com/jenlooper) inspirada en [esta grÃĄfica](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining).
-
-## Lo que aprenderÃĄs en el curso
-
-En este currÃculum, vamos a cubrir solo los conceptos clave de machine learning que un principiante deberÃa conocer. Cubrimos algo a lo que le llamamos "machine learning clÃĄsico" usando principalmente Scikit-learn, una biblioteca excelente que muchos estudiantes utilizan para aprender las bases. Para entender conceptos mÃĄs amplios de la inteligencia artificial o deep learning, es indispensable tener un fuerte conocimiento de los fundamentos, y eso es lo que nos gustarÃa ofrecerte aquÃ.
-
-En este curso aprenderÃĄs:
-
-- conceptos clave del machine learning
-- la historia del ML
-- la justicia y el ML
-- tÊcnicas de regresiÃŗn en ML
-- tÊcnicas de clasificaciÃŗn en ML
-- tÊcnicas de agrupamiento en ML
-- tÊcnicas de procesamiento del lenguaje natural en ML
-- tÊcnicas de previsiÃŗn de series temporales en ML
-- reforzamiento del aprendizaje
-- ML aplicada al mundo real
-
-## Lo que no cubriremos
-
-- deep learning
-- redes neuronales
-- inteligencia artificial (IA)
-
-Para tener una mejor experiencia de aprendizaje, vamos a evitar las complejidades de las redes neuronales, "deep learning" (construcciÃŗn de modelos de muchas capas utilizando las redes neuronales) e inteligencia artificial, que se discutirÃĄ en un currÃculum diferente. En un futuro tambiÊn ofreceremos un currÃculum acerca de la ciencia de datos para enfocarnos en ese aspecto de ese campo.
-
-## ÂŋPor quÊ estudiar machine learning?
-
-El Machine learning, desde una perspectiva de los sistemas, se define como la creaciÃŗn de sistemas automÃĄticos que pueden aprender patrones ocultos a partir de datos para ayudar en tomar decisiones inteligentes.
-
-Esta motivaciÃŗn estÃĄ algo inspirada por como el cerebro humano aprende ciertas cosas basadas en los datos que percibe en el mundo real.
-
-â
Piensa por un minuto en porquÊ querrÃa un negocio intentar implementar estrategias de machine learning en lugar de programar un motor basado en reglas programadas de forma rÃgida.
-
-### Aplicaciones del machine learning
-
-Las aplicaciones del machine learning hoy en dÃa estÃĄn casi en todas partes, y son tan ubicuas como los datos que fluyen alrededor de nuestras sociedades, generados por nuestros telÊfonos inteligentes, dispositivos conectados a internet, y otros sistemas. Considerando el inmenso potencial de los algoritmos punteros de machine learning, los investigadores han estado explorando su capacidad de resolver problemas multidimensionales y multidisciplinarios de la vida real con resultados muy positivos.
-
-**TÃē puedes utilizar machine learning de muchas formas**:
-
-- Para predecir la probabilidad de enfermedad a partir del historial mÊdico o reportes de un paciente.
-- Para aprovechar datos del clima y predecir eventos climatolÃŗgicos.
-- Para entender la intenciÃŗn de un texto.
-- Para detectar noticias falsas y evitar la propagaciÃŗn de propaganda.
-
-Finanzas, economÃa, ciencias de la Tierra, exploraciÃŗn espacial, ingenierÃa biomÊdica, ciencia cognitiva, e incluso campos en las humanidades han adaptado machine learning para solucionar algunos de los problemas mÃĄs arduos y pesados en cuanto al procesamiento de datos de cada una de estas ramas.
-
-Machine learning automatiza el proceso del descubrimiento de patrones al encontrar perspectivas significativas de datos provenientes del mundo real o generados. Machine learning ha demostrado ser muy valioso en las aplicaciones del sector de la salud, de negocios y finanzas, entre otros.
-
-En el futuro prÃŗximo, entender las bases de machine learning va a ser una necesidad para la gente en cualquier sector debido a su adopciÃŗn tan extendida.
-
----
-
-## đ DesafÃo
-
-Dibuja, en papel o usando una aplicaciÃŗn como [Excalidraw](https://excalidraw.com/), cÃŗmo entiendes las diferencias entre inteligencia artificial, ML, deep learning, y la ciencia de datos. Agrega algunas ideas de problemas que cada una de estas tÊcnicas son buenas en resolver.
-
-## [Cuestionario despuÊs de la lecciÃŗn](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2?loc=es)
-
-## RevisiÃŗn y autoestudio
-
-Para aprender mÃĄs sobre como puedes trabajar con algoritmos de ML en la nube, sigue esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-Toma esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) sobre las bases de ML.
-
-## Tarea
-
-[Ponte en marcha](assignment.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.fr.md b/1-Introduction/1-intro-to-ML/translations/README.fr.md
deleted file mode 100644
index b9c7fb31..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.fr.md
+++ /dev/null
@@ -1,109 +0,0 @@
-# Introduction au machine learning
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - What's the difference?")
-
-> đĨ Cliquer sur l'image ci-dessus afin de regarder une vidÊo expliquant la diffÊrence entre machine learning, AI et deep learning.
-
-## [Quiz prÊalable](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1?loc=fr)
-
-### Introduction
-
-Bienvenue à ce cours sur le machine learning classique pour dÊbutant ! Que vous soyez complètement nouveau sur ce sujet ou que vous soyez un professionnel du ML expÊrimentÊ cherchant à peaufiner vos connaissances, nous sommes heureux de vous avoir avec nous ! Nous voulons crÊer un tremplin chaleureux pour vos Êtudes en ML et serions ravis d'Êvaluer, de rÊpondre et d'apprendre de vos retours d'[expÊriences](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-> đĨ Cliquer sur l'image ci-dessus afin de regarder une vidÊo: John Guttag du MIT introduit le machine learning
-### DÊbuter avec le machine learning
-
-Avant de commencer avec ce cours, vous aurez besoin d'un ordinateur configurÊ et prÃĒt à faire tourner des notebooks (jupyter) localement.
-
-- **Configurer votre ordinateur avec ces vidÊos**. Apprendre comment configurer votre ordinateur avec cette [sÊrie de vidÊos](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
-- **Apprendre Python**. Il est aussi recommandÊ d'avoir une connaissance basique de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un langage de programmaton utile pour les data scientist que nous utilisons tout au long de ce cours.
-- **Apprendre Node.js et Javascript**. Nous utilisons aussi Javascript par moment dans ce cours afin de construire des applications WEB, vous aurez donc besoin de [node](https://nodejs.org) et [npm](https://www.npmjs.com/) installÊ, ainsi que de [Visual Studio Code](https://code.visualstudio.com/) pour dÊvelopper en Python et Javascript.
-- **CrÊer un compte GitHub**. Comme vous nous avez trouvÊ sur [GitHub](https://github.com), vous y avez sÃģrement un compte, mais si non, crÊez en un et rÊpliquez ce cours afin de l'utiliser à votre grÊs. (N'oublier pas de nous donner une Êtoile aussi đ)
-- **Explorer Scikit-learn**. Familiariser vous avec [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), un ensemble de librairies ML que nous mentionnons dans nos leçons.
-
-### Qu'est-ce que le machine learning
-
-Le terme `machine learning` est un des mots les plus populaire et le plus utilisÊ ces derniers temps. Il y a une probabilitÊ accrue que vous l'ayez entendu au moins une fois si vous avez une appÊtence pour la technologie indÊpendamment du domaine dans lequel vous travaillez. Le fonctionnement du machine learning, cependant, reste un mystère pour la plupart des personnes. Pour un dÊbutant en machine learning, le sujet peut nous submerger. Ainsi, il est important de comprendre ce qu'est le machine learning et de l'apprendre petit à petit au travers d'exemples pratiques.
-
-
-
-> Google Trends montre la rÊcente 'courbe de popularitÊ' pour le mot 'machine learning'
-
-Nous vivons dans un univers rempli de mystères fascinants. De grands scientifiques comme Stephen Hawking, Albert Einstein et pleins d'autres ont dÊvouÊs leur vie à la recherche d'informations utiles afin de dÊvoiler les mystères qui nous entourent. C'est la condition humaine pour apprendre : un enfant apprend de nouvelles choses et dÊcouvre la structure du monde annÊe après annÊe jusqu'à qu'ils deviennent adultes.
-
-Le cerveau d'un enfant et ses sens perçoivent l'environnement qui les entourent et apprennent graduellement des schÊmas non observÊs de la vie qui vont l'aider à fabriquer des règles logiques afin d'identifier les schÊmas appris. Le processus d'apprentissage du cerveau humain est ce que rend les hommes comme la crÊature la plus sophistiquÊe du monde vivant. Apprendre continuellement par la dÊcouverte de schÊmas non observÊs et ensuite innover sur ces schÊmas nous permet de nous amÊliorer tout au long de notre vie. Cette capacitÊ d'apprendre et d'Êvoluer est liÊe au concept de [plasticitÊ neuronale](https://www.simplypsychology.org/brain-plasticity.html), nous pouvons tirer quelques motivations similaires entre le processus d'apprentissage du cerveau humain et le concept de machine learning.
-
-Le [cerveau humain](https://www.livescience.com/29365-human-brain.html) perçoit des choses du monde rÊel, assimile les informations perçues, fait des dÊcisions rationnelles et entreprend certaines actions selon le contexte. C'est ce que l'on appelle se comporter intelligemment. Lorsque nous programmons une reproduction du processus de ce comportement à une machine, c'est ce que l'on appelle intelligence artificielle (IA).
-
-Bien que le terme peut ÃĒtre confu, machine learning (ML) est un important sous-ensemble de l'intelligence artificielle. **ML se rÊfère à l'utilisation d'algorithmes spÊcialisÊs afin de dÊcouvrir des informations utiles et de trouver des schÊmas non observÊs depuis des donnÊes perçues pour corroborer un processus de dÊcision rationnel**.
-
-
-
-> Un diagramme montrant les relations entre AI, ML, deep learning et data science. Infographie par [Jen Looper](https://twitter.com/jenlooper) et inspirÊ par [ce graphique](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
-## Ce que vous allez apprendre dans ce cours
-
-Dans ce cours, nous allons nous concentrer sur les concepts clÊs du machine learning qu'un dÊbutant se doit de connaÎtre. Nous parlerons de ce que l'on appelle le 'machine learning classique' en utilisant principalement Scikit-learn, une excellente librairie que beaucoup d'Êtudiants utilisent afin d'apprendre les bases. Afin de comprendre les concepts plus larges de l'intelligence artificielle ou du deep learning, une profonde connaissance en machine learning est indispensable, et c'est ce que nous aimerions fournir ici.
-
-Dans ce cours, vous allez apprendre :
-
-- Les concepts clÊs du machine learning
-- L'histoire du ML
-- ML et ÊquitÊ (fairness)
-- Les techniques de rÊgression ML
-- Les techniques de classification ML
-- Les techniques de regroupement (clustering) ML
-- Les techniques du traitement automatique des langues (NLP) ML
-- Les techniques de prÊdictions à partir de sÊries chronologiques ML
-- Apprentissage renforcÊ
-- D'applications rÊels du ML
-
-## Ce que nous ne couvrirons pas
-
-- Deep learning
-- Neural networks
-- IA
-
-Afin d'avoir la meilleur expÊrience d'apprentissage, nous Êviterons les complexitÊs des rÊseaux neuronaux, du 'deep learning' (construire un modèle utilisant plusieurs couches de rÊseaux neuronaux) et IA, dont nous parlerons dans un cours diffÊrent. Nous offirons aussi un cours à venir sur la data science pour concentrer sur cet aspect de champs très large.
-
-## Pourquoi etudier le machine learning ?
-
-Le machine learning, depuis une perspective systÊmique, est dÊfini comme la crÊation de systèmes automatiques pouvant apprendre des schÊmas non observÊs depuis des donnÊes afin d'aider à prendre des dÊcisions intelligentes.
-
-Ce but est faiblement inspirÊ de la manière dont le cerveau humain apprend certaines choses depuis les donnÊes qu'il perçoit du monde extÊrieur.
-
-â
Penser une minute aux raisons qu'une entreprise aurait d'essayer d'utiliser des stratÊgies de machine learning au lieu de crÊer des règles codÊs en dur.
-
-### Les applications du machine learning
-
-Les applications du machine learning sont maintenant pratiquement partout, et sont aussi omniprÊsentes que les donnÊes qui circulent autour de notre sociÊtÊ (gÊnÊrÊs par nos smartphones, appareils connectÊs ou autres systèmes). En prenant en considÊration l'immense potentiel des algorithmes dernier cri de machine learning, les chercheurs ont pu exploitÊs leurs capacitÊs afin de rÊsoudre des problèmes multidimensionnels et interdisciplinaires de la vie avec d'important retours positifs
-
-**Vous pouvez utiliser le machine learning de plusieurs manières** :
-
-- Afin de prÊdire la possibilitÊ d'avoir une maladie à partir des donnÊes mÊdicales d'un patient.
-- Pour tirer parti des donnÊes mÊtÊorologiques afin de prÊdire les ÊvÊnements mÊtÊorologiques.
-- Afin de comprendre le sentiment d'un texte.
-- Afin de dÊtecter les fake news pour stopper la propagation de la propagande.
-
-La finance, l'Êconomie, les sciences de la terre, l'exploration spatiale, le gÊnie biomÊdical, les sciences cognitives et mÃĒme les domaines des sciences humaines ont adaptÊ le machine learning pour rÊsoudre les problèmes ardus et lourds de traitement des donnÊes dans leur domaine respectif.
-
-Le machine learning automatise le processus de dÊcouverte de modèles en trouvant des informations significatives à partir de donnÊes rÊelles ou gÊnÊrÊes. Il s'est avÊrÊ très utile dans les applications commerciales, de santÊ et financières, entre autres.
-
-Dans un avenir proche, comprendre les bases du machine learning sera indispensable pour les personnes de tous les domaines en raison de son adoption gÊnÊralisÊe.
-
----
-## đ Challenge
-
-Esquisser, sur papier ou à l'aide d'une application en ligne comme [Excalidraw](https://excalidraw.com/), votre comprÊhension des diffÊrences entre l'IA, le ML, le deep learning et la data science. Ajouter quelques idÊes de problèmes que chacune de ces techniques est bonne à rÊsoudre.
-
-## [Quiz de validation des connaissances](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2?loc=fr)
-
-## RÊvision et auto-apprentissage
-
-Pour en savoir plus sur la façon dont vous pouvez utiliser les algorithmes de ML dans le cloud, suivez ce [Parcours d'apprentissage](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-## Devoir
-
-[Ãtre opÊrationnel](assignment.fr.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.id.md b/1-Introduction/1-intro-to-ML/translations/README.id.md
deleted file mode 100644
index 230bddfb..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.id.md
+++ /dev/null
@@ -1,107 +0,0 @@
-# Pengantar Machine Learning
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - Apa perbedaannya?")
-
-> đĨ Klik gambar diatas untuk menonton video yang mendiskusikan perbedaan antara Machine Learning, AI, dan Deep Learning.
-
-## [Quiz Pra-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
-### Pengantar
-
-Selamat datang di pelajaran Machine Learning klasik untuk pemula! Baik kamu yang masih benar-benar baru, atau seorang praktisi ML berpengalaman yang ingin meningkatkan kemampuan kamu, kami senang kamu ikut bersama kami! Kami ingin membuat sebuah titik mulai yang ramah untuk pembelajaran ML kamu dan akan sangat senang untuk mengevaluasi, merespon, dan memasukkan [umpan balik](https://github.com/microsoft/ML-For-Beginners/discussions) kamu.
-
-[](https://youtu.be/h0e2HAPTGF4 "Pengantar Machine Learning")
-
-> đĨ Klik gambar diatas untuk menonton video: John Guttag dari MIT yang memberikan pengantar Machine Learning.
-### Memulai Machine Learning
-
-Sebelum memulai kurikulum ini, kamu perlu memastikan komputer kamu sudah dipersiapkan untuk menjalankan *notebook* secara lokal.
-
-- **Konfigurasi komputer kamu dengan video ini**. Pelajari bagaimana menyiapkan komputer kamu dalam [video-video](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6) ini.
-- **Belajar Python**. Disarankan juga untuk memiliki pemahaman dasar dari [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), sebuah bahasa pemrograman yang digunakan oleh data scientist yang juga akan kita gunakan dalam pelajaran ini.
-- **Belajar Node.js dan JavaScript**. Kita juga menggunakan JavaScript beberapa kali dalam pelajaran ini ketika membangun aplikasi web, jadi kamu perlu menginstal [node](https://nodejs.org) dan [npm](https://www.npmjs.com/), serta [Visual Studio Code](https://code.visualstudio.com/) yang tersedia untuk pengembangan Python dan JavaScript.
-- **Buat akun GitHub**. Karena kamu menemukan kami di [GitHub](https://github.com), kamu mungkin sudah punya akun, tapi jika belum, silakan buat akun baru kemudian *fork* kurikulum ini untuk kamu pergunakan sendiri. (Jangan ragu untuk memberikan kami bintang juga đ)
-- **Jelajahi Scikit-learn**. Buat diri kamu familiar dengan [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html), seperangkat *library* ML yang kita acu dalam pelajaran-pelajaran ini.
-
-### Apa itu Machine Learning?
-
-Istilah 'Machine Learning' merupakan salah satu istilah yang paling populer dan paling sering digunakan saat ini. Ada kemungkinan kamu pernah mendengar istilah ini paling tidak sekali jika kamu familiar dengan teknologi. Tetapi untuk mekanisme Machine Learning sendiri, merupakan sebuah misteri bagi sebagian besar orang. Karena itu, penting untuk memahami sebenarnya apa itu Machine Learning, dan mempelajarinya langkah demi langkah melalui contoh praktis.
-
-
-
-> Google Trends memperlihatkan 'kurva tren' dari istilah 'Machine Learning' belakangan ini.
-
-Kita hidup di sebuah alam semesta yang penuh dengan misteri yang menarik. Ilmuwan-ilmuwan besar seperti Stephen Hawking, Albert Einstein, dan banyak lagi telah mengabdikan hidup mereka untuk mencari informasi yang berarti yang mengungkap misteri dari dunia disekitar kita. Ini adalah kondisi belajar manusia: seorang anak manusia belajar hal-hal baru dan mengungkap struktur dari dunianya tahun demi tahun saat mereka tumbuh dewasa.
-
-Otak dan indera seorang anak memahami fakta-fakta di sekitarnya dan secara bertahap mempelajari pola-pola kehidupan yang tersembunyi yang membantu anak untuk menyusun aturan-aturan logis untuk mengidentifikasi pola-pola yang dipelajari. Proses pembelajaran otak manusia ini menjadikan manusia sebagai makhluk hidup paling canggih di dunia ini. Belajar terus menerus dengan menemukan pola-pola tersembunyi dan kemudian berinovasi pada pola-pola itu memungkinkan kita untuk terus menjadikan diri kita lebih baik sepanjang hidup. Kapasitas belajar dan kemampuan berkembang ini terkait dengan konsep yang disebut dengan *[brain plasticity](https://www.simplypsychology.org/brain-plasticity.html)*. Secara sempit, kita dapat menarik beberapa kesamaan motivasi antara proses pembelajaran otak manusia dan konsep Machine Learning.
-
-[Otak manusia](https://www.livescience.com/29365-human-brain.html) menerima banyak hal dari dunia nyata, memproses informasi yang diterima, membuat keputusan rasional, dan melakukan aksi-aksi tertentu berdasarkan keadaan. Inilah yang kita sebut dengan berperilaku cerdas. Ketika kita memprogram sebuah salinan dari proses perilaku cerdas ke sebuah mesin, ini dinamakan kecerdasan buatan atau Artificial Intelligence (AI).
-
-Meskipun istilah-stilahnya bisa membingungkan, Machine Learning (ML) adalah bagian penting dari Artificial Intelligence. **ML berkaitan dengan menggunakan algoritma-algoritma terspesialisasi untuk mengungkap informasi yang berarti dan mencari pola-pola tersembunyi dari data yang diterima untuk mendukung proses pembuatan keputusan rasional**.
-
-
-
-> Sebuah diagram yang memperlihatkan hubungan antara AI, ML, Deep Learning, dan Data Science. Infografis oleh [Jen Looper](https://twitter.com/jenlooper) terinspirasi dari [infografis ini](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
-## Apa yang akan kamu pelajari
-
-Dalam kurikulum ini, kita hanya akan membahas konsep inti dari Machine Learning yang harus diketahui oleh seorang pemula. Kita membahas apa yang kami sebut sebagai 'Machine Learning klasik' utamanya menggunakan Scikit-learn, sebuah *library* luar biasa yang banyak digunakan para siswa untuk belajar dasarnya. Untuk memahami konsep Artificial Intelligence atau Deep Learning yang lebih luas, pengetahuan dasar yang kuat tentang Machine Learning sangat diperlukan, itulah yang ingin kami tawarkan di sini.
-
-Kamu akan belajar:
-
-- Konsep inti ML
-- Sejarah dari ML
-- Keadilan dan ML
-- Teknik regresi ML
-- Teknik klasifikasi ML
-- Teknik *clustering* ML
-- Teknik *natural language processing* ML
-- Teknik *time series forecasting* ML
-- *Reinforcement learning*
-- Penerapan nyata dari ML
-## Yang tidak akan kita bahas
-
-- *deep learning*
-- *neural networks*
-- AI
-
-Untuk membuat pengalaman belajar yang lebih baik, kita akan menghindari kerumitan dari *neural network*, *deep learning* - membangun *many-layered model* menggunakan *neural network* - dan AI, yang mana akan kita bahas dalam kurikulum yang berbeda. Kami juga akan menawarkan kurikulum *data science* yang berfokus pada aspek bidang tersebut.
-## Kenapa belajar Machine Learning?
-
-Machine Learning, dari perspektif sistem, didefinisikan sebagai pembuatan sistem otomatis yang dapat mempelajari pola-pola tersembunyi dari data untuk membantu membuat keputusan cerdas.
-
-Motivasi ini secara bebas terinspirasi dari bagaimana otak manusia mempelajari hal-hal tertentu berdasarkan data yang diterimanya dari dunia luar.
-
-â
Pikirkan sejenak mengapa sebuah bisnis ingin mencoba menggunakan strategi Machine Learning dibandingkan membuat sebuah mesin berbasis aturan yang tertanam (*hard-coded*).
-
-### Penerapan Machine Learning
-
-Penerapan Machine Learning saat ini hampir ada di mana-mana, seperti data yang mengalir di sekitar kita, yang dihasilkan oleh ponsel pintar, perangkat yang terhubung, dan sistem lainnya. Mempertimbangkan potensi besar dari algoritma Machine Learning terkini, para peneliti telah mengeksplorasi kemampuan Machine Learning untuk memecahkan masalah kehidupan nyata multi-dimensi dan multi-disiplin dengan hasil positif yang luar biasa.
-
-**Kamu bisa menggunakan Machine Learning dalam banyak hal**:
-
-- Untuk memprediksi kemungkinan penyakit berdasarkan riwayat atau laporan medis pasien.
-- Untuk memanfaatkan data cuaca untuk memprediksi peristiwa cuaca.
-- Untuk memahami sentimen sebuah teks.
-- Untuk mendeteksi berita palsu untuk menghentikan penyebaran propaganda.
-
-Keuangan, ekonomi, geosains, eksplorasi ruang angkasa, teknik biomedis, ilmu kognitif, dan bahkan bidang humaniora telah mengadaptasi Machine Learning untuk memecahkan masalah sulit pemrosesan data di bidang mereka.
-
-Machine Learning mengotomatiskan proses penemuan pola dengan menemukan wawasan yang berarti dari dunia nyata atau dari data yang dihasilkan. Machine Learning terbukti sangat berharga dalam penerapannya di berbagai bidang, diantaranya adalah bidang bisnis, kesehatan, dan keuangan.
-
-Dalam waktu dekat, memahami dasar-dasar Machine Learning akan menjadi suatu keharusan bagi orang-orang dari bidang apa pun karena adopsinya yang luas.
-
----
-## đ Tantangan
-
-Buat sketsa di atas kertas atau menggunakan aplikasi seperti [Excalidraw](https://excalidraw.com/), mengenai pemahaman kamu tentang perbedaan antara AI, ML, Deep Learning, dan Data Science. Tambahkan beberapa ide masalah yang cocok diselesaikan masing-masing teknik.
-
-## [Quiz Pasca-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
-## Ulasan & Belajar Mandiri
-
-Untuk mempelajari lebih lanjut tentang bagaimana kamu dapat menggunakan algoritma ML di cloud, ikuti [Jalur Belajar](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) ini.
-
-## Tugas
-
-[Persiapan](assignment.id.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.it.md b/1-Introduction/1-intro-to-ML/translations/README.it.md
deleted file mode 100644
index 37b23a0a..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.it.md
+++ /dev/null
@@ -1,108 +0,0 @@
-# Introduzione a machine learning
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning: qual è la differenza?")
-
-> đĨ Fare clic sull'immagine sopra per un video che illustra la differenza tra machine learning, intelligenza artificiale (AI) e deep learning.
-
-## [Quiz pre-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/?loc=it)
-
-### Introduzione
-
-Benvenuti in questo corso su machine learning classico per principianti! Che si sia completamente nuovo su questo argomento, o un professionista esperto di ML che cerca di rispolverare un'area, è un piacere avervi con noi! Si vuole creare un punto di partenza amichevole per lo studio di ML e saremo lieti di valutare, rispondere e incorporare il vostro [feedback](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 " Introduzione a ML")
-
-> đĨ Fare clic sull'immagine sopra per un video: John Guttag del MIT introduce machine learning
-
-### Iniziare con machine learning
-
-Prima di iniziare con questo programma di studi, è necessario che il computer sia configurato e pronto per eseguire i notebook in locale.
-
-- **Si configuri la propria macchina con l'aiuto di questi video**. Si scopra di piÚ su come configurare la propria macchina in questa [serie di video](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
-- **Imparare Python**. Si consiglia inoltre di avere una conoscenza di base di [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un linguaggio di programmazione utile per i data scientist che si utilizzerà in questo corso.
-- **Imparare Node.js e JavaScript**. Talvolta in questo corso si usa anche JavaScript durante la creazione di app web, quindi sarà necessario disporre di [node](https://nodejs.org) e [npm](https://www.npmjs.com/) installati, oltre a [Visual Studio Code](https://code.visualstudio.com/) disponibile sia per lo sviluppo Python che JavaScript.
-- **Creare un account GitHub**. E' probabile che si [](https://github.com)disponga già di un account GitHub, ma in caso contrario occorre crearne uno e poi eseguire il fork di questo programma di studi per utilizzarlo autonomamente. (Sentitevi liberi di darci anche una stella đ)
-- **Esplorare Scikit-learn**. Familiarizzare con Scikit-learn,[]([https://scikit-learn.org/stable/user_guide.html) un insieme di librerie ML a cui si farà riferimento in queste lezioni.
-
-### Che cos'è machine learning?
-
-Il termine "machine learning" è uno dei termini piÚ popolari e usati di oggi. C'è una buona possibilità che si abbia sentito questo termine almeno una volta se si ha una sorta di familiarità con la tecnologia, indipendentemente dal campo in cui si lavora. I meccanismi di machine learning, tuttavia, sono un mistero per la maggior parte delle persone. Per un principiante di machine learning l'argomento a volte puÃ˛ sembrare soffocante. Pertanto, è importante capire cos'è effettivamente machine learning e impararlo passo dopo passo, attraverso esempi pratici.
-
-
-
-> Google Trends mostra la recente "curva di hype" del termine "machine learning"
-
-Si vive in un universo pieno di misteri affascinanti. Grandi scienziati come Stephen Hawking, Albert Einstein e molti altri hanno dedicato la loro vita alla ricerca di informazioni significative che svelino i misteri del mondo circostante. Questa è la condizione umana dell'apprendimento: un bambino impara cose nuove e scopre la struttura del suo mondo anno dopo anno mentre cresce fino all'età adulta.
-
-Il cervello e i sensi di un bambino percepiscono i fatti dell'ambiente circostante e apprendono gradualmente i modelli di vita nascosti che aiutano il bambino a creare regole logiche per identificare i modelli appresi. Il processo di apprendimento del cervello umano rende l'essere umano la creatura vivente piÚ sofisticata di questo mondo. Imparare continuamente scoprendo schemi nascosti e poi innovare su questi schemi ci consente di migliorarsi sempre di piÚ per tutta la vita. Questa capacità di apprendimento e capacità di evoluzione è correlata a un concetto chiamato [plasticità cerebrale](https://www.simplypsychology.org/brain-plasticity.html). Superficialmente, si possono tracciare alcune somiglianze motivazionali tra il processo di apprendimento del cervello umano e i concetti di machine learning.
-
-Il [cervello umano](https://www.livescience.com/29365-human-brain.html) percepisce le cose dal mondo reale, elabora le informazioni percepite, prende decisioni razionali ed esegue determinate azioni in base alle circostanze. Questo è ciÃ˛ che viene chiamato comportarsi in modo intelligente. Quando si programma un facsimile del processo comportamentale intelligente su una macchina, si parla di intelligenza artificiale (AI).
-
-Sebbene i termini possano essere confusi, machine learning (ML) è un importante sottoinsieme dell'intelligenza artificiale. **Machine learning si occupa di utilizzare algoritmi specializzati per scoprire informazioni significative e trovare modelli nascosti dai dati percepiti per corroborare il processo decisionale razionale**.
-
-
-
-> Un diagramma che mostra le relazioni tra intelligenza artificiale (AI), machine learning, deep learning e data science. Infografica di [Jen Looper](https://twitter.com/jenlooper) ispirata a [questa grafica](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
-## Ecco cosa si imparerà in questo corso
-
-In questo programma di studi, saranno tratteti solo i concetti fondamentali di machine learning che un principiante deve conoscere. Si tratterà di ciÃ˛ che viene chiamato "machine learning classico" principalmente utilizzando Scikit-learn, una eccellente libreria che molti studenti usano per apprendere le basi. Per comprendere concetti piÚ ampi di intelligenza artificiale o deep learning, è indispensabile una forte conoscenza fondamentale di machine learning, e quindi la si vorrebbe offrire qui.
-
-In questo corso si imparerà :
-
-- concetti fondamentali di machine learning
-- la storia di ML
-- ML e correttezza
-- tecniche di regressione ML
-- tecniche di classificazione ML
-- tecniche di clustering ML
-- tecniche di elaborazione del linguaggio naturale ML
-- tecniche ML di previsione delle serie temporali
-- reinforcement learning
-- applicazioni del mondo reale per ML
-## Cosa non verrà trattato
-
-- deep learning
-- reti neurali
-- AI (intelligenza artificiale)
-
-Per rendere l'esperienza di apprendimento migliore, si eviteranno le complessità delle reti neurali, del "deep learning" (costruzione di modelli a piÚ livelli utilizzando le reti neurali) e dell'AI, di cui si tratterà in un altro programma di studi. Si offrirà anche un prossimo programma di studi di data science per concentrarsi su quell'aspetto di questo campo piÚ ampio.
-## PerchÊ studiare machine learning?
-
-Machine learning, dal punto di vista dei sistemi, è definito come la creazione di sistemi automatizzati in grado di apprendere modelli nascosti dai dati per aiutare a prendere decisioni intelligenti.
-
-Questa motivazione è vagamente ispirata dal modo in cui il cervello umano apprende determinate cose in base ai dati che percepisce dal mondo esterno.
-
-â
Si pensi per un minuto al motivo per cui un'azienda dovrebbe provare a utilizzare strategie di machine learning rispetto alla creazione di un motore cablato a codice basato su regole codificate.
-
-### Applicazioni di machine learning
-
-Le applicazioni di machine learning sono ormai quasi ovunque e sono onnipresenti come i dati che circolano nelle società , generati dagli smartphone, dispositivi connessi e altri sistemi. Considerando l'immenso potenziale degli algoritmi di machine learning all'avanguardia, i ricercatori hanno esplorato la loro capacità di risolvere problemi multidimensionali e multidisciplinari della vita reale con grandi risultati positivi.
-
-**Si puÃ˛ utilizzare machine learning in molti modi**:
-
-- Per prevedere la probabilità di malattia dall'anamnesi o dai rapporti di un paziente.
-- Per sfruttare i dati meteorologici per prevedere gli eventi meteorologici.
-- Per comprendere il sentimento di un testo.
-- Per rilevare notizie false per fermare la diffusione della propaganda.
-
-La finanza, l'economia, le scienze della terra, l'esplorazione spaziale, l'ingegneria biomedica, le scienze cognitive e persino i campi delle scienze umanistiche hanno adattato machine learning per risolvere gli ardui problemi di elaborazione dati del proprio campo.
-
-Machine learning automatizza il processo di individuazione dei modelli trovando approfondimenti significativi dal mondo reale o dai dati generati. Si è dimostrato di grande valore in applicazioni aziendali, sanitarie e finanziarie, tra le altre.
-
-Nel prossimo futuro, comprendere le basi di machine learning sarà un must per le persone in qualsiasi campo a causa della sua adozione diffusa.
-
----
-## đ Sfida
-
-Disegnare, su carta o utilizzando un'app online come [Excalidraw](https://excalidraw.com/), la propria comprensione delle differenze tra AI, ML, deep learning e data science. Aggiungere alcune idee sui problemi che ciascuna di queste tecniche è in grado di risolvere.
-
-## [Quiz post-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/?loc=it)
-
-## Revisione e Auto Apprendimento
-
-Per saperne di piÚ su come si puÃ˛ lavorare con gli algoritmi ML nel cloud, si segua questo [percorso di apprendimento](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-## Compito
-
-[Tempi di apprendimento brevi](assignment.it.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.ja.md b/1-Introduction/1-intro-to-ML/translations/README.ja.md
deleted file mode 100644
index db0ed50d..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.ja.md
+++ /dev/null
@@ -1,105 +0,0 @@
-# æŠæĸ°åĻįŋã¸ãŽå°å
Ĩ
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - éãã¯äŊãīŧ")
-
-> đĨ ä¸ãŽįģåãã¯ãĒãã¯ããã¨ãæŠæĸ°åĻįŋãAIãæˇąåą¤åĻįŋãŽéããĢã¤ããĻčĒŦæããåįģã襨į¤ēãããžãã
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1?loc=ja)
-
-### ã¤ãŗãããã¯ãˇã§ãŗ
-
-ååŋč
ãŽãããŽå¤å
¸įãǿпĸ°åĻįŋãŽãŗãŧãšã¸ãããã! ããŽããŧããĢå
¨ãč§Ļãããã¨ãŽãĒãæšããããŽåéãããŠããˇãĨãĸãããããįĩé¨čąå¯ãĒæšãããã˛ãåå ãã ãããį§ããĄã¯ãããĒããŽMLãŽåĻįŋãĢã¤ããĻãŽčĻĒããŋããããšãŋãŧãå°įšãäŊãããã¨čããĻããžããããĒããŽ[ããŖãŧãããã¯](https://github.com/microsoft/ML-For-Beginners/discussions)ãčŠäžĄãã寞åŋããåãå
Ĩãããã¨ãã§ããã°åš¸ãã§ãã
-[](https://youtu.be/h0e2HAPTGF4 "æŠæĸ°åĻįŋã¸ãŽå°å
Ĩ")
-
-> đĨ ä¸ãŽįģåãã¯ãĒãã¯ããã¨ãMITãŽJohn GuttagãæŠæĸ°åĻįŋãį´šäģããåįģã襨į¤ēãããžãã
-### æŠæĸ°åĻįŋãå§ãããĢãããŖãĻ
-
-ããŽãĢãĒããĨãŠã ãå§ããåãĢããŗãŗããĨãŧãŋãč¨åŽããããŧãããã¯ãããŧãĢãĢã§åŽčĄã§ãããããĢããåŋ
čĻããããžãã
-
-- **ããĄããŽãããĒã§ããˇãŗãŽč¨åŽãčĄãŖãĻãã ããã** ããˇãŗãŽč¨åŽæšæŗãĢã¤ããĻã¯ã[ããããŽãããĒ](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)ããčϧãã ããã
-- **PythonãåĻįŋããã** æŦčŦåē§ã§äŊŋį¨ãããããŧãŋãĩã¤ã¨ãŗããŖãšããĢæį¨ãĒããã°ãŠããŗã°č¨čĒã§ãã[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)ãŽåēæŦįãĒįč§Ŗããããã¨ãæãžããã§ãã
-- **Node.jsã¨JavaScriptãåĻįŋããã** ããŽãŗãŧãšã§ã¯ãĻã§ããĸããĒãæ§į¯ããéãĢJavaScriptãäŊåēĻãäŊŋį¨ããžããŽã§ã[node](https://nodejs.org)ã¨[npm](https://www.npmjs.com/)ãã¤ãŗãšããŧãĢãããĻãããã¨ãPythonã¨JavaScriptãŽä¸ĄæšãŽéįēãĢåŋ
čĻãĒ[Visual Studio Code](https://code.visualstudio.com/)ãåŠį¨å¯čŊã§ãããã¨ãåŋ
čĻã§ãã
-- **GitHubãŽãĸãĢãĻãŗããäŊæããã** [GitHub](https://github.com)ã§į§ããĄãčĻã¤ãããŽã§ãããããã§ãĢãĸãĢãĻãŗãããæãĄãããããžãããããããæãĄã§ãĒããã°ããĸãĢãĻãŗããäŊæããĻãããŽãĢãĒããĨãŠã ãããŠãŧã¯ããĻãčĒåã§ãäŊŋããã ããã(ãšãŋãŧãã¤ãããã¨ããåŋããĒãđ)
-- **Scikit-learnãæĸį´ĸããã** ããŽãŦããšãŗã§åį
§ããMLãŠã¤ããŠãĒãŽãģããã§ãã[Scikit-learn]([https://scikit-learn.org/stable/user_guide.html)ãĢæ
ŖãčĻĒããã§ãã ããã
-
-### æŠæĸ°åĻįŋã¨ã¯äŊãīŧ
-
-"æŠæĸ°åĻįŋ(Machine Learning)"ã¨ããč¨čã¯ãįžå¨æãäēēæ°ããããé ģįšãĢäŊŋį¨ãããĻããč¨čãŽä¸ã¤ã§ãããŠããĒåéãŽæčĄč
ã§ããŖãĻããå¤å°ãĒãã¨ãæčĄãĢį˛žéããĻããã°ãä¸åēĻã¯ããŽč¨čãčŗãĢãããã¨ãããå¯čŊæ§ã¯å°ãĒããããžãããããããæŠæĸ°åĻįŋãŽäģįĩãŋã¯ããģã¨ããŠãŽäēēãĢã¨ãŖãĻčŦãĢå
ãžããĻãããæŠæĸ°åĻįŋãŽååŋč
ãĢã¨ãŖãĻãããŽããŧãã¯æãĢå§åããããããĢæããããžããããŽãããæŠæĸ°åĻįŋã¨ã¯äŊããåŽéãĢįč§ŖããåŽčˇĩįãĒäžãéããĻæŽĩéįãĢåĻãã§ãããã¨ãéčĻã§ãã
-
-
-
-> Google TrendsãĢããããæŠæĸ°åĻįŋãã¨ããč¨čãŽæčŋãŽįãä¸ãããį¤ēãã°ãŠãã
-
-į§ããĄã¯ãé
åįãĒčŦãĢæēãĄãåŽåŽãĢäŊãã§ããžããããŧããŗã°ååŖĢããĸã¤ãŗãˇãĨãŋã¤ãŗååŖĢãã¯ããã¨ããå大ãĒį§åĻč
ããĄã¯ãį§ããĄãåãåˇģãä¸įãŽčŦãč§ŖãæããæåŗãŽããæ
å ąãæĸããã¨ãĢäēēįãæ§ããĻããžãããäēēéãŽåäžã¯ã大äēēãĢãĒããžã§ãŽéãĢãåš´ã
æ°ãããã¨ãåĻãŗãčĒåãŽä¸įãŽæ§é ãæãããĢããĻãããžãã
-
-åäžãŽčŗã¨æčĻã¯ãå¨å˛ãŽäēåŽãčĒčããåžã
ãĢäēēįãŽé ããããŋãŧãŗãåĻãŗãåĻįŋããããŋãŧãŗãčåĨãããããŽčĢįįãĒãĢãŧãĢãäŊããŽãĢåŊšįĢãĄãžããããããŖãåĻįŋãããģãšã¯ãäēēéãããŽä¸ã§æãæ´įˇ´ãããįįŠãĢããĻããžããé ããããŋãŧãŗãįēčĻãããã¨ã§įļįļįãĢåĻįŋããããŽããŋãŧãŗãĢåēãĨããĻéŠæ°ãčĄããã¨ã§ãį§ããĄã¯įæļ¯ãéããĻčĒåčĒčēĢãããč¯ãããĻãããã¨ãã§ããžããããŽåĻįŋčŊåã¨é˛åčŊåã¯ã[ãčŗãŽå¯åĄæ§ã](https://www.simplypsychology.org/brain-plasticity.html)ã¨åŧã°ããæĻåŋĩãĢéĸéŖããĻããžãã襨éĸįãĢã¯ãäēēéãŽčŗãŽåĻįŋãããģãšã¨æŠæĸ°åĻįŋãŽãŗãŗãģãããĢã¯ããĸãããŧãˇã§ãŗãŽéĸã§ããã¤ããŽå
ąéįšããããžãã
-
-[äēēéãŽčŗ](https://www.livescience.com/29365-human-brain.html)ã¯ãįžåŽä¸įãŽįŠäēãįĨčĻããįĨčĻããæ
å ąãåĻįããåįįãĒ夿ãä¸ããįļæŗãĢåŋããĻããčĄåãããžããããã¯įĨįčĄåã¨åŧã°ããžããããŽįĨįčĄåãŽãããģãšãæŠæĸ°ãĢããã°ãŠã ãããã¨ãäēēåˇĨįĨčŊīŧAIīŧã¨ãããžãã
-
-ããŽč¨čã¯æˇˇåããããã¨ããããžãããæŠæĸ°åĻįŋīŧMLīŧã¯äēēåˇĨįĨčŊãŽéčĻãĒãĩããģããã§ãã**MLã¯ãįšæŽãĒãĸãĢã´ãĒãēã ãäŊŋį¨ããĻãæåŗãŽããæ
å ąãįēčĻããįĨčĻãããããŧãŋããé ããããŋãŧãŗãčĻã¤ããĻãåįįãĒæææąēåŽãããģãšãčŖäģãããã¨ãĢéĸäŋããĻããžãã**
-
-
-
-
->[ããŽã°ãŠã](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)ãĢč§Ļįēããã[Jen Looper](https://twitter.com/jenlooper)æ°ãĢããã¤ãŗããŠã°ãŠããŖãã¯
-
-## ããŽãŗãŧãšã§åĻãļãã¨
-
-ããŽãĢãĒããĨãŠã ã§ã¯ãååŋč
ãįĨãŖãĻãããĒããã°ãĒããĒãæŠæĸ°åĻįŋãŽãŗãĸãĒæĻåŋĩãŽãŋãåãä¸ããžããį§ããĄããå¤å
¸įãǿпĸ°åĻįŋãã¨åŧãļããŽããå¤ããŽåĻįãåēį¤ãåĻãļãããĢäŊŋį¨ããåĒãããŠã¤ããŠãĒã§ããScikit-learnãä¸ģãĢäŊŋãŖãĻãĢããŧããžããäēēåˇĨįĨčŊãæˇąåą¤åĻįŋãĒãŠãŽããåēãæĻåŋĩãįč§ŖãããããĢã¯ãæŠæĸ°åĻįŋãŽåŧˇåãĒåēį¤įĨčãä¸å¯æŦ ã§ããŽã§ãããã§æäžããžãã
-
-- æŠæĸ°åĻįŋãŽæ ¸ã¨ãĒããŗãŗãģãã
-- MLãŽæ´å˛
-- MLã¨å
Ŧåšŗæ§
-- MLãĢããåå¸°ãŽææŗ
-- MLãĢããåéĄæčĄ
-- MLãĢããã¯ãŠãšãŋãĒãŗã°
-- MLãĢããčĒįļč¨čĒåĻįãŽæčĄ
-- MLãĢããæįŗģåä翏ŦãŽæčĄ
-- åŧˇååĻįŋ
-- MLãŽįžåŽä¸įã¸ãŽåŋį¨
-## ããŽãŗãŧãšã§æąããĒããã¨
-
-- ããŖãŧããŠãŧããŗã°
-- ããĨãŧãŠãĢãããã¯ãŧã¯
-- AI
-
-ããĨãŧãŠãĢãããã¯ãŧã¯ãããŖãŧããŠãŧããŗã°īŧããĨãŧãŠãĢãããã¯ãŧã¯ãį¨ããå¤åą¤įãĒãĸããĢæ§į¯īŧãAIãĒãŠãŽč¤éãĒåéã¯ãããč¯ãåĻįŋį°åĸãæäžãããããĢéŋããĻããžããããããã¯åĨãŽãĢãĒããĨãŠã ã§åãä¸ããžãããžããããããŽå¤§ããĒåéãŽä¸ã§ãįšãĢããŧãŋãĩã¤ã¨ãŗãšãĢįĻįšãåŊãĻããĢãĒããĨãŠã ãæäžããäēåŽã§ãã
-## ãĒãæŠæĸ°åĻįŋãåĻãļãŽã
-
-æŠæĸ°åĻįŋã¨ã¯ããˇãšãã ãŽčĻŗįšãããããŧãŋããé ããããŋãŧãŗãåĻįŋããįĨįãĒæææąēåŽãæ¯æ´ããčĒååããããˇãšãã ãæ§į¯ãããã¨ã¨åŽįžŠãããžãã
-
-ããŽåæŠã¯ãäēēéãŽčŗãå¤įããčĒčããããŧãŋãĢåēãĨããĻįšåŽãŽäēæãåĻįŋããäģįĩãŋãĢããããããĢã¤ãŗãšãã¤ãĸãããĻããžãã
-
-â
ãĒããã¸ããšã§ã¯ãããŧããŗãŧãããããĢãŧãĢããŧãšãŽã¨ãŗã¸ãŗãäŊããŽã§ã¯ãĒããæŠæĸ°åĻįŋæĻįĨãäŊŋãŖãĻãŋããã¨æããŽãããĄããŖã¨čããĻãŋãĻãã ããã
-
-
-### æŠæĸ°åĻįŋãŽåŋį¨
-
-æŠæĸ°åĻįŋãŽãĸããĒãąãŧãˇã§ãŗã¯ãäģããģã¨ããŠãŠããĢã§ãããããšããŧãããŠãŗããŗãã¯ãããããã¤ãšãããŽäģãŽãˇãšãã ããįæãããį§ããĄãŽį¤žäŧãĢæĩããĻããããŧãŋã¨åæ§ãĢãããĩããããŽã¨ãĒãŖãĻããžããæå
įĢ¯ãŽæŠæĸ°åĻįŋãĸãĢã´ãĒãēã ãŽč¨ãįĨããĒãå¯čŊæ§ãčæ
ŽããĻãį įŠļč
ããĄã¯ã夿ŦĄå
įãģå¤åéįãĒįžåŽãŽåéĄãč§ŖæąēãããããĢããŽčŊåãæĸæąããé常ãĢč¯ãįĩæãåžãĻããžãã
-
-**æŠæĸ°åĻįŋã¯æ§ã
ãĒåŊĸã§åŠį¨ã§ããžã**:
-
-- æŖč
ãŽį
æ´ãå ąåæ¸ããį
æ°ãŽå¯čŊæ§ãä翏Ŧããã
-- æ°čąĄããŧãŋãæ´ģį¨ããĻæ°čąĄįžčąĄãä翏Ŧããã
-- æįĢ ãŽææ
ãįč§Ŗããã
-- ããããŦãŗããŽæĄæŖãé˛ããããĢãã§ã¤ã¯ããĨãŧãšãæ¤åēããã
-
-éčãįĩæ¸ãå°įį§åĻãåŽåŽéįēãįįŠåģåĻåˇĨåĻãčĒįĨį§åĻããããĢã¯æį§įŗģãŽåéã§ãããããããŽåéãŽããŧãŋåĻįãĢäŧ´ãå°éŖãĒåéĄãč§ŖæąēãããããĢãæŠæĸ°åĻįŋãæĄį¨ãããĻããžãã
-
-æŠæĸ°åĻįŋã¯ãåŽä¸įãŽããŧãŋãįæãããããŧãŋããæåŗãŽããæ´å¯ãčĻåēããããŋãŧãŗãįēčĻãããããģãšãčĒååããžããæŠæĸ°åĻįŋã¯ããã¸ããšãåĨåēˇãéčãĒãŠãŽåéã§é常ãĢæį¨ã§ãããã¨ãč¨ŧæãããĻããžãã
-
-čŋãå°æĨãæŠæĸ°åĻįŋãŽåēį¤ãįč§Ŗãããã¨ã¯ãæŠæĸ°åĻįŋãŽæŽåãĢäŧ´ããããããåéãŽäēēã
ãĢã¨ãŖãĻåŋ
é ãŽããŽã¨ãĒãã§ãããã
-
----
-## đ Challenge
-AIãMLãæˇąåą¤åĻįŋãããŧãŋãĩã¤ã¨ãŗãšãŽéããĢã¤ããĻįč§ŖããĻãããã¨ããį´ã[Excalidraw](https://excalidraw.com/)ãĒãŠãŽãĒãŗãŠã¤ãŗãĸããĒãäŊŋãŖãĻãšãąããããĻãã ããããžãããããããŽæčĄãåžæã¨ããåéĄãŽãĸã¤ããĸãå ããĻãŋãĻãã ããã
-
-## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2?loc=ja)
-
-## æ¯ãčŋãã¨čĒįŋ
-
-ã¯ãŠãĻãä¸ã§MLãĸãĢã´ãĒãēã ããŠãŽãããĢæąããã¨ãã§ããããĢã¤ããĻã¯ãããŽ[ãŠãŧããŗã°ããš](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)ãĢåžãŖãĻãã ããã
-
-## čǞéĄ
-
-[į¨ŧåããã](assignment.ja.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.ko.md b/1-Introduction/1-intro-to-ML/translations/README.ko.md
deleted file mode 100644
index eb9757d3..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.ko.md
+++ /dev/null
@@ -1,113 +0,0 @@
-# 머ė ëŦë ėę°
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - What's the difference?")
-
-> đĨ 머ė ëŦë, AI ꡸ëĻŦęŗ ëĨëŦëė ė°¨ė´ëĨŧ ė¤ëĒ
íë ėėė ëŗ´ë ¤ëŠ´ ė ė´ë¯¸ė§ëĨŧ í´ëĻíŠëë¤.
-
-## [ę°ė ė í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
-### ėę°
-
-ė
ëŦ¸ėëĨŧ ėí classical 머ė ëŦë ėŊė¤ė ė¤ė ę˛ė íėíŠëë¤! ė´ í íŊė ėë˛Ŋíę˛ ėëĄ ė í´ëŗ´ęą°ë, í ëļėŧė ėë˛Ŋí´ė§ęŗ ėļė´íë ML ė¤ëŦ´ėë ė íŦė í¨ęģíę˛ ë늴 ėĸėĩëë¤! ML ė°ęĩŦëĨŧ ėí ėšėí ėėė ė ë§ë¤ęŗ ėļęŗ , ëšė ė [feedback](https://github.com/microsoft/ML-For-Beginners/discussions)ė íę°, ėëĩíęŗ ë°ėíę˛ ėĩëë¤.
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-> đĨ ëėėė ëŗ´ë ¤ëŠ´ ė ė´ë¯¸ė§ í´ëĻ: MITė John Guttagę° ë¨¸ė ëŦëė ėę°íŠëë¤.
-### 머ė ëŦë ėėí기
-
-ė´ ėģ¤ëĻŦíëŧė ėėí기 ė , ėģ´í¨í°ëĨŧ ė¸í
íęŗ ë
¸í¸ëļė ëĄėģŦėė ė¤íí ė ėę˛ ė¤ëší´ėŧ íŠëë¤.
-
-- **ė´ ėėėŧëĄ ėģ´í¨í° ė¸í
í기**. [ėė íë ė´ëĻŦė¤í¸](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)ėė ėģ´í¨í°ëĨŧ ė¸í
íë ë°Šë˛ė ëíėŦ ėė¸í ėėë´
ëë¤.
-- **Python ë°°ė°ę¸°**. ė´ ėŊė¤ėė ėŦėŠí ë°ė´í° ėŦė´ė¸í°ė¤í¸ėę˛ ė ėŠí íëĄęˇ¸ëë° ė¸ė´ė¸ [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)ė ëí ę¸°ëŗ¸ė ė¸ ė´í´ëĨŧ í´ėŧ ėĸėĩëë¤.
-- **Node.js ė JavaScript ë°°ė°ę¸°**. ė´ ėŊė¤ėė ėšėąė ëšëí ë JavaScriptëĨŧ ėŦėŠíë¯ëĄ, [node](https://nodejs.org) ė [npm](https://www.npmjs.com/)ė ė¤ėší´ėŧ íŠëë¤. Python ęŗŧ JavaScriptė ę°ë°íę˛Ŋ ëǍë ė¸ ė ėë [Visual Studio Code](https://code.visualstudio.com/)ë ėėĩëë¤.
-- **GitHub ęŗė ë§ë¤ę¸°**. [GitHub](https://github.com) ęŗė ė´ íšė ėë¤ëŠ´, ęŗė ė ë§ë ë¤ė ė´ ėģ¤ëĻŦíëŧė íŦíŦí´ė ę°ė¸ė ë§ę˛ ė¸ ė ėėĩëë¤. (star íė
ë ëŠëë¤ đ)
-- **Scikit-learn ė°žėëŗ´ę¸°**. ė´ ę°ėėė ė°¸ėĄ°íęŗ ėë ML ëŧė´ë¸ëŦëĻŦ ė
ė¸ [Scikit-learn](https://scikit-learn.org/stable/user_guide.html)ė ėė§íŠëë¤.
-
-### 머ė ëŦëė ëŦ´ėė¸ę°ė?
-
-'머ė ëŦë'ė ėĩęˇŧ ę°ėĨ ė¸ę¸°ėęŗ ėėŖŧ ė¸ę¸ëë ėŠė´ė
ëë¤. ė´ë¤ ëļėŧë 기ė ė ė´ë ė ë ėĩėí´ė§ëŠ´ ė´ëŦí ėŠė´ëĨŧ í ë˛ėĻė ë¤ė´ëŗ¸ ė ė´ ėėė ę˛ė
ëë¤. ꡸ëŦë, 머ė ëŦëė ęĩŦėĄ°ë ëëļëļė ėŦëë¤ėę˛ ë¯¸ė¤í
ëĻŦė
ëë¤. 머ė ëŦë ė
ëŦ¸ėėę˛ ėŖŧė ę° ëëëĄ ė¨ë§í ė ėėĩëë¤. ëëŦ¸ė 머ė ëŦëė´ ė¤ė ëĄ ė´ë¤ė§ ė´í´íęŗ ė¤ė ė ėŠë ėėëĄ ë¨ęŗëŗ íėĩė ė§ííë ę˛ė´ ė¤ėíŠëë¤.
-
-
-
-> Google Trendsė '머ė ëŦë' ėŠė´ė ėĩęˇŧ 'hype curve' ė
ëë¤.
-
-ė°ëĻŦë ë§¤ė° ė ëší ė°ėŖŧė ė´ęŗ ėėĩëë¤. Stephen Hawking, Albert Einsteinęŗŧ ę°ė ėëí ęŗŧíėë¤ė ėŖŧëŗ ė¸ęŗė ė ëšëĨŧ ë°íëŧ ė미ėë ė ëŗ´ëĨŧ ė°žë ë° ėŧėė ë°ėŗ¤ėĩëë¤. ė´ęą´ ėŦëė íėĩ ėĄ°ęą´ė´ėŖ . ėė´ë ėąė¸ė´ ë늴ė í´ë§ë¤ ėëĄė´ ę˛ė ë°°ė°ęŗ ė¸ęŗė ęĩŦėĄ°ë¤ė ë°ę˛ŦíŠëë¤.
-
-ėė´ė ëė ę°ę°ė ėŖŧëŗ íę˛Ŋė ėŦė¤ë¤ė ė¸ė§íęŗ íėĩë í¨í´ė ėëŗí기 ėí ë
ŧëĻŦė ė¸ ęˇėšė ë§ëë í¨í´ė ė ė°¨ė ėŧëĄ ë°°ėëë¤. ė¸ę°ė ëëė íėĩ ęŗŧė ė ė¸ę°ė ė¸ėėė ę°ėĨ ė ęĩí ėëĒ
ė˛´ëĄ ë§ëëë¤. ė¨ę˛¨ė§ í¨í´ė ë°ę˛Ŧíęŗ ęˇ¸ í¨í´ė íė í¨ėŧëĄė¨ ė§ėė ėŧëĄ íėĩíë ę˛ė ė°ëĻŦę° ėŧė ëė ė ė ë ëė ėė ė ë§ë¤ ė ėę˛ í´ė¤ëë¤. ė´ëŦí íėĩ ëĨë Ĩęŗŧ ë°ė íë ëĨë Ĩė [brain plasticity ëė ę°ėėą](https://www.simplypsychology.org/brain-plasticity.html)ė´ëŧęŗ ëļëĻŦë ę°ë
ęŗŧ ę´ë ¨ė´ ėėĩëë¤. íŧėė ėŧëĄ, ė°ëĻŦë ė¸ę°ė ëëė íėĩ ęŗŧė ęŗŧ ę¸°ęŗ íėĩė ę°ë
ėŦė´ė ë기ëļėŦė ė ėŦėąė ëė´ëŧ ė ėėĩëë¤.
-
-[ė¸ę°ė ë](https://www.livescience.com/29365-human-brain.html)ë íė¤ ė¸ęŗė ę˛ë¤ė ė¸ėíęŗ , ė¸ėë ė ëŗ´ëĨŧ ė˛ëĻŦíęŗ , íŠëĻŦė ė¸ ę˛°ė ė ë´ëĻŦęŗ , ėíŠė ë°ëŧ íšė í íëė íŠëë¤. ė´ę˛ė´ ė°ëĻŦę° ė§ė íëė´ëŧęŗ ëļëĨ´ë ę˛ė
ëë¤. ė°ëĻŦę° ė§ëĨė ė¸ íë ęŗŧė ė íŠėë°ëĻŦëĨŧ 기ęŗė íëĄęˇ¸ëë° í ë, ꡸ę˛ė ė¸ęŗĩė§ëĨ(AI)ė´ëŧęŗ ëļëĻŊëë¤.
-
-ėŠė´ę° íˇę°ëĻ´ ė ėė§ë§, 머ė ëŦë(ML)ė ė¤ėí ė¸ęŗĩ ė§ëĨė í ëļëļė
ëë¤. **MLė íšėí ėęŗ ëĻŦėĻė ė¨ė ė미ėë ė ëŗ´ëĨŧ ė°žęŗ ė¸ėí ë°ė´í°ėė ė¨ę˛¨ė§ í¨í´ė ė°žė íŠëĻŦė ėŧëĄ íë¨í íëĄė¸ė¤ëĨŧ íė¤íę˛ ėííë ę˛ė ė§ė¤íęŗ ėë¤ęŗ í ė ėėĩëë¤**.
-
-
-
-> AI, ML, ëĨëŦë, ꡸ëĻŦęŗ ë°ė´í° ėŦė´ė¸í°ė¤ ę°ė ę´ęŗëĨŧ ëŗ´ėŦėŖŧë ë¤ė´ė´ęˇ¸ë¨. [ė´ęŗŗ](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)ėė ėę°ė ë°ė [Jen Looper](https://twitter.com/jenlooper)ė ė¸íŦ꡸ëíŊ
-
-## ė´ ėŊė¤ėė ë°°ė¸ ėģ¨ė
ë¤
-
-ė´ ėģ¤ëĻŦíëŧėėë ė
ëŦ¸ėę° ë°ëė ėėėŧ í 머ė ëŦëė íĩėŦė ė¸ ę°ë
ë§ ë¤ëŖ° ę˛ė
ëë¤. ë§ė íėë¤ė´ 기ė´ëĨŧ ë°°ė°ę¸° ėí´ ėŦėŠíë íëĨí ëŧė´ë¸ëŦëĻŦė¸, Scikit-learnėŧëĄ 'classical machine learning'ė´ëŧęŗ ëļëĨ´ë ę˛ė ë¤ëŖšëë¤. ė¸ęŗĩ ė§ëĨ ëë ëĨëŦëė ëëĩė ė¸ ę°ë
ė ė´í´íë ¤ëŠ´ 머ė ëŦëė ëí ę°ë Ĩí ę¸°ė´ ė§ėė´ ęŧ íėíë¯ëĄ, í´ëš ë´ėŠė ëŗ¸ ę°ėėė ė ęŗĩíęŗ ė íŠëë¤.
-
-## ė´ ėŊė¤ėė ë¤ëŖ¨ë ę˛:
-
-- 머ė ëŦëė íĩėŦ ėģ¨ė
-- ML ė ėėŦ
-- ML ęŗŧ ęŗĩė ėą
-- regression ML 기ė
-- classification ML 기ė
-- clustering ML 기ė
-- natural language processing ML 기ė
-- time series forecasting ML 기ė
-- ę°í íėĩ
-- real-world ė íëĻŦėŧė´ė
for ML
-
-## ë¤ëŖ¨ė§ ėë ę˛:
-
-- ëĨëŦë
-- ė ę˛Ŋë§
-- AI
-
-ė°ëĻŦë ë ëė íėĩ ę˛Ŋíė ë§ë¤ę¸° ėí´ ëŗ¸ ėŊė¤ėėë ė ę˛Ŋë§, ė ę˛Ŋë§ė ė´ėŠí ë¤ė¸ĩ ëĒ¨ë¸ ęĩŦėļė¸ 'ëĨëŦë', ꡸ëĻŦęŗ AIë ë
ŧėíė§ ėė ę˛ė
ëë¤. ëí, ë í° íëė ė´ė ė ë§ėļ기 ėíėŦ íĨí ë°ė´í° ėŦė´ė¸ė¤ ėģ¤ëĻŦíëŧė ė ęŗĩí ėė ė
ëë¤.
-
-## ė 머ė ëŦëė ë°°ė°ëė?
-
-ėė¤í
ę´ė ėė 머ė ëŦëė ë°ė´í°ė ė¨ę˛¨ė§ í¨í´ė íėĩíėŦ íëĒ
í ėėŦ결ė ė ė§ėíë ėëíë ėė¤í
ė ë§ëë ę˛ėŧëĄ ė ėëŠëë¤.
-
-ė´ę˛ė ė¸ę°ė ëëę° ė¸ëļëĄëļí° ė¸ė§íë ë°ė´í°ëĨŧ ë°íėŧëĄ ė´ëģę˛ íšė í ę˛ë¤ė ë°°ė°ëė§ė ėí´ ė´ë ė ë ėę°ė ë°ėėĩëë¤.
-
-â
íë ėŊëŠë ęˇėš ę¸°ë° ėė§ė ë§ëë ę˛ëŗ´ë¤ ę¸°ęŗ íėĩ ė ëĩė ėŦėŠíë ė´ė ëĨŧ ė ė ėę°í´ ë´
ėë¤.
-
-### 머ė ëŦëė ė íëĻŦėŧė´ė
-
-머ė ëŦëė ėėŠė ė´ė ęą°ė ëǍë ęŗŗė ėėŧ늰, ė°ëĻŦė ė¤ë§í¸í°, ė°ę˛°ë 기기, ꡸ëĻŦęŗ ë¤ëĨ¸ ėė¤í
ë¤ė ėí´ ėėąë ė°ëĻŦ ėŦíė ë°Šëí ë°ė´í°ë§íŧ ė´ëėë ėĄ´ėŦíŠëë¤. ėĩė˛¨ë¨ ë¨¸ė ëŦë ėęŗ ëĻŦėĻė ėė˛ë ė ėŦë Ĩė ęŗ ë ¤íėŦ ė°ęĩŦėë¤ė ë¤ė°¨ėė ė´ęŗ ë¤ëļėŧė ė¸ ė¤ė ëŦ¸ė ëĨŧ í° ę¸ė ė ė¸ ę˛°ęŗŧëĄ í´ę˛°í ė ėë ëĨë Ĩė íęĩŦíęŗ ėėĩëë¤.
-
-**ë¤ėí ë°ŠėėŧëĄ ë¨¸ė ëŦëė ėŦėŠí ė ėėĩëë¤**:
-
-- íėė ëŗë Ĩė´ë ëŗ´ęŗ ėëĨŧ 기ë°ėŧëĄ ė§ëŗ ę°ëĨėąė ėė¸ĄíŠëë¤.
-- ë ė¨ ë°ė´í°ëĄ ęŗė ė´ë˛¤í¸ëĨŧ ėė¸ĄíŠëë¤.
-- ëŦ¸ėĨė ę°ė ė ė´í´íŠëë¤.
-- ę°ė§ ë´ė¤ëĨŧ ę°ė§íęŗ ė ëė ë§ėĩëë¤.
-
-ę¸ėĩ, ę˛Ŋė í, ė§ęĩŦ ęŗŧí, ė°ėŖŧ íí, ėëŦŧ ęŗĩí, ė¸ė§ ęŗŧí, ꡸ëĻŦęŗ ė¸ëŦ¸íęšė§ 머ė ëŦëė ė ėŠíėŦ ė´ë ĩęŗ , ë°ė´í° ė˛ëĻŦę° ë˛ęą°ė´ ė´ėëĨŧ í´ę˛°íėĩëë¤.
-
-**ę˛°ëĄ **:
-
-머ė ëŦëė ė¤ė ëë ėėąë ë°ė´í°ėė ė미 ėë í¨í´ė ė°žë íëĄė¸ė¤ëĨŧ ėëííŠëë¤. ëŦ´ėëŗ´ë¤ë ëšėĻëė¤, ęą´ę° ë° ėŦëŦ´ ė íëĻŦėŧė´ė
ėė ëė ę°ėšëĨŧ ė§ëë¤ë ę˛ė´ ė
ėĻëėėĩëë¤.
-
-ę°ęšė´ 미ëė, 머ė ëŦëė ę´ë˛ėí ėąíėŧëĄ ëǍë ëļėŧė ėŦëë¤ė´ 머ė ëŦëė ę¸°ëŗ¸ė ė´í´íë ę˛ė´ íėė ė´ ë ę˛ė
ëë¤.
-
----
-## đ ëė
-
-ėĸ
ė´ė ꡸ëĻŦęą°ë, [Excalidraw](https://excalidraw.com/)ė˛ëŧ ė¨ëŧė¸ ėąė ė´ėŠíėŦ AI, ML, ëĨëŦë, ꡸ëĻŦęŗ ë°ė´í° ėŦė´ė¸ė¤ė ė°¨ė´ëĨŧ ė´í´íŠėë¤. ę° ę¸°ė ë¤ė´ ė í´ę˛°í ė ėë ëŦ¸ė ė ëí´ ėė´ëė´ëĨŧ íŠėŗëŗ´ė¸ė.
-
-## [ę°ė í í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
-## ëĻŦ롰 & ė기ėŖŧë íėĩ
-
-í´ëŧė°ëėė ML ėęŗ ëĻŦėĻė ė´ëģę˛ ėŦėŠíë ė§ ėė¸í ėėëŗ´ë ¤ëŠ´, [íėĩ ę˛ŊëĄ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)ëĨŧ ë°ëĻ
ëë¤.
-
-MLė 기ė´ė ëí [íėĩ ę˛ŊëĄ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)ëĨŧ ë´
ëë¤.
-
-## ęŗŧė
-
-[Get up and running](../assignment.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.pt-br.md b/1-Introduction/1-intro-to-ML/translations/README.pt-br.md
deleted file mode 100644
index 9b5f94c0..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.pt-br.md
+++ /dev/null
@@ -1,113 +0,0 @@
-# IntroduÃ§ÃŖo ao machine learning
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - Qual Ê a diferença?")
-
-> đĨ Clique na imagem acima para assistir um vÃdeo que ilustra a diferença entre machine learning, AI, e deep learning.
-
-## [QuestionÃĄrio inicial](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1?loc=ptbr)
-
-### IntroduÃ§ÃŖo
-
-Nossas boas vindas a este curso de machine learning clÃĄssico para iniciantes! Quer vocÃĒ seja completamente novo neste tÃŗpico, ou um praticante de ML experiente que esteja procurando se atualizar em uma ÃĄrea, estamos felizes por vocÃĒ se juntar a nÃŗs! Queremos criar um ponto de lançamento amigÃĄvel para seu estudo de ML e ficarÃamos felizes em avaliar, responder e incorporar o seu [feedback](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 "IntroduÃ§ÃŖo ao ML")
-
-> đĨ Clique na imagem acima para assistir: John Guttag, do MIT, apresenta o machine learning.
-
-### Primeiros passos com machine learning
-
-Antes de iniciar este curso, vocÃĒ precisa ter seu computador configurado e pronto para executar notebooks localmente.
-
-- **Configure sua mÃĄquina com estes vÃdeos**. Use os links a seguir para aprender [como instalar o Python](https://youtu.be/CXZYvNRIAKM) em seu sistema e [configurar um editor de texto](https://youtu.be/EU8eayHWoZg) para desenvolvimento.
-- **Aprenda Python**. TambÊm Ê recomendÃĄvel ter um conhecimento bÃĄsico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), uma linguagem de programaÃ§ÃŖo Ãētil para cientistas de dados (data scientists) que usamos neste curso.
-- **Aprenda Node.js e JavaScript**. TambÊm usamos JavaScript algumas vezes neste curso para criar aplicativos web, entÃŖo vocÃĒ precisarÃĄ ter [node](https://nodejs.org) e [npm](https://www.npmjs.com/) instalado, assim como o [Visual Studio Code](https://code.visualstudio.com/) disponÃvel para desenvolvimento em Python e JavaScript.
-- **Crie uma conta no GitHub**. Como vocÃĒ nos encontrou aqui no [GitHub](https://github.com),talvez vocÃĒ jÃĄ tenha uma conta, mas se nÃŖo, crie uma e faça um fork deste curso para usar por conta prÃŗpria. (Sinta-se à vontade para nos dar uma estrela tambÊm đ).
-- **Explore o Scikit-learn**. Familiarize-se com o [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), um conjunto de bibliotecas de ML referenciadas nestas liçÃĩes.
-
-### O que Ê machine learning?
-
-O termo 'machine learning' Ê um dos termos mais populares e usados ââatualmente. HÃĄ uma boa chance de vocÃĒ jÃĄ ter ouvido esse termo pelo menos uma vez se estiver familiarizado com tecnologia, independentemente do campo em que trabalha. A mecÃĸnica do aprendizado de mÃĄquina (machine learning), entretanto, Ê um mistÊrio para a maioria das pessoas. Para um iniciante em machine learning, o assunto à s vezes pode parecer opressor. Portanto, Ê importante entender o que realmente Ê o machine learning e aprender sobre isso passo a passo, por meio de exemplos prÃĄticos.
-
-
-
-> Google Trends mostra a recente 'curva de hype' do termo 'machine learning'.
-
-Vivemos em um universo cheio de mistÊrios fascinantes. Grandes cientistas como Stephen Hawking, Albert Einstein e muitos outros dedicaram suas vidas à busca de informaçÃĩes significativas que desvendam os mistÊrios do mundo ao nosso redor. Esta Ê a condiÃ§ÃŖo humana de aprendizagem: uma criança humana aprende coisas novas e descobre a estrutura de seu mundo ano a ano à medida que chega à idade adulta.
-
-O cÊrebro e os sentidos de uma criança percebem os fatos ao seu redor e gradualmente aprendem os padrÃĩes ocultos de vida que ajudam a criança a criar regras lÃŗgicas para identificar os padrÃĩes aprendidos. O processo de aprendizagem do cÊrebro humano torna os humanos a criatura viva mais sofisticada deste mundo. Aprender continuamente, descobrindo padrÃĩes ocultos e, em seguida, inovar nesses padrÃĩes permite que nos tornemos cada vez melhores ao longo de nossa vida. Esta capacidade de aprendizagem e capacidade de evoluÃ§ÃŖo estÃĄ relacionada a um conceito chamado [plasticidade cerebral](https://www.simplypsychology.org/brain-plasticity.html). Superficialmente, podemos traçar algumas semelhanças motivacionais entre o processo de aprendizado do cÊrebro humano e os conceitos de aprendizado de mÃĄquina.
-
-O [cÊrebro humano](https://www.livescience.com/29365-human-brain.html) percebe coisas do mundo real, processa as informaçÃĩes percebidas, toma decisÃĩes racionais e executa certas açÃĩes com base nas circunstÃĸncias. Isso Ê o que chamamos de comportamento inteligente. Quando programamos um fac-sÃmile do processo comportamental inteligente para uma mÃĄquina, isso Ê chamado de inteligÃĒncia artificial (AI).
-
-Embora os termos possam ser confundidos, o machine learning (ML) Ê um subconjunto importante da inteligÃĒncia artificial. **ML se preocupa em usar algoritmos especializados para descobrir informaçÃĩes significativas e encontrar padrÃĩes ocultos de dados percebidos para corroborar o processo de tomada de decisÃŖo racional**.
-
-
-
-> Um diagrama que mostra as relaçÃĩes entre AI, ML, deep learning, and data science. InfogrÃĄfico de [Jen Looper](https://twitter.com/jenlooper) inspirado [neste grÃĄfico](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
-## O que vocÃĒ aprenderÃĄ neste curso
-
-Nesta seÃ§ÃŖo, vamos cobrir apenas os conceitos bÃĄsicos de machine learning que um iniciante deve conhecer. Abordamos o que chamamos de 'machine learning clÃĄssico' principalmente usando o Scikit-learn, uma excelente biblioteca que muitos alunos usam para aprender o bÃĄsico. Para compreender conceitos mais amplos de inteligÃĒncia artificial ou deep learning, Ê indispensÃĄvel um forte conhecimento fundamental de machine learning e, por isso, gostarÃamos de oferecÃĒ-lo aqui.
-
-Neste curso vocÃĒ aprenderÃĄ:
-
-- conceitos fundamentais de machine learning
-- a histÃŗria do ML
-- ML e justiça
-- tÊcnicas de regressÃŖo de ML
-- tÊcnicas de classificaÃ§ÃŖo com ML
-- tÊcnicas de agrupamento de ML
-- tÊcnicas de processamento de linguagem natural de ML
-- tÊcnicas de ML de previsÃŖo de sÊries temporais
-- aprendizagem por reforço
-- aplicativos do mundo real para ML
-
-## O que nÃŖo cobriremos
-
-- deep learning
-- redes neurais (neural networks)
-- AI
-
-Para tornar essa experiÃĒncia de aprendizado melhor, evitaremos as complexidades das redes neurais, 'deep learning' - construÃ§ÃŖo de modelos em vÃĄrias camadas usando redes neurais - e AI, que discutiremos em um currÃculo diferente. TambÊm ofereceremos um futuro currÃculo de ciÃĒncia de dados para consolidar esse aspecto desse campo mais amplo.
-
-## Por que estudar machine learning?
-
-O machine learning, de uma perspectiva de sistemas, Ê definido como a criaÃ§ÃŖo de sistemas automatizados que podem aprender padrÃĩes ocultos de dados para ajudar na tomada de decisÃĩes inteligentes.
-
-Essa motivaÃ§ÃŖo Ê vagamente inspirada em como o cÊrebro humano aprende certas coisas com base nos dados que percebe do mundo exterior.
-
-â
Pense por um minuto por que uma empresa iria querer tentar usar estratÊgias de machine learning em vez de criar um mecanismo baseado em regras embutido.
-
-### AplicaçÃĩes do machine learning
-
-Os aplicativos de machine learning agora estÃŖo em quase todos os lugares e sÃŖo tÃŖo onipresentes quanto os dados que fluem em nossas sociedades, gerados por nossos smartphones, dispositivos conectados e outros sistemas. Considerando o imenso potencial dos algoritmos de aprendizado de mÃĄquina (machine learning) de Ãēltima geraÃ§ÃŖo, os pesquisadores tÃĒm explorado sua capacidade de resolver problemas multidimensionais e multidisciplinares da vida real com excelentes resultados positivos.
-
-**VocÃĒ pode usar o machine learning de vÃĄrias maneiras**:
-
-- Para prever a probabilidade de doença a partir do histÃŗrico mÊdico ou relatÃŗrios de um paciente.
-- Para aproveitar os dados meteorolÃŗgicos para prever eventos meteorolÃŗgicos.
-- Para entender o sentimento de um texto.
-- Para detectar notÃcias falsas (fake news) e impedir a propagaÃ§ÃŖo de propaganda.
-
-Finanças, economia, ciÃĒncias da terra, exploraÃ§ÃŖo espacial, engenharia biomÊdica, ciÃĒncias cognitivas e atÊ mesmo campos das humanidades adaptaram o machine learning para resolver os ÃĄrduos e pesados problemas de processamento de dados de seu domÃnio.
-
-O machine learning automatiza o processo de descoberta de padrÃĩes, encontrando insights significativos do mundo real ou dados gerados. Ele provou ser altamente valioso em aplicaçÃĩes comerciais, de saÃēde e financeiras, entre outras.
-
-Em um futuro prÃŗximo, compreender os fundamentos do machine learning serÃĄ uma obrigaÃ§ÃŖo para pessoas de qualquer domÃnio devido à sua ampla adoÃ§ÃŖo.
-
----
-
-## đ Desafio
-
-Esboce, no papel ou usando um aplicativo online como [Excalidraw](https://excalidraw.com/), sua compreensÃŖo das diferenças entre AI, ML, deep learning e data science. Adicione algumas idÊias de problemas que cada uma dessas tÊcnicas Ê boa para resolver.
-
-## [QuestionÃĄrio pÃŗs-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2?loc=ptbr)
-
-## RevisÃŖo e autoestudo
-
-Para saber mais sobre como vocÃĒ pode trabalhar com algoritmos de ML na nuvem, siga este [Caminho de aprendizagem](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-Faça o [Caminho de aprendizagem](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) sobre os fundamentos do ML.
-
-## Tarefa
-
-[Comece a trabalhar](assignment.pt-br.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.ru.md b/1-Introduction/1-intro-to-ML/translations/README.ru.md
deleted file mode 100644
index e7a19915..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.ru.md
+++ /dev/null
@@ -1,149 +0,0 @@
-# ĐвĐĩĐ´ĐĩĐŊиĐĩ в ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ
-
-
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, ĐŗĐģŅйОĐēĐžĐĩ ОйŅŅĐĩĐŊиĐĩ - в ŅĐĩĐŧ ŅаСĐŊиŅа?")
-
-> đĨ ĐаĐļĐŧиŅĐĩ ĐŊа иСОйŅаĐļĐĩĐŊиĐĩ вŅŅĐĩ, ŅŅĐžĐąŅ ĐŋŅĐžŅĐŧĐžŅŅĐĩŅŅ Đ˛Đ¸Đ´ĐĩĐž, в ĐēĐžŅĐžŅĐžĐŧ ОйŅŅĐļдаĐĩŅŅŅ ŅаСĐŊиŅа ĐŧĐĩĐļĐ´Ņ ĐŧаŅиĐŊĐŊŅĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ, иŅĐēŅŅŅŅвĐĩĐŊĐŊŅĐŧ иĐŊŅĐĩĐģĐģĐĩĐēŅĐžĐŧ и ĐŗĐģŅйОĐēиĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ.
-
-## [ĐĸĐĩŅŅ ĐŋĐĩŅĐĩĐ´ ĐģĐĩĐēŅиĐĩĐš](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
----
-
-ĐОйŅĐž ĐŋĐžĐļаĐģОваŅŅ ĐŊа ĐēŅŅŅ ĐēĐģаŅŅиŅĐĩŅĐēĐžĐŗĐž ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ´ĐģŅ ĐŊаŅиĐŊаŅŅиŅ
! ĐŅĐģи Đ˛Ņ ĐŊОвиŅĐžĐē в ŅŅОК ŅĐĩĐŧĐĩ иĐģи ĐžĐŋŅŅĐŊŅĐš ŅĐŋĐĩŅиаĐģиŅŅ ĐŋĐž ĐŧаŅиĐŊĐŊĐžĐŧŅ ĐžĐąŅŅĐĩĐŊиŅ, ĐļĐĩĐģаŅŅиК ĐžŅвĐĩĐļиŅŅ ŅвОи СĐŊаĐŊĐ¸Ņ Đ˛ ĐēаĐēОК-ĐģийО ОйĐģаŅŅи, ĐŧŅ ŅадŅ, ŅŅĐž Đ˛Ņ ĐŋŅиŅĐžĐĩдиĐŊиĐģиŅŅ Đē ĐŊаĐŧ! ĐŅ Ņ
ĐžŅиĐŧ ŅОСдаŅŅ ŅдОйĐŊŅŅ ŅŅаŅŅОвŅŅ ĐŋĐģĐžŅадĐēŅ Đ´ĐģŅ Đ˛Đ°ŅĐĩĐŗĐž иСŅŅĐĩĐŊĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ¸ ĐąŅĐ´ĐĩĐŧ ŅĐ°Đ´Ņ ĐžŅвĐĩŅиŅŅ Đ¸ ŅŅĐĩŅŅŅ Đ˛Đ°Ņи [ĐžŅСŅвŅ](https://github.com/microsoft/ML-For-Beginners/discussions).
-
-[](https://youtu.be/h0e2HAPTGF4 "ĐвĐĩĐ´ĐĩĐŊиĐĩ в ML")
-
-> đĨ ĐаĐļĐŧиŅĐĩ ĐŊа иСОйŅаĐļĐĩĐŊиĐĩ вŅŅĐĩ, ŅŅĐžĐąŅ ĐŋŅĐžŅĐŧĐžŅŅĐĩŅŅ Đ˛Đ¸Đ´ĐĩĐž: ĐĐļĐžĐŊ ĐŅŅŅĐ°Đŗ иС ĐаŅŅаŅŅŅĐĩŅŅĐēĐžĐŗĐž ŅĐĩŅ
ĐŊĐžĐģĐžĐŗĐ¸ŅĐĩŅĐēĐžĐŗĐž иĐŊŅŅиŅŅŅа ĐŋŅĐĩĐ´ŅŅавĐģŅĐĩŅ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ
-
----
-## ĐаŅаĐģĐž ŅайОŅŅ Ņ ĐŧаŅиĐŊĐŊŅĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ
-
-ĐĐĩŅĐĩĐ´ ŅĐĩĐŧ, ĐēаĐē ĐŋŅиŅŅŅĐŋиŅŅ Đē иСŅŅĐĩĐŊĐ¸Ņ ŅŅОК ŅŅĐĩĐąĐŊОК ĐŋŅĐžĐŗŅаĐŧĐŧŅ, ваĐŧ ĐŊĐĩОйŅ
ОдиĐŧĐž ĐŊаŅŅŅОиŅŅ ĐēĐžĐŧĐŋŅŅŅĐĩŅ Đ¸ ĐŋĐžĐ´ĐŗĐžŅОвиŅŅ ĐĩĐŗĐž Đ´ĐģŅ ŅайОŅŅ Ņ ĐŊĐžŅŅĐąŅĐēаĐŧи ĐģĐžĐēаĐģŅĐŊĐž.
-
-- **ĐаŅŅŅОКŅĐĩ ŅĐ˛ĐžŅ ĐŧаŅиĐŊŅ Ņ ĐŋĐžĐŧĐžŅŅŅ ŅŅиŅ
видĐĩĐž**. ĐĐžŅĐŋĐžĐģŅСŅĐšŅĐĩŅŅ ŅĐģĐĩĐ´ŅŅŅиĐŧи ŅŅŅĐģĐēаĐŧи, ŅŅĐžĐąŅ ŅСĐŊаŅŅ [ĐēаĐē ŅŅŅаĐŊОвиŅŅ Python](https://youtu.be/CXZYvNRIAKM) в ваŅĐĩĐš ŅиŅŅĐĩĐŧĐĩ и [ĐŊаŅŅŅОиŅŅ ŅĐĩĐēŅŅОвŅĐš ŅĐĩдаĐēŅĐžŅ](https://youtu.be/EU8eayHWoZg) Đ´ĐģŅ ŅаСŅайОŅĐēи.
-- **ĐСŅŅиŅĐĩ Python**. ĐĸаĐēĐļĐĩ ŅĐĩĐēĐžĐŧĐĩĐŊĐ´ŅĐĩŅŅŅ Đ¸ĐŧĐĩŅŅ ĐąĐ°ĐˇĐžĐ˛ŅĐĩ СĐŊаĐŊĐ¸Ņ Đž [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), ŅСŅĐēĐĩ ĐŋŅĐžĐŗŅаĐŧĐŧиŅОваĐŊиŅ, ĐŋĐžĐģĐĩСĐŊĐžĐŧ Đ´ĐģŅ ŅĐŋĐĩŅиаĐģиŅŅОв ĐŋĐž даĐŊĐŊŅĐŧ, ĐēĐžŅĐžŅŅĐš ĐŧŅ Đ¸ŅĐŋĐžĐģŅСŅĐĩĐŧ в ŅŅĐžĐŧ ĐēŅŅŅĐĩ.
-- **ĐСŅŅиŅĐĩ Node.js и JavaScript**. ĐŅ ŅаĐēĐļĐĩ ĐŊĐĩŅĐēĐžĐģŅĐēĐž ŅаС иŅĐŋĐžĐģŅСŅĐĩĐŧ JavaScript в ŅŅĐžĐŧ ĐēŅŅŅĐĩ ĐŋŅи ŅОСдаĐŊии вĐĩĐą-ĐŋŅиĐģĐžĐļĐĩĐŊиК, ĐŋĐžŅŅĐžĐŧŅ Đ˛Đ°Đŧ ĐŋĐžŅŅĐĩĐąŅĐĩŅŅŅ ŅŅŅаĐŊОвиŅŅ [node](https://nodejs.org) и [npm](https://www.npmjs.com/), а ŅаĐēĐļĐĩ [Visual Studio Code](https://code.visualstudio.com/), Đ´ĐžŅŅŅĐŋĐŊŅĐš Đ´ĐģŅ ŅаСŅайОŅĐēи ĐēаĐē ĐŊа Python, ŅаĐē и ĐŊа JavaScript.
-- **ХОСдаКŅĐĩ ŅŅĐĩŅĐŊŅŅ ĐˇĐ°ĐŋиŅŅ GitHub**. ĐĐžŅĐēĐžĐģŅĐēŅ Đ˛Ņ ĐŊаŅĐģи ĐŊĐ°Ņ ĐŊа [GitHub](https://github.com), вОСĐŧĐžĐļĐŊĐž, Ņ Đ˛Đ°Ņ ŅĐļĐĩ ĐĩŅŅŅ ŅŅĐĩŅĐŊĐ°Ņ ĐˇĐ°ĐŋиŅŅ, ĐŊĐž ĐĩŅĐģи ĐŊĐĩŅ, ŅОСдаКŅĐĩ ĐĩĐĩ, а СаŅĐĩĐŧ ŅОСдаКŅĐĩ ŅĐžŅĐē ŅŅОК ŅŅĐĩĐąĐŊОК ĐŋŅĐžĐŗŅаĐŧĐŧŅ, ŅŅĐžĐąŅ Đ¸ŅĐŋĐžĐģŅСОваŅŅ ĐĩĐĩ ŅаĐŧĐžŅŅĐžŅŅĐĩĐģŅĐŊĐž. (ĐĐĩ ŅŅĐĩŅĐŊŅĐšŅĐĩŅŅ ĐŋĐžŅŅавиŅŅ ĐˇĐ˛ĐĩĐˇĐ´Ņ ŅŅĐžĐŧŅ ŅĐĩĐŋОСиŅĐžŅĐ¸Ņ đ)
-- **ĐСĐŊаĐēĐžĐŧŅŅĐĩŅŅ ŅĐž Scikit-learn**. ĐСĐŊаĐēĐžĐŧŅŅĐĩŅŅ ŅĐž [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), ĐŊайОŅĐžĐŧ йийĐģиОŅĐĩĐē Đ´ĐģŅ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ, ĐŊа ĐēĐžŅĐžŅŅĐĩ ĐŧŅ ŅŅŅĐģаĐĩĐŧŅŅ Đ˛ ŅŅиŅ
ŅŅĐžĐēаŅ
.
-
----
-## ЧŅĐž ŅаĐēĐžĐĩ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ?
-
-ĐĸĐĩŅĐŧиĐŊ "ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ" - ОдиĐŊ иС ŅаĐŧŅŅ
ĐŋĐžĐŋŅĐģŅŅĐŊŅŅ
и ŅаŅŅĐž иŅĐŋĐžĐģŅСŅĐĩĐŧŅŅ
ŅĐĩĐŗĐžĐ´ĐŊŅ ŅĐĩŅĐŧиĐŊОв. ĐŅĐĩĐŊŅ Đ˛ĐĩŅĐžŅŅĐŊĐž, ŅŅĐž Đ˛Ņ ŅĐģŅŅаĐģи ŅŅĐžŅ ŅĐĩŅĐŧиĐŊ Ņ
ĐžŅŅ ĐąŅ ŅаС, ĐĩŅĐģи Đ˛Ņ Ņ
ĐžŅŅ ĐŊĐĩĐŧĐŊĐžĐŗĐž СĐŊаĐēĐžĐŧŅ Ņ ŅĐĩŅ
ĐŊĐžĐģĐžĐŗĐ¸ŅĐŧи, ĐŊĐĩСавиŅиĐŧĐž ĐžŅ ŅĐžĐŗĐž, в ĐēаĐēОК ОйĐģаŅŅи Đ˛Ņ ŅайОŅаĐĩŅĐĩ. ĐĐ´ĐŊаĐēĐž ĐŧĐĩŅ
аĐŊиĐēа ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ ĐžŅŅаĐĩŅŅŅ ĐˇĐ°ĐŗĐ°Đ´ĐēОК Đ´ĐģŅ ĐąĐžĐģŅŅиĐŊŅŅва ĐģŅĐ´ĐĩĐš. ĐĐģŅ ĐŊОвиŅĐēа в ĐŧаŅиĐŊĐŊĐžĐŧ ОйŅŅĐĩĐŊии ŅŅа ŅĐĩĐŧа иĐŊĐžĐŗĐ´Đ° ĐŧĐžĐļĐĩŅ ĐŋĐžĐēаСаŅŅŅŅ ŅĐģĐžĐļĐŊОК. ĐĐžŅŅĐžĐŧŅ Đ˛Đ°ĐļĐŊĐž ĐŋĐžĐŊиĐŧаŅŅ, ŅŅĐž ŅаĐēĐžĐĩ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ ĐŊа ŅаĐŧĐžĐŧ Đ´ĐĩĐģĐĩ, и иСŅŅаŅŅ ĐĩĐŗĐž ŅĐ°Đŗ Са ŅĐ°ĐŗĐžĐŧ ĐŊа ĐŋŅаĐēŅиŅĐĩŅĐēиŅ
ĐŋŅиĐŧĐĩŅаŅ
.
-
----
-## ĐŅĐ¸Đ˛Đ°Ņ Ņ
аКĐŋа
-
-
-
-> Google Trends ĐŋĐžĐēаСŅваĐĩŅ ĐŊĐĩдавĐŊŅŅ "ĐēŅивŅŅ Ņ
аКĐŋа" ŅĐĩŅĐŧиĐŊа "ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ".
-
----
-## ĐĐ°ĐŗĐ°Đ´ĐžŅĐŊĐ°Ņ Đ˛ŅĐĩĐģĐĩĐŊĐŊаŅ
-
-ĐŅ ĐļивĐĩĐŧ вО вŅĐĩĐģĐĩĐŊĐŊОК, ĐŋĐžĐģĐŊОК СавОŅаĐļиваŅŅиŅ
ĐˇĐ°ĐŗĐ°Đ´ĐžĐē. ĐĐĩĐģиĐēиĐĩ ŅŅĐĩĐŊŅĐĩ, ŅаĐēиĐĩ ĐēаĐē ĐĄŅивĐĩĐŊ ĐĨĐžĐēиĐŊĐŗ, ĐĐģŅĐąĐĩŅŅ ĐĐšĐŊŅŅĐĩĐšĐŊ и ĐŧĐŊĐžĐŗĐ¸Đĩ Đ´ŅŅĐŗĐ¸Đĩ, ĐŋĐžŅвŅŅиĐģи ŅĐ˛ĐžŅ ĐļиСĐŊŅ ĐŋОиŅĐēŅ ĐˇĐŊаŅиĐŧОК иĐŊŅĐžŅĐŧаŅии, ŅаŅĐēŅŅваŅŅĐĩĐš ŅаКĐŊŅ ĐžĐēŅŅĐļаŅŅĐĩĐŗĐž ĐŊĐ°Ņ ĐŧиŅа. ĐŅĐž ŅŅĐģОвиĐĩ ОйŅŅĐĩĐŊиŅ: ŅĐĩĐąĐĩĐŊĐžĐē иС ĐŗĐžĐ´Đ° в ĐŗĐžĐ´ ŅСĐŊаĐĩŅ ĐŊОвОĐĩ и ŅаŅĐēŅŅваĐĩŅ ŅŅŅŅĐēŅŅŅŅ ĐžĐēŅŅĐļаŅŅĐĩĐŗĐž ĐŧиŅа ĐŋĐž ĐŧĐĩŅĐĩ вСŅĐžŅĐģĐĩĐŊиŅ.
-
----
-## ĐĐžĐˇĐŗ ŅĐĩĐąĐĩĐŊĐēа
-
-ĐĐžĐˇĐŗ и ĐžŅĐŗĐ°ĐŊŅ ŅŅвŅŅв ŅĐĩĐąĐĩĐŊĐēа вОŅĐŋŅиĐŊиĐŧаŅŅ ŅаĐēŅŅ Đ¸Đˇ ŅвОĐĩĐŗĐž ĐžĐēŅŅĐļĐĩĐŊĐ¸Ņ Đ¸ ĐŋĐžŅŅĐĩĐŋĐĩĐŊĐŊĐž иСŅŅаŅŅ ŅĐēŅŅŅŅĐĩ СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅи ĐļиСĐŊи, ĐēĐžŅĐžŅŅĐĩ ĐŋĐžĐŧĐžĐŗĐ°ŅŅ ŅĐĩĐąĐĩĐŊĐēŅ Đ˛ŅŅайОŅаŅŅ ĐģĐžĐŗĐ¸ŅĐĩŅĐēиĐĩ ĐŋŅавиĐģа Đ´ĐģŅ ĐžĐŋŅĐĩĐ´ĐĩĐģĐĩĐŊĐ¸Ņ ŅŅвОĐĩĐŊĐŊŅŅ
СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅĐĩĐš. ĐŅĐžŅĐĩŅŅ ĐžĐąŅŅĐĩĐŊĐ¸Ņ ŅĐĩĐģОвĐĩŅĐĩŅĐēĐžĐŗĐž ĐŧĐžĐˇĐŗĐ° Đ´ĐĩĐģаĐĩŅ ĐģŅĐ´ĐĩĐš ŅаĐŧŅĐŧи иСОŅŅĐĩĐŊĐŊŅĐŧи ĐļивŅĐŧи ŅŅŅĐĩŅŅваĐŧи в ŅŅĐžĐŧ ĐŧиŅĐĩ. ĐĐžŅŅĐžŅĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ, ОйĐŊаŅŅĐļĐĩĐŊиĐĩ ŅĐēŅŅŅŅŅ
СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅĐĩĐš и ĐŋĐžŅĐģĐĩĐ´ŅŅŅĐĩĐĩ вĐŊĐĩĐ´ŅĐĩĐŊиĐĩ иĐŊĐŊОваŅиК, ĐŋОСвОĐģŅĐĩŅ ĐŊаĐŧ ŅŅаĐŊОвиŅŅŅŅ ĐģŅŅŅĐĩ и ĐģŅŅŅĐĩ ĐŊа ĐŋŅĐžŅŅĐļĐĩĐŊии вŅĐĩĐš ĐļиСĐŊи. ĐŅа ŅĐŋĐžŅОйĐŊĐžŅŅŅ Đē ОйŅŅĐĩĐŊĐ¸Ņ Đ¸ ŅĐŋĐžŅОйĐŊĐžŅŅŅ Đē ŅаСвиŅĐ¸Ņ ŅвŅСаĐŊŅ Ņ ĐēĐžĐŊŅĐĩĐŋŅиĐĩĐš, ĐŊаСŅваĐĩĐŧОК [ĐŋĐģаŅŅиŅĐŊĐžŅŅŅ ĐŧĐžĐˇĐŗĐ°](https://www.simplypsychology.org/brain-plasticity.html). Đа ĐŋĐĩŅвŅĐš Đ˛ĐˇĐŗĐģŅĐ´, ĐŧŅ ĐŧĐžĐļĐĩĐŧ вŅŅвиŅŅ ĐŊĐĩĐēĐžŅĐžŅŅĐĩ ĐŧĐžŅиваŅиОĐŊĐŊŅĐĩ ŅŅ
ОдŅŅва ĐŧĐĩĐļĐ´Ņ ĐŋŅĐžŅĐĩŅŅĐžĐŧ ОйŅŅĐĩĐŊĐ¸Ņ ŅĐĩĐģОвĐĩŅĐĩŅĐēĐžĐŗĐž ĐŧĐžĐˇĐŗĐ° и ĐēĐžĐŊŅĐĩĐŋŅиŅĐŧи ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ.
-
----
-## ЧĐĩĐģОвĐĩŅĐĩŅĐēиК ĐŧĐžĐˇĐŗ
-
-[ЧĐĩĐģОвĐĩŅĐĩŅĐēиК ĐŧĐžĐˇĐŗ](https://www.livescience.com/29365-human-brain.html) вОŅĐŋŅиĐŊиĐŧаĐĩŅ Đ˛ĐĩŅи иС ŅĐĩаĐģŅĐŊĐžĐŗĐž ĐŧиŅа, ОйŅайаŅŅваĐĩŅ Đ˛ĐžŅĐŋŅиĐŊиĐŧаĐĩĐŧŅŅ Đ¸ĐŊŅĐžŅĐŧаŅиŅ, ĐŋŅиĐŊиĐŧаĐĩŅ ŅаŅиОĐŊаĐģŅĐŊŅĐĩ ŅĐĩŅĐĩĐŊĐ¸Ņ Đ¸ вŅĐŋĐžĐģĐŊŅĐĩŅ ĐžĐŋŅĐĩĐ´ĐĩĐģĐĩĐŊĐŊŅĐĩ Đ´ĐĩĐšŅŅĐ˛Đ¸Ņ Đ˛ СавиŅиĐŧĐžŅŅи ĐžŅ ĐžĐąŅŅĐžŅŅĐĩĐģŅŅŅв. ĐŅĐž ŅĐž, ŅŅĐž ĐŧŅ ĐŊаСŅваĐĩĐŧ ŅаСŅĐŧĐŊŅĐŧ ĐŋОвĐĩĐ´ĐĩĐŊиĐĩĐŧ. ĐĐžĐŗĐ´Đ° ĐŧŅ ĐŋŅĐžĐŗŅаĐŧĐŧиŅŅĐĩĐŧ ĐēĐžĐŋĐ¸Ņ Đ¸ĐŊŅĐĩĐģĐģĐĩĐēŅŅаĐģŅĐŊĐžĐŗĐž ĐŋОвĐĩĐ´ĐĩĐŊŅĐĩŅĐēĐžĐŗĐž ĐŋŅĐžŅĐĩŅŅа ĐŊа ĐēĐžĐŧĐŋŅŅŅĐĩŅĐĩ, ŅŅĐž ĐŊаСŅваĐĩŅŅŅ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊŅĐŧ иĐŊŅĐĩĐģĐģĐĩĐēŅĐžĐŧ (ĐĐ).
-
----
-## ĐĐĩĐŧĐŊĐžĐŗĐž ŅĐĩŅĐŧиĐŊĐžĐģĐžĐŗĐ¸Đ¸
-
-ĐĨĐžŅŅ ŅĐĩŅĐŧиĐŊŅ ĐŧĐžĐŗŅŅ ĐˇĐ°ĐŋŅŅаŅŅ, ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ (ML) ŅвĐģŅĐĩŅŅŅ Đ˛Đ°ĐļĐŊŅĐŧ ĐŋОдĐŧĐŊĐžĐļĐĩŅŅвОĐŧ иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа. **ĐаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ СаĐŊиĐŧаĐĩŅŅŅ Đ¸ŅĐŋĐžĐģŅСОваĐŊиĐĩĐŧ ŅĐŋĐĩŅиаĐģиСиŅОваĐŊĐŊŅŅ
аĐģĐŗĐžŅиŅĐŧОв Đ´ĐģŅ ŅаŅĐēŅŅŅĐ¸Ņ ĐˇĐŊаŅиĐŧОК иĐŊŅĐžŅĐŧаŅии и ĐŋОиŅĐēа ŅĐēŅŅŅŅŅ
СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅĐĩĐš иС вОŅĐŋŅиĐŊиĐŧаĐĩĐŧŅŅ
даĐŊĐŊŅŅ
Đ´ĐģŅ ĐŋОдŅвĐĩŅĐļĐ´ĐĩĐŊĐ¸Ņ ŅаŅиОĐŊаĐģŅĐŊĐžĐŗĐž ĐŋŅĐžŅĐĩŅŅа ĐŋŅиĐŊŅŅĐ¸Ņ ŅĐĩŅĐĩĐŊиК**.
-
----
-## AI, ML, ĐŗĐģŅйОĐēĐžĐĩ ОйŅŅĐĩĐŊиĐĩ
-
-
-
-> ĐĐ¸Đ°ĐŗŅаĐŧĐŧа, ĐŋĐžĐēаСŅваŅŅĐ°Ņ Đ˛ĐˇĐ°Đ¸ĐŧĐžŅвŅĐˇŅ ĐŧĐĩĐļĐ´Ņ ĐĐ, ĐŧаŅиĐŊĐŊŅĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ, ĐŗĐģŅйОĐēиĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ и ĐŊаŅĐēОК Đž даĐŊĐŊŅŅ
. ĐĐŊŅĐžĐŗŅаŅиĐēа [Jen Looper](https://twitter.com/jenlooper), вдОŅ
ĐŊОвĐģĐĩĐŊĐŊĐ°Ņ [ŅŅиĐŧ ŅиŅŅĐŊĐēĐžĐŧ](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
----
-## ĐĐžĐŊŅĐĩĐŋŅии, ĐēĐžŅĐžŅŅĐĩ ĐžŅ
ваŅŅваĐĩŅ ŅŅĐžŅ ĐēŅŅŅ
-
-Đ ŅŅОК ŅŅĐĩĐąĐŊОК ĐŋŅĐžĐŗŅаĐŧĐŧĐĩ ĐŧŅ ŅОйиŅаĐĩĐŧŅŅ ĐžŅ
ваŅиŅŅ ŅĐžĐģŅĐēĐž ĐžŅĐŊОвĐŊŅĐĩ ĐēĐžĐŊŅĐĩĐŋŅии ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ, ĐēĐžŅĐžŅŅĐĩ Đ´ĐžĐģĐļĐĩĐŊ СĐŊаŅŅ ĐŊОвиŅĐžĐē. ĐŅ ŅаŅŅĐŧаŅŅиваĐĩĐŧ ŅĐž, ŅŅĐž ĐŧŅ ĐŊаСŅваĐĩĐŧ ÂĢĐēĐģаŅŅиŅĐĩŅĐēиĐŧ ĐŧаŅиĐŊĐŊŅĐŧ ОйŅŅĐĩĐŊиĐĩĐŧÂģ, в ĐŋĐĩŅвŅŅ ĐžŅĐĩŅĐĩĐ´Ņ Ņ Đ¸ŅĐŋĐžĐģŅСОваĐŊиĐĩĐŧ Scikit-learn, ĐžŅĐģиŅĐŊОК йийĐģиОŅĐĩĐēи, ĐēĐžŅĐžŅŅŅ ĐŧĐŊĐžĐŗĐ¸Đĩ ŅŅŅĐ´ĐĩĐŊŅŅ Đ¸ŅĐŋĐžĐģŅСŅŅŅ Đ´ĐģŅ Đ¸ĐˇŅŅĐĩĐŊĐ¸Ņ ĐžŅĐŊОв. ЧŅĐžĐąŅ ĐŋĐžĐŊŅŅŅ ĐąĐžĐģĐĩĐĩ ŅиŅĐžĐēиĐĩ ĐēĐžĐŊŅĐĩĐŋŅии иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа иĐģи ĐŗĐģŅйОĐēĐžĐŗĐž ОйŅŅĐĩĐŊиŅ, ĐŊĐĩОйŅ
ОдиĐŧŅ ŅиĐģŅĐŊŅĐĩ ŅŅĐŊдаĐŧĐĩĐŊŅаĐģŅĐŊŅĐĩ СĐŊаĐŊĐ¸Ņ Đž ĐŧаŅиĐŊĐŊĐžĐŧ ОйŅŅĐĩĐŊии, и ĐŋĐžŅŅĐžĐŧŅ ĐŧŅ Ņ
ĐžŅĐĩĐģи ĐąŅ ĐŋŅĐĩĐ´ĐģĐžĐļиŅŅ Đ¸Ņ
СдĐĩŅŅ.
-
----
-## Đ ŅŅĐžĐŧ ĐēŅŅŅĐĩ Đ˛Ņ ŅСĐŊаĐĩŅĐĩ:
-
-- ĐžŅĐŊОвĐŊŅĐĩ ĐēĐžĐŊŅĐĩĐŋŅии ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-- иŅŅĐžŅĐ¸Ņ ML
-- ML и ŅавĐŊОдОŅŅŅĐŋĐŊĐžŅŅŅ
-- ĐŧĐĩŅĐžĐ´Ņ ŅĐĩĐŗŅĐĩŅŅиОĐŊĐŊĐžĐŗĐž ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-- ĐēĐģаŅŅиŅиĐēаŅĐ¸Ņ ĐŧĐĩŅОдОв ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-- ĐŧĐĩŅĐžĐ´Ņ ĐēĐģаŅŅĐĩŅиСаŅии ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-- ĐŧĐĩŅĐžĐ´Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ ĐžĐąŅайОŅĐēи ĐĩŅŅĐĩŅŅвĐĩĐŊĐŊĐžĐŗĐž ŅСŅĐēа
-- ĐŧĐĩŅĐžĐ´Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ ĐŋŅĐžĐŗĐŊОСиŅОваĐŊĐ¸Ņ Đ˛ŅĐĩĐŧĐĩĐŊĐŊŅŅ
ŅŅдОв
-- ОйŅŅĐĩĐŊиĐĩ Ņ ĐŋОдĐēŅĐĩĐŋĐģĐĩĐŊиĐĩĐŧ
-- ŅĐĩаĐģŅĐŊŅĐĩ ĐŋŅиĐģĐžĐļĐĩĐŊĐ¸Ņ Đ´ĐģŅ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-
----
-## ЧŅĐž ĐŧŅ ĐŊĐĩ ĐąŅĐ´ĐĩĐŧ ŅаŅŅĐēаСŅваŅŅ
-
-- ĐŗĐģŅйОĐēĐžĐĩ ОйŅŅĐĩĐŊиĐĩ
-- ĐŊĐĩĐšŅĐžĐŊĐŊŅĐĩ ŅĐĩŅи
-- AI
-
-ЧŅĐžĐąŅ ŅĐģŅŅŅиŅŅ ĐŋŅĐžŅĐĩŅŅ Đ¸ĐˇŅŅĐĩĐŊиŅ, ĐŧŅ ĐąŅĐ´ĐĩĐŧ иСйĐĩĐŗĐ°ŅŅ ŅĐģĐžĐļĐŊĐžŅŅĐĩĐš ĐŊĐĩĐšŅĐžĐŊĐŊŅŅ
ŅĐĩŅĐĩĐš, ÂĢĐŗĐģŅйОĐēĐžĐŗĐž ОйŅŅĐĩĐŊиŅÂģ - ĐŧĐŊĐžĐŗĐžŅŅОвĐŊĐĩĐ˛ĐžĐŗĐž ĐŋĐžŅŅŅĐžĐĩĐŊĐ¸Ņ ĐŧОдĐĩĐģĐĩĐš Ņ Đ¸ŅĐŋĐžĐģŅСОваĐŊиĐĩĐŧ ĐŊĐĩĐšŅĐžĐŊĐŊŅŅ
ŅĐĩŅĐĩĐš - и иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа, ĐēĐžŅĐžŅŅĐĩ ĐŧŅ ĐžĐąŅŅдиĐŧ в Đ´ŅŅĐŗĐžĐš ŅŅĐĩĐąĐŊОК ĐŋŅĐžĐŗŅаĐŧĐŧĐĩ. ĐŅ ŅаĐēĐļĐĩ ĐŋŅĐĩĐ´ŅŅавиĐŧ ŅŅĐĩĐąĐŊŅŅ ĐŋŅĐžĐŗŅаĐŧĐŧŅ ĐŋĐž ĐŊаŅĐēĐĩ Đž даĐŊĐŊŅŅ
, ŅŅĐžĐąŅ ŅĐžŅŅĐĩĐ´ĐžŅĐžŅиŅŅŅŅ ĐŊа ŅŅĐžĐŧ аŅĐŋĐĩĐēŅĐĩ ŅŅОК йОĐģĐĩĐĩ ŅиŅĐžĐēОК ОйĐģаŅŅи.
-
----
-## ĐаŅĐĩĐŧ иСŅŅаŅŅ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ?
-
-ĐаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ Ņ ŅиŅŅĐĩĐŧĐŊОК ŅĐžŅĐēи СŅĐĩĐŊĐ¸Ņ ĐžĐŋŅĐĩĐ´ĐĩĐģŅĐĩŅŅŅ ĐēаĐē ŅОСдаĐŊиĐĩ авŅĐžĐŧаŅиСиŅОваĐŊĐŊŅŅ
ŅиŅŅĐĩĐŧ, ĐēĐžŅĐžŅŅĐĩ ĐŧĐžĐŗŅŅ Đ¸ĐˇŅŅаŅŅ ŅĐēŅŅŅŅĐĩ СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅи иС даĐŊĐŊŅŅ
, ŅŅĐžĐąŅ ĐŋĐžĐŧĐžŅŅ Đ˛ ĐŋŅиĐŊŅŅии ŅаСŅĐŧĐŊŅŅ
ŅĐĩŅĐĩĐŊиК.
-
-ĐŅа ĐŧĐžŅиваŅĐ¸Ņ Đ˛Đž ĐŧĐŊĐžĐŗĐžĐŧ ĐžŅĐŊОваĐŊа ĐŊа ŅĐžĐŧ, ĐēаĐē ŅĐĩĐģОвĐĩŅĐĩŅĐēиК ĐŧĐžĐˇĐŗ ŅŅиŅŅŅ ĐžĐŋŅĐĩĐ´ĐĩĐģĐĩĐŊĐŊŅĐŧ вĐĩŅаĐŧ ĐŊа ĐžŅĐŊОвĐĩ даĐŊĐŊŅŅ
, ĐēĐžŅĐžŅŅĐĩ ĐžĐŊ вОŅĐŋŅиĐŊиĐŧаĐĩŅ Đ¸Đˇ вĐŊĐĩŅĐŊĐĩĐŗĐž ĐŧиŅа.
-
-â
ĐадŅĐŧаКŅĐĩŅŅ ĐŊа ĐŧиĐŊŅŅĐēŅ, ĐŋĐžŅĐĩĐŧŅ ĐēĐžĐŧĐŋаĐŊĐ¸Ņ ĐŧĐžĐļĐĩŅ ĐŋĐžĐŋŅŅаŅŅŅŅ Đ¸ŅĐŋĐžĐģŅСОваŅŅ ŅŅŅаŅĐĩĐŗĐ¸Đ¸ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ˛ĐŧĐĩŅŅĐž ŅОСдаĐŊĐ¸Ņ ĐļĐĩŅŅĐēĐž СаĐŋŅĐžĐŗŅаĐŧĐŧиŅОваĐŊĐŊĐžĐŗĐž ĐŧĐĩŅ
аĐŊиСĐŧа ĐŊа ĐžŅĐŊОвĐĩ ĐŋŅавиĐģ.
-
----
-## ĐŅиĐģĐžĐļĐĩĐŊĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-
-ĐŅиĐģĐžĐļĐĩĐŊĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ ŅĐĩĐšŅĐ°Ņ ĐĩŅŅŅ ĐŋĐžŅŅи ĐŋОвŅŅĐ´Ņ, и ĐžĐŊи ŅŅĐžĐģŅ ĐļĐĩ ĐŋОвŅĐĩĐŧĐĩŅŅĐŊŅ, ĐēаĐē и даĐŊĐŊŅĐĩ, ĐēĐžŅĐžŅŅĐĩ ĐŋŅиŅŅŅŅŅвŅŅŅиĐĩ в ĐŊаŅĐĩĐŧ ОйŅĐĩŅŅвĐĩ, ĐŗĐĩĐŊĐĩŅиŅŅĐĩĐŧŅĐĩ ĐŊаŅиĐŧи ŅĐŧаŅŅŅĐžĐŊаĐŧи, ĐŋОдĐēĐģŅŅĐĩĐŊĐŊŅĐŧи Đē ŅĐĩŅи ŅŅŅŅОКŅŅваĐŧи и Đ´ŅŅĐŗĐ¸Đŧи ŅиŅŅĐĩĐŧаĐŧи. ĐŖŅиŅŅĐ˛Đ°Ņ ĐžĐŗŅĐžĐŧĐŊŅĐš ĐŋĐžŅĐĩĐŊŅиаĐģ ŅОвŅĐĩĐŧĐĩĐŊĐŊŅŅ
аĐģĐŗĐžŅиŅĐŧОв ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ, иŅŅĐģĐĩдОваŅĐĩĐģи иСŅŅаĐģи иŅ
ŅĐŋĐžŅОйĐŊĐžŅŅŅ ŅĐĩŅаŅŅ ĐŧĐŊĐžĐŗĐžĐŧĐĩŅĐŊŅĐĩ и ĐŧĐĩĐļдиŅŅиĐŋĐģиĐŊаŅĐŊŅĐĩ ĐŋŅОйĐģĐĩĐŧŅ ŅĐĩаĐģŅĐŊОК ĐļиСĐŊи Ņ ĐžŅĐģиŅĐŊŅĐŧи ĐŋĐžĐģĐžĐļиŅĐĩĐģŅĐŊŅĐŧи ŅĐĩСŅĐģŅŅаŅаĐŧи.
-
----
-## ĐŅиĐŧĐĩŅŅ ĐŋŅиĐŧĐĩĐŊŅĐĩĐŧĐžĐŗĐž ML
-
-**ĐаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ ĐŧĐžĐļĐŊĐž иŅĐŋĐžĐģŅСОваŅŅ ŅаСĐŊŅĐŧи ŅĐŋĐžŅОйаĐŧи**:
-
-- ĐŅĐĩĐ´ŅĐēаСаŅŅ Đ˛ĐĩŅĐžŅŅĐŊĐžŅŅŅ ĐˇĐ°ĐąĐžĐģĐĩваĐŊĐ¸Ņ ĐŊа ĐžŅĐŊОваĐŊии иŅŅĐžŅии йОĐģĐĩСĐŊи ĐŋаŅиĐĩĐŊŅа иĐģи ĐžŅŅĐĩŅОв.
-- ĐŅĐŋĐžĐģŅСОваĐŊиĐĩ даĐŊĐŊŅŅ
Đž ĐŋĐžĐŗĐžĐ´Đĩ Đ´ĐģŅ ĐŋŅĐžĐŗĐŊОСиŅОваĐŊĐ¸Ņ ĐŋĐžĐŗĐžĐ´ĐŊŅŅ
ŅвĐģĐĩĐŊиК.
-- ЧŅĐžĐąŅ ĐŋĐžĐŊŅŅŅ ŅĐžĐŊаĐģŅĐŊĐžŅŅŅ ŅĐĩĐēŅŅа.
-- ĐĐģŅ ĐžĐąĐŊаŅŅĐļĐĩĐŊĐ¸Ņ ŅĐĩĐšĐēОвŅŅ
ĐŊОвОŅŅĐĩĐš, ŅŅĐžĐąŅ ĐžŅŅаĐŊОвиŅŅ ŅаŅĐŋŅĐžŅŅŅаĐŊĐĩĐŊиĐĩ ĐŋŅĐžĐŋĐ°ĐŗĐ°ĐŊĐ´Ņ.
-
-ФиĐŊаĐŊŅŅ, ŅĐēĐžĐŊĐžĐŧиĐēа, ĐŊаŅĐēи Đž ĐĐĩĐŧĐģĐĩ, ĐžŅвОĐĩĐŊиĐĩ ĐēĐžŅĐŧĐžŅа, йиОĐŧĐĩдиŅиĐŊŅĐēĐ°Ņ Đ¸ĐŊĐļĐĩĐŊĐĩŅиŅ, ĐēĐžĐŗĐŊиŅивиŅŅиĐēа и даĐļĐĩ ОйĐģаŅŅи ĐŗŅĐŧаĐŊиŅаŅĐŊŅŅ
ĐŊаŅĐē адаĐŋŅиŅОваĐģи ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ Đ´ĐģŅ ŅĐĩŅĐĩĐŊĐ¸Ņ ŅĐģĐžĐļĐŊŅŅ
ĐˇĐ°Đ´Đ°Ņ ĐžĐąŅайОŅĐēи даĐŊĐŊŅŅ
в ŅвОĐĩĐš ОйĐģаŅŅи.
-
----
-## ĐаĐēĐģŅŅĐĩĐŊиĐĩ
-
-ĐаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ авŅĐžĐŧаŅиСиŅŅĐĩŅ ĐŋŅĐžŅĐĩŅŅ ĐžĐąĐŊаŅŅĐļĐĩĐŊĐ¸Ņ ŅайĐģĐžĐŊОв, ĐŊаŅ
ĐžĐ´Ņ Đ˛Đ°ĐļĐŊŅĐĩ СаĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅи иС ŅĐĩаĐģŅĐŊŅŅ
иĐģи ŅĐŗĐĩĐŊĐĩŅиŅОваĐŊĐŊŅŅ
даĐŊĐŊŅŅ
. ĐĐŊĐž СаŅĐĩĐēĐžĐŧĐĩĐŊдОваĐģĐž ŅĐĩĐąŅ, ŅŅĐĩди ĐŋŅĐžŅĐĩĐŗĐž, ĐēаĐē ĐžŅĐĩĐŊŅ ŅĐĩĐŊĐŊŅĐš иĐŊŅŅŅŅĐŧĐĩĐŊŅ Đ´ĐģŅ ĐąĐ¸ĐˇĐŊĐĩŅа, СдŅавООŅ
ŅаĐŊĐĩĐŊĐ¸Ņ Đ¸ ŅиĐŊаĐŊŅОв.
-
-Đ ĐąĐģиĐļаКŅĐĩĐŧ ĐąŅĐ´ŅŅĐĩĐŧ ĐŋĐžĐŊиĐŧаĐŊиĐĩ ĐžŅĐŊОв ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ ŅŅаĐŊĐĩŅ ĐžĐąŅСаŅĐĩĐģŅĐŊŅĐŧ Đ´ĐģŅ ĐģŅĐ´ĐĩĐš иС ĐģŅйОК ОйĐģаŅŅи иС-Са ĐĩĐŗĐž ŅиŅĐžĐēĐžĐŗĐž ŅаŅĐŋŅĐžŅŅŅаĐŊĐĩĐŊиŅ.
-
----
-# đ ĐŅСОв
-
-ĐайŅĐžŅаКŅĐĩ ĐŊа ĐąŅĐŧĐ°ĐŗĐĩ иĐģи Ņ ĐŋĐžĐŧĐžŅŅŅ ĐžĐŊĐģаКĐŊ-ĐŋŅиĐģĐžĐļĐĩĐŊиŅ, ŅаĐēĐžĐŗĐž ĐēаĐē [Excalidraw](https://excalidraw.com/), ваŅĐĩ ĐŋĐžĐŊиĐŧаĐŊиĐĩ ŅаСĐģиŅиК ĐŧĐĩĐļĐ´Ņ AI, ML, ĐŗĐģŅйОĐēиĐŧ ОйŅŅĐĩĐŊиĐĩĐŧ и ĐŊаŅĐēОК Đž даĐŊĐŊŅŅ
. ĐОйавŅŅĐĩ ĐŊĐĩŅĐēĐžĐģŅĐēĐž идĐĩĐš Đž ĐŋŅОйĐģĐĩĐŧаŅ
, ĐēĐžŅĐžŅŅĐĩ ĐŧĐžĐļĐĩŅ ŅĐĩŅиŅŅ ĐēаĐļĐ´ŅĐš иС ŅŅиŅ
ĐŧĐĩŅОдОв.
-
-# [ĐĸĐĩŅŅ ĐŋĐžŅĐģĐĩ ĐģĐĩĐēŅии](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
----
-# ĐĐąĐˇĐžŅ Đ¸ ŅаĐŧООйŅŅĐĩĐŊиĐĩ
-
-ЧŅĐžĐąŅ ŅСĐŊаŅŅ ĐąĐžĐģŅŅĐĩ Đž ŅĐžĐŧ, ĐēаĐē Đ˛Ņ ĐŧĐžĐļĐĩŅĐĩ ŅайОŅаŅŅ Ņ Đ°ĐģĐŗĐžŅиŅĐŧаĐŧи ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ˛ ОйĐģаĐēĐĩ, ŅĐģĐĩĐ´ŅĐšŅĐĩ ĐēŅŅŅŅ [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
-
-ĐŅОКдиŅĐĩ ĐēŅŅŅ [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) ĐŋĐž ĐžŅĐŊОваĐŧ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ.
-
----
-# ĐадаĐŊиĐĩ
-
-[ĐĐžĐ´ĐŗĐžŅОвŅŅĐĩ ŅŅĐĩĐ´Ņ ŅаСŅайОŅĐēи](assignment.ru.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.tr.md b/1-Introduction/1-intro-to-ML/translations/README.tr.md
deleted file mode 100644
index 79744c52..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.tr.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# Makine ÃÄrenimine GiriÅ
-
-[](https://youtu.be/lTd9RSxS9ZE "ML, AI, Derin ÃļÄrenme - FarklarÄą nelerdir?")
-
-> đĨ Makine ÃļÄrenimi, yapay zeka ve derin ÃļÄrenme arasÄąndaki farkÄą tartÄąÅan bir video için yukarÄądaki resme tÄąklayÄąn.
-
-## [Ders Ãļncesi sÄąnav](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1?loc=tr)
-
-### Introduction
-
-Yeni baÅlayanlar için klasik makine ÃļÄrenimi Ãŧzerine olan bu kursa hoÅ geldiniz! İster bu konuda tamamen yeni olun, ister belli bir alandaki bilgilerini tazelemek isteyen deneyimli bir makine ÃļÄrenimi uygulayÄącÄąsÄą olun, aramÄąza katÄąlmanÄązdan mutluluk duyarÄąz! Makine ÃļÄrenimi çalÄąÅmanÄąz için samimi bir baÅlangÄąÃ§ âânoktasÄą oluÅturmak istiyoruz ve [geri bildiriminizi](https://github.com/microsoft/ML-For-Beginners/discussions) deÄerlendirmekten, yanÄątlamaktan ve hayata geçirmekten memnuniyet duyarÄąz.
-
-[](https://youtu.be/h0e2HAPTGF4 "Makine ÃÄrenimine GiriÅ")
-
-> đĨ Video için yukarÄądaki resme tÄąklayÄąn: MIT'den John Guttag, makine ÃļÄrenimini tanÄątÄąyor
-### Makine ÃÄrenimine BaÅlamak
-
-Bu mÃŧfredata baÅlamadan Ãļnce, bilgisayarÄąnÄązÄąn yerel olarak (Jupyter) not defterlerini çalÄąÅtÄąrmak için hazÄąr olmasÄą gerekir.
-
-- **Makinenizi bu videolar rehberliÄinde yapÄąlandÄąrÄąn**. Bu [video setinde](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6) makinenizi nasÄąl kuracaÄÄąnÄąz hakkÄąnda daha fazla bilgi edinin.
-- **Python ÃļÄrenin**. AyrÄąca, veri bilimciler için faydalÄą bir programlama dili olan ve bu derslerde kullandÄąÄÄąmÄąz [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) programlama dili hakkÄąnda temel bilgilere sahip olmanÄąz da Ãļnerilir.
-- **Node.js ve JavaScript'i ÃļÄrenin**. Web uygulamalarÄą oluÅtururken de bu kursta JavaScript'i birkaç kez kullanÄąyoruz, bu nedenle [node](https://nodejs.org), [npm](https://www.npmjs.com/) ve ayrÄąca hem Python hem de JavaScript geliÅtirme için kullanÄąlabilen [Visual Studio Code](https://code.visualstudio.com/) yÃŧklÃŧ olmalÄądÄąr.
-- **GitHub hesabÄą oluÅturun**. Bizi burada [GitHub](https://github.com) Ãŧzerinde bulduÄunuza gÃļre, zaten bir hesabÄąnÄąz olabilir, ancak mevcut deÄilse, bir tane hesap oluÅturun ve ardÄąndan bu mÃŧfredatÄą kendi baÅÄąnÄąza kullanmak için çatallayÄąn (fork). (Bize de yÄąldÄąz vermekten çekinmeyin đ)
-- **Scikit-learn'Ãŧ keÅfedin**. Bu derslerde referans verdiÄimiz, bir dizi ML kÃŧtÃŧphanesinden oluÅan [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) hakkÄąnda bilgi edinin.
-
-### Makine ÃļÄrenimi nedir?
-
-'Makine ÃļÄrenimi' terimi, gÃŧnÃŧmÃŧzÃŧn en popÃŧler ve sÄąk kullanÄąlan terimlerinden biridir. Hangi alanda çalÄąÅÄąrsanÄąz çalÄąÅÄąn, teknolojiyle ilgili bir tÃŧr aÅinalÄąÄÄąnÄąz varsa, bu terimi en az bir kez duymuÅ olma ihtimaliniz yÃŧksektir. Bununla birlikte, makine ÃļÄreniminin mekanikleri, yani çalÄąÅma prensipleri, çoÄu insan için bir gizemdir. Makine ÃļÄrenimine yeni baÅlayan biri için konu bazen bunaltÄącÄą gelebilir. Bu nedenle, makine ÃļÄreniminin gerçekte ne olduÄunu anlamak ve pratik Ãļrnekler Ãŧzerinden adÄąm adÄąm ÃļÄrenmek Ãļnemlidir.
-
-
-
-> Google Trendler, 'makine ÃļÄrenimi' teriminin son 'heyecan eÄrisini' gÃļsteriyor
-
-BÃŧyÃŧleyici gizemlerle dolu bir evrende yaÅÄąyoruz. Stephen Hawking, Albert Einstein ve daha pek çoÄu gibi bÃŧyÃŧk bilim adamlarÄą, hayatlarÄąnÄą çevremizdeki dÃŧnyanÄąn gizemlerini ortaya Ã§Äąkaran anlamlÄą bilgiler aramaya adadÄąlar. ÃÄrenmenin insani yÃļnÃŧ de budur: insan evladÄą yeni Åeyler ÃļÄrenir ve yetiÅkinliÄe doÄru bÃŧyÃŧdÃŧkçe her yÄąl kendi dÃŧnyasÄąnÄąn yapÄąsÄąnÄą ortaya Ã§ÄąkarÄąr.
-
-Bir çocuÄun beyni ve duyularÄą, çevrelerindeki gerçekleri algÄąlar ve çocuÄun, ÃļÄrenilen kalÄąplarÄą tanÄąmlamak için mantÄąksal kurallar oluÅturmasÄąna yardÄąmcÄą olan gizli yaÅam kalÄąplarÄąnÄą yavaÅ yavaÅ ÃļÄrenir. İnsan beyninin ÃļÄrenme sÃŧreci, insanÄą bu dÃŧnyanÄąn en geliÅmiÅ canlÄąsÄą yapar. Gizli kalÄąplarÄą keÅfederek sÃŧrekli ÃļÄrenmek ve sonra bu kalÄąplar Ãŧzerinde yenilik yapmak, yaÅamÄąmÄąz boyunca kendimizi giderek daha iyi hale getirmemizi saÄlar. Bu ÃļÄrenme kapasitesi ve geliÅen kabiliyet, [beyin plastisitesi](https://www.simplypsychology.org/brain-plasticity.html) adÄą verilen bir kavramla ilgilidir. YÃŧzeysel olarak, insan beyninin ÃļÄrenme sÃŧreci ile makine ÃļÄrenimi kavramlarÄą arasÄąnda bazÄą motivasyonel benzerlikler çizebiliriz.
-
-[İnsan beyni](https://www.livescience.com/29365-human-brain.html) gerçek dÃŧnyadaki Åeyleri algÄąlar, algÄąlanan bilgileri iÅler, mantÄąksal kararlar verir ve koÅullara gÃļre belirli eylemler gerçekleÅtirir. AkÄąllÄąca davranmak dediÄimiz Åey buydu iÅte. Bir makineye akÄąllÄą davranÄąÅ sÃŧrecinin bir kopyasÄąnÄą programladÄąÄÄąmÄązda buna yapay zeka (İngilizce haliyle artificial intelligence, kÄąsaca **AI**) denir.
-
-Terimler karÄąÅtÄąrÄąlabilse de, makine ÃļÄrenimi (İngilizce haliyle machine learning, kÄąsaca **ML**), yapay zekanÄąn Ãļnemli bir alt kÃŧmesidir. **ML, mantÄąklÄą karar verme sÃŧrecini desteklemek için anlamlÄą bilgileri ortaya Ã§Äąkarmak ve algÄąlanan verilerden gizli kalÄąplarÄą bulmak için Ãļzel algoritmalar kullanmakla ilgilenir**.
-
-
-
-> Yapay zeka, makine ÃļÄrenimi, derin ÃļÄrenme ve veri bilimi arasÄąndaki iliÅkileri gÃļsteren bir diyagram. Bu infografik, [Åu grafikten](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-) ilham alan [Jen Looper](https://twitter.com/jenlooper) tarafÄąndan hazÄąrlanmÄąÅtÄąr.
-
-> AI (Artificial Intelligence): Yapay zekÃĸ
-> ML(Machine Learning): Makine ÃļÄrenimi
-> Deep Learning: Derin ÃÄrenme
-> Data Science: Veri bilimi
-
-## Bu kursta neler ÃļÄreneceksiniz
-
-Bu mÃŧfredatta, yalnÄązca yeni baÅlayanlarÄąn bilmesi gereken makine ÃļÄreniminin temel kavramlarÄąnÄą ele alacaÄÄąz. 'Klasik makine ÃļÄrenimi' dediÄimiz Åeyi, Ãļncelikle birçok ÃļÄrencinin temel bilgileri ÃļÄrenmek için kullandÄąÄÄą mÃŧkemmel bir kÃŧtÃŧphane olan Scikit-learn'Ãŧ kullanarak ele alÄąyoruz. Daha geniÅ yapay zeka veya derin ÃļÄrenme kavramlarÄąnÄą anlamak için, gÃŧçlÃŧ bir temel makine ÃļÄrenimi bilgisi vazgeçilmezdir ve bu yÃŧzden onu burada sunmak istiyoruz.
-
-Bu kursta ÅunlarÄą ÃļÄreneceksiniz:
-
-- makine ÃļÄreniminin temel kavramlarÄą
-- ML'nin tarihi
-- ML ve adillik
-- regresyon ML teknikleri
-- sÄąnÄąflandÄąrma ML teknikleri
-- kÃŧmeleme ML teknikleri
-- doÄal dil iÅleme ML teknikleri
-- zaman serisi tahmini ML teknikleri
-- pekiÅtirmeli ÃļÄrenme
-- ML için gerçek-dÃŧnya uygulamalarÄą
-
-## Neyi kapsamayacaÄÄąz
-
-- derin ÃļÄrenme
-- sinir aÄlarÄą
-- yapay zeka
-
-Daha iyi bir ÃļÄrenme deneyimi saÄlamak için, farklÄą bir mÃŧfredatta tartÄąÅacaÄÄąmÄąz sinir aÄlarÄą, 'derin ÃļÄrenme' (sinir aÄlarÄąnÄą kullanarak çok katmanlÄą modeller oluÅturma) ve yapay zekÃĸnÄąn karmaÅÄąklÄąklarÄąndan kaÃ§ÄąnacaÄÄąz. AyrÄąca, bu daha geniÅ alanÄąn bu yÃļnÃŧne odaklanmak için yakÄąnda Ã§Äąkacak bir veri bilimi mÃŧfredatÄą sunacaÄÄąz.
-
-## Neden makine ÃļÄrenimi Ãŧzerinde çalÄąÅmalÄąsÄąnÄąz?
-
-Sistemler perspektifinden makine ÃļÄrenimi, akÄąllÄą kararlar almaya yardÄąmcÄą olmak için verilerden gizli kalÄąplarÄą ÃļÄrenebilen otomatik sistemlerin oluÅturulmasÄą olarak tanÄąmlanÄąr.
-
-Bu motivasyon, insan beyninin dÄąÅ dÃŧnyadan algÄąladÄąÄÄą verilere dayanarak belirli Åeyleri nasÄąl ÃļÄrendiÄinden bir miktar esinlenmiÅtir.
-
-â
Bir iÅletmenin, sabit kurallara dayalÄą bir karar aracÄą oluÅturmak yerine neden makine ÃļÄrenimi stratejilerini kullanmayÄą denemek isteyebileceklerini bir an için dÃŧÅÃŧnÃŧn.
-
-### Makine ÃļÄrenimi uygulamalarÄą
-
-Makine ÃļÄrenimi uygulamalarÄą artÄąk neredeyse her yerde ve akÄąllÄą telefonlarÄąmÄąz, internete baÄlÄą cihazlarÄąmÄąz ve diÄer sistemlerimiz tarafÄąndan Ãŧretilen, toplumlarÄąmÄązda akan veriler kadar yaygÄąn hale gelmiÅ durumda. Son teknoloji makine ÃļÄrenimi algoritmalarÄąnÄąn muazzam potansiyelini gÃļz ÃļnÃŧnde bulunduran araÅtÄąrmacÄąlar, bu algoritmalarÄąn çok boyutlu ve çok disiplinli gerçek hayat problemlerini çÃļzme yeteneklerini araÅtÄąrÄąyorlar ve oldukça olumlu sonuçlar alÄąyorlar.
-
-**Makine ÃļÄrenimini birçok Åekilde kullanabilirsiniz**:
-
-- Bir hastanÄąn tÄąbbi geçmiÅinden veya raporlarÄąndan hastalÄąk olasÄąlÄąÄÄąnÄą tahmin etmek
-- Hava olaylarÄąnÄą tahmin etmek için hava durumu verilerini kullanmak
-- Bir metnin duygu durumunu anlamak
-- PropagandanÄąn yayÄąlmasÄąnÄą durdurmak için sahte haberleri tespit etmek
-
-Finans, ekonomi, yer bilimi, uzay araÅtÄąrmalarÄą, biyomedikal mÃŧhendislik, biliÅsel bilim ve hatta beÅeri bilimlerdeki alanlar, kendi alanlarÄąnÄąn zorlu ve aÄÄąr veri iÅleme sorunlarÄąnÄą çÃļzmek için makine ÃļÄrenimini tekniklerini kullanmaya baÅladÄąlar.
-
-Makine ÃļÄrenimi, gerçek dÃŧnyadan veya oluÅturulan verilerden anlamlÄą içgÃļrÃŧler bularak ÃļrÃŧntÃŧ bulma sÃŧrecini otomatikleÅtirir. DiÄerlerinin yanÄą sÄąra iÅ, saÄlÄąk ve finansal uygulamalarda son derece deÄerli olduÄunu kanÄątlamÄąÅtÄąr.
-
-YakÄąn gelecekte, yaygÄąn olarak benimsenmesi nedeniyle makine ÃļÄreniminin temellerini anlamak, tÃŧm alanlardan insanlar için bir zorunluluk olacak.
-
----
-## đ Meydan Okuma
-
-KaÄÄąt Ãŧzerinde veya [Excalidraw](https://excalidraw.com/) gibi çevrimiçi bir uygulama kullanarak AI, makine ÃļÄrenimi, derin ÃļÄrenme ve veri bilimi arasÄąndaki farklarÄą anladÄąÄÄąnÄązdan emin olun. Bu tekniklerin her birinin çÃļzmede iyi olduÄu bazÄą problem fikirleri ekleyin.
-
-## [Ders sonrasÄą test](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2?loc=tr)
-
-## İnceleme ve Bireysel ÃalÄąÅma
-
-Bulutta makine ÃļÄrenimi algoritmalarÄąyla nasÄąl çalÄąÅabileceÄiniz hakkÄąnda daha fazla bilgi edinmek için bu [EÄitim PatikasÄąnÄą](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) izleyin.
-
-## Ãdev
-
-[Haydi baÅlayalÄąm!](assignment.tr.md)
\ No newline at end of file
diff --git a/1-Introduction/1-intro-to-ML/translations/README.zh-cn.md b/1-Introduction/1-intro-to-ML/translations/README.zh-cn.md
deleted file mode 100644
index e919ff02..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.zh-cn.md
+++ /dev/null
@@ -1,107 +0,0 @@
-# æēå¨åĻäš äģįģ
-
-[](https://youtu.be/lTd9RSxS9ZE "æēå¨åĻäš īŧäēēåˇĨæēčŊīŧæˇąåēĻåĻäš -æäģäšåēåĢ?")
-
-> đĨ įšåģä¸éĸįåžįč§į莨čŽēæēå¨åĻäš ãäēēåˇĨæēčŊ忎ąåēĻåĻäš äšé´åēåĢįč§éĸã
-
-## [č¯žåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
-### äģįģ
-
-æŦĸčŋæĨå°čŋä¸Ēįģå
¸æēå¨åĻäš įååĻč
č¯žį¨īŧæ čŽēäŊ æ¯čŋä¸Ēä¸ģéĸįæ°æīŧčŋæ¯ä¸ä¸ĒæįģéĒį ML äģä¸č
īŧæäģŦéŊåžéĢå
´äŊ čŊå å
ĨæäģŦīŧæäģŦ叿ä¸ēäŊ į ML į įŠļååģēä¸ä¸ĒåĨŊįåŧå§īŧåšļåžäšæč¯äŧ°ãååēåæĨåäŊ į[åéĻ](https://github.com/microsoft/ML-For-Beginners/discussions)ã
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-> đĨ ååģä¸åžč§įč§éĸīŧéēģįįåˇĨåĻéĸį John Guttag äģįģæēå¨åĻäš
-### æēå¨åĻäš å
Ĩé¨
-
-å¨åŧå§æŦč¯žį¨äšåīŧäŊ éčĻ莞įŊŽčŽĄįŽæēčŊ卿Ŧå°čŋčĄ Jupyter Notebooksã
-
-- **æį
§čŋäēč§éĸéįčŽ˛č§Ŗé
įŊŽäŊ įčŽĄįŽæē**ãäēč§Ŗæå
ŗåĻäŊ卿¤[č§éĸé](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)ä¸čŽžįŊŽčŽĄįŽæēįæ´å¤äŋĄæ¯ã
-- **åĻäš Python**ã čŋåģē莎äŊ 寚 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) æä¸ä¸ĒåēæŦįäēč§Ŗãčŋæ¯æäģŦ卿Ŧč¯žį¨ä¸äŊŋį¨įä¸į§å¯šæ°æŽį§åĻåŽļæį¨įįŧį¨č¯č¨ã
-- **åĻäš Node.js å JavaScript**ã卿Ŧč¯žį¨ä¸īŧæäģŦ卿åģē web åēį¨į¨åēæļäšäŊŋį¨čŋå æŦĄ JavaScriptīŧå æ¤äŊ éčĻæ [Node.js](https://nodejs.org) å [npm](https://www.npmjs.com/) äģĨå [Visual Studio Code](https://code.visualstudio.com/) į¨äē Python å JavaScript åŧåã
-- **ååģē GitHub 叿ˇ**ãæĸįļäŊ å¨ [GitHub](https://github.com) 䏿žå°æäģŦīŧäŊ å¯čŊ厞įģæäēä¸ä¸Ē叿ˇīŧäŊåĻææ˛Ąæīŧ蝎ååģēä¸ä¸Ē叿ˇīŧįļå fork æ¤č¯žį¨čĒåˇąäŊŋį¨(äšįģæäģŦä¸éĸææå§đ)
-- **æĸį´ĸ Scikit-learn**. įæ [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html)īŧæäģŦå¨čŋäēč¯žį¨ä¸åŧį¨įä¸įģ ML åēã
-
-### äģäšæ¯æēå¨åĻäš īŧ
-
-æ¯č¯âæēå¨åĻäš âæ¯åŊäģææĩčĄåæå¸¸į¨įæ¯č¯äšä¸ã åĻæäŊ å¯šį§æææį§į¨åēĻįįæīŧéŖäšåžå¯čŊäŊ čŗå°åŦ蝴čŋčŋä¸Ēæ¯č¯ä¸æŦĄīŧæ čŽēäŊ å¨åĒä¸ĒéĸååˇĨäŊãįļčīŧæēå¨åĻäš įæēåļå¯šå¤§å¤æ°äēēæĨ蝴æ¯ä¸ä¸Ēč°ã 寚äēæēå¨åĻäš ååĻč
æĨ蝴īŧčŋä¸Ēä¸ģéĸææļäŧ莊äēēæå°ä¸įĨææĒã å æ¤īŧäēč§Ŗæēå¨åĻäš įåŽč´¨æ¯äģäšīŧåšļéčŋåŽäžä¸æĨ䏿Ĩå°äēč§Ŗæēå¨åĻäš æ¯åžéčĻįã
-
-
-
-> č°ˇæčļåŋæžį¤ēäēâæēå¨åĻäš âä¸č¯æčŋįâčļåŋæ˛įēŋâ
-
-æäģŦįæ´ģå¨ä¸ä¸Ēå
æģĄčŋˇäēēåĨĨį§įåŽåŽä¸ãåå˛ččŦ¡ééãéŋå°äŧ¯įšÂˇįąå æ¯åĻįäŧ大įį§åĻåŽļīŧäģĨåæ´å¤įäēēīŧéŊč´åäēå¯ģæžææäšįäŋĄæ¯īŧæį¤ēæäģŦå¨å´ä¸įįåĨĨį§ãčŋå°ąæ¯äēēįąģåĻäš įæĄäģļīŧä¸ä¸ĒäēēįąģįåŠåå¨éŋ大æäēēįčŋį¨ä¸īŧä¸åš´åä¸åš´å°åĻäš æ°äēįŠåšļæį¤ēä¸įįįģæã
-
-åŠåį大čåæåŽæįĨå°å¨å´įäēåŽīŧåšļ鿏åĻäš éčįῴ쿍ĄåŧīŧčŋæåŠäēåŠååļåŽéģčžč§åæĨč¯åĢåĻäš æ¨Ąåŧãäēēįąģ大čįåĻäš čŋį¨äŊŋäēēįąģæä¸ēä¸į䏿夿įįįŠã䏿å°åĻäš īŧéčŋåį°éč῍Ąåŧīŧįļå寚čŋä翍ĄåŧčŋčĄåæ°īŧäŊŋæäģŦčŊå¤äŊŋčĒåˇąå¨ä¸įä¸ååžčļæĨčļåĨŊãčŋį§åĻäš čŊååčŋåčŊåä¸ä¸ä¸ĒåĢå[大čå¯åĄæ§](https://www.simplypsychology.org/brain-plasticity.html)įæĻåŋĩæå
ŗãäģ襨éĸä¸įīŧæäģŦå¯äģĨå¨äēēčįåĻäš čŋį¨åæēå¨åĻäš įæĻåŋĩäšé´æžå°ä¸äē卿ēä¸įį¸äŧŧäšå¤ã
-
-[äēēč](https://www.livescience.com/29365-human-brain.html) äģį°åŽä¸į䏿įĨäēįŠīŧå¤įæįĨå°įäŋĄæ¯īŧååēįæ§įåŗåŽīŧåšļæ šæŽį¯åĸæ§čĄæäēčĄå¨ãčŋå°ąæ¯æäģŦæč¯´įæēčŊčĄä¸ēãåŊæäģŦå°æēčŊčĄä¸ēčŋį¨įå¤åļåįŧį¨å°čŽĄįŽæē䏿ļīŧåŽčĸĢį§°ä¸ēäēēåˇĨæēčŊ (AI)ã
-
-å°ŊįŽĄčŋä翝č¯å¯čŊäŧæˇˇæˇīŧäŊæēå¨åĻäš (ML) æ¯äēēåˇĨæēčŊįä¸ä¸ĒéčĻåéã **æēå¨åĻäš å
ŗæŗ¨äŊŋį¨ä¸é¨įįŽæŗæĨåį°ææäšįäŋĄæ¯īŧåšļäģæįĨæ°æŽä¸æžå°éč῍ĄåŧīŧäģĨč¯åŽįæ§įåŗįčŋį¨**ã
-
-
-
-> æžį¤ē AIãMLãæˇąåēĻåĻäš åæ°æŽį§åĻäšé´å
ŗįŗģįåžčĄ¨ãåžįäŊč
[Jen Looper](https://twitter.com/jenlooper)īŧįĩææĨčĒ[čŋåŧ åž](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-
-## äŊ å°å¨æŦč¯žį¨ä¸åĻå°äģäš
-
-卿Ŧč¯žį¨ä¸īŧæäģŦå°äģ
æļĩįååĻč
åŋ
éĄģäēč§Ŗįæēå¨åĻäš įæ ¸åŋæĻåŋĩã æäģŦä¸ģčĻäŊŋ፠Scikit-learn æĨäģįģæäģŦæč°įâįģå
¸æēå¨åĻäš âīŧčŋæ¯ä¸ä¸Ē莸å¤åĻį፿ĨåĻäš åēįĄįĨč¯įäŧį§åēãčĻįč§Ŗæ´åšŋæŗįäēēåˇĨæēčŊææˇąåēĻåĻäš įæĻåŋĩīŧæēå¨åĻäš įåēįĄįĨ蝿¯åŋ
ä¸å¯å°įīŧæäģĨæäģŦæŗå¨čŋéæäžåŽã
-
-卿Ŧč¯žį¨ä¸īŧäŊ å°åĻäš īŧ
-
-- æēå¨åĻäš įæ ¸åŋæĻåŋĩ
-- æēå¨åĻäš įåå˛
-- æēå¨åĻäš åå
Ŧåšŗæ§
-- ååŊ
-- åįąģ
-- čįąģ
-- čĒįļč¯č¨å¤į
-- æļåēéĸæĩ
-- åŧēååĻäš
-- æēå¨åĻäš įåŽé
åēį¨
-## æäģŦä¸äŧæļĩįįå
厚
-
-- æˇąåēĻåĻäš
-- įĨįģįŊįģ
-- AI
-
-ä¸ēäēčˇåžæ´åĨŊįåĻäš äŊéĒīŧæäģŦå°éŋå
įĨįģįŊįģãâæˇąåēĻåĻäš âīŧäŊŋį¨įĨįģįŊįģįå¤å࿍ĄåæåģēīŧåäēēåˇĨæēčŊį夿æ§īŧæäģŦå°å¨ä¸åįč¯žį¨ä¸čލčŽēčŋäēéŽéĸã æäģŦčŋå°æäžåŗå°æ¨åēįæ°æŽį§åĻč¯žį¨īŧäģĨ䏿ŗ¨äēčŋä¸Ēæ´å¤§éĸåįčŋ䏿šéĸã
-## ä¸ēäģäščĻåĻäš æēå¨åĻäš īŧ
-
-äģįŗģįģįč§åēĻæĨįīŧæēå¨åĻäš čĸĢåŽäšä¸ēååģēå¯äģĨäģæ°æŽä¸åĻäš é迍ĄåŧäģĨ帎åŠååēæēčŊåŗįįčĒå¨åįŗģįģã
-
-čŋį§å¨æē大贿¯åäēēčåĻäŊæ šæŽåŽäģå¤é¨ä¸įæįĨå°įæ°æŽæĨåĻäš æäēä¸čĨŋįå¯åã
-
-â
æŗä¸æŗä¸ēäģäšäŧ䏿ŗčĻå°č¯äŊŋ፿ēå¨åĻäš įįĨč䏿¯ååģēåēäēįĄŦįŧį įč§ååŧæã
-
-### æēå¨åĻäš įåēį¨
-
-æēå¨åĻäš įåēį¨į°å¨å äšæ å¤ä¸å¨īŧå°ąåæäģŦįæēčŊææēãäēč莞å¤åå
ļäģįŗģįģäē§įįæ°æŽä¸æ ˇæ å¤ä¸å¨ãččå°æå
čŋįæēå¨åĻäš įŽæŗį厍大æŊåīŧį įŠļäēēåä¸į´å¨æĸį´ĸå
ļč§Ŗåŗå¤įģ´å¤åĻį§į°åŽéŽéĸįčŊåīŧåšļååžäē厍大įį§¯æææã
-
-**äŊ å¯äģĨå¨åžå¤æšéĸäŊŋ፿ēå¨åĻäš **:
-
-- æ šæŽį
äēēįį
垿æĨåæĨéĸæĩæŖį
įå¯čŊæ§ã
-- åŠį¨å¤Šæ°æ°æŽéĸæĩ夊æ°ã
-- įč§ŖææŦįæ
æã
-- æŖæĩåæ°éģäģĨéģæĸå
ļäŧ æã
-
-éčãįģæĩåĻãå°įį§åĻãå¤ĒįŠēæĸį´ĸãįįŠåģåĻåˇĨį¨ã莤įĨį§åĻīŧįčŗäēēæåĻį§éĸåéŊé፿ēå¨åĻäš æĨč§Ŗåŗå
ļéĸåä¸č°åˇ¨įãæ°æŽå¤įįšéįéŽéĸã
-
-æēå¨åĻäš éčŋäģįåŽä¸įæįæįæ°æŽä¸åį°ææäšįč§č§ŖīŧčĒå¨åä翍Ąåŧåį°įčŋį¨ãäēåŽč¯æīŧåŽå¨åä¸ãåĨåēˇåéčåēį¨įæšéĸå
ˇæåžéĢįäģˇåŧã
-
-å¨ä¸äš
įå°æĨīŧįąäēæēå¨åĻäš įåšŋæŗåēį¨īŧäēč§Ŗæēå¨åĻäš įåēįĄįĨč¯å°æä¸ēäģģäŊéĸåįäēēäģŦįåŋ
äŋŽč¯žã
-
----
-## đ ææ
-
-å¨įē¸ä¸æäŊŋ፠[Excalidraw](https://excalidraw.com/) įå¨įēŋåēį¨į¨åēįģåļčåžīŧäēč§ŖäŊ 寚 AIãMLãæˇąåēĻåĻäš åæ°æŽį§åĻäšé´åˇŽåŧįįč§Ŗãæˇģå ä¸äēå
ŗäēčŋäēææ¯æ
éŋč§ŖåŗįéŽéĸįæŗæŗã
-
-## [é
č¯ģåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
-## å¤äš ä¸čĒåĻ
-
-čĻäēč§Ŗæå
ŗåĻäŊå¨äēä¸äŊŋ፠ML įŽæŗįæ´å¤äŋĄæ¯īŧ蝎éĩåžĒäģĨä¸[åĻäš čˇ¯åž](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)ã
-
-## äģģåĄ
-
-[å¯å¨åšļčŋčĄ](assignment.zh-cn.md)
diff --git a/1-Introduction/1-intro-to-ML/translations/README.zh-tw.md b/1-Introduction/1-intro-to-ML/translations/README.zh-tw.md
deleted file mode 100644
index bac84df3..00000000
--- a/1-Introduction/1-intro-to-ML/translations/README.zh-tw.md
+++ /dev/null
@@ -1,103 +0,0 @@
-# æŠå¨å¸įŋäģį´š
-
-[](https://youtu.be/lTd9RSxS9ZE "æŠå¨å¸įŋīŧäēēåˇĨæēčŊīŧæˇąåēĻå¸įŋ-æäģéēŊååĨ?")
-
-> đĨ éģæä¸éĸįåįč§įč¨čĢæŠå¨å¸įŋãäēēåˇĨæēčŊ忎ąåēĻå¸įŋäšéååĨįčĻé ģã
-## [čǞ忏ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/)
-
-### äģį´š
-
-æĄčŋäžå°éåįļå
¸æŠå¨å¸įŋįåå¸č
čǞį¨īŧįĄčĢäŊ æ¯éåä¸ģéĄįæ°æīŧ鿝ä¸åæįļéŠį ML åžæĨč
īŧæåéŊåžéĢčäŊ čŊå å
Ĩæåīŧæå叿įēäŊ į ML į įŠļåĩåģēä¸ååĨŊįéå§īŧä¸Ļåžæ¨æčŠäŧ°ãåæåæĨåäŊ į[åéĨ](https://github.com/microsoft/ML-For-Beginners/discussions)ã
-
-[](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
-
-> đĨ åŽæä¸åč§įčĻé ģīŧéēģįįåˇĨå¸éĸį John Guttag äģį´šæŠå¨å¸įŋ
-### æŠå¨å¸įŋå
Ĩé
-å¨éå§æŦčǞį¨äšåīŧäŊ éčĻč¨įŊŽč¨įŽæŠčŊ卿Ŧå°éčĄ Jupyter Notebooksã
-
-- **æį
§éäēčĻé ģčŖįčŦč§Ŗé
įŊŽäŊ įč¨įŽæŠ**ãäēč§ŖæéåĻäŊ卿¤[čĻé ģé](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)ä¸č¨įŊŽč¨įŽæŠįæ´å¤äŋĄæ¯ã
-- **å¸įŋ Python**ã éåģēč°äŊ å° [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) æä¸ååēæŦįäēč§Ŗã鿝æå卿ŦčǞį¨ä¸äŊŋį¨įä¸į¨Žå°æ¸æį§å¸åŽļæį¨įᎍį¨čĒč¨ã
-- **å¸įŋ Node.js å JavaScript**ã卿ŦčǞį¨ä¸īŧæå卿§åģē web æį¨į¨åēæäšäŊŋį¨éåšžæŦĄ JavaScriptīŧå æ¤äŊ éčĻæ [Node.js](https://nodejs.org) å [npm](https://www.npmjs.com/) äģĨå [Visual Studio Code](https://code.visualstudio.com/) ፿ŧ Python å JavaScript éįŧã
-- **åĩåģē GitHub 叺æļ**ãæĸįļäŊ å¨ [GitHub](https://github.com) 䏿žå°æåīŧäŊ å¯čŊ厞įļæäēä¸å叺æļīŧäŊåĻææ˛æīŧčĢåĩåģēä¸å叺æļīŧįļåž fork æ¤čǞį¨čĒåˇąäŊŋį¨(äšįĩĻæåä¸éĄææå§đ)
-- **æĸį´ĸ Scikit-learn**. įæ [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html)īŧæåå¨éäēčǞį¨ä¸åŧį¨įä¸įĩ ML åēĢã
-
-### äģéēŊæ¯æŠå¨å¸įŋīŧ
-
-čĄčĒãæŠå¨å¸įŋãæ¯įļäģææĩčĄåæå¸¸į¨įčĄčĒäšä¸ã åĻæäŊ å°į§æææį¨Žį¨åēĻįįæīŧéŖéēŊåžå¯čŊäŊ čŗå°čŊčĒĒééåčĄčĒ䏿ŦĄīŧįĄčĢäŊ å¨åĒåé ååˇĨäŊãįļčīŧæŠå¨å¸įŋįæŠčŖŊå°å¤§å¤æ¸äēēäžčĒĒæ¯ä¸åčŦã å°æŧæŠå¨å¸įŋåå¸č
äžčĒĒīŧéåä¸ģéĄæææčŽäēēæå°ä¸įĨææĒã å æ¤īŧäēč§ŖæŠå¨å¸įŋįå¯ĻčŗĒæ¯äģéēŊīŧä¸Ļééå¯Ļäžä¸æĨ䏿Ĩå°äēč§ŖæŠå¨å¸įŋæ¯åžéčĻįã
-
-
-
-> č°ˇæčļ¨åĸéĄ¯į¤ēäēãæŠå¨å¸įŋãä¸čŠæčŋįãčļ¨åĸæ˛įˇã
-æåįæ´ģå¨ä¸åå
æģŋčŋˇäēēåĨ§į§įåŽåŽä¸ãåå˛ččŦ¡ééãéŋįžäŧ¯įšÂˇæå æ¯åĻįå大įį§å¸åŽļīŧäģĨåæ´å¤įäēēīŧéŊč´åæŧå°æžææįžŠįäŋĄæ¯īŧæį¤ēæåå¨åä¸įįåĨ§į§ãéå°ąæ¯äēēéĄå¸įŋįæĸäģļīŧä¸åäēēéĄįåŠåå¨éˇå¤§æäēēįéį¨ä¸īŧä¸åš´åä¸åš´å°å¸įŋæ°äēįŠä¸Ļæį¤ēä¸įįįĩæ§ã
-
-åŠåį大č
ĻåæåŽæįĨå°å¨åįäēå¯Ļīŧä¸Ļéæŧ¸å¸įŋéąčįῴ쿍ĄåŧīŧéæåŠæŧåŠåčŖŊåŽéčŧ¯čĻåäžčåĨå¸įŋæ¨ĄåŧãäēēéĄå¤§č
Ļįå¸įŋéį¨äŊŋäēēéĄæįēä¸įä¸æåžŠéįįįŠã䏿ˇå°å¸įŋīŧééįŧįžéąč῍Ąåŧīŧįļåžå°éä翍Ąåŧé˛čĄåĩæ°īŧäŊŋæåčŊå¤ äŊŋčĒåˇąå¨ä¸įä¸čŽåžčļäžčļåĨŊãéį¨Žå¸įŋčŊååé˛åčŊåčä¸ååĢå[大č
Ļå¯åĄæ§](https://www.simplypsychology.org/brain-plasticity.html)įæĻåŋĩæéãåžčĄ¨éĸä¸įīŧæåå¯äģĨå¨äēēč
Ļįå¸įŋéį¨åæŠå¨å¸įŋįæĻåŋĩäšéæžå°ä¸äēåæŠä¸įį¸äŧŧäščã
-
-[äēēč
Ļ](https://www.livescience.com/29365-human-brain.html) åžįžå¯Ļä¸į䏿įĨäēįŠīŧčįæįĨå°įäŋĄæ¯īŧååēįæ§įæąēåŽīŧä¸Ļæ šæį°åĸåˇčĄæäēčĄåãéå°ąæ¯æåæčĒĒįæēčŊčĄįēãįļæåå°æēčŊčĄįēéį¨į垊čŖŊåᎍį¨å°č¨įŽæŠä¸æīŧåŽčĸĢį¨ąįēäēēåˇĨæēčŊ (AI)ã
-
-įĄįŽĄéäēčĄčĒå¯čŊææˇˇæˇīŧäŊæŠå¨å¸įŋ (ML) æ¯äēēåˇĨæēčŊįä¸åéčĻåéã **æŠå¨å¸įŋéč¨ģäŊŋį¨å°éįįŽæŗäžįŧįžææįžŠįäŋĄæ¯īŧä¸ĻåžæįĨæ¸æä¸æžå°éąč῍ĄåŧīŧäģĨčå¯Ļįæ§įæąēįéį¨**ã
-
-
-
-> éĄ¯į¤ē AIãMLãæˇąåēĻå¸įŋ忏æį§å¸äšééįŗģįå襨ãåįäŊč
[Jen Looper](https://twitter.com/jenlooper)īŧéæäžčĒ[éåŧĩå](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
-## äŊ å°å¨æŦčǞį¨ä¸å¸å°äģéēŊ
-
-卿ŦčǞį¨ä¸īŧæåå°å
æļĩčåå¸č
åŋ
é äēč§ŖįæŠå¨å¸įŋįæ ¸åŋæĻåŋĩã æåä¸ģčĻäŊŋ፠Scikit-learn äžäģį´šæåæčŦįãįļå
¸æŠå¨å¸įŋãīŧ鿝ä¸å訹å¤å¸įį¨äžå¸įŋåēį¤įĨčįåĒį§åēĢãčĻįč§Ŗæ´åģŖæŗįäēēåˇĨæēčŊææˇąåēĻå¸įŋįæĻåŋĩīŧæŠå¨å¸įŋįåēį¤įĨ违åŋ
ä¸å¯å°įīŧæäģĨæåæŗå¨éčŖæäžåŽã
-
-卿ŦčǞį¨ä¸īŧäŊ å°å¸įŋīŧ
-
-- æŠå¨å¸įŋįæ ¸åŋæĻåŋĩ
-- æŠå¨å¸įŋ῎å˛
-- æŠå¨å¸įŋåå
Ŧåšŗæ§
-- 忏
-- åéĄ
-- čéĄ
-- čĒįļčĒč¨čį
-- æåēé æ¸Ŧ
-- åŧˇåå¸įŋ
-- æŠå¨å¸įŋįå¯Ļéæį¨
-## æå䏿æļĩčįå
§åŽš
-
-- æˇąåēĻå¸įŋ
-- įĨįļįļ˛įĩĄ
-- AI
-
-įēäēį˛åžæ´åĨŊįå¸įŋéĢéŠīŧæåå°éŋå
įĨįļįļ˛įĩĄããæˇąåēĻå¸įŋãīŧäŊŋį¨įĨįļįļ˛įĩĄįå¤åि¨Ąåæ§åģēīŧåäēēåˇĨæēčŊįåžŠéæ§īŧæåå°å¨ä¸åįčǞį¨ä¸č¨čĢéäēåéĄã æåéå°æäžåŗå°æ¨åē῏æį§å¸čǞį¨īŧäģĨå°č¨ģæŧé忴大é åįé䏿šéĸã
-## įēäģéēŊčĻå¸įŋæŠå¨å¸įŋīŧ
-
-åžįŗģįĩąįč§åēĻäžįīŧæŠå¨å¸įŋčĸĢåŽįžŠįēåĩåģēå¯äģĨåžæ¸æä¸å¸įŋéąčæ¨ĄåŧäģĨåšĢåŠååēæēčŊæąēįįčĒååįŗģįĩąã
-
-éį¨ŽåæŠå¤§č´æ¯åäēēč
ĻåĻäŊæ šæåŽåžå¤é¨ä¸įæįĨå°įæ¸æäžå¸įŋæäēæąčĨŋįåįŧã
-
-â
æŗä¸æŗįēäģéēŊäŧæĨæŗčĻåčŠĻäŊŋ፿Šå¨å¸įŋįįĨč䏿¯åĩåģēåēæŧįĄŦᎍįĸŧįčĻååŧæã
-
-### æŠå¨å¸įŋįæį¨
-
-æŠå¨å¸įŋįæį¨įžå¨åšžäšįĄčä¸å¨īŧå°ąåæåįæēčŊææŠãäēč¯č¨ååå
ļäģįŗģįĩąįĸį῏æä¸æ¨ŖįĄčä¸å¨ãčæ
Žå°æå
é˛įæŠå¨å¸įŋįŽæŗį厍大æŊåīŧį įŠļäēēåĄä¸į´å¨æĸį´ĸå
ļč§Ŗæąēå¤įļå¤å¸į§įžå¯ĻåéĄįčŊåīŧä¸Ļååžäē厍大įįŠæĨĩææã
-
-**äŊ å¯äģĨå¨åžå¤æšéĸäŊŋ፿Šå¨å¸įŋ**:
-
-- æ šæį
äēēįį
å˛æå ąåäžé æ¸ŦæŖį
įå¯čŊæ§ã
-- åŠį¨å¤Šæ°Ŗæ¸æé æ¸Ŧå¤Šæ°Ŗã
-- įč§ŖææŦįæ
æã
-- æĒĸæ¸Ŧåæ°čäģĨéģæĸå
ļåŗæã
-
-éčãįļæŋå¸ãå°įį§å¸ãå¤ĒįŠēæĸį´ĸãįįŠéĢå¸åˇĨį¨ãčĒįĨį§å¸īŧįčŗäēēæå¸į§é åéŊé፿Šå¨å¸įŋäžč§Ŗæąēå
ļé åä¸čąåˇ¨įãæ¸æčįįšéįåéĄã
-
-æŠå¨å¸įŋééåžįå¯Ļä¸įæįæįæ¸æä¸įŧįžææįžŠįčĻč§ŖīŧčĒååä翍Ąåŧįŧįžįéį¨ãäēå¯ĻčæīŧåŽå¨åæĨãåĨåēˇåéčæį¨įæšéĸå
ˇæåžéĢįåšåŧã
-
-å¨ä¸äš
įå°äžīŧįąæŧæŠå¨å¸įŋįåģŖæŗæį¨īŧäēč§ŖæŠå¨å¸įŋįåēį¤įĨčå°æįēäģģäŊé åįäēēåįåŋ
äŋŽčǞã
-
----
-## đ ææ°
-
-å¨į´ä¸æäŊŋ፠[Excalidraw](https://excalidraw.com/) įå¨įˇæį¨į¨åēįšĒčŖŊčåīŧäēč§ŖäŊ å° AIãMLãæˇąåēĻå¸įŋ忏æį§å¸äšéåˇŽį°įįč§Ŗãæˇģå ä¸äēéæŧéäēæčĄæ
éˇč§ŖæąēįåéĄįæŗæŗã
-
-## [éąčŽåžæ¸ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/)
-
-## 垊įŋččĒå¸
-
-čĻäēč§ŖæéåĻäŊå¨é˛ä¸äŊŋ፠ML įŽæŗįæ´å¤äŋĄæ¯īŧčĢéĩåžĒäģĨä¸[å¸įŋ莝åž](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)ã
-
-## äģģå
-
-[ååä¸ĻéčĄ](assignment.zh-tw.md)
\ No newline at end of file
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.es.md b/1-Introduction/1-intro-to-ML/translations/assignment.es.md
deleted file mode 100644
index 5b428135..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.es.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# LÊvantate y corre
-
-## Instrucciones
-
-En esta tarea no calificada, debe repasar Python y hacer que su entorno estÊ en funcionamiento y sea capaz de ejecutar cuadernos.
-
-Tome esta [Ruta de aprendizaje de Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), y luego configure sus sistemas con estos videos introductorios:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.fr.md b/1-Introduction/1-intro-to-ML/translations/assignment.fr.md
deleted file mode 100644
index b8513048..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.fr.md
+++ /dev/null
@@ -1,10 +0,0 @@
-# Ãtre opÊrationnel
-
-
-## Instructions
-
-Dans ce devoir non notÊ, vous devez vous familiariser avec Python et rendre votre environnement opÊrationnel et capable d'exÊcuter des notebook.
-
-Suivez ce [parcours d'apprentissage Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), puis configurez votre système en parcourant ces vidÊos introductives :
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.id.md b/1-Introduction/1-intro-to-ML/translations/assignment.id.md
deleted file mode 100644
index a22848f4..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.id.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Persiapan
-
-## Instruksi
-
-Dalam tugas yang tidak dinilai ini, kamu akan mempelajari Python dan mempersiapkan *environment* kamu sehingga dapat digunakan untuk menjalankan *notebook*.
-
-Ambil [Jalur Belajar Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) ini, kemudian persiapkan sistem kamu dengan menonton video-video pengantar ini:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.it.md b/1-Introduction/1-intro-to-ML/translations/assignment.it.md
deleted file mode 100644
index 15c41f29..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.it.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Tempi di apprendimento brevi
-
-## Istruzioni
-
-In questo compito senza valutazione, si dovrebbe rispolverare Python e rendere il proprio ambiente attivo e funzionante, in grado di eseguire notebook.
-
-Si segua questo [percorso di apprendimento di Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) e quindi si configurino i propri sistemi seguendo questi video introduttivi:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.ja.md b/1-Introduction/1-intro-to-ML/translations/assignment.ja.md
deleted file mode 100644
index 4c427561..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.ja.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# į¨ŧåããã
-
-## æį¤ē
-
-ããŽčŠäžĄãŽãĒãčǞéĄã§ã¯ãPythonãĢã¤ããĻ垊įŋããį°åĸãį¨ŧåãããĻããŧãããã¯ãåŽčĄã§ãããããĢããåŋ
čĻããããžãã
-
-ããŽ[PythonãŠãŧããŗã°ããš](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)ãåčŦããæŦĄãŽå
Ĩéį¨ãããĒãĢåžãŖãĻãˇãšãã ããģãããĸããããĻãã ããã
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.ko.md b/1-Introduction/1-intro-to-ML/translations/assignment.ko.md
deleted file mode 100644
index 2b8e72a8..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.ko.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# ėėí´ ë´
ėë¤
-
-## ė¤ëĒ
-
-ė´ ë¯¸ėąė ęŗŧė ėėë íė´ėŦ(Python)ė ëŗĩėĩíęŗ Python ė¤í íę˛Ŋ ė¤ė ë° ë
¸í¸ëļ(Jupyter Notebook) ė¤í ë°Šë˛ęšė§ ėė§í´ ëŗ´ė길 ë°ëëë¤.
-
-ë¤ė [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)ëĨŧ ė´ėíėęŗ , ėë Python ė
ëŦ¸ ę°ėĸëĨŧ íĩí´ Python ė¤ėš ë° ė¤í íę˛Ŋė ė¤ė í´ ëŗ´ė¸ė:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.pt-br.md b/1-Introduction/1-intro-to-ML/translations/assignment.pt-br.md
deleted file mode 100644
index 983d930f..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.pt-br.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Comece a Trabalhar
-
-## InstruçÃĩes
-
-Nesta tarefa nÃŖo corrigida, vocÃĒ deve se aprimorar em Python e colocar seu ambiente em funcionamento e capaz de executar notebooks.
-
-Faça o [Caminho de aprendizagem do Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), e, em seguida, faça a configuraÃ§ÃŖo de seus sistemas analisando estes vÃdeos introdutÃŗrios:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.ru.md b/1-Introduction/1-intro-to-ML/translations/assignment.ru.md
deleted file mode 100644
index 8a06eedb..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.ru.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# ĐаŅŅŅОКŅĐĩ ŅŅĐĩĐ´Ņ ŅаСŅайОŅĐēи
-
-## ĐĐŊŅŅŅŅĐēŅии
-
-ĐŅĐž СадаĐŊиĐĩ ĐŊĐĩ ĐžŅĐĩĐŊиваĐĩŅŅŅ. ĐŅ Đ´ĐžĐģĐļĐŊŅ ĐžŅвĐĩĐļиŅŅ Đ˛ ĐŋаĐŧŅŅи Python и ĐŊаŅŅŅОиŅŅ ŅĐ˛ĐžŅ ŅŅĐĩĐ´Ņ, ŅŅĐžĐąŅ ĐžĐŊа ĐŧĐžĐŗĐģа СаĐŋŅŅĐēаŅŅ ĐŊĐžŅŅĐąŅĐēи.
-
-ĐĐžŅĐŋĐžĐģŅСŅĐšŅĐĩŅŅ ŅŅиĐŧ ĐēŅŅŅĐžĐŧ [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), а СаŅĐĩĐŧ ĐŊаŅŅŅОКŅĐĩ ŅĐ˛ĐžŅ ŅиŅŅĐĩĐŧŅ, ĐŋŅĐžŅĐŧĐžŅŅĐĩв ŅŅи ввОдĐŊŅĐĩ видĐĩĐž:
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.tr.md b/1-Introduction/1-intro-to-ML/translations/assignment.tr.md
deleted file mode 100644
index ed70c424..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.tr.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Haydi BaÅlayalÄąm
-
-## Talimatlar
-
-Bu not-verilmeyen Ãļdevde, Python bilgilerinizi tazelemeli, geliÅtirme ortamÄąnÄązÄą çalÄąÅÄąr duruma getirmeli ve not defterlerini çalÄąÅtÄąrabilmelisiniz.
-
-Bu [Python EÄitim PatikasÄąnÄą](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) bitirin ve ardÄąndan bu tanÄątÄąm videolarÄąnÄą izleyerek sistem kurulumunuzu yapÄąn :
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
\ No newline at end of file
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.zh-cn.md b/1-Introduction/1-intro-to-ML/translations/assignment.zh-cn.md
deleted file mode 100644
index 9aa0dd28..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.zh-cn.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# å¯å¨åčŋčĄ
-
-## 蝴æ
-
-å¨čŋä¸Ēä¸č¯åįäŊä¸ä¸īŧäŊ åēč¯Ĩæ¸Šäš ä¸ä¸ Pythonīŧå° Python į¯åĸčŊå¤čŋčĄčĩˇæĨīŧåšļä¸å¯äģĨčŋčĄ notebooksã
-
-åĻäš čŋä¸Ē [Python åĻäš čˇ¯åž](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)īŧįļåéčŋčŋäēäģįģæ§įč§éĸå°äŊ įįŗģįģį¯åĸ莞įŊŽåĨŊīŧ
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/1-intro-to-ML/translations/assignment.zh-tw.md b/1-Introduction/1-intro-to-ML/translations/assignment.zh-tw.md
deleted file mode 100644
index fa913b28..00000000
--- a/1-Introduction/1-intro-to-ML/translations/assignment.zh-tw.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# åååéčĄ
-
-## čĒĒæ
-
-å¨éåä¸čŠåįäŊæĨä¸īŧäŊ æčОæēĢįŋä¸ä¸ Pythonīŧå° Python į°åĸčŊå¤ éčĄčĩˇäžīŧä¸Ļä¸å¯äģĨéčĄ notebooksã
-
-å¸įŋéå [Python å¸įŋ莝åž](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)īŧįļåžéééäēäģį´šæ§įčĻé ģå°äŊ įįŗģįĩąį°åĸč¨įŊŽåĨŊīŧ
-
-https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
diff --git a/1-Introduction/2-history-of-ML/README.md b/1-Introduction/2-history-of-ML/README.md
deleted file mode 100644
index 48e519e1..00000000
--- a/1-Introduction/2-history-of-ML/README.md
+++ /dev/null
@@ -1,150 +0,0 @@
-# History of machine learning
-
-
-> Sketchnote by [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
----
-
-[](https://youtu.be/N6wxM4wZ7V0 "ML for beginners - History of Machine Learning")
-
-> đĨ Click the image above for a short video working through this lesson.
-
-In this lesson, we will walk through the major milestones in the history of machine learning and artificial intelligence.
-
-The history of artificial intelligence (AI) as a field is intertwined with the history of machine learning, as the algorithms and computational advances that underpin ML fed into the development of AI. It is useful to remember that, while these fields as distinct areas of inquiry began to crystallize in the 1950s, important [algorithmic, statistical, mathematical, computational and technical discoveries](https://wikipedia.org/wiki/Timeline_of_machine_learning) predated and overlapped this era. In fact, people have been thinking about these questions for [hundreds of years](https://wikipedia.org/wiki/History_of_artificial_intelligence): this article discusses the historical intellectual underpinnings of the idea of a 'thinking machine.'
-
----
-## Notable discoveries
-
-- 1763, 1812 [Bayes Theorem](https://wikipedia.org/wiki/Bayes%27_theorem) and its predecessors. This theorem and its applications underlie inference, describing the probability of an event occurring based on prior knowledge.
-- 1805 [Least Square Theory](https://wikipedia.org/wiki/Least_squares) by French mathematician Adrien-Marie Legendre. This theory, which you will learn about in our Regression unit, helps in data fitting.
-- 1913 [Markov Chains](https://wikipedia.org/wiki/Markov_chain), named after Russian mathematician Andrey Markov, is used to describe a sequence of possible events based on a previous state.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) is a type of linear classifier invented by American psychologist Frank Rosenblatt that underlies advances in deep learning.
-
----
-
-- 1967 [Nearest Neighbor](https://wikipedia.org/wiki/Nearest_neighbor) is an algorithm originally designed to map routes. In an ML context it is used to detect patterns.
-- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) is used to train [feedforward neural networks](https://wikipedia.org/wiki/Feedforward_neural_network).
-- 1982 [Recurrent Neural Networks](https://wikipedia.org/wiki/Recurrent_neural_network) are artificial neural networks derived from feedforward neural networks that create temporal graphs.
-
-â
Do a little research. What other dates stand out as pivotal in the history of ML and AI?
-
----
-## 1950: Machines that think
-
-Alan Turing, a truly remarkable person who was voted [by the public in 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) as the greatest scientist of the 20th century, is credited as helping to lay the foundation for the concept of a 'machine that can think.' He grappled with naysayers and his own need for empirical evidence of this concept in part by creating the [Turing Test](https://www.bbc.com/news/technology-18475646), which you will explore in our NLP lessons.
-
----
-## 1956: Dartmouth Summer Research Project
-
-"The Dartmouth Summer Research Project on artificial intelligence was a seminal event for artificial intelligence as a field," and it was here that the term 'artificial intelligence' was coined ([source](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.
-
----
-
-The lead researcher, mathematics professor John McCarthy, hoped "to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it." The participants included another luminary in the field, Marvin Minsky.
-
-The workshop is credited with having initiated and encouraged several discussions including "the rise of symbolic methods, systems focussed on limited domains (early expert systems), and deductive systems versus inductive systems." ([source](https://wikipedia.org/wiki/Dartmouth_workshop)).
-
----
-## 1956 - 1974: "The golden years"
-
-From the 1950s through the mid '70s, optimism ran high in the hope that AI could solve many problems. In 1967, Marvin Minsky stated confidently that "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-natural language processing research flourished, search was refined and made more powerful, and the concept of 'micro-worlds' was created, where simple tasks were completed using plain language instructions.
-
----
-
-Research was well funded by government agencies, advances were made in computation and algorithms, and prototypes of intelligent machines were built. Some of these machines include:
-
-* [Shakey the robot](https://wikipedia.org/wiki/Shakey_the_robot), who could maneuver and decide how to perform tasks 'intelligently'.
-
- 
- > Shakey in 1972
-
----
-
-* Eliza, an early 'chatterbot', could converse with people and act as a primitive 'therapist'. You'll learn more about Eliza in the NLP lessons.
-
- 
- > A version of Eliza, a chatbot
-
----
-
-* "Blocks world" was an example of a micro-world where blocks could be stacked and sorted, and experiments in teaching machines to make decisions could be tested. Advances built with libraries such as [SHRDLU](https://wikipedia.org/wiki/SHRDLU) helped propel language processing forward.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world with SHRDLU")
-
- > đĨ Click the image above for a video: Blocks world with SHRDLU
-
----
-## 1974 - 1980: "AI Winter"
-
-By the mid 1970s, it had become apparent that the complexity of making 'intelligent machines' had been understated and that its promise, given the available compute power, had been overblown. Funding dried up and confidence in the field slowed. Some issues that impacted confidence included:
----
-- **Limitations**. Compute power was too limited.
-- **Combinatorial explosion**. The amount of parameters needed to be trained grew exponentially as more was asked of computers, without a parallel evolution of compute power and capability.
-- **Paucity of data**. There was a paucity of data that hindered the process of testing, developing, and refining algorithms.
-- **Are we asking the right questions?**. The very questions that were being asked began to be questioned. Researchers began to field criticism about their approaches:
- - Turing tests came into question by means, among other ideas, of the 'chinese room theory' which posited that, "programming a digital computer may make it appear to understand language but could not produce real understanding." ([source](https://plato.stanford.edu/entries/chinese-room/))
- - The ethics of introducing artificial intelligences such as the "therapist" ELIZA into society was challenged.
-
----
-
-At the same time, various AI schools of thought began to form. A dichotomy was established between ["scruffy" vs. "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies) practices. _Scruffy_ labs tweaked programs for hours until they had the desired results. _Neat_ labs "focused on logic and formal problem solving". ELIZA and SHRDLU were well-known _scruffy_ systems. In the 1980s, as demand emerged to make ML systems reproducible, the _neat_ approach gradually took the forefront as its results are more explainable.
-
----
-## 1980s Expert systems
-
-As the field grew, its benefit to business became clearer, and in the 1980s so did the proliferation of 'expert systems'. "Expert systems were among the first truly successful forms of artificial intelligence (AI) software." ([source](https://wikipedia.org/wiki/Expert_system)).
-
-This type of system is actually _hybrid_, consisting partially of a rules engine defining business requirements, and an inference engine that leveraged the rules system to deduce new facts.
-
-This era also saw increasing attention paid to neural networks.
-
----
-## 1987 - 1993: AI 'Chill'
-
-The proliferation of specialized expert systems hardware had the unfortunate effect of becoming too specialized. The rise of personal computers also competed with these large, specialized, centralized systems. The democratization of computing had begun, and it eventually paved the way for the modern explosion of big data.
-
----
-## 1993 - 2011
-
-This epoch saw a new era for ML and AI to be able to solve some of the problems that had been caused earlier by the lack of data and compute power. The amount of data began to rapidly increase and become more widely available, for better and for worse, especially with the advent of the smartphone around 2007. Compute power expanded exponentially, and algorithms evolved alongside. The field began to gain maturity as the freewheeling days of the past began to crystallize into a true discipline.
-
----
-## Now
-
-Today machine learning and AI touch almost every part of our lives. This era calls for careful understanding of the risks and potentials effects of these algorithms on human lives. As Microsoft's Brad Smith has stated, "Information technology raises issues that go to the heart of fundamental human-rights protections like privacy and freedom of expression. These issues heighten responsibility for tech companies that create these products. In our view, they also call for thoughtful government regulation and for the development of norms around acceptable uses" ([source](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
----
-
-It remains to be seen what the future holds, but it is important to understand these computer systems and the software and algorithms that they run. We hope that this curriculum will help you to gain a better understanding so that you can decide for yourself.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "The history of deep learning")
-> đĨ Click the image above for a video: Yann LeCun discusses the history of deep learning in this lecture
-
----
-## đChallenge
-
-Dig into one of these historical moments and learn more about the people behind them. There are fascinating characters, and no scientific discovery was ever created in a cultural vacuum. What do you discover?
-
-## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
----
-## Review & Self Study
-
-Here are items to watch and listen to:
-
-[This podcast where Amy Boyd discusses the evolution of AI](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "The history of AI by Amy Boyd")
-
----
-
-## Assignment
-
-[Create a timeline](assignment.md)
diff --git a/1-Introduction/2-history-of-ML/assignment.md b/1-Introduction/2-history-of-ML/assignment.md
deleted file mode 100644
index a12e85a7..00000000
--- a/1-Introduction/2-history-of-ML/assignment.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Create a timeline
-
-## Instructions
-
-Using [this repo](https://github.com/Digital-Humanities-Toolkit/timeline-builder), create a timeline of some aspect of the history of algorithms, mathematics, statistics, AI, or ML, or a combination of these. You can focus on one person, one idea, or a long timespan of thought. Make sure to add multimedia elements.
-
-## Rubric
-
-| Criteria | Exemplary | Adequate | Needs Improvement |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | A deployed timeline is presented as a GitHub page | The code is incomplete and not deployed | The timeline is incomplete, not well researched and not deployed |
diff --git a/1-Introduction/2-history-of-ML/images/eliza.png b/1-Introduction/2-history-of-ML/images/eliza.png
deleted file mode 100644
index 04f14146..00000000
Binary files a/1-Introduction/2-history-of-ML/images/eliza.png and /dev/null differ
diff --git a/1-Introduction/2-history-of-ML/images/shakey.jpg b/1-Introduction/2-history-of-ML/images/shakey.jpg
deleted file mode 100644
index 53ce4b35..00000000
Binary files a/1-Introduction/2-history-of-ML/images/shakey.jpg and /dev/null differ
diff --git a/1-Introduction/2-history-of-ML/lesson-2.pdf b/1-Introduction/2-history-of-ML/lesson-2.pdf
deleted file mode 100644
index 21997a3d..00000000
Binary files a/1-Introduction/2-history-of-ML/lesson-2.pdf and /dev/null differ
diff --git a/1-Introduction/2-history-of-ML/translations/README.es.md b/1-Introduction/2-history-of-ML/translations/README.es.md
deleted file mode 100755
index 116cc7e4..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.es.md
+++ /dev/null
@@ -1,117 +0,0 @@
-# Historia del machine learning
-
-
-> Boceto por [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Cuestionario previo a la conferencia](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3?loc=es)
-
-En esta lecciÃŗn, analizaremos los principales hitos en la historia del machine learning y la inteligencia artificial.
-
-La historia de la inteligencia artificial (AI) como campo estÃĄ entrelazada con la historia del machine learning, ya que los algoritmos y avances computacionales que sustentan el ML ayudaron al desarrollo de la inteligencia artificial. Es Ãētil recordar que, si bien estos campos comenzaron a cristalizar en la dÊcada de 1950 como ÃĄreas distintas de investigaciÃŗn, importantes [descubrimientos algorÃtmicos, estadÃsticos, matemÃĄticos, computacionales y tÊcnicos](https://wikipedia.org/wiki/Timeline_of_machine_learning) fueron predecesores y contemporÃĄneos a esta era. De hecho, las personas han estado pensando en estas preguntas durante [cientos de aÃąos](https://wikipedia.org/wiki/History_of_artificial_intelligence): este artÃculo analiza los fundamentos intelectuales histÃŗricos de la idea de una 'mÃĄquina pensante.'
-
-## Descubrimientos notables
-
-- 1763, 1812 [Teorema de Bayes](https://es.wikipedia.org/wiki/Teorema_de_Bayes) y sus predecesores. Este teorema y sus aplicaciones son la base de la inferencia, describiendo la probabilidad de que ocurra un evento basado en el conocimiento previo.
-- 1805 [TeorÃa de mÃnimos cuadrados](https://es.wikipedia.org/wiki/M%C3%ADnimos_cuadrados) por el matemÃĄtico francÊs Adrien-Marie Legendre. Esta teorÃa, sobre la que aprenderemos en nuestra unidad de RegresiÃŗn, ayuda al ajustar los modelos a los datos.
-- 1913 [Cadenas de Markov](https://es.wikipedia.org/wiki/Cadena_de_M%C3%A1rkov) el nombre del matemÃĄtico ruso Andrey Markov es utilizado para describir una secuencia de posibles eventos basados en su estado anterior.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) es un tipo de clasificador lineal inventado por el psicÃŗlogo Frank Rosenblatt que subyace a los avances en el deep learning.
-- 1967 [Nearest Neighbor (Vecino mÃĄs cercano)](https://es.wikipedia.org/wiki/K_vecinos_m%C3%A1s_pr%C3%B3ximos) es un algoritmo diseÃąado originalmente para trazar rutas. En un contexto de ML, se utiliza para detectar patrones.
-- 1970 [RetropropagaciÃŗn](https://es.wikipedia.org/wiki/Propagaci%C3%B3n_hacia_atr%C3%A1s): es usada para entrenar [redes neuronales prealimentadas](https://es.wikipedia.org/wiki/Red_neuronal_prealimentada).
-- 1982 [Redes neuronales recurrentes](https://es.wikipedia.org/wiki/Red_neuronal_recurrente) son redes neuronales artificiales derivadas de redes neuronales prealimentadas que crean grafos temporales.
-
-â
Investigue un poco. ÂŋQuÊ otras fechas se destacan como fundamentales en la historia del machine learning (ML) y la inteligencia artificial (AI)?
-## 1950: MÃĄquinas que piensan
-
-Alan Turing, una persona verdaderamente notable que fue votada [por el pÃēblico en 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) como el cientÃfico mÃĄs grande del siglo XX, a quien se le atribuye haber ayudado a sentar las bases del concepto de una 'mÃĄquina que puede pensar.' LidiÃŗ con los detractores y con su propia necesidad de evidencia empÃrica de este concepto en parte mediante la creaciÃŗn de la [prueba de Turing](https://www.bbc.com/news/technology-18475646), que explorarÃĄs en nuestras lecciones de procesamiento de lenguaje natural (NLP, por sus siglas en inglÊs).
-
-## 1956: Dartmouth Summer Research Project
-
-"The Dartmouth Summer Research Project sobre inteligencia artificial fue un evento fundamental para la inteligencia artificial como campo" y fue aquà donde se acuÃąÃŗ el tÊrmino 'inteligencia artificial' ([fuente](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-
-> Todos los aspectos del aprendizaje y cualquier otra caracterÃstica de la inteligencia pueden, en principio, describirse con tanta precisiÃŗn que se puede hacer una mÃĄquina para simularlos.
-
-El investigador principal, el profesor de matemÃĄticas John McCarthy, esperaba "proceder sobre las bases de la conjetura de que cada aspecto del aprendizaje o cualquier otra caracterÃstica de la inteligencia pueden, en principio, describirse con tanta precisiÃŗn que se puede hacer una mÃĄquina para simularlos." Los participantes, incluyeron otro gran experto en el campo, Marvin Minsky.
-
-El taller tiene el mÊrito de haber iniciado y alentado varias discusiones que incluyen "el surgimiento de mÊtodos simbÃŗlicos, sistemas en dominios limitados (primeros sistemas expertos), y sistemas deductivos contra sistemas inductivos." ([fuente](https://es.wikipedia.org/wiki/Conferencia_de_Dartmouth)).
-
-## 1956 - 1974: "Los aÃąos dorados"
-
-Desde la dÊcada de 1950, hasta mediados de la de 1970, el optimismo se elevÃŗ con la esperanza de que la AI pudiera resolver muchos problemas. En 1967, Marvin Minsky declarÃŗ con seguridad que "dentro de una generaciÃŗn ... el problema de crear 'inteligencia artificial' estarÃĄ resuelto en gran medida." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-La investigaciÃŗn del procesamiento del lenguaje natural floreciÃŗ, la bÃēsqueda se refinÃŗ y se hizo mÃĄs poderosa, y el concepto de 'micro-mundos' fue creado, donde se completaban tareas simples utilizando instrucciones en lenguaje sencillo.
-
-La investigaciÃŗn estuvo bien financiada por agencias gubernamentales, se realizaron avances en computaciÃŗn y algoritmos, y se construyeron prototipos de mÃĄquinas inteligentes. Algunas de esta mÃĄquinas incluyen:
-
-* [Shakey la robot](https://wikipedia.org/wiki/Shakey_the_robot), que podrÃa maniobrar y decidir cÃŗmo realizar las tareas de forma 'inteligente'.
-
- 
- > Shakey en 1972
-
-* Eliza, unas de las primeras 'chatterbot', podÃa conversar con las personas y actuar como un 'terapeuta' primitivo. AprenderÃĄ mÃĄs sobre Eliza en las lecciones de NLP.
-
- 
- > Una versiÃŗn de Eliza, un chatbot
-
-* "Blocks world" era un ejemplo de micro-world donde los bloques se podÃan apilar y ordenar, y se podÃan probar experimentos en mÃĄquinas de enseÃąanza para tomar decisiones. Los avances creados con librerÃas como [SHRDLU](https://wikipedia.org/wiki/SHRDLU) ayudaron a inpulsar el procesamiento del lenguaje natural.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world con SHRDLU")
-
- > đĨ Haga clic en la imagen de arriba para ver un video: Blocks world con SHRDLU
-
-## 1974 - 1980: "Invierno de la AI"
-
-A mediados de la dÊcada de 1970, se hizo evidente que la complejidad de la fabricaciÃŗn de 'mÃĄquinas inteligentes' se habÃa subestimado y que su promesa, dado la potencia computacional disponible, habÃa sido exagerada. La financiaciÃŗn se agotÃŗ y la confianza en el campo se ralentizÃŗ. Algunos problemas que impactaron la confianza incluyeron:
-
-- **Limitaciones**. La potencia computacional era demasiado limitada.
-- **ExplosiÃŗn combinatoria**. La cantidad de parÃĄmetros necesitados para entrenar creciÃŗ exponencialmente a medida que se pedÃa mÃĄs a las computadoras sin una evoluciÃŗn paralela de la potencia y la capacidad de cÃŗmputo.
-- **Escasez de datos**. Hubo una escasez de datos que obstaculizÃŗ el proceso de pruebas, desarrollo y refinamiento de algoritmos.
-- **ÂŋEstamos haciendo las preguntas correctas?**. Las mismas preguntas que se estaban formulando comenzaron a cuestionarse. Los investigadores comenzaron a criticar sus mÊtodos:
- - Las pruebas de Turing se cuestionaron por medio, entre otras ideas, de la 'teorÃa de la habitaciÃŗn china' que postulaba que "programar una computadora digital puede hacerse que parezca que entiende el lenguaje, pero no puede producir una comprensiÃŗn real" ([fuente](https://plato.stanford.edu/entries/chinese-room/))
- - Se cuestionÃŗ la Êtica de introducir inteligencias artificiales como la "terapeuta" Eliza en la sociedad.
-
-Al mismo tiempo, comenzaron a formarse varias escuelas de pensamiento de AI. Se estableciÃŗ una dicotomÃa entre las prÃĄcticas ["scruffy" vs. "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). _Scruffy_ labs modificÃŗ los programas durante horas hasta que obtuvieron los objetivos deseados. _Neat_ labs "centrados en la lÃŗgica y la resoluciÃŗn de problemas formales". ELIZA y SHRDLU eran sistemas _scruffy_ muy conocidos. En la dÊcada de 1980, cuando surgiÃŗ la demanda para hacer que los sistemas de aprendizaje fueran reproducibles, el enfoque _neat_ gradualmente tomÃŗ la vanguardia a medida que sus resultados eran mÃĄs explicables.
-
-## Systemas expertos de la dÊcada de 1980
-
-A medida que el campo creciÃŗ, su beneficio para las empresas se hizo mÃĄs claro, y en la dÊcada de 1980 tambiÊn lo hizo la proliferaciÃŗn de 'sistemas expertos'. "Los sistemas expertos estuvieron entre las primeras formas verdaderamente exitosas de software de inteligencia artificial (IA)." ([fuente](https://wikipedia.org/wiki/Expert_system)).
-
-Este tipo de sistemas es en realidad _hÃbrido_, que consta parcialmente de un motor de reglas que define los requisitos comerciales, y un motor de inferencia que aprovechÃŗ el sistema de reglas para deducir nuevos hechos.
-
-En esta era tambiÊn se prestÃŗ mayor atenciÃŗn a las redes neuronales.
-
-## 1987 - 1993: AI 'Chill'
-
-La proliferaciÃŗn de hardware de sistemas expertos especializados tuvo el desafortunado efecto de volverse demasiado especializado. El auge de las computadoras personales tambiÊn compitiÃŗ con estos grandes sistemas centralizados especializados. La democratizaciÃŗn de la informÃĄtica habÃa comenzado, y finalmente, allanÃŗ el camino para la explosiÃŗn moderna del big data.
-
-## 1993 - 2011
-
-Esta Êpoca viÃŗ una nueva era para el ML y la IA para poder resolver problemas que anteriormente provenÃan de la falta de datos y de poder de cÃŗmputo. La cantidad de datos comenzÃŗ a aumentar rÃĄpidamente y a estar mÃĄs disponible, para bien o para mal, especialmente con la llegada del smartphone alrededor del 2007. El poder computacional se expandiÃŗ exponencialmente y los algoritmos evolucionaron al mismo tiempo. El campo comenzÃŗ a ganar madurez a medida que los dÃas libres del pasado comenzaron a cristalizar en una verdadera disciplina.
-
-## Ahora
-
-Hoy en dÃa, machine learning y la inteligencia artificial tocan casi todos los aspectos de nuestras vidas. Esta era requiere de una comprensiÃŗn cuidadosa de los riesgos y los efectos potenciales de estos algoritmos en las vidas humanas. Como ha dicho Brad Smith de Microsoft, "La tecnologÃa de la informaciÃŗn plantea problemas que van al corazÃŗn de las protecciones fundamentales de los derechos humanos, como la privacidad y la libertad de expresiÃŗn. Esos problemas aumentan las responsabilidades de las empresas de tecnologÃa que crean estos productos. En nuestra opiniÃŗn, tambiÊn exige regulaciÃŗn gubernamental reflexiva y el desarrollo de normas sobre usos aceptables" ([fuente](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-Queda por ver quÊ depara el futuro, pero es importante entender estos sistemas informÃĄticos y el software y los algoritmos que ejecutan. Esperamos que este plan de estudios le ayude a comprender mejor para que pueda decidir por si mismo.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "The history of deep learning")
-> đĨ Haga clic en la imagen de arriba para ver un video: Yann LeCun analiza la historia del deep learning en esta conferencia
-
----
-## đDesafÃo
-
-SumÊrjase dentro de unos de estos momentos histÃŗricos y aprenda mÃĄs sobre las personas detrÃĄs de ellos. Hay personajes fascinantes y nunca ocurriÃŗ ningÃēn descubrimiento cientÃfico en un vacÃo cultural. ÂŋQuÊ descubres?
-
-## [Cuestionario posterior a la lecciÃŗn](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4?loc=es)
-
-## RevisiÃŗn y autoestudio
-
-Aquà hay elementos para ver y escuchar:
-
-[Este podcast donde Amy Boyd habla sobre la evoluciÃŗn de la IA](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "La historia de la IA por Amy Boyd")
-
-## Tarea
-
-[Crea un timeline](assignment.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.fr.md b/1-Introduction/2-history-of-ML/translations/README.fr.md
deleted file mode 100644
index d9ecad4f..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.fr.md
+++ /dev/null
@@ -1,117 +0,0 @@
-# Histoire du Machine Learning (apprentissage automatique)
-
-
-> Sketchnote de [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Quizz prÊalable](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3?loc=fr)
-
-Dans cette leçon, nous allons parcourir les principales Êtapes de l'histoire du machine learning et de l'intelligence artificielle.
-
-L'histoire de l'intelligence artificielle, l'IA, en tant que domaine est Êtroitement liÊe à l'histoire du machine learning, car les algorithmes et les avancÊes informatiques qui sous-tendent le ML alimentent le dÊveloppement de l'IA. Bien que ces domaines en tant que domaines de recherches distincts ont commencÊ à se cristalliser dans les annÊes 1950, il est important de rappeler que les [dÊcouvertes algorithmiques, statistiques, mathÊmatiques, informatiques et techniques](https://wikipedia.org/wiki/Timeline_of_machine_learning) ont prÊcÊdÊ et chevauchait cette Êpoque. En fait, le monde rÊflÊchit à ces questions depuis [des centaines d'annÊes](https://fr.wikipedia.org/wiki/Histoire_de_l%27intelligence_artificielle) : cet article traite des fondements intellectuels historiques de l'idÊe d'une ÂĢ machine qui pense Âģ.
-
-## DÊcouvertes notables
-
-- 1763, 1812 [thÊorème de Bayes](https://wikipedia.org/wiki/Bayes%27_theorem) et ses prÊdÊcesseurs. Ce thÊorème et ses applications sous-tendent l'infÊrence, dÊcrivant la probabilitÊ qu'un ÊvÊnement se produise sur la base de connaissances antÊrieures.
-- 1805 [ThÊorie des moindres carrÊs](https://wikipedia.org/wiki/Least_squares) par le mathÊmaticien français Adrien-Marie Legendre. Cette thÊorie, que vous dÊcouvrirez dans notre unitÊ RÊgression, aide à l'ajustement des donnÊes.
-- 1913 [ChaÎnes de Markov](https://wikipedia.org/wiki/Markov_chain) du nom du mathÊmaticien russe Andrey Markov sont utilisÊes pour dÊcrire une sÊquence d'ÊvÊnements possibles basÊe sur un Êtat antÊrieur.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) est un type de classificateur linÊaire inventÊ par le psychologue amÊricain Frank Rosenblatt qui sous-tend les progrès de l'apprentissage en profondeur.
-- 1967 [Nearest Neighbor](https://wikipedia.org/wiki/Nearest_neighbor) est un algorithme conçu à l'origine pour cartographier les itinÊraires. Dans un contexte ML, il est utilisÊ pour dÊtecter des modèles.
-- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) est utilisÊ pour former des [rÊseaux de neurones feedforward (propagation avant)](https://fr.wikipedia.org/wiki/R%C3%A9seau_de_neurones_%C3%A0_propagation_avant).
-- 1982 [RÊseaux de neurones rÊcurrents](https://wikipedia.org/wiki/Recurrent_neural_network) sont des rÊseaux de neurones artificiels dÊrivÊs de rÊseaux de neurones à rÊaction qui crÊent des graphes temporels.
-
-â
Faites une petite recherche. Quelles autres dates sont marquantes dans l'histoire du ML et de l'IAÂ ?
-
-## 1950 : Des machines qui pensent
-
-Alan Turing, une personne vraiment remarquable qui a ÊtÊ Êlue [par le public en 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) comme le plus grand scientifique du 20e siècle, est reconnu pour avoir aidÊ à jeter les bases du concept d'une "machine qui peut penser". Il a luttÊ avec ses opposants et son propre besoin de preuves empiriques de sa thÊorie en crÊant le [Test de Turing] (https://www.bbc.com/news/technology-18475646), que vous explorerez dans nos leçons de NLP (TALN en français).
-
-## 1956 : Projet de recherche d'ÊtÊ à Dartmouth
-
-ÂĢ Le projet de recherche d'ÊtÊ de Dartmouth sur l'intelligence artificielle a ÊtÊ un ÊvÊnement fondateur pour l'intelligence artificielle en tant que domaine Âģ, et c'est ici que le terme ÂĢ intelligence artificielle Âģ a ÊtÊ inventÊ ([source](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> Chaque aspect de l'apprentissage ou toute autre caractÊristique de l'intelligence peut en principe ÃĒtre dÊcrit si prÊcisÊment qu'une machine peut ÃĒtre conçue pour les simuler.
-
-Le chercheur en tÃĒte, le professeur de mathÊmatiques John McCarthy, espÊrait ÂĢ procÊder sur la base de la conjecture selon laquelle chaque aspect de l'apprentissage ou toute autre caractÊristique de l'intelligence peut en principe ÃĒtre dÊcrit avec une telle prÊcision qu'une machine peut ÃĒtre conçue pour les simuler Âģ. Les participants comprenaient une autre sommitÊ dans le domaine, Marvin Minsky.
-
-L'atelier est crÊditÊ d'avoir initiÊ et encouragÊ plusieurs discussions, notamment ÂĢ l'essor des mÊthodes symboliques, des systèmes spÊcialisÊs sur des domaines limitÊs (premiers systèmes experts) et des systèmes dÊductifs par rapport aux systèmes inductifs Âģ. ([source](https://fr.wikipedia.org/wiki/Conf%C3%A9rence_de_Dartmouth)).
-
-## 1956 - 1974 : "Les annÊes d'or"
-
-Des annÊes 50 au milieu des annÊes 70, l'optimisme Êtait au rendez-vous en espÊrant que l'IA puisse rÊsoudre de nombreux problèmes. En 1967, Marvin Minsky a dÊclarÊ avec assurance que ÂĢ Dans une gÊnÊration... le problème de la crÊation d'"intelligence artificielle" sera substantiellement rÊsolu. Âģ (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-La recherche sur le Natural Language Processing (traitement du langage naturel en français) a prospÊrÊ, la recherche a ÊtÊ affinÊe et rendue plus puissante, et le concept de ÂĢ micro-mondes Âģ a ÊtÊ crÊÊ, oÚ des tÃĸches simples ont ÊtÊ effectuÊes en utilisant des instructions en langue naturelle.
-
-La recherche a ÊtÊ bien financÊe par les agences gouvernementales, des progrès ont ÊtÊ rÊalisÊs dans le calcul et les algorithmes, et des prototypes de machines intelligentes ont ÊtÊ construits. Certaines de ces machines incluent :
-
-* [Shakey le robot](https://fr.wikipedia.org/wiki/Shakey_le_robot), qui pouvait manÅuvrer et dÊcider comment effectuer des tÃĸches ÂĢ intelligemment Âģ.
-
- 
- > Shaky en 1972
-
-* Eliza, une des premières ÂĢ chatbot Âģ, pouvait converser avec les gens et agir comme une ÂĢ thÊrapeute Âģ primitive. Vous en apprendrez plus sur Eliza dans les leçons de NLP.
-
- 
- > Une version d'Eliza, un chatbot
-
-* Le ÂĢ monde des blocs Âģ Êtait un exemple de micro-monde oÚ les blocs pouvaient ÃĒtre empilÊs et triÊs, et oÚ des expÊriences d'apprentissages sur des machines, dans le but qu'elles prennent des dÊcisions, pouvaient ÃĒtre testÊes. Les avancÊes rÊalisÊes avec des bibliothèques telles que [SHRDLU](https://fr.wikipedia.org/wiki/SHRDLU) ont contribuÊ à faire avancer le natural language processing.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "Monde de blocs avec SHRDLU" )
-
- > đĨ Cliquez sur l'image ci-dessus pour une vidÊo : Blocks world with SHRDLU
-
-## 1974 - 1980Â : ÂĢÂ l'hiver de l'IAÂ Âģ
-
-Au milieu des annÊes 1970, il Êtait devenu Êvident que la complexitÊ de la fabrication de ÂĢ machines intelligentes Âģ avait ÊtÊ sous-estimÊe et que sa promesse, compte tenu de la puissance de calcul disponible, avait ÊtÊ exagÊrÊe. Les financements se sont taris et la confiance dans le domaine s'est ralentie. Parmi les problèmes qui ont eu un impact sur la confiance, citons :
-
-- **Restrictions**. La puissance de calcul Êtait trop limitÊe.
-- **Explosion combinatoire**. Le nombre de paramètres à former augmentait de façon exponentielle à mesure que l'on en demandait davantage aux ordinateurs, sans Êvolution parallèle de la puissance et de la capacitÊ de calcul.
-- **PÊnurie de donnÊes**. Il y avait un manque de donnÊes qui a entravÊ le processus de test, de dÊveloppement et de raffinement des algorithmes.
-- **Posions-nous les bonnes questions ?**. Les questions mÃĒmes, qui Êtaient posÊes, ont commencÊ à ÃĒtre remises en question. Les chercheurs ont commencÊ à Êmettre des critiques sur leurs approches :
- - Les tests de Turing ont ÊtÊ remis en question au moyen, entre autres, de la ÂĢ thÊorie de la chambre chinoise Âģ qui postulait que ÂĢ la programmation d'un ordinateur numÊrique peut faire croire qu'il comprend le langage mais ne peut pas produire une comprÊhension rÊelle Âģ. ([source](https://plato.stanford.edu/entries/chinese-room/))
- - L'Êthique de l'introduction d'intelligences artificielles telles que la "thÊrapeute" ELIZA dans la sociÊtÊ a ÊtÊ remise en cause.
-
-Dans le mÃĒme temps, diverses Êcoles de pensÊe sur l'IA ont commencÊ à se former. Une dichotomie a ÊtÊ Êtablie entre les pratiques IA ["scruffy" et "neat"](https://wikipedia.org/wiki/Neats_and_scruffies). Les laboratoires _Scruffy_ peaufinaient leurs programmes pendant des heures jusqu'à ce qu'ils obtiennent les rÊsultats souhaitÊs. Les laboratoires _Neat_ "se concentraient sur la logique et la rÊsolution formelle de problèmes". ELIZA et SHRDLU Êtaient des systèmes _scruffy_ bien connus. Dans les annÊes 1980, alors qu'Êmergeait la demande de rendre les systèmes ML reproductibles, l'approche _neat_ a progressivement pris le devant de la scène car ses rÊsultats sont plus explicables.
-
-## 1980 : Systèmes experts
-
-Au fur et à mesure que le domaine s'est dÊveloppÊ, ses avantages pour les entreprises sont devenus plus clairs, particulièrement via les ÂĢ systèmes experts Âģ dans les annÊes 1980. "Les systèmes experts ont ÊtÊ parmi les premières formes vraiment rÊussies de logiciels d'intelligence artificielle (IA)." ([source](https://fr.wikipedia.org/wiki/Syst%C3%A8me_expert)).
-
-Ce type de système est en fait _hybride_, composÊ en partie d'un moteur de règles dÊfinissant les exigences mÊtier et d'un moteur d'infÊrence qui exploite le système de règles pour dÊduire de nouveaux faits.
-
-Cette Êpoque a Êgalement vu une attention croissante accordÊe aux rÊseaux de neurones.
-
-## 1987 - 1993 : IA ÂĢ Chill Âģ
-
-La prolifÊration du matÊriel spÊcialisÊ des systèmes experts a eu pour effet malheureux de devenir trop spÊcialisÊe. L'essor des ordinateurs personnels a Êgalement concurrencÊ ces grands systèmes spÊcialisÊs et centralisÊs. La dÊmocratisation de l'informatique a commencÊ et a finalement ouvert la voie à l'explosion des mÊgadonnÊes.
-
-## 1993 - 2011
-
-Cette Êpoque a vu naÃŽtre une nouvelle ère pour le ML et l'IA afin de rÊsoudre certains des problèmes qui n'avaient pu l'ÃĒtre plus tôt par le manque de donnÊes et de puissance de calcul. La quantitÊ de donnÊes a commencÊ à augmenter rapidement et à devenir plus largement disponibles, pour le meilleur et pour le pire, en particulier avec l'avènement du smartphone vers 2007. La puissance de calcul a augmentÊ de façon exponentielle et les algorithmes ont ÊvoluÊ parallèlement. Le domaine a commencÊ à gagner en maturitÊ alors que l'ingÊniositÊ a commencÊ à se cristalliser en une vÊritable discipline.
-
-## à prÊsent
-
-Aujourd'hui, le machine learning et l'IA touchent presque tous les aspects de notre vie. Cette ère nÊcessite une comprÊhension approfondie des risques et des effets potentiels de ces algorithmes sur les vies humaines. Comme l'a dÊclarÊ Brad Smith de Microsoft, ÂĢ les technologies de l'information soulèvent des problèmes qui vont au cÅur des protections fondamentales des droits de l'homme comme la vie privÊe et la libertÊ d'expression. Ces problèmes accroissent la responsabilitÊ des entreprises technologiques qui crÊent ces produits. à notre avis, ils appellent Êgalement à une rÊglementation gouvernementale rÊflÊchie et au dÊveloppement de normes autour des utilisations acceptables" ([source](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-Reste à savoir ce que l'avenir nous rÊserve, mais il est important de comprendre ces systèmes informatiques ainsi que les logiciels et algorithmes qu'ils exÊcutent. Nous espÊrons que ce programme vous aidera à mieux les comprendre afin que vous puissiez dÊcider par vous-mÃĒme.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "L'histoire du Deep Learning")
-> đĨ Cliquez sur l'image ci-dessus pour une vidÊo : Yann LeCun discute de l'histoire du deep learning dans cette confÊrence
-
----
-## đChallenge
-
-Plongez dans l'un de ces moments historiques et apprenez-en plus sur les personnes derrière ceux-ci. Il y a des personnalitÊs fascinantes, et aucune dÊcouverte scientifique n'a jamais ÊtÊ crÊÊe avec un vide culturel. Que dÊcouvrez-vous ?
-
-## [Quiz de validation des connaissances](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4?loc=fr)
-
-## RÊvision et auto-apprentissage
-
-Voici quelques articles à regarder et à Êcouter :
-
-[Ce podcast oÚ Amy Boyd discute de l'Êvolution de l'IA](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "L'histoire de l'IA par Amy Boyd")
-
-## Devoir
-
-[CrÊer une frise chronologique](assignment.fr.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.id.md b/1-Introduction/2-history-of-ML/translations/README.id.md
deleted file mode 100644
index 351dd17d..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.id.md
+++ /dev/null
@@ -1,116 +0,0 @@
-# Sejarah Machine Learning
-
-
-> Catatan sketsa oleh [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Quiz Pra-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
-Dalam pelajaran ini, kita akan membahas tonggak utama dalam sejarah Machine Learning dan Artificial Intelligence.
-
-Sejarah Artifical Intelligence, AI, sebagai bidang terkait dengan sejarah Machine Learning, karena algoritma dan kemajuan komputasi yang mendukung ML dimasukkan ke dalam pengembangan AI. Penting untuk diingat bahwa, meski bidang-bidang ini sebagai bidang-bidang penelitian yang berbeda mulai terbentuk pada 1950-an, [algoritmik, statistik, matematik, komputasi dan penemuan teknis](https://wikipedia.org/wiki/Timeline_of_machine_learning) penting sudah ada sebelumnya, dan saling tumpang tindih di era ini. Faktanya, orang-orang telah memikirkan pertanyaan-pertanyaan ini selama [ratusan tahun](https://wikipedia.org/wiki/History_of_artificial_intelligence): artikel ini membahas dasar-dasar intelektual historis dari gagasan 'mesin yang berpikir'.
-
-## Penemuan penting
-
-- 1763, 1812 [Bayes Theorem](https://wikipedia.org/wiki/Bayes%27_theorem) dan para pendahulu. Teorema ini dan penerapannya mendasari inferensi, mendeskripsikan kemungkinan suatu peristiwa terjadi berdasarkan pengetahuan sebelumnya.
-- 1805 [Least Square Theory](https://wikipedia.org/wiki/Least_squares) oleh matematikawan Perancis Adrien-Marie Legendre. Teori ini yang akan kamu pelajari di unit Regresi, ini membantu dalam *data fitting*.
-- 1913 [Markov Chains](https://wikipedia.org/wiki/Markov_chain) dinamai dengan nama matematikawan Rusia, Andrey Markov, digunakan untuk mendeskripsikan sebuah urutan dari kejadian-kejadian yang mungkin terjadi berdasarkan kondisi sebelumnya.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) adalah sebuah tipe dari *linear classifier* yang ditemukan oleh psikolog Amerika, Frank Rosenblatt, yang mendasari kemajuan dalam *Deep Learning*.
-- 1967 [Nearest Neighbor](https://wikipedia.org/wiki/Nearest_neighbor) adalah sebuah algoritma yang pada awalnya didesain untuk memetakan rute. Dalam konteks ML, ini digunakan untuk mendeteksi berbagai pola.
-- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) digunakan untuk melatih [feedforward neural networks](https://wikipedia.org/wiki/Feedforward_neural_network).
-- 1982 [Recurrent Neural Networks](https://wikipedia.org/wiki/Recurrent_neural_network) adalah *artificial neural networks* yang berasal dari *feedforward neural networks* yang membuat grafik sementara.
-
-â
Lakukan sebuah riset kecil. Tanggal berapa lagi yang merupakan tanggal penting dalam sejarah ML dan AI?
-## 1950: Mesin yang berpikir
-
-Alan Turing, merupakan orang luar biasa yang terpilih oleh [publik di tahun 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) sebagai ilmuwan terhebat di abad 20, diberikan penghargaan karena membantu membuat fondasi dari sebuah konsep 'mesin yang bisa berpikir', Dia berjuang menghadapi orang-orang yang menentangnya dan keperluannya sendiri untuk bukti empiris dari konsep ini dengan membuat [Turing Test](https://www.bbc.com/news/technology-18475646), yang mana akan kamu jelajahi di pelajaran NLP kami.
-
-## 1956: Proyek Riset Musim Panas Dartmouth
-
-"Proyek Riset Musim Panas Dartmouth pada *artificial intelligence* merupakan sebuah acara penemuan untuk *artificial intelligence* sebagai sebuah bidang," dan dari sinilah istilah '*artificial intelligence*' diciptakan ([sumber](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> Setiap aspek pembelajaran atau fitur kecerdasan lainnya pada prinsipnya dapat dideskripsikan dengan sangat tepat sehingga sebuah mesin dapat dibuat untuk mensimulasikannya.
-
-Ketua peneliti, profesor matematika John McCarthy, berharap "untuk meneruskan dasar dari dugaan bahwa setiap aspek pembelajaran atau fitur kecerdasan lainnya pada prinsipnya dapat dideskripsikan dengan sangat tepat sehingga mesin dapat dibuat untuk mensimulasikannya." Marvin Minsky, seorang tokoh terkenal di bidang ini juga termasuk sebagai peserta penelitian.
-
-Workshop ini dipuji karena telah memprakarsai dan mendorong beberapa diskusi termasuk "munculnya metode simbolik, sistem yang berfokus pada domain terbatas (sistem pakar awal), dan sistem deduktif versus sistem induktif." ([sumber](https://wikipedia.org/wiki/Dartmouth_workshop)).
-
-## 1956 - 1974: "Tahun-tahun Emas"
-
-Dari tahun 1950-an hingga pertengahan 70-an, optimisme memuncak dengan harapan bahwa AI dapat memecahkan banyak masalah. Pada tahun 1967, Marvin Minsky dengan yakin menyatakan bahwa "Dalam satu generasi ... masalah menciptakan '*artificial intelligence*' akan terpecahkan secara substansial." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-Penelitian *natural language processing* berkembang, pencarian disempurnakan dan dibuat lebih *powerful*, dan konsep '*micro-worlds*' diciptakan, di mana tugas-tugas sederhana diselesaikan menggunakan instruksi bahasa sederhana.
-
-Penelitian didanai dengan baik oleh lembaga pemerintah, banyak kemajuan dibuat dalam komputasi dan algoritma, dan prototipe mesin cerdas dibangun. Beberapa mesin tersebut antara lain:
-
-* [Shakey the robot](https://wikipedia.org/wiki/Shakey_the_robot), yang bisa bermanuver dan memutuskan bagaimana melakukan tugas-tugas secara 'cerdas'.
-
- 
- > Shakey pada 1972
-
-* Eliza, sebuah 'chatterbot' awal, dapat mengobrol dengan orang-orang dan bertindak sebagai 'terapis' primitif. Kamu akan belajar lebih banyak tentang Eliza dalam pelajaran NLP.
-
- 
- > Sebuah versi dari Eliza, sebuah *chatbot*
-
-* "Blocks world" adalah contoh sebuah *micro-world* dimana balok dapat ditumpuk dan diurutkan, dan pengujian eksperimen mesin pengajaran untuk membuat keputusan dapat dilakukan. Kemajuan yang dibuat dengan *library-library* seperti [SHRDLU](https://wikipedia.org/wiki/SHRDLU) membantu mendorong kemajuan pemrosesan bahasa.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world dengan SHRDLU")
-
- > đĨ Klik gambar diatas untuk menonton video: Blocks world with SHRDLU
-
-## 1974 - 1980: "Musim Dingin AI"
-
-Pada pertengahan 1970-an, semakin jelas bahwa kompleksitas pembuatan 'mesin cerdas' telah diremehkan dan janjinya, mengingat kekuatan komputasi yang tersedia, telah dilebih-lebihkan. Pendanaan telah habis dan kepercayaan dalam bidang ini menurun. Beberapa masalah yang memengaruhi kepercayaan diri termasuk:
-
-- **Keterbatasan**. Kekuatan komputasi terlalu terbatas.
-- **Ledakan kombinatorial**. Jumlah parameter yang perlu dilatih bertambah secara eksponensial karena lebih banyak hal yang diminta dari komputer, tanpa evolusi paralel dari kekuatan dan kemampuan komputasi.
-- **Kekurangan data**. Adanya kekurangan data yang menghalangi proses pengujian, pengembangan, dan penyempurnaan algoritma.
-- **Apakah kita menanyakan pertanyaan yang tepat?**. Pertanyaan-pertanyaan yang diajukan pun mulai dipertanyakan kembali. Para peneliti mulai melontarkan kritik tentang pendekatan mereka
- - Tes Turing mulai dipertanyakan, di antara ide-ide lain, dari 'teori ruang Cina' yang mengemukakan bahwa, "memprogram komputer digital mungkin membuatnya tampak memahami bahasa tetapi tidak dapat menghasilkan pemahaman yang sebenarnya." ([sumber](https://plato.stanford.edu/entries/chinese-room/))
- - Tantangan etika ketika memperkenalkan kecerdasan buatan seperti si "terapis" ELIZA ke dalam masyarakat.
-
-Pada saat yang sama, berbagai aliran pemikiran AI mulai terbentuk. Sebuah dikotomi didirikan antara praktik ["scruffy" vs. "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). Lab _Scruffy_ mengubah program selama berjam-jam sampai mendapat hasil yang diinginkan. Lab _Neat_ "berfokus pada logika dan penyelesaian masalah formal". ELIZA dan SHRDLU adalah sistem _scruffy_ yang terkenal. Pada tahun 1980-an, karena perkembangan permintaan untuk membuat sistem ML yang dapat direproduksi, pendekatan _neat_ secara bertahap menjadi yang terdepan karena hasilnya lebih dapat dijelaskan.
-
-## 1980s Sistem Pakar
-
-Seiring berkembangnya bidang ini, manfaatnya bagi bisnis menjadi lebih jelas, dan begitu pula dengan menjamurnya 'sistem pakar' pada tahun 1980-an. "Sistem pakar adalah salah satu bentuk perangkat lunak artificial intelligence (AI) pertama yang benar-benar sukses." ([sumber](https://wikipedia.org/wiki/Expert_system)).
-
-Tipe sistem ini sebenarnya adalah _hybrid_, sebagian terdiri dari mesin aturan yang mendefinisikan kebutuhan bisnis, dan mesin inferensi yang memanfaatkan sistem aturan untuk menyimpulkan fakta baru.
-
-Pada era ini juga terlihat adanya peningkatan perhatian pada jaringan saraf.
-
-## 1987 - 1993: AI 'Chill'
-
-Perkembangan perangkat keras sistem pakar terspesialisasi memiliki efek yang tidak menguntungkan karena menjadi terlalu terspesialiasasi. Munculnya komputer pribadi juga bersaing dengan sistem yang besar, terspesialisasi, dan terpusat ini. Demokratisasi komputasi telah dimulai, dan pada akhirnya membuka jalan untuk ledakan modern dari *big data*.
-
-## 1993 - 2011
-
-Pada zaman ini memperlihatkan era baru bagi ML dan AI untuk dapat menyelesaikan beberapa masalah yang sebelumnya disebabkan oleh kurangnya data dan daya komputasi. Jumlah data mulai meningkat dengan cepat dan tersedia secara luas, terlepas dari baik dan buruknya, terutama dengan munculnya *smartphone* sekitar tahun 2007. Daya komputasi berkembang secara eksponensial, dan algoritma juga berkembang saat itu. Bidang ini mulai mengalami kedewasaan karena hari-hari yang tidak beraturan di masa lalu mulai terbentuk menjadi disiplin yang sebenarnya.
-
-## Sekarang
-
-Saat ini, *machine learning* dan AI hampir ada di setiap bagian dari kehidupan kita. Era ini menuntut pemahaman yang cermat tentang risiko dan efek potensi dari berbagai algoritma yang ada pada kehidupan manusia. Seperti yang telah dinyatakan oleh Brad Smith dari Microsoft, "Teknologi informasi mengangkat isu-isu yang menjadi inti dari perlindungan hak asasi manusia yang mendasar seperti privasi dan kebebasan berekspresi. Masalah-masalah ini meningkatkan tanggung jawab bagi perusahaan teknologi yang menciptakan produk-produk ini. Dalam pandangan kami, mereka juga menyerukan peraturan pemerintah yang bijaksana dan untuk pengembangan norma-norma seputar penggunaan yang wajar" ([sumber](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-Kita masih belum tahu apa yang akan terjadi di masa depan, tetapi penting untuk memahami sistem komputer dan perangkat lunak serta algoritma yang dijalankannya. Kami berharap kurikulum ini akan membantu kamu untuk mendapatkan pemahaman yang lebih baik sehingga kamu dapat memutuskan sendiri.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "Sejarah Deep Learning")
-> đĨ Klik gambar diatas untuk menonton video: Yann LeCun mendiskusikan sejarah dari Deep Learning dalam pelajaran ini
-
----
-## đTantangan
-
-Gali salah satu momen bersejarah ini dan pelajari lebih lanjut tentang orang-orang di baliknya. Ada karakter yang menarik, dan tidak ada penemuan ilmiah yang pernah dibuat dalam kekosongan budaya. Apa yang kamu temukan?
-
-## [Quiz Pasca-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
-## Ulasan & Belajar Mandiri
-
-Berikut adalah item untuk ditonton dan didengarkan:
-
-[Podcast dimana Amy Boyd mendiskusikan evolusi dari AI](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "Sejarah AI oleh Amy Boyd")
-
-## Tugas
-
-[Membuat sebuah *timeline*](assignment.id.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.it.md b/1-Introduction/2-history-of-ML/translations/README.it.md
deleted file mode 100644
index f95b542c..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.it.md
+++ /dev/null
@@ -1,118 +0,0 @@
-# Storia di machine learning
-
-
-> Sketchnote di [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Quiz pre-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/?loc=it)
-
-In questa lezione, si camminerà attraverso le principali pietre miliari nella storia di machine learning e dell'intelligenza artificiale.
-
-La storia dell'intelligenza artificiale, AI, come campo è intrecciata con la storia di machine learning, poichÊ gli algoritmi e i progressi computazionali alla base di machine learning hanno contribuito allo sviluppo dell'intelligenza artificiale. à utile ricordare che, mentre questi campi come distinte aree di indagine hanno cominciato a cristallizzarsi negli anni '50, importanti [scoperte algoritmiche, statistiche, matematiche, computazionali e tecniche](https://wikipedia.org/wiki/Timeline_of_machine_learning) hanno preceduto e si sono sovrapposte a questa era. In effetti, le persone hanno riflettuto su queste domande per [centinaia di anni](https://wikipedia.org/wiki/History_of_artificial_intelligence); questo articolo discute le basi intellettuali storiche dell'idea di una "macchina pensante".
-
-## Scoperte rilevanti
-
-- 1763, 1812 [Teorema di Bayes](https://it.wikipedia.org/wiki/Teorema_di_Bayes) e suoi predecessori. Questo teorema e le sue applicazioni sono alla base dell'inferenza, descrivendo la probabilità che un evento si verifichi in base alla conoscenza precedente.
-- 1805 [Metodo dei Minimi Quadrati](https://it.wikipedia.org/wiki/Metodo_dei_minimi_quadrati) del matematico francese Adrien-Marie Legendre. Questa teoria, che verrà trattata nell'unità Regressione, aiuta nell'adattamento dei dati.
-- 1913 [Processo Markoviano](https://it.wikipedia.org/wiki/Processo_markoviano) dal nome del matematico russo Andrey Markov è usato per descrivere una sequenza di possibili eventi basati su uno stato precedente.
-- 1957 [Percettrone](https://it.wikipedia.org/wiki/Percettrone) è un tipo di classificatore lineare inventato dallo psicologo americano Frank Rosenblatt che sta alla base dei progressi nel deep learning.
-- 1967 [Nearest Neighbor](https://wikipedia.org/wiki/Nearest_neighbor) è un algoritmo originariamente progettato per mappare i percorsi. In un contesto ML viene utilizzato per rilevare i modelli.
-- 1970 [La Retropropagazione dell'Errore](https://it.wikipedia.org/wiki/Retropropagazione_dell'errore) viene utilizzata per addestrare [le reti neurali feed-forward](https://it.wikipedia.org/wiki/Rete_neurale_feed-forward).
-- Le [Reti Neurali Ricorrenti](https://it.wikipedia.org/wiki/Rete_neurale_ricorrente) del 1982 sono reti neurali artificiali derivate da reti neurali feedforward che creano grafici temporali.
-
-â
Fare una piccola ricerca. Quali altre date si distinguono come fondamentali nella storia del machine learning e dell'intelligenza artificiale?
-## 1950: Macchine che pensano
-
-Alan Turing, una persona davvero notevole che è stata votata [dal pubblico nel 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) come il piÚ grande scienziato del XX secolo, è accreditato per aver contribuito a gettare le basi per il concetto di "macchina in grado di pensare". Ha affrontato gli oppositori e il suo stesso bisogno di prove empiriche di questo concetto in parte creando il [Test di Turing](https://www.bbc.com/news/technology-18475646), che verrà esplorato nelle lezioni di NLP (elaborazione del linguaggio naturale).
-
-## 1956: Progetto di Ricerca Estivo Dartmouth
-
-"Il Dartmouth Summer Research Project sull'intelligenza artificiale è stato un evento seminale per l'intelligenza artificiale come campo", qui è stato coniato il termine "intelligenza artificiale" ([fonte](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> In linea di principio, ogni aspetto dell'apprendimento o qualsiasi altra caratteristica dell'intelligenza puÃ˛ essere descritto in modo cosÃŦ preciso che si puÃ˛ costruire una macchina per simularlo.
-
-Il ricercatore capo, il professore di matematica John McCarthy, sperava "di procedere sulla base della congettura che ogni aspetto dell'apprendimento o qualsiasi altra caratteristica dell'intelligenza possa in linea di principio essere descritta in modo cosÃŦ preciso che si possa costruire una macchina per simularlo". I partecipanti includevano un altro luminare nel campo, Marvin Minsky.
-
-Il workshop è accreditato di aver avviato e incoraggiato diverse discussioni tra cui "l'ascesa di metodi simbolici, sistemi focalizzati su domini limitati (primi sistemi esperti) e sistemi deduttivi contro sistemi induttivi". ([fonte](https://wikipedia.org/wiki/Dartmouth_workshop)).
-
-## 1956 - 1974: "Gli anni d'oro"
-
-Dagli anni '50 fino alla metà degli anni '70, l'ottimismo era alto nella speranza che l'AI potesse risolvere molti problemi. Nel 1967, Marvin Minsky dichiarÃ˛ con sicurezza che "Entro una generazione... il problema della creazione di 'intelligenza artificiale' sarà sostanzialmente risolto". (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-La ricerca sull'elaborazione del linguaggio naturale è fiorita, la ricerca è stata perfezionata e resa piÚ potente ed è stato creato il concetto di "micro-mondi", in cui compiti semplici sono stati completati utilizzando istruzioni in linguaggio semplice.
-
-La ricerca è stata ben finanziata dalle agenzie governative, sono stati fatti progressi nel calcolo e negli algoritmi e sono stati costruiti prototipi di macchine intelligenti. Alcune di queste macchine includono:
-
-* [Shakey il robot](https://wikipedia.org/wiki/Shakey_the_robot), che poteva manovrare e decidere come eseguire i compiti "intelligentemente".
-
- 
- > Shakey nel 1972
-
-* Eliza, una delle prime "chatterbot", poteva conversare con le persone e agire come una "terapeuta" primitiva. Si Imparerà di piÚ su Eliza nelle lezioni di NLP.
-
- 
- > Una versione di Eliza, un chatbot
-
-* Il "mondo dei blocchi" era un esempio di un micromondo in cui i blocchi potevano essere impilati e ordinati e si potevano testare esperimenti su macchine per insegnare a prendere decisioni. I progressi realizzati con librerie come [SHRDLU](https://it.wikipedia.org/wiki/SHRDLU) hanno contribuito a far progredire l'elaborazione del linguaggio.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "Il mondo dei blocchi con SHRDLU")
-
- > đĨ Fare clic sull'immagine sopra per un video: Blocks world con SHRDLU
-
-## 1974 - 1980: "L'inverno dell'AI"
-
-Verso la metà degli anni '70, era diventato evidente che la complessità della creazione di "macchine intelligenti" era stata sottovalutata e che la sua promessa, data la potenza di calcolo disponibile, era stata esagerata. I finanziamenti si sono prosciugati e la fiducia nel settore è rallentata. Alcuni problemi che hanno influito sulla fiducia includono:
-
-- **Limitazioni**. La potenza di calcolo era troppo limitata.
-- **Esplosione combinatoria**. La quantità di parametri necessari per essere addestrati è cresciuta in modo esponenziale man mano che veniva chiesto di piÚ ai computer, senza un'evoluzione parallela della potenza e delle capacità di calcolo.
-- **Scarsità di dati**. C'era una scarsità di dati che ostacolava il processo di test, sviluppo e perfezionamento degli algoritmi.
-- **Stiamo facendo le domande giuste?**. Le stesse domande che venivano poste cominciarono ad essere messe in discussione. I ricercatori hanno iniziato a criticare i loro approcci:
- - I test di Turing furono messi in discussione attraverso, tra le altre idee, la "teoria della stanza cinese" che postulava che "la programmazione di un computer digitale puÃ˛ far sembrare che capisca il linguaggio ma non potrebbe produrre una vera comprensione". ([fonte](https://plato.stanford.edu/entries/chinese-room/))
- - L'etica dell'introduzione di intelligenze artificiali come la "terapeuta" ELIZA nella società è stata messa in discussione.
-
-Allo stesso tempo, iniziarono a formarsi varie scuole di pensiero sull'AI. à stata stabilita una dicotomia tra pratiche ["scruffy" contro "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). I laboratori _scruffy_ ottimizzavano i programmi per ore fino a quando non ottenevano i risultati desiderati. I laboratori _Neat_ "si focalizzavano sulla logica e sulla risoluzione formale dei problemi". ELIZA e SHRDLU erano ben noti _sistemi scruffy_. Negli anni '80, quando è emersa la richiesta di rendere riproducibili i sistemi ML, l'_approccio neat_ ha gradualmente preso il sopravvento in quanto i suoi risultati sono piÚ spiegabili.
-
-## Sistemi esperti degli anni '80
-
-Man mano che il settore cresceva, i suoi vantaggi per le imprese diventavano piÚ chiari e negli anni '80 lo stesso accadeva con la proliferazione di "sistemi esperti". "I sistemi esperti sono stati tra le prime forme di software di intelligenza artificiale (AI) di vero successo". ([fonte](https://wikipedia.org/wiki/Expert_system)).
-
-Questo tipo di sistema è in realtà _ibrido_, costituito in parte da un motore di regole che definisce i requisiti aziendali e un motore di inferenza che sfrutta il sistema di regole per dedurre nuovi fatti.
-
-Questa era ha visto anche una crescente attenzione rivolta alle reti neurali.
-
-## 1987 - 1993: AI 'Chill'
-
-La proliferazione di hardware specializzato per sistemi esperti ha avuto lo sfortunato effetto di diventare troppo specializzato. L'ascesa dei personal computer ha anche gareggiato con questi grandi sistemi centralizzati specializzati. La democratizzazione dell'informatica era iniziata e alla fine ha spianato la strada alla moderna esplosione dei big data.
-
-## 1993 - 2011
-
-Questa epoca ha visto una nuova era per ML e AI per essere in grado di risolvere alcuni dei problemi che erano stati causati in precedenza dalla mancanza di dati e potenza di calcolo. La quantità di dati ha iniziato ad aumentare rapidamente e a diventare piÚ ampiamente disponibile, nel bene e nel male, soprattutto con l'avvento degli smartphone intorno al 2007. La potenza di calcolo si è ampliata in modo esponenziale e gli algoritmi si sono evoluti di pari passo. Il campo ha iniziato a maturare quando i giorni a ruota libera del passato hanno iniziato a cristallizzarsi in una vera disciplina.
-
-## Adesso
-
-Oggi, machine learning e intelligenza artificiale toccano quasi ogni parte della nostra vita. Questa era richiede un'attenta comprensione dei rischi e dei potenziali effetti di questi algoritmi sulle vite umane. Come ha affermato Brad Smith di Microsoft, "La tecnologia dell'informazione solleva questioni che vanno al cuore delle protezioni fondamentali dei diritti umani come la privacy e la libertà di espressione. Questi problemi aumentano la responsabilità delle aziende tecnologiche che creano questi prodotti. A nostro avviso, richiedono anche un'attenta regolamentazione del governo e lo sviluppo di norme sugli usi accettabili" ([fonte](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-Resta da vedere cosa riserva il futuro, ma è importante capire questi sistemi informatici e il software e gli algoritmi che eseguono. Ci si augura che questo programma di studi aiuti ad acquisire una migliore comprensione in modo che si possa decidere in autonomia.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 " storia del deep learning")
-> đĨ Fare clic sull'immagine sopra per un video: Yann LeCun discute la storia del deep learning in questa lezione
-
----
-
-## đ Sfida
-
-Approfondire uno di questi momenti storici e scoprire
- di piÚ sulle persone che stanno dietro ad essi. Ci sono personaggi affascinanti e nessuna scoperta scientifica è mai stata creata in un vuoto culturale. Cosa si è scoperto?
-
-## [Quiz post-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/?loc=it)
-
-## Revisione e Auto Apprendimento
-
-Ecco gli elementi da guardare e ascoltare:
-
-[Questo podcast in cui Amy Boyd discute l'evoluzione dell'AI](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "La storia dell'AI di Amy Boyd")
-
-## Compito
-
-[Creare una sequenza temporale](assignment.it.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.ja.md b/1-Introduction/2-history-of-ML/translations/README.ja.md
deleted file mode 100644
index 780b1f85..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.ja.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# æŠæĸ°åĻįŋãŽæ´å˛
-
-
-> [Tomomi Imura](https://www.twitter.com/girlie_mac)ãĢãããšãąãã
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3?loc=ja)
-
-ããŽææĨã§ã¯ãæŠæĸ°åĻįŋã¨äēēåˇĨįĨčŊãŽæ´å˛ãĢãããä¸ģčĻãĒåēæĨäēãį´šäģããžãã
-
-äēēåˇĨįĨčŊīŧAIīŧãŽæ´å˛ã¯ãæŠæĸ°åĻįŋãŽæ´å˛ã¨å¯æĨãĢéĸäŋããĻããžãããĒããĒãã°ãæŠæĸ°åĻįŋãæ¯ãããĸãĢã´ãĒãēã ã¨č¨įŽãŽé˛æŠããAIãŽįēåąãĢã¤ãĒããŖãããã§ããããããŽåéã¯ã1950åš´äģŖãĢæįĸēãĢãĒãå§ããžããããéčĻãĒ[ãĸãĢã´ãĒãēã ãįĩąč¨ãæ°åĻãč¨įŽãæčĄįãĒįēčĻ](https://wikipedia.org/wiki/Timeline_of_machine_learning)ã¯ãããŽæäģŖãããåãĢããããĻåæãĢčĄãããĻãããã¨ãčĻããĻããã¨ããã§ããããåŽéãäēēã
ã¯[äŊįžåš´ã](https://wikipedia.org/wiki/History_of_artificial_intelligence)ããŽåéĄãĢã¤ããĻčããĻããžãããīŧããŽč¨äēã§ã¯ããčããæŠæĸ°ãã¨ãããĸã¤ããĸãŽæ´å˛įãĒįĨįåēį¤ãĢã¤ããĻčĒŦæãããĻããžããīŧ
-
-
-## æŗ¨įŽããšãįēčĻ
-- 1763åš´ã1812åš´ [ãã¤ãēãŽåŽį](https://wikipedia.org/wiki/Bayes%27_theorem)ã¨ããŽåčēĢãŽįēčĻãããäē蹥ãčĩˇããįĸēįããäēåãŽįĨčãĢåēãĨããĻč¨čŋ°ããæ¨čĢãŽåēį¤ã¨ãĒãåŽįã¨ããŽåŋį¨ã
-- 1805åš´ ããŠãŗãšãŽæ°åĻč
ãĸããĒãĸãŗīŧããĒãŧãģãŦã¸ã§ãŗããĢãĢãã[æå°äēäšįčĢ](https://wikipedia.org/wiki/Least_squares)ãããŽįčĢã¯ãããŧãŋãŽããŖãããŖãŗã°ãĢåŊšįĢã¤ã
-- 1913åš´ ããˇãĸãŽæ°åĻč
ãĸãŗããŦã¤ãģããĢãŗããĢãĄãĒãã§åäģãããã[ããĢãŗãéŖé](https://wikipedia.org/wiki/Markov_chain)ã¯ãäģĨåãŽįļæ
ãĢåēãĨããĻčĩˇããããä¸éŖãŽäē蹥ãč¨čŋ°ãããããĢäŊŋį¨ãããã
-- 1957åš´ [ããŧãģããããŗ](https://wikipedia.org/wiki/Perceptron)ã¯ããĸãĄãĒãĢãŽåŋįåĻč
ããŠãŗã¯ãģããŧãŧãŗããŠãããįēæããįˇåŊĸåéĄå¨ãŽä¸į¨Žã§ãããæˇąåą¤åĻįŋãŽåēį¤ã¨ãĒãŖãĻããã
-- 1967 [æå°čŋåæŗ](https://wikipedia.org/wiki/Nearest_neighbor)ã¯ãå
ã
ã¯įĩ莝æĸį´ĸãŽãããĢčæĄããããĸãĢã´ãĒãēã ãMLã§ã¯ããŋãŧãŗãŽæ¤åēãĢį¨ããããã
-- 1970åš´ [ããã¯ãããã˛ãŧãˇã§ãŗ](https://wikipedia.org/wiki/Backpropagation)ãį¨ããĻ[ããŖãŧãããŠã¯ãŧããģããĨãŧãŠãĢãããã¯ãŧã¯īŧé äŧæåããĨãŧãŠãĢãããã¯ãŧã¯īŧ](https://wikipedia.org/wiki/Feedforward_neural_network)ãåĻįŋããã
-- 1982åš´ [å帰åããĨãŧãŠãĢãããã¯ãŧã¯](https://wikipedia.org/wiki/Recurrent_neural_network) ã¯ãããŖãŧãããŠã¯ãŧããģããĨãŧãŠãĢãããã¯ãŧã¯ããæ´žįããäēēåˇĨįãĒããĨãŧãŠãĢãããã¯ãŧã¯ã§ãæéįãĒã°ãŠããäŊæããžãã
-
-â
å°ãčĒŋãšãĻãŋãĻãã ãããMLã¨AIãŽæ´å˛ãŽä¸ã§éčĻãĒæĨäģã¯äģãĢãããžããīŧ
-
-## 1950: æčããæŠæĸ°
-ãĸãŠãŗãģããĨãŧãĒãŗã°ã¯ã[2019åš´ãĢä¸éãã](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)20ä¸į´æå¤§ãŽį§åĻč
ã¨ããĻæįĨ¨ããããįãĢåĒããäēēįŠã§ããčãããã¨ãã§ããæŠæĸ°ãã¨ããæĻåŋĩãŽåēį¤ãį¯ããŽãĢč˛ĸįŽããã¨ãããĻããžããåŊŧã¯ãåĻåŽįãĒæčĻããããŽæĻåŋĩãŽåŽč¨ŧįãĒč¨ŧæ ãåŋ
čĻã¨ããčĒåčĒčēĢã¨ãããŽå
čĒįļč¨čĒåĻįãŽææĨã§č§Ļãããã¨ã¨ãĒã[ããĨãŧãĒãŗã°ãģããšã](https://www.bbc.com/news/technology-18475646)ãäŊæãããã¨ã§æĻããžããã
-
-## 1956: ããŧãããšãģãĩããŧãģãĒãĩãŧããģããã¸ã§ã¯ã
-ããŧãããšãģãĩããŧãģãĒãĩãŧããģããã¸ã§ã¯ãã¯ãåéã¨ããĻãŽäēēåˇĨįĨčŊãĢã¨ãŖãĻéčĻãĒåēæĨäēã§ãããããã§ãäēēåˇĨįĨčŊãã¨ããč¨čãäŊãããžããīŧ[åēå
¸](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)īŧ
-
-> åĻįŋãããŽäģãŽįĨčŊãŽããããå´éĸã¯ãåįįãĢé常ãĢæŖįĸēãĢč¨čŋ°ãããã¨ãã§ãããŽã§ãããããˇããĨãŦãŧãããæŠæĸ°ãäŊããã¨ãã§ããã
-
-ä¸ģäģģį įŠļč
ã§ããæ°åĻãŽã¸ã§ãŗãģãããĢãŧãˇãŧææã¯ããåĻįŋãŽããããå´éĸãįĨčŊãŽããŽäģãŽįšåž´ã¯ãåįįãĢé常ãĢæŖįĸēãĢč¨čŋ°ãããã¨ãã§ãããŽã§ãããããˇããĨãŦãŧãããæŠæĸ°ãäŊããã¨ãã§ããã¨ããæ¨æ¸ŦãĢåēãĨããĻé˛ããĻãããããã¨čããĻããžãããåå č
ãŽä¸ãĢã¯ãããŽåéãŽčåäēēã§ããããŧããŗãģããŗãšããŧãããžããã
-
-ããŽã¯ãŧã¯ãˇã§ããã§ã¯ããč¨åˇįææŗãŽå°é ãéåŽãããé åãĢįĻįšãåŊãĻããˇãšãã īŧåæãŽã¨ããšããŧããˇãšãã īŧãæŧįššįãˇãšãã ã¨å¸°į´įãˇãšãã ãŽæ¯čŧããĒãŠãŽč°čĢãéå§ãããäŋé˛ãããã¨čŠäžĄãããĻããžããīŧ[åēå
¸](https://wikipedia.org/wiki/Dartmouth_workshop)īŧ
-
-## 1956 - 1974: éģéæ
-
-1950åš´äģŖãã70åš´äģŖåã°ãžã§ã¯ãAIãããžããžãĒåéĄãč§ŖæąēããĻããããŽã§ã¯ãĒããã¨ããæĨŊčĻŗįãĒčĻæšãåēããŖãĻããžããã1967åš´ãããŧããŗãģããŗãšããŧã¯ãä¸ä¸äģŖãŽããĄãĢ...ãäēēåˇĨįĨčŊããäŊãã¨ããåéĄã¯åŽčŗĒįãĢč§Ŗæąēãããã ãããã¨čĒäŋĄãæãŖãĻčŋ°ãšãĻããã(Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-čĒįļč¨čĒåĻįãŽį įŠļãįããĢãĒããæ¤į´ĸãæ´įˇ´ãããĻããåŧˇåãĢãĒããåšŗæãĒč¨čĒãĢããæį¤ēã§į°ĄåãĒäŊæĨãããĒãããã¤ã¯ãã¯ãŧãĢããã¨ããæĻåŋĩãįãžããã
-
-į įŠļã¯æŋåēæŠéĸããæŊ¤æ˛ĸãĒčŗéãæäžãããč¨įŽã¨ãĸãĢã´ãĒãēã ã鞿ŠããįĨįæŠæĸ°ãŽããããŋã¤ããäŊããããããŽä¸ãĢã¯æŦĄãŽãããĒããŽãããã
-
-* į§ģåãããããŋãšã¯ãåŽčĄããæšæŗããįĨįãĢãæąēåŽãããã¨ãã§ãããããã[ãShakeyã](https://wikipedia.org/wiki/Shakey_the_robot)
-
- 
- > 1972ãŽShakey
-
-* åæãŽãããããšããããããã§ããElizaã¯ãäēēã¨äŧ芹ãããã¨ãã§ããåå§įãĒããģãŠããšãããŽåŊšå˛ãæããããã¨ãĒãļãĢã¤ããĻã¯ãNLPãŽãŦããšãŗã§čŠŗããčĒŦæããžãã
-
- 
- > ããŖãããããEliza
-
-* ãBlocks worldãã¯ããããã¯ãįŠãŋä¸ãããä¸Ļãšæŋããããããã¤ã¯ãã¯ãŧãĢããŽä¸äžã§ãæŠæĸ°ãĢ夿åãčēĢãĢã¤ããããåŽé¨ãčĄãŖãã[SHRDLU](https://wikipedia.org/wiki/SHRDLU)ãã¯ããã¨ãããŠã¤ããŠãĒãŽé˛æŠã¯ãč¨čĒåĻįãŽįēåąãĢ大ããč˛ĸįŽããã
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "SHRDLUãį¨ããblocks world")
-
- > đĨ ä¸ãŽįģåãã¯ãĒãã¯ããã¨åįģãčĻãããžãīŧ"SHRDLUãį¨ããblocks world"
-
-## 1974 - 1980: AIãŽåŦ
-
-1970åš´äģŖåã°ãĢãĒãã¨ããįĨįãǿпĸ°ããäŊããã¨ãŽč¤éããéå°čŠäžĄãããĻãããã¨ããåŠį¨å¯čŊãĒč¨įŽčŊåãčæ
Žããã¨ãããŽå°æĨæ§ãé大čŠäžĄãããĻãããã¨ãæãããĢãĒããžãããčŗéãæ¯æ¸ããããŽåéã¸ãŽäŋĄé ŧãäŊä¸ãããäŋĄé ŧæ§ãĢåŊąéŋãä¸ããåéĄãĢã¯äģĨä¸ãŽãããĒããŽãããã:
-
-- **éį**. č¨įŽčŊåãŽéį
-- **įĩãŋåãããŽįįē**. åĻįŋãĢåŋ
čĻãĒããŠãĄãŧãŋãŽéã¯ããŗãŗããĨãŧãŋãĢčĻæąããããã¨ãå¤ããĒããĢã¤ããĻææ°éĸæ°įãĢåĸå ããžãããããŗãŗããĨãŧãŋãŽæ§čŊãčŊåã¯ä¸ĻčĄããĻé˛åããžããã§ããã
-- **ããŧãŋãŽå°ãĒã**. ããŧãŋãä¸čļŗããĻããããããĸãĢã´ãĒãēã ãŽããšããéįēãæšč¯ãŽãããģãšãåύããããã
-- **æŖããčŗĒåãããĻãããŽããŠãã**. åããããĻããčŗĒåããŽããŽãįåčĻããå§ãããį įŠļč
ããĄã¯ãčĒåããĄãŽãĸãããŧããĢæšå¤įãĒæčĻãæã¤ãããĢãĒãŖãã
- - ããĨãŧãĒãŗã°ããšãã¯ãããŗãŗããĨãŧãŋãããã°ãŠããŗã°ãããã¨ã§ãč¨čĒãįč§ŖããĻãããããĢčĻãããããã¨ã¯ã§ããããæŦåŊãŽæåŗã§ãŽįč§Ŗã¯ã§ããĒããã¨ãããããŖã¤ããŧãēãĢãŧã įčĢããĒãŠãĢããŖãĻãįåčĻããããããĢãĒãŖãã([åēå
¸](https://plato.stanford.edu/entries/chinese-room/))
- - ãģãŠããšãã¨ããĻELIZAãŽãããĒäēēåˇĨįĨčŊãį¤žäŧãĢå°å
Ĩãããã¨ãŽåĢįæ§ãåãããã
-ããã¨åæãĢãããžããžãĒAIãŽæĩæ´žãåŊĸæããå§ããžãããä¸ã¤ã¯ã["Scruffy"㨠"Neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies)ã¨ããäēåæŗã§ãããScruffyãĒį įŠļ厤ã§ã¯ãįŽįãŽįĩæãåžããããžã§äŊæéãããã°ãŠã ããããŖãĻãã䏿šãneatãĒį įŠļ厤ã§ã¯ãčĢįã¨åŊĸåŧįãĒåéĄč§ŖæąēãéčĻãããELIZAãSHRDLUãĒãŠãæåãĒScruffyã§ãããˇãšãã ã§ããã1980åš´äģŖãĢå
ĨãŖãĻãMLãˇãšãã ãŽåįžæ§ãæąãããããããĢãĒãã¨ãįĩæãčĒŦæå¯čŊã§ãããã¨ãããæŦĄįŦŦãĢneatãĒãĸãããŧããä¸ģæĩãĢãĒãŖãĻãããžããã
-
-## 1980s ã¨ããšããŧããˇãšãã
-
-åéãįēåąãããĢã¤ãããã¸ããšã¸ãŽč˛ĸįŽãæįĸēãĢãĒãã1980åš´äģŖãĢã¯ãã¨ããšããŧããˇãšãã ããæŽåããžããããã¨ããšããŧããˇãšãã ã¯ãäēēåˇĨįĨčŊīŧAIīŧãŊãããĻã§ãĸãŽä¸ã§æåãĢįãĢæåããåŊĸæ
ãŽä¸ã¤ã§ããããã¨č¨ãããĻããžããīŧ[åēå
¸](https://wikipedia.org/wiki/Expert_system)īŧ
-
-ããŽãŋã¤ããŽãˇãšãã ã¯ããã¸ããščĻäģļãåŽįžŠãããĢãŧãĢã¨ãŗã¸ãŗã¨ããĢãŧãĢãˇãšãã ãæ´ģį¨ããĻæ°ããĒäēåŽãæ¨čĢããæ¨čĢã¨ãŗã¸ãŗã§æ§æããããã¤ããĒããåã§ãã
-
-ãžããããŽæäģŖã¯ããĨãŧãŠãĢãããã¯ãŧã¯ãĢãæŗ¨įŽãéãžãŖãã
-
-## 1987 - 1993: AIãŽåˇãčžŧãŋ
-
-å°éåéãĢįšåããã¨ããšããŧããˇãšãã ãŽããŧããĻã§ãĸãæŽåãããã¨ã§ãå°éæ§ãéĢããĒããããĻããžãã¨ããæŽåŋĩãĒįĩæãĢãĒããžããããžããããŧãŊããĢãŗãŗããĨãŧãŋãŽå°é ã¯ãããããŽå¤§čĻæ¨Ąã§å°éįãĒä¸å¤Žé樊įãˇãšãã ã¨įĢļåããããŗãŗããĨãŧããŖãŗã°ãŽæ°ä¸ģåãå§ãžããæįĩįãĢã¯įžäģŖãŽįįēįãĒããã°ããŧãŋã¸ãŽéãéãããžããã
-
-## 1993 - 2011
-
-ããŽæéã§ã¯ãããäģĨåãĢããŧãŋã¨č¨įŽčŊåãŽä¸čļŗãĢããŖãĻåŧãčĩˇããããĻããåéĄããMLãAIãč§Ŗæąēã§ãããããĢãĒãŖãĻãããįšãĢ2007åš´é ãĢãšããŧãããŠãŗãįģå ´ãããã¨ã§ãč¯ããæĒããããŧãŋéãæĨéãĢåĸå ããåēãåŠį¨ããããããĢãĒããžãããč¨įŽæŠãŽæ§čŊãéŖčēįãĢåä¸ãããĸãĢã´ãĒãēã ããããĢåãããĻé˛åããĻãããžãããéåģãŽčĒįąåĨæžãĒæäģŖãããįãŽåĻåã¨ããĻãŽįĩæļåãå§ãžããããŽåéã¯æįããĻãããžããã
-
-## įžå¨
-
-įžå¨ãæŠæĸ°åĻįŋãAIã¯ãį§ããĄãŽįæ´ģãŽãģãŧããšãĻãŽé¨åãĢéĸããŖãĻããžããããŽãããĒæäģŖãĢã¯ãããããŽãĸãĢã´ãĒãēã ãäēēéãŽįæ´ģãĢåãŧããĒãšã¯ãæŊå¨įãĒåŊąéŋãæŗ¨ææˇąãįč§Ŗãããã¨ãæąããããžãããã¤ã¯ããŊãããŽããŠãããģãšããšã¯ããæ
å ąæčĄã¯ãããŠã¤ããˇãŧã襨įžãŽčĒįąã¨ããŖãåēæŦįãĒäē翍ŠäŋčˇãŽæ ¸åŋãĢčŋĢãåéĄãæčĩˇããžããæ
å ąæčĄã¯ãããŠã¤ããˇãŧã襨įžãŽčĒįąã¨ããŖãåēæŦįãĒäē翍ŠäŋčˇãŽæ šåššãĢéĸããåéĄãæčĩˇããžããæã
ãŽčĻč§Ŗã§ã¯ãããããŽåéĄã¯ãæŋåēãĢããææ
ŽæˇąãčĻåļã¨ãč¨ąåŽšãããäŊŋ፿šæŗãĢéĸããčĻį¯ãŽįåŽãåŋ
čĻã¨ããĻããžãããã¨čŋ°ãšãĻããžããīŧ[åēå
¸](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)īŧ
-
-æĒæĨããŠããĒããã¯ãžã ããããžããããããããŽãŗãŗããĨãŧãŋãˇãšãã ã¨ããããåãããŊãããĻã§ãĸããĸãĢã´ãĒãēã ãįč§Ŗãããã¨ã¯éčĻã§ããããŽãĢãĒããĨãŠã ãčĒčēĢã§å¤æãããĢããããããč¯ãįč§ŖãåŠããããŽãĢãĒãã¨åš¸ãã§ãã
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "ããŖãŧããŠãŧããŗã°ãŽæ´å˛")
-> đĨ ä¸ãŽįģåãã¯ãĒãã¯ããã¨åįģãčĻãããžãīŧããŽãŦã¯ããŖãŧã§ã¯Yann LeCunãããŖãŧããŠãŧããŗã°ãŽæ´å˛ãĢã¤ããĻč°čĢããĻããžãã
-
----
-## đChallenge
-
-ããããŽæ´å˛įįŦéãŽ1ã¤ãæãä¸ããĻãããŽčåžãĢããäēēã
ãĢã¤ããĻåĻãŗãžããããé
åįãĒäēēã
ãããžãããæåįãĢįŠēįŊãŽįļæ
ã§į§åĻįįēčĻããĒããããã¨ã¯ãããžããããŠãããŖããã¨ãčĻã¤ããã§ããããīŧ
-
-## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4?loc=ja)
-
-## æ¯ãčŋãã¨čĒįŋ
-
-čĻč´ãããšãææã¯äģĨä¸ãĢãĒããžã:
-
-[Amy BoydãAIãŽé˛åãĢã¤ããĻčŋ°ãšãĻãããããããŖãšã](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy BoydãĢããAIãŽæ´å˛")
-
-## čǞéĄ
-
-[åš´čĄ¨ãäŊæãã](./assignment.ja.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.ko.md b/1-Introduction/2-history-of-ML/translations/README.ko.md
deleted file mode 100644
index cf0a1dae..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.ko.md
+++ /dev/null
@@ -1,118 +0,0 @@
-# 머ė ëŦëė ėėŦ
-
-
-> Sketchnote by [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [ę°ė ė í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
-ė´ ę°ėėė, 머ė ëŦëęŗŧ ė¸ęŗĩ ė§ëĨė ėėŦėė ėŖŧė ë§ėŧė¤í¤ė ė´í´ëŗ´ë ¤ íŠëë¤.
-
-ė¸ęŗĩ ė§ëĨ, AIė ėėŦë 머ė ëŦëė ėėŦė ėëĄ ėŽėŦ ėėŧ늰, MLė ë°ėŗėŖŧë ėęŗ ëĻŦėĻęŗŧ ęŗė° 기ė ė´ AIė ę°ë°ė 기ėŦíėĩëë¤. ë
íší íęĩŦ ėėėŧëĄ ė´ë° ëļėŧë 1950ë
ė ęĩŦ랴ė ėŧëĄ ėėíė§ë§, ė¤ėí [algorithmical, statistical, mathematical, computational and technical discoveries](https://wikipedia.org/wiki/Timeline_of_machine_learning)ëĄ ė´ ėëëĨŧ ė¤ë˛ëŠíë¤ęŗ ėę°íë ę˛ ė ėŠíŠëë¤. ė¤ė ëĄ, ėŦëë¤ė [hundreds of years](https://wikipedia.org/wiki/History_of_artificial_intelligence)ëė ė´ ė§ëŦ¸ė ėę°í´ėėĩëë¤: ė´ ėí°í´ė 'thinking machine'ëŧë ę°ë
ė ėėŦė ė§ė í ëė ëíėŦ ė´ėŧ기 íŠëë¤.
-
-## ėŖŧëĒŠí ë°ę˛Ŧ
-
-- 1763, 1812 [Bayes Theorem](https://wikipedia.org/wiki/Bayes%27_theorem)ęŗŧ ė ėė. ė´ ė ëĻŦė ė ėŠė ėŦė ė§ė 기ë°ėŧëĄ ė´ë˛¤í¸ę° ë°ėí íëĨ ė ė¤ëĒ
í ėļëĄ ė 기ė´ę° ëŠëë¤.
-- 1805 [Least Square Theory](https://wikipedia.org/wiki/Least_squares) by íëė¤ ėíė Adrien-Marie Legendre. Regression ë¨ėėė ë°°ė¸ ė´ ė´ëĄ ė, ë°ė´í° íŧí
ė ëėė´ ëŠëë¤.
-- 1913 ëŦėė ėíė Andrey Markovė ė´ëĻėė ė ëë [Markov Chains](https://wikipedia.org/wiki/Markov_chain)ë ė´ė ėíëĨŧ 기ë°ėŧëĄ ę°ëĨí ė´ë˛¤í¸ė ėíė¤ëĨŧ ė¤ëĒ
íë ë° ėŦėŠëŠëë¤.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron)ė 미ęĩ ėŦëĻŦíė Frank Rosenblattė´ ę°ë°í linear classifierė í íė
ėŧëĄ ëĨëŦë ë°ė ė ëˇë°ėšŠëë¤.
-- 1967 [Nearest Neighbor](https://wikipedia.org/wiki/Nearest_neighbor)ë ėë ę˛ŊëĄëĨŧ ë§ĩíí기 ėí ėęŗ ëĻŦėĻė
ëë¤. ML contextėė í¨í´ė ę°ė§í ë ėŦėŠíŠëë¤.
-- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation)ė [feedforward neural networks](https://wikipedia.org/wiki/Feedforward_neural_network)ëĨŧ íėĩí ë ėŦėŠíŠëë¤.
-- 1982 [Recurrent Neural Networks](https://wikipedia.org/wiki/Recurrent_neural_network)ë ėę° ęˇ¸ëíëĨŧ ėėąíë feedforward neural networksėė íėí ė¸ęŗĩ ė ę˛Ŋë§ė
ëë¤.
-
-â
ėĄ°ę¸ ėĄ°ėŦí´ëŗ´ė¸ė. MLęŗŧ AIė ėėŦėė ė¤ėí ë¤ëĨ¸ ë ė§ë ė¸ė ė¸ę°ė?
-
-## 1950: ėę°íë 기ęŗ
-
-20ė¸ę¸°ė ėĩęŗ ęŗŧíėëĄ [by the public in 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)ė ė íë, Alan Turingė, 'machine that can think.'ëŧë ę°ë
ė 기ë°ė ęĩŦėļíë ë°ė 기ėŦí ę˛ėŧëĄ íę°ëęŗ ėėĩëë¤.
-NLP ę°ėėė ė´í [Turing Test](https://www.bbc.com/news/technology-18475646)ëĨŧ ë§ë¤ė´ė ëļëļė ėŧëĄ ė´ ę°ë
ė ëí ę˛Ŋíė ė¸ ë°ëíë ėŦëë¤ęŗŧ ëëĻŊíėĩëë¤.
-
-## 1956: Dartmouth ėŦëĻ ė°ęĩŦ íëĄė í¸
-
-"The Dartmouth Summer Research Project on artificial intelligence was a seminal event for artificial intelligence as a field," ([source](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))ėė "ė¸ęŗĩ ė§ëĨ"ė´ëŧë ėŠė´ę° ë§ë¤ė´ėĄėĩëë¤.
-
-> íėĩė ëǍë ė¸ĄëŠ´ė´ë ė§ëĨė ë¤ëĨ¸ 기ëĨė ėėšė ėŧëĄ ė ííę˛ ėė í ė ėė´ė ė´ëĨŧ ë°ëŧ í 기ęŗëĨŧ ë§ë¤ ė ėėĩëë¤.
-
-ėė ė°ęĩŦėė¸, ėí ęĩė John McCarthyë, "to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it."ė´ëŧęŗ íŦë§íėĩëë¤. ė°¸ę°í ėŦëë¤ ė¤ėėë Marvin Minskyë ėėėĩëë¤.
-
-ė´ ėíŦėė "the rise of symbolic methods, systems focussed on limited domains (early expert systems), and deductive systems versus inductive systems." ([source](https://wikipedia.org/wiki/Dartmouth_workshop))ė íŦí¨í´ė ėŦëŦ í ëĄ ė ėėíęŗ ėĨë ¤í ę˛ėŧëĄ íę°ëŠëë¤.
-
-## 1956 - 1974: "The golden years"
-
-1950ë
ëëļí° 70ë
ë ė¤ėęšė§ AIëĄ ë§ė ëŦ¸ė ëĨŧ í´ę˛°í ė ėë¤ęŗ ë¯ŋė ëę´ėŖŧėę° ėģ¤ėĄėĩëë¤. 1967ë
Marvin Minskyë "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)ė´ëŧęŗ ėė ėę˛ ë§íėĩëë¤.
-
-natural language processing ė°ęĩŦę° ë°ė íęŗ , ę˛ėė´ ę°ė ëė´ ë ę°ë Ĩí´ėĄėŧ늰, ë¨ėí ė¸ė´ ė§ėš¨ėŧëĄ ę°ë¨í ėė
ė ėëŖíë 'micro-worlds'ëŧë ę°ë
ė´ ėę˛ŧėĩëë¤.
-
-ė ëļ ė§ėė ë°ėŧ늰 ė°ęĩŦíėŧ늰, ęŗė°ęŗŧ ėęŗ ëĻŦėĻė´ ë°ė í늴ė, ė§ëĨė 기ęŗė íëĄí íė
ė´ ë§ë¤ė´ėĄėĩëë¤. ė´ë° ę¸°ęŗ ė¤ė ėŧëļë ėëė ę°ėĩëë¤:
-
-* [Shakey the robot](https://wikipedia.org/wiki/Shakey_the_robot), 'ė§ëĨė 'ėŧëĄ ėė
íë ë°Šë˛ė ėĄ°ėĸ
íęŗ ę˛°ė í ė ėėĩëë¤.
-
- 
- > Shakey in 1972
-
-* ė´ę¸° 'chatterbot'ė¸, Elizaë, ėŦëë¤ęŗŧ ė´ėŧ기íęŗ ėėė 'ėšëŖėŦ' ėí ė í ė ėėėĩëë¤. NLP ę°ėėė Elizaė ëíėŦ ėė¸í ėėë´
ėë¤.
-
- 
- > A version of Eliza, a chatbot
-
-* "Blocks world"ë ë¸ëĄė ėęŗ ëļëĨí ė ėë ë§ė´íŦëĄ-ėëė ėėė´ëа, 결ė íë 기ęŗëĨŧ ę°ëĨ´ėš ė¤íė í
ė¤í¸í ė ėėėĩëë¤. [SHRDLU](https://wikipedia.org/wiki/SHRDLU)ė ę°ė ëŧė´ë¸ëŦëĻŦëĄ ë§ë¤ė´ė§ ë°ëĒ
ė language processingëĨŧ ë°ė ėí¤ë ë° ëėė´ ëėėĩëë¤.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world with SHRDLU")
-
- > đĨ ėėė ëŗ´ë ¤ëŠ´ ė´ë¯¸ė§ í´ëĻ: Blocks world with SHRDLU
-
-## 1974 - 1980: "AI Winter"
-
-1970ë
ė¤ėė, 'ė¸ęŗĩ 기ęŗ'ëĨŧ ë§ëë ëŗĩėĄëę° ęŗŧė íę°ë늴ė, ėŖŧė´ė§ ėģ´í¨í° íėëĨŧ ęŗ ë ¤í´ëŗ´ë, ꡸ ėŊėė ęŗŧėĨë ę˛ė´ ëļëĒ
í´ėĄėĩëë¤. ėę¸ė´ ęŗ ę°ëęŗ íėĨė ëí ėė ę°ë ëë ¤ėĄėĩëë¤. ė ëĸ°ė ėíĨė ė¤ ė´ėë ėëė ėėĩëë¤:
-
-- **ė í**. ėģ´í¨í° ėąëĨė´ ëëŦ´ ė íëėėĩëë¤.
-- **ę˛°íŠ íė´**. íë ¨ė íėí íëŧ미í°ė ėė´ ėģ´í¨í° ėąëĨ, 기ëĨęŗŧ ëŗę°ëĄ ėģ´í¨í°ė ėė˛ė ë°ëŧ ëė´ëŦėĩëë¤.
-- **ë°ė´í° ëļėĄą**. ėęŗ ëĻŦėĻė í
ė¤í¸, ę°ë°, ꡸ëĻŦęŗ ę°ė í ė ėę˛ ë°ė´í°ę° ëļėĄąíėĩëë¤.
-- **ėŦë°ëĨ¸ ė§ëŦ¸ė¸ę°ė?**. ė§ëŦ¸ë°ė ꡸ ė§ëŦ¸ė ë°ëĄ ëŦŧėėĩëë¤. ė°ęĩŦėë¤ė ꡸ ė ęˇŧ ë°Šėė ëšííėĩëë¤:
- - íë§ í
ė¤í¸ë "programming a digital computer may make it appear to understand language but could not produce real understanding." ([source](https://plato.stanford.edu/entries/chinese-room/))íë¤ęŗ ę°ė í, 'chinese room theory'ė ë¤ëĨ¸ ėė´ëė´ė ėí´ ėëŦ¸ė´ ėę˛ŧėĩëë¤.
- - "ėšëŖėŦ" ELIZAė ę°ė ė¸ęŗĩ ė§ëĨė ėŦíė ëė
í늰 ė¤ëĻŦė ëė íėĩëë¤.
-
-ë ėę°ëė, ë¤ėí AI íęĩę° íėąë기 ėėíėĩëë¤. ["scruffy" vs. "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies) ėŦė´ė ė´ëļë˛ė´ íëĻŊëėėĩëë¤. _Scruffy_ ė°ęĩŦė¤ė ėíë 결ęŗŧëĨŧ ėģė ëęšė§ ëĒ ėę° ëė íëĄęˇ¸ë¨ė í¸ė
íėĩëë¤. _Neat_ ė°ęĩŦė¤ė ë
ŧëĻŦė ęŗĩėė ëŦ¸ė ëĨŧ í´ę˛°íë ë°ė ė´ė ė ë§ėļėėĩëë¤. ELIZAė SHRDLUë ė ėë ¤ė§ _scruffy_ ėė¤í
ė
ëë¤. 1980ë
ëė, ML ėė¤í
ė ėŦíí ė ėė´ėŧ ëë¤ë ėęĩŦėŦíė´ ėę˛ŧęŗ , _neat_ ë°Šėė´ ë 결ęŗŧëĨŧ ė¤ëĒ
í ė ėė´ė ė ė°¨ ė ëëĨŧ ė°¨ė§íėĩëë¤.
-
-## 1980s ė ëŦ¸ę° ėė¤í
-
-ė´ ëļėŧę° ėąėĨí늰, ëšėĻëė¤ė ëí ė´ė ė´ ëĒ
íí´ėĄęŗ , 1980ë
ëė 'ė ëŦ¸ę° ėė¤í
'ė´ íė°ëėėĩëë¤. "Expert systems were among the first truly successful forms of artificial intelligence (AI) software." ([source](https://wikipedia.org/wiki/Expert_system)).
-
-ė´ ėė¤í
ė íė
ė, ė¤ė ëĄ ëšėĻëė¤ ėęĩŦėŦíė ė ėíë ëŖ° ėė§ęŗŧ ėëĄė´ ėŦė¤ ėļëĄ íë ëŖ° ėė¤í
ė íėŠí ėļëĄ ėė§ėŧëĄ ëļëļė ęĩŦėąë _hybrid_ ė
ëë¤.
-
-ė´ë° ėëėë neural networksė ëí ę´ėŦė´ ëė´ëŦėĩëë¤.
-
-## 1987 - 1993: AI 'Chill'
-
-ė ëŦ¸íë ė ëŦ¸ę° ėė¤í
íëė¨ė´ė íė°ė ëëŦ´ëë ęŗ ė°¨ėëë ëļė´í 결ęŗŧëĨŧ ę°ė ¸ėėĩëë¤. ę°ė¸ėŠ ėģ´í¨í°ė ëļėė íŦęŗ , ė ëŦ¸íë, ė¤ėí ėė¤í
ęŗŧ ę˛Ŋėíėĩëë¤. ėģ´í¨í
ė ë¯ŧėŖŧíę° ėėëėęŗ , 결ęĩ íëė ëš
ë°ė´í° íë°ė ėí 길ė ė´ėėĩëë¤.
-
-## 1993 - 2011
-
-ė´ ėëėë MLęŗŧ AIę° ęŗŧęą° ë°ė´í°ė ėģ´í¨í° íė ëļėĄąėŧëĄ ė¸í´ ë°ėíë ëŦ¸ė ė¤ ėŧëļ í´ę˛°í ė ėë ėëĄė´ ėëę° ė´ë ¸ėĩëë¤. ë°ė´í°ė ėė ę¸ę˛Ší ëė´ë기 ėėíęŗ , 2007ë
ė ė¤ë§í¸í°ė´ ëė¤ëŠ´ė ėĸë ëėë ë ëę˛ ėŦėŠí ė ėę˛ ëėėĩëë¤. ėģ´í¨í° íėë íŦę˛ íėĨëėęŗ , ėęŗ ëĻŦėĻë í¨ęģ ë°ė íėĩëë¤. ęŗŧęą° ėė ëĄë ėëėė ė§ė í ęˇė¨ëĄ ė´ ëļėŧë ėąėí´ė§ę¸° ėėíėĩëë¤.
-
-## íėŦ
-
-ė¤ë ë , 머ė ëŦëęŗŧ AIë ė¸ėė ëëļëļė ėíĨė ë¯¸ėšŠëë¤. ė´ ėëėë ė´ëŦí ėęŗ ëĻŦėĻė´ ė¸ę°ė ė¸ėė 미ėšë ėíęŗŧ ė ėŦė ė¸ ėíĨė ëí ėŖŧėęšė ė´í´ëę° ėęĩŦëŠëë¤. Microsoftė Brad Smithę° ė¸ę¸íŠëë¤ "Information technology raises issues that go to the heart of fundamental human-rights protections like privacy and freedom of expression. These issues heighten responsibility for tech companies that create these products. In our view, they also call for thoughtful government regulation and for the development of norms around acceptable uses" ([source](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-미ëę° ė´ëģę˛ ëŗí ė§ ė ė ėė§ë§, ėģ´í¨í° ėė¤í
ęŗŧ ė´ëĨŧ ė¤ííë ėíí¸ė¨ė´ė ėęŗ ëĻŦėĻė ė´í´íë ę˛ė ė¤ėíŠëë¤. ė´ ėģ¤ëĻŦíëŧėŧëĄ ë ė ė´í´íęŗ ė¤ė¤ëĄ 결ė í ė ėę˛ ë기ëĨŧ ë°ëëë¤.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "The history of deep learning")
-> đĨ ėė ëŗ´ë ¤ëŠ´ ė ė´ë¯¸ė§ í´ëĻ: Yann LeCunė´ ę°ėėė ëĨëŦëė ėėŦëĨŧ ė´ėŧ기 íŠëë¤.
-
----
-## đ ëė
-
-ėėŦė ė¸ ėę°ė ėŦëë¤ ë¤ėė í ę°ė§ëĨŧ ė§ė¤ė ėŧëĄ íęŗ ėë ėëĨŧ ėė¸í ėėëŗ´ė¸ė. 매ë Ĩėë ėēëĻí°ę° ėėŧ늰, ëŦ¸íę° ėŦëŧė§ ęŗŗėėë ęŗŧíė ė¸ ë°ę˛Ŧė íė§ ëĒģíŠëë¤. ëšė ė ė´ë¤ ë°ę˛Ŧė í´ëŗ´ėëė?
-
-## [ę°ė í í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
-## ę˛í & ė기ėŖŧë íėĩ
-
-ëŗ´ęŗ ë¤ė ė ėë íëĒŠė ėëė ę°ėĩëë¤:
-
-[This podcast where Amy Boyd discusses the evolution of AI](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "The history of AI by Amy Boyd")
-
-## ęŗŧė
-
-[Create a timeline](../assignment.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.pt-br.md b/1-Introduction/2-history-of-ML/translations/README.pt-br.md
deleted file mode 100644
index 815c8722..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.pt-br.md
+++ /dev/null
@@ -1,118 +0,0 @@
-# HistÃŗria do machine learning
-
-
-> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Teste prÊ-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3?loc=ptbr)
-
-Nesta liÃ§ÃŖo, veremos os principais marcos da histÃŗria do machine learning e da artificial intelligence.
-
-A histÃŗria da inteligÃĒncia artificial, IA, como um campo estÃĄ entrelaçada com a histÃŗria do machine learning, pois os algoritmos e os avanços computacionais por trÃĄs do machine learning contribuÃram para o desenvolvimento da inteligÃĒncia artificial. à Ãētil lembrar que, embora esses campos como ÃĄreas distintas de investigaÃ§ÃŖo tenham começado a se cristalizar na dÊcada de 1950, importantes [descobertas algorÃtmicas, estatÃsticas, matemÃĄticas, computacionais e tÊcnicas](https://wikipedia.org/wiki/Timeline_of_machine_learning)
-precederam e se sobrepuseram com esta Êpoca. Na verdade, as pessoas tÃĒm refletido sobre essas questÃĩes por [centenas de anos](https://wikipedia.org/wiki/History_of_artificial_intelligence): este artigo discute a base intelectual histÃŗrica da ideia de uma 'mÃĄquina pensante'.
-
-## Descobertas notÃĄveis
-
-- 1763, 1812 [Teorema de Bayes](https://wikipedia.org/wiki/Bayes%27_theorem) e seus predecessores. Este teorema e suas aplicaçÃĩes fundamentam a inferÃĒncia, descrevendo a probabilidade de um evento ocorrer com base em conhecimento prÊvio.
-- 1805 [Teoria dos MÃnimos Quadrados](https://wikipedia.org/wiki/Least_squares) pelo matemÃĄtico francÃĒs Adrien-Marie Legendre. Esta teoria, que vocÃĒ aprenderÃĄ em nossa unidade de regressÃŖo, ajuda no ajuste de dados.
-- 1913 [Cadeias de Markov](https://wikipedia.org/wiki/Markov_chain) com o nome do matemÃĄtico russo Andrey Markov Ê usado para descrever uma sequÃĒncia de eventos possÃveis com base em um estado anterior.
-- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) Ê um tipo de classificador linear inventado pelo psicÃŗlogo americano Frank Rosenblatt que fundamenta os avanços no aprendizado profundo.
-- 1967 [Vizinho mais prÃŗximo](https://wikipedia.org/wiki/Nearest_neighbor) Ê um algoritmo originalmente projetado para mapear rotas. Em um contexto de ML, ele Ê usado para detectar padrÃĩes.
-- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) Ê usado para treinar [redes neurais feedforward](https://wikipedia.org/wiki/Feedforward_neural_network).
-- 1982 [Redes Neurais Recorrentes](https://wikipedia.org/wiki/Recurrent_neural_network) sÃŖo redes neurais artificiais derivadas de redes neurais feedforward que criam grÃĄficos temporais.
-
-â
Faça uma pequena pesquisa. Que outras datas se destacam como fundamentais na histÃŗria do ML e da AI?
-
-## 1950: MÃĄquinas que pensam
-
-Alan Turing, uma pessoa verdadeiramente notÃĄvel que foi eleita [pelo pÃēblico em 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) como o maior cientista do sÊculo 20, Ê creditado por ajudar a lançar as bases para o conceito de uma 'mÃĄquina que pode pensar'. Ele lutou contra os pessimistas e sua prÃŗpria necessidade de evidÃĒncias empÃricas desse conceito, em parte criando o [Teste de Turing](https://www.bbc.com/news/technology-18475646), que vocÃĒ explorarÃĄ em nossas liçÃĩes de NPL.
-
-## 1956: Projeto de Pesquisa de VerÃŖo de Dartmouth
-
-"O Projeto de Pesquisa de VerÃŖo de Dartmouth sobre inteligÃĒncia artificial foi um evento seminal para a inteligÃĒncia artificial como um campo", e foi aqui que o termo 'inteligÃĒncia artificial (AI)' foi cunhado ([fonte](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> Cada aspecto da aprendizagem ou qualquer outra caracterÃstica da inteligÃĒncia pode, em princÃpio, ser descrito com tanta precisÃŖo que uma mÃĄquina pode ser feita para simulÃĄ-lo.
-
-O pesquisador principal, professor de matemÃĄtica John McCarthy, esperava "proceder com base na conjectura de que cada aspecto do aprendizado ou qualquer outra caracterÃstica da inteligÃĒncia pode, em princÃpio, ser descrito de forma tÃŖo precisa que uma mÃĄquina pode ser feita para simulÃĄ-lo". Os participantes incluÃram outro luminar da ÃĄrea, Marvin Minsky.
-
-O workshop Ê creditado por ter iniciado e encorajado vÃĄrias discussÃĩes, incluindo "o surgimento de mÊtodos simbÃŗlicos, sistemas focados em domÃnios limitados (primeiros sistemas especialistas) e sistemas dedutivos versus sistemas indutivos." ([fonte](https://wikipedia.org/wiki/Dartmouth_workshop)).
-
-## 1956 - 1974: "Os anos dourados"
-
-Dos anos 1950 atÊ meados dos anos 1970, o otimismo era alto na esperança de que a IA pudesse resolver muitos problemas. Em 1967, Marvin Minsky afirmou com segurança que "dentro de uma geraÃ§ÃŖo ... o problema de criar 'inteligÃĒncia artificial' serÃĄ substancialmente resolvido." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-A pesquisa em processamento de linguagem natural floresceu, a pesquisa foi refinada e tornada mais poderosa, e o conceito de "micro-mundos" foi criado, no qual tarefas simples sÃŖo concluÃdas usando instruçÃĩes de linguagem simples.
-
-A pesquisa foi bem financiada por agÃĒncias governamentais, avanços foram feitos em computaÃ§ÃŖo e algoritmos e protÃŗtipos de mÃĄquinas inteligentes foram construÃdos. Algumas dessas mÃĄquinas incluem:
-
-* [Shakey o robô](https://wikipedia.org/wiki/Shakey_the_robot), quem poderia manobrar e decidir como realizar as tarefas de forma 'inteligente'.
-
- 
- > Shakey em 1972
-
-* Eliza, um dos primeiros 'chatterbot', podia conversar com as pessoas e agir como uma 'terapeuta' primitiva. VocÃĒ aprenderÃĄ mais sobre Eliza nas liçÃĩes de NPL.
-
- 
- > Uma versÃŖo de Eliza, um chatbot
-
-* O "mundo dos blocos" era um exemplo de micro-mundo onde os blocos podiam ser empilhados e classificados, e experimentos em mÃĄquinas de ensino para tomar decisÃĩes podiam ser testados. Avanços construÃdos com bibliotecas como [SHRDLU](https://wikipedia.org/wiki/SHRDLU) ajudaram a impulsionar o processamento de linguagem.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "mundo dos blocos com SHRDLU")
-
- > đĨ Clique na imagem acima para ver um vÃdeo: Mundo dos blocos com SHRDLU
-
-## 1974 - 1980: "O inverno da AI"
-
-Em meados da dÊcada de 1970, ficou claro que a complexidade de criar 'mÃĄquinas inteligentes' havia sido subestimada e que sua promessa, dado o poder de computaÃ§ÃŖo disponÃvel, havia sido exagerada. O financiamento secou e a confiança no setor desacelerou. Alguns problemas que afetaram a confiança incluem:
-
-- **LimitaçÃĩes**. O poder de computaÃ§ÃŖo era muito limitado.
-- **ExplosÃŖo combinatÃŗria**. A quantidade de parÃĸmetros que precisavam ser treinados cresceu exponencialmente à medida que mais computadores eram exigidos, sem uma evoluÃ§ÃŖo paralela no poder e nas capacidades de computaÃ§ÃŖo.
-- **Falta de dados**. Havia uma escassez de dados que dificultou o processo de teste, desenvolvimento e refinamento dos algoritmos.
-- **Estamos fazendo as perguntas certas?**. As prÃŗprias perguntas que estavam sendo feitas começaram a ser questionadas. Os pesquisadores começaram a criticar suas abordagens:
- - Os testes de Turing foram desafiados atravÊs, entre outras ideias, da 'teoria da sala chinesa' que postulava que "programar um computador digital pode fazer com que pareça compreender a linguagem, mas nÃŖo pode produzir uma compreensÃŖo verdadeira". ([fonte](https://plato.stanford.edu/entries/chinese-room/))
- - A Êtica da introduÃ§ÃŖo de inteligÃĒncias artificiais como o "terapeuta" de ELIZA na sociedade tem sido questionada.
-
-Ao mesmo tempo, vÃĄrias escolas de pensamento de IA começaram a se formar. Uma dicotomia foi estabelecida entre as prÃĄticas ["scruffy" versus "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). O laboratÃŗrio do _Scruffy_ otimizou os programas por horas atÊ obter os resultados desejados. O laboratÃŗrio do _Neat_ "focava na soluÃ§ÃŖo de problemas lÃŗgicos e formais". ELIZA e SHRDLU eram sistemas desalinhados bem conhecidos. Na dÊcada de 1980, quando surgiu a demanda para tornar os sistemas de ML reproduzÃveis, a abordagem _neat_ gradualmente assumiu o controle, à medida que seus resultados eram mais explicÃĄveis.
-
-## Sistemas especialistas de 1980
-
-à medida que o campo cresceu, seus benefÃcios para os negÃŗcios tornaram-se mais claros e, na dÊcada de 1980, o mesmo aconteceu com a proliferaÃ§ÃŖo de 'sistemas especialistas'. "Os sistemas especialistas estavam entre as primeiras formas verdadeiramente bem-sucedidas de software de inteligÃĒncia artificial (AI)." ([fonte](https://wikipedia.org/wiki/Expert_system)).
-
-Na verdade, esse tipo de sistema Ê _hÃbrido_, consistindo parcialmente em um mecanismo de regras que define os requisitos de negÃŗcios e um mecanismo de inferÃĒncia que potencializa o sistema de regras para deduzir novos fatos.
-
-Essa era tambÊm viu uma crescente atenÃ§ÃŖo dada à s redes neurais.
-
-## 1987 - 1993: AI 'Chill'
-
-A proliferaÃ§ÃŖo de hardware de sistemas especialistas especializados teve o infeliz efeito de se tornar muito especializado. A ascensÃŖo dos computadores pessoais tambÊm competiu com esses sistemas grandes, especializados e centralizados. A democratizaÃ§ÃŖo da computaÃ§ÃŖo havia começado e, por fim, pavimentou o caminho para a explosÃŖo moderna de big data.
-
-## 1993 - 2011
-
-Essa Êpoca viu uma nova era para o ML e a AI serem capazes de resolver alguns dos problemas que eram causados anteriormente pela falta de dados e capacidade de computaÃ§ÃŖo. A quantidade de dados começou a aumentar rapidamente e se tornar mais amplamente disponÃvel, para melhor e para pior, especialmente com o advento do smartphone por volta de 2007. O poder de computaÃ§ÃŖo se expandiu exponencialmente e os algoritmos evoluÃram junto. O campo começou a ganhar maturidade à medida que os dias livres do passado começaram a se cristalizar em uma verdadeira disciplina.
-
-## Agora
-
-Hoje, o machine learning e a inteligÃĒncia artificial afetam quase todas as partes de nossa vida. Esta era requer uma compreensÃŖo cuidadosa dos riscos e efeitos potenciais desses algoritmos em vidas humanas. Como disse Brad Smith, da Microsoft, "a tecnologia da informaÃ§ÃŖo levanta questÃĩes que vÃŖo ao cerne das proteçÃĩes fundamentais dos direitos humanos, como privacidade e liberdade de expressÃŖo. Essas questÃĩes aumentam a responsabilidade das empresas de tecnologia que criam esses produtos. Observe, elas tambÊm exigem um governo cuidadoso regulamentaÃ§ÃŖo e o desenvolvimento de padrÃĩes sobre usos aceitÃĄveisââ" ([fonte](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
-Resta saber o que o futuro reserva, mas Ê importante entender esses sistemas de computador e o software e algoritmos que eles executam. Esperamos que este curso lhe ajude a obter um melhor entendimento para que vocÃĒ possa decidir por si mesmo.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "A histÃŗria do deep learning")
-> đĨ Clique na imagem acima para ver um vÃdeo: Yann LeCun discute a histÃŗria do deep learning nesta palestra
-
----
-## đDesafio
-
-Explore um desses momentos histÃŗricos e aprenda mais sobre as pessoas por trÃĄs deles. Existem personagens fascinantes e nenhuma descoberta cientÃfica foi criada em um vÃĄcuo cultural. O que vocÃĒ descobriu?
-
-## [QuestionÃĄrio pÃŗs-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4?loc=ptbr)
-
-## RevisÃŖo e Autoestudo
-
-Aqui estÃŖo os itens para assistir e ouvir:
-
-[Este podcast em que Amy Boyd discute a evoluÃ§ÃŖo da AI](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "A histÃŗria da AI ââpor Amy Boyd")
-
-## Tarefa
-
-[Crie uma linha do tempo](assignment.pt-br.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.ru.md b/1-Introduction/2-history-of-ML/translations/README.ru.md
deleted file mode 100644
index 013cf9cb..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.ru.md
+++ /dev/null
@@ -1,146 +0,0 @@
-# ĐŅŅĐžŅĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ
-
-
-> ĐаĐŧĐĩŅĐēа [ĐĸĐžĐŧĐžĐŧи ĐĐŧŅŅа](https://www.twitter.com/girlie_mac)
-
-## [ĐĸĐĩŅŅ ĐŋĐĩŅĐĩĐ´ ĐģĐĩĐēŅиĐĩĐš](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
----
-
-Đа ŅŅĐžĐŧ ŅŅĐžĐēĐĩ ĐŧŅ ŅаŅŅĐŧĐžŅŅиĐŧ ĐžŅĐŊОвĐŊŅĐĩ вĐĩŅ
и в иŅŅĐžŅии ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ¸ иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа.
-
-ĐŅŅĐžŅĐ¸Ņ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа (ĐĐ) ĐēаĐē ОйĐģаŅŅи ĐŋĐĩŅĐĩĐŋĐģĐĩŅаĐĩŅŅŅ Ņ Đ¸ŅŅĐžŅиĐĩĐš ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ (machine learning, ML), ĐŋĐžŅĐēĐžĐģŅĐēŅ Đ°ĐģĐŗĐžŅиŅĐŧŅ Đ¸ вŅŅиŅĐģиŅĐĩĐģŅĐŊŅĐĩ Đ´ĐžŅŅиĐļĐĩĐŊиŅ, ĐģĐĩĐļаŅиĐĩ в ĐžŅĐŊОвĐĩ ML, ŅĐŋĐžŅОйŅŅвОваĐģи ŅаСвиŅĐ¸Ņ ĐĐ. ĐĐžĐģĐĩСĐŊĐž ĐŋĐžĐŧĐŊиŅŅ, ŅŅĐž, Ņ
ĐžŅŅ ŅŅи ОйĐģаŅŅи ĐēаĐē ĐŊаŅаĐģи вŅĐ´ĐĩĐģŅŅŅŅŅ Đ˛ ĐžŅĐ´ĐĩĐģŅĐŊŅĐĩ в 1950-Ņ
ĐŗĐžĐ´Đ°Ņ
, ваĐļĐŊŅĐĩ [аĐģĐŗĐžŅиŅĐŧиŅĐĩŅĐēиĐĩ, ŅŅаŅиŅŅиŅĐĩŅĐēиĐĩ, ĐŧаŅĐĩĐŧаŅиŅĐĩŅĐēиĐĩ, вŅŅиŅĐģиŅĐĩĐģŅĐŊŅĐĩ и ŅĐĩŅ
ĐŊиŅĐĩŅĐēиĐĩ ĐžŅĐēŅŅŅиŅ](https://wikipedia.org/wiki/Timeline_of_machine_learning) ĐŋŅĐĩĐ´ŅĐĩŅŅвОваĐģи и ĐŋŅОиŅŅ
ОдиĐģи в ŅŅŅ ŅĐŋĐžŅ
Ņ. Đа ŅаĐŧĐžĐŧ Đ´ĐĩĐģĐĩ, ĐģŅди Đ´ŅĐŧаĐģи Ой ŅŅиŅ
вОĐŋŅĐžŅаŅ
в ŅĐĩŅĐĩĐŊиĐĩ [ŅĐžŅĐĩĐŊ ĐģĐĩŅ](https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%B8%D1%81%D0%BA%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B8%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D0%B0): в ŅŅОК ŅŅаŅŅĐĩ ŅаŅŅĐŧаŅŅиваŅŅŅŅ Đ¸ŅŅĐžŅиŅĐĩŅĐēиĐĩ иĐŊŅĐĩĐģĐģĐĩĐēŅŅаĐģŅĐŊŅĐĩ ĐžŅĐŊĐžĐ˛Ņ Đ¸Đ´Đĩи "ĐŧŅŅĐģŅŅĐĩĐš ĐŧаŅиĐŊŅ".
-
----
-## ĐаĐŧĐĩŅĐŊŅĐĩ ĐžŅĐēŅŅŅиŅ
-
-- 1763, 1812 [ĐĸĐĩĐžŅĐĩĐŧа ĐаКĐĩŅа](https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%B0) и ĐĩĐĩ ĐŋŅĐĩĐ´ŅĐĩŅŅвĐĩĐŊĐŊиĐēи. ĐŅа ŅĐĩĐžŅĐĩĐŧа и ĐĩĐĩ ĐŋŅиĐģĐžĐļĐĩĐŊĐ¸Ņ ĐģĐĩĐļĐ°Ņ Đ˛ ĐžŅĐŊОвĐĩ вŅвОда, ĐžĐŋиŅŅваŅŅĐĩĐŗĐž вĐĩŅĐžŅŅĐŊĐžŅŅŅ ŅОйŅŅиŅ, ĐŋŅОиŅŅ
ОдŅŅĐĩĐŗĐž ĐŊа ĐžŅĐŊОвĐĩ ĐŋŅĐĩдваŅиŅĐĩĐģŅĐŊŅŅ
СĐŊаĐŊиК.
-- 1805 [ĐĸĐĩĐžŅĐ¸Ņ ĐŊаиĐŧĐĩĐŊŅŅиŅ
ĐēвадŅаŅОв](https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%BD%D0%B0%D0%B8%D0%BC%D0%B5%D0%BD%D1%8C%D1%88%D0%B8%D1%85_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BE%D0%B2) ŅŅаĐŊŅŅСŅĐēĐžĐŗĐž ĐŧаŅĐĩĐŧаŅиĐēа ĐĐ´ŅиĐĩĐŊа-ĐаŅи ĐĐĩĐļаĐŊĐ´Ņа. ĐŅа ŅĐĩĐžŅиŅ, Đž ĐēĐžŅĐžŅОК Đ˛Ņ ŅСĐŊаĐĩŅĐĩ в ĐŊаŅĐĩĐŧ ĐąĐģĐžĐēĐĩ ŅĐĩĐŗŅĐĩŅŅии, ĐŋĐžĐŧĐžĐŗĐ°ĐĩŅ Đ˛ аĐŋĐŋŅĐžĐēŅиĐŧаŅии даĐŊĐŊŅŅ
.
-- 1913 [ĐĻĐĩĐŋи ĐаŅĐēОва](https://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D1%8C_%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D0%B0), ĐŊаСваĐŊĐŊŅĐš в ŅĐĩŅŅŅ ŅŅŅŅĐēĐžĐŗĐž ĐŧаŅĐĩĐŧаŅиĐēа ĐĐŊĐ´ŅĐĩŅ ĐаŅĐēОва, иŅĐŋĐžĐģŅСŅĐĩŅŅŅ Đ´ĐģŅ ĐžĐŋиŅаĐŊĐ¸Ņ ĐŋĐžŅĐģĐĩдОваŅĐĩĐģŅĐŊĐžŅŅи вОСĐŧĐžĐļĐŊŅŅ
ŅОйŅŅиК ĐŊа ĐžŅĐŊОвĐĩ ĐŋŅĐĩĐ´ŅĐ´ŅŅĐĩĐŗĐž ŅĐžŅŅĐžŅĐŊиŅ.
-- 1957 [ĐĐĩŅŅĐĩĐŋŅŅĐžĐŊ](https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D1%86%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD) - ŅŅĐž ŅиĐŋ ĐģиĐŊĐĩĐšĐŊĐžĐŗĐž ĐēĐģаŅŅиŅиĐēаŅĐžŅа, иСОйŅĐĩŅĐĩĐŊĐŊŅĐš аĐŧĐĩŅиĐēаĐŊŅĐēиĐŧ ĐŋŅиŅ
ĐžĐģĐžĐŗĐžĐŧ ФŅŅĐŊĐēĐžĐŧ РОСĐĩĐŊĐąĐģаŅŅĐžĐŧ, ĐēĐžŅĐžŅŅĐš ĐģĐĩĐļĐ¸Ņ Đ˛ ĐžŅĐŊОвĐĩ Đ´ĐžŅŅиĐļĐĩĐŊиК в ОйĐģаŅŅи ĐŗĐģŅйОĐēĐžĐŗĐž ОйŅŅĐĩĐŊиŅ.
-
----
-
-- 1967 [ĐĐĩŅОд ĐąĐģиĐļаКŅĐĩĐŗĐž ŅĐžŅĐĩда](https://ru.wikipedia.org/wiki/%D0%91%D0%BB%D0%B8%D0%B6%D0%B0%D0%B9%D1%88%D0%B8%D0%B9_%D1%81%D0%BE%D1%81%D0%B5%D0%B4) - ŅŅĐž аĐģĐŗĐžŅиŅĐŧ, иСĐŊаŅаĐģŅĐŊĐž ŅаСŅайОŅаĐŊĐŊŅĐš Đ´ĐģŅ ĐžŅОйŅаĐļĐĩĐŊĐ¸Ņ ĐŧаŅŅŅŅŅОв. Đ ĐēĐžĐŊŅĐĩĐēŅŅĐĩ ML ĐžĐŊ иŅĐŋĐžĐģŅСŅĐĩŅŅŅ Đ´ĐģŅ ĐžĐąĐŊаŅŅĐļĐĩĐŊĐ¸Ņ ĐˇĐ°ĐēĐžĐŊĐžĐŧĐĩŅĐŊĐžŅŅĐĩĐš.
-- 1970 [ĐĐąŅаŅĐŊĐžĐĩ ŅаŅĐŋŅĐžŅŅŅаĐŊĐĩĐŊиĐĩ ĐžŅийĐēи](https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B3%D0%BE_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B8) иŅĐŋĐžĐģŅСŅĐĩŅŅŅ Đ´ĐģŅ ĐžĐąŅŅĐĩĐŊĐ¸Ņ [ĐŊĐĩĐšŅĐžĐŊĐŊŅŅ
ŅĐĩŅĐĩĐš Ņ ĐŋŅŅĐŧОК ŅвŅСŅŅ](https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C_%D1%81_%D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D0%B9_%D1%81%D0%B2%D1%8F%D0%B7%D1%8C%D1%8E).
-- 1982 [Đ ĐĩĐēŅŅŅĐĩĐŊŅĐŊŅĐĩ ĐŊĐĩĐšŅĐžĐŊĐŊŅĐĩ ŅĐĩŅи](https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%80%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C) ŅвĐģŅŅŅŅŅ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊŅĐŧи ĐŊĐĩĐšŅĐžĐŊĐŊŅĐŧи ŅĐĩŅŅĐŧи, ĐŋĐžĐģŅŅĐĩĐŊĐŊŅĐŧи иС ĐŊĐĩĐšŅĐžĐŊĐŊŅŅ
ŅĐĩŅĐĩĐš ĐŋŅŅĐŧОК ŅвŅСи, ĐēĐžŅĐžŅŅĐĩ ŅОСдаŅŅ Đ˛ŅĐĩĐŧĐĩĐŊĐŊŅĐĩ ĐŗŅаŅиĐēи.
-
-â
ĐŅОвĐĩдиŅĐĩ ĐŊĐĩйОĐģŅŅĐžĐĩ иŅŅĐģĐĩдОваĐŊиĐĩ. ĐаĐēиĐĩ ĐĩŅĐĩ даŅŅ ŅвĐģŅŅŅŅŅ ĐēĐģŅŅĐĩвŅĐŧи в иŅŅĐžŅии ML и ĐĐ?
-
----
-## 1950: ĐаŅиĐŊŅ, ĐēĐžŅĐžŅŅĐĩ Đ´ŅĐŧаŅŅ
-
-ĐĐģаĐŊ ĐĸŅŅŅиĐŊĐŗ, ĐŋОиŅŅиĐŊĐĩ вĐĩĐģиĐēиК ŅĐĩĐģОвĐĩĐē, ĐēĐžŅĐžŅŅĐš ĐąŅĐģ вŅĐąŅаĐŊ [ОйŅĐĩŅŅвĐĩĐŊĐŊĐžŅŅŅŅ Đ˛ 2019 ĐŗĐžĐ´Ņ](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) вĐĩĐģиŅаКŅиĐŧ ŅŅĐĩĐŊŅĐŧ 20-ĐŗĐž вĐĩĐēа. ĐĄŅиŅаĐĩŅŅŅ, ŅŅĐž ĐžĐŊ ĐŋĐžĐŧĐžĐŗ СаĐģĐžĐļиŅŅ ĐžŅĐŊĐžĐ˛Ņ ĐēĐžĐŊŅĐĩĐŋŅии "ĐŧаŅиĐŊŅ, ĐēĐžŅĐžŅĐ°Ņ ĐŧĐžĐļĐĩŅ ĐŧŅŅĐģиŅŅ". ĐĐŊ йОŅĐžĐģŅŅ ŅĐž ŅĐēĐĩĐŋŅиĐēаĐŧи и ŅвОĐĩĐš ŅОйŅŅвĐĩĐŊĐŊОК ĐŋĐžŅŅĐĩĐąĐŊĐžŅŅŅŅ Đ˛ ŅĐŧĐŋиŅиŅĐĩŅĐēиŅ
Đ´ĐžĐēаСаŅĐĩĐģŅŅŅваŅ
ŅŅОК ĐēĐžĐŊŅĐĩĐŋŅии, ŅаŅŅиŅĐŊĐž ŅОСдав [ĐĸĐĩŅŅ ĐĸŅŅŅиĐŊĐŗĐ°](https://www.bbc.com/news/technology-18475646), ĐēĐžŅĐžŅŅĐĩ Đ˛Ņ Đ¸ĐˇŅŅиŅĐĩ ĐŊа ĐŊаŅиŅ
ŅŅĐžĐēаŅ
NLP.
-
----
-## 1956: ĐĐĩŅĐŊиК иŅŅĐģĐĩдОваŅĐĩĐģŅŅĐēиК ĐŋŅĐžĐĩĐēŅ Đ˛ ĐаŅŅĐŧŅŅĐĩ
-
-"ĐĐĩŅĐŊиК иŅŅĐģĐĩдОваŅĐĩĐģŅŅĐēиК ĐŋŅĐžĐĩĐēŅ ĐаŅŅĐŧŅŅа ĐŋĐž иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŧŅ Đ¸ĐŊŅĐĩĐģĐģĐĩĐēŅŅ ĐąŅĐģ ĐžŅĐŊОвОĐŋĐžĐģĐ°ĐŗĐ°ŅŅиĐŧ ŅОйŅŅиĐĩĐŧ Đ´ĐģŅ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа ĐēаĐē ОйĐģаŅŅи", и иĐŧĐĩĐŊĐŊĐž СдĐĩŅŅ ĐąŅĐģ ĐŋŅидŅĐŧаĐŊ ŅĐĩŅĐŧиĐŊ "иŅĐēŅŅŅŅвĐĩĐŊĐŊŅĐš иĐŊŅĐĩĐģĐģĐĩĐēŅ" ([иŅŅĐžŅĐŊиĐē](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> ĐŅŅĐēиК аŅĐŋĐĩĐēŅ ĐžĐąŅŅĐĩĐŊĐ¸Ņ Đ¸Đģи ĐģŅйОĐĩ Đ´ŅŅĐŗĐžĐĩ ŅвОКŅŅвО иĐŊŅĐĩĐģĐģĐĩĐēŅа ĐŧĐžĐļĐĩŅ Đ˛ ĐŋŅиĐŊŅиĐŋĐĩ ĐąŅŅŅ ŅŅĐžĐģŅ ŅĐžŅĐŊĐž ĐžĐŋиŅаĐŊĐž, ŅŅĐž ĐŧаŅиĐŊа ŅĐŧĐžĐļĐĩŅ ĐĩĐŗĐž ŅиĐŧŅĐģиŅОваŅŅ.
-
----
-
-ĐĐĩĐ´ŅŅиК иŅŅĐģĐĩдОваŅĐĩĐģŅ, ĐŋŅĐžŅĐĩŅŅĐžŅ ĐŧаŅĐĩĐŧаŅиĐēи ĐĐļĐžĐŊ ĐаĐēĐēаŅŅи, ĐŊадĐĩŅĐģŅŅ "Đ´ĐĩĐšŅŅвОваŅŅ, ĐžŅĐŊОвŅваŅŅŅ ĐŊа ĐŋŅĐĩĐ´ĐŋĐžĐģĐžĐļĐĩĐŊии, ŅŅĐž вŅŅĐēиК аŅĐŋĐĩĐēŅ ĐžĐąŅŅĐĩĐŊĐ¸Ņ Đ¸Đģи ĐģŅйОĐĩ Đ´ŅŅĐŗĐžĐĩ ŅвОКŅŅвО иĐŊŅĐĩĐģĐģĐĩĐēŅа ĐŧĐžĐļĐĩŅ Đ˛ ĐŋŅиĐŊŅиĐŋĐĩ ĐąŅŅŅ ŅŅĐžĐģŅ ŅĐžŅĐŊĐž ĐžĐŋиŅаĐŊĐž, ŅŅĐž ĐŧаŅиĐŊа ŅĐŧĐžĐļĐĩŅ ĐĩĐŗĐž ŅиĐŧŅĐģиŅОваŅŅ". ĐĄŅĐĩди ŅŅаŅŅĐŊиĐēОв ĐąŅĐģ ĐĩŅĐĩ ОдиĐŊ вŅдаŅŅиКŅŅ ŅŅĐĩĐŊŅĐš в ŅŅОК ОйĐģаŅŅи - ĐаŅвиĐŊ ĐиĐŊŅĐēи.
-
-ĐĄĐĩĐŧиĐŊаŅŅ ĐŋŅиĐŋиŅŅваŅŅ Đ¸ĐŊиŅииŅОваĐŊиĐĩ и ĐŋООŅŅĐĩĐŊиĐĩ ĐŊĐĩŅĐēĐžĐģŅĐēиŅ
диŅĐēŅŅŅиК, в ŅĐžĐŧ ŅиŅĐģĐĩ "ŅаСвиŅиĐĩ ŅиĐŧвОĐģиŅĐĩŅĐēиŅ
ĐŧĐĩŅОдОв, ŅиŅŅĐĩĐŧ, ĐžŅиĐĩĐŊŅиŅОваĐŊĐŊŅŅ
ĐŊа ĐžĐŗŅаĐŊиŅĐĩĐŊĐŊŅĐĩ ОйĐģаŅŅи (ŅаĐŊĐŊиĐĩ ŅĐēŅĐŋĐĩŅŅĐŊŅĐĩ ŅиŅŅĐĩĐŧŅ), и Đ´ĐĩĐ´ŅĐēŅивĐŊŅŅ
ŅиŅŅĐĩĐŧ ĐŋĐž ŅŅавĐŊĐĩĐŊĐ¸Ņ Ņ Đ¸ĐŊĐ´ŅĐēŅивĐŊŅĐŧи ŅиŅŅĐĩĐŧаĐŧи". ([иŅŅĐžŅĐŊиĐē](https://ru.wikipedia.org/wiki/%D0%94%D0%B0%D1%80%D1%82%D0%BC%D1%83%D1%82%D1%81%D0%BA%D0%B8%D0%B9_%D1%81%D0%B5%D0%BC%D0%B8%D0%BD%D0%B0%D1%80)).
-
----
-## 1956 - 1974: "ĐĐžĐģĐžŅŅĐĩ ĐŗĐžĐ´Ņ"
-
-ĐĄ 1950-Ņ
Đ´Đž ŅĐĩŅĐĩдиĐŊŅ 70-Ņ
ĐŗĐžĐ´ĐžĐ˛ ĐžĐŋŅиĐŧиСĐŧ ŅĐžŅ Đ˛ ĐŊадĐĩĐļĐ´Đĩ, ŅŅĐž ĐĐ ŅĐŧĐžĐļĐĩŅ ŅĐĩŅиŅŅ ĐŧĐŊĐžĐŗĐ¸Đĩ ĐŋŅОйĐģĐĩĐŧŅ. Đ 1967 ĐŗĐžĐ´Ņ ĐаŅвиĐŊ ĐиĐŊŅĐēи ŅвĐĩŅĐĩĐŊĐŊĐž СаŅвиĐģ, ŅŅĐž "Đ ŅĐĩŅĐĩĐŊиĐĩ ОдĐŊĐžĐŗĐž ĐŋĐžĐēĐžĐģĐĩĐŊиŅ... ĐŋŅОйĐģĐĩĐŧа ŅОСдаĐŊĐ¸Ņ "иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа" ĐąŅĐ´ĐĩŅ Đ˛ СĐŊаŅиŅĐĩĐģŅĐŊОК ŅŅĐĩĐŋĐĩĐŊи ŅĐĩŅĐĩĐŊа". (ĐиĐŊŅĐēи, ĐаŅвиĐŊ (1967), ĐŅŅиŅĐģĐĩĐŊиŅ: ĐĐžĐŊĐĩŅĐŊŅĐĩ и ĐąĐĩŅĐēĐžĐŊĐĩŅĐŊŅĐĩ ĐŧаŅиĐŊŅ, ĐĐŊĐŗĐģвŅĐ´-ĐĐģиŅŅŅ, ĐŅŅ-ĐĐļĐĩŅŅи: ĐŅĐĩĐŊŅиŅ-ĐĨĐžĐģĐģ)
-
-ĐŅŅĐģĐĩдОваĐŊĐ¸Ņ Đ˛ ОйĐģаŅŅи ОйŅайОŅĐēи ĐĩŅŅĐĩŅŅвĐĩĐŊĐŊĐžĐŗĐž ŅСŅĐēа ĐŋŅĐžŅвĐĩŅаĐģи, ĐŋОиŅĐē ĐąŅĐģ ŅŅОвĐĩŅŅĐĩĐŊŅŅвОваĐŊ и ŅŅаĐģ йОĐģĐĩĐĩ ĐŧĐžŅĐŊŅĐŧ, и ĐąŅĐģа ŅОСдаĐŊа ĐēĐžĐŊŅĐĩĐŋŅĐ¸Ņ "ĐŧиĐēŅĐžĐŧиŅОв", ĐŗĐ´Đĩ ĐŋŅĐžŅŅŅĐĩ СадаŅи вŅĐŋĐžĐģĐŊŅĐģиŅŅ Ņ Đ¸ŅĐŋĐžĐģŅСОваĐŊиĐĩĐŧ ĐŋŅĐžŅŅŅŅ
ŅСŅĐēОвŅŅ
иĐŊŅŅŅŅĐēŅиК.
-
----
-
-ĐŅŅĐģĐĩдОваĐŊĐ¸Ņ Ņ
ĐžŅĐžŅĐž ŅиĐŊаĐŊŅиŅОваĐģиŅŅ ĐŋŅавиŅĐĩĐģŅŅŅвĐĩĐŊĐŊŅĐŧи ŅŅŅĐĩĐļĐ´ĐĩĐŊиŅĐŧи, ĐąŅĐģи Đ´ĐžŅŅĐ¸ĐŗĐŊŅŅŅ ŅŅĐŋĐĩŅ
и в вŅŅиŅĐģĐĩĐŊиŅŅ
и аĐģĐŗĐžŅиŅĐŧаŅ
, ĐąŅĐģи ŅОСдаĐŊŅ ĐŋŅĐžŅĐžŅиĐŋŅ Đ¸ĐŊŅĐĩĐģĐģĐĩĐēŅŅаĐģŅĐŊŅŅ
ĐŧаŅиĐŊ. ĐĐĩĐēĐžŅĐžŅŅĐĩ иС ŅŅиŅ
ĐŧаŅиĐŊ вĐēĐģŅŅаŅŅ:
-
-* [Đ ĐžĐąĐžŅ Shakey](https://ru.wikipedia.org/wiki/Shakey), ĐēĐžŅĐžŅŅĐš ĐŧĐžĐŗ ĐŧаĐŊĐĩвŅиŅОваŅŅ Đ¸ ŅĐĩŅаŅŅ, ĐēаĐē "ŅаСŅĐŧĐŊĐž" вŅĐŋĐžĐģĐŊŅŅŅ ĐˇĐ°Đ´Đ°Ņи.
-
- 
- > Shakey в 1972 ĐŗĐžĐ´Ņ
-
----
-
-* ĐĐģиСа, ŅаĐŊĐŊиК "ŅаŅ-йОŅ", ĐŧĐžĐŗĐģа ОйŅаŅŅŅŅ Ņ ĐģŅĐ´ŅĐŧи и Đ´ĐĩĐšŅŅвОваŅŅ ĐēаĐē ĐŋŅиĐŧиŅивĐŊŅĐš "ŅĐĩŅаĐŋĐĩвŅ". ĐŅ ŅСĐŊаĐĩŅĐĩ йОĐģŅŅĐĩ Ой ĐĐģиСĐĩ ĐŊа ŅŅĐžĐēаŅ
NLP.
-
- 
- > ĐĐĩŅŅĐ¸Ņ ĐĐģиСŅ, ŅаŅ-йОŅа
-
----
-
-* "ĐĐ¸Ņ ĐąĐģĐžĐēОв" ĐąŅĐģ ĐŋŅиĐŧĐĩŅĐžĐŧ ĐŧиĐēŅĐžĐŧиŅа, в ĐēĐžŅĐžŅĐžĐŧ ĐąĐģĐžĐēи ĐŧĐžĐļĐŊĐž ĐąŅĐģĐž ŅĐēĐģадŅваŅŅ Đ¸ ŅĐžŅŅиŅОваŅŅ, а ŅаĐēĐļĐĩ ĐŋŅОвОдиŅŅ ŅĐēŅĐŋĐĩŅиĐŧĐĩĐŊŅŅ ĐŋĐž ОйŅŅĐĩĐŊĐ¸Ņ ĐŧаŅиĐŊ ĐŋŅиĐŊŅŅĐ¸Ņ ŅĐĩŅĐĩĐŊиК. ĐĐžŅŅиĐļĐĩĐŊиŅ, ŅОСдаĐŊĐŊŅĐĩ Ņ ĐŋĐžĐŧĐžŅŅŅ ĐąĐ¸ĐąĐģиОŅĐĩĐē, ŅаĐēиŅ
ĐēаĐē [SHRDLU](https://ru.wikipedia.org/wiki/SHRDLU) ĐŋĐžĐŧĐžĐŗĐģĐž ĐŋŅОдвиĐŊŅŅŅ ĐžĐąŅайОŅĐēŅ ŅСŅĐēа вĐŋĐĩŅĐĩĐ´.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "ĐŧĐ¸Ņ ĐąĐģĐžĐēОв SHRDLU")
-
- > đĨ ĐаĐļĐŧиŅĐĩ ĐŊа иСОйŅаĐļĐĩĐŊиĐĩ вŅŅĐĩ Đ´ĐģŅ ĐŋŅĐžŅĐŧĐžŅŅа видĐĩĐž: ĐĐ¸Ņ ĐąĐģĐžĐēОв SHRDLU
-
----
-## 1974-1980: "ĐиĐŧа иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа"
-
-Đ ŅĐĩŅĐĩдиĐŊĐĩ 1970-Ņ
ĐŗĐžĐ´ĐžĐ˛ ŅŅаĐģĐž ĐžŅĐĩвидĐŊĐž, ŅŅĐž ŅĐģĐžĐļĐŊĐžŅŅŅ ŅОСдаĐŊĐ¸Ņ "иĐŊŅĐĩĐģĐģĐĩĐēŅŅаĐģŅĐŊŅŅ
ĐŧаŅиĐŊ" ĐąŅĐģа СаĐŊиĐļĐĩĐŊа и ŅŅĐž ĐĩĐĩ ĐŋĐĩŅŅĐŋĐĩĐēŅивŅ, ŅŅиŅŅĐ˛Đ°Ņ Đ´ĐžŅŅŅĐŋĐŊŅĐĩ вŅŅиŅĐģиŅĐĩĐģŅĐŊŅĐĩ ĐŧĐžŅĐŊĐžŅŅи, ĐąŅĐģи ĐŋŅĐĩŅвĐĩĐģиŅĐĩĐŊŅ. ФиĐŊаĐŊŅиŅОваĐŊиĐĩ иŅŅŅĐēĐģĐž, и дОвĐĩŅиĐĩ Đē ŅŅОК ОйĐģаŅŅи ŅĐŊиСиĐģĐžŅŅ. ĐĐĩĐēĐžŅĐžŅŅĐĩ ĐŋŅОйĐģĐĩĐŧŅ, ĐŋОвĐģиŅвŅиĐĩ ĐŊа дОвĐĩŅиĐĩ, вĐēĐģŅŅаĐģи:
----
-- **ĐĐŗŅаĐŊиŅĐĩĐŊиŅ**. ĐŅŅиŅĐģиŅĐĩĐģŅĐŊĐ°Ņ ĐŧĐžŅĐŊĐžŅŅŅ ĐąŅĐģа ŅĐģиŅĐēĐžĐŧ ĐžĐŗŅаĐŊиŅĐĩĐŊа.
-- **ĐĐžĐŧйиĐŊаŅĐžŅĐŊŅĐš вСŅŅв**. ĐĐžĐģиŅĐĩŅŅвО ĐŋаŅаĐŧĐĩŅŅОв, ĐŊĐĩОйŅ
ОдиĐŧŅŅ
Đ´ĐģŅ ĐžĐąŅŅĐĩĐŊиŅ, ŅĐžŅĐģĐž ŅĐēŅĐŋĐžĐŊĐĩĐŊŅиаĐģŅĐŊĐž ĐŋĐž ĐŧĐĩŅĐĩ ŅĐžĐŗĐž, ĐēаĐē ŅŅĐģĐžĐļĐŊŅĐģиŅŅ ĐˇĐ°Đ´Đ°Ņи Đ´ĐģŅ ĐēĐžĐŧĐŋŅŅŅĐĩŅОв, ĐąĐĩС ĐŋаŅаĐģĐģĐĩĐģŅĐŊОК ŅвОĐģŅŅии вŅŅиŅĐģиŅĐĩĐģŅĐŊОК ĐŧĐžŅĐŊĐžŅŅи и вОСĐŧĐžĐļĐŊĐžŅŅĐĩĐš.
-- **ĐĐĩŅ
ваŅĐēа даĐŊĐŊŅŅ
**. ĐĐĩŅ
ваŅĐēа даĐŊĐŊŅŅ
СаŅŅŅĐ´ĐŊŅĐģа ĐŋŅĐžŅĐĩŅŅ ŅĐĩŅŅиŅОваĐŊиŅ, ŅаСŅайОŅĐēи и ŅОвĐĩŅŅĐĩĐŊŅŅвОваĐŊĐ¸Ņ Đ°ĐģĐŗĐžŅиŅĐŧОв.
-- **ĐадаĐĩĐŧ Đģи ĐŧŅ ĐŋŅавиĐģŅĐŊŅĐĩ вОĐŋŅĐžŅŅ?**. ХаĐŧи вОĐŋŅĐžŅŅ, ĐēĐžŅĐžŅŅĐĩ СадаваĐģиŅŅ, ĐŊаŅаĐģи ĐŋОдвĐĩŅĐŗĐ°ŅŅŅŅ ŅĐžĐŧĐŊĐĩĐŊиŅ. ĐŅŅĐģĐĩдОваŅĐĩĐģи ĐŊаŅаĐģи ĐŋОдвĐĩŅĐŗĐ°ŅŅ ĐēŅиŅиĐēĐĩ ŅвОи ĐŋОдŅ
ОдŅ:
- - ĐĸĐĩŅŅŅ ĐĸŅŅŅиĐŊĐŗĐ° ĐąŅĐģи ĐŋĐžŅŅавĐģĐĩĐŊŅ ĐŋОд ŅĐžĐŧĐŊĐĩĐŊиĐĩ, ŅŅĐĩди ĐŋŅĐžŅĐĩĐŗĐž, Ņ ĐŋĐžĐŧĐžŅŅŅ "ŅĐĩĐžŅии ĐēиŅаКŅĐēОК ĐēĐžĐŧĐŊаŅŅ", ĐēĐžŅĐžŅĐ°Ņ ŅŅвĐĩŅĐļдаĐģа, ŅŅĐž "ĐŋŅĐžĐŗŅаĐŧĐŧиŅОваĐŊиĐĩ ŅиŅŅĐžĐ˛ĐžĐŗĐž ĐēĐžĐŧĐŋŅŅŅĐĩŅа ĐŧĐžĐļĐĩŅ ŅОСдаŅŅ Đ˛ĐŋĐĩŅаŅĐģĐĩĐŊиĐĩ, ŅŅĐž ĐžĐŊ ĐŋĐžĐŊиĐŧаĐĩŅ ŅСŅĐē, ĐŊĐž ĐŊĐĩ ĐŧĐžĐļĐĩŅ ĐžĐąĐĩŅĐŋĐĩŅиŅŅ ŅĐĩаĐģŅĐŊĐžĐĩ ĐŋĐžĐŊиĐŧаĐŊиĐĩ". ([иŅŅĐžŅĐŊиĐē](https://plato.stanford.edu/entries/chinese-room/))
- - ĐŅиĐēа вĐŊĐĩĐ´ŅĐĩĐŊĐ¸Ņ Đ˛ ОйŅĐĩŅŅвО иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа, ŅаĐēĐžĐŗĐž ĐēаĐē "ŅĐĩŅаĐŋĐĩвŅ" ĐĐĐĐĐ, ĐąŅĐģа ĐŋĐžŅŅавĐģĐĩĐŊа ĐŋОд ŅĐžĐŧĐŊĐĩĐŊиĐĩ.
-
----
-
-Đ ŅĐž ĐļĐĩ вŅĐĩĐŧŅ ĐŊаŅаĐģи ŅĐžŅĐŧиŅОваŅŅŅŅ ŅаСĐģиŅĐŊŅĐĩ ŅĐēĐžĐģŅ ĐĐ. ĐŅОиСОŅĐģĐž ŅаСдĐĩĐģĐĩĐŊиĐĩ ĐŊа ĐŋОдŅ
ĐžĐ´Ņ ["ĐŊĐĩŅŅŅĐģĐ¸Đ˛ĐžĐŗĐž" и "ŅиŅŅĐžĐŗĐž" ĐĐ](https://wikipedia.org/wiki/Neats_and_scruffies). ĐŅивĐĩŅĐļĐĩĐŊŅŅ _ĐŊĐĩŅŅŅĐģĐ¸Đ˛ĐžĐŗĐž ĐĐ_ ŅаŅаĐŧи ĐēĐžŅŅĐĩĐēŅиŅОваĐģи ĐŋŅĐžĐŗŅаĐŧĐŧŅ, ĐŋĐžĐēа ĐŊĐĩ ĐŋĐžĐģŅŅаĐģи ĐļĐĩĐģаĐĩĐŧŅŅ
ŅĐĩСŅĐģŅŅаŅОв. ĐŅивĐĩŅĐļĐĩĐŊŅŅ _ЧиŅŅĐžĐŗĐž ĐĐ_ ĐąŅĐģи "ŅĐžŅŅĐĩĐ´ĐžŅĐžŅĐĩĐŊŅ ĐŊа ĐģĐžĐŗĐ¸ĐēĐĩ и ŅĐĩŅĐĩĐŊии ŅĐžŅĐŧаĐģŅĐŊŅŅ
СадаŅ". ĐĐĐĐРи SHRDLU ĐąŅĐģи Ņ
ĐžŅĐžŅĐž иСвĐĩŅŅĐŊŅĐŧи _ĐŊĐĩŅŅŅĐģивŅĐŧи_ ŅиŅŅĐĩĐŧаĐŧи. Đ 1980-Ņ
ĐŗĐžĐ´Đ°Ņ
, ĐēĐžĐŗĐ´Đ° вОСĐŊиĐē ŅĐŋŅĐžŅ ĐŊа ŅĐž, ŅŅĐžĐąŅ ŅĐ´ĐĩĐģаŅŅ ŅиŅŅĐĩĐŧŅ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ˛ĐžŅĐŋŅОиСвОдиĐŧŅĐŧи, _ЧиŅŅŅĐš_ ĐŋОдŅ
Од ĐŋĐžŅŅĐĩĐŋĐĩĐŊĐŊĐž вŅŅĐĩĐģ ĐŊа ĐŋĐĩŅĐĩĐ´ĐŊиК ĐŋĐģаĐŊ, ĐŋĐžŅĐēĐžĐģŅĐēŅ ĐĩĐŗĐž ŅĐĩСŅĐģŅŅаŅŅ ĐąĐžĐģĐĩĐĩ ОйŅŅŅĐŊиĐŧŅ.
-
----
-## ĐĐēŅĐŋĐĩŅŅĐŊŅĐĩ ŅиŅŅĐĩĐŧŅ 1980-Ņ
ĐŗĐžĐ´ĐžĐ˛
-
-ĐĐž ĐŧĐĩŅĐĩ ŅĐžŅŅа ĐžŅŅаŅĐģи ĐĩĐĩ ĐŋŅĐĩиĐŧŅŅĐĩŅŅва Đ´ĐģŅ ĐąĐ¸ĐˇĐŊĐĩŅа ŅŅаĐŊОвиĐģиŅŅ Đ˛ŅĐĩ йОĐģĐĩĐĩ ĐžŅĐĩвидĐŊŅĐŧи, а в 1980-Ņ
ĐŗĐžĐ´Đ°Ņ
- и ŅаŅĐŋŅĐžŅŅŅаĐŊĐĩĐŊиĐĩ "ŅĐēŅĐŋĐĩŅŅĐŊŅŅ
ŅиŅŅĐĩĐŧ". "ĐĐēŅĐŋĐĩŅŅĐŊŅĐĩ ŅиŅŅĐĩĐŧŅ ĐąŅĐģи ОдĐŊиĐŧи иС ĐŋĐĩŅвŅŅ
ĐŋĐž-ĐŊаŅŅĐžŅŅĐĩĐŧŅ ŅŅĐŋĐĩŅĐŊŅŅ
ŅĐžŅĐŧ ĐŋŅĐžĐŗŅаĐŧĐŧĐŊĐžĐŗĐž ОйĐĩŅĐŋĐĩŅĐĩĐŊĐ¸Ņ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа (ĐĐ)". ([иŅŅĐžŅĐŊиĐē](https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D1%82%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0)).
-
-ĐŅĐžŅ ŅиĐŋ ŅиŅŅĐĩĐŧŅ ĐŊа ŅаĐŧĐžĐŧ Đ´ĐĩĐģĐĩ ĐąŅĐģ _ĐŗĐ¸ĐąŅидĐŊŅĐŧ_, ŅаŅŅиŅĐŊĐž ŅĐžŅŅĐžŅŅиĐŧ иС ĐŧĐĩŅ
аĐŊиСĐŧа ĐŋŅавиĐģ, ĐžĐŋŅĐĩĐ´ĐĩĐģŅŅŅĐĩĐŗĐž йиСĐŊĐĩŅ-ŅŅĐĩйОваĐŊиŅ, и ĐŧĐĩŅ
аĐŊиСĐŧа вŅвОда, ĐēĐžŅĐžŅŅĐš иŅĐŋĐžĐģŅСŅĐĩŅ ŅиŅŅĐĩĐŧŅ ĐŋŅавиĐģ Đ´ĐģŅ Đ˛ŅвОда ĐŊОвŅŅ
ŅаĐēŅОв.
-
-Đ ŅŅŅ ŅĐŋĐžŅ
Ņ ŅаĐēĐļĐĩ вŅĐĩ йОĐģŅŅĐĩĐĩ вĐŊиĐŧаĐŊĐ¸Ņ ŅĐ´ĐĩĐģŅĐģĐžŅŅ ĐŊĐĩĐšŅĐžĐŊĐŊŅĐŧ ŅĐĩŅŅĐŧ.
-
----
-## 1987 - 1993: 'ĐŅ
ĐģаĐļĐ´ĐĩĐŊиĐĩ' Đē ĐĐ
-
-РаŅĐŋŅĐžŅŅŅаĐŊĐĩĐŊиĐĩ ŅĐŋĐĩŅиаĐģиСиŅОваĐŊĐŊĐžĐŗĐž ОйОŅŅдОваĐŊĐ¸Ņ ŅĐēŅĐŋĐĩŅŅĐŊŅŅ
ŅиŅŅĐĩĐŧ ĐŋŅивĐĩĐģĐž Đē ĐŋĐĩŅаĐģŅĐŊĐžĐŧŅ ŅĐĩСŅĐģŅŅаŅŅ - ĐžĐŊĐž ŅŅаĐģĐž ŅĐģиŅĐēĐžĐŧ ŅĐŋĐĩŅиаĐģиСиŅОваĐŊĐŊŅĐŧ. ĐĐžŅвĐģĐĩĐŊиĐĩ ĐŋĐĩŅŅĐžĐŊаĐģŅĐŊŅŅ
ĐēĐžĐŧĐŋŅŅŅĐĩŅОв ĐēĐžĐŊĐēŅŅиŅОваĐģĐž Ņ ŅŅиĐŧи ĐēŅŅĐŋĐŊŅĐŧи ŅĐŋĐĩŅиаĐģиСиŅОваĐŊĐŊŅĐŧи ŅĐĩĐŊŅŅаĐģиСОваĐŊĐŊŅĐŧи ŅиŅŅĐĩĐŧаĐŧи. ĐаŅаĐģаŅŅ Đ´ĐĩĐŧĐžĐēŅаŅиСаŅĐ¸Ņ Đ˛ŅŅиŅĐģиŅĐĩĐģŅĐŊОК ŅĐĩŅ
ĐŊиĐēи, и в ĐēĐžĐŊĐĩŅĐŊĐžĐŧ иŅĐžĐŗĐĩ ĐžĐŊа ĐŋŅĐžĐģĐžĐļиĐģа ĐŋŅŅŅ Đē ŅОвŅĐĩĐŧĐĩĐŊĐŊĐžĐŧŅ Đ˛ĐˇŅŅĐ˛Ņ ĐąĐžĐģŅŅиŅ
даĐŊĐŊŅŅ
.
-
----
-## 1993 - 2011
-
-ĐŅа ŅĐŋĐžŅ
а ОСĐŊаĐŧĐĩĐŊОваĐģа ĐŊОвŅŅ ŅŅŅ Đ´ĐģŅ ML и ĐĐ, ĐēĐžŅĐžŅŅĐĩ ŅĐŧĐžĐŗĐģи ŅĐĩŅиŅŅ ĐŊĐĩĐēĐžŅĐžŅŅĐĩ ĐŋŅОйĐģĐĩĐŧŅ, вОСĐŊиĐēавŅиĐĩ ŅаĐŊĐĩĐĩ иС-Са ĐŊĐĩŅ
ваŅĐēи даĐŊĐŊŅŅ
и вŅŅиŅĐģиŅĐĩĐģŅĐŊŅŅ
ĐŧĐžŅĐŊĐžŅŅĐĩĐš. ĐĐąŅĐĩĐŧ даĐŊĐŊŅŅ
ĐŊаŅаĐģ ĐąŅŅŅŅĐž ŅвĐĩĐģиŅиваŅŅŅŅ Đ¸ ŅŅаĐŊОвиŅŅŅŅ Đ˛ŅĐĩ йОĐģĐĩĐĩ Đ´ĐžŅŅŅĐŋĐŊŅĐŧ, и Đē ĐģŅŅŅĐĩĐŧŅ Đ¸ Đē Ņ
ŅĐ´ŅĐĩĐŧŅ, ĐžŅОйĐĩĐŊĐŊĐž Ņ ĐŋĐžŅвĐģĐĩĐŊиĐĩĐŧ ŅĐŧаŅŅŅĐžĐŊа ĐŋŅиĐŧĐĩŅĐŊĐž в 2007 ĐŗĐžĐ´Ņ. ĐŅŅиŅĐģиŅĐĩĐģŅĐŊĐ°Ņ ĐŧĐžŅĐŊĐžŅŅŅ ŅĐžŅĐģа ŅĐēŅĐŋĐžĐŊĐĩĐŊŅиаĐģŅĐŊĐž, и вĐŧĐĩŅŅĐĩ Ņ ĐŊĐĩĐš ŅаСвиваĐģиŅŅ Đ°ĐģĐŗĐžŅиŅĐŧŅ. ĐŅа ОйĐģаŅŅŅ ĐŊаŅаĐģа ĐŊайиŅаŅŅ ĐˇŅĐĩĐģĐžŅŅŅ ĐŋĐž ĐŧĐĩŅĐĩ ŅĐžĐŗĐž, ĐēаĐē ŅвОйОдĐŊŅĐĩ Đ´ĐŊи ĐŋŅĐžŅĐģĐžĐŗĐž ĐŊаŅаĐģи ĐŋŅĐĩвŅаŅаŅŅŅŅ Đ˛ ĐŊаŅŅĐžŅŅŅŅ Đ´Đ¸ŅŅиĐŋĐģиĐŊŅ.
-
----
-## ĐĄĐĩĐšŅаŅ
-
-ĐĄĐĩĐŗĐžĐ´ĐŊŅ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ и иŅĐēŅŅŅŅвĐĩĐŊĐŊŅĐš иĐŊŅĐĩĐģĐģĐĩĐēŅ ĐˇĐ°ŅŅĐ°ĐŗĐ¸Đ˛Đ°ŅŅ ĐŋŅаĐēŅиŅĐĩŅĐēи вŅĐĩ ŅŅĐĩŅŅ ĐŊаŅĐĩĐš ĐļиСĐŊи. ĐĸĐĩĐēŅŅĐ°Ņ ŅĐŋĐžŅ
а ŅŅĐĩĐąŅĐĩŅ ŅŅаŅĐĩĐģŅĐŊĐžĐŗĐž ĐŋĐžĐŊиĐŧаĐŊĐ¸Ņ ŅиŅĐēОв и ĐŋĐžŅĐĩĐŊŅиаĐģŅĐŊŅŅ
ĐŋĐžŅĐģĐĩĐ´ŅŅвиК ŅŅиŅ
аĐģĐŗĐžŅиŅĐŧОв Đ´ĐģŅ ŅĐĩĐģОвĐĩŅĐĩŅĐēиŅ
ĐļиСĐŊĐĩĐš. ĐаĐē СаŅвиĐģ ĐŅŅĐ´ ĐĄĐŧĐ¸Ņ Đ¸Đˇ Microsoft, "ĐĐŊŅĐžŅĐŧаŅиОĐŊĐŊŅĐĩ ŅĐĩŅ
ĐŊĐžĐģĐžĐŗĐ¸Đ¸ ĐŋОдĐŊиĐŧаŅŅ ĐŋŅОйĐģĐĩĐŧŅ, ĐēĐžŅĐžŅŅĐĩ ĐģĐĩĐļĐ°Ņ Đ˛ ĐžŅĐŊОвĐĩ СаŅиŅŅ ĐžŅĐŊОвĐŊŅŅ
ĐŋŅав ŅĐĩĐģОвĐĩĐēа, ŅаĐēиŅ
ĐēаĐē ĐēĐžĐŊŅидĐĩĐŊŅиаĐģŅĐŊĐžŅŅŅ Đ¸ ŅвОйОда вŅŅаĐļĐĩĐŊĐ¸Ņ ĐŧĐŊĐĩĐŊиК. ĐŅи ĐŋŅОйĐģĐĩĐŧŅ ĐŋОвŅŅаŅŅ ĐžŅвĐĩŅŅŅвĐĩĐŊĐŊĐžŅŅŅ ŅĐĩŅ
ĐŊĐžĐģĐžĐŗĐ¸ŅĐĩŅĐēиŅ
ĐēĐžĐŧĐŋаĐŊиК, ĐēĐžŅĐžŅŅĐĩ ŅОСдаŅŅ ŅŅи ĐŋŅОдŅĐēŅŅ. Đа ĐŊĐ°Ņ Đ˛ĐˇĐŗĐģŅĐ´, ĐžĐŊи ŅаĐēĐļĐĩ ŅŅĐĩĐąŅŅŅ ĐŋŅОдŅĐŧаĐŊĐŊĐžĐŗĐž ĐŗĐžŅŅдаŅŅŅвĐĩĐŊĐŊĐžĐŗĐž ŅĐĩĐŗŅĐģиŅОваĐŊĐ¸Ņ Đ¸ ŅаСŅайОŅĐēи ĐŊĐžŅĐŧ, ĐēаŅаŅŅиŅ
ŅŅ ĐŋŅиĐĩĐŧĐģĐĩĐŧŅŅ
видОв иŅĐŋĐžĐģŅСОваĐŊиŅ" ([иŅŅĐžŅĐŊиĐē](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
-
----
-
-ĐŅĐĩ ĐŋŅĐĩĐ´ŅŅĐžĐ¸Ņ ŅвидĐĩŅŅ, ŅŅĐž ĐļĐ´ĐĩŅ ĐŊĐ°Ņ Đ˛ ĐąŅĐ´ŅŅĐĩĐŧ, ĐŊĐž ваĐļĐŊĐž ĐŋĐžĐŊиĐŧаŅŅ ŅŅи ŅиŅŅĐĩĐŧŅ, а ŅаĐēĐļĐĩ ĐŋŅĐžĐŗŅаĐŧĐŧĐŊĐžĐĩ ОйĐĩŅĐŋĐĩŅĐĩĐŊиĐĩ и аĐģĐŗĐžŅиŅĐŧŅ, ĐēĐžŅĐžŅŅĐŧи ĐžĐŊи ŅĐŋŅавĐģŅŅŅ. ĐŅ ĐŊадĐĩĐĩĐŧŅŅ, ŅŅĐž ŅŅа ŅŅĐĩĐąĐŊĐ°Ņ ĐŋŅĐžĐŗŅаĐŧĐŧа ĐŋĐžĐŧĐžĐļĐĩŅ Đ˛Đ°Đŧ ĐģŅŅŅĐĩ ĐŋĐžĐŊŅŅŅ, ŅŅĐžĐąŅ Đ˛Ņ ĐŧĐžĐŗĐģи ĐŋŅиĐŊŅŅŅ ŅĐĩŅĐĩĐŊиĐĩ ŅаĐŧĐžŅŅĐžŅŅĐĩĐģŅĐŊĐž.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "ĐŅŅĐžŅĐ¸Ņ ĐŗĐģŅйОĐēĐžĐŗĐž ОйŅŅĐĩĐŊиŅ")
-> đĨ ĐаĐļĐŧиŅĐĩ ĐŊа иСОйŅаĐļĐĩĐŊиĐĩ вŅŅĐĩ, ŅŅĐžĐąŅ ĐŋĐžŅĐŧĐžŅŅĐĩŅŅ Đ˛Đ¸Đ´ĐĩĐž: Yann LeCun ОйŅŅĐļдаĐĩŅ Đ¸ŅŅĐžŅĐ¸Ņ ĐŗĐģŅйОĐēĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ˛ ŅŅОК ĐģĐĩĐēŅии
-
----
-## đĐŅСОв
-
-ĐĐžĐŗŅŅСиŅĐĩŅŅ Đ˛ ОдиĐŊ иС ŅŅиŅ
иŅŅĐžŅиŅĐĩŅĐēиŅ
ĐŧĐžĐŧĐĩĐŊŅОв и ŅСĐŊаКŅĐĩ йОĐģŅŅĐĩ Đž ĐģŅĐ´ŅŅ
, ŅŅĐžŅŅиŅ
Са ĐŊиĐŧи. ĐŅŅŅ ŅвĐģĐĩĐēаŅĐĩĐģŅĐŊŅĐĩ ĐŋĐĩŅŅĐžĐŊаĐļи, и ĐŊи ОдĐŊĐž ĐŊаŅŅĐŊĐžĐĩ ĐžŅĐēŅŅŅиĐĩ ĐŊиĐēĐžĐŗĐ´Đ° ĐŊĐĩ ŅОСдаваĐģĐžŅŅ Đ˛ ĐēŅĐģŅŅŅŅĐŊĐžĐŧ ваĐēŅŅĐŧĐĩ. ЧŅĐž Đ˛Ņ ĐžĐąĐŊаŅŅĐļиŅĐĩ?
-
-## [ĐĸĐĩŅŅ ĐŋĐžŅĐģĐĩ ĐģĐĩĐēŅии](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
----
-## ĐĐąĐˇĐžŅ Đ¸ ŅаĐŧООйŅŅĐĩĐŊиĐĩ
-
-ĐĐžŅ ŅŅĐž ĐŧĐžĐļĐŊĐž ĐŋĐžŅĐŧĐžŅŅĐĩŅŅ Đ¸ ĐŋĐžŅĐģŅŅаŅŅ:
-
-[ĐŅĐžŅ ĐŋОдĐēаŅŅ, в ĐēĐžŅĐžŅĐžĐŧ ĐĐŧи ĐОКд ОйŅŅĐļдаĐĩŅ ŅвОĐģŅŅĐ¸Ņ ĐĐ](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "ĐŅŅĐžŅĐ¸Ņ Đ¸ŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа ĐžŅ ĐĐŧи ĐОКд")
-
----
-
-## ĐадаĐŊиĐĩ
-
-[ХОСдаКŅĐĩ вŅĐĩĐŧĐĩĐŊĐŊŅŅ ŅĐēаĐģŅ](assignment.ru.md)
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/README.tr.md b/1-Introduction/2-history-of-ML/translations/README.tr.md
deleted file mode 100644
index 4145f666..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.tr.md
+++ /dev/null
@@ -1,117 +0,0 @@
-# Makine ÃļÄreniminin tarihi
-
-
-> [Tomomi Imura](https://www.twitter.com/girlie_mac) tarafÄąndan hazÄąrlanan taslak-not
-
-## [Ders Ãļncesi test](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3?loc=tr)
-
-Bu derste, makine ÃļÄrenimi ve yapay zeka tarihindeki Ãļnemli kilometre taÅlarÄąnÄą inceleyeceÄiz.
-
-Bir alan olarak yapay zekanÄąn (AI) tarihi, makine ÃļÄreniminin tarihi ile iç içedir, çÃŧnkÃŧ makine ÃļÄrenimini destekleyen algoritmalar ve bilgi-iÅlem kapasitesindeki ilerlemeler, yapay zekanÄąn geliÅimini beslemektedir. AyrÄą bilim alanlanlarÄą olarak bu alanlar 1950'lerde belirginleÅmeye baÅlarken, Ãļnemli [algoritmik, istatistiksel, matematiksel, hesaplamalÄą ve teknik keÅiflerin](https://wikipedia.org/wiki/Timeline_of_machine_learning) bir kÄąsmÄą bu dÃļnemden Ãļnce gelmiÅ ve bir kÄąsmÄą da bu dÃļnem ile ÃļrtÃŧÅmÃŧÅtÃŧr. AslÄąnda, insanlar [yÃŧzlerce yÄąldÄąr](https://wikipedia.org/wiki/History_of_artificial_intelligence) bu sorularÄą dÃŧÅÃŧnÃŧyorlar: bu makale bir 'dÃŧÅÃŧnen makine' fikrinin tarihsel entelektÃŧel temellerini tartÄąÅÄąyor.
-
-## Ãnemli keÅifler
-
-- 1763, 1812 - [Bayes Teoremi](https://tr.wikipedia.org/wiki/Bayes_teoremi) ve ÃļncÃŧlleri. Bu teorem ve uygulamalarÄą, Ãļnceki bilgilere dayalÄą olarak meydana gelen bir olayÄąn olasÄąlÄąÄÄąnÄą tanÄąmlayan Ã§ÄąkarÄąmÄąn temelini oluÅturur.
-- 1805 - [En KÃŧçÃŧk Kareler Teorisi](https://tr.wikipedia.org/wiki/En_k%C3%BC%C3%A7%C3%BCk_kareler_y%C3%B6ntemi), FransÄąz matematikçi Adrien-Marie Legendre tarafÄąndan bulunmuÅtur. Regresyon Ãŧnitemizde ÃļÄreneceÄiniz bu teori, makine ÃļÄrenimi modelini veriye uydurmada yardÄąmcÄą olur.
-- 1913 - Rus matematikçi Andrey Markov'un adÄąnÄą taÅÄąyan [Markov Zincirleri](https://tr.wikipedia.org/wiki/Markov_zinciri), Ãļnceki bir duruma dayalÄą olasÄą olaylar dizisini tanÄąmlamak için kullanÄąlÄąr.
-- 1957 - [AlgÄąlayÄącÄą (Perceptron)](https://tr.wikipedia.org/wiki/Perceptron), derin ÃļÄrenmedeki ilerlemelerin temelini oluÅturan AmerikalÄą psikolog Frank Rosenblatt tarafÄąndan icat edilen bir tÃŧr doÄrusal sÄąnÄąflandÄąrÄącÄądÄąr.
-- 1967 - [En YakÄąn KomÅu](https://wikipedia.org/wiki/Nearest_neighbor), orijinal olarak rotalarÄą haritalamak için tasarlanmÄąÅ bir algoritmadÄąr. Bir ML baÄlamÄąnda kalÄąplarÄą tespit etmek için kullanÄąlÄąr.
-- 1970 - [Geri YayÄąlÄąm](https://wikipedia.org/wiki/Backpropagation), [ileri beslemeli sinir aÄlarÄąnÄą](https://wikipedia.org/wiki/Feedforward_neural_network) eÄitmek için kullanÄąlÄąr.
-- 1982 - [Tekrarlayan Sinir AÄlarÄą](https://wikipedia.org/wiki/Recurrent_neural_network), zamansal grafikler oluÅturan ileri beslemeli sinir aÄlarÄąndan tÃŧretilen yapay sinir aÄlarÄądÄąr.
-
-â
Biraz araÅtÄąrma yapÄąn. Makine ÃļÄrenimi ve yapay zeka tarihinde Ãļnemli olan baÅka hangi tarihler Ãļne Ã§ÄąkÄąyor?
-
-## 1950: DÃŧÅÃŧnen makineler
-
-[2019'da halk tarafÄąndan](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) 20. yÃŧzyÄąlÄąn en bÃŧyÃŧk bilim adamÄą seçilen gerçekten dikkate deÄer bir kiÅi olan Alan Turing'in, 'dÃŧÅÃŧnebilen makine' kavramÄąnÄąn temellerini attÄąÄÄą kabul edilir. Kendisine karÅÄą Ã§Äąkanlara yanÄąt olmasÄą için ve bu kavramÄąn deneysel kanÄątlarÄąnÄą bulma ihtiyacÄą sebebiyle, NLP derslerimizde keÅfedeceÄiniz [Turing Testi'ni](https://www.bbc.com/news/technology-18475646) oluÅturdu.
-
-## 1956: Dartmouth Yaz AraÅtÄąrma Projesi
-
-"Yapay zeka Ãŧzerine Dartmouth Yaz AraÅtÄąrma Projesi", bir alan olarak yapay zeka için Ã§ÄąÄÄąr açan bir olaydÄą ve burada 'yapay zeka' terimi ortaya Ã§ÄąktÄą ([kaynak](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
-
-> ÃÄrenmenin her yÃļnÃŧ veya zekanÄąn diÄer herhangi bir ÃļzelliÄi, prensipte o kadar kesin bir Åekilde tanÄąmlanabilir ki, onu simÃŧle etmek için bir makine yapÄąlabilir.
-
-BaÅ araÅtÄąrmacÄą, matematik profesÃļrÃŧ John McCarthy, "ÃļÄrenmenin her yÃļnÃŧnÃŧn veya zekanÄąn diÄer herhangi bir ÃļzelliÄinin prensipte oldukça kesin bir Åekilde tanÄąmlanabileceÄi varsayÄąmÄąna dayanarak, onu simÃŧle etmek için bir makine yapÄąlabileceÄi" varsayÄąmÄąnÄąn doÄru olmasÄąnÄą umarak ilerliyordu. KatÄąlÄąmcÄąlar arasÄąnda bu alanÄąn bir diÄer Ãļnderi olan Marvin Minsky de vardÄą.
-
-ÃalÄąÅtay, "sembolik yÃļntemlerin yÃŧkseliÅi, sÄąnÄąrlÄą alanlara odaklanan sistemler (ilk uzman sistemler) ve tÃŧmdengelimli sistemlere karÅÄą tÃŧmevarÄąmlÄą sistemler" dahil olmak Ãŧzere çeÅitli tartÄąÅmalarÄą baÅlatmÄąÅ ve teÅvik etmiÅtir. ([kaynak](https://tr.wikipedia.org/wiki/Dartmouth_Konferans%C4%B1)).
-
-## 1956 - 1974: "AltÄąn yÄąllar"
-
-1950'lerden 70'lerin ortalarÄąna kadar, yapay zekanÄąn birçok sorunu çÃļzebileceÄi umuduyla iyimserlik arttÄą. 1967'de Marvin Minsky kendinden emin bir Åekilde "Bir nesil içinde... 'yapay zeka' yaratma sorunu bÃŧyÃŧk ÃļlçÃŧde çÃļzÃŧlecek" dedi. (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
-
-DoÄal dil iÅleme araÅtÄąrmalarÄą geliÅti, aramalar iyileÅtirildi ve daha gÃŧçlÃŧ hale getirildi, ve basit gÃļrevlerin sade dil talimatlarÄą kullanÄąlarak tamamlandÄąÄÄą 'mikro dÃŧnyalar' kavramÄą yaratÄąldÄą.
-
-AraÅtÄąrmalar, devlet kurumlarÄą tarafÄąndan iyi finanse edildi, hesaplamalar ve algoritmalarda ilerlemeler kaydedildi ve akÄąllÄą makinelerin prototipleri yapÄąldÄą. Bu makinelerden bazÄąlarÄą ÅunlardÄąr:
-
-* [Robot Shakey](https://wikipedia.org/wiki/Shakey_the_robot), manevra yapabilir ve gÃļrevleri 'akÄąllÄąca' nasÄąl yerine getireceÄine karar verebilir.
-
- 
- > 1972'de Shakey
-
-* Erken bir 'sohbet botu' olan Eliza, insanlarla sohbet edebilir ve ilkel bir 'terapist' gibi davranabilirdi. NLP derslerinde Eliza hakkÄąnda daha fazla bilgi edineceksiniz.
-
- 
- > Bir sohbet robotu olan Eliza'nÄąn bir versiyonu
-
-* "DÃŧnya BloklarÄą", bloklarÄąn Ãŧst Ãŧste koyulabilecekleri, sÄąralanabilecekleri ve karar vermeyi ÃļÄreten makinelerdeki deneylerin test edilebileceÄi bir mikro dÃŧnyaya Ãļrnekti. [SHRDLU](https://wikipedia.org/wiki/SHRDLU) gibi kÃŧtÃŧphanelerle oluÅturulan geliÅmeler, dil iÅlemeyi ilerletmeye yardÄąmcÄą oldu.
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "SHRDLU ile DÃŧnya BloklarÄą" )
-
- > đĨ Video için yukarÄądaki resme tÄąklayÄąn: SHRDLU ile DÃŧnya BloklarÄą
-
-## 1974 - 1980: "Yapay ZekÃĸ KÄąÅÄą"
-
-1970'lerin ortalarÄąna gelindiÄinde, 'akÄąllÄą makineler' yapmanÄąn karmaÅÄąklÄąÄÄąnÄąn hafife alÄąndÄąÄÄą ve mevcut hesaplama gÃŧcÃŧ gÃļz ÃļnÃŧne alÄąndÄąÄÄąnda, verilen vaatlerin abartÄąldÄąÄÄą ortaya Ã§ÄąktÄą. Finansman kurudu ve alana olan gÃŧven azaldÄą. GÃŧveni etkileyen bazÄą sorunlar ÅunlardÄą:
-
-- **KÄąsÄątlÄąklar**. Hesaplama gÃŧcÃŧ çok sÄąnÄąrlÄąydÄą.
-- **Kombinasyonel patlama**. Hesaplama gÃŧcÃŧ ve yeteneÄinde paralel bir evrim olmaksÄązÄąn, bilgisayarlardan daha fazla soru istendikçe, eÄitilmesi gereken parametre miktarÄą katlanarak arttÄą.
-- **Veri eksikliÄi**. AlgoritmalarÄą test etme, geliÅtirme ve iyileÅtirme sÃŧrecini engelleyen bir veri kÄątlÄąÄÄą vardÄą.
-- **DoÄru sorularÄą mÄą soruyoruz?**. Sorulan sorular sorgulanmaya baÅlandÄą. AraÅtÄąrmacÄąlar mevcut yaklaÅÄąmlarÄą eleÅtirmeye baÅladÄą:
- - Turing testleri, diÄer fikirlerin yanÄą sÄąra, "Ãin odasÄą teorisi" aracÄąlÄąÄÄąyla sorgulanmaya baÅlandÄą. Bu teori, "dijital bir bilgisayar, programlanarak dili anlÄąyormuÅ gibi gÃļsterilebilir fakat gerçek bir dil anlayÄąÅÄą elde edilemez" savÄąnÄą Ãļne sÃŧrmektedir. ([kaynak](https://plato.stanford.edu/entries/chinese-room/)
- - "Terapist" ELIZA gibi yapay zekalarÄąn topluma tanÄątÄąlmasÄąnÄąn etiÄine meydan okundu.
-
-AynÄą zamanda, çeÅitli yapay zekÃĸ dÃŧÅÃŧnce okullarÄą oluÅmaya baÅladÄą. ["daÄÄąnÄąk" ile "dÃŧzenli AI"](https://wikipedia.org/wiki/Neats_and_scruffies) uygulamalarÄą arasÄąnda bir ikilem kuruldu. _DaÄÄąnÄąk_ laboratuvarlar, istenen sonuçlarÄą elde edene kadar programlar Ãŧzerinde saatlerce ince ayar yaptÄą. _DÃŧzenli_ laboratuvarlar "mantÄąk ve biçimsel problem çÃļzmeye odaklandÄą". ELIZA ve SHRDLU, iyi bilinen _daÄÄąnÄąk_ sistemlerdi. 1980'lerde, ML sistemlerinin sonuçlarÄąnÄą tekrarlanabilir hale getirmek için talep ortaya Ã§ÄąktÄąkça, sonuçlarÄą daha aÃ§Äąklanabilir olduÄu için _dÃŧzenli_ yaklaÅÄąm yavaÅ yavaÅ Ãļn plana Ã§ÄąktÄą.
-
-## 1980'ler: Uzman sistemler
-
-Alan bÃŧyÃŧdÃŧkçe, Åirketlere olan faydasÄą daha net hale geldi ve 1980'lerde 'uzman sistemlerin' yaygÄąnlaÅmasÄą da bu Åekilde meydana geldi. "Uzman sistemler, yapay zeka (AI) yazÄąlÄąmlarÄąnÄąn gerçek anlamda baÅarÄąlÄą olan ilk formlarÄą arasÄąndaydÄą." ([kaynak](https://tr.wikipedia.org/wiki/Uzman_sistemler)).
-
-Bu sistem tÃŧrÃŧ aslÄąnda kÄąsmen iÅ gereksinimlerini tanÄąmlayan bir kural aracÄąndan ve yeni gerçekleri Ã§Äąkarmak için kurallar sisteminden yararlanan bir Ã§ÄąkarÄąm aracÄąndan oluÅan bir _melezdir_.
-
-Bu çaÄda aynÄą zamanda sinir aÄlarÄąna artan ilgi de gÃļrÃŧlmÃŧÅtÃŧr.
-
-## 1987 - 1993: Yapay Zeka 'SoÄumasÄą'
-
-ÃzelleÅmiÅ uzman sistem donanÄąmÄąnÄąn yaygÄąnlaÅmasÄą, talihsiz bir Åekilde bunlarÄą aÅÄąrÄą ÃļzelleÅmiÅ hale getirdi. KiÅisel bilgisayarlarÄąn yÃŧkseliÅi de bu bÃŧyÃŧk, ÃļzelleÅmiÅ, merkezi sistemlerle rekabet etti. BilgisayarÄąn demokratikleÅmesi baÅlamÄąÅtÄą ve sonunda modern bÃŧyÃŧk veri patlamasÄąnÄąn yolunu açtÄą.
-
-## 1993 - 2011
-
-Bu çaÄ, daha Ãļnce veri ve hesaplama gÃŧcÃŧ eksikliÄinden kaynaklanan bazÄą sorunlarÄą çÃļzebilmek için ML ve AI için yeni bir dÃļnemi getirdi. Veri miktarÄą hÄązla artmaya baÅladÄą ve Ãļzellikle 2007'de akÄąllÄą telefonun ortaya Ã§ÄąkmasÄąyla birlikte iyisiyle kÃļtÃŧsÃŧyle daha yaygÄąn bir Åekilde ulaÅÄąlabilir hale geldi. Hesaplama gÃŧcÃŧ katlanarak arttÄą ve algoritmalar da onunla birlikte geliÅti. GeçmiÅin baÅÄąboÅ gÃŧnleri gitmiÅ, yerine giderek olgunlaÅan gerçek bir disipline dÃļnÃŧÅÃŧm baÅlamÄąÅtÄą.
-
-## Åimdi
-
-GÃŧnÃŧmÃŧzde makine ÃļÄrenimi ve yapay zeka hayatÄąmÄązÄąn neredeyse her alanÄąna dokunuyor. Bu çaÄ, bu algoritmalarÄąn insan yaÅamÄą Ãŧzerindeki risklerinin ve potansiyel etkilerinin dikkatli bir Åekilde anlaÅÄąlmasÄąnÄą gerektirmektedir. Microsoft'tan Brad Smith'in belirttiÄi gibi, "Bilgi teknolojisi, gizlilik ve ifade ÃļzgÃŧrlÃŧÄÃŧ gibi temel insan haklarÄą korumalarÄąnÄąn kalbine giden sorunlarÄą gÃŧndeme getiriyor. Bu sorunlar, bu ÃŧrÃŧnleri yaratan teknoloji Åirketlerinin sorumluluÄunu artÄąrÄąyor. Bizim aÃ§ÄąmÄązdan bakÄąldÄąÄÄąnda, dÃŧÅÃŧnceli hÃŧkÃŧmet dÃŧzenlemeleri ve kabul edilebilir kullanÄąmlar etrafÄąnda normlarÄąn geliÅtirilmesi için de bir çaÄrÄą niteliÄi taÅÄąyor." ([kaynak](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/) )).
-
-GeleceÄin neler getireceÄini birlikte gÃļreceÄiz, ancak bu bilgisayar sistemlerini ve çalÄąÅtÄąrdÄąklarÄą yazÄąlÄąm ve algoritmalarÄą anlamak Ãļnemlidir. Bu mÃŧfredatÄąn, kendi kararlarÄąnÄązÄą verebilmeniz için daha iyi bir anlayÄąÅ kazanmanÄąza yardÄąmcÄą olacaÄÄąnÄą umuyoruz.
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "Derin ÃļÄrenmenin tarihi")
-> đĨ Video için yukarÄądaki resme tÄąklayÄąn: Yann LeCun bu derste derin ÃļÄrenmenin tarihini tartÄąÅÄąyor
-
----
-## đMeydan okuma
-
-Bu tarihi anlardan birine girin ve arkasÄąndaki insanlar hakkÄąnda daha fazla bilgi edinin. BÃŧyÃŧleyici karakterler var ve kÃŧltÃŧrel bir boÅlukta hiçbir bilimsel keÅif yaratÄąlmadÄą. Ne keÅfedersiniz?
-
-## [Ders sonrasÄą test](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4?loc=tr)
-
-## İnceleme ve Bireysel ÃalÄąÅma
-
-İÅte izlenmesi ve dinlenmesi gerekenler:
-
-[Amy Boyd'un yapay zekanÄąn evrimini tartÄąÅtÄąÄÄą bu podcast](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy Boyd ile Yapay ZekÃĸ'nÄąn tarihi")
-
-## Ãdev
-
-[Bir zaman çizelgesi oluÅturun](assignment.tr.md)
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/README.zh-cn.md b/1-Introduction/2-history-of-ML/translations/README.zh-cn.md
deleted file mode 100644
index ddd2430d..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.zh-cn.md
+++ /dev/null
@@ -1,116 +0,0 @@
-# æēå¨åĻäš įåå˛
-
-
-> äŊč
[Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [č¯žåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
-卿Ŧč¯žä¸īŧæäģŦå°čĩ°čŋæēå¨åĻäš åäēēåˇĨæēčŊåå˛ä¸įä¸ģčĻéį¨įĸã
-
-äēēåˇĨæēčŊīŧAIīŧäŊä¸ēä¸ä¸Ēéĸåįåå˛ä¸æēå¨åĻäš įåå˛äē¤įģå¨ä¸čĩˇīŧå ä¸ēæ¯ææēå¨åĻäš įįŽæŗå莥įŽčŊåįčŋæĨæ¨å¨äēAIįååąã莰äŊīŧčŊįļčŋäēéĸåäŊä¸ēä¸åį įŠļéĸåå¨ 20 ä¸įēĒ 50 åš´äģŖæåŧå§å
ˇäŊåīŧäŊéčĻį[įŽæŗãįģčŽĄãæ°åĻã莥įŽåææ¯åį°](https://wikipedia.org/wiki/Timeline_of_machine_learning) čĻæŠäēåéå äēčŋä¸ĒæļäģŖã äēåŽä¸īŧ[æ°įžåš´æĨ](https://wikipedia.org/wiki/History_of_artificial_intelligence)äēēäģŦä¸į´å¨æččŋäēéŽéĸīŧæŦæčލčŽēäēâæįģ´æēå¨âčŋ䏿Ļåŋĩįåå˛įĨč¯åēįĄã
-
-## ä¸ģčĻåį°
-
-- 1763, 1812 [č´å￝åŽį](https://wikipedia.org/wiki/Bayes%27_theorem) åå
ļåčēĢãč¯ĨåŽįåå
ļåē፿¯æ¨įįåēįĄīŧæčŋ°äēåēäēå
éĒįĨč¯įäēäģļåįįæĻįã
-- 1805 [æå°äēäšįčŽē](https://wikipedia.org/wiki/Least_squares)įąæŗåŊæ°åĻåŽļ Adrien-Marie Legendre æåēã äŊ å°å¨æäģŦįååŊåå
ä¸äēč§Ŗčŋä¸įčŽēīŧåŽæåŠäēæ°æŽæåã
-- 1913 [éŠŦå°å¯å¤Ģéž](https://wikipedia.org/wiki/Markov_chain)äģĨäŋįŊæ¯æ°åĻåŽļ Andrey Markov įåååŊåīŧį¨äēæčŋ°åēäēå
åįļæįä¸įŗģåå¯čŊäēäģļã
-- 1957 [æįĨå¨](https://wikipedia.org/wiki/Perceptron)æ¯įžåŊåŋįåĻåŽļ Frank Rosenblatt åæįä¸į§įēŋæ§åįąģå¨īŧæ¯æˇąåēĻåĻäš ååąįåēįĄã
-- 1967 [æčŋéģ](https://wikipedia.org/wiki/Nearest_neighbor)æ¯ä¸į§æå莞莥į¨äēæ å°čˇ¯įēŋįįŽæŗã å¨ ML ä¸īŧåŽį¨äēæŖæĩæ¨Ąåŧã
-- 1970 [ååäŧ æ](https://wikipedia.org/wiki/Backpropagation)į¨äēčŽįģ[åéĻįĨįģįŊįģ](https://wikipedia.org/wiki/Feedforward_neural_network)ã
-- 1982 [åžĒį¯įĨįģįŊįģ](https://wikipedia.org/wiki/Recurrent_neural_network) æ¯æēčĒäē§įæļé´åžįåéĻįĨįģįŊįģįäēēåˇĨįĨįģįŊįģã
-
-â
åįšč°æĨãå¨ ML å AI įåå˛ä¸īŧčŋæåĒäēæĨææ¯éčĻįīŧ
-## 1950: äŧæčįæēå¨
-
-Alan Turingīŧä¸ä¸ĒįæŖæ°åēįäēēīŧ[å¨ 2019 åš´čĸĢå
ŦäŧæįĨ¨éåē](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) äŊä¸ē 20 ä¸įēĒæäŧ大įį§åĻåŽļīŧäģ莤ä¸ēæåŠäēä¸ēâäŧæčįæēå¨âįæĻåŋĩæä¸åēįĄãäģéčŋååģē [åžįĩæĩč¯](https://www.bbc.com/news/technology-18475646)æĨč§Ŗåŗå寚č
åäģčĒåˇąå¯ščŋ䏿ĻåŋĩįįģéĒ蝿ŽįéæąīŧäŊ å°å¨æäģŦį NLP č¯žį¨ä¸čŋčĄæĸį´ĸã
-
-## 1956: čžžįšč
æ¯å¤åŖį įŠļ饚įŽ
-
-âčžžįšč
æ¯å¤åŖäēēåˇĨæēčŊį įŠļéĄšįŽæ¯äēēåˇĨæēčŊéĸåįä¸ä¸Ēåŧåæ§äēäģļīŧâæŖæ¯å¨čŋéīŧäēēäģŦåé äēâäēēåˇĨæēčŊâä¸č¯īŧ[æĨæē](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)īŧã
-
-> ååä¸īŧåĻäš įæ¯ä¸ĒæšéĸææēčŊįäģģäŊå
ļäģįšåžéŊå¯äģĨčĸĢį˛žįĄŽå°æčŋ°īŧäģĨčŗäēå¯äģĨ፿ē卿Ĩæ¨ĄæåŽã
-
-éĻå¸į įŠļåãæ°åĻææ John McCarthy 叿âåēäēčŋæ ˇä¸į§įæŗīŧåŗåĻäš įæ¯ä¸ĒæšéĸææēčŊįäģģäŊå
ļäģįšåžååä¸éŊå¯äģĨåĻæ¤į˛žįĄŽå°æčŋ°īŧäģĨčŗäēå¯äģĨåļé åēä¸å°æē卿Ĩæ¨ĄæåŽãâ åä¸č
å
æŦč¯ĨéĸåįåĻä¸äŊæ°åēäēēįŠ Marvin Minskyã
-
-į 莨äŧčĸĢ莤ä¸ēåčĩˇåšļéŧåąäēä¸äē莨čŽēīŧå
æŦâįŦĻ县šæŗįå
´čĩˇã䏿ŗ¨äēæééĸåįįŗģįģīŧæŠæä¸åŽļįŗģįģīŧīŧäģĨåæŧįģįŗģįģä¸åŊįēŗįŗģįģį寚æ¯ãâīŧ[æĨæē](https://wikipedia.org/wiki/Dartmouth_workshop)īŧã
-
-## 1956 - 1974: âéģé垿â
-
-äģ 20 ä¸įēĒ 50 åš´äģŖå° 70 åš´äģŖä¸æīŧäšč§æ
įģĒéĢæļ¨īŧ叿äēēåˇĨæēčŊčŊå¤č§Ŗåŗčޏå¤éŽéĸã1967 åš´īŧMarvin Minsky čĒäŋĄå°č¯´īŧâä¸äģŖäēēäšå
...åé âäēēåˇĨæēčŊâįéŽéĸå°åžå°åŽč´¨æ§įč§ŖåŗãâīŧMinskyīŧMarvinīŧ1967īŧīŧã莥įŽīŧæéåæ éæēå¨ãīŧæ°æŗŊčĨŋ县п ŧäŧåžˇå
åŠå¤Ģæ¯īŧPrentice Hallīŧ
-
-čĒįļč¯č¨å¤įį įŠļčŦåååąīŧæį´ĸčĸĢæįŧåšļååžæ´å åŧē大īŧåé äēâ垎č§ä¸įâįæĻåŋĩīŧå¨čŋä¸ĒæĻåŋĩä¸īŧįŽåįäģģåĄæ¯į¨įŽåįč¯č¨æäģ¤åŽæįã
-
-čŋ饚į įŠļåžå°äēæŋåēæēæįå
åčĩåŠīŧå¨čŽĄįŽåįŽæŗæšéĸååžäēčŋåąīŧåšļåģēé äēæēčŊæēå¨įååãå
ļä¸ä¸äēæēå¨å
æŦīŧ
-
-* [æēå¨äēē Shakey](https://wikipedia.org/wiki/Shakey_the_robot)īŧäģäģŦå¯äģĨâčĒæå°âæįēĩååŗåŽåĻäŊæ§čĄäģģåĄã
-
- 
- > 1972 åš´į Shakey
-
-* Elizaīŧä¸ä¸ĒæŠæįâč夊æēå¨äēēâīŧå¯äģĨä¸äēēäē¤č°åšļå
åŊåå§įâæ˛ģįå¸âã äŊ å°å¨ NLP č¯žį¨ä¸äēč§Ŗæå
ŗ Eliza įæ´å¤äŋĄæ¯ã
-
- 
- > Eliza įä¸ä¸ĒįæŦīŧä¸ä¸Ēč夊æēå¨äēē
-
-* â᧝æ¨ä¸įâæ¯ä¸ä¸Ē垎č§ä¸įįäžåīŧå¨éŖé᧝æ¨å¯äģĨå å ååįąģīŧåšļä¸å¯äģĨæĩ蝿æēå¨ååēåŗįįåŽéĒã äŊŋ፠[SHRDLU](https://wikipedia.org/wiki/SHRDLU) įåēæåģēįéĢįē§åčŊæåŠä翍å¨č¯č¨å¤įååååąã
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "᧝æ¨ä¸įä¸SHRDLU")
-
- > đĨ įšåģä¸åžč§įč§éĸīŧ ᧝æ¨ä¸įä¸ SHRDLU
-
-## 1974 - 1980: AI įå¯åŦ
-
-å°äē 20 ä¸įēĒ 70 åš´äģŖä¸æīŧåžææžåļé âæēčŊæēå¨âį夿æ§čĸĢäŊäŧ°äēīŧčä¸ččå°å¯į¨į莥įŽčŊåīŧåŽį忝čĸĢ夸大äēãčĩ鿝įĢīŧå¸åēäŋĄåŋæžįŧãåŊąåäŋĄåŋįä¸äēéŽéĸå
æŦīŧ
-
-- **éåļ**ã莥įŽčŊåå¤Ēæéäē
-- **įģåįį¸**ãéįå¯ščŽĄįŽæēįčĻæąčļæĨčļéĢīŧéčĻčŽįģįåæ°æ°éåææ°įē§åĸéŋīŧč莥įŽčŊåå´æ˛ĄæåšŗčĄååąã
-- **įŧēäšæ°æŽ**ã įŧēäšæ°æŽéģįĸäēæĩč¯ãåŧååæščŋįŽæŗįčŋį¨ã
-- **æäģŦæ¯åĻå¨éŽæŖįĄŽįéŽéĸīŧ**ã čĸĢéŽå°įéŽéĸäšåŧå§åå°č´¨įã į įŠļäēēååŧå§å¯šäģäģŦįæšæŗæåēæšč¯īŧ
- - åžįĩæĩč¯åå°č´¨įįæšæŗäšä¸æ¯âä¸åŊæŋé´įčŽēâīŧč¯ĨįčŽē莤ä¸ēīŧâ寚æ°åčŽĄįŽæēčŋčĄįŧį¨å¯čŊäŊŋå
ļįčĩˇæĨčŊįč§Ŗč¯č¨īŧäŊä¸čŊäē§įįæŖįįč§Ŗãâ ([æĨæē](https://plato.stanford.edu/entries/chinese-room/))
- - å°âæ˛ģįå¸âELIZA čŋæ ˇįäēēåˇĨæēčŊåŧå
Ĩį¤žäŧįäŧĻįåå°äēææã
-
-䏿¤åæļīŧåį§äēēåˇĨæēčŊåĻæ´žåŧå§åŊĸæã å¨ [âscruffyâ ä¸ âneat AIâ](https://wikipedia.org/wiki/Neats_and_scruffies) äšé´åģēįĢäēäēåæŗã _Scruffy_ åŽéĒ厤寚į¨åēčŋčĄäēæ°å°æļįč°æ´īŧį´å°čˇåžæéįįģæã _Neat_ åŽéĒ厤â䏿ŗ¨äēéģčžååŊĸåŧéŽéĸįč§Ŗåŗâã ELIZA å SHRDLU æ¯äŧæå¨įĨį _scruffy_ įŗģįģã å¨ 1980 åš´äģŖīŧéįäŊŋ ML įŗģįģå¯éį°įéæąåēį°īŧ_neat_ æšæŗéæ¸čĩ°ä¸åæ˛ŋīŧå ä¸ēå
ļįģææ´æäēč§Ŗéã
-
-## 1980s ä¸åŽļįŗģįģ
-
-éįčŋä¸ĒéĸåįååąīŧåŽå¯šåä¸įåĨŊå¤ååžčļæĨčļææžīŧå¨ 20 ä¸įēĒ 80 åš´äģŖīŧâä¸åŽļįŗģįģâäšåŧå§åšŋæŗæĩčĄčĩˇæĨãâä¸åŽļįŗģį쿝éĻæšįæŖæåįäēēåˇĨæēčŊ (AI) čŊ¯äģļåŊĸåŧäšä¸ãâ īŧ[æĨæē](https://wikipedia.org/wiki/Expert_system)īŧã
-
-čŋį§įąģåįįŗģįģåŽé
䏿¯æˇˇåįŗģįģīŧé¨åįąåŽäšä¸åĄéæąįč§ååŧæååŠį¨č§åįŗģįģæ¨ææ°äēåŽįæ¨įåŧæįģæã
-
-å¨čŋä¸ĒæļäģŖīŧįĨįģįŊįģäščļæĨčļåå°éč§ã
-
-## 1987 - 1993: AI įåˇéæ
-
-ä¸ä¸įä¸åŽļįŗģįģįĄŦäģļįæŋåĸé æäēčŋäēä¸ä¸åįä¸åš¸åæãä¸Ēäēēįĩčįå
´čĩˇäšä¸čŋäē大åãä¸ä¸åãéä¸åįŗģįģåąåŧäēįĢäēãčŽĄįŽæēįåšŗæ°å厞įģåŧå§īŧåŽæįģä¸ēå¤§æ°æŽįį°äģŖįį¸éēåšŗäēé莝ã
-
-## 1993 - 2011
-
-čŋä¸ĒæļäģŖč§č¯äēä¸ä¸Ēæ°įæļäģŖīŧML å AI čŊå¤č§ŖåŗæŠæįąäēįŧēäšæ°æŽå莥įŽčŊåčå¯ŧč´įä¸äēéŽéĸãæ°æŽéåŧå§čŋ
éåĸå īŧååžčļæĨčļåšŋæŗīŧæ čŽēåĨŊåīŧå°¤å
￝ 2007 åš´åˇĻåŗæēčŊææēįåēį°īŧ莥įŽčŊååææ°įē§åĸéŋīŧįŽæŗäšéäšååąãčŋä¸Ēéĸååŧå§ååžæįīŧå ä¸ēčŋåģéŖäēéåŋææŦ˛įæĨååŧå§å
ˇäŊåä¸ēä¸į§įæŖįįēĒåžã
-
-## į°å¨
-
-äģ夊īŧæēå¨åĻäš åäēēåˇĨæēčŊå äšč§ĻåæäģŦįæ´ģ῝ä¸ä¸Ēé¨åãčŋä¸ĒæļäģŖčĻæąäģįģäēč§ŖčŋäēįŽæŗå¯šäēēįąģįæ´ģįéŖéŠåæŊå¨åŊąåãæŖåĻ垎čŊ¯į Brad Smith æč¨īŧâäŋĄæ¯ææ¯åŧåįéŽéĸč§Ļåéį§åč¨čŽēčĒįąįåēæŦäēēæäŋæ¤įæ ¸åŋãčŋäēéŽéĸå éäēåļé čŋäēäē§åįį§æå
Ŧå¸įč´Ŗäģģã卿äģŦįæĨīŧåŽäģŦčŋåŧåæŋåēčŋčĄæˇąæįčįįįŽĄīŧåšļå´įģ坿Ĩåįį¨éåļåŽč§čâīŧ[æĨæē](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)īŧã
-
-æĒæĨįæ
åĩčŋæåž
č§å¯īŧäŊäēč§ŖčŋäēčŽĄįŽæēįŗģįģäģĨååŽäģŦčŋčĄįčŊ¯äģļåįŽæŗæ¯åžéčĻįãæäģŦ叿čŋé¨č¯žį¨čŊ帎åŠäŊ æ´åĨŊįįč§ŖīŧäģĨäžŋäŊ čĒåˇąåŗåŽã
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "æˇąåēĻåĻäš įåå˛")
-> đĨ įšåģä¸åžč§įč§éĸīŧYann LeCun 卿ŦæŦĄčޞåē§ä¸čލčŽēæˇąåēĻåĻäš įåå˛
-
----
-## đææ
-
-æˇąå
Ĩäēč§Ŗčŋäēå垿ļåģäšä¸īŧåšļæ´å¤å°äēč§ŖåŽäģŦčåįäēēãčŋéæčޏå¤åŧäēēå
ĨčįäēēįŠīŧæ˛Ąæä¸éĄšį§åĻåį°æ¯å¨æåįįŠēä¸åé åēæĨįãäŊ åį°äēäģäšīŧ
-
-## [č¯žåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
-## å¤äš ä¸čĒåĻ
-
-äģĨ䏿¯čĻč§įåæļåŦįčįŽīŧ
-
-[čŋæ¯ Amy Boyd 莨čŽēäēēåˇĨæēčŊčŋåįæåŽĸ](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy BoydįãäēēåˇĨæēčŊå˛ã")
-
-## äģģåĄ
-
-[ååģēæļé´įēŋ](assignment.zh-cn.md)
diff --git a/1-Introduction/2-history-of-ML/translations/README.zh-tw.md b/1-Introduction/2-history-of-ML/translations/README.zh-tw.md
deleted file mode 100644
index 7c88c2ee..00000000
--- a/1-Introduction/2-history-of-ML/translations/README.zh-tw.md
+++ /dev/null
@@ -1,110 +0,0 @@
-# æŠå¨å¸įŋ῎å˛
-
-
-> äŊč
[Tomomi Imura](https://www.twitter.com/girlie_mac)
-## [čǞ忏ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/)
-
-卿ŦčǞä¸īŧæåå°čĩ°éæŠå¨å¸įŋåäēēåˇĨæēčŊæˇå˛ä¸įä¸ģčĻčŖį¨įĸã
-
-äēēåˇĨæēčŊīŧAIīŧäŊįēä¸åé å῎å˛čæŠå¨å¸įŋ῎å˛äē¤įšå¨ä¸čĩˇīŧå įēæ¯ææŠå¨å¸įŋįįŽæŗåč¨įŽčŊåį鞿Ĩæ¨åäēAIįįŧåąãč¨äŊīŧéįļéäēé åäŊįēä¸åį įŠļé åå¨ 20 ä¸į´ 50 åš´äģŖæéå§å
ˇéĢåīŧäŊéčĻį[įŽæŗãįĩąč¨ãæ¸å¸ãč¨įŽåæčĄįŧįž](https://wikipedia.org/wiki/Timeline_of_machine_learning) čϿпŧåéįäēéåæäģŖã äēå¯Ļä¸īŧ[æ¸įžåš´äž](https://wikipedia.org/wiki/History_of_artificial_intelligence)äēēåä¸į´å¨æčéäēåéĄīŧæŦæč¨čĢäēãæįļæŠå¨ãé䏿Ļåŋĩ῎å˛įĨčåēį¤ã
-
-## ä¸ģčĻįŧįž
-
-- 1763, 1812 [č˛čæ¯åŽį](https://wikipedia.org/wiki/Bayes%27_theorem) åå
ļåčēĢã芲åŽįåå
ļæį¨æ¯æ¨įįåēį¤īŧæčŋ°äēåēæŧå
éŠįĨčįäēäģļįŧįįæĻįã
-- 1805 [æå°äēäšįčĢ](https://wikipedia.org/wiki/Least_squares)įąæŗåæ¸å¸åŽļ Adrien-Marie Legendre æåēã äŊ å°å¨æåį忏åŽå
ä¸äēč§Ŗéä¸įčĢīŧåŽæåŠæŧæ¸ææŦåã
-- 1913 [éĻŦįžå¯å¤Ģé](https://wikipedia.org/wiki/Markov_chain)äģĨäŋįž
æ¯æ¸å¸åŽļ Andrey Markov įåååŊåīŧ፿ŧæčŋ°åēæŧå
åįæ
įä¸įŗģåå¯čŊäēäģļã
-- 1957 [æįĨå¨](https://wikipedia.org/wiki/Perceptron)æ¯įžååŋįå¸åŽļ Frank Rosenblatt įŧæįä¸į¨Žįˇæ§åéĄå¨īŧæ¯æˇąåēĻå¸įŋįŧåąįåēį¤ã
-- 1967 [æčŋé°](https://wikipedia.org/wiki/Nearest_neighbor)æ¯ä¸į¨Žæåč¨č¨į¨æŧæ å°čˇ¯įˇįįŽæŗã å¨ ML ä¸īŧåŽį¨æŧæĒĸæ¸Ŧæ¨Ąåŧã
-- 1970 [åååŗæ](https://wikipedia.org/wiki/Backpropagation)፿ŧč¨įˇ´[åéĨįĨįļįļ˛įĩĄ](https://wikipedia.org/wiki/Feedforward_neural_network)ã
-- 1982 [åžĒį°įĨįļįļ˛įĩĄ](https://wikipedia.org/wiki/Recurrent_neural_network) æ¯æēčĒįĸįæéåįåéĨįĨįļįļ˛įĩĄįäēēåˇĨįĨįļįļ˛įĩĄã
-
-â
åéģčĒŋæĨãå¨ ML å AI ῎å˛ä¸īŧéæåĒäēæĨææ¯éčĻįīŧ
-## 1950: ææčįæŠå¨
-
-Alan Turingīŧä¸åįæŖååēįäēēīŧ[å¨ 2019 åš´čĸĢå
ŦįžæįĨ¨é¸åē](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) äŊįē 20 ä¸į´æå大įį§å¸åŽļīŧäģčĒįēæåŠæŧįēãææčįæŠå¨ãįæĻåŋĩæä¸åēį¤ãäģééåĩåģē [å鿏ŦčŠĻ](https://www.bbc.com/news/technology-18475646)äžč§Ŗæąēåå°č
åäģčĒåˇąå°é䏿ĻåŋĩįįļéŠčæįéæąīŧäŊ å°å¨æåį NLP čǞį¨ä¸é˛čĄæĸį´ĸã
-
-## 1956: éįšč
æ¯å¤åŖį įŠļé
įŽ
-
-ãéįšč
æ¯å¤åŖäēēåˇĨæēčŊį įŠļé
įŽæ¯äēēåˇĨæēčŊé åįä¸åéåĩæ§äēäģļīŧãæŖæ¯å¨éčŖīŧäēēååĩé äēãäēēåˇĨæēčŊãä¸čŠīŧ[äžæē](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)īŧã
-
-> ååä¸īŧå¸įŋįæ¯åæšéĸææēčŊįäģģäŊå
ļäģįšåžéŊå¯äģĨčĸĢį˛žįĸēå°æčŋ°īŧäģĨčŗæŧå¯äģĨ፿Šå¨äžæ¨ĄæŦåŽã
-éĻå¸į įŠļåĄãæ¸å¸ææ John McCarthy 叿ãåēæŧ鿍Ŗä¸į¨Žįæŗīŧåŗå¸įŋįæ¯åæšéĸææēčŊįäģģäŊå
ļäģįšåžååä¸éŊå¯äģĨåĻæ¤į˛žįĸēå°æčŋ°īŧäģĨčŗæŧå¯äģĨčŖŊé åēä¸čēæŠå¨äžæ¨ĄæŦåŽãã åčč
å
æŦ芲é åįåĻä¸äŊååēäēēįŠ Marvin Minskyã
-
-į 荿čĸĢčĒįēįŧčĩˇä¸Ļéŧåĩäēä¸äēč¨čĢīŧå
æŦãįŦĻčæšæŗįččĩˇãå°č¨ģæŧæéé åįįŗģįĩąīŧæŠæå°åŽļįŗģįĩąīŧīŧäģĨåæŧįššįŗģįĩąčæ¸į´įŗģįĩąįå°æ¯ããīŧ[äžæē](https://wikipedia.org/wiki/Dartmouth_workshop)īŧã
-
-## 1956 - 1974: ãéģ鿞æã
-
-åž 20 ä¸į´ 50 åš´äģŖå° 70 åš´äģŖä¸æīŧæ¨č§æ
įˇéĢæŧ˛īŧ叿äēēåˇĨæēčŊčŊå¤ č§Ŗæąē訹å¤åéĄã1967 åš´īŧMarvin Minsky čĒäŋĄå°čĒĒīŧãä¸äģŖäēēäšå
§...åĩé ãäēēåˇĨæēčŊãįåéĄå°åžå°å¯ĻčŗĒæ§įč§ŖæąēããīŧMinskyīŧMarvinīŧ1967īŧīŧãč¨įŽīŧæéåįĄéæŠå¨ãīŧæ°æž¤čĨŋ县п ŧäŧåžˇå
åŠå¤Ģæ¯īŧPrentice Hallīŧ
-
-čĒįļčĒč¨čįį įŠļčŦåįŧåąīŧæį´ĸčĸĢæį
ä¸ĻčŽåžæ´å åŧˇå¤§īŧåĩé äēã垎č§ä¸įãįæĻåŋĩīŧå¨éåæĻåŋĩä¸īŧį°ĄåŽįäģģ忝į¨į°ĄåŽįčĒ荿äģ¤åŽæįã
-
-éé
į įŠļåžå°äēæŋåēæŠæ§įå
åčŗåŠīŧå¨č¨įŽåįŽæŗæšéĸååžäēé˛åąīŧä¸Ļåģēé äēæēčŊæŠå¨įååãå
ļä¸ä¸äēæŠå¨å
æŦīŧ
-
-* [æŠå¨äēē Shakey](https://wikipedia.org/wiki/Shakey_the_robot)īŧäģåå¯äģĨãč°æå°ãæį¸ąåæąēåŽåĻäŊåˇčĄäģģåã
-
- 
- > 1972 åš´į Shakey
-* Elizaīŧä¸åæŠæįãč夊æŠå¨äēēãīŧå¯äģĨčäēēäē¤čĢä¸Ļå
įļåå§įãæ˛ģįå¸Ģãã äŊ å°å¨ NLP čǞį¨ä¸äēč§Ŗæé Eliza įæ´å¤äŋĄæ¯ã
-
- 
- > Eliza įä¸åįæŦīŧä¸åč夊æŠå¨äēē
-* ãįŠæ¨ä¸įãæ¯ä¸å垎č§ä¸įįäžåīŧå¨éŖčŖįŠæ¨å¯äģĨå įååéĄīŧä¸Ļä¸å¯äģĨæ¸ŦčŠĻææŠå¨ååēæąēįįå¯ĻéŠã äŊŋ፠[SHRDLU](https://wikipedia.org/wiki/SHRDLU) įåēĢæ§åģēįéĢį´åčŊæåŠæŧæ¨åčĒč¨čįååįŧåąã
-
- [](https://www.youtube.com/watch?v=QAJz4YKUwqw "įŠæ¨ä¸įčSHRDLU")
-
- > đĨ éģæä¸åč§įčĻé ģīŧ įŠæ¨ä¸įč SHRDLU
-## 1974 - 1980: AI įå¯åŦ
-
-å°äē 20 ä¸į´ 70 åš´äģŖä¸æīŧåžæéĄ¯čŖŊé ãæēčŊæŠå¨ãįåžŠéæ§čĸĢäŊäŧ°äēīŧčä¸čæ
Žå°å¯į¨įč¨įŽčŊåīŧåŽį忝čĸĢčĒ大äēãčŗéæ¯įĢīŧå¸å ´äŋĄåŋæžįˇŠãåŊąéŋäŋĄåŋįä¸äēåéĄå
æŦīŧ
-
-- **éčŖŊ**ãč¨įŽčŊåå¤Ēæéäē
-- **įĩåįį¸**ãé¨čå°č¨įŽæŠįčĻæąčļäžčļéĢīŧéčĻč¨įˇ´į忏æ¸éåææ¸į´åĸéˇīŧčč¨įŽčŊåå쿞æåšŗčĄįŧåąã
-- **įŧēäšæ¸æ**ã įŧēäšæ¸æéģį¤ä翏ŦčŠĻãéįŧåæšé˛įŽæŗįéį¨ã
-- **æåæ¯åĻå¨åæŖįĸēįåéĄīŧ**ã čĸĢåå°įåéĄäšéå§åå°čŗĒįã į įŠļäēēåĄéå§å°äģåįæšæŗæåēæščŠīŧ
- - å鿏ŦčŠĻåå°čŗĒįįæšæŗäšä¸æ¯ãä¸åæŋéįčĢãīŧ芲įčĢčĒįēīŧãå°æ¸åč¨įŽæŠé˛čĄįˇ¨į¨å¯čŊäŊŋå
ļįčĩˇäžčŊįč§ŖčĒč¨īŧäŊä¸čŊįĸįįæŖįįč§Ŗãã ([äžæē](https://plato.stanford.edu/entries/chinese-room/))
- - å°ãæ˛ģįå¸ĢãELIZA 鿍ŖįäēēåˇĨæēčŊåŧå
Ĩį¤žæįåĢįåå°äēææ°ã
-
-迤åæīŧåį¨ŽäēēåˇĨæēčŊ叿´žéå§åŊĸæã å¨ [ãscruffyã č ãneat AIã](https://wikipedia.org/wiki/Neats_and_scruffies) äšéåģēįĢäēäēåæŗã _Scruffy_ å¯ĻéŠåޤå°į¨åēé˛čĄä翏尿įčĒŋæ´īŧį´å°į˛åžæéįįĩæã _Neat_ å¯ĻéŠåޤãå°č¨ģæŧéčŧ¯ååŊĸåŧåéĄįč§Ŗæąēãã ELIZA å SHRDLU æ¯įžæå¨įĨį _scruffy_ įŗģįĩąã å¨ 1980 åš´äģŖīŧé¨čäŊŋ ML įŗģįĩąå¯éįžįéæąåēįžīŧ_neat_ æšæŗéæŧ¸čĩ°ä¸åæ˛ŋīŧå įēå
ļįĩææ´ææŧč§Ŗéã
-
-## 1980s å°åŽļįŗģįĩą
-
-é¨čéåé åįįŧåąīŧåŽå°åæĨįåĨŊččŽåžčļäžčļæéĄ¯īŧå¨ 20 ä¸į´ 80 åš´äģŖīŧãå°åŽļįŗģįĩąãäšéå§åģŖæŗæĩčĄčĩˇäžããå°åŽļįŗģįĩ࿝éĻæšįæŖæåįäēēåˇĨæēčŊ (AI) čģäģļåŊĸåŧäšä¸ãã īŧ[äžæē](https://wikipedia.org/wiki/Expert_system)īŧã
-
-éį¨ŽéĄåįįŗģįĩąå¯Ļé䏿¯æˇˇåįŗģįĩąīŧé¨åįąåŽįžŠæĨåéæąįčĻååŧæååŠį¨čĻåįŗģįĩąæ¨æˇæ°äēå¯Ļ῍įåŧæįĩæã
-
-å¨éåæäģŖīŧįĨįļįļ˛įĩĄäščļäžčļåå°éčĻã
-
-## 1987 - 1993: AI įåˇéæ
-
-å°æĨįå°åŽļįŗģįĩąįĄŦäģļįæŋåĸé æäēéæŧå°æĨåįä¸åš¸åžæãåäēēéģč
Ļįččĩˇäščéäē大åãå°æĨåãéä¸åįŗģįĩąåąéäēįĢļįãč¨įŽæŠįåšŗæ°å厞įļéå§īŧåŽæįĩįēå¤§æ¸æįįžäģŖįį¸éĒåšŗäēé莝ã
-
-## 1993 - 2011
-
-éåæäģŖčĻčäēä¸åæ°įæäģŖīŧML å AI čŊå¤ č§ŖæąēæŠæįąæŧįŧēäšæ¸æåč¨įŽčŊåčå°č´įä¸äēåéĄãæ¸æééå§čŋ
éåĸå īŧčŽåžčļäžčļåģŖæŗīŧįĄčĢåĨŊåŖīŧå°¤å
￝ 2007 åš´åˇĻåŗæēčŊææŠįåēįžīŧč¨įŽčŊååææ¸į´åĸéˇīŧįŽæŗäšé¨äšįŧåąãéåé åéå§čŽåžæįīŧå įēéåģéŖäēé¨åŋææŦ˛įæĨåéå§å
ˇéĢåįēä¸į¨ŽįæŖįį´åžã
-
-## įžå¨
-
-äģ夊īŧæŠå¨å¸įŋåäēēåˇĨæēčŊåšžäšč§¸åæåįæ´ģ῝ä¸åé¨åãéåæäģŖčĻæąäģį´°äēč§ŖéäēįŽæŗå°äēēéĄįæ´ģįéĸ¨éĒåæŊå¨åŊąéŋãæŖåĻ垎čģį Brad Smith æč¨īŧãäŋĄæ¯æčĄåŧįŧįåéĄč§¸åéąį§åč¨čĢčĒįąįåēæŦäēēæŦäŋčˇįæ ¸åŋãéäēåéĄå éäēčŖŊé éäēįĸåįį§æå
Ŧå¸įč˛Ŧäģģã卿åįäžīŧåŽåéåŧįą˛æŋåēé˛čĄæˇąæįæ
ŽįįŖįŽĄīŧä¸Ļåįšå¯æĨåįį¨éčŖŊåŽčĻį¯ãīŧ[äžæē](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)īŧã
-
-æĒäžįæ
æŗéæåž
č§å¯īŧäŊäēč§Ŗéäēč¨įŽæŠįŗģįĩąäģĨååŽåéčĄįčģäģļåįŽæŗæ¯åžéčĻįãæå叿ééčǞį¨čŊåšĢåŠäŊ æ´åĨŊįįč§ŖīŧäģĨäžŋäŊ čĒåˇąæąēåŽã
-
-[](https://www.youtube.com/watch?v=mTtDfKgLm54 "æˇąåēĻå¸įŋ῎å˛")
-> đĨ éģæä¸åč§įčĻé ģīŧYann LeCun 卿ŦæŦĄčŦåē§ä¸č¨čĢæˇąåēĻå¸įŋ῎å˛
----
-## đææ°
-
-æˇąå
Ĩäēč§Ŗéä翎垿åģäšä¸īŧä¸Ļæ´å¤å°äēč§ŖåŽåčåžįäēēãéčŖæč¨ąå¤åŧäēēå
ĨåįäēēįŠīŧæ˛æä¸é
į§å¸įŧįžæ¯å¨æåįįŠēä¸åĩé åēäžįãäŊ įŧįžäēäģéēŊīŧ
-
-## [čĒ˛åžæ¸ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/)
-
-## 垊įŋččĒå¸
-
-äģĨ䏿¯čĻč§įåæļčŊįį¯įŽīŧ
-
-[鿝 Amy Boyd č¨čĢäēēåˇĨæēčŊé˛åįæåŽĸ](http://runasradio.com/Shows/Show/739)
-
-[](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy BoydįãäēēåˇĨæēčŊå˛ã")
-
-## äģģå
-
-[åĩåģēæéįˇ](assignment.zh-tw.md)
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.es.md b/1-Introduction/2-history-of-ML/translations/assignment.es.md
deleted file mode 100644
index 504796e7..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.es.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Crea una lÃnea de tiempo
-
-## Instrucciones
-
-Usando [este repositorio](https://github.com/Digital-Humanities-Toolkit/timeline-builder), crea una lÃnea temporal de algunos aspectos de la historia de los algoritmos, matemÃĄticas, estadÃstica, Inteligencia Artificial (AI), Aprendizaje AutomÃĄtico (ML), o una combinaciÃŗn de todos estos. Te puedes enfocar en una persona, una idea o perÃodo largo de tiempo de pensamiento. AsegÃērate de agregar elementos multimedia.
-
-## RÃēbrica
-
-| Criterio | Ejemplar | Adecuado | Necesita mejorar |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | Una lÃnea de tiempo desplegada es representada como una pÃĄgina de Github | El cÃŗdigo estÃĄ incompleto y no fue desplegado | La lÃnea del tiempo estÃĄ incompleta, sin buena investigaciÃŗn y sin desplegar |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.fr.md b/1-Introduction/2-history-of-ML/translations/assignment.fr.md
deleted file mode 100644
index c562516e..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.fr.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# CrÊer une frise chronologique
-
-## Instructions
-
-Utiliser [ce repo](https://github.com/Digital-Humanities-Toolkit/timeline-builder), crÊer une frise chronologique de certains aspects de l'histoire des algorithmes, des mathÊmatiques, des statistiques, de l'IA ou du machine learning, ou une combinaison de ceux-ci. Vous pouvez vous concentrer sur une personne, une idÊe ou une longue pÊriode d'innovations. Assurez-vous d'ajouter des ÊlÊments multimÊdias.
-
-## Rubrique
-
-| Critères | Exemplaire | AdÊquate | A amÊliorer |
-| -------- | ---------------------------------------------------------------- | ------------------------------------ | ------------------------------------------------------------------ |
-| | Une chronologie dÊployÊe est prÊsentÊe sous forme de page GitHub | Le code est incomplet et non dÊployÊ | La chronologie est incomplète, pas bien recherchÊe et pas dÊployÊe |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.id.md b/1-Introduction/2-history-of-ML/translations/assignment.id.md
deleted file mode 100644
index 0ee7c009..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.id.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Membuat sebuah *timeline*
-
-## Instruksi
-
-Menggunakan [repo ini](https://github.com/Digital-Humanities-Toolkit/timeline-builder), buatlah sebuah *timeline* dari beberapa aspek sejarah algoritma, matematika, statistik, AI, atau ML, atau kombinasi dari semuanya. Kamu dapat fokus pada satu orang, satu ide, atau rentang waktu pemikiran yang panjang. Pastikan untuk menambahkan elemen multimedia.
-
-## Rubrik
-
-| Kriteria | Sangat Bagus | Cukup | Perlu Peningkatan |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | *Timeline* yang dideploy disajikan sebagai halaman GitHub | Kode belum lengkap dan belum dideploy | *Timeline* belum lengkap, belum diriset dengan baik dan belum dideploy |
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.it.md b/1-Introduction/2-history-of-ML/translations/assignment.it.md
deleted file mode 100644
index 4de7ed14..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.it.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Creare una sequenza temporale
-
-## Istruzioni
-
-Usando [questo repository](https://github.com/Digital-Humanities-Toolkit/timeline-builder), si crei una sequenza temporale di alcuni aspetti della storia di algoritmi, matematica, statistica, AI o ML, o una combinazione di questi. Ci si puÃ˛ concentrare su una persona, un'idea o un lungo lasso di tempo di pensiero. Ci si assicuri di aggiungere elementi multimediali.
-
-## Rubrica
-
-| Criteri | Ottimo | Adeguato | Necessita miglioramento |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | Una sequenza temporale distribuita viene presentata come una pagina GitHub | Il codice è incompleto e non è stato distribuito | La sequenza temporale è incompleta, non ben studiata e non implementata |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.ja.md b/1-Introduction/2-history-of-ML/translations/assignment.ja.md
deleted file mode 100644
index f5f78799..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.ja.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# åš´čĄ¨ãäŊæãã
-
-## æį¤ē
-
-[ããŽãĒãã¸ããĒ](https://github.com/Digital-Humanities-Toolkit/timeline-builder) ãäŊŋãŖãĻããĸãĢã´ãĒãēã ãģæ°åĻãģįĩąč¨åĻãģäēēåˇĨįĨčŊãģæŠæĸ°åĻįŋããžãã¯ããããŽįĩãŋåãããĢ寞ããĻãæ´å˛ãŽã˛ã¨ã¤ãŽå´éĸãĢéĸããåš´čĄ¨ãäŊæããĻãã ãããįĻįšãåŊãĻããŽã¯ãã˛ã¨ããŽäēēįŠãģã˛ã¨ã¤ãŽãĸã¤ããŖãĸãģ鎿éãĢãããææŗãŽããããŽããŽã§ãæ§ããžãããããĢããĄããŖãĸãŽčĻį´ ãåŋ
ãå ãããããĢããĻãã ããã
-
-## čŠäžĄåēæē
-
-| åēæē | æ¨Ąį¯į | åå | čĻæšå |
-| ---- | -------------------------------------- | ------------------------------------ | ------------------------------------------------------------ |
-| | GitHub page ãĢåš´čĄ¨ããããã¤ãããĻãã | ãŗãŧããæĒåŽæã§ãããã¤ãããĻããĒã | åš´čĄ¨ãæĒåŽæã§ãååãĢčĒŋæģãããĻãããããããã¤ãããĻããĒã |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.ko.md b/1-Introduction/2-history-of-ML/translations/assignment.ko.md
deleted file mode 100644
index 7d3d2fa7..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.ko.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# íėëŧė¸ė ë§ë¤ė´ ë´
ėë¤
-
-## ė¤ëĒ
-
-ė´ [ė ėĨė(repository)](https://github.com/Digital-Humanities-Toolkit/timeline-builder)ëĨŧ ėŦėŠí´ ėęŗ ëĻŦėĻ, ėí, íĩęŗ, ė¸ęŗĩė§ëĨ ëë 머ė ëŦë ė¤ í ę°ė§ ė´ėė ė°íėŦëĨŧ ėĄ°íŠíėŦ íėëŧė¸ė ë§ë¤ė´ ëŗ´ė¸ė. í ëĒ
ė ė¸ëŦŧ ëë í ę°ė§ ėė´ëė´ëĨŧ ė§ė¤ė ėŧëĄ ë¤ëŖ¨ė
ë ëęŗ , ėŦëŦ ė¸ę¸°ė ęą¸ėš ę¸´ ė°íėŦëĨŧ ë¤ëŖ¨ėë ę˛ë ėĸėĩëë¤. ę° ėŦęą´ęŗŧ ę´ë ¨ë ëŠí°ë¯¸ëė´ë íėëŧė¸ė ėļę°í´ ëŗ´ė기 ë°ëëë¤.
-
-## íę°ę¸°ė¤í
-
-| íę°ę¸°ė¤ | ëĒ¨ë˛ | ė ė | íĨė íė |
-| -------- | ----------------------------------------- | -------------------- | --------------------------------- |
-| | ęšíë¸(GitHub) íė´ė§ė ėėąë íėëŧė¸ ęŗĩę° | ėŊë 미ėėą ë° ë¯¸ë°°íŦ | íėëŧė¸ ėĄ°ėŦ 미íĄ, 미ėėą ë° ë¯¸ë°°íŦ |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.pt-br.md b/1-Introduction/2-history-of-ML/translations/assignment.pt-br.md
deleted file mode 100644
index 9e1e6ce1..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.pt-br.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Crie uma linha do tempo
-
-## InstruçÃĩes
-
-Usando [este repositÃŗrio](https://github.com/Digital-Humanities-Toolkit/timeline-builder), crie uma linha do tempo de algum aspecto da histÃŗria de algoritmos, matemÃĄtica, estatÃstica, AI ou ML, ou uma combinaÃ§ÃŖo de esses. VocÃĒ pode se concentrar em uma pessoa, uma ideia ou um longo perÃodo de pensamento. Certifique-se de adicionar elementos de multimÃdia.
-
-## Rubrica
-
-| CritÊrios | Exemplar | Adequado | Precisa Melhorar |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | Um cronograma implantado Ê apresentado como uma pÃĄgina do GitHub (GitHub Page) | O cÃŗdigo estÃĄ incompleto e nÃŖo implementado | O cronograma estÃĄ incompleto, nÃŖo foi bem pesquisado e nÃŖo implantado |
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.ru.md b/1-Introduction/2-history-of-ML/translations/assignment.ru.md
deleted file mode 100644
index 7ee1b620..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.ru.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# ХОСдаКŅĐĩ вŅĐĩĐŧĐĩĐŊĐŊŅŅ ŅĐēаĐģŅ
-
-## ĐĐŊŅŅŅŅĐēŅии
-
-ĐŅĐŋĐžĐģŅСŅŅ [ŅŅĐžŅ ŅĐĩĐŋОСиŅĐžŅиК](https://github.com/Digital-Humanities-Toolkit/timeline-builder), ŅОСдаКŅĐĩ вŅĐĩĐŧĐĩĐŊĐŊŅŅ ŅĐēаĐģŅ ĐēаĐēĐžĐŗĐž-ĐģийО аŅĐŋĐĩĐēŅа иŅŅĐžŅии аĐģĐŗĐžŅиŅĐŧОв, ĐŧаŅĐĩĐŧаŅиĐēи, ŅŅаŅиŅŅиĐēи, иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа иĐģи ML иĐģи иŅ
ĐēĐžĐŧйиĐŊаŅии. ĐŅ ĐŧĐžĐļĐĩŅĐĩ ŅĐžŅŅĐĩĐ´ĐžŅĐžŅиŅŅŅŅ ĐŊа ОдĐŊĐžĐŧ ŅĐĩĐģОвĐĩĐēĐĩ, ОдĐŊОК идĐĩĐĩ иĐģи ĐŊа Đ´ĐģиŅĐĩĐģŅĐŊĐžĐŧ ĐŋŅĐžĐŧĐĩĐļŅŅĐēĐĩ вŅĐĩĐŧĐĩĐŊи. ĐĐąŅСаŅĐĩĐģŅĐŊĐž дОйавŅŅĐĩ ĐŧŅĐģŅŅиĐŧĐĩдиКĐŊŅĐĩ ŅĐģĐĩĐŧĐĩĐŊŅŅ.
-
-## Đ ŅĐąŅиĐēа
-
-| ĐŅиŅĐĩŅии | ĐĐąŅаСŅОвŅĐš | ĐĐ´ĐĩĐēваŅĐŊŅĐš | ĐŅĐļдаĐĩŅŅŅ Đ˛ ŅĐģŅŅŅĐĩĐŊии |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| | РаСвĐĩŅĐŊŅŅĐ°Ņ Đ˛ŅĐĩĐŧĐĩĐŊĐŊĐ°Ņ ŅĐēаĐģа ĐŋŅĐĩĐ´ŅŅавĐģĐĩĐŊа в видĐĩ ŅŅŅаĐŊиŅŅ GitHub | ĐОд ĐŊĐĩĐŋĐžĐģĐžĐŊ и ĐŊĐĩ ŅаСвĐĩŅĐŊŅŅ | ĐŅĐĩĐŧĐĩĐŊĐŊĐ°Ņ ŅĐēаĐģа ĐŊĐĩĐŋĐžĐģĐŊаŅ, ĐŊĐĩĐ´ĐžŅŅаŅĐžŅĐŊĐž иСŅŅĐĩĐŊа и ĐŊĐĩ ŅаСвĐĩŅĐŊŅŅа |
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.tr.md b/1-Introduction/2-history-of-ML/translations/assignment.tr.md
deleted file mode 100644
index f0e87763..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.tr.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Bir zaman çizelgesi oluÅturun
-
-## Talimatlar
-
-[Bu repoyu](https://github.com/Digital-Humanities-Toolkit/timeline-builder) kullanarak; algoritmalarÄąn, matematiÄin, istatistiÄin, AI veya ML'in veya bunlarÄąn bir kombinasyonunun tarihinin bazÄą yÃļnlerinin bir zaman çizelgesini oluÅturun. Bir kiÅiye, bir fikre veya bir dÃŧÅÃŧncenin uzun bir zamanÄąna odaklanabilirsiniz. Multimedya ÃļÄeleri eklediÄinizden emin olun.
-
-## DeÄerlendirme Listesi
-
-| | Takdir edilesi | Yeterli | İyileÅtirilmesi LazÄąm |
-| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- |
-| Kriterler | Zaman çizelgesi bir GitHub sayfasÄą olarak yayÄąnlanmÄąÅ | Kod eksik ve henÃŧz yayÄąnlanmamÄąÅ | Zaman çizelgesi eksik, iyi araÅtÄąrÄąlmamÄąÅ ve yayÄąnlanmamÄąÅ |
\ No newline at end of file
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.zh-cn.md b/1-Introduction/2-history-of-ML/translations/assignment.zh-cn.md
deleted file mode 100644
index adf3ee15..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.zh-cn.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# åģēįĢä¸ä¸Ēæļé´čŊ´
-
-## 蝴æ
-
-äŊŋį¨čŋä¸Ē [äģåē](https://github.com/Digital-Humanities-Toolkit/timeline-builder)īŧååģēä¸ä¸Ēå
ŗäēįŽæŗãæ°åĻãįģ莥åĻãäēēåˇĨæēčŊãæēå¨åĻäš įæä¸Ēæšéĸæč
å¯äģĨįģŧåå¤ä¸ĒäģĨä¸åĻį§æĨ莲ãäŊ å¯äģĨįéäģįģæä¸Ēäēēīŧæä¸Ēæŗæŗīŧæč
ä¸ä¸Ēįģäš
ä¸čĄ°įææŗãč¯ˇįĄŽäŋæˇģå äēå¤åĒäŊå
į´ å¨äŊ įæļé´įēŋä¸ã
-
-## č¯å¤æ å
-
-| æ å | äŧį§ | ä¸č§ä¸įŠ | äģéåĒå |
-| ------------ | ---------------------------------- | ---------------------- | ------------------------------------------ |
-| | æä¸ä¸Ē፠GitHub page åąį¤ēį timeline | äģŖį čŋä¸åŽæ´åšļ䏿˛Ąæé¨įŊ˛ | æļé´įēŋä¸åŽæ´īŧæ˛Ąæįģčŋå
åįį įŠļīŧåšļ䏿˛Ąæé¨įŊ˛ |
diff --git a/1-Introduction/2-history-of-ML/translations/assignment.zh-tw.md b/1-Introduction/2-history-of-ML/translations/assignment.zh-tw.md
deleted file mode 100644
index f372e6ae..00000000
--- a/1-Introduction/2-history-of-ML/translations/assignment.zh-tw.md
+++ /dev/null
@@ -1,12 +0,0 @@
-
-# åģēįĢä¸åæéčģ¸
-
-## čĒĒæ
-
-äŊŋį¨éå [ååēĢ](https://github.com/Digital-Humanities-Toolkit/timeline-builder)īŧåĩåģēä¸åéæŧįŽæŗãæ¸å¸ãįĩąč¨å¸ãäēēåˇĨæēčŊãæŠå¨å¸įŋįæåæšéĸæč
å¯äģĨįļåå¤åäģĨä¸å¸į§äžčŦãäŊ å¯äģĨčéäģį´šæåäēēīŧæåæŗæŗīŧæč
ä¸åįļäš
ä¸čĄ°įææŗãčĢįĸēäŋæˇģå äēå¤åĒéĢå
į´ å¨äŊ įæéįˇä¸ã
-
-## čŠå¤æ¨æē
-
-| æ¨æē | åĒį§ | ä¸čĻä¸įŠ | äģéåĒå |
-| ------------ | ---------------------------------- | ---------------------- | ------------------------------------------ |
-| | æä¸å፠GitHub page åąį¤ēį timeline | äģŖįĸŧéä¸åŽæ´ä¸Ļ䏿˛æé¨įŊ˛ | æéįˇä¸åŽæ´īŧæ˛æįļéå
åįį įŠļīŧä¸Ļ䏿˛æé¨įŊ˛ |
\ No newline at end of file
diff --git a/1-Introduction/3-fairness/README.md b/1-Introduction/3-fairness/README.md
deleted file mode 100644
index 240181a8..00000000
--- a/1-Introduction/3-fairness/README.md
+++ /dev/null
@@ -1,158 +0,0 @@
-# Building Machine Learning solutions with responsible AI
-
-
-> Sketchnote by [Tomomi Imura](https://www.twitter.com/girlie_mac)
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/)
-
-## Introduction
-
-In this curriculum, you will start to discover how machine learning can and is impacting our everyday lives. Even now, systems and models are involved in daily decision-making tasks, such as health care diagnoses, loan approvals or detecting fraud. So, it is important that these models work well to provide outcomes that are trustworthy. Just as any software application, AI systems are going to miss expectations or have an undesirable outcome. That is why it is essential to be about to understand and explain the behavior of an AI model.
-
-Imagine what can happen when the data you are using to build these models lacks certain demographics, such as race, gender, political view, religion, or disproportionally represents such demographics. What about when the modelâs output is interpreted to favor some demographic? What is the consequence for the application? In addition, what happens when the model has an adverse outcome and is harmful to people? Who is accountable for the AI systems behavior? These are some questions we will explore in this curriculum.
-
-In this lesson, you will:
-
-- Raise your awareness of the importance of fairness in machine learning and fairness-related harms.
-- Become familiar with the practice of exploring outliers and unusual scenarios to ensure reliability and safety
-- Gain understanding on the need to empower everyone by designing inclusive systems
-- Explore how vital it is to protect privacy and security of data and people
-- See the importance of having a glass box approach to explain the behavior of AI models
-- Be mindful of how accountability is essential to build trust in AI systems
-
-## Prerequisite
-
-As a prerequisite, please take the "Responsible AI Principles" Learn Path and watch the video below on the topic:
-
-Learn more about Responsible AI by following this [Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
-
-[](https://youtu.be/dnC8-uUZXSc "Microsoft's Approach to Responsible AI")
-
-> đĨ Click the image above for a video: Microsoft's Approach to Responsible AI
-
-## Fairness
-
-AI systems should treat everyone fairly and avoid affecting similar groups of people in different ways. For example, when AI systems provide guidance on medical treatment, loan applications, or employment, they should make the same recommendations to everyone with similar symptoms, financial circumstances, or professional qualifications. Each of us as humans carries around inherited biases that affect our decisions and actions. These biases can be evident in the data that we use to train AI systems. Such manipulation can sometimes happen unintentionally. It is often difficult to consciously know when you are introducing bias in data.
-
-**âUnfairnessâ** encompasses negative impacts, or âharmsâ, for a group of people, such as those defined in terms of race, gender, age, or disability status. The main fairness-related harms can be classified as:
-
-- **Allocation**, if a gender or ethnicity for example is favored over another.
-- **Quality of service**. If you train the data for one specific scenario but reality is much more complex, it leads to a poor performing service. For instance, a hand soap dispenser that could not seem to be able to sense people with dark skin. [Reference](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773)
-- **Denigration**. To unfairly criticize and label something or someone. For example, an image labeling technology infamously mislabeled images of dark-skinned people as gorillas.
-- **Over- or under- representation**. The idea is that a certain group is not seen in a certain profession, and any service or function that keeps promoting that is contributing to harm.
-- **Stereotyping**. Associating a given group with pre-assigned attributes. For example, a language translation system betweem English and Turkish may have inaccuraces due to words with stereotypical associations to gender.
-
-
-> translation to Turkish
-
-
-> translation back to English
-
-When designing and testing AI systems, we need to ensure that AI is fair and not programmed to make biased or discriminatory decisions, which human beings are also prohibited from making. Guaranteeing fairness in AI and machine learning remains a complex sociotechnical challenge.
-
-### Reliability and safety
-
-To build trust, AI systems need to be reliable, safe, and consistent under normal and unexpected conditions. It is important to know how AI systems will behavior in a variety of situations, especially when they are outliers. When building AI solutions, there needs to be a substantial amount of focus on how to handle a wide variety of circumstances that the AI solutions would encounter. For example, a self-driving car needs to put people's safety as a top priority. As a result, the AI powering the car need to consider all the possible scenarios that the car could come across such as night, thunderstorms or blizzards, kids running across the street, pets, road constructions etc. How well an AI system can handle a wild range of conditions reliably and safely reflects the level of anticipation the data scientist or AI developer considered during the design or testing of the system.
-
-> [đĨ Click the here for a video: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl)
-
-### Inclusiveness
-
-AI systems should be designed to engage and empower everyone. When designing and implementing AI systems data scientists and AI developers identify and address potential barriers in the system that could unintentionally exclude people. For example, there are 1 billion people with disabilities around the world. With the advancement of AI, they can access a wide range of information and opportunities more easily in their daily lives. By addressing the barriers, it creates opportunities to innovate and develop AI products with better experiences that benefit everyone.
-
-> [đĨ Click the here for a video: inclusiveness in AI](https://www.microsoft.com/videoplayer/embed/RE4vl9v)
-
-### Security and privacy
-
-AI systems should be safe and respect peopleâs privacy. People have less trust in systems that put their privacy, information, or lives at risk. When training machine learning models, we rely on data to produce the best results. In doing so, the origin of the data and integrity must be considered. For example, was the data user submitted or publicly available? Next, while working with the data, it is crucial to develop AI systems that can protect confidential information and resist attacks. As AI becomes more prevalent, protecting privacy and securing important personal and business information is becoming more critical and complex. Privacy and data security issues require especially close attention for AI because access to data is essential for AI systems to make accurate and informed predictions and decisions about people.
-
-> [đĨ Click the here for a video: security in AI](https://www.microsoft.com/videoplayer/embed/RE4voJF)
-
-- As an industry we have made significant advancements in Privacy & security, fueled significantly by regulations like the GDPR (General Data Protection Regulation).
-- Yet with AI systems we must acknowledge the tension between the need for more personal data to make systems more personal and effective â and privacy.
-- Just like with the birth of connected computers with the internet, we are also seeing a huge uptick in the number of security issues related to AI.
-- At the same time, we have seen AI being used to improve security. As an example, most modern anti-virus scanners are driven by AI heuristics today.
-- We need to ensure that our Data Science processes blend harmoniously with the latest privacy and security practices.
-
-
-### Transparency
-AI systems should be understandable. A crucial part of transparency is explaining the behavior of AI systems and their components. Improving the understanding of AI systems requires that stakeholders comprehend how and why they function so that they can identify potential performance issues, safety and privacy concerns, biases, exclusionary practices, or unintended outcomes. We also believe that those who use AI systems should be honest and forthcoming about when, why, and how they choose to deploy them. As well as the limitations of the systems they use. For example, if a bank uses an AI system to support its consumer lending decisions, it is important to examine the outcomes and understand which data influences the systemâs recommendations. Governments are starting to regulate AI across industries, so data scientists and organizations must explain if an AI system meets regulatory requirements, especially when there is an undesirable outcome.
-
-> [đĨ Click the here for a video: transparency in AI](https://www.microsoft.com/videoplayer/embed/RE4voJF)
-
-- Because AI systems are so complex, it is hard to understand how they work and interpret the results.
-- This lack of understanding affects the way these systems are managed, operationalized, and documented.
-- This lack of understanding more importantly affects the decisions made using the results these systems produce.
-
-### Accountability
-
-The people who design and deploy AI systems must be accountable for how their systems operate. The need for accountability is particularly crucial with sensitive use technologies like facial recognition. Recently, there has been a growing demand for facial recognition technology, especially from law enforcement organizations who see the potential of the technology in uses like finding missing children. However, these technologies could potentially be used by a government to put their citizensâ fundamental freedoms at risk by, for example, enabling continuous surveillance of specific individuals. Hence, data scientists and organizations need to be responsible for how their AI system impacts individuals or society.
-
-[](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsoft's Approach to Responsible AI")
-
-> đĨ Click the image above for a video: Warnings of Mass Surveillance Through Facial Recognition
-
-Ultimately one of the biggest questions for our generation, as the first generation that is bringing AI to society, is how to ensure that computers will remain accountable to people and how to ensure that the people that design computers remain accountable to everyone else.
-
-## Impact assessment
-
-Before training a machine learning model, it is important to conduct an impact assessmet to understand the purpose of the AI system; what the intended use is; where it will be deployed; and who will be interacting with the system. These are helpful for reviewer(s) or testers evaluating the system to know what factors to take into consideration when identifying potential risks and expected consequences.
-
-The following are areas of focus when conducting an impact assessment:
-
-* **Adverse impact on individuals**. Being aware of any restriction or requirements, unsupported use or any known limitations hindering the system's performance is vital to ensure that the system is not used in a way that could cause harm to individuals.
-* **Data requirements**. Gaining an understanding of how and where the system will use data enables reviewers to explore any data requirements you would need to be mindful of (e.g., GDPR or HIPPA data regulations). In addition, examine whether the source or quantity of data is substantial for training.
-* **Summary of impact**. Gather a list of potential harms that could arise from using the system. Throughout the ML lifecycle, review if the issues identified are mitigated or addressed.
-* **Applicable goals** for each of the six core principles. Assess if the goals from each of the principles are met and if there are any gaps.
-
-
-## Debugging with responsible AI
-
-Similar to debugging a software application, debugging an AI system is a necessary process of identifying and resolving issues in the system. There are many factors that would affect a model not performing as expected or responsibly. Most traditional model performance metrics are quantitative aggregates of a model's performance, which are not sufficient to analyze how a model violates the responsible AI principles. Furthermore, a machine learning model is a black box that makes it difficult to understand what drives its outcome or provide explanation when it makes a mistake. Later in this course, we will learn how to use the Responsible AI dashboard to help debug AI systems. The dashboard provides a holistic tool for data scientists and AI developers to perform:
-
-* **Error analysis**. To identify the error distribution of the model that can affect the system's fairness or reliability.
-* **Model overview**. To discover where there are disparities in the model's performance across data cohorts.
-* **Data analysis**. To understand the data distribution and identify any potential bias in the data that could lead to fairness, inclusiveness, and reliability issues.
-* **Model interpretability**. To understand what affects or influences the model's predictions. This helps in explaining the model's behavior, which is important for transparency and accountability.
-
-
-## đ Challenge
-
-To prevent harms from being introduced in the first place, we should:
-
-- have a diversity of backgrounds and perspectives among the people working on systems
-- invest in datasets that reflect the diversity of our society
-- develop better methods throughout the machine learning lifecycle for detecting and correcting responible AI when it occurs
-
-Think about real-life scenarios where a model's untrustworthiness is evident in model-building and usage. What else should we consider?
-
-## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/)
-## Review & Self Study
-
-In this lesson, you have learned some basics of the concepts of fairness and unfairness in machine learning.
-
-Watch this workshop to dive deeper into the topics:
-
-- In pursuit of responsible AI: Bringing principles to practice by Besmira Nushi, Mehrnoosh Sameki and Amit Sharma
-
-[](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: An open-source framework for building responsible AI")
-
-> đĨ Click the image above for a video: RAI Toolbox: An open-source framework for building responsible AI by Besmira Nushi, Mehrnoosh Sameki, and Amit Sharma
-
-Also, read:
-
-- Microsoftâs RAI resource center: [Responsible AI Resources â Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4)
-
-- Microsoftâs FATE research group: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/)
-
-RAI Toolbox:
-
-- [Responsible AI Toolbox GitHub repository](https://github.com/microsoft/responsible-ai-toolbox)
-
-Read about Azure Machine Learning's tools to ensure fairness:
-
-- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
-
-## Assignment
-
-[Explore RAI Toolbox](assignment.md)
diff --git a/1-Introduction/3-fairness/assignment.md b/1-Introduction/3-fairness/assignment.md
deleted file mode 100644
index 6da0a381..00000000
--- a/1-Introduction/3-fairness/assignment.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Explore the Responsible AI Toolbox
-
-## Instructions
-
-In this lesson you learned about the Responsible AI Toolbox, an "open-source, community-driven project to help data scientists to analyze and improve AI systems." For this assignment, explore one of RAI Toolbox's [notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) and report your findings in a paper or presentation.
-
-## Rubric
-
-| Criteria | Exemplary | Adequate | Needs Improvement |
-| -------- | --------- | -------- | ----------------- |
-| | A paper or powerpoint presentation is presented discussing Fairlearn's systems, the notebook that was run, and the conclusions drawn from running it | A paper is presented without conclusions | No paper is presented |
diff --git a/1-Introduction/3-fairness/images/accessibility.png b/1-Introduction/3-fairness/images/accessibility.png
deleted file mode 100644
index be33e9a9..00000000
Binary files a/1-Introduction/3-fairness/images/accessibility.png and /dev/null differ
diff --git a/1-Introduction/3-fairness/images/accountability.png b/1-Introduction/3-fairness/images/accountability.png
deleted file mode 100644
index 98015292..00000000
Binary files a/1-Introduction/3-fairness/images/accountability.png and /dev/null differ
diff --git a/1-Introduction/3-fairness/translations/assignment.es.md b/1-Introduction/3-fairness/translations/assignment.es.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/1-Introduction/4-techniques-of-ML/README.md b/1-Introduction/4-techniques-of-ML/README.md
deleted file mode 100644
index 4fcd5ea3..00000000
--- a/1-Introduction/4-techniques-of-ML/README.md
+++ /dev/null
@@ -1,118 +0,0 @@
-# Techniques of Machine Learning
-
-The process of building, using, and maintaining machine learning models and the data they use is a very different process from many other development workflows. In this lesson, we will demystify the process, and outline the main techniques you need to know. You will:
-
-- Understand the processes underpinning machine learning at a high level.
-- Explore base concepts such as 'models', 'predictions', and 'training data'.
-
-## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/)
-
-[](https://youtu.be/4NGM0U2ZSHU "ML for beginners - Techniques of Machine Learning")
-
-> đĨ Click the image above for a short video working through this lesson.
-
-## Introduction
-
-On a high level, the craft of creating machine learning (ML) processes is comprised of a number of steps:
-
-1. **Decide on the question**. Most ML processes start by asking a question that cannot be answered by a simple conditional program or rules-based engine. These questions often revolve around predictions based on a collection of data.
-2. **Collect and prepare data**. To be able to answer your question, you need data. The quality and, sometimes, quantity of your data will determine how well you can answer your initial question. Visualizing data is an important aspect of this phase. This phase also includes splitting the data into a training and testing group to build a model.
-3. **Choose a training method**. Depending on your question and the nature of your data, you need to choose how you want to train a model to best reflect your data and make accurate predictions against it. This is the part of your ML process that requires specific expertise and, often, a considerable amount of experimentation.
-4. **Train the model**. Using your training data, you'll use various algorithms to train a model to recognize patterns in the data. The model might leverage internal weights that can be adjusted to privilege certain parts of the data over others to build a better model.
-5. **Evaluate the model**. You use never before seen data (your testing data) from your collected set to see how the model is performing.
-6. **Parameter tuning**. Based on the performance of your model, you can redo the process using different parameters, or variables, that control the behavior of the algorithms used to train the model.
-7. **Predict**. Use new inputs to test the accuracy of your model.
-
-## What question to ask
-
-Computers are particularly skilled at discovering hidden patterns in data. This utility is very helpful for researchers who have questions about a given domain that cannot be easily answered by creating a conditionally-based rules engine. Given an actuarial task, for example, a data scientist might be able to construct handcrafted rules around the mortality of smokers vs non-smokers.
-
-When many other variables are brought into the equation, however, a ML model might prove more efficient to predict future mortality rates based on past health history. A more cheerful example might be making weather predictions for the month of April in a given location based on data that includes latitude, longitude, climate change, proximity to the ocean, patterns of the jet stream, and more.
-
-â
This [slide deck](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) on weather models offers a historical perspective for using ML in weather analysis.
-
-## Pre-building tasks
-
-Before starting to build your model, there are several tasks you need to complete. To test your question and form a hypothesis based on a model's predictions, you need to identify and configure several elements.
-
-### Data
-
-To be able to answer your question with any kind of certainty, you need a good amount of data of the right type. There are two things you need to do at this point:
-
-- **Collect data**. Keeping in mind the previous lesson on fairness in data analysis, collect your data with care. Be aware of the sources of this data, any inherent biases it might have, and document its origin.
-- **Prepare data**. There are several steps in the data preparation process. You might need to collate data and normalize it if it comes from diverse sources. You can improve the data's quality and quantity through various methods such as converting strings to numbers (as we do in [Clustering](../../5-Clustering/1-Visualize/README.md)). You might also generate new data, based on the original (as we do in [Classification](../../4-Classification/1-Introduction/README.md)). You can clean and edit the data (as we will prior to the [Web App](../../3-Web-App/README.md) lesson). Finally, you might also need to randomize it and shuffle it, depending on your training techniques.
-
-â
After collecting and processing your data, take a moment to see if its shape will allow you to address your intended question. It may be that the data will not perform well in your given task, as we discover in our [Clustering](../../5-Clustering/1-Visualize/README.md) lessons!
-
-### Features and Target
-
-A [feature](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) is a measurable property of your data. In many datasets it is expressed as a column heading like 'date' 'size' or 'color'. Your feature variable, usually represented as `X` in code, represent the input variable which will be used to train model.
-
-A target is a thing you are trying to predict. Target usually represented as `y` in code, represents the answer to the question you are trying to ask of your data: in December, what **color** pumpkins will be cheapest? in San Francisco, what neighborhoods will have the best real estate **price**? Sometimes target is also referred as label attribute.
-
-### Selecting your feature variable
-
-đ **Feature Selection and Feature Extraction** How do you know which variable to choose when building a model? You'll probably go through a process of feature selection or feature extraction to choose the right variables for the most performant model. They're not the same thing, however: "Feature extraction creates new features from functions of the original features, whereas feature selection returns a subset of the features." ([source](https://wikipedia.org/wiki/Feature_selection))
-
-### Visualize your data
-
-An important aspect of the data scientist's toolkit is the power to visualize data using several excellent libraries such as Seaborn or MatPlotLib. Representing your data visually might allow you to uncover hidden correlations that you can leverage. Your visualizations might also help you to uncover bias or unbalanced data (as we discover in [Classification](../../4-Classification/2-Classifiers-1/README.md)).
-
-### Split your dataset
-
-Prior to training, you need to split your dataset into two or more parts of unequal size that still represent the data well.
-
-- **Training**. This part of the dataset is fit to your model to train it. This set constitutes the majority of the original dataset.
-- **Testing**. A test dataset is an independent group of data, often gathered from the original data, that you use to confirm the performance of the built model.
-- **Validating**. A validation set is a smaller independent group of examples that you use to tune the model's hyperparameters, or architecture, to improve the model. Depending on your data's size and the question you are asking, you might not need to build this third set (as we note in [Time Series Forecasting](../../7-TimeSeries/1-Introduction/README.md)).
-
-## Building a model
-
-Using your training data, your goal is to build a model, or a statistical representation of your data, using various algorithms to **train** it. Training a model exposes it to data and allows it to make assumptions about perceived patterns it discovers, validates, and accepts or rejects.
-
-### Decide on a training method
-
-Depending on your question and the nature of your data, you will choose a method to train it. Stepping through [Scikit-learn's documentation](https://scikit-learn.org/stable/user_guide.html) - which we use in this course - you can explore many ways to train a model. Depending on your experience, you might have to try several different methods to build the best model. You are likely to go through a process whereby data scientists evaluate the performance of a model by feeding it unseen data, checking for accuracy, bias, and other quality-degrading issues, and selecting the most appropriate training method for the task at hand.
-
-### Train a model
-
-Armed with your training data, you are ready to 'fit' it to create a model. You will notice that in many ML libraries you will find the code 'model.fit' - it is at this time that you send in your feature variable as an array of values (usually 'X') and a target variable (usually 'y').
-
-### Evaluate the model
-
-Once the training process is complete (it can take many iterations, or 'epochs', to train a large model), you will be able to evaluate the model's quality by using test data to gauge its performance. This data is a subset of the original data that the model has not previously analyzed. You can print out a table of metrics about your model's quality.
-
-đ **Model fitting**
-
-In the context of machine learning, model fitting refers to the accuracy of the model's underlying function as it attempts to analyze data with which it is not familiar.
-
-đ **Underfitting** and **overfitting** are common problems that degrade the quality of the model, as the model fits either not well enough or too well. This causes the model to make predictions either too closely aligned or too loosely aligned with its training data. An overfit model predicts training data too well because it has learned the data's details and noise too well. An underfit model is not accurate as it can neither accurately analyze its training data nor data it has not yet 'seen'.
-
-
-> Infographic by [Jen Looper](https://twitter.com/jenlooper)
-
-## Parameter tuning
-
-Once your initial training is complete, observe the quality of the model and consider improving it by tweaking its 'hyperparameters'. Read more about the process [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
-
-## Prediction
-
-This is the moment where you can use completely new data to test your model's accuracy. In an 'applied' ML setting, where you are building web assets to use the model in production, this process might involve gathering user input (a button press, for example) to set a variable and send it to the model for inference, or evaluation.
-
-In these lessons, you will discover how to use these steps to prepare, build, test, evaluate, and predict - all the gestures of a data scientist and more, as you progress in your journey to become a 'full stack' ML engineer.
-
----
-
-## đChallenge
-
-Draw a flow chart reflecting the steps of a ML practitioner. Where do you see yourself right now in the process? Where do you predict you will find difficulty? What seems easy to you?
-
-## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/)
-
-## Review & Self Study
-
-Search online for interviews with data scientists who discuss their daily work. Here is [one](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
-
-## Assignment
-
-[Interview a data scientist](assignment.md)
diff --git a/1-Introduction/4-techniques-of-ML/assignment.md b/1-Introduction/4-techniques-of-ML/assignment.md
deleted file mode 100644
index db20bb5d..00000000
--- a/1-Introduction/4-techniques-of-ML/assignment.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Interview a data scientist
-
-## Instructions
-
-In your company, in a user group, or among your friends or fellow students, talk to someone who works professionally as a data scientist. Write a short paper (500 words) about their daily occupations. Are they specialists, or do they work 'full stack'?
-
-## Rubric
-
-| Criteria | Exemplary | Adequate | Needs Improvement |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | An essay of the correct length, with attributed sources, is presented as a .doc file | The essay is poorly attributed or shorter than the required length | No essay is presented |
diff --git a/1-Introduction/4-techniques-of-ML/images/overfitting.png b/1-Introduction/4-techniques-of-ML/images/overfitting.png
deleted file mode 100644
index 9395accf..00000000
Binary files a/1-Introduction/4-techniques-of-ML/images/overfitting.png and /dev/null differ
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.es.md b/1-Introduction/4-techniques-of-ML/translations/README.es.md
deleted file mode 100755
index 75828793..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.es.md
+++ /dev/null
@@ -1,112 +0,0 @@
-# TÊcnicas de Machine Learning
-
-El proceso de creaciÃŗn, uso y mantenimiento de modelos de machine learning, y los datos que se utilizan, es un proceso muy diferente de muchos otros flujos de trabajo de desarrollo. En esta lecciÃŗn, demistificaremos el proceso y describiremos las principales tÊcnicas que necesita saber. Vas a:
-
-- Comprender los procesos que sustentan el machine learning a un alto nivel.
-- Explorar conceptos bÃĄsicos como 'modelos', 'predicciones', y 'datos de entrenamiento'
-
-
-## [Cuestionario previo a la conferencia](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7?loc=es)
-## IntroducciÃŗn
-
-A un alto nivel, el arte de crear procesos de machine learning (ML) se compone de una serie de pasos:
-
-1. **Decidir sobre la pregunta**. La mayorÃa de los procesos de ML, comienzan por hacer una pregunta que no puede ser respondida por un simple programa condicional o un motor basado en reglas. Esas preguntas a menudo giran en torno a predicciones basadas en una recopilaciÃŗn de datos.
-2. **Recopile y prepare datos**. Para poder responder a su pregunta, necesita datos. La calidad y, a veces, cantidad de sus datos determinarÃĄn que tan bien puede responder a su pregunta inicial. La visualizaciÃŗn de datos es un aspecto importante de esta fase. Esta fase tambiÊn incluye dividir los datos en un grupo de entrenamiento y pruebas para construir un modelo.
-3. **Elige un mÊtodo de entrenamiento**. Dependiendo de su pregunta y la naturaleza de sus datos, debe elegir cÃŗmo desea entrenar un modelo para reflejar mejor sus datos y hacer predicciones precisas contra ellos. Esta es la parte de su proceso de ML que requiere experiencia especÃfica y, a menudo, una cantidad considerable de experimentaciÃŗn.
-4. **Entrena el modelo**. Usando sus datos de entrenamiento, usarÃĄ varios algoritmos para entrenar un modelo para reconocer patrones en los datos. El modelo puede aprovechar las ponderaciones internas que se pueden ajustar para privilegiar ciertas partes de los datos sobre otras para construir un modelo mejor.
-5. **Evaluar el modelo**. Utiliza datos nunca antes vistos (sus datos de prueba) de su conjunto recopilado para ver cÃŗmo se estÃĄ desempeÃąando el modelo.
-6. **Ajuste de parÃĄmetros**. SegÃēn el rendimiento de su modelo, puede rehacer el proceso utilizando diferentes parÃĄmetros, o variables, que controlan el comportamiento de los algoritmos utilizados para entrenar el modelo.
-7. **Predecir**. Utilice nuevas entradas para probar la precisiÃŗn de su modelo.
-
-## QuÊ preguntas hacer
-
-Las computadoras son particularmente hÃĄbiles para descubrir patrones ocultos en los datos. Esta utlidad es muy Ãētil para los investigadores que tienen preguntas sobre un dominio determinado que no pueden responderse fÃĄcilmente mediante la creaciÃŗn de un motor de reglas basadas en condicionales. Dada una tarea actuarial, por ejemplo, un cientÃfico de datos podrÃa construir reglas creadas manualmente sobre la mortalidad de los fumadores frente a los no fumadores.
-
-Sin embargo, cuando se incorporan muchas otras variables a la ecuaciÃŗn, un modelo de ML podrÃa resultar mÃĄs eficiente para predecir las tasas de mortalidad futuras en funciÃŗn de los antecedentes de salud. Un ejemplo mÃĄs alegre podrÃa hacer predicciones meteorolÃŗgicas para el mes de abril en una ubicaciÃŗn determinada que incluya latitud, longitud, cambio climÃĄtico, proximidad al ocÊano, patrones de la corriente en chorro, y mÃĄs.
-
-â
Esta [presentaciÃŗn de diapositivas](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) sobre modelos meteorolÃŗgicos ofrece una perspectiva histÃŗrica del uso de ML en el anÃĄlisis meteorolÃŗgico.
-
-## Tarea previas a la construcciÃŗn
-
-Antes de comenzar a construir su modelo, hay varias tareas que debe completar. Para examinar su pregunta y formar una hipÃŗtesis basada en las predicciones de su modelo, debe identificar y configurar varios elementos.
-
-### Datos
-
-Para poder responder su pregunta con algÃēn tipo de certeza, necesita una buena cantidad de datos del tipo correcto.
-Hay dos cosas que debe hacer en este punto:
-
-- **Recolectar datos**. Teniendo en cuenta la lecciÃŗn anterior sobre la equidad en el anÃĄlisis de datos, recopile sus datos con cuidado. Tenga en cuenta la fuente de estos datos, cualquier sesgo inherente que pueda tener y documente su origen.
-- **Preparar datos**. Hay varios pasos en el proceso de preparaciÃŗn de datos. PodrÃa necesitar recopilar datos y normalizarlos si provienen de diversas fuentes. Puede mejorar la calidad y cantidad de los datos mediante varios mÊtodos, como convertir strings en nÃēmeros (como hacemos en [Clustering](../../5-Clustering/1-Visualize/README.md)). TambiÊn puede generar nuevos datos, basados en los originales (como hacemos en [ClasificaciÃŗn](../../4-Classification/1-Introduction/README.md)). Puede limpiar y editar los datos (como lo haremos antes de la lecciÃŗn [Web App](../../3-Web-App/README.md)). Por Ãēltimo, es posible que tambiÊn deba aleatorizarlo y mezclarlo, segÃēn sus tÊcnicas de entrenamiento.
-
-â
DespÃēes de recopilar y procesar sus datos, tÃŗmese un momento para ver si su forma le permitirÃĄ responder a su pregunta. ÂĄPuede ser que los datos no funcionen bien en su tarea dada, como descubriremos en nuestras lecciones de[Clustering](../../5-Clustering/1-Visualize/README.md)!
-
-### CaracterÃsticas y destino
-
-Una caracterÃstica es una propiedad medible de los datos. En muchos conjuntos de datos se expresa como un encabezado de columna como 'date' 'size' o 'color'. La variable de entidad, normalmente representada como `X` en el cÃŗdigo, representa la variable de entrada que se utilizarÃĄ para entrenar el modelo.
-
-Un objetivo es una cosa que estÃĄ tratando de predecir. Target generalmente representado como `y` en el cÃŗdigo, representa la respuesta a la pregunta que estÃĄ tratando de hacer de sus datos: en diciembre, ÂŋquÊ color de calabazas serÃĄn mÃĄs baratas?; en San Francisco, ÂŋquÊ barrios tendrÃĄn el mejor precio de bienes raÃces? A veces, target tambiÊn se conoce como atributo label.
-
-### Seleccionando su variable caracterÃstica
-
-đ **SelecciÃŗn y extracciÃŗn de caracterÃsticas** ÂŋCÃŗmo sabe que variable elegir al construir un modelo? Probablemente pasarÃĄ por un proceso de selecciÃŗn o extracciÃŗn de caracterÃsticas para elegir las variables correctas para un mayor rendimiento del modelo. Sin embargo, no son lo mismo: "La extracciÃŗn de caracterÃsticas crea nuevas caracterÃsticas a partir de funciones de las caracterÃsticas originales, mientras que la selecciÃŗn de caracterÃsticas devuelve un subconjunto de las caracterÃsticas." ([fuente](https://wikipedia.org/wiki/Feature_selection))
-
-### Visualiza tus datos
-
-Un aspecto importante del conjunto de herramientas del cientÃfico de datos es el poder de visualizar datos utilizando varias bibliotecas excelentes como Seaborn o MatPlotLib. Representar sus datos visualmente puede permitirle descubrir correlaciones ocultas que puede aprovechar. Sus visualizaciones tambiÊn pueden ayudarlo a descubrir sesgos o datos desequilibrados. (como descubrimos en [ClasificaciÃŗn](../../4-Classification/2-Classifiers-1/README.md)).
-
-### Divide tu conjunto de datos
-
-Antes del entrenamiento, debe dividir su conjunto de datos en dos o mÃĄs partes de tamaÃąo desigual pero que representen bien los datos.
-
-- **Entrenamiento**. Esta parte del conjunto de datos se ajusta a su modelo para entrenarlo. Este conjunto constituye la mayor parte del conjunto de datos original.
-- **Pruebas**. Un conjunto de datos de pruebas es un grupo independiente de datos, a menudo recopilado a partir de los datos originales, que se utiliza para confirmar el rendimiento del modelo construido.
-- **ValidaciÃŗn**. Un conjunto de validaciÃŗn es un pequeÃąo grupo independiente de ejemplos que se usa para ajustar los hiperparÃĄmetros o la arquitectura del modelo para mejorar el modelo. Dependiendo del tamaÃąo de su conjunto de datos y de la pregunta que se estÃĄ haciendo, es posible que no necesite crear este tercer conjunto (como notamos en [PronÃŗstico se series de tiempo](../../7-TimeSeries/1-Introduction/README.md)).
-
-## Contruye un modelo
-
-Usando sus datos de entrenamiento, su objetivo es construir un modelo, o una representaciÃŗn estadÃstica de sus datos, utilizando varios algoritmos para **entrenarlo**. El entrenamiento de un modelo lo expone a los datos y le permite hacer suposiciones sobre los patrones percibidos que descubre, valida y rechaza.
-
-### Decide un mÊtodo de entrenamiento
-
-Dependiendo de su pregunta y la naturaleza de sus datos, elegirÃĄ un mÊtodo para entrenarlos. Echando un vistazo a la [documentaciÃŗn de Scikit-learn ](https://scikit-learn.org/stable/user_guide.html) - que usamos en este curso - puede explorar muchas formas de entrenar un modelo. Dependiendo de su experiencia, es posible que deba probar varios mÊtodos diferentes para construir el mejor modelo. Es probable que pase por un proceso en el que los cientÃficos de datos evalÃēan el rendimiento de un modelo alimentÃĄndolo con datos no vistos anteriormente por el modelo, verificando la precisiÃŗn, el sesgo, y otros problemas que degradan la calidad, y seleccionando el mÊtodo de entrenamieto mÃĄs apropiado para la tarea en cuestiÃŗn.
-### Entrena un modelo
-
-Armado con sus datos de entrenamiento, estÃĄ listo para "ajustarlo" para crear un modelo. NotarÃĄ que en muchas bibliotecas de ML encontrarÃĄ un mÊtodo de la forma 'model.fit' - es en este momento que envÃa su variable de caracterÃstica como una matriz de valores (generalmente `X`) y una variable de destino (generalmente `y`).
-
-### Evaluar el modelo
-
-Una vez que se completa el proceso de entrenamiento (puede tomar muchas iteraciones, o 'Êpocas', entrenar un modelo de gran tamaÃąo), podrÃĄ evaluar la calidad del modelo utilizando datos de prueba para medir su rendimiento. Estos datos son un subconjunto de los datos originales que el modelo no ha analizado previamente. Puede imprimir una tabla de mÊtricas sobre la calidad de su modelo.
-
-đ **Ajuste del modelo (Model fitting)**
-
-En el contexto del machine learning, el ajuste del modelo se refiere a la precisiÃŗn de la funciÃŗn subyacente del modelo cuando intenta analizar datos con los que no estÃĄ familiarizado.
-
-đ **Ajuste insuficiente (Underfitting)** y **sobreajuste (overfitting)** son problemas comunes que degradan la calidad del modelo, ya que el modelo no encaja suficientemente bien, o encaja demasiado bien. Esto hace que el modelo haga predicciones demasiado estrechamente alineadas o demasiado poco alineadas con sus datos de entrenamiento. Un modelo sobreajustado (overfitting) predice demasiado bien los datos de entrenamiento porque ha aprendido demasiado bien los detalles de los datos y el ruido. Un modelo insuficientemente ajustado (Underfitting) es impreciso, ya que ni puede analizar con precisiÃŗn sus datos de entrenamiento ni los datos que aÃēn no ha 'visto'.
-
-
-> InfografÃa de [Jen Looper](https://twitter.com/jenlooper)
-
-## Ajuste de parÃĄmetros
-
-Una vez que haya completado su entrenamiento inicial, observe la calidad del modelo y considere mejorarlo ajustando sus 'hiperparÃĄmetros'. Lea mÃĄs sobre el proceso [en la documentaciÃŗn](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
-
-## PredicciÃŗn
-
-Este es el momento en el que puede usar datos completamente nuevos para probar la precisiÃŗn de su modelo. En una configuraciÃŗn de ML aplicado, donde estÃĄ creando activos web para usar el modelo en producciÃŗn, este proceso puede implicar la recopilaciÃŗn de la entrada del usuario (presionar un botÃŗn, por ejemplo) para establecer una variable y enviarla al modelo para la inferencia o evaluaciÃŗn.
-En estas lecciones, descubrirÃĄ cÃŗmo utilizar estos pasos para preparar, construir, probar, evaluar, y predecir - todos los gestos de un cientÃfico de datos y mÃĄs, a medida que avanza en su viaje para convertirse en un ingeniero de machine learning 'full stack'.
----
-
-## đDesafÃo
-
-Dibuje un diagrama de flujos que refleje los pasos de practicante de ML. ÂŋDÃŗnde te ves ahora mismo en el proceso? ÂŋDÃŗnde predice que encontrarÃĄ dificultades? ÂŋQuÊ te parece fÃĄcil?
-
-## [Cuestionario posterior a la conferencia](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8?loc=es)
-
-## RevisiÃŗn & Autoestudio
-
-Busque entrevistas en lÃnea con cientÃficos de datos que analicen su trabajo diario. Aquà estÃĄ [uno](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
-
-## AsignaciÃŗn
-
-[Entrevistar a un cientÃfico de datos](assignment.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.id.md b/1-Introduction/4-techniques-of-ML/translations/README.id.md
deleted file mode 100644
index e745955f..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.id.md
+++ /dev/null
@@ -1,111 +0,0 @@
-# Teknik-teknik Machine Learning
-
-Proses membangun, menggunakan, dan memelihara model machine learning dan data yang digunakan adalah proses yang sangat berbeda dari banyak alur kerja pengembangan lainnya. Dalam pelajaran ini, kita akan mengungkap prosesnya dan menguraikan teknik utama yang perlu Kamu ketahui. Kamu akan:
-
-- Memahami gambaran dari proses yang mendasari machine learning.
-- Menjelajahi konsep dasar seperti '*models*', '*predictions*', dan '*training data*'.
-
-## [Quiz Pra-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/)
-## Pengantar
-
-Gambaran membuat proses machine learning (ML) terdiri dari sejumlah langkah:
-
-1. **Menentukan pertanyaan**. Sebagian besar proses ML dimulai dengan mengajukan pertanyaan yang tidak dapat dijawab oleh program kondisional sederhana atau mesin berbasis aturan (*rules-based engine*). Pertanyaan-pertanyaan ini sering berkisar seputar prediksi berdasarkan kumpulan data.
-2. **Mengumpulkan dan menyiapkan data**. Untuk dapat menjawab pertanyaanmu, Kamu memerlukan data. Bagaimana kualitas dan terkadang kuantitas data kamu akan menentukan seberapa baik kamu dapat menjawab pertanyaan awal kamu. Memvisualisasikan data merupakan aspek penting dari fase ini. Fase ini juga mencakup pemisahan data menjadi kelompok *training* dan *testing* untuk membangun model.
-3. **Memilih metode training**. Tergantung dari pertanyaan dan sifat datamu, Kamu perlu memilih bagaimana kamu ingin men-training sebuah model untuk mencerminkan data kamu dengan baik dan membuat prediksi yang akurat terhadapnya. Ini adalah bagian dari proses ML yang membutuhkan keahlian khusus dan seringkali perlu banyak eksperimen.
-4. **Melatih model**. Dengan menggunakan data *training*, kamu akan menggunakan berbagai algoritma untuk melatih model guna mengenali pola dalam data. Modelnya mungkin bisa memanfaatkan *internal weight* yang dapat disesuaikan untuk memberi hak istimewa pada bagian tertentu dari data dibandingkan bagian lainnya untuk membangun model yang lebih baik.
-5. **Mengevaluasi model**. Gunakan data yang belum pernah dilihat sebelumnya (data *testing*) untuk melihat bagaimana kinerja model.
-6. **Parameter tuning**. Berdasarkan kinerja modelmu, Kamu dapat mengulang prosesnya menggunakan parameter atau variabel yang berbeda, yang mengontrol perilaku algoritma yang digunakan untuk melatih model.
-7. **Prediksi**. Gunakan input baru untuk menguji keakuratan model kamu.
-
-## Pertanyaan apa yang harus ditanyakan?
-
-Komputer sangat ahli dalam menemukan pola tersembunyi dalam data. Hal ini sangat membantu peneliti yang memiliki pertanyaan tentang domain tertentu yang tidak dapat dijawab dengan mudah dari hanya membuat mesin berbasis aturan kondisional (*conditionally-based rules engine*). Untuk tugas aktuaria misalnya, seorang data scientist mungkin dapat membuat aturan secara manual seputar mortalitas perokok vs non-perokok.
-
-Namun, ketika banyak variabel lain dimasukkan ke dalam persamaan, model ML mungkin terbukti lebih efisien untuk memprediksi tingkat mortalitas di masa depan berdasarkan riwayat kesehatan masa lalu. Contoh yang lebih menyenangkan mungkin membuat prediksi cuaca untuk bulan April di lokasi tertentu berdasarkan data yang mencakup garis lintang, garis bujur, perubahan iklim, kedekatan dengan laut, pola aliran udara (Jet Stream), dan banyak lagi.
-
-â
[Slide deck](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) ini menawarkan perspektif historis pada model cuaca dengan menggunakan ML dalam analisis cuaca.
-
-## Tugas Pra-Pembuatan
-
-Sebelum mulai membangun model kamu, ada beberapa tugas yang harus kamu selesaikan. Untuk menguji pertanyaan kamu dan membentuk hipotesis berdasarkan prediksi model, Kamu perlu mengidentifikasi dan mengonfigurasi beberapa elemen.
-
-### Data
-
-Untuk dapat menjawab pertanyaan kamu dengan kepastian, Kamu memerlukan sejumlah besar data dengan jenis yang tepat. Ada dua hal yang perlu kamu lakukan pada saat ini:
-
-- **Mengumpulkan data**. Ingat pelajaran sebelumnya tentang keadilan dalam analisis data, kumpulkan data kamu dengan hati-hati. Waspadai sumber datanya, bias bawaan apa pun yang mungkin dimiliki, dan dokumentasikan asalnya.
-- **Menyiapkan data**. Ada beberapa langkah dalam proses persiapan data. Kamu mungkin perlu menyusun data dan melakukan normalisasi jika berasal dari berbagai sumber. Kamu dapat meningkatkan kualitas dan kuantitas data melalui berbagai metode seperti mengonversi string menjadi angka (seperti yang kita lakukan di [Clustering](../../5-Clustering/1-Visualize/translations/README.id.md)). Kamu mungkin juga bisa membuat data baru berdasarkan data yang asli (seperti yang kita lakukan di [Classification](../../4-Classification/1-Introduction/translations/README.id.md)). Kamu bisa membersihkan dan mengubah data (seperti yang kita lakukan sebelum pelajaran [Web App](../3-Web-App/translations/README.id.md)). Terakhir, Kamu mungkin juga perlu mengacaknya dan mengubah urutannya, tergantung pada teknik *training* kamu.
-
-â
Setelah mengumpulkan dan memproses data kamu, luangkan waktu sejenak untuk melihat apakah bentuknya memungkinkan kamu untuk menjawab pertanyaan yang kamu maksudkan. Mungkin data tidak akan berkinerja baik dalam tugas yang kamu berikan, seperti yang kita temukan dalam pelajaran [Clustering](../../5-Clustering/1-Visualize/translations/README.id.md).
-
-### Fitur dan Target
-
-Fitur adalah properti terukur dari data Anda. Dalam banyak set data, data tersebut dinyatakan sebagai judul kolom seperti 'date' 'size' atau 'color'. Variabel fitur Anda, biasanya direpresentasikan sebagai `X` dalam kode, mewakili variabel input yang akan digunakan untuk melatih model.
-
-A target is a thing you are trying to predict. Target usually represented as `y` in code, represents the answer to the question you are trying to ask of your data: in December, what color pumpkins will be cheapest? in San Francisco, what neighborhoods will have the best real estate price? Sometimes target is also referred as label attribute.
-
-### Memilih variabel fiturmu
-
-đ **Feature Selection dan Feature Extraction** Bagaimana kamu tahu variabel mana yang harus dipilih saat membangun model? Kamu mungkin akan melalui proses pemilihan fitur (*Feature Selection*) atau ekstraksi fitur (*Feature Extraction*) untuk memilih variabel yang tepat untuk membuat model yang berkinerja paling baik. Namun, keduanya tidak sama: "Ekstraksi fitur membuat fitur baru dari fungsi fitur asli, sedangkan pemilihan fitur mengembalikan subset fitur." ([sumber](https://wikipedia.org/wiki/Feature_selection))
-### Visualisasikan datamu
-
-Aspek penting dari toolkit data scientist adalah kemampuan untuk memvisualisasikan data menggunakan beberapa *library* seperti Seaborn atau MatPlotLib. Merepresentasikan data kamu secara visual memungkinkan kamu mengungkap korelasi tersembunyi yang dapat kamu manfaatkan. Visualisasimu mungkin juga membantu kamu mengungkap data yang bias atau tidak seimbang (seperti yang kita temukan dalam [Classification](../../4-Classification/2-Classifiers-1/translations/README.id.md)).
-### Membagi dataset
-
-Sebelum memulai *training*, Kamu perlu membagi dataset menjadi dua atau lebih bagian dengan ukuran yang tidak sama tapi masih mewakili data dengan baik.
-
-- **Training**. Bagian dataset ini digunakan untuk men-training model kamu. Bagian dataset ini merupakan mayoritas dari dataset asli.
-- **Testing**. Sebuah dataset tes adalah kelompok data independen, seringkali dikumpulkan dari data yang asli yang akan digunakan untuk mengkonfirmasi kinerja dari model yang dibuat.
-- **Validating**. Dataset validasi adalah kumpulan contoh mandiri yang lebih kecil yang kamu gunakan untuk menyetel hyperparameter atau arsitektur model untuk meningkatkan model. Tergantung dari ukuran data dan pertanyaan yang kamu ajukan, Kamu mungkin tidak perlu membuat dataset ketiga ini (seperti yang kita catat dalam [Time Series Forecasting](../7-TimeSeries/1-Introduction/translations/README.id.md)).
-
-## Membuat sebuah model
-
-Dengan menggunakan data *training*, tujuan kamu adalah membuat model atau representasi statistik data kamu menggunakan berbagai algoritma untuk **melatihnya**. Melatih model berarti mengeksposnya dengan data dan mengizinkannya membuat asumsi tentang pola yang ditemukan, divalidasi, dan diterima atau ditolak.
-
-### Tentukan metode training
-
-Tergantung dari pertanyaan dan sifat datamu, Kamu akan memilih metode untuk melatihnya. Buka dokumentasi [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) yang kita gunakan dalam pelajaran ini, kamu bisa menjelajahi banyak cara untuk melatih sebuah model. Tergantung dari pengalamanmu, kamu mungkin perlu mencoba beberapa metode yang berbeda untuk membuat model yang terbaik. Kemungkinan kamu akan melalui proses di mana data scientist mengevaluasi kinerja model dengan memasukkan data yang belum pernah dilihat, memeriksa akurasi, bias, dan masalah penurunan kualitas lainnya, dan memilih metode training yang paling tepat untuk tugas yang ada.
-
-### Melatih sebuah model
-
-Berbekan dengan data pelatihan Anda, Anda siap untuk 'menyesuaikan' untuk membuat model. Anda akan melihat bahwa di banyak perpustakaan ML Anda akan menemukan kode 'model.fit' - saat inilah Anda mengirim variabel fitur Anda sebagai array nilai (biasanya `X`) dan variabel target (biasanya `y`).
-
-### Mengevaluasi model
-
-Setelah proses *training* selesai (ini mungkin membutuhkan banyak iterasi, atau 'epoch', untuk melatih model besar), Kamu akan dapat mengevaluasi kualitas model dengan menggunakan data tes untuk mengukur kinerjanya. Data ini merupakan subset dari data asli yang modelnya belum pernah dianalisis sebelumnya. Kamu dapat mencetak tabel metrik tentang kualitas model kamu.
-
-đ **Model fitting**
-
-Dalam konteks machine learning, *model fitting* mengacu pada keakuratan dari fungsi yang mendasari model saat mencoba menganalisis data yang tidak familiar.
-
-đ **Underfitting** dan **overfitting** adalah masalah umum yang menurunkan kualitas model, karena model tidak cukup akurat atau terlalu akurat. Hal ini menyebabkan model membuat prediksi yang terlalu selaras atau tidak cukup selaras dengan data trainingnya. Model overfit memprediksi data *training* terlalu baik karena telah mempelajari detail dan noise data dengan terlalu baik. Model underfit tidak akurat karena tidak dapat menganalisis data *training* atau data yang belum pernah dilihat sebelumnya secara akurat.
-
-
-> Infografis oleh [Jen Looper](https://twitter.com/jenlooper)
-
-## Parameter tuning
-
-Setelah *training* awal selesai, amati kualitas model dan pertimbangkan untuk meningkatkannya dengan mengubah 'hyperparameter' nya. Baca lebih lanjut tentang prosesnya [di dalam dokumentasi](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
-
-## Prediksi
-
-Ini adalah saat di mana Kamu dapat menggunakan data yang sama sekali baru untuk menguji akurasi model kamu. Dalam setelan ML 'terapan', di mana kamu membangun aset web untuk menggunakan modelnya dalam produksi, proses ini mungkin melibatkan pengumpulan input pengguna (misalnya menekan tombol) untuk menyetel variabel dan mengirimkannya ke model untuk inferensi, atau evaluasi.
-
-Dalam pelajaran ini, Kamu akan menemukan cara untuk menggunakan langkah-langkah ini untuk mempersiapkan, membangun, menguji, mengevaluasi, dan memprediksi - semua gestur data scientist dan banyak lagi, seiring kemajuanmu dalam perjalanan menjadi 'full stack' ML engineer.
-
----
-
-## đTantangan
-
-Gambarlah sebuah flow chart yang mencerminkan langkah-langkah seorang praktisi ML. Di mana kamu melihat diri kamu saat ini dalam prosesnya? Di mana kamu memprediksi kamu akan menemukan kesulitan? Apa yang tampak mudah bagi kamu?
-
-## [Quiz Pra-Pelajaran](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/)
-
-## Ulasan & Belajar Mandiri
-
-Cari di Internet mengenai wawancara dengan data scientist yang mendiskusikan pekerjaan sehari-hari mereka. Ini [salah satunya](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
-
-## Tugas
-
-[Wawancara dengan data scientist](assignment.id.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.it.md b/1-Introduction/4-techniques-of-ML/translations/README.it.md
deleted file mode 100644
index d43f3b52..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.it.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# Tecniche di Machine Learning
-
-Il processo di creazione, utilizzo e mantenimento dei modelli di machine learning e dei dati che utilizzano è un processo molto diverso da molti altri flussi di lavoro di sviluppo. In questa lezione si demistifica il processo, e si delineano le principali tecniche che occorre conoscere. Si dovrà :
-
-- Comprendere i processi ad alto livello alla base di machine learning.
-- Esplorare concetti di base come "modelli", "previsioni" e "dati di addestramento".
-
-## [Quiz pre-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/?loc=it)
-
-## Introduzione
-
-Ad alto livello, il mestiere di creare processi di apprendimento automatico (ML) comprende una serie di passaggi:
-
-1. **Decidere circa la domanda**. La maggior parte dei processi ML inizia ponendo una domanda alla quale non è possibile ottenere risposta da un semplice programma condizionale o da un motore basato su regole. Queste domande spesso ruotano attorno a previsioni basate su una raccolta di dati.
-2. **Raccogliere e preparare i dati**. Per poter rispondere alla domanda, servono dati. La qualità e, a volte, la quantità dei dati determineranno quanto bene sarà possibile rispondere alla domanda iniziale. La visualizzazione dei dati è un aspetto importante di questa fase. Questa fase include anche la suddivisione dei dati in un gruppo di addestramento (training) e test per costruire un modello.
-3. **Scegliere un metodo di addestramento**. A seconda della domanda e della natura dei dati, è necessario scegliere come si desidera addestrare un modello per riflettere al meglio i dati e fare previsioni accurate su di essi. Questa è la parte del processo di ML che richiede competenze specifiche e, spesso, una notevole quantità di sperimentazione.
-4. **Addestrare il modello**. Usando i dati di addestramento, si utilizzeranno vari algoritmi per addestrare un modello a riconoscere modelli nei dati. Il modello potrebbe sfruttare pesi interni che possono essere regolati per privilegiare alcune parti dei dati rispetto ad altre per costruire un modello migliore.
-5. **Valutare il modello**. Si utilizzano dati mai visti prima (i dati di test) da quelli raccolti per osservare le prestazioni del modello.
-6. **Regolazione dei parametri**. In base alle prestazioni del modello, si puÃ˛ ripetere il processo utilizzando parametri differenti, o variabili, che controllano il comportamento degli algoritmi utilizzati per addestrare il modello.
-7. **Prevedere**. Usare nuovi input per testare la precisione del modello.
-
-## Che domanda fare
-
-I computer sono particolarmente abili nello scoprire modelli nascosti nei dati. Questa caratteristica è molto utile per i ricercatori che hanno domande su un determinato campo a cui non è possibile rispondere facilmente creando un motore di regole basato su condizioni. Dato un compito attuariale, ad esempio, un data scientist potrebbe essere in grado di costruire manualmente regole sulla mortalità dei fumatori rispetto ai non fumatori.
-
-Quando molte altre variabili vengono introdotte nell'equazione, tuttavia, un modello ML potrebbe rivelarsi piÚ efficiente per prevedere i tassi di mortalità futuri in base alla storia sanitaria passata. Un esempio piÚ allegro potrebbe essere fare previsioni meteorologiche per il mese di aprile in una determinata località sulla base di dati che includono latitudine, longitudine, cambiamento climatico, vicinanza all'oceano, modelli della corrente a getto e altro ancora.
-
-â
Questa [presentazione](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) sui modelli meteorologici offre una prospettiva storica per l'utilizzo di ML nell'analisi meteorologica.
-
-## Attività di pre-costruzione
-
-Prima di iniziare a costruire il proprio modello, ci sono diverse attività da completare. Per testare la domanda e formare un'ipotesi basata sulle previsioni di un modello, occorre identificare e configurare diversi elementi.
-
-### Dati
-
-Per poter rispondere con sicurezza alla domanda, serve una buona quantità di dati del tipo giusto. Ci sono due cose da fare a questo punto:
-
-- **Raccogliere dati**. Tenendo presente la lezione precedente sull'equità nell'analisi dei dati, si raccolgano i dati con cura. Ci sia consapevolezza delle fonti di questi dati, di eventuali pregiudizi intrinseci che potrebbero avere e si documenti la loro origine.
-- **Preparare i dati**. Ci sono diversi passaggi nel processo di preparazione dei dati. Potrebbe essere necessario raccogliere i dati e normalizzarli se provengono da fonti diverse. Si puÃ˛ migliorare la qualità e la quantità dei dati attraverso vari metodi come la conversione di stringhe in numeri (come si fa in [Clustering](../../../5-Clustering/1-Visualize/transaltions/README.it.md)). Si potrebbero anche generare nuovi dati, basati sull'originale (come si fa in [Classificazione](../../../4-Classification/1-Introduction/translations/README.it.md)). Si possono pulire e modificare i dati (come verrà fatto prima della lezione sull'[app Web](../../../3-Web-App/translations/README.it.md) ). Infine, si potrebbe anche aver bisogno di renderli casuali e mescolarli, a seconda delle proprie tecniche di addestramento.
-
-â
Dopo aver raccolto ed elaborato i propri dati, si prenda un momento per vedere se la loro forma consentirà di rispondere alla domanda prevista. Potrebbe essere che i dati non funzionino bene nello svolgere il compito assegnato, come si scopre nelle lezioni di [Clustering](../../../5-Clustering/1-Visualize/translations/README.it.md)!
-
-### Caratteristiche e destinazione
-
-Una caratteristica è una proprietà misurabile dei dati. In molti set di dati è espresso come intestazione di colonna come 'date' 'size' o 'color'. La variabile di caratteristica, solitamente rappresentata come `X` nel codice, rappresenta la variabile di input che verrà utilizzata per il training del modello.
-
-Un obiettivo è una cosa che stai cercando di prevedere. Target solitamente rappresentato come `y` nel codice, rappresenta la risposta alla domanda che stai cercando di porre dei tuoi dati: a dicembre, di che colore saranno le zucche piÚ economiche? a San Francisco, quali quartieri avranno il miglior prezzo immobiliare? A volte la destinazione viene anche definita attributo label.
-
-### Selezione della variabile caratteristica
-
-đ **Selezione ed estrazione della caratteristica** Come si fa a sapere quale variabile scegliere quando si costruisce un modello? Probabilmente si dovrà passare attraverso un processo di selezione o estrazione delle caratteristiche per scegliere le variabili giuste per il modello piÚ efficace. Tuttavia, non è la stessa cosa: "L'estrazione delle caratteristiche crea nuove caratteristiche dalle funzioni delle caratteristiche originali, mentre la selezione delle caratteristiche restituisce un sottoinsieme delle caratteristiche". ([fonte](https://it.wikipedia.org/wiki/Selezione_delle_caratteristiche))
-
-### Visualizzare i dati
-
-Un aspetto importante del bagaglio del data scientist è la capacità di visualizzare i dati utilizzando diverse eccellenti librerie come Seaborn o MatPlotLib. Rappresentare visivamente i propri dati potrebbe consentire di scoprire correlazioni nascoste che si possono sfruttare. Le visualizzazioni potrebbero anche aiutare a scoprire pregiudizi o dati sbilanciati (come si scopre in [Classificazione](../../../4-Classification/2-Classifiers-1/translations/README.it.md)).
-
-### Dividere l'insieme di dati
-
-Prima dell'addestramento, è necessario dividere l'insieme di dati in due o piÚ parti di dimensioni diverse che rappresentano comunque bene i dati.
-
-- **Addestramento**. Questa parte dell'insieme di dati è adatta al proprio modello per addestrarlo. Questo insieme costituisce la maggior parte dell'insieme di dati originale.
-- **Test**. Un insieme di dati di test è un gruppo indipendente di dati, spesso raccolti dai dati originali, che si utilizzano per confermare le prestazioni del modello creato.
-- **Convalida**. Un insieme di convalida è un gruppo indipendente piÚ piccolo di esempi da usare per ottimizzare gli iperparametri, o architettura, del modello per migliorarlo. A seconda delle dimensioni dei propri dati e della domanda che si sta ponendo, si potrebbe non aver bisogno di creare questo terzo insieme (come si nota in [Previsione delle Serie Temporali](../../../7-TimeSeries/1-Introduction/translations/README.it.md)).
-
-## Costruire un modello
-
-Utilizzando i dati di addestramento, l'obiettivo è costruire un modello o una rappresentazione statistica dei propri dati, utilizzando vari algoritmi per **addestrarlo** . L'addestramento di un modello lo espone ai dati e consente di formulare ipotesi sui modelli percepiti che scopre, convalida e accetta o rifiuta.
-
-### Decidere un metodo di addestramento
-
-A seconda della domanda e della natura dei dati, si sceglierà un metodo per addestrarlo. Passando attraverso [la documentazione di Scikit-learn](https://scikit-learn.org/stable/user_guide.html), che si usa in questo corso, si possono esplorare molti modi per addestrare un modello. A seconda della propria esperienza, si potrebbe dover provare diversi metodi per creare il modello migliore. à probabile che si attraversi un processo in cui i data scientist valutano le prestazioni di un modello fornendogli dati non visti, verificandone l'accuratezza, i pregiudizi e altri problemi che degradano la qualità e selezionando il metodo di addestramento piÚ appropriato per l'attività da svolgere.
-
-### Allenare un modello
-
-Armati dei tuoi dati di allenamento, sei pronto a "adattarlo" per creare un modello. Noterai che in molte librerie ML troverai il codice "model.fit" - è in questo momento che invii la tua variabile di funzionalità come matrice di valori (in genere `X`) e una variabile di destinazione (di solito `y`).
-
-### Valutare il modello
-
-Una volta completato il processo di addestramento (potrebbero essere necessarie molte iterazioni, o "epoche", per addestrare un modello di grandi dimensioni), si sarà in grado di valutare la qualità del modello utilizzando i dati di test per valutarne le prestazioni. Questi dati sono un sottoinsieme dei dati originali che il modello non ha analizzato in precedenza. Si puÃ˛ stampare una tabella di metriche sulla qualità del proprio modello.
-
-đ **Adattamento del modello**
-
-Nel contesto di machine learning, l'adattamento del modello si riferisce all'accuratezza della funzione sottostante del modello mentre tenta di analizzare dati con cui non ha familiarità .
-
-đ **Inadeguatezza** o **sovraadattamento** sono problemi comuni che degradano la qualità del modello, poichÊ il modello non si adatta abbastanza bene o troppo bene. CiÃ˛ fa sÃŦ che il modello esegua previsioni troppo allineate o troppo poco allineate con i suoi dati di addestramento. Un modello overfit (sovraaddestrato) prevede troppo bene i dati di addestramento perchÊ ha appreso troppo bene i dettagli e il rumore dei dati. Un modello underfit (inadeguato) non è accurato in quanto non puÃ˛ nÊ analizzare accuratamente i suoi dati di allenamento nÊ i dati che non ha ancora "visto".
-
-
-> Infografica di [Jen Looper](https://twitter.com/jenlooper)
-
-## Sintonia dei parametri
-
-Una volta completato l'addestramento iniziale, si osservi la qualità del modello e si valuti di migliorarlo modificando i suoi "iperparametri". Maggiori informazioni sul processo [nella documentazione](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
-
-## Previsione
-
-Questo è il momento in cui si possono utilizzare dati completamente nuovi per testare l'accuratezza del proprio modello. In un'impostazione ML "applicata", in cui si creano risorse Web per utilizzare il modello in produzione, questo processo potrebbe comportare la raccolta dell'input dell'utente (ad esempio, la pressione di un pulsante) per impostare una variabile e inviarla al modello per l'inferenza, oppure valutazione.
-
-In queste lezioni si scoprirà come utilizzare questi passaggi per preparare, costruire, testare, valutare e prevedere - tutti gesti di un data scientist e altro ancora, mentre si avanza nel proprio viaggio per diventare un ingegnere ML "full stack".
-
----
-
-## đ Sfida
-
-Disegnare un diagramma di flusso che rifletta i passaggi di un professionista di ML. Dove ci si vede in questo momento nel processo? Dove si prevede che sorgeranno difficoltà ? Cosa sembra facile?
-
-## [Quiz post-lezione](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/?loc=it)
-
-## Revisione e Auto Apprendimento
-
-Cercare online le interviste con i data scientist che discutono del loro lavoro quotidiano. Eccone [una](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
-
-## Compito
-
-[Intervista a un data scientist](assignment.it.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.ja.md b/1-Introduction/4-techniques-of-ML/translations/README.ja.md
deleted file mode 100644
index d326dc6c..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.ja.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# æŠæĸ°åĻįŋãŽææŗ
-
-æŠæĸ°åĻįŋãĸããĢãããŽãĸããĢãäŊŋį¨ããããŧãŋãæ§į¯ãģäŊŋį¨ãģįŽĄįãããããģãšã¯ãäģãŽå¤ããŽéįēã¯ãŧã¯ãããŧã¨ã¯å
¨ãį°ãĒãããŽã§ããããŽãŦããšãŗã§ã¯ãããŽãããģãšãæåŋĢãĢããĻãįĨãŖãĻãããšãä¸ģãĒææŗãŽæĻčĻããžã¨ããžããããĒãã¯ã
-
-- æŠæĸ°åĻįŋãæ¯ãããããģãšãéĢãæ°´æēã§įč§Ŗããžãã
-- ããĸããĢããä翏Ŧããč¨įˇ´ããŧãŋããĒãŠãŽåēæŦįãĒæĻåŋĩãčĒŋãšãžãã
-
-## [čŦįžŠåãŽå°ããšã](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7?loc=ja)
-
-## å°å
Ĩ
-
-大ãžããĢč¨ãã¨ãæŠæĸ°åĻįŋ (Machine Learning: ML) ãããģãšãäŊæããæčĄã¯ããã¤ããŽãšãããã§æ§æãããĻããžãã
-
-1. **čŗĒåãæąēãã**ããģã¨ããŠã޿пĸ°åĻįŋãããģãšã¯ãåį´ãĒæĄäģļãŽããã°ãŠã ããĢãŧãĢããŧãšãŽã¨ãŗã¸ãŗã§ã¯įããããĒããããĒčŗĒåããããã¨ããå§ãžããžããããŽãããĒčŗĒåã¯ãããŧãŋãŽéåãäŊŋãŖãä翏Ŧãä¸åŋãĢããããã¨ãå¤ãã§ãã
-2. **ããŧãŋãéããĻæēåãã**ãčŗĒåãĢįãããããĢã¯ããŧãŋãåŋ
čĻã§ããããŧãŋãŽčŗĒã¨ãã¨ããĢã¯éããæåãŽčŗĒåãĢãŠãã ãããžãįããããããæąēããžããããŧãŋãŽå¯čĻåãããŽãã§ãŧãēãŽéčĻãĒå´éĸã§ãããĸããĢãæ§į¯ãããããĢããŧãŋãč¨įˇ´ã°ãĢãŧãã¨ããšãã°ãĢãŧããĢåãããã¨ãããŽãã§ãŧãēãĢåĢãŋãžãã
-3. **åĻįŋæšæŗãé¸ãļ**ãčŗĒåãŽå
厚ãããŧãŋãŽæ§čŗĒãĢåŋããĻãããŧãŋãæãč¯ãåæ ããĻæŖįĸēãĢä翏Ŧã§ãããĸããĢãããŠãŽãããĢåĻįŋããããé¸ãļåŋ
čĻããããžããããã¯æŠæĸ°åĻįŋãããģãšãŽä¸ã§ããįšåŽãŽå°éįĨčã¨ãå¤ããŽå ´åã¯ããĒããŽčŠĻčĄåæ°ãåŋ
čĻãĢãĒãé¨åã§ãã
-4. **ãĸããĢãåĻįŋãã**ãããŧãŋãŽããŋãŧãŗãčĒčãããĸããĢãåĻįŋãããããĢãč¨įˇ´ããŧãŋã¨æ§ã
ãĒãĸãĢã´ãĒãēã ãäŊŋããžãããĸããĢã¯ããč¯ããĸããĢãæ§į¯ãããããĢãããŧãŋãŽįšåŽãŽé¨åãåĒå
ãããããĢčĒŋæ´ã§ããå
é¨ãŽéãŋãæ´ģį¨ãããããããžããã
-5. **ãĸããĢãčŠäžĄãã**ããĸããĢããŠãŽãããĢåäŊããĻããããįĸēčĒãããããĢãéããããŧãŋãŽä¸ãããžã čĻããã¨ãŽãĒãããŽīŧããšãããŧãŋīŧãäŊŋããžãã
-6. **ããŠãĄãŧãŋããĨãŧããŗã°**ããĸããĢãŽæ§čŊãĢããŖãĻã¯ããĸããĢãåĻįŋãããããĢäŊŋããããåãĸãĢã´ãĒãēã ãŽæåãåļåžĄããããŠãĄãŧãŋã夿°ã夿´ããĻãããģãšãããį´ããã¨ãã§ããžãã
-7. **ä翏Ŧãã**ããĸããĢãŽį˛žåēĻãããšããããããĢæ°ããå
ĨåãäŊŋããžãã
-
-## ãŠãŽãããĒčŗĒåãããã°č¯ãã
-
-ãŗãŗããĨãŧãŋã¯ããŧãŋãŽä¸ãĢé ããĻããããŋãŧãŗãčĻã¤ãããã¨ãã¨ãĻãåžæã§ããããŽæį¨æ§ã¯ãæĄäģļããŧãšãŽãĢãŧãĢã¨ãŗã¸ãŗãäŊãŖãĻãį°ĄåãĢã¯įããããĒããããĒãįšåŽãŽé åãĢéĸããčŗĒåãæãŖãĻããį įŠļč
ãĢã¨ãŖãĻé常ãĢåŊšįĢãĄãžãããã¨ãã°ãããäŋéēæ°įãŽåéĄãããŖãã¨ããĻãããŧãŋãĩã¤ã¨ãŗããŖãšãã¯åĢį
č
ã¨éåĢį
č
ãŽæģäēĄįãĢéĸããæŗåãčĒåãŽæã ãã§ãäŊãããããããžããã
-
-ããããäģãĢãå¤ããŽå¤æ°ãæšį¨åŧãĢåĢãžããå ´åãéåģãŽåĨåēˇįļæ
ããå°æĨãŽæģäēĄįãä翏ŦããæŠæĸ°åĻįŋãĸããĢãŽæšãåšįįãããããžãããããŖã¨æããããŧããŽäžã¨ããĻã¯ã᎝åēĻãįĩåēĻãæ°åå¤åãæĩˇã¸ãŽčŋããã¸ã§ããæ°æĩãŽããŋãŧãŗãĒãŠãŽããŧãŋãĢåēãĨããĻãįšåŽãŽå ´æãĢããã4æãŽå¤Šæ°ãä翏Ŧãããã¨ãã§ããžãã
-
-â
æ°čąĄãĸããĢãĢéĸããã㎠[ãšãŠã¤ã](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) ã¯ãæ°čąĄč§Ŗæã̿пĸ°åĻįŋãäŊŋãéãŽæ´å˛įãĒčãæšãį¤ēããĻããžãã
-
-## æ§į¯åãŽãŋãšã¯
-
-ãĸããĢãŽæ§į¯ãå§ããåãĢãããã¤ããŽãŋãšã¯ãåŽäēãããåŋ
čĻããããžããčŗĒåãããšãããããĸããĢãŽä翏ŦãĢåēãĨããäģŽčĒŦãįĢãĻãããããããĢã¯ãããã¤ããŽčĻį´ ãįšåŽããĻč¨åŽããåŋ
čĻããããžãã
-
-### ããŧãŋ
-
-čŗĒåãĢįĸēåŽãĢįãããããĢã¯ãéŠåãĒį¨ŽéĄãŽããŧãŋã大éãĢåŋ
čĻãĢãĒããžããããã§ã¯ãããšããã¨ã2ã¤ãããžãã
-
-- **ããŧãŋãéãã**ãããŧãŋč§ŖæãĢãããå
Ŧåšŗæ§ãĢéĸããååãŽčŦįžŠãæãåēããĒãããæ
éãĢããŧãŋãéããĻãã ãããįšåŽãŽãã¤ãĸãšãæãŖãĻãããããããĒãããŧãŋãŽãŊãŧãšãĢæŗ¨æãããããč¨é˛ããĻãããĻãã ããã
-- **ããŧãŋãæēåãã**ãããŧãŋãæēåãããããģãšãĢã¯ããã¤ããŽãšãããããããžããį°ãĒããŊãŧãšããããŧãŋãéããå ´åãį
§åã¨æŖčĻåãåŋ
čĻãĢãĒããããããžãããīŧ[ã¯ãŠãšãŋãĒãŗã°](../../../5-Clustering/1-Visualize/README.md) ã§čĄãŖãĻãããããĢãīŧæååãæ°å¤ãĢ夿ãããĒãŠãŽæ§ã
ãĒæšæŗã§ããŧãŋãŽčŗĒã¨éãåä¸ããããã¨ãã§ããžããīŧ[åéĄ](../../../4-Classification/1-Introduction/README.md) ã§čĄãŖãĻãããããĢãīŧå
ãŽããŧãŋããæ°ããããŧãŋãįæãããã¨ãã§ããžããīŧ[WebãĸããĒ](../../../3-Web-App/README.md) ãŽčŦįžŠãŽåãĢčĄããããĢãīŧããŧãŋãã¯ãĒãŧããŗã°ãããᎍéããããããã¨ãã§ããžããæåžãĢãåĻįŋãŽææŗãĢããŖãĻã¯ããŠãŗãã ãĢããããˇãŖãããĢãããããåŋ
čĻããããããããžããã
-
-â
ããŧãŋãéããĻåĻįããåžã¯ãããŽåŊĸã§æåŗããčŗĒåãĢ寞åŋã§ããããŠãããįĸēčĒããĻãŋãžãããã[ã¯ãŠãšãŋãĒãŗã°](../../../5-Clustering/1-Visualize/README.md) ãŽčŦįžŠã§ããããããĢãããŧãŋã¯ä¸ãããããŋãšã¯ãĢ寞ããĻä¸æãæŠčŊããĒããããããžããīŧ
-
-### æŠčŊã¨ãŋãŧã˛ãã
-
-ããŖãŧããŖã¯ãããŧãŋãŽæ¸ŦåŽå¯čŊãĒãããããŖã§ããå¤ããŽããŧãŋãģããã§ã¯ã'æĨäģ' 'ãĩã¤ãē' ã 'č˛' ãŽãããĒåčĻåēãã¨ããĻ襨įžãããžããé常ããŗãŧãã§ã¯ `X` ã¨ããĻ襨ãããããŖãŧããŖå¤æ°ã¯ããĸããĢãŽããŦãŧããŗã°ãĢäŊŋį¨ãããå
Ĩå夿°ã襨ããžã
-
-ãŋãŧã˛ããã¯ãä翏Ŧãããã¨ããĻããããŽã§ãããŋãŧã˛ããã¯é常ããŗãŧãã§`y`ã¨ããĻ襨ãããããĒããŽããŧãŋãå°ãããã¨ããĻããčŗĒåãĢ寞ããįãã襨ããžã:12æãĢããŠãŽč˛ãŽãĢãããŖãæãåŽããĒããžãã?ãĩãŗããŠãŗãˇãšãŗã§ã¯ããŠãŽå°åãæéĢãŽä¸åįŖäžĄæ ŧãæã¤ã§ãããã?ãŋãŧã˛ããã¯ãŠããĢåąæ§ã¨ãåŧã°ãããã¨ããããžãã
-
-### įšåž´éãŽé¸æ
-
-đ **įšåž´é¸æã¨įšåž´æŊåē** ãĸããĢãæ§į¯ããéãĢãŠãŽå¤æ°ãé¸ãļãšããã¯ããŠãããã°ãããã§ããããīŧæãæ§čŊãŽéĢããĸããĢãŽãããĢã¯ãéŠãã夿°ã鏿ããįšåž´é¸æãįšåž´æŊåēãŽãããģãšãããŠããã¨ãĢãĒãã§ãããããããããããã¯åãããŽã§ã¯ãããžããããįšåž´æŊåēã¯å
ãŽįšåž´ãŽæŠčŊããæ°ããįšåž´ãäŊæãããŽãĢ寞ããįšåž´é¸æã¯įšåž´ãŽä¸é¨ãčŋãããŽã§ããã ([åēå
¸](https://wikipedia.org/wiki/Feature_selection))
-
-### ããŧãŋãå¯čĻåãã
-
-ããŧãŋãĩã¤ã¨ãŗããŖãšããŽéå
ˇãĢéĸããéčĻãĒå´éĸã¯ãSeaborn ã MatPlotLib ãĒãŠãŽåĒãããŠã¤ããŠãĒãäŊŋãŖãĻããŧãŋãå¯čĻåããåã§ããããŧãŋãčĻčĻįãĢ襨įžãããã¨ã§ãé ããį¸éĸéĸäŋãčĻã¤ããĻæ´ģį¨ã§ãããããããžããããžããīŧ[åéĄ](../../../4-Classification/2-Classifiers-1/README.md) ã§ããããããĢãīŧčĻčĻåãããã¨ã§ããã¤ãĸãšãããŠãŗãˇãŗã°ãããĻããĒãããŧãŋãčĻã¤ãããããããããžããã
-
-### ããŧãŋãģãããåå˛ãã
-
-åĻįŋãŽåãĢããŧãŋãģããã2ã¤äģĨä¸ãĢåå˛ããĻããããããããŧãŋã襨ããŽãĢååãã¤ä¸åįãĒ大ãããĢããåŋ
čĻããããžãã
-
-- **åĻįŋ**ãããŧãŋãģãããŽããŽé¨åã¯ããĸããĢãåĻįŋãããããĢéŠåãããžããããã¯å
ãŽããŧãŋãģãããŽå¤§é¨åãå ããžãã
-- **ããšã**ãããšãããŧãŋãģããã¨ã¯ãæ§į¯ãããĸããĢãŽæ§čŊãįĸēčĒãããããĢäŊŋį¨ããįŦįĢããããŧãŋã°ãĢãŧããŽãã¨ã§ãå¤ããŽå ´åã¯å
ãŽããŧãŋããéããããžãã
-- **æ¤č¨ŧ**ãæ¤č¨ŧãģããã¨ã¯ããããĢå°ãããĻįŦįĢãããĩãŗããĢãŽéåãŽãã¨ã§ããĸããĢãæšåãããããĢãã¤ããŧããŠãĄãŧãŋãæ§é ãčĒŋæ´ããéãĢäŊŋį¨ãããžããīŧ[æįŗģåä翏Ŧ](../../../7-TimeSeries/1-Introduction/README.md) ãĢč¨čŧããĻãããããĢãīŧããŧãŋãŽå¤§ãããčŗĒåãŽå
厚ãĢããŖãĻã¯ãããŽ3ã¤įŽãŽãģãããäŊãåŋ
čĻã¯ãããžããã
-
-## ãĸããĢãŽæ§į¯
-
-č¨įˇ´ããŧãŋã¨æ§ã
ãĒãĸãĢã´ãĒãēã ãäŊŋãŖã **åĻįŋ** ãĢããŖãĻããĸããĢãããã¯ããŧãŋãŽįĩąč¨įãĒ襨įžãæ§į¯ãããã¨ãįŽæ¨ã§ãããĸããĢãåĻįŋãããã¨ã§ãããŧãŋãæąãããããĢãĒãŖãããįēčĻãæ¤č¨ŧãč¯åŽãžãã¯åĻåŽããããŋãŧãŗãĢéĸããäģŽčĒŦãįĢãĻããã¨ãã§ãããããžãã
-
-### åĻįŋæšæŗãæąēãã
-
-čŗĒåãŽå
厚ãããŧãŋãŽæ§čŗĒãĢåŋããĻããĸããĢãåĻįŋããæšæŗã鏿ããžããããŽãŗãŧãšã§äŊŋį¨ãã [Scikit-learn ãŽãããĨãĄãŗã](https://scikit-learn.org/stable/user_guide.html) ãčĻãã¨ããĸããĢãåĻįŋããæ§ã
ãĒæšæŗãčĒŋãšãããžããįĩ鍿ŦĄįŦŦã§ã¯ãæéŠãĒãĸããĢãæ§į¯ãããããĢããã¤ããŽį°ãĒãæšæŗãčŠĻãåŋ
čĻããããããããžããããžãããĸããĢãčĻããã¨ãŽãĒãããŧãŋãä¸ããããčŗĒãä¸ããĻããåéĄãį˛žåēĻããã¤ãĸãšãĢã¤ããĻčĒŋãšããããŋãšã¯ãĢ寞ããĻæéŠãĒåĻįŋæšæŗãé¸ãã ããããã¨ã§ãããŧãŋãĩã¤ã¨ãŗããŖãšããčĄãŖãĻããããĸããĢãŽæ§čŊãčŠäžĄãããããģãšãč¸ããã¨ãĢãĒãã§ãããã
-
-### ãĸããĢãåĻįŋãã
-
-ããŦãŧããŗã°ããŧãŋãäŊŋį¨ããĻããĸããĢãäŊæãããããĢãããŖãããããæēåãæ´ããžãããå¤ã㎠ML ãŠã¤ããŠãĒã§ã¯ããŗãŧã 'model.fit' ãčĻã¤ãããžã - ããŽæįšã§ãå¤ãŽé
å (é常㯠`X`) ã¨ãŋãŧã˛ãã夿° (é常㯠`y`) ã¨ããĻæŠčŊ夿°ãéäŋĄããžãã
-
-### ãĸããĢãčŠäžĄãã
-
-īŧ大ããĒãĸããĢãåĻįŋãããĢã¯å¤ããŽå垊īŧã¨ããã¯īŧãåŋ
čĻãĢãĒããžãããīŧåĻįŋãããģãšãåŽäēããããããšãããŧãŋãäŊŋãŖãĻãĸããĢãŽčŗĒãčŠäžĄãããã¨ãã§ããžããããŽããŧãŋã¯å
ãŽããŧãŋãŽããĄããĸããĢããããžã§ãĢåæããĻããĒãããŽã§ãããĸããĢãŽčŗĒãčĄ¨ãææ¨ãŽčĄ¨ãåēåãããã¨ãã§ããžãã
-
-đ **ãĸããĢããŖãããŖãŗã°**
-
-æŠæĸ°åĻįŋãĢããããĸããĢããŖãããŖãŗã°ã¯ããĸããĢããžã įĨããĒãããŧãŋãåæããéãŽæ šæŦįãĒæŠčŊãŽį˛žåēĻãåį
§ããžãã
-
-đ **æĒåĻįŋ** 㨠**éåĻįŋ** ã¯ãĸããĢãŽčŗĒãä¸ããä¸čŦįãĒåéĄã§ããĸããĢãååãĢéŠåããĻããĒããããžãã¯éŠåããããĻããžãããããĢããŖãĻãĸããĢã¯č¨įˇ´ããŧãŋãĢčŋããããé ããããããä翏ŦãčĄããžããéåĻįŋãĸããĢã¯ãããŧãŋãŽčŠŗį´°ããã¤ãēãããåĻįŋããĻãããããč¨įˇ´ããŧãŋã䏿ãä翏ŦããããĻããžããžããæĒåĻįŋãĸããĢã¯ãč¨įˇ´ããŧãŋããžã ãčĻããã¨ãŽãĒããããŧãŋãæŖįĸēãĢåæãããã¨ãã§ããĒããããį˛žåēĻãéĢããĒãã§ãã
-
-
-> [Jen Looper](https://twitter.com/jenlooper) ãããĢããč§ŖčĒŦįģå
-
-## ããŠãĄãŧãŋããĨãŧããŗã°
-
-æåãŽããŦãŧããŗã°ãåŽäēãããããĸããĢãŽčŗĒãčĻŗå¯ããĻãããã¤ããŧããŠãĄãŧãŋããŽčĒŋæ´ãĢãããĸããĢãŽæšåãæ¤č¨ããžããããããŽãããģãšãĢã¤ããĻ㯠[ãããĨãĄãŗã](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott) ãčĒãã§ãã ããã
-
-## ä翏Ŧ
-
-å
¨ãæ°ããããŧãŋãäŊŋãŖãĻãĸããĢãŽį˛žåēĻãããšãããįŦéã§ããæŦįĒį°åĸã§ãĸããĢãäŊŋį¨ãããããĢWebãĸãģãããæ§į¯ãããããéŠį¨ããããæŠæĸ°åĻįŋãŽč¨åŽãĢãããĻã¯ãæ¨čĢãčŠäžĄãŽãããĢãĸããĢãĢæ¸Ąãããã夿°ãč¨åŽããããããããĢãĻãŧãļãŽå
ĨåīŧããŋãŗãŽæŧä¸ãĒãŠīŧãåéãããã¨ãããŽãããģãšãĢåĢãžãããããããžããã
-
-ããŽčŦįžŠã§ã¯ããããĢãšãŋãã¯ããŽæŠæĸ°åĻįŋã¨ãŗã¸ããĸãĢãĒããããŽæ
ãããĒãããæēåãģæ§į¯ãģããšããģčŠäžĄãģä翏ŦãĒãŠãŽããŧãŋãĩã¤ã¨ãŗããŖãšããčĄãããšãĻãŽãšããããŽäŊŋãæšãåĻãŗãžãã
-
----
-
-## đããŖãŦãŗã¸
-
-æŠæĸ°åĻįŋãŽåĻįŋč
ãŽãšããããåæ ãããããŧããŖãŧããæããĻãã ãããäģãŽčĒåã¯ããŽãããģãšãŽãŠããĢããã¨æããžããīŧãŠããĢå°éŖãããã¨äēæŗããžããīŧããĒããĢã¨ãŖãĻį°ĄåãããĒãã¨ã¯äŊã§ããīŧ
-
-## [čŦįžŠåžãŽå°ããšã](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8?loc=ja)
-
-## æ¯ãčŋãã¨čĒä¸ģåĻįŋ
-
-ããŧãŋãĩã¤ã¨ãŗããŖãšããæĨã
ãŽäģäēãĢã¤ããĻ芹ããĻããã¤ãŗãŋããĨãŧããããã§æ¤į´ĸããĻãŋãžããããã˛ã¨ã¤ã¯ [ãã](https://www.youtube.com/watch?v=Z3IjgbbCEfs) ã§ãã
-
-## čǞéĄ
-
-[ããŧãŋãĩã¤ã¨ãŗããŖãšããĢã¤ãŗãŋããĨãŧãã](assignment.ja.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.ko.md b/1-Introduction/4-techniques-of-ML/translations/README.ko.md
deleted file mode 100644
index 5b67f6ad..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.ko.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# 머ė ëŦëė 기ė
-
-머ė ëŦë ëǍë¸ęŗŧ ė´ëĨŧ ėŦėŠíë ë°ė´í°ëĨŧ ęĩŦėļ, ėŦėŠ, ꡸ëĻŦęŗ ę´ëĻŦíë íëĄė¸ė¤ë ë§ė í ę°ë° ėíŦíëĄė°ė ë§¤ė° ë¤ëĨ¸ íëĄė¸ė¤ė
ëë¤. ė´ ę°ėėė, íëĄė¸ė¤ëĨŧ ė´í´íęŗ , ėėėŧ í ėŖŧė 기ė ė ę°ë¨í ė¤ëĒ
íŠëë¤:
-
-- 머ė ëŦëė ë°ėŗėŖŧë íëĄė¸ė¤ëĨŧ ęŗ ėė¤ėė ė´í´íŠëë¤.
-- 'models', 'predictions', ꡸ëĻŦęŗ 'training data'ė ę°ė ę¸°ė´ ę°ë
ė íėíŠëë¤.
-
-## [ę°ė ė í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/)
-
-## ėę°
-
-ęŗ ėė¤ėė, 머ė ëŦë (ML) íëĄė¸ė¤ëĨŧ ë§ëë 기ė ė ėŦëŦ ë¨ęŗëĄ ęĩŦėąëŠëë¤:
-
-1. **ė§ëŦ¸ 결ė í기**. ëëļëļ ML íëĄė¸ė¤ë ę°ë¨ ėĄ°ęą´ íëĄęˇ¸ë¨ ëë ëŖ°-ë˛ ė´ė¤ ėė§ėŧëĄ ëëĩí ė ėë ė§ëŦ¸ė íë ę˛ėŧëĄ ėėíŠëë¤. ė´ ė§ëŦ¸ė ę°ë ë°ė´í° ė
ė 기ë°ėŧëĄ í ėė¸Ąė ė¤ėŦėŧëĄ ė§íëŠëë¤.
-2. **ë°ė´í° ėė§ ë° ė¤ëší기**. ė§ëŦ¸ė ëëĩíë ¤ëŠ´, ë°ė´í°ę° íėíŠëë¤. ë°ė´í°ė íė§ęŗŧ, ëëëĄ, ėė ë°ëŧ ė´ę¸° ė§ëŦ¸ė ė ëëĩí ė ėë ė§ ę˛°ė ëŠëë¤. ë°ė´í° ėę°íë ė´ ė¸ĄëŠ´ėė ė¤ėíŠëë¤. ė´ ë¨ęŗėė ë°ė´í°ëĨŧ íë ¨ęŗŧ í
ė¤í¸ ęˇ¸ëŖšėŧëĄ ëļí íėŦ ëǍë¸ė ęĩŦėļíë ę˛ íŦí¨ëŠëë¤.
-3. **íėĩ ë°Šė ė íí기**. ė§ëŦ¸ęŗŧ ë°ė´í°ė íšėąė ë°ëŧ, ë°ė´í°ëĨŧ ę°ėĨ ė ë°ėíęŗ ė íí ėė¸Ąė í ė ėę˛ íë ¨íë ë°Šë˛ė ė íí´ėŧ íŠëë¤. íšė ė ëŦ¸ ė§ėęŗŧ, ė§ėė ėŧëĄ, ë§ė ė¤íė´ íėí ML íëĄė¸ė¤ė ėŧëļëļė
ëë¤.
-4. **ëĒ¨ë¸ íėĩí기**. íėĩ ë°ė´í°ëĄ, ë¤ėí ėęŗ ëĻŦėĻė ėŦėŠíėŦ ë°ė´í°ė í¨í´ė ė¸ėíę˛ ëǍë¸ė íėĩėíĩëë¤. ëǍë¸ė ë ėĸę˛ ë§ë¤ę¸° ėíėŦ ë°ė´í°ė íšė ëļëļė í ëļëļëŗ´ë¤ ë¨ŧė íëëĄ ėĄ°ė í ė ėëëĄ ë´ëļ ę°ė¤ėšëĨŧ íėŠí ė ėėĩëë¤.
-5. **ëĒ¨ë¸ íę°í기**. ėė§í ė
ėė ė´ė ė ëŗ¸ ė ėë ë°ė´í° (í
ė¤í¸ ë°ė´í°)ëĄ ëǍë¸ė ėąëĨė íė¸íŠëë¤.
-6. **íëŧë¯¸í° íëí기**. ëǍë¸ė ėąëĨė 기ë°í´ė, ëĒ¨ë¸ íėĩėŧëĄ ėęŗ ëĻŦėĻė ëėė ėģ¨í¸ëĄ¤íë ë¤ëĨ¸ íëŧ미í°, ëë ëŗėëĨŧ, ėŦėŠí´ė íëĄė¸ė¤ëĨŧ ë¤ė ė¤íí ė ėėĩëë¤.
-7. **ėė¸Ąí기**. ëǍë¸ė ė íėąė ėëĄė´ ė
ë ĨėŧëĄ í
ė¤í¸íŠëë¤.
-
-## ëŦŧė´ëŗŧ ė§ëŦ¸í기
-
-ėģ´í¨í°ë ë°ė´í°ėė ė¨ę˛¨ė§ í¨í´ ė°žë ę˛ė ėíŠëë¤. ė í¸ëĻŦí°ë ėĄ°ęą´-ę¸°ë° ëŖ° ėė§ė ë§ë¤ė´ė ėŊę˛ ëĩí ė ėë ëëŠė¸ė ëí´ ė§ëŦ¸íë ė°ęĩŦėėę˛ ë§¤ė° ëėė´ ëŠëë¤. ėëĨŧ ë¤ė´ė, actuarial ėė
ė´ ėŖŧė´ė§ëŠ´, ë°ė´í° ėŦė´ė¸í°ė¤í¸ë íĄė°ėė ëšíĄė°ėė ėŦë§ëĨ ė ëíėŦ ėėė
ëŖ°ė ėėąí ė ėėĩëë¤.
-
-ë§ė ë¤ëĨ¸ ëŗėę° ë°Šė ėė íŦí¨ë늴, ML ëǍë¸ė´ ęŗŧęą° ęą´ę°ę¸°ëĄė 기ë°ėŧëĄ ë¯¸ë ėŦë§ëĨ ė ėė¸Ąíë ë°ė í¨ė¨ė ė´ëŧęŗ ę˛ėĻí ė ėėĩëë¤. ė ėží ėėëĄ ėë, ę˛Ŋë, 기í ëŗí, proximity to the ocean, ė í¸ ę¸°ëĨė í¨í´ė íŦí¨í ë°ė´í° 기ë°ėŧëĄ ėŖŧė´ė§ ėėšėė 4ėė ë ė¨ëĨŧ ėė¸Ąíë ę˛ė
ëë¤.
-
-â
ë ė¨ ëǍë¸ė ëí [slide deck](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)ė ë ė¨ ëļėėė MLė ėŦėŠí ėėŦė ę´ė ė ė ęŗĩíŠëë¤.
-
-## ėė
ėŦė -ęĩŦėļí기
-
-ëǍë¸ė ë§ë¤ę¸° ė ė, ėëŖí´ėŧ í ëĒę°ė§ ėė
ė´ ë ėėĩëë¤. ė§ëŦ¸ė í
ė¤í¸íęŗ ëĒ¨ë¸ ėė¸Ąė 기ë°ėŧëĄ ę°ė¤ ęĩŦėąíë ¤ëŠ´, ėŦëŦ ėėëĨŧ ėëŗíęŗ ęĩŦėąí´ėŧ íŠëë¤.
-
-### ë°ė´í°
-
-ė´ë í ėĸ
ëĨė ė§ëŦ¸ė ëëĩíë ¤ëŠ´, ėŦë°ëĨ¸ íė
ė ë°ė´í°ę° íėíŠëë¤. ė´ íŦė¸í¸ėė íėí ë ę°ė§ę° ėėĩëë¤:
-
-- **ë°ė´í° ėė§**. ë°ė´í° ëļėė ęŗĩė ëëĨŧ ė¤ëĒ
í ė´ė ę°ėëĨŧ 기ėĩíęŗ , ë°ė´í°ëĨŧ ėĄ°ėŦí ėė§íŠëë¤. ë°ė´í°ė ėļė˛ė, ë´ėŦė í¸ę˛Ŧė ėęŗ , ėļė˛ëĨŧ ëŦ¸ėííŠëë¤.
-- **ë°ė´í° ė¤ëš**. ë°ė´í° ė¤ëš íëĄė¸ė¤ë ėŦëŦ ë¨ęŗę° ėėĩëë¤. ë°ė´í°ę° ë¤ėí ėė¤ėė ė ęŗĩëë ę˛Ŋė°ėë ė ë Ŧíęŗ ë
¸ëŠëŧė´ėĻí´ėŧ í ė ėėĩëë¤. ([Clustering](../../../5-Clustering/1-Visualize/README.md)ęŗŧ ę°ė´) ëŦ¸ėė´ė ėĢėëĄ ë°ęž¸ë ë°Šėė˛ëŧ ë¤ėí ë°Šėė íĩíėŦ ë°ė´í°ė íė§ęŗŧ ėė íĨėėíŦ ė ėėĩëë¤. ([Classification](../../../4-Classification/1-Introduction/README.md)ęŗŧ ę°ė´) ėëŗ¸ 기ë°ėŧëĄ, ėëĄė´ ë°ė´í°ëĨŧ ėėąí ė ėėĩëë¤. ([Web App](../../../3-Web-App/README.md) ę°ė ė´ė ė˛ëŧ) ë°ė´í°ëĨŧ ė ëĻŦíęŗ ëŗę˛Ŋí ė ėėĩëë¤. ë§ė§ë§ėŧëĄ, íë ¨íë 기ė ė ë°ëŧė, ëŦ´ėėëĄ ėė´ėŧ í ė ėėĩëë¤.
-
-â
ë°ė´í°ëĨŧ ėė§íęŗ ė˛ëĻŦí늴, ꡸ ëǍėė´ ėëí ė§ëŦ¸ė í´ę˛°í ė ėë ė§ ė ė ë´
ëë¤. [Clustering](../../5-Clustering/1-Visualize/README.md) ę°ėėė ëŗ¸ ę˛ė˛ëŧ, ë°ė´í°ę° ėŖŧė´ė§ ėė
ėė ė ėííė§ ëĒģí ė ėėĩëë¤!
-
-### Featuresė íę˛
-
-featureë ë°ė´í°ė ė¸Ąė í ė ėë ėėąė
ëë¤. ë§ė ë°ė´í°ė
ėė 'date' 'size' ëë 'color'ė˛ëŧ ė´ ė ëĒŠėŧëĄ íííŠëë¤. ėŧë°ė ėŧëĄ ėŊëėė XëĄ ëŗ´ėŦė§ë feature ëŗėë, ëǍë¸ė íë ¨í ë ėŦėŠëë ė
ë Ĩ ëŗėëĄ ëíë
ëë¤.
-
-íę˛ė ėė¸Ąíë ¤ęŗ ėëí ę˛ė
ëë¤. ėŊëėė XëĄ íėíë ëŗ´íĩ íę˛ė, ë°ė´í°ė ëŦŧė´ëŗ´ë ¤ë ė§ëŦ¸ė ëëĩė ëíë
ëë¤: 12ėė, ė´ë¤ ėė í¸ë°ė´ ę°ėĨ ėęšė? San Francisco ęˇŧė˛ė ėĸė í ė§ ė¤ė ęą°ëę°ë ė´ëė¸ę°ė? ę°ëė íę˛ė ëŧ벨 ėėąė´ëŧęŗ ëļëĨ´ę¸°ë íŠëë¤.
-
-### feature ëŗė ė íí기
-
-đ **Feature Selectionęŗŧ Feature Extraction** ëǍë¸ė ë§ë¤ ë ė íí ëŗėëĨŧ ė´ëģę˛ ė ė ėėęšė? ę°ėĨ ėąëĨė´ ėĸė ëǍë¸ė ėŦë°ëĨ¸ ëŗėëĨŧ ė íí기 ėíėŦ Feature Selection ëë Feature Extraction íëĄė¸ė¤ëĨŧ ęą°ėšę˛ ëŠëë¤. ꡸ëŦë, ę°ė ë´ėŠė´ ėëëë¤: "Feature extraction creates new features from functions of the original features, whereas feature selection returns a subset of the features." ([source](https://wikipedia.org/wiki/Feature_selection))
-
-### ë°ė´í° ėę°íí기
-
-ë°ė´í° ėŦė´ė¸í°ė¤í¸ė í´íˇėė ė¤ėí ė¸ĄëŠ´ė Seaborn ëë MatPlotLibęŗŧ ę°ė´ ėŦëŦę°ė§ ë°ė´ë ëŧė´ë¸ëŦëĻŦëĄ ë°ė´í° ėę°ííë íėė
ëë¤. ë°ė´í°ëĨŧ ėę°íëĄ ëŗ´ėŦėŖŧ늴 ė¨ę˛¨ė§ correlationsëĨŧ ė°žėė íėŠí ė ėėĩëë¤. ([Classification](../../../4-Classification/2-Classifiers-1/README.md)ėė ë°ę˛ŦíëëĄ) ėę°íë í¸íĨė ė´ęą°ë ęˇ íė ė´ė§ ėė ë°ė´í°ëĨŧ ė°žë ë° ëėė´ ë ė ėėĩëë¤.
-
-### ë°ė´í°ė
ëë기
-
-íë ¨í기 ė , ë°ė´í°ëĨŧ ė ëíëŧ íŦę¸°ëĄ 2ę° ė´ėė ë°ė´í° ė
ė ëë íėę° ėėĩëë¤.
-
-- **íėĩ**. ë°ė´í°ė
ė íí¸ë ëǍë¸ė íėĩí ë ė ëšíŠëë¤. ė´ ė
ė ëŗ¸ ë°ė´í°ė
ė ëëļëļė ė°¨ė§íŠëë¤.
-- **í
ė¤í¸**. í
ė¤í¸ ë°ė´í°ė
ė ë
ëĻŊė ė¸ ë°ė´í°ė ęˇ¸ëŖšė´ė§ë§, 미ëĻŦ ë§ë¤ė´ė§ ëǍë¸ė ėąëĨė íė¸í ëė, ę°ë ëŗ¸ ë°ė´í°ėėë ėė§ëŠëë¤.
-- **ę˛ėĻ**. ę˛ėĻ ė
ė ëǍë¸ė ę°ė í늰 ëǍë¸ė hyperparameters, ëë architectureëĨŧ íëí ë, ėŦėŠíë ėė ë
ëĻŊë ėė ęˇ¸ëŖšė
ëë¤. ([Time Series Forecasting](../../../7-TimeSeries/1-Introduction/README.md)ėė ė¸ę¸íë¯) ë°ė´í°ė íŦ기ė ė§ëŦ¸ė ë°ëŧė ė¸ë˛ė§¸ ė
ė ë§ë¤ ė´ė ę° ėėĩëë¤.
-
-## ëĒ¨ë¸ ęĩŦėļí기
-
-íë ¨íęŗ ėë ë°ė´í°ëĨŧ ėŦėŠíėŦ, **íėĩ**í ë¤ėí ėęŗ ëĻŦėĻėŧëĄ, ëĒ¨ë¸ ëë, ë°ė´í°ė íĩęŗė ííė ë§ëë ę˛ ëĒŠíė
ëë¤. ëǍë¸ė íėĩí늴ė ë°ė´í°ė ë
¸ėļë늴 ë°ę˛Ŧ, ę˛ėĻ, ꡸ëĻŦęŗ ėšė¸íęą°ë ęą°ëļëë perceived patternsė ëíėŦ ę°ė¤ė ė¸ė¸ ė ėėĩëë¤.
-
-### íėĩ ë°Šė 결ė í기
-
-ė§ëŦ¸ęŗŧ ë°ė´í°ė íšėąė ë°ëŧė, ė´ëģę˛ íėĩí ė§ ė ííŠëë¤. [Scikit-learn's documentation](https://scikit-learn.org/stable/user_guide.html)ė - ė´ ėŊė¤ėė - ë¨ęŗëŗëĄ ëŗ´ëŠ´ ëǍë¸ė´ íėĩíë ë§ė ë°Šėė ė°žė ė ėėĩëë¤. ėë ¨ëė ë°ëŧė, ėĩęŗ ė ëǍë¸ė ë§ë¤ę¸° ėíėŦ ë¤ëĨ¸ ë°Šėė í´ëŗŧ ė ėėĩëë¤. ë°ė´í° ėŦė´ė¸í°ė¤í¸ę° ëŗŧ ė ėë ë°ė´í°ëĨŧ ėŖŧęŗ ė íë, í¸íĨė , íė§-ė í ė´ėëĨŧ ė ę˛í´ė, íėŦ ėė
ė ę°ėĨ ė ëší íėĩ ë°Šėė ė ííėŦ ëǍë¸ė ėąëĨė íę°íë íëĄė¸ė¤ëĨŧ ęą°ėšę˛ ë ėė ė
ëë¤.
-
-### ëĒ¨ë¸ íėĩí기
-
-íë ¨ ë°ė´í°ëĄ ę°ė¸ëŠ´, ëǍë¸ė ë§ë¤ 'fit'ė´ ė¤ëš ëėėĩëë¤. ë§ė ML ëŧė´ë¸ëŦëĻŦėė 'model.fit' ėŊëëĨŧ ė°žė ė ėėĩëë¤. - ė´ ėę°ė ę°ė ë°°ė´ (ëŗ´íĩ 'X')ęŗŧ feature ëŗė (ëŗ´íĩ 'y')ëĄ ë°ė´í°ëĨŧ ëŗ´ë´ę˛ ëŠëë¤.
-
-### ëĒ¨ë¸ íę°í기
-
-íë ¨ íëĄė¸ė¤ę° ėëŖë늴 (í° ëǍë¸ė íë ¨í기 ėí´ė ë§ė´ ë°ëŗĩíęą°ë 'epochs'ę° ėęĩŦ), í
ė¤í¸ ë°ė´í°ëĄ ëǍë¸ė ėąëĨė ė¸Ąė í´ė íė§ė íę°í ė ėėĩëë¤. ë°ė´í°ë ëǍë¸ė´ ė´ė ė ëļėíė§ ėėë ëŗ¸ ë°ė´í°ė ėë¸ė
ė
ëë¤. ëǍë¸ė íė§ė ëí ė§í í
ė´ë¸ė ėļë Ĩí ė ėėĩëë¤.
-
-đ **ëĒ¨ë¸ íŧí
**
-
-머ė ëŦëė ėģ¨í
ė¤í¸ėė, ëĒ¨ë¸ íŧí
ė ėšęˇŧíė§ ėė ë°ė´í°ëĨŧ ëļėíë ¤ęŗ ėëíë ėę°ė ëĒ¨ë¸ ę¸°ëŗ¸ 기ëĨė ė íëëĨŧ ëŗ´ė
ëë¤.
-
-đ **Underfitting** ęŗŧ **overfitting**ė ëĒ¨ë¸ íė´ ėļŠëļíė§ ėęą°ë ëëŦ´ ë§ė ë, ëǍë¸ė íė§ė´ ëŽėė§ë ėŧë°ė ė¸ ė´ėė
ëë¤. ė´ëŦí ė´ė ë ëǍë¸ė´ íë ¨ ë°ė´í°ė ëëŦ´ ęˇŧė íę˛ ėŧëŧė¸ëęą°ë ëëŦ´ ëė¨íę˛ ėŧëŧė¸ë ėė¸Ąė íŠëë¤. overfit ëǍë¸ė ë°ė´í°ė ëí
ėŧęŗŧ ë
¸ė´ėĻëĨŧ ëëŦ´ ė ë°°ė 기ė íë ¨ ë°ė´í°ëĄ ëëŦ´ë ė ėė¸ĄíŠëë¤. underfit ëǍë¸ė íë ¨ ë°ė´í° ëë ėė§ ëŗŧ ė ėë ë°ė´í°ëĨŧ ė ëļėí ė ėėŧë¯ëĄ ė ííė§ ėėĩëë¤.
-
-
-> Infographic by [Jen Looper](https://twitter.com/jenlooper)
-
-## íëŧë¯¸í° íë
-
-ė´ë° íë ¨ė´ ë§ëŦ´ëĻŦ ë ë, ëǍë¸ė íė§ė ė´í´ëŗ´ęŗ 'hyperparameters'ëĨŧ í¸ė
í´ė ę°ė íë ę˛ė ęŗ ë ¤íŠëë¤. [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott) íëĄė¸ė¤ė ëíėŦ ėėë´
ëë¤.
-
-## ėė¸Ą
-
-ėė í ė ë°ė´í°ëĄ ëǍë¸ė ė íëëĨŧ í
ė¤í¸í ė ėë ėę°ė
ëë¤. íëĄëė
ėė ëǍë¸ė ė°ę¸° ėí´ė ėš ė´ė
ė ë§ë¤ëа, 'ė ėŠí' ML ė¸í
ė, íëĄė¸ė¤ë ëŗėëĨŧ ė¤ė íęŗ ėļëĄ íęą°ë, íę°íęŗ ė ėŦėŠė ė
ë Ĩ(ėëĨŧ ë¤ëŠ´, ë˛íŧ ė
ë Ĩ)ė ėė§í´ ëǍë¸ëĄ ëŗ´ëŧ ė ėėĩëë¤.
-
-ė´ ę°ėėėë, 'full stack' ML ėė§ëė´ę° ë기 ėíėŦ ėŦíė ë ëë ęŗŧė ė´ëа, ė´ ë¨ęŗė - ë°ė´í° ėŦė´ė¸í°ė¤í¸ė ëǍë ė ė¤ėŗę° ėėŧ늰 ė¤ëš, ëšë, í
ė¤í¸, íę°ė ėė¸Ą ë°Šėė ëŗ´ę˛ ëŠëë¤.
-
----
-
-## đ ëė
-
-ML ė¤ëŦ´ėė ë¨ęŗëĨŧ ë°ėí íëĄė°ëĨŧ ęˇ¸ë ¤ëŗ´ė¸ė. íëĄė¸ė¤ėė ė§ę¸ ė´ëė ėë ė§ ëŗ´ė´ëė? ė´ë ¤ė´ ë´ėŠė ėėí ė ėëė? ė´ë¤ę˛ ėŦė¸ęšė?
-
-## [ę°ė í í´ėĻ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/)
-
-## ę˛í & ė기ėŖŧë íėĩ
-
-ėŧė ė
ëŦ´ëĨŧ ė´ėŧ기íë ë°ė´í° ėŦė´ė¸í°ė¤í¸ ė¸í°ëˇ°ëĨŧ ė¨ëŧė¸ėŧëĄ ę˛ėíŠëë¤. ėŦ기 [one](https://www.youtube.com/watch?v=Z3IjgbbCEfs) ėėĩëë¤.
-
-## ęŗŧė
-
-[Interview a data scientist](../assignment.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.pt-br.md b/1-Introduction/4-techniques-of-ML/translations/README.pt-br.md
deleted file mode 100644
index 8b3af3cc..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.pt-br.md
+++ /dev/null
@@ -1,114 +0,0 @@
-# TÊcnicas de Machine Learning
-
-O processo de construÃ§ÃŖo, uso e manutenÃ§ÃŖo de modelos de machine learning e os dados que eles usam Ê um processo muito diferente de muitos outros fluxos de trabalho de desenvolvimento. Nesta liÃ§ÃŖo, vamos desmistificar o processo e delinear as principais tÊcnicas que vocÃĒ precisa saber. VocÃĒ irÃĄ:
-
-- Compreender os processos que sustentam o aprendizado de mÃĄquina em alto nÃvel.
-- Explorar conceitos bÃĄsicos como 'modelos', 'previsÃĩes' e 'dados de treinamento'..
-
-## [QuestionÃĄrio prÊ-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7?loc=ptbr)
-
-## IntroduÃ§ÃŖo
-
-Em um alto nÃvel, a arte de criar processos de machine learning (ML) Ê composta por uma sÊrie de etapas:
-
-1. **Decida sobre a questÃŖo**. A maioria dos processos de ML começa fazendo uma pergunta que nÃŖo pode ser respondida por um simples programa condicional ou mecanismo baseado em regras. Essas questÃĩes geralmente giram em torno de previsÃĩes baseadas em uma coleÃ§ÃŖo de dados.
-2. **Colete e prepare dados**. Para responder à sua pergunta, vocÃĒ precisa de dados. A qualidade e, à s vezes, a quantidade de seus dados determinarÃŖo o quÃŖo bem vocÃĒ pode responder à sua pergunta inicial. A visualizaÃ§ÃŖo de dados Ê um aspecto importante desta fase. Esta fase tambÊm inclui a divisÃŖo dos dados em um grupo de treinamento e teste para construir um modelo.
-3. **Escolha um mÊtodo de treinamento**. Dependendo da sua pergunta e da natureza dos seus dados, vocÃĒ precisa escolher como deseja treinar um modelo para melhor refletir seus dados e fazer previsÃĩes precisas em relaÃ§ÃŖo a eles. Esta Ê a parte do seu processo de ML que requer conhecimentos especÃficos e, muitas vezes, uma quantidade considerÃĄvel de experimentaÃ§ÃŖo.
-4. **Treine o modelo**. Usando seus dados de treinamento, vocÃĒ usarÃĄ vÃĄrios algoritmos para treinar um modelo para reconhecer padrÃĩes nos dados. O modelo pode alavancar pesos internos que podem ser ajustados para privilegiar certas partes dos dados sobre outras para construir um modelo melhor.
-5. **Avalie o modelo**. VocÃĒ usa dados nunca antes vistos (seus dados de teste) de seu conjunto coletado para ver como o modelo estÃĄ se saindo.
-6. **Ajuste de parÃĸmetros**. Com base no desempenho do seu modelo, vocÃĒ pode refazer o processo usando diferentes parÃĸmetros, ou variÃĄveis, que controlam o comportamento dos algoritmos usados para treinar o modelo.
-7. **Preveja**. Use novas entradas para testar a precisÃŖo do seu modelo.
-
-## Que pergunta fazer
-
-Os computadores sÃŖo particularmente adeptos da descoberta de padrÃĩes ocultos nos dados. Esse recurso Ê muito Ãētil para pesquisadores que tÃĒm dÃēvidas sobre um determinado campo que nÃŖo podem ser respondidas facilmente criando um mecanismo de regras baseado em condiçÃĩes. Dada uma tarefa atuarial, por exemplo, um cientista de dados pode ser capaz de construir manualmente regras sobre a mortalidade de fumantes versus nÃŖo fumantes.
-
-Quando muitas outras variÃĄveis ââsÃŖo introduzidas na equaÃ§ÃŖo, no entanto, um modelo de ML pode ser mais eficiente para prever as taxas de mortalidade futuras com base no histÃŗrico de saÃēde anterior. Um exemplo mais alegre seria fazer previsÃĩes do tempo de abril para um determinado local com base em dados que incluem latitude, longitude, mudança climÃĄtica, proximidade do oceano, padrÃĩes de fluxo de jato e muito mais.
-
-â
Esta [apresentaÃ§ÃŖo](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) sobre modelos meteorolÃŗgicos oferece uma perspectiva histÃŗrica do uso do ML na anÃĄlise meteorolÃŗgica.
-
-## Tarefas de prÊ-construÃ§ÃŖo
-
-Antes de começar a construir seu modelo, hÃĄ vÃĄrias tarefas que vocÃĒ precisa concluir. Para testar sua pergunta e formar uma hipÃŗtese com base nas previsÃĩes de um modelo, vocÃĒ precisa identificar e configurar vÃĄrios elementos.
-
-### Dados
-
-Para poder responder à sua pergunta com qualquer tipo de certeza, vocÃĒ precisa de uma boa quantidade de dados do tipo certo. HÃĄ duas coisas que vocÃĒ precisa fazer neste momento:
-
-- **Coletar dados**. Tendo em mente a liÃ§ÃŖo anterior sobre justiça na anÃĄlise de dados, colete seus dados com cuidado. Esteja ciente das fontes desses dados, de quaisquer tendÃĒncias inerentes que possam ter e documente sua origem.
-- **Prepare os dados**. Existem vÃĄrias etapas no processo de preparaÃ§ÃŖo de dados. Pode ser necessÃĄrio agrupar dados e normalizÃĄ-los se vierem de fontes diversas. VocÃĒ pode melhorar a qualidade e a quantidade dos dados por meio de vÃĄrios mÊtodos, como a conversÃŖo de strings em nÃēmeros (como fazemos em [Clustering](../../../5-Clustering/1-Visualize/README.md)). VocÃĒ tambÊm pode gerar novos dados, com base no original (como fazemos em [ClassificaÃ§ÃŖo](../../../4-Classification/1-Introduction/README.md)). VocÃĒ pode limpar e editar os dados (como faremos antes da liÃ§ÃŖo[Web App](../../../3-Web-App/README.md)). Finalmente, vocÃĒ tambÊm pode precisar randomizÃĄ-lo e embaralhÃĄ-lo, dependendo de suas tÊcnicas de treinamento.
-
-â
Depois de coletar e processar seus dados, reserve um momento para ver se o formato permitirÃĄ que vocÃĒ responda à pergunta pretendida. Pode ser que os dados nÃŖo funcionem bem em sua tarefa, como descobrimos em nossas liçÃĩes de [Clustering](../../../5-Clustering/1-Visualize/README.md)!
-
-### Recursos e Alvo
-
-Um [recurso](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) Ê uma propriedade mensurÃĄvel de seus dados. Em muitos conjuntos de dados, Ê expresso como um cabeçalho de coluna como 'data', 'tamanho' ou 'cor'. Sua variÃĄvel de recurso, geralmente representada como `X` no cÃŗdigo, representa a variÃĄvel de entrada que serÃĄ usada para treinar o modelo.
-
-Um alvo Ê algo que vocÃĒ estÃĄ tentando prever. Alvo geralmente representado como `y` no cÃŗdigo, representa a resposta à pergunta que vocÃĒ estÃĄ tentando fazer sobre seus dados: em Dezembro, quais abÃŗboras de **cor**serÃŖo mais baratas? em SÃŖo Francisco, quais bairros terÃŖo o melhor **preço** imobiliÃĄrio? Ãs vezes, o destino tambÊm Ê conhecido como atributo de rÃŗtulo.
-
-### Selecionando sua variÃĄvel de caracterÃstica
-
-đ **SeleÃ§ÃŖo e extraÃ§ÃŖo de recursos** Como vocÃĒ sabe qual variÃĄvel escolher ao construir um modelo? VocÃĒ provavelmente passarÃĄ por um processo de seleÃ§ÃŖo ou extraÃ§ÃŖo de recursos para escolher as variÃĄveis certas para o modelo de melhor desempenho. Eles nÃŖo sÃŖo a mesma coisa, no entanto: "A extraÃ§ÃŖo de recursos cria novos recursos a partir de funçÃĩes dos recursos originais, enquanto a seleÃ§ÃŖo de recursos retorna um subconjunto dos recursos." ([fonte](https://wikipedia.org/wiki/Feature_selection))
-
-### Visualize seus dados
-
-Um aspecto importante do kit de ferramentas de uma pessoa cientista de dados Ê o poder de visualizar dados usando vÃĄrias bibliotecas excelentes, como Seaborn ou MatPlotLib. A representaÃ§ÃŖo visual de seus dados pode permitir que vocÃĒ descubra correlaçÃĩes ocultas que vocÃĒ pode explorar. As visualizaçÃĩes tambÊm podem ajudar a descobrir distorçÃĩes ou dados desequilibrados (como encontrado em[ClassificaÃ§ÃŖo](../../../4-Classification/2-Classifiers-1/README.md)).
-
-### Divida seu conjunto de dados
-
-Antes do treinamento, vocÃĒ precisa dividir seu conjunto de dados em duas ou mais partes de tamanhos desiguais que ainda representam bem os dados.
-
-- **Treinamento**. Esta parte do conjunto de dados Ê adequada ao seu modelo para treinÃĄ-lo. Este conjunto constitui a maior parte do conjunto de dados original.
-- **Teste**. Um conjunto de dados de teste Ê um grupo independente de dados, geralmente coletado dos dados originais, que vocÃĒ usa para confirmar o desempenho do modelo construÃdo.
-- **Validando**. Um conjunto de validaÃ§ÃŖo Ê um grupo menor independente de exemplos que vocÃĒ usa para ajustar os hiperparÃĸmetros do modelo, ou arquitetura, para melhorar o modelo. Dependendo do tamanho dos seus dados e da pergunta que vocÃĒ estÃĄ fazendo, pode nÃŖo ser necessÃĄrio construir este terceiro conjunto (como observamos em [PrevisÃŖo de sÊrie temporal](../../../7-TimeSeries/1-Introduction/README.md)).
-
-## Construindo um modelo
-
-Usando seus dados de treinamento, sua meta Ê construir um modelo, ou uma representaÃ§ÃŖo estatÃstica de seus dados, usando vÃĄrios algoritmos para **treinÃĄ-los**. O treinamento de um modelo o expÃĩe aos dados e permite que ele faça suposiçÃĩes sobre os padrÃĩes percebidos que descobre, valida e aceita ou rejeita.
-
-### Decidir sobre um mÊtodo de treinamento
-
-Desvendando da sua pergunta e da natureza dos seus dados, vocÃĒ escolherÃĄ um mÊtodo para treinÃĄ-los. Percorrendo a [documentaÃ§ÃŖo do Scikit-learn](https://scikit-learn.org/stable/user_guide.html) - que usamos neste curso - vocÃĒ pode explorar muitas maneiras de treinar um modelo. Dependendo da sua experiÃĒncia, pode ser necessÃĄrio tentar vÃĄrios mÊtodos diferentes para construir o melhor modelo. à provÃĄvel que vocÃĒ passe por um processo pelo qual os cientistas de dados avaliam o desempenho de um modelo, alimentando-o com dados invisÃveis, verificando a precisÃŖo, o viÊs e outros problemas que degradam a qualidade e selecionando o mÊtodo de treinamento mais apropriado para a tarefa em questÃŖo.
-
-### Treine um modelo
-
-Armado com seus dados de treinamento, vocÃĒ estÃĄ pronto para 'ajustÃĄ-los' para criar um modelo. VocÃĒ notarÃĄ que em muitas bibliotecas de ML vocÃĒ encontrarÃĄ o cÃŗdigo 'model.fit' - Ê neste momento que vocÃĒ envia sua variÃĄvel de recurso como uma matriz de valores (geralmente 'X') e uma variÃĄvel de destino (geralmente 'y').
-
-### Avalie o modelo
-
-Assim que o processo de treinamento for concluÃdo (pode levar muitas iteraçÃĩes, ou 'epochs', para treinar um modelo grande), vocÃĒ poderÃĄ avaliar a qualidade do modelo usando dados de teste para avaliar seu desempenho. Esses dados sÃŖo um subconjunto dos dados originais que o modelo nÃŖo analisou anteriormente. VocÃĒ pode imprimir uma tabela de mÊtricas sobre a qualidade do seu modelo.
-
-đ **AdaptaÃ§ÃŖo do modelo**
-
-No contexto do machine learning, o ajuste do modelo refere-se à precisÃŖo da funÃ§ÃŖo subjacente do modelo à medida que tenta analisar dados com os quais nÃŖo estÃĄ familiarizado.
-
-đ **Underfitting** e **overfitting** sÃŖo problemas comuns que degradam a qualidade do modelo, pois o modelo nÃŖo se ajusta bem o suficiente ou se ajusta muito bem. Isso faz com que o modelo faça previsÃĩes muito alinhadas ou muito vagamente alinhadas com seus dados de treinamento. Um modelo de ajuste excessivo prevÃĒ os dados de treinamento muito bem porque aprendeu os detalhes e o ruÃdo dos dados muito bem. Um modelo insuficiente nÃŖo Ê preciso, pois nÃŖo pode analisar com precisÃŖo seus dados de treinamento, nem os dados que ainda nÃŖo foram 'visto'.
-
-
-> InfogrÃĄfico por [Jen Looper](https://twitter.com/jenlooper)
-
-## Ajuste de parÃĸmetro
-
-Quando o treinamento inicial estiver concluÃdo, observe a qualidade do modelo e considere melhorÃĄ-lo ajustando seus 'hiperparÃĸmetros'. Leia mais sobre o processo [na documentaÃ§ÃŖo](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
-
-## PrediÃ§ÃŖo
-
-Este Ê o momento em que vocÃĒ pode usar dados completamente novos para testar a precisÃŖo do seu modelo. Em uma configuraÃ§ÃŖo de ML 'aplicada', onde vocÃĒ estÃĄ construindo ativos da web para usar o modelo na produÃ§ÃŖo, este processo pode envolver a coleta de entrada do usuÃĄrio (um pressionamento de botÃŖo, por exemplo) para definir uma variÃĄvel e enviÃĄ-la ao modelo para inferÃĒncia, ou avaliaÃ§ÃŖo.
-
-Nessas liçÃĩes, vocÃĒ descobrirÃĄ como usar essas etapas para preparar, criar, testar, avaliar e prever - todos os gestos de uma pessoa cientista de dados e muito mais, conforme vocÃĒ avança em sua jornada para se tornar um engenheiro de ML de 'full stack'.
-
----
-
-## đDesafio
-
-Desenhe um fluxograma refletindo as etapas de um praticante de ML. Onde vocÃĒ se vÃĒ agora no processo? Onde vocÃĒ prevÃĒ que encontrarÃĄ dificuldade? O que parece fÃĄcil para vocÃĒ?
-
-## [QuestionÃĄrio pÃŗs-aula](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8?loc=ptbr)
-
-## RevisÃŖo e Autoestudo
-
-Procure por entrevistas online com pessoas cientistas de dados que discutem seu trabalho diÃĄrio. Aqui estÃĄ [uma](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
-
-## Tarefa
-
-[Entreviste uma pessoa cientista de dados](assignment.pt-br.md)
\ No newline at end of file
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.zh-cn.md b/1-Introduction/4-techniques-of-ML/translations/README.zh-cn.md
deleted file mode 100644
index d135b596..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.zh-cn.md
+++ /dev/null
@@ -1,112 +0,0 @@
-
-# æēå¨åĻäš ææ¯
-
-æåģēãäŊŋį¨åįģ´æ¤æēå¨åĻäš æ¨Ąååå
ļäŊŋį¨įæ°æŽįčŋį¨ä¸čޏå¤å
ļäģåŧååˇĨäŊæĩ፿Ēįļä¸åã 卿Ŧč¯žä¸īŧæäģŦå°æåŧč¯Ĩčŋį¨įįĨį§éĸįēąīŧåšļæĻčŋ°äŊ éčĻäēč§Ŗįä¸ģčĻææ¯ã äŊ äŧīŧ
-
-- å¨éĢåąæŦĄä¸įč§Ŗæ¯ææēå¨åĻäš įčŋį¨ã
-- æĸį´ĸåēæŦæĻåŋĩīŧäžåĻâæ¨ĄåâãâéĸæĩâåâčŽįģæ°æŽâã
-
-## [č¯žåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/)
-## äģįģ
-
-å¨čžéĢįåąæŦĄä¸īŧååģēæēå¨åĻäš īŧMLīŧčŋį¨įåˇĨčēå
æŦčŽ¸å¤æĨéǤīŧ
-
-1. **åŗåŽéŽéĸ**ã 大夿°æēå¨åĻäš čŋį¨éŊæ¯äģæåēä¸ä¸ĒįŽåįæĄäģļį¨åēæåēäēč§åįåŧææ æŗåįįéŽéĸåŧå§įã čŋäēéŽéĸé常å´įģåēäēæ°æŽéåįéĸæĩåąåŧã
-2. **æļéåå夿°æŽ**ãä¸ēäēčŊå¤åįäŊ įéŽéĸīŧäŊ éčĻæ°æŽãæ°æŽįč´¨éīŧææļæ¯æ°éīŧå°åŗåŽäŊ åįæåéŽéĸįčŊåãå¯č§åæ°æŽæ¯čŋä¸ĒéļæŽĩįä¸ä¸ĒéčĻæšéĸãæ¤éļæŽĩčŋå
æŦå°æ°æŽæåä¸ēčŽįģåæĩč¯įģäģĨæåģ翍Ąåã
-3. **éæŠä¸į§čŽįģæšæŗ**ãæ šæŽäŊ įéŽéĸåæ°æŽįæ§č´¨īŧäŊ éčĻéæŠåĻäŊčŽį쿍ĄåäģĨæåĨŊå°åæ äŊ įæ°æŽåšļ寚å
ļčŋčĄåįĄŽéĸæĩãčŋæ¯äŊ įMLčŋį¨įä¸é¨åīŧéčĻįšåŽįä¸ä¸įĨč¯īŧåšļä¸é常éčĻ大éįåŽéĒã
-4. **čŽį쿍Ąå**ãäŊŋį¨äŊ įčŽįģæ°æŽīŧäŊ å°äŊŋį¨åį§įŽæŗæĨčŽį쿍ĄåäģĨč¯åĢæ°æŽä¸įæ¨Ąåŧãč¯Ĩæ¨Ąåå¯čŊäŧåŠį¨å¯äģĨč°æ´įå
鍿éæĨäŊŋæ°æŽįæäēé¨åäŧäēå
ļäģé¨åīŧäģčæåģēæ´åĨŊ῍Ąåã
-5. **č¯äŧ°æ¨Ąå**ãäŊ äŊŋ፿ļéå°įéåä¸äģæĒč§čŋįæ°æŽīŧäŊ įæĩ蝿°æŽīŧæĨæĨ῍Ąåįæ§čŊã
-6. **åæ°č°æ´**ãæ šæŽæ¨Ąåįæ§čŊīŧäŊ å¯äģĨäŊŋį¨ä¸åįåæ°æåééåč¯Ĩčŋį¨īŧčŋäēåæ°æåéæ§åļį¨äēčŽį쿍ĄåįįŽæŗįčĄä¸ēã
-7. **éĸæĩ**ãäŊŋ፿°čžå
ĨæĨæĩ蝿¨ĄåįåįĄŽæ§ã
-
-## čĻéŽäģäšéŽéĸ
-
-čŽĄįŽæēįšåĢæ
éŋåį°æ°æŽä¸įé迍Ąåŧãæ¤åŽį¨į¨åē寚äē寚įģåŽéĸåæįéŽįį įŠļäēēåé常æå¸ŽåŠīŧčŋäēéŽéĸæ æŗéčŋååģēåēäēæĄäģļįč§ååŧææĨčŊģæžåįãäžåĻīŧįģåŽä¸éĄšį˛žįŽäģģåĄīŧæ°æŽį§åĻåŽļå¯čŊčŊå¤å´įģå¸įč
ä¸éå¸įč
įæģäēĄįæåģēæåˇĨč§åã
-
-įļčīŧåŊå°čޏå¤å
ļäģåéįēŗå
ĨįåŧæļīŧMLæ¨Ąåå¯čŊäŧæ´ææå°æ šæŽčŋåģįåĨåēˇå˛éĸæĩæĒæĨįæģäēĄįãä¸ä¸Ēæ´äģ¤äēēæåŋĢįäžåå¯čŊæ¯æ šæŽå
æŦįēŦåēĻãįģåēĻãæ°åååã䏿ĩˇæ´įæĨčŋį¨åēĻãæĨæĩæ¨Ąåŧįå¨å
įæ°æŽå¯šįģåŽäŊįŊŽį4æäģŊčŋčĄå¤Šæ°éĸæĨã
-
-â
čŋä¸Ēå
ŗäēå¤Šæ°æ¨Ąåį[åšģį¯į](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)ä¸ēå¨å¤Šæ°åæä¸äŊŋ፿ēå¨åĻäš æäžäēä¸ä¸Ēåå˛č§č§ã
-
-## éĸæåģēäģģåĄ
-
-å¨åŧå§æåģ翍ĄåäšåīŧäŊ éčĻåŽæå¤éĄšäģģåĄãčĻæĩč¯äŊ įéŽéĸåšļæ šæŽæ¨ĄåįéĸæĩåŊĸæå莞īŧäŊ éčĻč¯åĢåé
įŊŽå¤ä¸Ēå
į´ ã
-
-### Data
-
-ä¸ēäēčŊå¤įĄŽåŽå°åįäŊ įéŽéĸīŧäŊ éčĻå¤§éæŖįĄŽįąģåįæ°æŽã æ¤æļäŊ éčĻå两äģļäēīŧ
-
-- **æļéæ°æŽ**ã莰äŊäšåå
ŗäēæ°æŽåæå
Ŧåšŗæ§įč¯žį¨īŧå°åŋæļéæ°æŽãč¯ˇæŗ¨ææ¤æ°æŽįæĨæēãåŽå¯čŊå
ˇæįäģģäŊåēæåč§īŧåšļ莰åŊå
ļæĨæēã
-- **å夿°æŽ**ãæ°æŽåå¤čŋ፿å ä¸ĒæĨéǤãåĻææ°æŽæĨčĒä¸åįæĨæēīŧäŊ å¯čŊéčĻæ´įæ°æŽåšļ寚å
ļčŋčĄæ ååãäŊ å¯äģĨéčŋåį§æšæŗæéĢæ°æŽįč´¨éåæ°éīŧäžåĻå°åįŦĻ串čŊŦæĸä¸ēæ°åīŧå°ąåæäģŦå¨[čįąģ](../../../5-Clustering/1-Visualize/README.md)䏿åįéŖæ ˇīŧãäŊ čŋå¯äģĨæ šæŽåå§æ°æŽįææ°æ°æŽīŧæŖåĻæäģŦå¨[åįąģ](../../../4-Classification/1-Introduction/README.md)䏿åįéŖæ ˇīŧãäŊ å¯äģĨæ¸
įåįŧčžæ°æŽīŧå°ąåæäģŦå¨ [Web App](../../3-Web-App/README.md)č¯žį¨äšåæåįéŖæ ˇīŧãæåīŧäŊ å¯čŊčŋéčĻ寚å
ļčŋčĄéæēååæäšąīŧå
ˇäŊååŗäēäŊ įčŽįģææ¯ã
-
-â
卿ļéåå¤įäŊ įæ°æŽåīŧčąįšæļé´įįåŽįåŊĸį￝åĻčŊ莊äŊ č§ŖåŗäŊ įéĸæéŽéĸãæŖåĻæäģŦå¨[čįąģ](../../../5-Clustering/1-Visualize/README.md)č¯žį¨ä¸åį°įéŖæ ˇīŧæ°æŽå¯čŊå¨äŊ įįģåŽäģģåĄä¸čĄ¨į°ä¸äŊŗīŧ
-
-### åčŊåįŽæ
-
-åčŊæ¯æ°æŽį坿ĩéåąæ§ãå¨čޏ夿°æŽéä¸īŧåŽčĄ¨į¤ēä¸ēæ éĸä¸ē"æĨæ""大å°"æ"éĸč˛"įåãæ¨įåčŊåéīŧé常å¨äģŖį ä¸čĄ¨į¤ēä¸ē `X`īŧ襨į¤ēį¨äēčŽį쿍Ąåįčžå
Ĩåéã
-
-įŽæ å°ąæ¯äŊ č¯åžéĸæĩįäēæ
ãįŽæ éå¸¸čĄ¨į¤ēä¸ēäģŖį ä¸į `y`īŧäģŖčĄ¨æ¨č¯åžč¯ĸéŽæ°æŽįéŽéĸįįæĄīŧå¨ 12 æīŧäģäšéĸč˛įåįæäžŋåŽīŧ卿§éåąąīŧåĒäēčĄåēįæŋå°äē§ä쎿 ŧæåĨŊīŧææļįŽæ äšį§°ä¸ēæ įžåąæ§ã
-
-### éæŠįšåžåé
-
-đ **įšåžéæŠåįšåžæå** æåģ翍ĄåæļåĻäŊįĨééæŠåĒä¸ĒåéīŧäŊ å¯čŊäŧįģåä¸ä¸ĒįšåžéæŠæįšåžæåįčŋį¨īŧäģĨäžŋä¸ēæ§čŊæåĨŊ῍ĄåéæŠæŖįĄŽįåéãįļčīŧåŽäģŦ䏿¯ä¸åäēīŧâįšåžæåæ¯äģåēäēåå§įšåžįåŊæ°ä¸ååģēæ°įšåžīŧčįšåžéæŠčŋåįšåžįä¸ä¸Ēåéãâīŧ[æĨæē](https://wikipedia.org/wiki/Feature_selection)īŧ
-### å¯č§åæ°æŽ
-
-æ°æŽį§åĻåŽļåˇĨå
ˇå
įä¸ä¸ĒéčĻæšéĸæ¯čŊå¤äŊŋį¨å¤ä¸Ēäŧį§įåēīŧäžåĻ Seaborn æ MatPlotLibīŧå°æ°æŽå¯č§åãį´č§å°čĄ¨į¤ēäŊ įæ°æŽå¯čŊäŧ莊äŊ åį°å¯äģĨåŠį¨įéčå
ŗčã äŊ įå¯č§åčŋå¯äģĨ帎åŠäŊ åį°åč§æä¸åšŗčĄĄįæ°æŽīŧæŖåĻæäģŦå¨ [åįąģ](../../../4-Classification/2-Classifiers-1/README.md)ä¸åį°įéŖæ ˇīŧã
-### æåæ°æŽé
-
-å¨čŽįģäšåīŧäŊ éčĻå°æ°æŽéæåä¸ē两ä¸Ēæå¤ä¸Ē大å°ä¸įäŊäģčŊåžåĨŊå°äģŖčĄ¨æ°æŽįé¨åã
-
-- **čŽįģ**ãčŋé¨åæ°æŽééåäŊ ῍ĄåčŋčĄčŽįģãčŋä¸Ēéåææäēåå§æ°æŽéį大é¨åã
-- **æĩč¯**ãæĩ蝿°æŽéæ¯ä¸įģįŦįĢįæ°æŽīŧé常äģåå§æ°æŽä¸æļéīŧį¨äēįĄŽčŽ¤æåģ翍Ąåįæ§čŊã
-- **éĒč¯**ãéĒč¯éæ¯ä¸ä¸Ēčžå°įįŦįĢį¤ēäžįģīŧį¨äēč°æ´æ¨Ąåįčļ
åæ°ææļæīŧäģĨæščŋæ¨Ąåãæ šæŽäŊ įæ°æŽå¤§å°åäŊ æåēįéŽéĸīŧäŊ å¯čŊä¸éčĻæåģēįŦŦä¸įģīŧæŖåĻæäģŦå¨[æļé´åēåéĸæĩ](../../../7-TimeSeries/1-Introduction/README.md)䏿čŋ°īŧã
-
-## åģēįĢæ¨Ąå
-
-äŊŋį¨äŊ įčŽįģæ°æŽīŧäŊ įįŽæ æ¯æåģ翍Ąåææ°æŽįįģ莥襨į¤ēīŧåšļäŊŋį¨åį§įŽæŗå¯šå
ļčŋčĄ**čŽįģ**ãčŽį쿍Ąåå°å
ļæ´é˛įģæ°æŽīŧåšļå
莸åŽå¯šå
ļåį°ãéĒč¯åæĨåææįģįæįĨæ¨Ąåŧååēå莞ã
-
-### åŗåŽä¸į§čŽįģæšæŗ
-
-æ šæŽäŊ įéŽéĸåæ°æŽįæ§č´¨īŧäŊ å°éæŠä¸į§æšæŗæĨčŽįģåŽãéæĨåŽæ [Scikit-learnįææĄŖ](https://scikit-learn.org/stable/user_guide.html) - æäģŦ卿Ŧč¯žį¨ä¸äŊŋ፠- äŊ å¯äģĨæĸį´ĸå¤į§čŽį쿍Ąåįæšæŗã æ šæŽäŊ įįģéĒīŧäŊ å¯čŊéčĻå°č¯å¤į§ä¸åįæšæŗæĨæåģēæäŊŗæ¨ĄåãäŊ å¯čŊäŧįģåä¸ä¸Ēčŋį¨īŧå¨č¯Ĩčŋį¨ä¸īŧæ°æŽį§åĻåŽļéčŋæäžæĒč§čŋįæ°æŽæĨč¯äŧ°æ¨Ąåįæ§čŊīŧæŖæĨåįĄŽæ§ãååˇŽåå
ļäģéäŊč´¨éįéŽéĸīŧåšļä¸ēæå¤´įäģģåĄéæŠæåéįčŽįģæšæŗã
-
-### čŽį쿍Ąå
-
-æä翍įåščŽæ°æŽīŧæ¨å°ąå¯äģĨ"éåē"åŽæĨååģ翍Ąåãæ¨äŧæŗ¨æå°īŧå¨čŽ¸å¤ ML åēä¸īŧæ¨äŧåį°äģŖį "model.fit"-æ¤æļīŧæ¨å°åčŊåéäŊä¸ēä¸įŗģååŧīŧé常æ¯`X`īŧåįŽæ åéīŧé常æ¯`y`īŧåéã
-
-### č¯äŧ°æ¨Ąå
-
-čŽįģčŋį¨åŽæåīŧčŽįģ大忍Ąåå¯čŊéčĻ夿ŦĄčŋäģŖæâæļæâīŧīŧäŊ å°čŊå¤éčŋäŊŋ፿ĩ蝿°æŽæĨčĄĄéæ¨Ąåįæ§čŊæĨč¯äŧ°æ¨Ąåįč´¨éãæ¤æ°æŽæ¯æ¨Ąåå
åæĒåæįåå§æ°æŽįåéã äŊ å¯äģĨæå°åēæå
ŗæ¨Ąåč´¨éįææ 襨ã
-
-đ **æ¨Ąåæå**
-
-卿ēå¨åĻäš į违ä¸īŧæ¨Ąåæåæ¯ææ¨Ąåå¨å°č¯åæä¸įæįæ°æŽæļå
ļåēåąåčŊįåįĄŽæ§ã
-
-đ **æŦ æå**å**čŋæå**æ¯éäŊæ¨Ąåč´¨éį常č§éŽéĸīŧå ä¸ēæ¨Ąåæååžä¸å¤åĨŊæå¤ĒåĨŊãčŋäŧå¯ŧč´æ¨Ąåååēä¸å
ļčŽįģæ°æŽčŋäēį´§å¯å¯šéŊæčŋäēæžæŖå¯šéŊįéĸæĩã čŋæåæ¨Ąå寚čŽįģæ°æŽįéĸæĩå¤ĒåĨŊīŧå ä¸ēåŽåˇ˛įģåžåĨŊå°äēč§Ŗäēæ°æŽįįģčååĒåŖ°ãæŦ æåæ¨Ąååšļä¸åįĄŽīŧå ä¸ēåŽæĸä¸čŊåįĄŽåæå
ļčŽįģæ°æŽīŧäšä¸čŊåįĄŽåæå°æĒâįå°âįæ°æŽã
-
-
-> äŊč
[Jen Looper](https://twitter.com/jenlooper)
-
-## åæ°č°äŧ
-
-åå§čŽįģåŽæåīŧč§å¯æ¨Ąåįč´¨éåšļččéčŋč°æ´å
ļâčļ
åæ°âæĨæščŋåŽã[卿¤ææĄŖä¸](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)é
č¯ģæå
ŗč¯Ĩčŋį¨įæ´å¤äŋĄæ¯ã
-
-## éĸæĩ
-
-čŋæ¯äŊ å¯äģĨäŊŋį¨å
¨æ°æ°æŽæĨæĩ蝿¨ĄååįĄŽæ§įæļåģãå¨âåēį¨âML莞įŊŽä¸īŧäŊ æŖå¨æåģēWebčĩæēäģĨå¨įäē§ä¸äŊŋ፿¨Ąåīŧæ¤čŋį¨å¯čŊæļåæļé፿ˇčžå
ĨīŧäžåϿ䏿éŽīŧäģĨ莞įŊŽåéåšļå°å
ļåéå°æ¨ĄåčŋčĄæ¨įīŧæč
č¯äŧ°ã
-
-å¨čŋäēč¯žį¨ä¸īŧäŊ å°äēč§ŖåĻäŊäŊŋį¨čŋäēæĨéǤæĨåå¤ãæåģēãæĩč¯ãč¯äŧ°åéĸæĩâææčŋäēéŊæ¯æ°æŽį§åĻåŽļįå§ŋæīŧčä¸éįäŊ 卿ä¸ēä¸åâå
¨æ âMLåˇĨį¨å¸įæ
į¨ä¸ååžčŋåąīŧäŊ å°äēč§Ŗæ´å¤ã
-
----
-
-## đææ
-
-įģä¸ä¸Ēæĩį¨åžīŧåæ MLįæĨéǤãå¨čŋä¸Ēčŋį¨ä¸īŧäŊ 莤ä¸ēčĒåˇąį°å¨å¨åĒéīŧäŊ éĸæĩäŊ å¨åĒéäŧéå°å°éžīŧäģäšå¯šäŊ æĨ蝴åžåŽšæīŧ
-
-## [é
č¯ģåæĩéĒ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/)
-
-## å¤äš ä¸čĒåĻ
-
-å¨įēŋæį´ĸå¯ščŽ¨čŽēæĨ常åˇĨäŊįæ°æŽį§åĻåŽļįéčŽŋã čŋæ¯[å
ļä¸äšä¸](https://www.youtube.com/watch?v=Z3IjgbbCEfs)ã
-
-## äģģåĄ
-
-[éčŽŋä¸åæ°æŽį§åĻåŽļ](assignment.zh-cn.md)
diff --git a/1-Introduction/4-techniques-of-ML/translations/README.zh-tw.md b/1-Introduction/4-techniques-of-ML/translations/README.zh-tw.md
deleted file mode 100644
index 38d56d56..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/README.zh-tw.md
+++ /dev/null
@@ -1,111 +0,0 @@
-
-# æŠå¨å¸įŋæčĄ
-
-æ§åģēãäŊŋį¨åįļ莿Šå¨å¸įŋæ¨Ąååå
ļäŊŋį¨įæ¸æįéį¨č訹å¤å
ļäģéįŧåˇĨäŊæĩ፿Ēįļä¸åã 卿ŦčǞä¸īŧæåå°æé芲éį¨įįĨį§éĸį´īŧä¸ĻæĻčŋ°äŊ éčĻäēč§Ŗįä¸ģčĻæčĄã äŊ æīŧ
-
-- å¨éĢåą¤æŦĄä¸įč§Ŗæ¯ææŠå¨å¸įŋįéį¨ã
-- æĸį´ĸåēæŦæĻåŋĩīŧäžåĻãæ¨Ąåãããé æ¸Ŧãåãč¨įˇ´æ¸æãã
-
-## [čǞ忏ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/)
-## äģį´š
-
-å¨čŧéĢįåą¤æŦĄä¸īŧåĩåģēæŠå¨å¸įŋīŧMLīŧéį¨įåˇĨčå
æŦč¨ąå¤æĨéŠīŧ
-
-1. **æąēåŽåéĄ**ã 大夿¸æŠå¨å¸įŋéį¨éŊæ¯åžæåēä¸åį°ĄåŽįæĸäģļį¨åēæåēæŧčĻåįåŧæįĄæŗåįįåéĄéå§įã éäēåéĄé常åįšåēæŧæ¸æéåįé æ¸Ŧåąéã
-2. **æļéåæē忏æ**ãįēäēčŊå¤ åįäŊ įåéĄīŧäŊ éčĻæ¸æãæ¸æįčŗĒéīŧæææ¯æ¸éīŧå°æąēåŽäŊ åįæååéĄįčŊåãå¯čĻåæ¸ææ¯éåéæŽĩįä¸åéčĻæšéĸãæ¤éæŽĩéå
æŦå°æ¸ææåįēč¨įˇ´åæ¸ŦčŠĻįĩäģĨæ§åģ翍Ąåã
-3. **鏿ä¸į¨Žč¨įˇ´æšæŗ**ãæ šæäŊ įåéĄåæ¸æįæ§čŗĒīŧäŊ éčĻ鏿åĻäŊč¨įˇ´æ¨ĄåäģĨæåĨŊå°åæ äŊ ῏æä¸Ļå°å
ļé˛čĄæēįĸēé æ¸Ŧã鿝äŊ įMLéį¨įä¸é¨åīŧéčĻįšåŽįå°æĨįĨčīŧä¸Ļä¸é常éčĻ大éįå¯ĻéŠã
-4. **č¨įˇ´æ¨Ąå**ãäŊŋį¨äŊ įč¨įˇ´æ¸æīŧäŊ å°äŊŋį¨åį¨ŽįŽæŗäžč¨įˇ´æ¨ĄåäģĨčåĨæ¸æä¸įæ¨ĄåŧãčŠ˛æ¨Ąåå¯čŊæåŠį¨å¯äģĨčĒŋæ´įå
§é¨æŦéäžäŊŋæ¸æįæäēé¨ååĒæŧå
ļäģé¨åīŧåžčæ§åģēæ´åĨŊ῍Ąåã
-5. **čŠäŧ°æ¨Ąå**ãäŊ äŊŋ፿ļéå°įéåä¸åžæĒčĻé῏æīŧäŊ ῏ŦčŠĻæ¸æīŧäžæĨ῍Ąåįæ§čŊã
-6. **忏čĒŋæ´**ãæ šææ¨Ąåįæ§čŊīŧäŊ å¯äģĨäŊŋį¨ä¸åį忏æčŽééå芲éį¨īŧéäē忏æčŽéæ§čŖŊ፿ŧč¨įˇ´æ¨ĄåįįŽæŗįčĄįēã
-7. **é æ¸Ŧ**ãäŊŋ፿°čŧ¸å
Ĩäžæ¸ŦčŠĻæ¨Ąåįæēįĸēæ§ã
-
-## čĻåäģéēŊåéĄ
-
-č¨įŽæŠįšåĨæ
éˇįŧįžæ¸æä¸įéąčæ¨Ąåŧãæ¤å¯Ļį¨į¨åēå°æŧå°įĩĻåŽé åæįåįį įŠļäēēåĄé常æåšĢåŠīŧéäēåéĄįĄæŗééåĩåģēåēæŧæĸäģļįčĻååŧæäžčŧæžåįãäžåĻīŧįĩĻåŽä¸é
į˛žįŽäģģåīŧæ¸æį§å¸åŽļå¯čŊčŊå¤ åįšå¸į
č
čéå¸į
č
įæģäēĄįæ§åģēæåˇĨčĻåã
-
-įļčīŧįļå°č¨ąå¤å
ļäģčŽéį´å
ĨįåŧæīŧMLæ¨Ąåå¯čŊææ´ææå°æ šæéåģįåĨåēˇå˛é æ¸ŦæĒäžįæģäēĄįãä¸åæ´äģ¤äēēæåŋĢįäžåå¯čŊæ¯æ šæå
æŦ᎝åēĻãįļåēĻãæ°ŖåčŽåãčæĩˇæ´įæĨčŋį¨åēĻãæĨæĩæ¨Ąåŧįå¨å
§įæ¸æå°įĩĻåŽäŊįŊŽį4æäģŊé˛čĄå¤Šæ°Ŗé å ąã
-
-â
éåéæŧå¤Šæ°Ŗæ¨Ąåį[åšģįį](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)įēå¨å¤Šæ°Ŗåæä¸äŊŋ፿Šå¨å¸įŋæäžäēä¸åæˇå˛čĻč§ã
-
-## é æ§åģēäģģå
-
-å¨éå§æ§åģ翍ĄåäšåīŧäŊ éčĻåŽæå¤é
äģģåãčĻæ¸ŦčŠĻäŊ įåéĄä¸Ļæ šææ¨Ąåįé æ¸ŦåŊĸæåč¨īŧäŊ éčĻčåĨåé
įŊŽå¤åå
į´ ã
-
-### Data
-
-įēäēčŊå¤ įĸēåŽå°åįäŊ įåéĄīŧäŊ éčĻ大鿪įĸēéĄå῏æã æ¤æäŊ éčĻåå
Šäģļäēīŧ
-
-- **æļ鿏æ**ãč¨äŊäšåéæŧæ¸æåæå
Ŧåšŗæ§įčǞį¨īŧå°åŋæļ鿏æãčĢč¨ģææ¤æ¸æįäžæēãåŽå¯čŊå
ˇæįäģģäŊåēæåčĻīŧä¸Ļč¨éå
ļäžæēã
-- **æē忏æ**ãæ¸ææēåéį¨æåšžåæĨéŠãåĻææ¸æäžčĒä¸åįäžæēīŧäŊ å¯čŊéčĻæ´įæ¸æä¸Ļå°å
ļé˛čĄæ¨æēåãäŊ å¯äģĨééåį¨ŽæšæŗæéĢæ¸æįčŗĒé忏éīŧäžåĻå°åįŦĻ串čŊæį翏åīŧå°ąåæåå¨[čéĄ](../../../5-Clustering/1-Visualize/README.md)䏿åįéŖæ¨ŖīŧãäŊ éå¯äģĨæ šæåå§æ¸æįææ°æ¸æīŧæŖåĻæåå¨[åéĄ](../../../4-Classification/1-Introduction/README.md)䏿åįéŖæ¨ŖīŧãäŊ å¯äģĨæ¸
įåᎍčŧ¯æ¸æīŧå°ąåæåå¨ [Web App](../../3-Web-App/README.md)čǞį¨äšåæåįéŖæ¨ŖīŧãæåžīŧäŊ å¯čŊééčĻå°å
ļé˛čĄé¨æŠååæäēīŧå
ˇéĢåæąēæŧäŊ įč¨įˇ´æčĄã
-
-â
卿ļéåčįäŊ ῏æåžīŧčąéģæéįįåŽįåŊĸ῝åĻčŊčŽäŊ č§ŖæąēäŊ įé æåéĄãæŖåĻæåå¨[čéĄ](../../../5-Clustering/1-Visualize/README.md)čǞį¨ä¸įŧįžįéŖæ¨Ŗīŧæ¸æå¯čŊå¨äŊ įįĩĻåŽäģģåä¸čĄ¨įžä¸äŊŗīŧ
-
-### åčŊåįŽæ¨
-
-åčŊæ¯æ¸æį坿¸ŦéåąŦæ§ãå¨č¨ąå¤æ¸æéä¸īŧåŽčĄ¨į¤ēį翍éĄįē"æĨæ""大å°"æ"éĄč˛"įåãæ¨įåčŊčŽéīŧé常å¨äģŖįĸŧä¸čĄ¨į¤ēįē `X`īŧ襨į¤ē፿ŧč¨įˇ´æ¨Ąåįčŧ¸å
ĨčŽéã
-
-įŽæ¨å°ąæ¯äŊ čŠĻåé æ¸Ŧįäēæ
ãįŽæ¨éå¸¸čĄ¨į¤ēįēäģŖįĸŧä¸į `y`īŧäģŖčĄ¨æ¨čŠĻåčŠĸ忏æįåéĄįįæĄīŧå¨ 12 æīŧäģéēŊéĄč˛įåįæäžŋåŽīŧå¨čéåąąīŧåĒäēčĄåįæŋå°įĸåšæ ŧæåĨŊīŧææįŽæ¨äšį¨ąį翍į°ŊåąŦæ§ã
-
-### 鏿įšåžčŽé
-
-đ **įšåžé¸æåįšåžæå** æ§åģ翍ĄåæåĻäŊįĨé鏿åĒåčŽéīŧäŊ å¯čŊæįᅫä¸åįšåžé¸ææįšåžæåįéį¨īŧäģĨäžŋįēæ§čŊæåĨŊ῍Ąå鏿æŖįĸēįčŽéãįļčīŧåŽå䏿¯ä¸åäēīŧãįšåžæåæ¯åžåēæŧåå§įšåžįåŊæ¸ä¸åĩåģēæ°įšåžīŧčįšåžé¸æčŋåįšåžįä¸ååéããīŧ[äžæē](https://wikipedia.org/wiki/Feature_selection)īŧ
-### å¯čĻ忏æ
-
-æ¸æį§å¸åŽļåˇĨå
ˇå
įä¸åéčĻæšéĸæ¯čŊå¤ äŊŋį¨å¤ååĒį§įåēĢīŧäžåĻ Seaborn æ MatPlotLibīŧå°æ¸æå¯čĻåãį´č§å°čĄ¨į¤ēäŊ ῏æå¯čŊæčŽäŊ įŧįžå¯äģĨåŠį¨įéąčéč¯ã äŊ įå¯čĻåéå¯äģĨåšĢåŠäŊ įŧįžåčĻæä¸åšŗčĄĄįæ¸æīŧæŖåĻæåå¨ [åéĄ](../../../4-Classification/2-Classifiers-1/README.md)ä¸įŧįžįéŖæ¨Ŗīŧã
-### æåæ¸æé
-
-å¨č¨įˇ´äšåīŧäŊ éčĻå°æ¸æéæåįēå
Šåæå¤å大å°ä¸įäŊäģčŊåžåĨŊå°äģŖčĄ¨æ¸æįé¨åã
-
-- **č¨įˇ´**ãéé¨åæ¸æééŠåäŊ ῍Ąåé˛čĄč¨įˇ´ãéåéåæ§æäēåå§æ¸æéį大é¨åã
-- **æ¸ŦčŠĻ**ãæ¸ŦčŠĻæ¸æéæ¯ä¸įĩį¨įĢ῏æīŧé常åžåå§æ¸æä¸æļéīŧ፿ŧįĸēčĒæ§åģ翍Ąåįæ§čŊã
-- **éŠč**ãéŠč鿝ä¸åčŧå°įį¨įĢį¤ēäžįĩīŧ፿ŧčĒŋæ´æ¨Ąåįčļ
忏ææļæ§īŧäģĨæšé˛æ¨Ąåãæ šæäŊ ῏æå¤§å°åäŊ æåēįåéĄīŧäŊ å¯čŊä¸éčĻæ§åģēįŦŦä¸įĩīŧæŖåĻæåå¨[æéåēåé æ¸Ŧ](../../../7-TimeSeries/1-Introduction/README.md)䏿čŋ°īŧã
-
-## åģēįĢæ¨Ąå
-
-äŊŋį¨äŊ įč¨įˇ´æ¸æīŧäŊ įįŽæ¨æ¯æ§åģ翍Ąåææ¸æįįĩąč¨čĄ¨į¤ēīŧä¸ĻäŊŋį¨åį¨ŽįŽæŗå°å
ļé˛čĄ**č¨įˇ´**ãč¨įˇ´æ¨Ąåå°å
ļæ´é˛įĩĻæ¸æīŧä¸Ļå
訹åŽå°å
ļįŧįžãéŠčåæĨåææįĩįæįĨæ¨Ąåŧååēåč¨ã
-
-### æąēåŽä¸į¨Žč¨įˇ´æšæŗ
-
-æ šæäŊ įåéĄåæ¸æįæ§čŗĒīŧäŊ å°é¸æä¸į¨Žæšæŗäžč¨įˇ´åŽãéæĨåŽæ [Scikit-learnįææĒ](https://scikit-learn.org/stable/user_guide.html) - æå卿ŦčǞį¨ä¸äŊŋ፠- äŊ å¯äģĨæĸį´ĸå¤į¨Žč¨įˇ´æ¨Ąåįæšæŗã æ šæäŊ įįļéŠīŧäŊ å¯čŊéčĻåčŠĻå¤į¨Žä¸åįæšæŗäžæ§åģēæäŊŗæ¨ĄåãäŊ å¯čŊæįᅫä¸åéį¨īŧå¨čОéį¨ä¸īŧæ¸æį§å¸åŽļééæäžæĒčĻé῏æäžčŠäŧ°æ¨Ąåįæ§čŊīŧæĒĸæĨæēįĸēæ§ãååˇŽåå
ļäģéäŊčŗĒéįåéĄīŧä¸Ļįēæé įäģģå鏿æåéŠįč¨įˇ´æšæŗã
-
-### č¨įˇ´æ¨Ąå
-
-æä翍įåšč¨æ¸æīŧæ¨å°ąå¯äģĨ"éŠæ"åŽäžåĩåģ翍Ąåãæ¨æč¨ģæå°īŧå¨č¨ąå¤ ML åēĢä¸īŧæ¨æįŧįžäģŖįĸŧ"model.fit"-æ¤æīŧæ¨å°åčŊčŽéäŊįēä¸įŗģååŧīŧé常æ¯`X`īŧåįŽæ¨čŽéīŧé常æ¯`y`īŧįŧéã
-
-### čŠäŧ°æ¨Ąå
-
-č¨įˇ´éį¨åŽæåžīŧč¨įˇ´å¤§åæ¨Ąåå¯čŊéčĻ夿ŦĄå äģŖæãææãīŧīŧäŊ å°čŊå¤ ééäŊŋ፿¸ŦčŠĻæ¸æäžčĄĄéæ¨Ąåįæ§čŊäžčŠäŧ°æ¨ĄåįčŗĒéãæ¤æ¸ææ¯æ¨Ąåå
åæĒåæįåå§æ¸æįåéã äŊ å¯äģĨæå°åēæéæ¨ĄåčŗĒéįææ¨čĄ¨ã
-
-đ **æ¨ĄåæŦå**
-
-卿Šå¨å¸įŋį违ä¸īŧæ¨ĄåæŦåæ¯ææ¨Ąåå¨åčŠĻåæä¸įæįæ¸ææå
ļåēåą¤åčŊįæēįĸēæ§ã
-
-đ **æŦ æŦå**å**éæŦå**æ¯éäŊæ¨ĄåčŗĒéį常čĻåéĄīŧå į翍ĄåæŦååžä¸å¤ åĨŊæå¤ĒåĨŊãéæå°č´æ¨Ąåååēčå
ļč¨įˇ´æ¸æéæŧįˇå¯å°éŊæéæŧæžæŖå°éŊįé æ¸Ŧã éæŦ忍Ąåå°č¨įˇ´æ¸æįé æ¸Ŧå¤ĒåĨŊīŧå įēåŽåˇ˛įļåžåĨŊå°äēč§Ŗä翏æįį´°į¯ååĒč˛ãæŦ æŦ忍Ąåä¸Ļ䏿ēįĸēīŧå įēåŽæĸä¸čŊæēįĸēåæå
ļč¨įˇ´æ¸æīŧäšä¸čŊæēįĸēåæå°æĒãįå°ã῏æã
-
-
-> äŊč
[Jen Looper](https://twitter.com/jenlooper)
-## 忏čĒŋåĒ
-
-åå§č¨įˇ´åŽæåžīŧč§å¯æ¨ĄåįčŗĒéä¸Ļčæ
ŽééčĒŋæ´å
ļãčļ
忏ãäžæšé˛åŽã[卿¤ææĒä¸](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)éąčŽæé芲éį¨įæ´å¤äŋĄæ¯ã
-
-## é æ¸Ŧ
-
-鿝äŊ å¯äģĨäŊŋį¨å
¨æ°æ¸æäžæ¸ŦčŠĻæ¨Ąåæēįĸēæ§įæåģãå¨ãæį¨ãMLč¨įŊŽä¸īŧäŊ æŖå¨æ§åģēWebčŗæēäģĨå¨įįĸä¸äŊŋ፿¨Ąåīŧæ¤éį¨å¯čŊæļåæļé፿ļčŧ¸å
ĨīŧäžåϿ䏿éīŧäģĨč¨įŊŽčŽéä¸Ļå°å
ļįŧéå°æ¨Ąåé˛čĄæ¨įīŧæč
čŠäŧ°ã
-
-å¨éäēčǞį¨ä¸īŧäŊ å°äēč§ŖåĻäŊäŊŋį¨éäēæĨéŠäžæēåãæ§åģēãæ¸ŦčŠĻãčŠäŧ°åé æ¸ŦâææéäēéŊæ¯æ¸æį§å¸åŽļįå§ŋæ
īŧčä¸é¨čäŊ 卿įēä¸åãå
¨æŖ§ãMLåˇĨį¨å¸Ģįæ
į¨ä¸ååžé˛åąīŧäŊ å°äēč§Ŗæ´å¤ã
-
----
-
-## đææ°
-
-įĢä¸åæĩį¨åīŧåæ MLįæĨéŠãå¨éåéį¨ä¸īŧäŊ čĒįēčĒåˇąįžå¨å¨åĒčŖīŧäŊ é æ¸ŦäŊ å¨åĒčŖæéå°å°éŖīŧäģéēŊå°äŊ äžčĒĒåžåŽšæīŧ
-
-## [éąčŽåžæ¸ŦéŠ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/)
-
-## 垊įŋččĒå¸
-
-å¨įˇæį´ĸå°č¨čĢæĨ常åˇĨäŊ῏æį§å¸åŽļįéč¨Ēã 鿝[å
ļä¸äšä¸](https://www.youtube.com/watch?v=Z3IjgbbCEfs)ã
-
-## äģģå
-
-[éč¨Ēä¸åæ¸æį§å¸åŽļ](assignment.zh-tw.md)
\ No newline at end of file
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.es.md b/1-Introduction/4-techniques-of-ML/translations/assignment.es.md
deleted file mode 100644
index 2e931f8c..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.es.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Entrevista a un cientÃfico de datos
-
-## Instrucciones
-
-En tu compaÃąÃa, en un grupo de usuarios, o entre tus amigos o compaÃąeros de estudio, habla con alguien que trabaje profesionalmente como cientÃfico de datos. Escribe un artÃculo corto (500 palabras) acerca de sus ocupaciones diarias. ÂŋSon ellos especialistas, o trabajan como 'full stack'?
-
-## RÃēbrica
-
-| Criterio | Ejemplar | Adecuado | Necesita mejorar |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | Un ensayo de la longitud correcta, con fuentes atribuidas, es presentado como un archivo .doc | El ensayo es pobremente atribuido o mÃĄs corto que la longitud requerida | No se presentÃŗ el ensayo |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.id.md b/1-Introduction/4-techniques-of-ML/translations/assignment.id.md
deleted file mode 100644
index 9f7b23be..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.id.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Wawancara seorang data scientist
-
-## Instruksi
-
-Di perusahaan Kamu, dalam user group, atau di antara teman atau sesama siswa, berbicaralah dengan seseorang yang bekerja secara profesional sebagai data scientist. Tulis makalah singkat (500 kata) tentang pekerjaan sehari-hari mereka. Apakah mereka spesialis, atau apakah mereka bekerja 'full stack'?
-
-## Rubrik
-
-| Kriteria | Sangat Bagus | Cukup | Perlu Peningkatan |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | Sebuah esai dengan panjang yang sesuai, dengan sumber yang dikaitkan, disajikan sebagai file .doc | Esai dikaitkan dengan buruk atau lebih pendek dari panjang yang dibutuhkan | Tidak ada esai yang disajikan |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.it.md b/1-Introduction/4-techniques-of-ML/translations/assignment.it.md
deleted file mode 100644
index 41c597f4..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.it.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Intervista a un data scientist
-
-## Istruzioni
-
-Nella propria azienda, in un gruppo di utenti, o tra amici o compagni di studio, si parli con qualcuno che lavora professionalmente come data scientist. Si scriva un breve documento (500 parole) sulle loro occupazioni quotidiane. Sono specialisti o lavorano "full stack"?
-
-## Rubrica
-
-| Criteri | Ottimo | Adeguato | Necessita miglioramento |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | Un saggio della lunghezza corretta, con fonti attribuite, è presentato come file .doc | Il saggio è attribuito male o piÚ corto della lunghezza richiesta | Non viene presentato alcun saggio |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.ja.md b/1-Introduction/4-techniques-of-ML/translations/assignment.ja.md
deleted file mode 100644
index b3690e77..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.ja.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# ããŧãŋãĩã¤ã¨ãŗããŖãšããĢã¤ãŗãŋããĨãŧãã
-
-## æį¤ē
-
-äŧį¤žãģãĻãŧãļã°ãĢãŧããģåäēēãģåĻįäģ˛éãŽä¸ã§ãããŧãŋãĩã¤ã¨ãŗããŖãšãã¨ããĻå°éįãĢåããĻããäēēãĢ芹ãčããĻãŋãžããããããŽäēēãŽæĨã
ãŽäģäēãĢã¤ããĻįããŦããŧãīŧ500čĒīŧãæ¸ããĻãã ãããããŽäēēã¯å°éåŽļã§ããããīŧããã¨ããããĢãšãŋãã¯ãã¨ããĻåããĻããã§ããããīŧ
-
-## čŠäžĄåēæē
-
-| åēæē | æ¨Ąį¯į | åå | čĻæšå |
-| ---- | ---------------------------------------------------------------------- | -------------------------------------------------------------- | -------------------------- |
-| | åēå
¸ãæč¨ãããéŠåãĒéˇããŽãŦããŧãã.docããĄã¤ãĢã¨ããĻæį¤ēãããĻãã | ãŦããŧããĢåēå
¸ãæč¨ãããĻããĒãããããã¯åŋ
čĻãĒéˇããããįã | ãŦããŧããæį¤ēãããĻããĒã |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.ko.md b/1-Introduction/4-techniques-of-ML/translations/assignment.ko.md
deleted file mode 100644
index 085f723f..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.ko.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# ë°ė´í° ęŗŧíėëĨŧ ė¸í°ëˇ°í´ ë´
ėë¤
-
-## ė¤ëĒ
-
-íėŦ ėŧ íë íėŦ ëë ė´ë ėŦėŠė ė§ë¨ėėë, ėŖŧëŗ ėšęĩŦë¤ ëë ëëŖ íėë¤ ė¤ ë°ė´í° ęŗŧíėëĄė ė ëŦ¸ė ėŧëĄ ėŧíë ėŦëęŗŧ ëíí´ ëŗ´ė¸ė. ëí í ꡸ ėŦëė´ íė ė´ë¤ ėŧė íëė§ 500ė ė´ėėŧëĄ ėí(ėė¸ė´)ė ėėąí´ ëŗ´ė기 ë°ëëë¤. ꡸ ėŦëė ë°ė´í° ęŗŧí ëļėŧėė íšė ė
ëŦ´ė ė§ė¤íë ë°ė´í° ęŗŧí ė ëŦ¸ę°ė¸ę°ė, ėë늴 ė ë°ė ėŧëĄ ë¤ėí ė
ëŦ´ė ė§ė¤íë 'íė¤í' ë°ė´í° ęŗŧíėė¸ę°ė?
-
-## íę°ę¸°ė¤í
-
-| íę°ę¸°ė¤ | ëĒ¨ë˛ | ė ė | íĨė íė |
-| -------- | ----------------------------------------------------------------------------------------- | ----------------------------------------------------- | ------------ |
-| | 500ė ė´ėė ėė¸ė´ė´ëа ė°¸ęŗ ëŦ¸íė ė ëëĄ í기íęŗ .doc íėė ėë(Microsoft Word) íėŧëĄ ė ėļ | 500ė ė´ë´ė ėė¸ė´ė´ęą°ë ė°¸ęŗ ëŦ¸íė ė ëëĄ í기íė§ ėė | ėė¸ė´ 미ė ėļ |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.pt-br.md b/1-Introduction/4-techniques-of-ML/translations/assignment.pt-br.md
deleted file mode 100644
index 820519cc..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.pt-br.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# Entreviste uma pessoa cientista de dados
-
-## Instructions
-
-Em sua empresa, em um grupo de usuÃĄrios ou entre seus amigos ou colegas estudantes, converse com alguÊm que trabalhe profissionalmente como cientista de dados. Escreva um pequeno artigo (500 palavras) sobre suas ocupaçÃĩes diÃĄrias. Eles sÃŖo especialistas ou trabalham com 'full stack'?
-
-## Rubrica
-
-| CritÊrios | Exemplar | Adapte | Precisa Melhorar |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | Uma redaÃ§ÃŖo com a extensÃŖo correta, com fontes atribuÃdas, Ê apresentado em arquivo .doc | A redaÃ§ÃŖo estÃĄ mal atribuÃdo ou Ê menor do que o comprimento exigido | Nenhuma redaÃ§ÃŖo Ê apresentado | |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.zh-cn.md b/1-Introduction/4-techniques-of-ML/translations/assignment.zh-cn.md
deleted file mode 100644
index ba28b554..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.zh-cn.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# éčŽŋä¸äŊæ°æŽį§åĻåŽļ
-
-## 蝴æ
-
-å¨äŊ įå
Ŧå¸ãäŊ æå¨įį¤žįž¤ãæč
å¨äŊ įæååååĻä¸īŧæžå°ä¸äŊäģäēæ°æŽį§åĻä¸ä¸åˇĨäŊįäēēīŧä¸äģæåĨšä礿ĩä¸ä¸ãåä¸į¯å
ŗäēäģäģŦåˇĨäŊæĨ常įå°įæīŧ500ååˇĻåŗīŧãäģäģŦæ¯ä¸åŽļīŧčŋæ¯č¯´äģäģŦæ¯âå
¨æ âåŧåč
īŧ
-
-## č¯å¤æ å
-
-| æ å | äŧį§ | ä¸č§ä¸įŠ | äģéåĒå |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | æäē¤ä¸į¯æ¸
æ°æčŋ°äēčä¸åąæ§ä¸åæ°įŦĻåč§čįwordææĄŖ | æäē¤įææĄŖčä¸åąæ§æčŋ°åžä¸æ¸
æ°æč
åæ°ä¸åč§č | åĨéŊæ˛Ąæäē¤ |
diff --git a/1-Introduction/4-techniques-of-ML/translations/assignment.zh-tw.md b/1-Introduction/4-techniques-of-ML/translations/assignment.zh-tw.md
deleted file mode 100644
index 6d3d601c..00000000
--- a/1-Introduction/4-techniques-of-ML/translations/assignment.zh-tw.md
+++ /dev/null
@@ -1,11 +0,0 @@
-# éč¨Ēä¸äŊæ¸æį§å¸åŽļ
-
-## čĒĒæ
-
-å¨äŊ įå
Ŧå¸ãäŊ æå¨įį¤žįž¤ãæč
å¨äŊ įæåååå¸ä¸īŧæžå°ä¸äŊåžä翏æį§å¸å°æĨåˇĨäŊįäēēīŧčäģæåĨšä礿ĩä¸ä¸ãå¯Ģä¸į¯éæŧäģååˇĨäŊæĨ常įå°įæīŧ500ååˇĻåŗīŧãäģ忝å°åŽļīŧ鿝čĒĒäģ忝ãå
¨æŖ§ãéįŧč
īŧ
-
-## čŠå¤æ¨æē
-
-| æ¨æē | åĒį§ | ä¸čĻä¸įŠ | äģéåĒå |
-| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- |
-| | æäē¤ä¸į¯æ¸
æ°æčŋ°äē莿ĨåąŦæ§ä¸åæ¸įŦĻåčĻį¯įwordææĒ | æäē¤įææĒ莿ĨåąŦæ§æčŋ°åžä¸æ¸
æ°æč
忏ä¸åčĻᝠ| åĨéŊæ˛æäē¤ |
\ No newline at end of file
diff --git a/1-Introduction/images/globe.jpg b/1-Introduction/images/globe.jpg
deleted file mode 100644
index 75c0a660..00000000
Binary files a/1-Introduction/images/globe.jpg and /dev/null differ
diff --git a/1-Introduction/translations/README.es.md b/1-Introduction/translations/README.es.md
deleted file mode 100644
index a4bc59ce..00000000
--- a/1-Introduction/translations/README.es.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# IntroducciÃŗn al machine learning
-
-En esta secciÃŗn del plan de estudios se le presentarÃĄn los conceptos bÃĄsicos que hay detrÃĄs del campo del "machine learning", lo que es, y aprenderemos sobre su historia y las tÊcnicas que los investigadores utilizan para trabajar con Êl. ÂĄExploremos juntos el mundo del ML!
-
-
-> Photo by Bill Oxford on Unsplash
-
-### Lecciones
-
-1. [IntroducciÃŗn al machine learning](1-intro-to-ML/README.md)
-1. [La Historia del machine learning y la AI](2-history-of-ML/README.md)
-1. [Equidad y machine learning](3-fairness/README.md)
-1. [TÊcnicas de machine learning](4-techniques-of-ML/README.md)
-### CrÊditos
-
-"IntroducciÃŗn al Machine Learning" fue escrito con âĨī¸ por un equipo de personas que incluye [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) y [Jen Looper](https://twitter.com/jenlooper)
-
-"La Historia del Machine Learning" fue escrito con âĨī¸ por [Jen Looper](https://twitter.com/jenlooper) y [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"Equidad y Machine Learning" fue escrito con âĨī¸ por [Tomomi Imura](https://twitter.com/girliemac)
-
-"TÊcnicas de Machine Learning" fue escrito con âĨī¸ por [Jen Looper](https://twitter.com/jenlooper) y [Chris Noring](https://twitter.com/softchris)
-
diff --git a/1-Introduction/translations/README.fr.md b/1-Introduction/translations/README.fr.md
deleted file mode 100644
index 462dea70..00000000
--- a/1-Introduction/translations/README.fr.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# Introduction au machine learning
-
-Dans cette section du programme, vous dÊcouvrirez les concepts de base sous-jacents au domaine du machine learning, ce quâil est, et vous dÊcouvrirez son histoire et les techniques que les chercheurs utilisent pour travailler avec lui. Explorons ensemble ce nouveau monde de ML !
-
-
-> Photo par Bill Oxford sur Unsplash
-
-### Leçons
-
-1. [Introduction au machine learning](../1-intro-to-ML/translations/README.fr.md)
-1. [Lâhistoire du machine learning et de lâIA](../2-history-of-ML/translations/README.fr.md)
-1. [ÃquitÊ et machine learning](../3-fairness/translations/README.fr.md)
-1. [Techniques de machine learning](../4-techniques-of-ML/translations/README.fr.md)
-### CrÊdits
-
-"Introduction au machine learning" a ÊtÊ Êcrit avec âĨī¸ par une Êquipe de personnes comprenant [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) et [Jen Looper](https://twitter.com/jenlooper)
-
-"Lâhistoire du machine learning" a ÊtÊ Êcrit avec âĨī¸ par [Jen Looper](https://twitter.com/jenlooper) et [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"ÃquitÊ et machine learning" a ÊtÊ Êcrit avec âĨī¸ par [Tomomi Imura](https://twitter.com/girliemac)
-
-"Techniques de machine learning" a ÊtÊ Êcrit avec âĨī¸ par [Jen Looper](https://twitter.com/jenlooper) et [Chris Noring](https://twitter.com/softchris)
diff --git a/1-Introduction/translations/README.hi.md b/1-Introduction/translations/README.hi.md
deleted file mode 100644
index 1d7a9b7b..00000000
--- a/1-Introduction/translations/README.hi.md
+++ /dev/null
@@ -1,28 +0,0 @@
-# ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤ā¤ž ā¤Ē⤰ā¤ŋā¤ā¤¯
-
-ā¤Ēā¤žā¤ āĨ⤝ā¤āĨā¤°ā¤Ž ā¤āĨ ā¤ā¤¸ ā¤ā¤žā¤ ā¤ŽāĨā¤, ā¤ā¤Ēā¤āĨ ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤āĨ ā¤āĨ⤎āĨ⤤āĨ⤰ ā¤ŽāĨ⤠ā¤
ā¤ā¤¤ā¤°āĨ⤍ā¤ŋā¤šā¤ŋ⤤ ā¤ŦāĨ⤍ā¤ŋā¤¯ā¤žā¤ĻāĨ ā¤
ā¤ĩā¤§ā¤žā¤°ā¤Ŗā¤žā¤ā¤ ⤏āĨ ā¤Ē⤰ā¤ŋā¤ā¤ŋ⤤ ā¤ā¤°ā¤žā¤¯ā¤ž ā¤ā¤žā¤ā¤ā¤ž, ā¤¯ā¤š ā¤āĨā¤¯ā¤ž ā¤šāĨ, ā¤ā¤¸ā¤ā¤ž ā¤ā¤¤ā¤ŋā¤šā¤žā¤¸ ā¤āĨā¤¯ā¤ž ā¤šāĨ ā¤ā¤° ā¤ā¤¸ā¤āĨ ā¤¸ā¤žā¤Ĩ ā¤ā¤žā¤Ž ā¤ā¤°ā¤¨āĨ ā¤āĨ ⤞ā¤ŋ⤠ā¤ļāĨ⤧ā¤ā¤°āĨā¤¤ā¤žā¤ā¤ ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž ā¤ā¤Ē⤝āĨ⤠ā¤āĨ ā¤ā¤žā¤¨āĨ ā¤ĩā¤žā¤˛āĨ ⤤ā¤ā¤¨āĨā¤āĨ⤠ā¤āĨ ā¤Ŧā¤žā¤°āĨ ā¤ŽāĨ⤠ā¤ā¤žā¤¨āĨā¤ā¤āĨāĨ¤ ā¤ā¤ā¤ ā¤ā¤ ā¤¸ā¤žā¤Ĩ ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤āĨ ā¤ā¤¸ ⤍⤠ā¤ĻāĨ⤍ā¤ŋā¤¯ā¤ž ā¤āĨ ā¤ā¤āĨ⤏ā¤ĒāĨ⤞āĨ⤰ ā¤ā¤°āĨā¤!
-
-
-> ā¤Ŧā¤ŋ⤞ ā¤ā¤āĨ⤏āĨāĨ⤰āĨā¤Ą ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž ⤤⤏āĨā¤ĩāĨ⤰ ā¤
⤍⤏āĨā¤ĒāĨ⤞ā¤ļ ā¤Ē⤰
-
-### ā¤Ēā¤žā¤
-
-1. [ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤ā¤ž ā¤Ē⤰ā¤ŋā¤ā¤¯](../1-intro-to-ML/README.md)
-1. [ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤ā¤° ā¤.ā¤ā¤. ā¤ā¤ž ā¤ā¤¤ā¤ŋā¤šā¤žā¤¸ ](../2-history-of-ML/README.md)
-1. [⤍ā¤ŋ⤎āĨā¤Ēā¤āĨā¤ˇā¤¤ā¤ž ā¤ā¤° ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤](../3-fairness/README.md)
-1. [ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤āĨ ⤤ā¤ā¤¨āĨā¤āĨ](../4-techniques-of-ML/README.md)
-
-### ā¤āĨ⤰āĨā¤Ąā¤ŋā¤
-
-"ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤ā¤ž ā¤Ē⤰ā¤ŋā¤ā¤¯" [ā¤ŽāĨā¤šā¤ŽāĨā¤Žā¤Ļ ā¤¸ā¤žā¤ā¤ŋā¤Ŧ ā¤ā¤žā¤¨ ā¤ā¤Ŗā¤žā¤ ](https://twitter.com/Sakibinan), [ā¤ā¤°āĨ⤍āĨā¤˛ā¤ž ā¤
⤞ā¤āĨ⤍āĨ⤝⤠](https://twitter.com/ornelladotcom) ā¤ā¤° [ā¤āĨ⤍ ⤞āĨā¤Ē⤰ ](https://twitter.com/jenlooper) ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž âĨ ⤏āĨ ⤞ā¤ŋā¤ā¤ž ā¤ā¤¯ā¤ž
-
-"ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤ā¤° ā¤.ā¤ā¤. ā¤ā¤ž ā¤ā¤¤ā¤ŋā¤šā¤žā¤¸" [ā¤āĨ⤍ ⤞āĨā¤Ē⤰ ](https://twitter.com/jenlooper) ā¤ā¤° [ā¤ā¤ŽāĨ ā¤ŦāĨā¤¯ā¤Ą](https://twitter.com/AmyKateNicho) ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž âĨ ⤏āĨ ⤞ā¤ŋā¤ā¤ž ā¤ā¤¯ā¤ž
-
-"⤍ā¤ŋ⤎āĨā¤Ēā¤āĨā¤ˇā¤¤ā¤ž ā¤ā¤° ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤" [ā¤āĨā¤ŽāĨā¤ŽāĨ ā¤ā¤ŽāĨā¤°ā¤ž](https://twitter.com/girliemac) ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž âĨ ⤏āĨ ⤞ā¤ŋā¤ā¤ž ā¤ā¤¯ā¤ž
-
-"ā¤Žā¤ļāĨ⤍ ⤞⤰āĨ⤍ā¤ŋā¤ā¤ ā¤āĨ ⤤ā¤ā¤¨āĨā¤" [ā¤āĨ⤍ ⤞āĨā¤Ē⤰](https://twitter.com/jenlooper) ā¤ā¤° [ā¤āĨ⤰ā¤ŋ⤏ ⤍āĨ⤰ā¤ŋā¤ā¤ ](https://twitter.com/softchris) ā¤ĻāĨā¤ĩā¤žā¤°ā¤ž âĨ ⤏āĨ ⤞ā¤ŋā¤ā¤ž ā¤ā¤¯ā¤ž
-
-
-
-
-
diff --git a/1-Introduction/translations/README.id.md b/1-Introduction/translations/README.id.md
deleted file mode 100644
index 0e6cc557..00000000
--- a/1-Introduction/translations/README.id.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# Pengantar Machine Learning
-
-Di bagian kurikulum ini, Kamu akan berkenalan dengan konsep yang mendasari bidang Machine Learning, apa itu Machine Learning, dan belajar mengenai
-sejarah serta teknik-teknik yang digunakan oleh para peneliti. Ayo jelajahi dunia baru Machine Learning bersama!
-
-
-> Foto oleh Bill Oxford di Unsplash
-
-### Pelajaran
-
-1. [Pengantar Machine Learning](../1-intro-to-ML/translations/README.id.md)
-1. [Sejarah dari Machine Learning dan AI](../2-history-of-ML/translations/README.id.md)
-1. [Keadilan dan Machine Learning](../3-fairness/translations/README.id.md)
-1. [Teknik-Teknik Machine Learning](../4-techniques-of-ML/translations/README.id.md)
-### Penghargaan
-
-"Pengantar Machine Learning" ditulis dengan âĨī¸ oleh sebuah tim yang terdiri dari [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) dan [Jen Looper](https://twitter.com/jenlooper)
-
-"Sejarah dari Machine Learning dan AI" ditulis dengan âĨī¸ oleh [Jen Looper](https://twitter.com/jenlooper) dan [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"Keadilan dan Machine Learning" ditulis dengan âĨī¸ oleh [Tomomi Imura](https://twitter.com/girliemac)
-
-"Teknik-Teknik Machine Learning" ditulis dengan âĨī¸ oleh [Jen Looper](https://twitter.com/jenlooper) dan [Chris Noring](https://twitter.com/softchris)
diff --git a/1-Introduction/translations/README.it.md b/1-Introduction/translations/README.it.md
deleted file mode 100644
index a9460c26..00000000
--- a/1-Introduction/translations/README.it.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# Introduzione a machine learning
-
-In questa sezione del programma di studi, verranno presentati i concetti di base sottostanti machine learning, di cosa si tratta, e si imparerà la sua storia e le tecniche utilizzate dai ricercatori per lavorarci. Si esplorerà insieme questo nuovo mondo di ML!
-
-
-> Foto di Bill Oxford su Unsplash
-
-### Lezioni
-
-1. [Introduzione a machine learning](../1-intro-to-ML/translations/README.it.md)
-1. [La storia di machine learning e dell'AI](../2-history-of-ML/translations/README.it.md)
-1. [Equità e machine learning](../3-fairness/translations/README.it.md)
-1. [Tecniche di machine learning](../4-techniques-of-ML/translations/README.it.md)
-### Crediti
-
-"Introduzione a Machine Learning" scritto con âĨī¸ da un team di persone tra cui [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) e [Jen Looper](https://twitter.com/jenlooper)
-
-"La Storia di Machine Learning" scritto con âĨī¸ da [Jen Looper](https://twitter.com/jenlooper) e [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"Equità e Machine Learning" scritto con âĨī¸ da [Tomomi Imura](https://twitter.com/girliemac)
-
-"Tecniche di Machine Learning" scritto con âĨī¸ da [Jen Looper](https://twitter.com/jenlooper) e [Chris Noring](https://twitter.com/softchris)
\ No newline at end of file
diff --git a/1-Introduction/translations/README.ja.md b/1-Introduction/translations/README.ja.md
deleted file mode 100644
index de7b6ff2..00000000
--- a/1-Introduction/translations/README.ja.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# æŠæĸ°åĻįŋã¸ãŽå°å
Ĩ
-
-ããŽãģã¯ãˇã§ãŗã§ã¯ãæŠæĸ°åĻįŋãŽåéãŽåēį¤ã¨ãĒãæĻåŋĩãæŠæĸ°åĻįŋã¨ã¯äŊããį´šäģããããŽæ´å˛ãį įŠļč
ãæŠæĸ°åĻįŋãæąãéãĢäŊŋį¨ããæčĄãĢã¤ããĻåĻãŗãžãã æ°ããMLãŽä¸įãä¸įˇãĢæĸæąããĻãããžãããīŧ
-
-
-> UnsplashãŽBill OxfordãĢããåį
-
-### ãŦããšãŗ
-
-1. [æŠæĸ°åĻįŋã¸ãŽå°å
Ĩ](../1-intro-to-ML/translations/README.ja.md)
-1. [æŠæĸ°åĻįŋã¨AIãŽæ´å˛](../2-history-of-ML/translations/README.ja.md)
-1. [æŠæĸ°åĻįŋãĢãããå
Ŧåšŗã](../3-fairness/translations/README.ja.md)
-1. [æŠæĸ°åĻįŋãŽæčĄ](../4-techniques-of-ML/translations/README.ja.md)
-
-### ã¯ãŦã¸ãã
-
-"æŠæĸ°åĻįŋã¸ãŽå°å
Ĩ "ã¯ã[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)ã[Ornella Altunyan](https://twitter.com/ornelladotcom)ã[Jen Looper](https://twitter.com/jenlooper)ãĒãŠãŽããŧã ãĢããŖãĻåļäŊãããžããã
-
-"æŠæĸ°åĻįŋã¨AIãŽæ´å˛" ã¯[Jen Looper](https://twitter.com/jenlooper)ã[Amy Boyd](https://twitter.com/AmyKateNicho)ãĢããŖãĻåļäŊãããžããã
-
-"å
Ŧåšŗæ§ã¨æŠæĸ°åĻįŋ"ã¯[Tomomi Imura](https://twitter.com/girliemac) ãĢããŖãĻåļäŊãããžããã
-
-"æŠæĸ°åĻįŋãŽæčĄ"ã¯[Jen Looper](https://twitter.com/jenlooper)ã¨[Chris Noring](https://twitter.com/softchris) ãĢããŖãĻåļäŊãããžããã
diff --git a/1-Introduction/translations/README.ko.md b/1-Introduction/translations/README.ko.md
deleted file mode 100644
index 4a5147a6..00000000
--- a/1-Introduction/translations/README.ko.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 머ė ëŦë ėę°í기
-
-ėģ¤ëĻŦíëŧė ė´ ėšė
ėė, 머ė ëŦë íëė 기ė´ę° ë ę¸°ëŗ¸ ę°ë
, ė미, ėėŦė ė°ęĩŦėę° ė´ėŠíë 기ė ė ë°°ė¸ ėė ė
ëë¤. ėëĄė´ MLė ė¸ęŗëĄ ę°ė´ ëǍíė ë ëŠėë¤!
-
-
-> Photo by Bill Oxford on Unsplash
-
-### ę°ė
-
-1. [머ė ëŦë ėę°í기](../1-intro-to-ML/translations/README.ko.md)
-1. [머ė ëŦëęŗŧ AIė ėėŦ](../2-history-of-ML/translations/README.ko.md)
-1. [ęŗĩė ėąęŗŧ 머ė ëŦë](../3-fairness/translations/README.ko.md)
-1. [머ė ëŦëė 기ė ](../4-techniques-of-ML/translations/README.ko.md)
-
-### íŦë ë§
-
-"Introduction to Machine Learning" was written with âĨī¸ by a team of folks including [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) and [Jen Looper](https://twitter.com/jenlooper)
-
-"The History of Machine Learning" was written with âĨī¸ by [Jen Looper](https://twitter.com/jenlooper) and [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"Fairness and Machine Learning" was written with âĨī¸ by [Tomomi Imura](https://twitter.com/girliemac)
-
-"Techniques of Machine Learning" was written with âĨī¸ by [Jen Looper](https://twitter.com/jenlooper) and [Chris Noring](https://twitter.com/softchris)
\ No newline at end of file
diff --git a/1-Introduction/translations/README.pt-br.md b/1-Introduction/translations/README.pt-br.md
deleted file mode 100644
index 317f5eda..00000000
--- a/1-Introduction/translations/README.pt-br.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# IntroduÃ§ÃŖo ao machine learning
-
-Nesta seÃ§ÃŖo do curso, vocÃĒ conhecerÃĄ os conceitos bÃĄsicos do machine learning, o que ele Ê, e aprenderÃĄ sobre sua histÃŗria e as tÊcnicas que os pesquisadores usam para trabalhar com ele. Vamos explorar este novo mundo de ML juntos!
-
-
-> Foto por Bill Oxford em Unsplash
-
-### LiçÃĩes
-
-1. [IntroduÃ§ÃŖo ao machine learning](../1-intro-to-ML/translations/README.pt-br.md)
-2. [A histÃŗria do machine learning e AI](../2-history-of-ML/translations/README.pt-br.md)
-3. [Equidade e machine learning](../3-fairness/translations/README.pt-br.md)
-4. [TÊcnicas de machine learning](../4-techniques-of-ML/translations/README.pt-br.md)
-
-### CrÊditos
-
-"IntroduÃ§ÃŖo ao Machine Learning" foi escrito com âĨī¸ por uma equipe de pessoas, incluindo [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) e [Jen Looper](https://twitter.com/jenlooper)
-
-"A histÃŗria do Machine Learning e AI" foi escrito com âĨī¸ por [Jen Looper](https://twitter.com/jenlooper) e [Amy Boyd](https://twitter.com/AmyKateNicho)
-
-"Equidade e Machine Learning" foi escrito com âĨī¸ por [Tomomi Imura](https://twitter.com/girliemac)
-
-"TÊcnicas de Machine Learning" foi escrito com âĨī¸ por [Jen Looper](https://twitter.com/jenlooper) e [Chris Noring](https://twitter.com/softchris)
\ No newline at end of file
diff --git a/1-Introduction/translations/README.ru.md b/1-Introduction/translations/README.ru.md
deleted file mode 100644
index 87569f68..00000000
--- a/1-Introduction/translations/README.ru.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# ĐвĐĩĐ´ĐĩĐŊиĐĩ в ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ
-
-Đ ŅŅĐžĐŧ ŅаСдĐĩĐģĐĩ ŅŅĐĩĐąĐŊОК ĐŋŅĐžĐŗŅаĐŧĐŧŅ Đ˛Ņ ĐŋОСĐŊаĐēĐžĐŧиŅĐĩŅŅ Ņ ĐąĐ°ĐˇĐžĐ˛ŅĐŧи ĐēĐžĐŊŅĐĩĐŋŅиŅĐŧи, ĐģĐĩĐļаŅиĐŧи в ĐžŅĐŊОвĐĩ ОйĐģаŅŅи ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ; ŅСĐŊаĐĩŅĐĩ, ŅŅĐž ŅŅĐž ŅаĐēĐžĐĩ, а ŅаĐēĐļĐĩ ĐĩĐŗĐž иŅŅĐžŅĐ¸Ņ Đ¸ ĐŧĐĩŅОдŅ, ĐēĐžŅĐžŅŅĐĩ иŅŅĐģĐĩдОваŅĐĩĐģи иŅĐŋĐžĐģŅСŅŅŅ Đ´ĐģŅ ŅайОŅŅ Ņ ĐŊиĐŧ. ĐаваКŅĐĩ вĐŧĐĩŅŅĐĩ иŅŅĐģĐĩĐ´ŅĐĩĐŧ ŅŅĐžŅ ĐŊОвŅĐš ĐŧĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ!
-
-
-> ФОŅĐž ĐиĐģĐģа ĐĐēŅŅĐžŅда ĐŊа Unsplash
-
-### ĐŖŅĐžĐēи
-
-1. [ĐвĐĩĐ´ĐĩĐŊиĐĩ в ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ](../1-intro-to-ML/README.md)
-1. [ĐŅŅĐžŅĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊĐ¸Ņ Đ¸ иŅĐēŅŅŅŅвĐĩĐŊĐŊĐžĐŗĐž иĐŊŅĐĩĐģĐģĐĩĐēŅа](../2-history-of-ML/README.md)
-1. [ĐĄĐŋŅавĐĩĐ´ĐģивОŅŅŅ Đ¸ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩ](../3-fairness/README.md)
-1. [ĐŅиĐĩĐŧŅ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅ](../4-techniques-of-ML/README.md)
-### ĐĐģĐ°ĐŗĐžĐ´Đ°ŅĐŊĐžŅŅи
-
-ÂĢĐвĐĩĐ´ĐĩĐŊиĐĩ в ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩÂģ ĐąŅĐģĐž ĐŊаĐŋиŅаĐŊĐž Ņ âĨ ī¸ĐŗŅŅĐŋĐŋОК ĐģŅĐ´ĐĩĐš, вĐēĐģŅŅĐ°Ņ [ĐŅŅ
аĐŧĐŧад ХаĐēий ĐĨаĐŊ ĐĐŊаĐŊ](https://twitter.com/Sakibinan), [ĐŅĐŊĐĩĐģĐģа ĐĐģŅŅĐŊŅĐŊ](https://twitter.com/ornelladotcom) и [ĐĐļĐĩĐŊ ĐŅĐŋĐĩŅ](https://twitter.com/jenlooper)
-
-ÂĢĐŅŅĐžŅĐ¸Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅÂģ ĐąŅĐģа ĐŊаĐŋиŅаĐŊа Ņ âĨ ī¸[ĐĐļĐĩĐŊ ĐŅĐŋĐĩŅ](https://twitter.com/jenlooper) и [ĐĐŧи ĐОКд](https://twitter.com/AmyKateNicho)
-
-ÂĢĐĄĐŋŅавĐĩĐ´ĐģивОŅŅŅ Đ¸ ĐŧаŅиĐŊĐŊĐžĐĩ ОйŅŅĐĩĐŊиĐĩÂģ ĐąŅĐģи ĐŊаĐŋиŅаĐŊŅ Ņ âĨ ī¸[ĐĸĐžĐŧĐžĐŧи ĐĐŧŅŅа](https://twitter.com/girliemac)
-
-ÂĢĐĐĩŅĐžĐ´Ņ ĐŧаŅиĐŊĐŊĐžĐŗĐž ОйŅŅĐĩĐŊиŅÂģ ĐąŅĐģи ĐŊаĐŋиŅаĐŊŅ Ņ âĨ ī¸[ĐĐļĐĩĐŊ ĐŅĐŋĐĩŅ](https://twitter.com/jenlooper) и [ĐŅĐ¸Ņ ĐĐžŅиĐŊĐŗ](https://twitter.com/softchris)
diff --git a/1-Introduction/translations/README.zh-cn.md b/1-Introduction/translations/README.zh-cn.md
deleted file mode 100644
index 862a5b0a..00000000
--- a/1-Introduction/translations/README.zh-cn.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# æēå¨åĻäš å
Ĩé¨
-
-č¯žį¨įæŦįĢ čå°ä¸ēæ¨äģįģæēå¨åĻäš éĸåčåįåēæŦæĻåŋĩãäģäšæ¯æēå¨åĻäš īŧåšļåĻäš åŽįåå˛äģĨåæžä¸ēæ¤ååēč´ĄįŽįææ¯į įŠļč
äģŦã莊æäģŦä¸čĩˇåŧå§æĸį´ĸæēå¨åĻäš įå
¨æ°ä¸įå§īŧ
-
-
-> åžįįą Bill Oxford æäžīŧæĨčĒ Unsplash
-
-### č¯žį¨åŽæ
-
-1. [æēå¨åĻäš įŽäģ](../1-intro-to-ML/translations/README.zh-cn.md)
-1. [æēå¨åĻäš įåå˛](../2-history-of-ML/translations/README.zh-cn.md)
-1. [æēå¨åĻäš ä¸įå
Ŧåšŗæ§](../3-fairness/translations/README.zh-cn.md)
-1. [æēå¨åĻäš ææ¯](../4-techniques-of-ML/translations/README.zh-cn.md)
-### č´č°ĸ
-
-"æēå¨åĻäš įŽäģ"įą [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) å [Jen Looper](https://twitter.com/jenlooper)īŧå
ąååž âĨī¸ čäŊ
-
-"æēå¨åĻäš åäēēåˇĨæēčŊåå˛" įą [Jen Looper](https://twitter.com/jenlooper) å [Amy Boyd](https://twitter.com/AmyKateNicho)åž âĨī¸ čäŊ
-
-"å
Ŧåšŗæ§ä¸æēå¨åĻäš " įą [Tomomi Imura](https://twitter.com/girliemac) åž âĨī¸ čäŊ
-
-"æēå¨åĻäš įææ¯" įą [Jen Looper](https://twitter.com/jenlooper) å [Chris Noring](https://twitter.com/softchris) åž âĨī¸ čäŊ
diff --git a/1-Introduction/translations/README.zh-tw.md b/1-Introduction/translations/README.zh-tw.md
deleted file mode 100644
index 36359d0d..00000000
--- a/1-Introduction/translations/README.zh-tw.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# æŠå¨å¸įŋå
Ĩé
-
-čǞį¨įæŦįĢ į¯å°į翍äģį´šæŠå¨å¸įŋé åčåžįåēæŦæĻåŋĩãäģéēŊæ¯æŠå¨å¸įŋīŧä¸Ļå¸įŋåŽįæˇå˛äģĨåæžį翤ååēč˛ĸįģįæčĄį įŠļč
åãčŽæåä¸čĩˇéå§æĸį´ĸæŠå¨å¸įŋįå
¨æ°ä¸įå§īŧ
-
-
-> åįįą Bill OxfordæäžīŧäžčĒ Unsplash
-
-### čǞį¨åŽæ
-
-1. [æŠå¨å¸įŋį°Ąäģ](../1-intro-to-ML/translations/README.zh-tw.md)
-1. [æŠå¨å¸įŋ῎å˛](../2-history-of-ML/translations/README.zh-tw.md)
-1. [æŠå¨å¸įŋä¸įå
Ŧåšŗæ§](../3-fairness/translations/README.zh-tw.md)
-1. [æŠå¨å¸įŋæčĄ](../4-techniques-of-ML/translations/README.zh-tw.md)
-### č´čŦ
-
-"æŠå¨å¸įŋį°Ąäģ"įą [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) å [Jen Looper](https://twitter.com/jenlooper)īŧå
ąååž âĨī¸ čäŊ
-
-"æŠå¨å¸įŋåäēēåˇĨæēčŊæˇå˛" įą [Jen Looper](https://twitter.com/jenlooper) å [Amy Boyd](https://twitter.com/AmyKateNicho)åž âĨī¸ čäŊ
-
-"å
Ŧåšŗæ§čæŠå¨å¸įŋ" įą [Tomomi Imura](https://twitter.com/girliemac) åž âĨī¸ čäŊ
-
-"æŠå¨å¸įŋįæčĄ" įą [Jen Looper](https://twitter.com/jenlooper) å [Chris Noring](https://twitter.com/softchris) åž âĨī¸ čäŊ
diff --git a/9-Real-World/2-Debugging-ML-Models/images/ceos.png b/9-Real-World/2-Debugging-ML-Models/images/ceos.png
deleted file mode 100644
index 358bfca2..00000000
Binary files a/9-Real-World/2-Debugging-ML-Models/images/ceos.png and /dev/null differ
diff --git a/9-Real-World/2-Debugging-ML-Models/images/fairness.png b/9-Real-World/2-Debugging-ML-Models/images/fairness.png
deleted file mode 100644
index ad6c370c..00000000
Binary files a/9-Real-World/2-Debugging-ML-Models/images/fairness.png and /dev/null differ
diff --git a/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-en-tr.png b/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-en-tr.png
deleted file mode 100644
index 652278bd..00000000
Binary files a/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-en-tr.png and /dev/null differ
diff --git a/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-tr-en.png b/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-tr-en.png
deleted file mode 100644
index eee8dedc..00000000
Binary files a/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-tr-en.png and /dev/null differ
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.es.md b/9-Real-World/2-Debugging-ML-Models/translations/README.es.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.fr.md b/9-Real-World/2-Debugging-ML-Models/translations/README.fr.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.id.md b/9-Real-World/2-Debugging-ML-Models/translations/README.id.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.it.md b/9-Real-World/2-Debugging-ML-Models/translations/README.it.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.ja.md b/9-Real-World/2-Debugging-ML-Models/translations/README.ja.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.ko.md b/9-Real-World/2-Debugging-ML-Models/translations/README.ko.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.pt-br.md b/9-Real-World/2-Debugging-ML-Models/translations/README.pt-br.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.zh-cn.md b/9-Real-World/2-Debugging-ML-Models/translations/README.zh-cn.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/README.zh-tw.md b/9-Real-World/2-Debugging-ML-Models/translations/README.zh-tw.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.fr.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.fr.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.id.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.id.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.it.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.it.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.ja.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.ja.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.ko.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.ko.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.pt-br.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.pt-br.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-cn.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-cn.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-tw.md b/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-tw.md
deleted file mode 100644
index e69de29b..00000000
diff --git a/.gitignore b/Example project - Github_pages/.gitignore
similarity index 100%
rename from .gitignore
rename to Example project - Github_pages/.gitignore
diff --git a/2-Regression/1-Tools/README.md b/Example project - Github_pages/2-Regression/1-Tools/README.md
similarity index 100%
rename from 2-Regression/1-Tools/README.md
rename to Example project - Github_pages/2-Regression/1-Tools/README.md
diff --git a/2-Regression/1-Tools/assignment.md b/Example project - Github_pages/2-Regression/1-Tools/assignment.md
similarity index 100%
rename from 2-Regression/1-Tools/assignment.md
rename to Example project - Github_pages/2-Regression/1-Tools/assignment.md
diff --git a/2-Regression/1-Tools/images/encouRage.jpg b/Example project - Github_pages/2-Regression/1-Tools/images/encouRage.jpg
similarity index 100%
rename from 2-Regression/1-Tools/images/encouRage.jpg
rename to Example project - Github_pages/2-Regression/1-Tools/images/encouRage.jpg
diff --git a/2-Regression/1-Tools/images/notebook.jpg b/Example project - Github_pages/2-Regression/1-Tools/images/notebook.jpg
similarity index 100%
rename from 2-Regression/1-Tools/images/notebook.jpg
rename to Example project - Github_pages/2-Regression/1-Tools/images/notebook.jpg
diff --git a/2-Regression/1-Tools/images/scatterplot.png b/Example project - Github_pages/2-Regression/1-Tools/images/scatterplot.png
similarity index 100%
rename from 2-Regression/1-Tools/images/scatterplot.png
rename to Example project - Github_pages/2-Regression/1-Tools/images/scatterplot.png
diff --git a/2-Regression/1-Tools/notebook.ipynb b/Example project - Github_pages/2-Regression/1-Tools/notebook.ipynb
similarity index 100%
rename from 2-Regression/1-Tools/notebook.ipynb
rename to Example project - Github_pages/2-Regression/1-Tools/notebook.ipynb
diff --git a/2-Regression/1-Tools/solution/Julia/README.md b/Example project - Github_pages/2-Regression/1-Tools/solution/Julia/README.md
similarity index 100%
rename from 2-Regression/1-Tools/solution/Julia/README.md
rename to Example project - Github_pages/2-Regression/1-Tools/solution/Julia/README.md
diff --git a/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb
similarity index 100%
rename from 2-Regression/1-Tools/solution/R/lesson_1-R.ipynb
rename to Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb
diff --git a/2-Regression/1-Tools/solution/R/lesson_1.Rmd b/Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1.Rmd
similarity index 100%
rename from 2-Regression/1-Tools/solution/R/lesson_1.Rmd
rename to Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1.Rmd
diff --git a/2-Regression/1-Tools/solution/R/lesson_1.html b/Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1.html
similarity index 100%
rename from 2-Regression/1-Tools/solution/R/lesson_1.html
rename to Example project - Github_pages/2-Regression/1-Tools/solution/R/lesson_1.html
diff --git a/2-Regression/1-Tools/solution/notebook.ipynb b/Example project - Github_pages/2-Regression/1-Tools/solution/notebook.ipynb
similarity index 100%
rename from 2-Regression/1-Tools/solution/notebook.ipynb
rename to Example project - Github_pages/2-Regression/1-Tools/solution/notebook.ipynb
diff --git a/2-Regression/1-Tools/translations/README.es.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.es.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.es.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.es.md
diff --git a/2-Regression/1-Tools/translations/README.id.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.id.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.id.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.id.md
diff --git a/2-Regression/1-Tools/translations/README.it.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.it.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.it.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.it.md
diff --git a/2-Regression/1-Tools/translations/README.ja.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.ja.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.ja.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.ja.md
diff --git a/2-Regression/1-Tools/translations/README.ko.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.ko.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.ko.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.ko.md
diff --git a/2-Regression/1-Tools/translations/README.pt-br.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.pt-br.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.pt-br.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.pt-br.md
diff --git a/2-Regression/1-Tools/translations/README.pt.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.pt.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.pt.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.pt.md
diff --git a/2-Regression/1-Tools/translations/README.tr.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.tr.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.tr.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.tr.md
diff --git a/2-Regression/1-Tools/translations/README.zh-cn.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.zh-cn.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.zh-cn.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.zh-cn.md
diff --git a/2-Regression/1-Tools/translations/README.zh-tw.md b/Example project - Github_pages/2-Regression/1-Tools/translations/README.zh-tw.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/README.zh-tw.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/README.zh-tw.md
diff --git a/2-Regression/1-Tools/translations/assignment.es.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.es.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.es.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.es.md
diff --git a/2-Regression/1-Tools/translations/assignment.it.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.it.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.it.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.it.md
diff --git a/2-Regression/1-Tools/translations/assignment.ja.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.ja.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.ja.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.ja.md
diff --git a/2-Regression/1-Tools/translations/assignment.ko.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.ko.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.ko.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.ko.md
diff --git a/2-Regression/1-Tools/translations/assignment.pt-br.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.pt-br.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.pt-br.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.pt-br.md
diff --git a/2-Regression/1-Tools/translations/assignment.pt.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.pt.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.pt.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.pt.md
diff --git a/2-Regression/1-Tools/translations/assignment.tr.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.tr.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.tr.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.tr.md
diff --git a/2-Regression/1-Tools/translations/assignment.zh-cn.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.zh-cn.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.zh-cn.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.zh-cn.md
diff --git a/2-Regression/1-Tools/translations/assignment.zh-tw.md b/Example project - Github_pages/2-Regression/1-Tools/translations/assignment.zh-tw.md
similarity index 100%
rename from 2-Regression/1-Tools/translations/assignment.zh-tw.md
rename to Example project - Github_pages/2-Regression/1-Tools/translations/assignment.zh-tw.md
diff --git a/2-Regression/2-Data/README.md b/Example project - Github_pages/2-Regression/2-Data/README.md
similarity index 100%
rename from 2-Regression/2-Data/README.md
rename to Example project - Github_pages/2-Regression/2-Data/README.md
diff --git a/2-Regression/2-Data/assignment.md b/Example project - Github_pages/2-Regression/2-Data/assignment.md
similarity index 100%
rename from 2-Regression/2-Data/assignment.md
rename to Example project - Github_pages/2-Regression/2-Data/assignment.md
diff --git a/2-Regression/2-Data/images/barchart.png b/Example project - Github_pages/2-Regression/2-Data/images/barchart.png
similarity index 100%
rename from 2-Regression/2-Data/images/barchart.png
rename to Example project - Github_pages/2-Regression/2-Data/images/barchart.png
diff --git a/2-Regression/2-Data/images/data-visualization.png b/Example project - Github_pages/2-Regression/2-Data/images/data-visualization.png
similarity index 100%
rename from 2-Regression/2-Data/images/data-visualization.png
rename to Example project - Github_pages/2-Regression/2-Data/images/data-visualization.png
diff --git a/2-Regression/2-Data/images/dplyr_wrangling.png b/Example project - Github_pages/2-Regression/2-Data/images/dplyr_wrangling.png
similarity index 100%
rename from 2-Regression/2-Data/images/dplyr_wrangling.png
rename to Example project - Github_pages/2-Regression/2-Data/images/dplyr_wrangling.png
diff --git a/2-Regression/2-Data/images/scatterplot.png b/Example project - Github_pages/2-Regression/2-Data/images/scatterplot.png
similarity index 100%
rename from 2-Regression/2-Data/images/scatterplot.png
rename to Example project - Github_pages/2-Regression/2-Data/images/scatterplot.png
diff --git a/2-Regression/2-Data/images/unruly_data.jpg b/Example project - Github_pages/2-Regression/2-Data/images/unruly_data.jpg
similarity index 100%
rename from 2-Regression/2-Data/images/unruly_data.jpg
rename to Example project - Github_pages/2-Regression/2-Data/images/unruly_data.jpg
diff --git a/2-Regression/2-Data/notebook.ipynb b/Example project - Github_pages/2-Regression/2-Data/notebook.ipynb
similarity index 100%
rename from 2-Regression/2-Data/notebook.ipynb
rename to Example project - Github_pages/2-Regression/2-Data/notebook.ipynb
diff --git a/2-Regression/2-Data/solution/Julia/README.md b/Example project - Github_pages/2-Regression/2-Data/solution/Julia/README.md
similarity index 100%
rename from 2-Regression/2-Data/solution/Julia/README.md
rename to Example project - Github_pages/2-Regression/2-Data/solution/Julia/README.md
diff --git a/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2-R.ipynb
similarity index 100%
rename from 2-Regression/2-Data/solution/R/lesson_2-R.ipynb
rename to Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2-R.ipynb
diff --git a/2-Regression/2-Data/solution/R/lesson_2.Rmd b/Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2.Rmd
similarity index 100%
rename from 2-Regression/2-Data/solution/R/lesson_2.Rmd
rename to Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2.Rmd
diff --git a/2-Regression/2-Data/solution/R/lesson_2.html b/Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2.html
similarity index 100%
rename from 2-Regression/2-Data/solution/R/lesson_2.html
rename to Example project - Github_pages/2-Regression/2-Data/solution/R/lesson_2.html
diff --git a/2-Regression/2-Data/solution/notebook.ipynb b/Example project - Github_pages/2-Regression/2-Data/solution/notebook.ipynb
similarity index 100%
rename from 2-Regression/2-Data/solution/notebook.ipynb
rename to Example project - Github_pages/2-Regression/2-Data/solution/notebook.ipynb
diff --git a/2-Regression/2-Data/translations/README.es.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.es.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.es.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.es.md
diff --git a/2-Regression/2-Data/translations/README.id.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.id.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.id.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.id.md
diff --git a/2-Regression/2-Data/translations/README.it.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.it.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.it.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.it.md
diff --git a/2-Regression/2-Data/translations/README.ja.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.ja.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.ja.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.ja.md
diff --git a/2-Regression/2-Data/translations/README.ko.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.ko.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.ko.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.ko.md
diff --git a/2-Regression/2-Data/translations/README.pt-br.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.pt-br.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.pt-br.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.pt-br.md
diff --git a/2-Regression/2-Data/translations/README.pt.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.pt.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.pt.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.pt.md
diff --git a/2-Regression/2-Data/translations/README.zh-cn.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.zh-cn.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.zh-cn.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.zh-cn.md
diff --git a/2-Regression/2-Data/translations/README.zh-tw.md b/Example project - Github_pages/2-Regression/2-Data/translations/README.zh-tw.md
similarity index 100%
rename from 2-Regression/2-Data/translations/README.zh-tw.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/README.zh-tw.md
diff --git a/2-Regression/2-Data/translations/assignment.es.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.es.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.es.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.es.md
diff --git a/2-Regression/2-Data/translations/assignment.it.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.it.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.it.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.it.md
diff --git a/2-Regression/2-Data/translations/assignment.ja.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.ja.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.ja.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.ja.md
diff --git a/2-Regression/2-Data/translations/assignment.ko.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.ko.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.ko.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.ko.md
diff --git a/2-Regression/2-Data/translations/assignment.pt-br.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.pt-br.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.pt-br.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.pt-br.md
diff --git a/2-Regression/2-Data/translations/assignment.pt.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.pt.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.pt.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.pt.md
diff --git a/2-Regression/2-Data/translations/assignment.zh-cn.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.zh-cn.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.zh-cn.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.zh-cn.md
diff --git a/2-Regression/2-Data/translations/assignment.zh-tw.md b/Example project - Github_pages/2-Regression/2-Data/translations/assignment.zh-tw.md
similarity index 100%
rename from 2-Regression/2-Data/translations/assignment.zh-tw.md
rename to Example project - Github_pages/2-Regression/2-Data/translations/assignment.zh-tw.md
diff --git a/2-Regression/3-Linear/README.md b/Example project - Github_pages/2-Regression/3-Linear/README.md
similarity index 100%
rename from 2-Regression/3-Linear/README.md
rename to Example project - Github_pages/2-Regression/3-Linear/README.md
diff --git a/2-Regression/3-Linear/assignment.md b/Example project - Github_pages/2-Regression/3-Linear/assignment.md
similarity index 100%
rename from 2-Regression/3-Linear/assignment.md
rename to Example project - Github_pages/2-Regression/3-Linear/assignment.md
diff --git a/2-Regression/3-Linear/images/calculation.png b/Example project - Github_pages/2-Regression/3-Linear/images/calculation.png
similarity index 100%
rename from 2-Regression/3-Linear/images/calculation.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/calculation.png
diff --git a/2-Regression/3-Linear/images/heatmap.png b/Example project - Github_pages/2-Regression/3-Linear/images/heatmap.png
similarity index 100%
rename from 2-Regression/3-Linear/images/heatmap.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/heatmap.png
diff --git a/2-Regression/3-Linear/images/janitor.jpg b/Example project - Github_pages/2-Regression/3-Linear/images/janitor.jpg
similarity index 100%
rename from 2-Regression/3-Linear/images/janitor.jpg
rename to Example project - Github_pages/2-Regression/3-Linear/images/janitor.jpg
diff --git a/2-Regression/3-Linear/images/linear-polynomial.png b/Example project - Github_pages/2-Regression/3-Linear/images/linear-polynomial.png
similarity index 100%
rename from 2-Regression/3-Linear/images/linear-polynomial.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/linear-polynomial.png
diff --git a/2-Regression/3-Linear/images/linear-results.png b/Example project - Github_pages/2-Regression/3-Linear/images/linear-results.png
similarity index 100%
rename from 2-Regression/3-Linear/images/linear-results.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/linear-results.png
diff --git a/2-Regression/3-Linear/images/linear.png b/Example project - Github_pages/2-Regression/3-Linear/images/linear.png
similarity index 100%
rename from 2-Regression/3-Linear/images/linear.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/linear.png
diff --git a/2-Regression/3-Linear/images/pie-pumpkins-scatter.png b/Example project - Github_pages/2-Regression/3-Linear/images/pie-pumpkins-scatter.png
similarity index 100%
rename from 2-Regression/3-Linear/images/pie-pumpkins-scatter.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/pie-pumpkins-scatter.png
diff --git a/2-Regression/3-Linear/images/poly-results.png b/Example project - Github_pages/2-Regression/3-Linear/images/poly-results.png
similarity index 100%
rename from 2-Regression/3-Linear/images/poly-results.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/poly-results.png
diff --git a/2-Regression/3-Linear/images/polynomial.png b/Example project - Github_pages/2-Regression/3-Linear/images/polynomial.png
similarity index 100%
rename from 2-Regression/3-Linear/images/polynomial.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/polynomial.png
diff --git a/2-Regression/3-Linear/images/price-by-variety.png b/Example project - Github_pages/2-Regression/3-Linear/images/price-by-variety.png
similarity index 100%
rename from 2-Regression/3-Linear/images/price-by-variety.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/price-by-variety.png
diff --git a/2-Regression/3-Linear/images/recipes.png b/Example project - Github_pages/2-Regression/3-Linear/images/recipes.png
similarity index 100%
rename from 2-Regression/3-Linear/images/recipes.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/recipes.png
diff --git a/2-Regression/3-Linear/images/scatter-dayofyear-color.png b/Example project - Github_pages/2-Regression/3-Linear/images/scatter-dayofyear-color.png
similarity index 100%
rename from 2-Regression/3-Linear/images/scatter-dayofyear-color.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/scatter-dayofyear-color.png
diff --git a/2-Regression/3-Linear/images/scatter-dayofyear.png b/Example project - Github_pages/2-Regression/3-Linear/images/scatter-dayofyear.png
similarity index 100%
rename from 2-Regression/3-Linear/images/scatter-dayofyear.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/scatter-dayofyear.png
diff --git a/2-Regression/3-Linear/images/slope.png b/Example project - Github_pages/2-Regression/3-Linear/images/slope.png
similarity index 100%
rename from 2-Regression/3-Linear/images/slope.png
rename to Example project - Github_pages/2-Regression/3-Linear/images/slope.png
diff --git a/2-Regression/3-Linear/notebook.ipynb b/Example project - Github_pages/2-Regression/3-Linear/notebook.ipynb
similarity index 100%
rename from 2-Regression/3-Linear/notebook.ipynb
rename to Example project - Github_pages/2-Regression/3-Linear/notebook.ipynb
diff --git a/2-Regression/3-Linear/solution/Julia/README.md b/Example project - Github_pages/2-Regression/3-Linear/solution/Julia/README.md
similarity index 100%
rename from 2-Regression/3-Linear/solution/Julia/README.md
rename to Example project - Github_pages/2-Regression/3-Linear/solution/Julia/README.md
diff --git a/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb
similarity index 100%
rename from 2-Regression/3-Linear/solution/R/lesson_3-R.ipynb
rename to Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb
diff --git a/2-Regression/3-Linear/solution/R/lesson_3.Rmd b/Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3.Rmd
similarity index 100%
rename from 2-Regression/3-Linear/solution/R/lesson_3.Rmd
rename to Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3.Rmd
diff --git a/2-Regression/3-Linear/solution/R/lesson_3.html b/Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3.html
similarity index 100%
rename from 2-Regression/3-Linear/solution/R/lesson_3.html
rename to Example project - Github_pages/2-Regression/3-Linear/solution/R/lesson_3.html
diff --git a/2-Regression/3-Linear/solution/notebook.ipynb b/Example project - Github_pages/2-Regression/3-Linear/solution/notebook.ipynb
similarity index 100%
rename from 2-Regression/3-Linear/solution/notebook.ipynb
rename to Example project - Github_pages/2-Regression/3-Linear/solution/notebook.ipynb
diff --git a/2-Regression/3-Linear/translations/README.es.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.es.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.es.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.es.md
diff --git a/2-Regression/3-Linear/translations/README.id.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.id.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.id.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.id.md
diff --git a/2-Regression/3-Linear/translations/README.it.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.it.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.it.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.it.md
diff --git a/2-Regression/3-Linear/translations/README.ja.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.ja.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.ja.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.ja.md
diff --git a/2-Regression/3-Linear/translations/README.ko.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.ko.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.ko.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.ko.md
diff --git a/2-Regression/3-Linear/translations/README.pt-br.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.pt-br.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.pt-br.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.pt-br.md
diff --git a/2-Regression/3-Linear/translations/README.pt.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.pt.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.pt.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.pt.md
diff --git a/2-Regression/3-Linear/translations/README.zh-cn.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.zh-cn.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.zh-cn.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.zh-cn.md
diff --git a/2-Regression/3-Linear/translations/README.zh-tw.md b/Example project - Github_pages/2-Regression/3-Linear/translations/README.zh-tw.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/README.zh-tw.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/README.zh-tw.md
diff --git a/2-Regression/3-Linear/translations/assignment.es.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.es.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.es.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.es.md
diff --git a/2-Regression/3-Linear/translations/assignment.it.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.it.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.it.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.it.md
diff --git a/2-Regression/3-Linear/translations/assignment.ja.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.ja.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.ja.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.ja.md
diff --git a/2-Regression/3-Linear/translations/assignment.ko.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.ko.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.ko.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.ko.md
diff --git a/2-Regression/3-Linear/translations/assignment.pt-br.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.pt-br.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.pt-br.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.pt-br.md
diff --git a/2-Regression/3-Linear/translations/assignment.pt.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.pt.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.pt.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.pt.md
diff --git a/2-Regression/3-Linear/translations/assignment.zh-cn.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.zh-cn.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.zh-cn.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.zh-cn.md
diff --git a/2-Regression/3-Linear/translations/assignment.zh-tw.md b/Example project - Github_pages/2-Regression/3-Linear/translations/assignment.zh-tw.md
similarity index 100%
rename from 2-Regression/3-Linear/translations/assignment.zh-tw.md
rename to Example project - Github_pages/2-Regression/3-Linear/translations/assignment.zh-tw.md
diff --git a/2-Regression/4-Logistic/README.md b/Example project - Github_pages/2-Regression/4-Logistic/README.md
similarity index 100%
rename from 2-Regression/4-Logistic/README.md
rename to Example project - Github_pages/2-Regression/4-Logistic/README.md
diff --git a/2-Regression/4-Logistic/assignment.md b/Example project - Github_pages/2-Regression/4-Logistic/assignment.md
similarity index 100%
rename from 2-Regression/4-Logistic/assignment.md
rename to Example project - Github_pages/2-Regression/4-Logistic/assignment.md
diff --git a/2-Regression/4-Logistic/images/ROC.png b/Example project - Github_pages/2-Regression/4-Logistic/images/ROC.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/ROC.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/ROC.png
diff --git a/2-Regression/4-Logistic/images/ROC_2.png b/Example project - Github_pages/2-Regression/4-Logistic/images/ROC_2.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/ROC_2.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/ROC_2.png
diff --git a/2-Regression/4-Logistic/images/confusion-matrix.png b/Example project - Github_pages/2-Regression/4-Logistic/images/confusion-matrix.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/confusion-matrix.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/confusion-matrix.png
diff --git a/2-Regression/4-Logistic/images/grid.png b/Example project - Github_pages/2-Regression/4-Logistic/images/grid.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/grid.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/grid.png
diff --git a/2-Regression/4-Logistic/images/linear-vs-logistic.png b/Example project - Github_pages/2-Regression/4-Logistic/images/linear-vs-logistic.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/linear-vs-logistic.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/linear-vs-logistic.png
diff --git a/2-Regression/4-Logistic/images/logistic-linear.png b/Example project - Github_pages/2-Regression/4-Logistic/images/logistic-linear.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/logistic-linear.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/logistic-linear.png
diff --git a/2-Regression/4-Logistic/images/logistic.png b/Example project - Github_pages/2-Regression/4-Logistic/images/logistic.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/logistic.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/logistic.png
diff --git a/2-Regression/4-Logistic/images/multinomial-ordinal.png b/Example project - Github_pages/2-Regression/4-Logistic/images/multinomial-ordinal.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/multinomial-ordinal.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/multinomial-ordinal.png
diff --git a/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png b/Example project - Github_pages/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/multinomial-vs-ordinal.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png
diff --git a/2-Regression/4-Logistic/images/pumpkin-classifier.png b/Example project - Github_pages/2-Regression/4-Logistic/images/pumpkin-classifier.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/pumpkin-classifier.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/pumpkin-classifier.png
diff --git a/2-Regression/4-Logistic/images/pumpkins_catplot_1.png b/Example project - Github_pages/2-Regression/4-Logistic/images/pumpkins_catplot_1.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/pumpkins_catplot_1.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/pumpkins_catplot_1.png
diff --git a/2-Regression/4-Logistic/images/pumpkins_catplot_2.png b/Example project - Github_pages/2-Regression/4-Logistic/images/pumpkins_catplot_2.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/pumpkins_catplot_2.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/pumpkins_catplot_2.png
diff --git a/2-Regression/4-Logistic/images/r_learners_sm.jpeg b/Example project - Github_pages/2-Regression/4-Logistic/images/r_learners_sm.jpeg
similarity index 100%
rename from 2-Regression/4-Logistic/images/r_learners_sm.jpeg
rename to Example project - Github_pages/2-Regression/4-Logistic/images/r_learners_sm.jpeg
diff --git a/2-Regression/4-Logistic/images/sigmoid.png b/Example project - Github_pages/2-Regression/4-Logistic/images/sigmoid.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/sigmoid.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/sigmoid.png
diff --git a/2-Regression/4-Logistic/images/swarm.png b/Example project - Github_pages/2-Regression/4-Logistic/images/swarm.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/swarm.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/swarm.png
diff --git a/2-Regression/4-Logistic/images/swarm_2.png b/Example project - Github_pages/2-Regression/4-Logistic/images/swarm_2.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/swarm_2.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/swarm_2.png
diff --git a/2-Regression/4-Logistic/images/violin.png b/Example project - Github_pages/2-Regression/4-Logistic/images/violin.png
similarity index 100%
rename from 2-Regression/4-Logistic/images/violin.png
rename to Example project - Github_pages/2-Regression/4-Logistic/images/violin.png
diff --git a/2-Regression/4-Logistic/notebook.ipynb b/Example project - Github_pages/2-Regression/4-Logistic/notebook.ipynb
similarity index 100%
rename from 2-Regression/4-Logistic/notebook.ipynb
rename to Example project - Github_pages/2-Regression/4-Logistic/notebook.ipynb
diff --git a/2-Regression/4-Logistic/solution/Julia/README.md b/Example project - Github_pages/2-Regression/4-Logistic/solution/Julia/README.md
similarity index 100%
rename from 2-Regression/4-Logistic/solution/Julia/README.md
rename to Example project - Github_pages/2-Regression/4-Logistic/solution/Julia/README.md
diff --git a/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb
similarity index 100%
rename from 2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb
rename to Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb
diff --git a/2-Regression/4-Logistic/solution/R/lesson_4.Rmd b/Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4.Rmd
similarity index 100%
rename from 2-Regression/4-Logistic/solution/R/lesson_4.Rmd
rename to Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4.Rmd
diff --git a/2-Regression/4-Logistic/solution/R/lesson_4.html b/Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4.html
similarity index 100%
rename from 2-Regression/4-Logistic/solution/R/lesson_4.html
rename to Example project - Github_pages/2-Regression/4-Logistic/solution/R/lesson_4.html
diff --git a/2-Regression/4-Logistic/solution/notebook.ipynb b/Example project - Github_pages/2-Regression/4-Logistic/solution/notebook.ipynb
similarity index 100%
rename from 2-Regression/4-Logistic/solution/notebook.ipynb
rename to Example project - Github_pages/2-Regression/4-Logistic/solution/notebook.ipynb
diff --git a/2-Regression/4-Logistic/translations/README.es.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.es.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.es.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.es.md
diff --git a/2-Regression/4-Logistic/translations/README.id.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.id.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.id.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.id.md
diff --git a/2-Regression/4-Logistic/translations/README.it.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.it.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.it.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.it.md
diff --git a/2-Regression/4-Logistic/translations/README.ja.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.ja.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.ja.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.ja.md
diff --git a/2-Regression/4-Logistic/translations/README.ko.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.ko.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.ko.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.ko.md
diff --git a/2-Regression/4-Logistic/translations/README.pt-br.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.pt-br.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.pt-br.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.pt-br.md
diff --git a/2-Regression/4-Logistic/translations/README.pt.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.pt.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.pt.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.pt.md
diff --git a/2-Regression/4-Logistic/translations/README.zh-cn.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.zh-cn.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.zh-cn.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.zh-cn.md
diff --git a/2-Regression/4-Logistic/translations/README.zh-tw.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/README.zh-tw.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/README.zh-tw.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/README.zh-tw.md
diff --git a/2-Regression/4-Logistic/translations/assignment.es.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.es.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.es.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.es.md
diff --git a/2-Regression/4-Logistic/translations/assignment.it.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.it.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.it.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.it.md
diff --git a/2-Regression/4-Logistic/translations/assignment.ja.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.ja.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.ja.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.ja.md
diff --git a/2-Regression/4-Logistic/translations/assignment.ko.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.ko.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.ko.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.ko.md
diff --git a/2-Regression/4-Logistic/translations/assignment.pt-br.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.pt-br.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.pt-br.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.pt-br.md
diff --git a/2-Regression/4-Logistic/translations/assignment.pt.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.pt.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.pt.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.pt.md
diff --git a/2-Regression/4-Logistic/translations/assignment.zh-cn.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.zh-cn.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.zh-cn.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.zh-cn.md
diff --git a/2-Regression/4-Logistic/translations/assignment.zh-tw.md b/Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.zh-tw.md
similarity index 100%
rename from 2-Regression/4-Logistic/translations/assignment.zh-tw.md
rename to Example project - Github_pages/2-Regression/4-Logistic/translations/assignment.zh-tw.md
diff --git a/2-Regression/README.md b/Example project - Github_pages/2-Regression/README.md
similarity index 100%
rename from 2-Regression/README.md
rename to Example project - Github_pages/2-Regression/README.md
diff --git a/2-Regression/data/US-pumpkins.csv b/Example project - Github_pages/2-Regression/data/US-pumpkins.csv
similarity index 100%
rename from 2-Regression/data/US-pumpkins.csv
rename to Example project - Github_pages/2-Regression/data/US-pumpkins.csv
diff --git a/2-Regression/images/jack-o-lanterns.jpg b/Example project - Github_pages/2-Regression/images/jack-o-lanterns.jpg
similarity index 100%
rename from 2-Regression/images/jack-o-lanterns.jpg
rename to Example project - Github_pages/2-Regression/images/jack-o-lanterns.jpg
diff --git a/2-Regression/translations/README.es.md b/Example project - Github_pages/2-Regression/translations/README.es.md
similarity index 100%
rename from 2-Regression/translations/README.es.md
rename to Example project - Github_pages/2-Regression/translations/README.es.md
diff --git a/2-Regression/translations/README.fr.md b/Example project - Github_pages/2-Regression/translations/README.fr.md
similarity index 100%
rename from 2-Regression/translations/README.fr.md
rename to Example project - Github_pages/2-Regression/translations/README.fr.md
diff --git a/2-Regression/translations/README.hi.md b/Example project - Github_pages/2-Regression/translations/README.hi.md
similarity index 100%
rename from 2-Regression/translations/README.hi.md
rename to Example project - Github_pages/2-Regression/translations/README.hi.md
diff --git a/2-Regression/translations/README.id.md b/Example project - Github_pages/2-Regression/translations/README.id.md
similarity index 100%
rename from 2-Regression/translations/README.id.md
rename to Example project - Github_pages/2-Regression/translations/README.id.md
diff --git a/2-Regression/translations/README.it.md b/Example project - Github_pages/2-Regression/translations/README.it.md
similarity index 100%
rename from 2-Regression/translations/README.it.md
rename to Example project - Github_pages/2-Regression/translations/README.it.md
diff --git a/2-Regression/translations/README.ja.md b/Example project - Github_pages/2-Regression/translations/README.ja.md
similarity index 100%
rename from 2-Regression/translations/README.ja.md
rename to Example project - Github_pages/2-Regression/translations/README.ja.md
diff --git a/2-Regression/translations/README.ko.md b/Example project - Github_pages/2-Regression/translations/README.ko.md
similarity index 100%
rename from 2-Regression/translations/README.ko.md
rename to Example project - Github_pages/2-Regression/translations/README.ko.md
diff --git a/2-Regression/translations/README.pt-br.md b/Example project - Github_pages/2-Regression/translations/README.pt-br.md
similarity index 100%
rename from 2-Regression/translations/README.pt-br.md
rename to Example project - Github_pages/2-Regression/translations/README.pt-br.md
diff --git a/2-Regression/translations/README.pt.md b/Example project - Github_pages/2-Regression/translations/README.pt.md
similarity index 100%
rename from 2-Regression/translations/README.pt.md
rename to Example project - Github_pages/2-Regression/translations/README.pt.md
diff --git a/2-Regression/translations/README.ru.md b/Example project - Github_pages/2-Regression/translations/README.ru.md
similarity index 100%
rename from 2-Regression/translations/README.ru.md
rename to Example project - Github_pages/2-Regression/translations/README.ru.md
diff --git a/2-Regression/translations/README.tr.md b/Example project - Github_pages/2-Regression/translations/README.tr.md
similarity index 100%
rename from 2-Regression/translations/README.tr.md
rename to Example project - Github_pages/2-Regression/translations/README.tr.md
diff --git a/2-Regression/translations/README.zh-cn.md b/Example project - Github_pages/2-Regression/translations/README.zh-cn.md
similarity index 100%
rename from 2-Regression/translations/README.zh-cn.md
rename to Example project - Github_pages/2-Regression/translations/README.zh-cn.md
diff --git a/2-Regression/translations/README.zh-tw.md b/Example project - Github_pages/2-Regression/translations/README.zh-tw.md
similarity index 100%
rename from 2-Regression/translations/README.zh-tw.md
rename to Example project - Github_pages/2-Regression/translations/README.zh-tw.md
diff --git a/3-Web-App/1-Web-App/README.md b/Example project - Github_pages/3-Web-App/1-Web-App/README.md
similarity index 100%
rename from 3-Web-App/1-Web-App/README.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/README.md
diff --git a/3-Web-App/1-Web-App/assignment.md b/Example project - Github_pages/3-Web-App/1-Web-App/assignment.md
similarity index 100%
rename from 3-Web-App/1-Web-App/assignment.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/assignment.md
diff --git a/3-Web-App/1-Web-App/data/ufos.csv b/Example project - Github_pages/3-Web-App/1-Web-App/data/ufos.csv
similarity index 100%
rename from 3-Web-App/1-Web-App/data/ufos.csv
rename to Example project - Github_pages/3-Web-App/1-Web-App/data/ufos.csv
diff --git a/3-Web-App/1-Web-App/images/lobe.png b/Example project - Github_pages/3-Web-App/1-Web-App/images/lobe.png
similarity index 100%
rename from 3-Web-App/1-Web-App/images/lobe.png
rename to Example project - Github_pages/3-Web-App/1-Web-App/images/lobe.png
diff --git a/3-Web-App/1-Web-App/notebook.ipynb b/Example project - Github_pages/3-Web-App/1-Web-App/notebook.ipynb
similarity index 100%
rename from 3-Web-App/1-Web-App/notebook.ipynb
rename to Example project - Github_pages/3-Web-App/1-Web-App/notebook.ipynb
diff --git a/3-Web-App/1-Web-App/solution/notebook.ipynb b/Example project - Github_pages/3-Web-App/1-Web-App/solution/notebook.ipynb
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/notebook.ipynb
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/notebook.ipynb
diff --git a/3-Web-App/1-Web-App/solution/ufo-model.pkl b/Example project - Github_pages/3-Web-App/1-Web-App/solution/ufo-model.pkl
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/ufo-model.pkl
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/ufo-model.pkl
diff --git a/3-Web-App/1-Web-App/solution/web-app/app.py b/Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/app.py
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/web-app/app.py
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/app.py
diff --git a/3-Web-App/1-Web-App/solution/web-app/requirements.txt b/Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/requirements.txt
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/web-app/requirements.txt
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/requirements.txt
diff --git a/3-Web-App/1-Web-App/solution/web-app/static/css/styles.css b/Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/static/css/styles.css
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/web-app/static/css/styles.css
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/static/css/styles.css
diff --git a/3-Web-App/1-Web-App/solution/web-app/templates/index.html b/Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/templates/index.html
similarity index 100%
rename from 3-Web-App/1-Web-App/solution/web-app/templates/index.html
rename to Example project - Github_pages/3-Web-App/1-Web-App/solution/web-app/templates/index.html
diff --git a/3-Web-App/1-Web-App/translations/README.es.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.es.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.es.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.es.md
diff --git a/3-Web-App/1-Web-App/translations/README.it.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.it.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.it.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.it.md
diff --git a/3-Web-App/1-Web-App/translations/README.ja.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.ja.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.ja.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.ja.md
diff --git a/3-Web-App/1-Web-App/translations/README.ko.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.ko.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.ko.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.ko.md
diff --git a/3-Web-App/1-Web-App/translations/README.pt-br.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.pt-br.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.pt-br.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.pt-br.md
diff --git a/3-Web-App/1-Web-App/translations/README.pt.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.pt.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.pt.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.pt.md
diff --git a/3-Web-App/1-Web-App/translations/README.zh-cn.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.zh-cn.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.zh-cn.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.zh-cn.md
diff --git a/3-Web-App/1-Web-App/translations/README.zh-tw.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/README.zh-tw.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/README.zh-tw.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/README.zh-tw.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.es.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.es.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.es.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.es.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.it.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.it.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.it.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.it.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.ja.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.ja.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.ja.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.ja.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.ko.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.ko.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.ko.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.ko.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.pt-br.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.pt-br.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.pt-br.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.pt-br.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.pt.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.pt.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.pt.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.pt.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.zh-cn.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.zh-cn.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.zh-cn.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.zh-cn.md
diff --git a/3-Web-App/1-Web-App/translations/assignment.zh-tw.md b/Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.zh-tw.md
similarity index 100%
rename from 3-Web-App/1-Web-App/translations/assignment.zh-tw.md
rename to Example project - Github_pages/3-Web-App/1-Web-App/translations/assignment.zh-tw.md
diff --git a/3-Web-App/README.md b/Example project - Github_pages/3-Web-App/README.md
similarity index 100%
rename from 3-Web-App/README.md
rename to Example project - Github_pages/3-Web-App/README.md
diff --git a/3-Web-App/images/ufo.jpg b/Example project - Github_pages/3-Web-App/images/ufo.jpg
similarity index 100%
rename from 3-Web-App/images/ufo.jpg
rename to Example project - Github_pages/3-Web-App/images/ufo.jpg
diff --git a/3-Web-App/translations/README.es.md b/Example project - Github_pages/3-Web-App/translations/README.es.md
similarity index 100%
rename from 3-Web-App/translations/README.es.md
rename to Example project - Github_pages/3-Web-App/translations/README.es.md
diff --git a/3-Web-App/translations/README.hi.md b/Example project - Github_pages/3-Web-App/translations/README.hi.md
similarity index 100%
rename from 3-Web-App/translations/README.hi.md
rename to Example project - Github_pages/3-Web-App/translations/README.hi.md
diff --git a/3-Web-App/translations/README.it.md b/Example project - Github_pages/3-Web-App/translations/README.it.md
similarity index 100%
rename from 3-Web-App/translations/README.it.md
rename to Example project - Github_pages/3-Web-App/translations/README.it.md
diff --git a/3-Web-App/translations/README.ja.md b/Example project - Github_pages/3-Web-App/translations/README.ja.md
similarity index 100%
rename from 3-Web-App/translations/README.ja.md
rename to Example project - Github_pages/3-Web-App/translations/README.ja.md
diff --git a/3-Web-App/translations/README.ko.md b/Example project - Github_pages/3-Web-App/translations/README.ko.md
similarity index 100%
rename from 3-Web-App/translations/README.ko.md
rename to Example project - Github_pages/3-Web-App/translations/README.ko.md
diff --git a/3-Web-App/translations/README.pt-br.md b/Example project - Github_pages/3-Web-App/translations/README.pt-br.md
similarity index 100%
rename from 3-Web-App/translations/README.pt-br.md
rename to Example project - Github_pages/3-Web-App/translations/README.pt-br.md
diff --git a/3-Web-App/translations/README.pt.md b/Example project - Github_pages/3-Web-App/translations/README.pt.md
similarity index 100%
rename from 3-Web-App/translations/README.pt.md
rename to Example project - Github_pages/3-Web-App/translations/README.pt.md
diff --git a/3-Web-App/translations/README.ru.md b/Example project - Github_pages/3-Web-App/translations/README.ru.md
similarity index 100%
rename from 3-Web-App/translations/README.ru.md
rename to Example project - Github_pages/3-Web-App/translations/README.ru.md
diff --git a/3-Web-App/translations/README.zh-cn.md b/Example project - Github_pages/3-Web-App/translations/README.zh-cn.md
similarity index 100%
rename from 3-Web-App/translations/README.zh-cn.md
rename to Example project - Github_pages/3-Web-App/translations/README.zh-cn.md
diff --git a/3-Web-App/translations/README.zh-tw.md b/Example project - Github_pages/3-Web-App/translations/README.zh-tw.md
similarity index 100%
rename from 3-Web-App/translations/README.zh-tw.md
rename to Example project - Github_pages/3-Web-App/translations/README.zh-tw.md
diff --git a/4-Classification/1-Introduction/README.md b/Example project - Github_pages/4-Classification/1-Introduction/README.md
similarity index 100%
rename from 4-Classification/1-Introduction/README.md
rename to Example project - Github_pages/4-Classification/1-Introduction/README.md
diff --git a/4-Classification/1-Introduction/assignment.md b/Example project - Github_pages/4-Classification/1-Introduction/assignment.md
similarity index 100%
rename from 4-Classification/1-Introduction/assignment.md
rename to Example project - Github_pages/4-Classification/1-Introduction/assignment.md
diff --git a/4-Classification/1-Introduction/images/binary-multiclass.png b/Example project - Github_pages/4-Classification/1-Introduction/images/binary-multiclass.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/binary-multiclass.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/binary-multiclass.png
diff --git a/4-Classification/1-Introduction/images/chinese.png b/Example project - Github_pages/4-Classification/1-Introduction/images/chinese.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/chinese.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/chinese.png
diff --git a/4-Classification/1-Introduction/images/cuisine-dist.png b/Example project - Github_pages/4-Classification/1-Introduction/images/cuisine-dist.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/cuisine-dist.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/cuisine-dist.png
diff --git a/4-Classification/1-Introduction/images/dplyr_filter.jpg b/Example project - Github_pages/4-Classification/1-Introduction/images/dplyr_filter.jpg
similarity index 100%
rename from 4-Classification/1-Introduction/images/dplyr_filter.jpg
rename to Example project - Github_pages/4-Classification/1-Introduction/images/dplyr_filter.jpg
diff --git a/4-Classification/1-Introduction/images/indian.png b/Example project - Github_pages/4-Classification/1-Introduction/images/indian.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/indian.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/indian.png
diff --git a/4-Classification/1-Introduction/images/japanese.png b/Example project - Github_pages/4-Classification/1-Introduction/images/japanese.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/japanese.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/japanese.png
diff --git a/4-Classification/1-Introduction/images/korean.png b/Example project - Github_pages/4-Classification/1-Introduction/images/korean.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/korean.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/korean.png
diff --git a/4-Classification/1-Introduction/images/pinch.png b/Example project - Github_pages/4-Classification/1-Introduction/images/pinch.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/pinch.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/pinch.png
diff --git a/4-Classification/1-Introduction/images/r_learners_sm.jpeg b/Example project - Github_pages/4-Classification/1-Introduction/images/r_learners_sm.jpeg
similarity index 100%
rename from 4-Classification/1-Introduction/images/r_learners_sm.jpeg
rename to Example project - Github_pages/4-Classification/1-Introduction/images/r_learners_sm.jpeg
diff --git a/4-Classification/1-Introduction/images/recipes.png b/Example project - Github_pages/4-Classification/1-Introduction/images/recipes.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/recipes.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/recipes.png
diff --git a/4-Classification/1-Introduction/images/thai.png b/Example project - Github_pages/4-Classification/1-Introduction/images/thai.png
similarity index 100%
rename from 4-Classification/1-Introduction/images/thai.png
rename to Example project - Github_pages/4-Classification/1-Introduction/images/thai.png
diff --git a/4-Classification/1-Introduction/notebook.ipynb b/Example project - Github_pages/4-Classification/1-Introduction/notebook.ipynb
similarity index 100%
rename from 4-Classification/1-Introduction/notebook.ipynb
rename to Example project - Github_pages/4-Classification/1-Introduction/notebook.ipynb
diff --git a/4-Classification/1-Introduction/solution/Julia/README.md b/Example project - Github_pages/4-Classification/1-Introduction/solution/Julia/README.md
similarity index 100%
rename from 4-Classification/1-Introduction/solution/Julia/README.md
rename to Example project - Github_pages/4-Classification/1-Introduction/solution/Julia/README.md
diff --git a/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb
similarity index 100%
rename from 4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb
rename to Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb
diff --git a/4-Classification/1-Introduction/solution/R/lesson_10.Rmd b/Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10.Rmd
similarity index 100%
rename from 4-Classification/1-Introduction/solution/R/lesson_10.Rmd
rename to Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10.Rmd
diff --git a/4-Classification/1-Introduction/solution/R/lesson_10.html b/Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10.html
similarity index 100%
rename from 4-Classification/1-Introduction/solution/R/lesson_10.html
rename to Example project - Github_pages/4-Classification/1-Introduction/solution/R/lesson_10.html
diff --git a/4-Classification/1-Introduction/solution/notebook.ipynb b/Example project - Github_pages/4-Classification/1-Introduction/solution/notebook.ipynb
similarity index 100%
rename from 4-Classification/1-Introduction/solution/notebook.ipynb
rename to Example project - Github_pages/4-Classification/1-Introduction/solution/notebook.ipynb
diff --git a/4-Classification/1-Introduction/translations/README.es.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.es.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.es.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.es.md
diff --git a/4-Classification/1-Introduction/translations/README.it.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.it.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.it.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.it.md
diff --git a/4-Classification/1-Introduction/translations/README.ko.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.ko.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.ko.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.ko.md
diff --git a/4-Classification/1-Introduction/translations/README.pt-br.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.pt-br.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.pt-br.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.pt-br.md
diff --git a/4-Classification/1-Introduction/translations/README.tr.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.tr.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.tr.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.tr.md
diff --git a/4-Classification/1-Introduction/translations/README.zh-cn.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/README.zh-cn.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/README.zh-cn.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/README.zh-cn.md
diff --git a/4-Classification/1-Introduction/translations/assignment.es.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.es.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.es.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.es.md
diff --git a/4-Classification/1-Introduction/translations/assignment.it.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.it.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.it.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.it.md
diff --git a/4-Classification/1-Introduction/translations/assignment.ko.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.ko.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.ko.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.ko.md
diff --git a/4-Classification/1-Introduction/translations/assignment.pt-br.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.pt-br.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.pt-br.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.pt-br.md
diff --git a/4-Classification/1-Introduction/translations/assignment.tr.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.tr.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.tr.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.tr.md
diff --git a/4-Classification/1-Introduction/translations/assignment.zh-cn.md b/Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.zh-cn.md
similarity index 100%
rename from 4-Classification/1-Introduction/translations/assignment.zh-cn.md
rename to Example project - Github_pages/4-Classification/1-Introduction/translations/assignment.zh-cn.md
diff --git a/4-Classification/2-Classifiers-1/README.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/README.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/README.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/README.md
diff --git a/4-Classification/2-Classifiers-1/assignment.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/assignment.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/assignment.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/assignment.md
diff --git a/4-Classification/2-Classifiers-1/images/cheatsheet.png b/Example project - Github_pages/4-Classification/2-Classifiers-1/images/cheatsheet.png
similarity index 100%
rename from 4-Classification/2-Classifiers-1/images/cheatsheet.png
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/images/cheatsheet.png
diff --git a/4-Classification/2-Classifiers-1/images/comparison.png b/Example project - Github_pages/4-Classification/2-Classifiers-1/images/comparison.png
similarity index 100%
rename from 4-Classification/2-Classifiers-1/images/comparison.png
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/images/comparison.png
diff --git a/4-Classification/2-Classifiers-1/images/parsnip.jpg b/Example project - Github_pages/4-Classification/2-Classifiers-1/images/parsnip.jpg
similarity index 100%
rename from 4-Classification/2-Classifiers-1/images/parsnip.jpg
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/images/parsnip.jpg
diff --git a/4-Classification/2-Classifiers-1/images/solvers.png b/Example project - Github_pages/4-Classification/2-Classifiers-1/images/solvers.png
similarity index 100%
rename from 4-Classification/2-Classifiers-1/images/solvers.png
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/images/solvers.png
diff --git a/4-Classification/2-Classifiers-1/notebook.ipynb b/Example project - Github_pages/4-Classification/2-Classifiers-1/notebook.ipynb
similarity index 100%
rename from 4-Classification/2-Classifiers-1/notebook.ipynb
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/notebook.ipynb
diff --git a/4-Classification/2-Classifiers-1/solution/Julia/README.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/solution/Julia/README.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/solution/Julia/README.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/solution/Julia/README.md
diff --git a/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb
similarity index 100%
rename from 4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb
diff --git a/4-Classification/2-Classifiers-1/solution/R/lesson_11.Rmd b/Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11.Rmd
similarity index 100%
rename from 4-Classification/2-Classifiers-1/solution/R/lesson_11.Rmd
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11.Rmd
diff --git a/4-Classification/2-Classifiers-1/solution/R/lesson_11.html b/Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11.html
similarity index 100%
rename from 4-Classification/2-Classifiers-1/solution/R/lesson_11.html
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/solution/R/lesson_11.html
diff --git a/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/Example project - Github_pages/4-Classification/2-Classifiers-1/solution/notebook.ipynb
similarity index 100%
rename from 4-Classification/2-Classifiers-1/solution/notebook.ipynb
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/solution/notebook.ipynb
diff --git a/4-Classification/2-Classifiers-1/translations/README.es.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.es.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.es.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.es.md
diff --git a/4-Classification/2-Classifiers-1/translations/README.it.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.it.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.it.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.it.md
diff --git a/4-Classification/2-Classifiers-1/translations/README.ko.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.ko.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.ko.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.ko.md
diff --git a/4-Classification/2-Classifiers-1/translations/README.pt-br.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.pt-br.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.pt-br.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.pt-br.md
diff --git a/4-Classification/2-Classifiers-1/translations/README.tr.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.tr.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.tr.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.tr.md
diff --git a/4-Classification/2-Classifiers-1/translations/README.zh-cn.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.zh-cn.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/README.zh-cn.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/README.zh-cn.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.es.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.es.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.es.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.es.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.it.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.it.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.it.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.it.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.ko.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.ko.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.ko.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.ko.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.pt-br.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.pt-br.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.pt-br.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.pt-br.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.tr.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.tr.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.tr.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.tr.md
diff --git a/4-Classification/2-Classifiers-1/translations/assignment.zh-cn.md b/Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.zh-cn.md
similarity index 100%
rename from 4-Classification/2-Classifiers-1/translations/assignment.zh-cn.md
rename to Example project - Github_pages/4-Classification/2-Classifiers-1/translations/assignment.zh-cn.md
diff --git a/4-Classification/3-Classifiers-2/README.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/README.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/README.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/README.md
diff --git a/4-Classification/3-Classifiers-2/assignment.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/assignment.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/assignment.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/assignment.md
diff --git a/4-Classification/3-Classifiers-2/images/map.png b/Example project - Github_pages/4-Classification/3-Classifiers-2/images/map.png
similarity index 100%
rename from 4-Classification/3-Classifiers-2/images/map.png
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/images/map.png
diff --git a/4-Classification/3-Classifiers-2/images/r_learners_sm.jpeg b/Example project - Github_pages/4-Classification/3-Classifiers-2/images/r_learners_sm.jpeg
similarity index 100%
rename from 4-Classification/3-Classifiers-2/images/r_learners_sm.jpeg
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/images/r_learners_sm.jpeg
diff --git a/4-Classification/3-Classifiers-2/images/svm.png b/Example project - Github_pages/4-Classification/3-Classifiers-2/images/svm.png
similarity index 100%
rename from 4-Classification/3-Classifiers-2/images/svm.png
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/images/svm.png
diff --git a/4-Classification/3-Classifiers-2/notebook.ipynb b/Example project - Github_pages/4-Classification/3-Classifiers-2/notebook.ipynb
similarity index 100%
rename from 4-Classification/3-Classifiers-2/notebook.ipynb
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/notebook.ipynb
diff --git a/4-Classification/3-Classifiers-2/solution/Julia/README.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/solution/Julia/README.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/solution/Julia/README.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/solution/Julia/README.md
diff --git a/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb
similarity index 100%
rename from 4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb
diff --git a/4-Classification/3-Classifiers-2/solution/R/lesson_12.Rmd b/Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12.Rmd
similarity index 100%
rename from 4-Classification/3-Classifiers-2/solution/R/lesson_12.Rmd
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12.Rmd
diff --git a/4-Classification/3-Classifiers-2/solution/R/lesson_12.html b/Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12.html
similarity index 100%
rename from 4-Classification/3-Classifiers-2/solution/R/lesson_12.html
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/solution/R/lesson_12.html
diff --git a/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/Example project - Github_pages/4-Classification/3-Classifiers-2/solution/notebook.ipynb
similarity index 100%
rename from 4-Classification/3-Classifiers-2/solution/notebook.ipynb
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/solution/notebook.ipynb
diff --git a/4-Classification/3-Classifiers-2/translations/README.es.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.es.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.es.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.es.md
diff --git a/4-Classification/3-Classifiers-2/translations/README.it.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.it.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.it.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.it.md
diff --git a/4-Classification/3-Classifiers-2/translations/README.ko.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.ko.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.ko.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.ko.md
diff --git a/4-Classification/3-Classifiers-2/translations/README.pt-br.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.pt-br.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.pt-br.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.pt-br.md
diff --git a/4-Classification/3-Classifiers-2/translations/README.tr.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.tr.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.tr.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.tr.md
diff --git a/4-Classification/3-Classifiers-2/translations/README.zh-cn.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.zh-cn.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/README.zh-cn.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/README.zh-cn.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.es.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.es.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.es.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.es.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.it.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.it.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.it.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.it.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.ko.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.ko.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.ko.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.ko.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.pt-br.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.pt-br.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.pt-br.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.pt-br.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.tr.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.tr.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.tr.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.tr.md
diff --git a/4-Classification/3-Classifiers-2/translations/assignment.zh-cn.md b/Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.zh-cn.md
similarity index 100%
rename from 4-Classification/3-Classifiers-2/translations/assignment.zh-cn.md
rename to Example project - Github_pages/4-Classification/3-Classifiers-2/translations/assignment.zh-cn.md
diff --git a/4-Classification/4-Applied/README.md b/Example project - Github_pages/4-Classification/4-Applied/README.md
similarity index 100%
rename from 4-Classification/4-Applied/README.md
rename to Example project - Github_pages/4-Classification/4-Applied/README.md
diff --git a/4-Classification/4-Applied/assignment.md b/Example project - Github_pages/4-Classification/4-Applied/assignment.md
similarity index 100%
rename from 4-Classification/4-Applied/assignment.md
rename to Example project - Github_pages/4-Classification/4-Applied/assignment.md
diff --git a/4-Classification/4-Applied/images/netron.png b/Example project - Github_pages/4-Classification/4-Applied/images/netron.png
similarity index 100%
rename from 4-Classification/4-Applied/images/netron.png
rename to Example project - Github_pages/4-Classification/4-Applied/images/netron.png
diff --git a/4-Classification/4-Applied/images/web-app.png b/Example project - Github_pages/4-Classification/4-Applied/images/web-app.png
similarity index 100%
rename from 4-Classification/4-Applied/images/web-app.png
rename to Example project - Github_pages/4-Classification/4-Applied/images/web-app.png
diff --git a/4-Classification/4-Applied/notebook.ipynb b/Example project - Github_pages/4-Classification/4-Applied/notebook.ipynb
similarity index 100%
rename from 4-Classification/4-Applied/notebook.ipynb
rename to Example project - Github_pages/4-Classification/4-Applied/notebook.ipynb
diff --git a/4-Classification/4-Applied/solution/index.html b/Example project - Github_pages/4-Classification/4-Applied/solution/index.html
similarity index 100%
rename from 4-Classification/4-Applied/solution/index.html
rename to Example project - Github_pages/4-Classification/4-Applied/solution/index.html
diff --git a/4-Classification/4-Applied/solution/model.onnx b/Example project - Github_pages/4-Classification/4-Applied/solution/model.onnx
similarity index 100%
rename from 4-Classification/4-Applied/solution/model.onnx
rename to Example project - Github_pages/4-Classification/4-Applied/solution/model.onnx
diff --git a/4-Classification/4-Applied/solution/notebook.ipynb b/Example project - Github_pages/4-Classification/4-Applied/solution/notebook.ipynb
similarity index 100%
rename from 4-Classification/4-Applied/solution/notebook.ipynb
rename to Example project - Github_pages/4-Classification/4-Applied/solution/notebook.ipynb
diff --git a/4-Classification/4-Applied/translations/README.es.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.es.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.es.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.es.md
diff --git a/4-Classification/4-Applied/translations/README.it.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.it.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.it.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.it.md
diff --git a/4-Classification/4-Applied/translations/README.ko.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.ko.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.ko.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.ko.md
diff --git a/4-Classification/4-Applied/translations/README.pt-br.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.pt-br.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.pt-br.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.pt-br.md
diff --git a/4-Classification/4-Applied/translations/README.tr.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.tr.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.tr.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.tr.md
diff --git a/4-Classification/4-Applied/translations/README.zh-CN.md b/Example project - Github_pages/4-Classification/4-Applied/translations/README.zh-CN.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/README.zh-CN.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/README.zh-CN.md
diff --git a/4-Classification/4-Applied/translations/assignment.es.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.es.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.es.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.es.md
diff --git a/4-Classification/4-Applied/translations/assignment.it.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.it.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.it.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.it.md
diff --git a/4-Classification/4-Applied/translations/assignment.ko.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.ko.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.ko.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.ko.md
diff --git a/4-Classification/4-Applied/translations/assignment.pt-br.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.pt-br.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.pt-br.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.pt-br.md
diff --git a/4-Classification/4-Applied/translations/assignment.tr.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.tr.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.tr.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.tr.md
diff --git a/4-Classification/4-Applied/translations/assignment.zh-CN.md b/Example project - Github_pages/4-Classification/4-Applied/translations/assignment.zh-CN.md
similarity index 100%
rename from 4-Classification/4-Applied/translations/assignment.zh-CN.md
rename to Example project - Github_pages/4-Classification/4-Applied/translations/assignment.zh-CN.md
diff --git a/4-Classification/README.md b/Example project - Github_pages/4-Classification/README.md
similarity index 100%
rename from 4-Classification/README.md
rename to Example project - Github_pages/4-Classification/README.md
diff --git a/4-Classification/data/cleaned_cuisines.csv b/Example project - Github_pages/4-Classification/data/cleaned_cuisines.csv
similarity index 100%
rename from 4-Classification/data/cleaned_cuisines.csv
rename to Example project - Github_pages/4-Classification/data/cleaned_cuisines.csv
diff --git a/4-Classification/data/cleaned_cuisines_R.csv b/Example project - Github_pages/4-Classification/data/cleaned_cuisines_R.csv
similarity index 100%
rename from 4-Classification/data/cleaned_cuisines_R.csv
rename to Example project - Github_pages/4-Classification/data/cleaned_cuisines_R.csv
diff --git a/4-Classification/data/cuisines.csv b/Example project - Github_pages/4-Classification/data/cuisines.csv
similarity index 100%
rename from 4-Classification/data/cuisines.csv
rename to Example project - Github_pages/4-Classification/data/cuisines.csv
diff --git a/4-Classification/data/ingredient_indexes.csv b/Example project - Github_pages/4-Classification/data/ingredient_indexes.csv
similarity index 100%
rename from 4-Classification/data/ingredient_indexes.csv
rename to Example project - Github_pages/4-Classification/data/ingredient_indexes.csv
diff --git a/4-Classification/images/thai-food.jpg b/Example project - Github_pages/4-Classification/images/thai-food.jpg
similarity index 100%
rename from 4-Classification/images/thai-food.jpg
rename to Example project - Github_pages/4-Classification/images/thai-food.jpg
diff --git a/4-Classification/translations/README.es.md b/Example project - Github_pages/4-Classification/translations/README.es.md
similarity index 100%
rename from 4-Classification/translations/README.es.md
rename to Example project - Github_pages/4-Classification/translations/README.es.md
diff --git a/4-Classification/translations/README.hi.md b/Example project - Github_pages/4-Classification/translations/README.hi.md
similarity index 100%
rename from 4-Classification/translations/README.hi.md
rename to Example project - Github_pages/4-Classification/translations/README.hi.md
diff --git a/4-Classification/translations/README.it.md b/Example project - Github_pages/4-Classification/translations/README.it.md
similarity index 100%
rename from 4-Classification/translations/README.it.md
rename to Example project - Github_pages/4-Classification/translations/README.it.md
diff --git a/4-Classification/translations/README.ko.md b/Example project - Github_pages/4-Classification/translations/README.ko.md
similarity index 100%
rename from 4-Classification/translations/README.ko.md
rename to Example project - Github_pages/4-Classification/translations/README.ko.md
diff --git a/4-Classification/translations/README.pt-br.md b/Example project - Github_pages/4-Classification/translations/README.pt-br.md
similarity index 100%
rename from 4-Classification/translations/README.pt-br.md
rename to Example project - Github_pages/4-Classification/translations/README.pt-br.md
diff --git a/4-Classification/translations/README.ru.md b/Example project - Github_pages/4-Classification/translations/README.ru.md
similarity index 100%
rename from 4-Classification/translations/README.ru.md
rename to Example project - Github_pages/4-Classification/translations/README.ru.md
diff --git a/4-Classification/translations/README.tr.md b/Example project - Github_pages/4-Classification/translations/README.tr.md
similarity index 100%
rename from 4-Classification/translations/README.tr.md
rename to Example project - Github_pages/4-Classification/translations/README.tr.md
diff --git a/4-Classification/translations/README.zh-cn.md b/Example project - Github_pages/4-Classification/translations/README.zh-cn.md
similarity index 100%
rename from 4-Classification/translations/README.zh-cn.md
rename to Example project - Github_pages/4-Classification/translations/README.zh-cn.md
diff --git a/5-Clustering/1-Visualize/README.md b/Example project - Github_pages/5-Clustering/1-Visualize/README.md
similarity index 100%
rename from 5-Clustering/1-Visualize/README.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/README.md
diff --git a/5-Clustering/1-Visualize/assignment.md b/Example project - Github_pages/5-Clustering/1-Visualize/assignment.md
similarity index 100%
rename from 5-Clustering/1-Visualize/assignment.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/assignment.md
diff --git a/5-Clustering/1-Visualize/images/all-genres.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/all-genres.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/all-genres.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/all-genres.png
diff --git a/5-Clustering/1-Visualize/images/centroid.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/centroid.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/centroid.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/centroid.png
diff --git a/5-Clustering/1-Visualize/images/correlation.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/correlation.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/correlation.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/correlation.png
diff --git a/5-Clustering/1-Visualize/images/distribution.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/distribution.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/distribution.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/distribution.png
diff --git a/5-Clustering/1-Visualize/images/facetgrid.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/facetgrid.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/facetgrid.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/facetgrid.png
diff --git a/5-Clustering/1-Visualize/images/flat-nonflat.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/flat-nonflat.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/flat-nonflat.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/flat-nonflat.png
diff --git a/5-Clustering/1-Visualize/images/hierarchical.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/hierarchical.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/hierarchical.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/hierarchical.png
diff --git a/5-Clustering/1-Visualize/images/popular.png b/Example project - Github_pages/5-Clustering/1-Visualize/images/popular.png
similarity index 100%
rename from 5-Clustering/1-Visualize/images/popular.png
rename to Example project - Github_pages/5-Clustering/1-Visualize/images/popular.png
diff --git a/5-Clustering/1-Visualize/notebook.ipynb b/Example project - Github_pages/5-Clustering/1-Visualize/notebook.ipynb
similarity index 100%
rename from 5-Clustering/1-Visualize/notebook.ipynb
rename to Example project - Github_pages/5-Clustering/1-Visualize/notebook.ipynb
diff --git a/5-Clustering/1-Visualize/solution/Julia/README.md b/Example project - Github_pages/5-Clustering/1-Visualize/solution/Julia/README.md
similarity index 100%
rename from 5-Clustering/1-Visualize/solution/Julia/README.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/solution/Julia/README.md
diff --git a/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb
similarity index 100%
rename from 5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb
rename to Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb
diff --git a/5-Clustering/1-Visualize/solution/R/lesson_14.Rmd b/Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14.Rmd
similarity index 100%
rename from 5-Clustering/1-Visualize/solution/R/lesson_14.Rmd
rename to Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14.Rmd
diff --git a/5-Clustering/1-Visualize/solution/R/lesson_14.html b/Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14.html
similarity index 100%
rename from 5-Clustering/1-Visualize/solution/R/lesson_14.html
rename to Example project - Github_pages/5-Clustering/1-Visualize/solution/R/lesson_14.html
diff --git a/5-Clustering/1-Visualize/solution/notebook.ipynb b/Example project - Github_pages/5-Clustering/1-Visualize/solution/notebook.ipynb
similarity index 100%
rename from 5-Clustering/1-Visualize/solution/notebook.ipynb
rename to Example project - Github_pages/5-Clustering/1-Visualize/solution/notebook.ipynb
diff --git a/5-Clustering/1-Visualize/translations/README.es.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/README.es.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/README.es.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/README.es.md
diff --git a/5-Clustering/1-Visualize/translations/README.it.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/README.it.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/README.it.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/README.it.md
diff --git a/5-Clustering/1-Visualize/translations/README.ko.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/README.ko.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/README.ko.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/README.ko.md
diff --git a/5-Clustering/1-Visualize/translations/README.zh-cn.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/README.zh-cn.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/README.zh-cn.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/README.zh-cn.md
diff --git a/5-Clustering/1-Visualize/translations/assignment.es.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.es.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/assignment.es.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.es.md
diff --git a/5-Clustering/1-Visualize/translations/assignment.it.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.it.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/assignment.it.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.it.md
diff --git a/5-Clustering/1-Visualize/translations/assignment.ko.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.ko.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/assignment.ko.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.ko.md
diff --git a/5-Clustering/1-Visualize/translations/assignment.zh-cn.md b/Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.zh-cn.md
similarity index 100%
rename from 5-Clustering/1-Visualize/translations/assignment.zh-cn.md
rename to Example project - Github_pages/5-Clustering/1-Visualize/translations/assignment.zh-cn.md
diff --git a/5-Clustering/2-K-Means/README.md b/Example project - Github_pages/5-Clustering/2-K-Means/README.md
similarity index 100%
rename from 5-Clustering/2-K-Means/README.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/README.md
diff --git a/5-Clustering/2-K-Means/assignment.md b/Example project - Github_pages/5-Clustering/2-K-Means/assignment.md
similarity index 100%
rename from 5-Clustering/2-K-Means/assignment.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/assignment.md
diff --git a/5-Clustering/2-K-Means/images/boxplots.png b/Example project - Github_pages/5-Clustering/2-K-Means/images/boxplots.png
similarity index 100%
rename from 5-Clustering/2-K-Means/images/boxplots.png
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/boxplots.png
diff --git a/5-Clustering/2-K-Means/images/clusters.png b/Example project - Github_pages/5-Clustering/2-K-Means/images/clusters.png
similarity index 100%
rename from 5-Clustering/2-K-Means/images/clusters.png
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/clusters.png
diff --git a/5-Clustering/2-K-Means/images/elbow.png b/Example project - Github_pages/5-Clustering/2-K-Means/images/elbow.png
similarity index 100%
rename from 5-Clustering/2-K-Means/images/elbow.png
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/elbow.png
diff --git a/5-Clustering/2-K-Means/images/kmeans.gif b/Example project - Github_pages/5-Clustering/2-K-Means/images/kmeans.gif
similarity index 100%
rename from 5-Clustering/2-K-Means/images/kmeans.gif
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/kmeans.gif
diff --git a/5-Clustering/2-K-Means/images/problems.png b/Example project - Github_pages/5-Clustering/2-K-Means/images/problems.png
similarity index 100%
rename from 5-Clustering/2-K-Means/images/problems.png
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/problems.png
diff --git a/5-Clustering/2-K-Means/images/r_learners_sm.jpeg b/Example project - Github_pages/5-Clustering/2-K-Means/images/r_learners_sm.jpeg
similarity index 100%
rename from 5-Clustering/2-K-Means/images/r_learners_sm.jpeg
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/r_learners_sm.jpeg
diff --git a/5-Clustering/2-K-Means/images/voronoi.png b/Example project - Github_pages/5-Clustering/2-K-Means/images/voronoi.png
similarity index 100%
rename from 5-Clustering/2-K-Means/images/voronoi.png
rename to Example project - Github_pages/5-Clustering/2-K-Means/images/voronoi.png
diff --git a/5-Clustering/2-K-Means/notebook.ipynb b/Example project - Github_pages/5-Clustering/2-K-Means/notebook.ipynb
similarity index 100%
rename from 5-Clustering/2-K-Means/notebook.ipynb
rename to Example project - Github_pages/5-Clustering/2-K-Means/notebook.ipynb
diff --git a/5-Clustering/2-K-Means/solution/Julia/README.md b/Example project - Github_pages/5-Clustering/2-K-Means/solution/Julia/README.md
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/Julia/README.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/Julia/README.md
diff --git a/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb
diff --git a/5-Clustering/2-K-Means/solution/R/lesson_15.Rmd b/Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15.Rmd
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/R/lesson_15.Rmd
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15.Rmd
diff --git a/5-Clustering/2-K-Means/solution/R/lesson_15.html b/Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15.html
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/R/lesson_15.html
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/R/lesson_15.html
diff --git a/5-Clustering/2-K-Means/solution/notebook.ipynb b/Example project - Github_pages/5-Clustering/2-K-Means/solution/notebook.ipynb
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/notebook.ipynb
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/notebook.ipynb
diff --git a/5-Clustering/2-K-Means/solution/tester.ipynb b/Example project - Github_pages/5-Clustering/2-K-Means/solution/tester.ipynb
similarity index 100%
rename from 5-Clustering/2-K-Means/solution/tester.ipynb
rename to Example project - Github_pages/5-Clustering/2-K-Means/solution/tester.ipynb
diff --git a/5-Clustering/2-K-Means/translations/README.es.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/README.es.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/README.es.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/README.es.md
diff --git a/5-Clustering/2-K-Means/translations/README.it.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/README.it.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/README.it.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/README.it.md
diff --git a/5-Clustering/2-K-Means/translations/README.ko.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/README.ko.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/README.ko.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/README.ko.md
diff --git a/5-Clustering/2-K-Means/translations/README.zh-cn.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/README.zh-cn.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/README.zh-cn.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/README.zh-cn.md
diff --git a/5-Clustering/2-K-Means/translations/assignment.es.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.es.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/assignment.es.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.es.md
diff --git a/5-Clustering/2-K-Means/translations/assignment.it.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.it.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/assignment.it.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.it.md
diff --git a/5-Clustering/2-K-Means/translations/assignment.ko.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.ko.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/assignment.ko.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.ko.md
diff --git a/5-Clustering/2-K-Means/translations/assignment.zh-cn.md b/Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.zh-cn.md
similarity index 100%
rename from 5-Clustering/2-K-Means/translations/assignment.zh-cn.md
rename to Example project - Github_pages/5-Clustering/2-K-Means/translations/assignment.zh-cn.md
diff --git a/5-Clustering/README.md b/Example project - Github_pages/5-Clustering/README.md
similarity index 100%
rename from 5-Clustering/README.md
rename to Example project - Github_pages/5-Clustering/README.md
diff --git a/5-Clustering/data/nigerian-songs.csv b/Example project - Github_pages/5-Clustering/data/nigerian-songs.csv
similarity index 100%
rename from 5-Clustering/data/nigerian-songs.csv
rename to Example project - Github_pages/5-Clustering/data/nigerian-songs.csv
diff --git a/5-Clustering/images/turntable.jpg b/Example project - Github_pages/5-Clustering/images/turntable.jpg
similarity index 100%
rename from 5-Clustering/images/turntable.jpg
rename to Example project - Github_pages/5-Clustering/images/turntable.jpg
diff --git a/5-Clustering/translations/README.es.md b/Example project - Github_pages/5-Clustering/translations/README.es.md
similarity index 100%
rename from 5-Clustering/translations/README.es.md
rename to Example project - Github_pages/5-Clustering/translations/README.es.md
diff --git a/5-Clustering/translations/README.hi.md b/Example project - Github_pages/5-Clustering/translations/README.hi.md
similarity index 100%
rename from 5-Clustering/translations/README.hi.md
rename to Example project - Github_pages/5-Clustering/translations/README.hi.md
diff --git a/5-Clustering/translations/README.it.md b/Example project - Github_pages/5-Clustering/translations/README.it.md
similarity index 100%
rename from 5-Clustering/translations/README.it.md
rename to Example project - Github_pages/5-Clustering/translations/README.it.md
diff --git a/5-Clustering/translations/README.ko.md b/Example project - Github_pages/5-Clustering/translations/README.ko.md
similarity index 100%
rename from 5-Clustering/translations/README.ko.md
rename to Example project - Github_pages/5-Clustering/translations/README.ko.md
diff --git a/5-Clustering/translations/README.ru.md b/Example project - Github_pages/5-Clustering/translations/README.ru.md
similarity index 100%
rename from 5-Clustering/translations/README.ru.md
rename to Example project - Github_pages/5-Clustering/translations/README.ru.md
diff --git a/5-Clustering/translations/README.zh-cn.md b/Example project - Github_pages/5-Clustering/translations/README.zh-cn.md
similarity index 100%
rename from 5-Clustering/translations/README.zh-cn.md
rename to Example project - Github_pages/5-Clustering/translations/README.zh-cn.md
diff --git a/6-NLP/1-Introduction-to-NLP/README.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/README.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/README.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/README.md
diff --git a/6-NLP/1-Introduction-to-NLP/assignment.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/assignment.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/assignment.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/assignment.md
diff --git a/6-NLP/1-Introduction-to-NLP/images/comprehension.png b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/images/comprehension.png
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/images/comprehension.png
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/images/comprehension.png
diff --git a/6-NLP/1-Introduction-to-NLP/solution/bot.py b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/solution/bot.py
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/solution/bot.py
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/solution/bot.py
diff --git a/6-NLP/1-Introduction-to-NLP/translations/README.es.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.es.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/README.es.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.es.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/README.it.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.it.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/README.it.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.it.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/README.ko.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.ko.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.ko.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/README.pt-br.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.pt-br.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/README.pt-br.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.pt-br.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/README.zh-cn.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.zh-cn.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/README.zh-cn.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/README.zh-cn.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/assignment.es.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.es.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/assignment.es.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.es.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/assignment.it.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.it.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/assignment.it.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.it.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/assignment.ko.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.ko.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/assignment.ko.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.ko.md
diff --git a/6-NLP/1-Introduction-to-NLP/translations/assignment.pt-br.md b/Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.pt-br.md
similarity index 100%
rename from 6-NLP/1-Introduction-to-NLP/translations/assignment.pt-br.md
rename to Example project - Github_pages/6-NLP/1-Introduction-to-NLP/translations/assignment.pt-br.md
diff --git a/6-NLP/2-Tasks/README.md b/Example project - Github_pages/6-NLP/2-Tasks/README.md
similarity index 100%
rename from 6-NLP/2-Tasks/README.md
rename to Example project - Github_pages/6-NLP/2-Tasks/README.md
diff --git a/6-NLP/2-Tasks/assignment.md b/Example project - Github_pages/6-NLP/2-Tasks/assignment.md
similarity index 100%
rename from 6-NLP/2-Tasks/assignment.md
rename to Example project - Github_pages/6-NLP/2-Tasks/assignment.md
diff --git a/6-NLP/2-Tasks/images/embedding.png b/Example project - Github_pages/6-NLP/2-Tasks/images/embedding.png
similarity index 100%
rename from 6-NLP/2-Tasks/images/embedding.png
rename to Example project - Github_pages/6-NLP/2-Tasks/images/embedding.png
diff --git a/6-NLP/2-Tasks/images/n-grams.gif b/Example project - Github_pages/6-NLP/2-Tasks/images/n-grams.gif
similarity index 100%
rename from 6-NLP/2-Tasks/images/n-grams.gif
rename to Example project - Github_pages/6-NLP/2-Tasks/images/n-grams.gif
diff --git a/6-NLP/2-Tasks/images/parse.png b/Example project - Github_pages/6-NLP/2-Tasks/images/parse.png
similarity index 100%
rename from 6-NLP/2-Tasks/images/parse.png
rename to Example project - Github_pages/6-NLP/2-Tasks/images/parse.png
diff --git a/6-NLP/2-Tasks/images/tokenization.png b/Example project - Github_pages/6-NLP/2-Tasks/images/tokenization.png
similarity index 100%
rename from 6-NLP/2-Tasks/images/tokenization.png
rename to Example project - Github_pages/6-NLP/2-Tasks/images/tokenization.png
diff --git a/6-NLP/2-Tasks/solution/bot.py b/Example project - Github_pages/6-NLP/2-Tasks/solution/bot.py
similarity index 100%
rename from 6-NLP/2-Tasks/solution/bot.py
rename to Example project - Github_pages/6-NLP/2-Tasks/solution/bot.py
diff --git a/6-NLP/2-Tasks/translations/README.es.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/README.es.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/README.es.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/README.es.md
diff --git a/6-NLP/2-Tasks/translations/README.it.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/README.it.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/README.it.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/README.it.md
diff --git a/6-NLP/2-Tasks/translations/README.ko.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/README.ko.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/README.ko.md
diff --git a/6-NLP/2-Tasks/translations/README.pt-br.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/README.pt-br.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/README.pt-br.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/README.pt-br.md
diff --git a/6-NLP/2-Tasks/translations/assignment.es.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.es.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/assignment.es.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.es.md
diff --git a/6-NLP/2-Tasks/translations/assignment.it.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.it.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/assignment.it.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.it.md
diff --git a/6-NLP/2-Tasks/translations/assignment.ko.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.ko.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/assignment.ko.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.ko.md
diff --git a/6-NLP/2-Tasks/translations/assignment.pt-br.md b/Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.pt-br.md
similarity index 100%
rename from 6-NLP/2-Tasks/translations/assignment.pt-br.md
rename to Example project - Github_pages/6-NLP/2-Tasks/translations/assignment.pt-br.md
diff --git a/6-NLP/3-Translation-Sentiment/README.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/README.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/README.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/README.md
diff --git a/6-NLP/3-Translation-Sentiment/assignment.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/assignment.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/assignment.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/assignment.md
diff --git a/6-NLP/3-Translation-Sentiment/images/monnaie.png b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/images/monnaie.png
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/images/monnaie.png
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/images/monnaie.png
diff --git a/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/solution/Julia/README.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/Julia/README.md
diff --git a/6-NLP/3-Translation-Sentiment/solution/R/README.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/R/README.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/solution/R/README.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/R/README.md
diff --git a/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/solution/notebook.ipynb
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb
diff --git a/6-NLP/3-Translation-Sentiment/translations/README.es.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.es.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/README.es.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.es.md
diff --git a/6-NLP/3-Translation-Sentiment/translations/README.it.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.it.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/README.it.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.it.md
diff --git a/6-NLP/3-Translation-Sentiment/translations/README.ko.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.ko.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/README.ko.md
diff --git a/6-NLP/3-Translation-Sentiment/translations/assignment.es.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.es.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/assignment.es.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.es.md
diff --git a/6-NLP/3-Translation-Sentiment/translations/assignment.it.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.it.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/assignment.it.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.it.md
diff --git a/6-NLP/3-Translation-Sentiment/translations/assignment.ko.md b/Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.ko.md
similarity index 100%
rename from 6-NLP/3-Translation-Sentiment/translations/assignment.ko.md
rename to Example project - Github_pages/6-NLP/3-Translation-Sentiment/translations/assignment.ko.md
diff --git a/6-NLP/4-Hotel-Reviews-1/README.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/README.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/README.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/README.md
diff --git a/6-NLP/4-Hotel-Reviews-1/assignment.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/assignment.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/assignment.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/assignment.md
diff --git a/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/notebook.ipynb
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/notebook.ipynb
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/notebook.ipynb
diff --git a/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md
diff --git a/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/solution/R/README.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/R/README.md
diff --git a/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/README.es.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.es.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/README.es.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.es.md
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/README.it.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.it.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/README.it.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.it.md
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/README.ko.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.ko.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/README.ko.md
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/assignment.es.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.es.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/assignment.es.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.es.md
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/assignment.it.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.it.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/assignment.it.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.it.md
diff --git a/6-NLP/4-Hotel-Reviews-1/translations/assignment.ko.md b/Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.ko.md
similarity index 100%
rename from 6-NLP/4-Hotel-Reviews-1/translations/assignment.ko.md
rename to Example project - Github_pages/6-NLP/4-Hotel-Reviews-1/translations/assignment.ko.md
diff --git a/6-NLP/5-Hotel-Reviews-2/README.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/README.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/README.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/README.md
diff --git a/6-NLP/5-Hotel-Reviews-2/assignment.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/assignment.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/assignment.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/assignment.md
diff --git a/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/notebook.ipynb
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/notebook.ipynb
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/notebook.ipynb
diff --git a/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb
diff --git a/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb
diff --git a/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb
diff --git a/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md
diff --git a/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/solution/R/README.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/solution/R/README.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/README.es.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.es.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/README.es.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.es.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/README.it.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.it.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/README.it.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.it.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/README.ko.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.ko.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/README.ko.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/assignment.es.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.es.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/assignment.es.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.es.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/assignment.it.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.it.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/assignment.it.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.it.md
diff --git a/6-NLP/5-Hotel-Reviews-2/translations/assignment.ko.md b/Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.ko.md
similarity index 100%
rename from 6-NLP/5-Hotel-Reviews-2/translations/assignment.ko.md
rename to Example project - Github_pages/6-NLP/5-Hotel-Reviews-2/translations/assignment.ko.md
diff --git a/6-NLP/README.md b/Example project - Github_pages/6-NLP/README.md
similarity index 100%
rename from 6-NLP/README.md
rename to Example project - Github_pages/6-NLP/README.md
diff --git a/6-NLP/data/README.md b/Example project - Github_pages/6-NLP/data/README.md
similarity index 100%
rename from 6-NLP/data/README.md
rename to Example project - Github_pages/6-NLP/data/README.md
diff --git a/6-NLP/images/p&p.jpg b/Example project - Github_pages/6-NLP/images/p&p.jpg
similarity index 100%
rename from 6-NLP/images/p&p.jpg
rename to Example project - Github_pages/6-NLP/images/p&p.jpg
diff --git a/6-NLP/translations/README.es.md b/Example project - Github_pages/6-NLP/translations/README.es.md
similarity index 100%
rename from 6-NLP/translations/README.es.md
rename to Example project - Github_pages/6-NLP/translations/README.es.md
diff --git a/6-NLP/translations/README.hi.md b/Example project - Github_pages/6-NLP/translations/README.hi.md
similarity index 100%
rename from 6-NLP/translations/README.hi.md
rename to Example project - Github_pages/6-NLP/translations/README.hi.md
diff --git a/6-NLP/translations/README.it.md b/Example project - Github_pages/6-NLP/translations/README.it.md
similarity index 100%
rename from 6-NLP/translations/README.it.md
rename to Example project - Github_pages/6-NLP/translations/README.it.md
diff --git a/6-NLP/translations/README.ko.md b/Example project - Github_pages/6-NLP/translations/README.ko.md
similarity index 100%
rename from 6-NLP/translations/README.ko.md
rename to Example project - Github_pages/6-NLP/translations/README.ko.md
diff --git a/6-NLP/translations/README.pt-br.md b/Example project - Github_pages/6-NLP/translations/README.pt-br.md
similarity index 100%
rename from 6-NLP/translations/README.pt-br.md
rename to Example project - Github_pages/6-NLP/translations/README.pt-br.md
diff --git a/6-NLP/translations/README.ru.md b/Example project - Github_pages/6-NLP/translations/README.ru.md
similarity index 100%
rename from 6-NLP/translations/README.ru.md
rename to Example project - Github_pages/6-NLP/translations/README.ru.md
diff --git a/6-NLP/translations/README.zh-cn.md b/Example project - Github_pages/6-NLP/translations/README.zh-cn.md
similarity index 100%
rename from 6-NLP/translations/README.zh-cn.md
rename to Example project - Github_pages/6-NLP/translations/README.zh-cn.md
diff --git a/7-TimeSeries/1-Introduction/README.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/README.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/README.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/README.md
diff --git a/7-TimeSeries/1-Introduction/assignment.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/assignment.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/assignment.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/assignment.md
diff --git a/7-TimeSeries/1-Introduction/images/currency.png b/Example project - Github_pages/7-TimeSeries/1-Introduction/images/currency.png
similarity index 100%
rename from 7-TimeSeries/1-Introduction/images/currency.png
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/images/currency.png
diff --git a/7-TimeSeries/1-Introduction/images/energy-plot.png b/Example project - Github_pages/7-TimeSeries/1-Introduction/images/energy-plot.png
similarity index 100%
rename from 7-TimeSeries/1-Introduction/images/energy-plot.png
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/images/energy-plot.png
diff --git a/7-TimeSeries/1-Introduction/images/july-2014.png b/Example project - Github_pages/7-TimeSeries/1-Introduction/images/july-2014.png
similarity index 100%
rename from 7-TimeSeries/1-Introduction/images/july-2014.png
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/images/july-2014.png
diff --git a/7-TimeSeries/1-Introduction/images/scaled.png b/Example project - Github_pages/7-TimeSeries/1-Introduction/images/scaled.png
similarity index 100%
rename from 7-TimeSeries/1-Introduction/images/scaled.png
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/images/scaled.png
diff --git a/7-TimeSeries/1-Introduction/solution/Julia/README.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/Julia/README.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/Julia/README.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/Julia/README.md
diff --git a/7-TimeSeries/1-Introduction/solution/R/README.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/R/README.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/R/README.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/R/README.md
diff --git a/7-TimeSeries/1-Introduction/solution/common/__init__.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/__init__.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/common/__init__.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/__init__.py
diff --git a/7-TimeSeries/1-Introduction/solution/common/environment.yaml b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/environment.yaml
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/common/environment.yaml
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/environment.yaml
diff --git a/7-TimeSeries/1-Introduction/solution/common/extract_data.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/extract_data.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/common/extract_data.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/extract_data.py
diff --git a/7-TimeSeries/1-Introduction/solution/common/utils.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/utils.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/common/utils.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/common/utils.py
diff --git a/7-TimeSeries/1-Introduction/solution/data/energy.csv b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/data/energy.csv
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/data/energy.csv
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/data/energy.csv
diff --git a/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/1-Introduction/solution/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/1-Introduction/solution/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/solution/notebook.ipynb
diff --git a/7-TimeSeries/1-Introduction/translations/README.es.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.es.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/README.es.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.es.md
diff --git a/7-TimeSeries/1-Introduction/translations/README.it.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.it.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/README.it.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.it.md
diff --git a/7-TimeSeries/1-Introduction/translations/README.ko.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.ko.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/README.ko.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/README.ko.md
diff --git a/7-TimeSeries/1-Introduction/translations/assignment.es.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.es.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/assignment.es.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.es.md
diff --git a/7-TimeSeries/1-Introduction/translations/assignment.it.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.it.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/assignment.it.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.it.md
diff --git a/7-TimeSeries/1-Introduction/translations/assignment.ko.md b/Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.ko.md
similarity index 100%
rename from 7-TimeSeries/1-Introduction/translations/assignment.ko.md
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/translations/assignment.ko.md
diff --git a/7-TimeSeries/1-Introduction/working/common/__init__.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/__init__.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/common/__init__.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/__init__.py
diff --git a/7-TimeSeries/1-Introduction/working/common/environment.yaml b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/environment.yaml
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/common/environment.yaml
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/environment.yaml
diff --git a/7-TimeSeries/1-Introduction/working/common/extract_data.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/extract_data.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/common/extract_data.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/extract_data.py
diff --git a/7-TimeSeries/1-Introduction/working/common/utils.py b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/utils.py
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/common/utils.py
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/common/utils.py
diff --git a/7-TimeSeries/1-Introduction/working/data/energy.csv b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/data/energy.csv
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/data/energy.csv
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/data/energy.csv
diff --git a/7-TimeSeries/1-Introduction/working/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/1-Introduction/working/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/1-Introduction/working/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/1-Introduction/working/notebook.ipynb
diff --git a/7-TimeSeries/2-ARIMA/README.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/README.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/README.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/README.md
diff --git a/7-TimeSeries/2-ARIMA/assignment.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/assignment.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/assignment.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/assignment.md
diff --git a/7-TimeSeries/2-ARIMA/images/accuracy.png b/Example project - Github_pages/7-TimeSeries/2-ARIMA/images/accuracy.png
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/images/accuracy.png
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/images/accuracy.png
diff --git a/7-TimeSeries/2-ARIMA/images/mape.png b/Example project - Github_pages/7-TimeSeries/2-ARIMA/images/mape.png
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/images/mape.png
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/images/mape.png
diff --git a/7-TimeSeries/2-ARIMA/images/original.png b/Example project - Github_pages/7-TimeSeries/2-ARIMA/images/original.png
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/images/original.png
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/images/original.png
diff --git a/7-TimeSeries/2-ARIMA/images/scaled.png b/Example project - Github_pages/7-TimeSeries/2-ARIMA/images/scaled.png
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/images/scaled.png
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/images/scaled.png
diff --git a/7-TimeSeries/2-ARIMA/images/train-test.png b/Example project - Github_pages/7-TimeSeries/2-ARIMA/images/train-test.png
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/images/train-test.png
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/images/train-test.png
diff --git a/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/Julia/README.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/Julia/README.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/Julia/README.md
diff --git a/7-TimeSeries/2-ARIMA/solution/R/README.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/R/README.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/R/README.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/R/README.md
diff --git a/7-TimeSeries/2-ARIMA/solution/common/__init__.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/__init__.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/common/__init__.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/__init__.py
diff --git a/7-TimeSeries/2-ARIMA/solution/common/environment.yaml b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/environment.yaml
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/common/environment.yaml
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/environment.yaml
diff --git a/7-TimeSeries/2-ARIMA/solution/common/extract_data.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/extract_data.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/common/extract_data.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/extract_data.py
diff --git a/7-TimeSeries/2-ARIMA/solution/common/utils.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/utils.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/common/utils.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/common/utils.py
diff --git a/7-TimeSeries/2-ARIMA/solution/data/energy.csv b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/data/energy.csv
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/data/energy.csv
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/data/energy.csv
diff --git a/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/solution/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/solution/notebook.ipynb
diff --git a/7-TimeSeries/2-ARIMA/translations/README.it.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/README.it.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/translations/README.it.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/README.it.md
diff --git a/7-TimeSeries/2-ARIMA/translations/README.ko.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/README.ko.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/translations/README.ko.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/README.ko.md
diff --git a/7-TimeSeries/2-ARIMA/translations/assignment.es.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.es.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/translations/assignment.es.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.es.md
diff --git a/7-TimeSeries/2-ARIMA/translations/assignment.it.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.it.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/translations/assignment.it.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.it.md
diff --git a/7-TimeSeries/2-ARIMA/translations/assignment.ko.md b/Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.ko.md
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/translations/assignment.ko.md
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/translations/assignment.ko.md
diff --git a/7-TimeSeries/2-ARIMA/working/common/__init__.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/__init__.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/common/__init__.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/__init__.py
diff --git a/7-TimeSeries/2-ARIMA/working/common/environment.yaml b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/environment.yaml
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/common/environment.yaml
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/environment.yaml
diff --git a/7-TimeSeries/2-ARIMA/working/common/extract_data.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/extract_data.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/common/extract_data.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/extract_data.py
diff --git a/7-TimeSeries/2-ARIMA/working/common/utils.py b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/utils.py
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/common/utils.py
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/common/utils.py
diff --git a/7-TimeSeries/2-ARIMA/working/data/energy.csv b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/data/energy.csv
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/data/energy.csv
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/data/energy.csv
diff --git a/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/2-ARIMA/working/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/2-ARIMA/working/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/2-ARIMA/working/notebook.ipynb
diff --git a/7-TimeSeries/3-SVR/README.md b/Example project - Github_pages/7-TimeSeries/3-SVR/README.md
similarity index 100%
rename from 7-TimeSeries/3-SVR/README.md
rename to Example project - Github_pages/7-TimeSeries/3-SVR/README.md
diff --git a/7-TimeSeries/3-SVR/assignment.md b/Example project - Github_pages/7-TimeSeries/3-SVR/assignment.md
similarity index 100%
rename from 7-TimeSeries/3-SVR/assignment.md
rename to Example project - Github_pages/7-TimeSeries/3-SVR/assignment.md
diff --git a/7-TimeSeries/3-SVR/images/full-data-predict.png b/Example project - Github_pages/7-TimeSeries/3-SVR/images/full-data-predict.png
similarity index 100%
rename from 7-TimeSeries/3-SVR/images/full-data-predict.png
rename to Example project - Github_pages/7-TimeSeries/3-SVR/images/full-data-predict.png
diff --git a/7-TimeSeries/3-SVR/images/full-data.png b/Example project - Github_pages/7-TimeSeries/3-SVR/images/full-data.png
similarity index 100%
rename from 7-TimeSeries/3-SVR/images/full-data.png
rename to Example project - Github_pages/7-TimeSeries/3-SVR/images/full-data.png
diff --git a/7-TimeSeries/3-SVR/images/test-data-predict.png b/Example project - Github_pages/7-TimeSeries/3-SVR/images/test-data-predict.png
similarity index 100%
rename from 7-TimeSeries/3-SVR/images/test-data-predict.png
rename to Example project - Github_pages/7-TimeSeries/3-SVR/images/test-data-predict.png
diff --git a/7-TimeSeries/3-SVR/images/train-data-predict.png b/Example project - Github_pages/7-TimeSeries/3-SVR/images/train-data-predict.png
similarity index 100%
rename from 7-TimeSeries/3-SVR/images/train-data-predict.png
rename to Example project - Github_pages/7-TimeSeries/3-SVR/images/train-data-predict.png
diff --git a/7-TimeSeries/3-SVR/images/train-test.png b/Example project - Github_pages/7-TimeSeries/3-SVR/images/train-test.png
similarity index 100%
rename from 7-TimeSeries/3-SVR/images/train-test.png
rename to Example project - Github_pages/7-TimeSeries/3-SVR/images/train-test.png
diff --git a/7-TimeSeries/3-SVR/solution/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/3-SVR/solution/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/3-SVR/solution/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/3-SVR/solution/notebook.ipynb
diff --git a/7-TimeSeries/3-SVR/translations/README.md b/Example project - Github_pages/7-TimeSeries/3-SVR/translations/README.md
similarity index 100%
rename from 7-TimeSeries/3-SVR/translations/README.md
rename to Example project - Github_pages/7-TimeSeries/3-SVR/translations/README.md
diff --git a/7-TimeSeries/3-SVR/translations/assignment.es.md b/Example project - Github_pages/7-TimeSeries/3-SVR/translations/assignment.es.md
similarity index 100%
rename from 7-TimeSeries/3-SVR/translations/assignment.es.md
rename to Example project - Github_pages/7-TimeSeries/3-SVR/translations/assignment.es.md
diff --git a/7-TimeSeries/3-SVR/working/notebook.ipynb b/Example project - Github_pages/7-TimeSeries/3-SVR/working/notebook.ipynb
similarity index 100%
rename from 7-TimeSeries/3-SVR/working/notebook.ipynb
rename to Example project - Github_pages/7-TimeSeries/3-SVR/working/notebook.ipynb
diff --git a/7-TimeSeries/README.md b/Example project - Github_pages/7-TimeSeries/README.md
similarity index 100%
rename from 7-TimeSeries/README.md
rename to Example project - Github_pages/7-TimeSeries/README.md
diff --git a/7-TimeSeries/common/utils.py b/Example project - Github_pages/7-TimeSeries/common/utils.py
similarity index 100%
rename from 7-TimeSeries/common/utils.py
rename to Example project - Github_pages/7-TimeSeries/common/utils.py
diff --git a/7-TimeSeries/data/energy.csv b/Example project - Github_pages/7-TimeSeries/data/energy.csv
similarity index 100%
rename from 7-TimeSeries/data/energy.csv
rename to Example project - Github_pages/7-TimeSeries/data/energy.csv
diff --git a/7-TimeSeries/images/electric-grid.jpg b/Example project - Github_pages/7-TimeSeries/images/electric-grid.jpg
similarity index 100%
rename from 7-TimeSeries/images/electric-grid.jpg
rename to Example project - Github_pages/7-TimeSeries/images/electric-grid.jpg
diff --git a/7-TimeSeries/translations/README.es.md b/Example project - Github_pages/7-TimeSeries/translations/README.es.md
similarity index 100%
rename from 7-TimeSeries/translations/README.es.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.es.md
diff --git a/7-TimeSeries/translations/README.fr.md b/Example project - Github_pages/7-TimeSeries/translations/README.fr.md
similarity index 100%
rename from 7-TimeSeries/translations/README.fr.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.fr.md
diff --git a/7-TimeSeries/translations/README.hi.md b/Example project - Github_pages/7-TimeSeries/translations/README.hi.md
similarity index 100%
rename from 7-TimeSeries/translations/README.hi.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.hi.md
diff --git a/7-TimeSeries/translations/README.it.md b/Example project - Github_pages/7-TimeSeries/translations/README.it.md
similarity index 100%
rename from 7-TimeSeries/translations/README.it.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.it.md
diff --git a/7-TimeSeries/translations/README.ko.md b/Example project - Github_pages/7-TimeSeries/translations/README.ko.md
similarity index 100%
rename from 7-TimeSeries/translations/README.ko.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.ko.md
diff --git a/7-TimeSeries/translations/README.ru.md b/Example project - Github_pages/7-TimeSeries/translations/README.ru.md
similarity index 100%
rename from 7-TimeSeries/translations/README.ru.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.ru.md
diff --git a/7-TimeSeries/translations/README.zh-cn.md b/Example project - Github_pages/7-TimeSeries/translations/README.zh-cn.md
similarity index 100%
rename from 7-TimeSeries/translations/README.zh-cn.md
rename to Example project - Github_pages/7-TimeSeries/translations/README.zh-cn.md
diff --git a/8-Reinforcement/1-QLearning/README.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/README.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/README.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/README.md
diff --git a/8-Reinforcement/1-QLearning/assignment.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/assignment.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/assignment.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/assignment.md
diff --git a/8-Reinforcement/1-QLearning/images/apple.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/apple.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/apple.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/apple.png
diff --git a/8-Reinforcement/1-QLearning/images/bellman-equation.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/bellman-equation.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/bellman-equation.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/bellman-equation.png
diff --git a/8-Reinforcement/1-QLearning/images/bellmaneq.gif b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/bellmaneq.gif
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/bellmaneq.gif
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/bellmaneq.gif
diff --git a/8-Reinforcement/1-QLearning/images/env_init.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/env_init.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/env_init.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/env_init.png
diff --git a/8-Reinforcement/1-QLearning/images/environment.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/environment.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/environment.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/environment.png
diff --git a/8-Reinforcement/1-QLearning/images/human.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/human.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/human.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/human.png
diff --git a/8-Reinforcement/1-QLearning/images/learned.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/learned.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/learned.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/learned.png
diff --git a/8-Reinforcement/1-QLearning/images/lpathlen.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/lpathlen.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/lpathlen.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/lpathlen.png
diff --git a/8-Reinforcement/1-QLearning/images/lpathlen1.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/lpathlen1.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/lpathlen1.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/lpathlen1.png
diff --git a/8-Reinforcement/1-QLearning/images/qwalk.gif b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/qwalk.gif
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/qwalk.gif
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/qwalk.gif
diff --git a/8-Reinforcement/1-QLearning/images/random_walk.gif b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/random_walk.gif
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/random_walk.gif
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/random_walk.gif
diff --git a/8-Reinforcement/1-QLearning/images/wolf.png b/Example project - Github_pages/8-Reinforcement/1-QLearning/images/wolf.png
similarity index 100%
rename from 8-Reinforcement/1-QLearning/images/wolf.png
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/images/wolf.png
diff --git a/8-Reinforcement/1-QLearning/notebook.ipynb b/Example project - Github_pages/8-Reinforcement/1-QLearning/notebook.ipynb
similarity index 100%
rename from 8-Reinforcement/1-QLearning/notebook.ipynb
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/notebook.ipynb
diff --git a/8-Reinforcement/1-QLearning/rlboard.py b/Example project - Github_pages/8-Reinforcement/1-QLearning/rlboard.py
similarity index 100%
rename from 8-Reinforcement/1-QLearning/rlboard.py
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/rlboard.py
diff --git a/8-Reinforcement/1-QLearning/solution/Julia/README.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/solution/Julia/README.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/solution/Julia/README.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/solution/Julia/README.md
diff --git a/8-Reinforcement/1-QLearning/solution/R/README.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/solution/R/README.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/solution/R/README.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/solution/R/README.md
diff --git a/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/Example project - Github_pages/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb
similarity index 100%
rename from 8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb
diff --git a/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/Example project - Github_pages/8-Reinforcement/1-QLearning/solution/notebook.ipynb
similarity index 100%
rename from 8-Reinforcement/1-QLearning/solution/notebook.ipynb
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/solution/notebook.ipynb
diff --git a/8-Reinforcement/1-QLearning/solution/rlboard.py b/Example project - Github_pages/8-Reinforcement/1-QLearning/solution/rlboard.py
similarity index 100%
rename from 8-Reinforcement/1-QLearning/solution/rlboard.py
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/solution/rlboard.py
diff --git a/8-Reinforcement/1-QLearning/translations/README.it.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.it.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/README.it.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.it.md
diff --git a/8-Reinforcement/1-QLearning/translations/README.ko.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.ko.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/README.ko.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.ko.md
diff --git a/8-Reinforcement/1-QLearning/translations/README.zh-cn.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.zh-cn.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/README.zh-cn.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/README.zh-cn.md
diff --git a/8-Reinforcement/1-QLearning/translations/assignment.es.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.es.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/assignment.es.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.es.md
diff --git a/8-Reinforcement/1-QLearning/translations/assignment.it.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.it.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/assignment.it.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.it.md
diff --git a/8-Reinforcement/1-QLearning/translations/assignment.ko.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.ko.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/assignment.ko.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.ko.md
diff --git a/8-Reinforcement/1-QLearning/translations/assignment.zh-cn.md b/Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.zh-cn.md
similarity index 100%
rename from 8-Reinforcement/1-QLearning/translations/assignment.zh-cn.md
rename to Example project - Github_pages/8-Reinforcement/1-QLearning/translations/assignment.zh-cn.md
diff --git a/8-Reinforcement/2-Gym/README.md b/Example project - Github_pages/8-Reinforcement/2-Gym/README.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/README.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/README.md
diff --git a/8-Reinforcement/2-Gym/assignment.md b/Example project - Github_pages/8-Reinforcement/2-Gym/assignment.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/assignment.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/assignment.md
diff --git a/8-Reinforcement/2-Gym/images/cartpole-balance.gif b/Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole-balance.gif
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/cartpole-balance.gif
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole-balance.gif
diff --git a/8-Reinforcement/2-Gym/images/cartpole-nobalance.gif b/Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole-nobalance.gif
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/cartpole-nobalance.gif
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole-nobalance.gif
diff --git a/8-Reinforcement/2-Gym/images/cartpole.png b/Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole.png
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/cartpole.png
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/cartpole.png
diff --git a/8-Reinforcement/2-Gym/images/escape.png b/Example project - Github_pages/8-Reinforcement/2-Gym/images/escape.png
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/escape.png
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/escape.png
diff --git a/8-Reinforcement/2-Gym/images/mountaincar.png b/Example project - Github_pages/8-Reinforcement/2-Gym/images/mountaincar.png
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/mountaincar.png
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/mountaincar.png
diff --git a/8-Reinforcement/2-Gym/images/train_progress_raw.png b/Example project - Github_pages/8-Reinforcement/2-Gym/images/train_progress_raw.png
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/train_progress_raw.png
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/train_progress_raw.png
diff --git a/8-Reinforcement/2-Gym/images/train_progress_runav.png b/Example project - Github_pages/8-Reinforcement/2-Gym/images/train_progress_runav.png
similarity index 100%
rename from 8-Reinforcement/2-Gym/images/train_progress_runav.png
rename to Example project - Github_pages/8-Reinforcement/2-Gym/images/train_progress_runav.png
diff --git a/8-Reinforcement/2-Gym/notebook.ipynb b/Example project - Github_pages/8-Reinforcement/2-Gym/notebook.ipynb
similarity index 100%
rename from 8-Reinforcement/2-Gym/notebook.ipynb
rename to Example project - Github_pages/8-Reinforcement/2-Gym/notebook.ipynb
diff --git a/8-Reinforcement/2-Gym/solution/Julia/README.md b/Example project - Github_pages/8-Reinforcement/2-Gym/solution/Julia/README.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/solution/Julia/README.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/solution/Julia/README.md
diff --git a/8-Reinforcement/2-Gym/solution/R/README.md b/Example project - Github_pages/8-Reinforcement/2-Gym/solution/R/README.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/solution/R/README.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/solution/R/README.md
diff --git a/8-Reinforcement/2-Gym/solution/notebook.ipynb b/Example project - Github_pages/8-Reinforcement/2-Gym/solution/notebook.ipynb
similarity index 100%
rename from 8-Reinforcement/2-Gym/solution/notebook.ipynb
rename to Example project - Github_pages/8-Reinforcement/2-Gym/solution/notebook.ipynb
diff --git a/8-Reinforcement/2-Gym/translations/README.it.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.it.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/README.it.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.it.md
diff --git a/8-Reinforcement/2-Gym/translations/README.ko.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.ko.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/README.ko.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.ko.md
diff --git a/8-Reinforcement/2-Gym/translations/README.zh-cn.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.zh-cn.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/README.zh-cn.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/README.zh-cn.md
diff --git a/8-Reinforcement/2-Gym/translations/assignment.es.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.es.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/assignment.es.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.es.md
diff --git a/8-Reinforcement/2-Gym/translations/assignment.it.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.it.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/assignment.it.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.it.md
diff --git a/8-Reinforcement/2-Gym/translations/assignment.ko.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.ko.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/assignment.ko.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.ko.md
diff --git a/8-Reinforcement/2-Gym/translations/assignment.zh-cn.md b/Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.zh-cn.md
similarity index 100%
rename from 8-Reinforcement/2-Gym/translations/assignment.zh-cn.md
rename to Example project - Github_pages/8-Reinforcement/2-Gym/translations/assignment.zh-cn.md
diff --git a/8-Reinforcement/README.md b/Example project - Github_pages/8-Reinforcement/README.md
similarity index 100%
rename from 8-Reinforcement/README.md
rename to Example project - Github_pages/8-Reinforcement/README.md
diff --git a/8-Reinforcement/images/peter.png b/Example project - Github_pages/8-Reinforcement/images/peter.png
similarity index 100%
rename from 8-Reinforcement/images/peter.png
rename to Example project - Github_pages/8-Reinforcement/images/peter.png
diff --git a/8-Reinforcement/translations/README.it.md b/Example project - Github_pages/8-Reinforcement/translations/README.it.md
similarity index 100%
rename from 8-Reinforcement/translations/README.it.md
rename to Example project - Github_pages/8-Reinforcement/translations/README.it.md
diff --git a/8-Reinforcement/translations/README.ko.md b/Example project - Github_pages/8-Reinforcement/translations/README.ko.md
similarity index 100%
rename from 8-Reinforcement/translations/README.ko.md
rename to Example project - Github_pages/8-Reinforcement/translations/README.ko.md
diff --git a/8-Reinforcement/translations/README.ru.md b/Example project - Github_pages/8-Reinforcement/translations/README.ru.md
similarity index 100%
rename from 8-Reinforcement/translations/README.ru.md
rename to Example project - Github_pages/8-Reinforcement/translations/README.ru.md
diff --git a/8-Reinforcement/translations/README.tr.md b/Example project - Github_pages/8-Reinforcement/translations/README.tr.md
similarity index 100%
rename from 8-Reinforcement/translations/README.tr.md
rename to Example project - Github_pages/8-Reinforcement/translations/README.tr.md
diff --git a/8-Reinforcement/translations/README.zh-cn.md b/Example project - Github_pages/8-Reinforcement/translations/README.zh-cn.md
similarity index 100%
rename from 8-Reinforcement/translations/README.zh-cn.md
rename to Example project - Github_pages/8-Reinforcement/translations/README.zh-cn.md
diff --git a/9-Real-World/1-Applications/README.md b/Example project - Github_pages/9-Real-World/1-Applications/README.md
similarity index 100%
rename from 9-Real-World/1-Applications/README.md
rename to Example project - Github_pages/9-Real-World/1-Applications/README.md
diff --git a/9-Real-World/1-Applications/assignment.md b/Example project - Github_pages/9-Real-World/1-Applications/assignment.md
similarity index 100%
rename from 9-Real-World/1-Applications/assignment.md
rename to Example project - Github_pages/9-Real-World/1-Applications/assignment.md
diff --git a/9-Real-World/1-Applications/translations/README.it.md b/Example project - Github_pages/9-Real-World/1-Applications/translations/README.it.md
similarity index 100%
rename from 9-Real-World/1-Applications/translations/README.it.md
rename to Example project - Github_pages/9-Real-World/1-Applications/translations/README.it.md
diff --git a/9-Real-World/1-Applications/translations/README.ko.md b/Example project - Github_pages/9-Real-World/1-Applications/translations/README.ko.md
similarity index 100%
rename from 9-Real-World/1-Applications/translations/README.ko.md
rename to Example project - Github_pages/9-Real-World/1-Applications/translations/README.ko.md
diff --git a/9-Real-World/1-Applications/translations/assignment.es.md b/Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.es.md
similarity index 100%
rename from 9-Real-World/1-Applications/translations/assignment.es.md
rename to Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.es.md
diff --git a/9-Real-World/1-Applications/translations/assignment.it.md b/Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.it.md
similarity index 100%
rename from 9-Real-World/1-Applications/translations/assignment.it.md
rename to Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.it.md
diff --git a/9-Real-World/1-Applications/translations/assignment.ko.md b/Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.ko.md
similarity index 100%
rename from 9-Real-World/1-Applications/translations/assignment.ko.md
rename to Example project - Github_pages/9-Real-World/1-Applications/translations/assignment.ko.md
diff --git a/9-Real-World/2-Debugging-ML-Models/README.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/README.md
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/README.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/README.md
diff --git a/9-Real-World/2-Debugging-ML-Models/assignment.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/assignment.md
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/assignment.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/assignment.md
diff --git a/9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png
diff --git a/1-Introduction/3-fairness/images/ceos.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ceos.png
similarity index 100%
rename from 1-Introduction/3-fairness/images/ceos.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ceos.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/cf-what-if-features.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/cf-what-if-features.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/cf-what-if-features.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/cf-what-if-features.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/counterfactuals-examples.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/counterfactuals-examples.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/counterfactuals-examples.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/counterfactuals-examples.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/datapoints.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/datapoints.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/datapoints.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/datapoints.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png
diff --git a/1-Introduction/3-fairness/images/fairness.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/fairness.png
similarity index 100%
rename from 1-Introduction/3-fairness/images/fairness.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/fairness.png
diff --git a/1-Introduction/3-fairness/images/gender-bias-translate-en-tr.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-en-tr.png
similarity index 100%
rename from 1-Introduction/3-fairness/images/gender-bias-translate-en-tr.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-en-tr.png
diff --git a/1-Introduction/3-fairness/images/gender-bias-translate-tr-en.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-tr-en.png
similarity index 100%
rename from 1-Introduction/3-fairness/images/gender-bias-translate-tr-en.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/gender-bias-translate-tr-en.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/individual-causal-what-if.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/individual-causal-what-if.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/individual-causal-what-if.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/individual-causal-what-if.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png
diff --git a/9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif
diff --git a/1-Introduction/3-fairness/translations/README.es.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.es.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.es.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.es.md
diff --git a/1-Introduction/3-fairness/translations/README.fr.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.fr.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.fr.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.fr.md
diff --git a/1-Introduction/3-fairness/translations/README.id.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.id.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.id.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.id.md
diff --git a/1-Introduction/3-fairness/translations/README.it.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.it.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.it.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.it.md
diff --git a/1-Introduction/3-fairness/translations/README.ja.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.ja.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.ja.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.ja.md
diff --git a/1-Introduction/3-fairness/translations/README.ko.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.ko.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.ko.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.ko.md
diff --git a/1-Introduction/3-fairness/translations/README.pt-br.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.pt-br.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.pt-br.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.pt-br.md
diff --git a/1-Introduction/3-fairness/translations/README.zh-cn.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.zh-cn.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.zh-cn.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.zh-cn.md
diff --git a/1-Introduction/3-fairness/translations/README.zh-tw.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.zh-tw.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/README.zh-tw.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/README.zh-tw.md
diff --git a/9-Real-World/2-Debugging-ML-Models/translations/assignment.es.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.es.md
similarity index 100%
rename from 9-Real-World/2-Debugging-ML-Models/translations/assignment.es.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.es.md
diff --git a/1-Introduction/3-fairness/translations/assignment.fr.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.fr.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.fr.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.fr.md
diff --git a/1-Introduction/3-fairness/translations/assignment.id.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.id.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.id.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.id.md
diff --git a/1-Introduction/3-fairness/translations/assignment.it.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.it.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.it.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.it.md
diff --git a/1-Introduction/3-fairness/translations/assignment.ja.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.ja.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.ja.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.ja.md
diff --git a/1-Introduction/3-fairness/translations/assignment.ko.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.ko.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.ko.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.ko.md
diff --git a/1-Introduction/3-fairness/translations/assignment.pt-br.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.pt-br.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.pt-br.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.pt-br.md
diff --git a/1-Introduction/3-fairness/translations/assignment.zh-cn.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-cn.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.zh-cn.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-cn.md
diff --git a/1-Introduction/3-fairness/translations/assignment.zh-tw.md b/Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-tw.md
similarity index 100%
rename from 1-Introduction/3-fairness/translations/assignment.zh-tw.md
rename to Example project - Github_pages/9-Real-World/2-Debugging-ML-Models/translations/assignment.zh-tw.md
diff --git a/9-Real-World/README.md b/Example project - Github_pages/9-Real-World/README.md
similarity index 100%
rename from 9-Real-World/README.md
rename to Example project - Github_pages/9-Real-World/README.md
diff --git a/9-Real-World/images/chess.jpg b/Example project - Github_pages/9-Real-World/images/chess.jpg
similarity index 100%
rename from 9-Real-World/images/chess.jpg
rename to Example project - Github_pages/9-Real-World/images/chess.jpg
diff --git a/9-Real-World/translations/README.es.md b/Example project - Github_pages/9-Real-World/translations/README.es.md
similarity index 100%
rename from 9-Real-World/translations/README.es.md
rename to Example project - Github_pages/9-Real-World/translations/README.es.md
diff --git a/9-Real-World/translations/README.fr.md b/Example project - Github_pages/9-Real-World/translations/README.fr.md
similarity index 100%
rename from 9-Real-World/translations/README.fr.md
rename to Example project - Github_pages/9-Real-World/translations/README.fr.md
diff --git a/9-Real-World/translations/README.hi.md b/Example project - Github_pages/9-Real-World/translations/README.hi.md
similarity index 100%
rename from 9-Real-World/translations/README.hi.md
rename to Example project - Github_pages/9-Real-World/translations/README.hi.md
diff --git a/9-Real-World/translations/README.it.md b/Example project - Github_pages/9-Real-World/translations/README.it.md
similarity index 100%
rename from 9-Real-World/translations/README.it.md
rename to Example project - Github_pages/9-Real-World/translations/README.it.md
diff --git a/9-Real-World/translations/README.ko.md b/Example project - Github_pages/9-Real-World/translations/README.ko.md
similarity index 100%
rename from 9-Real-World/translations/README.ko.md
rename to Example project - Github_pages/9-Real-World/translations/README.ko.md
diff --git a/9-Real-World/translations/README.pt.md b/Example project - Github_pages/9-Real-World/translations/README.pt.md
similarity index 100%
rename from 9-Real-World/translations/README.pt.md
rename to Example project - Github_pages/9-Real-World/translations/README.pt.md
diff --git a/9-Real-World/translations/README.ru.md b/Example project - Github_pages/9-Real-World/translations/README.ru.md
similarity index 100%
rename from 9-Real-World/translations/README.ru.md
rename to Example project - Github_pages/9-Real-World/translations/README.ru.md
diff --git a/9-Real-World/translations/README.tr.md b/Example project - Github_pages/9-Real-World/translations/README.tr.md
similarity index 100%
rename from 9-Real-World/translations/README.tr.md
rename to Example project - Github_pages/9-Real-World/translations/README.tr.md
diff --git a/9-Real-World/translations/README.zh-cn.md b/Example project - Github_pages/9-Real-World/translations/README.zh-cn.md
similarity index 100%
rename from 9-Real-World/translations/README.zh-cn.md
rename to Example project - Github_pages/9-Real-World/translations/README.zh-cn.md
diff --git a/CONTRIBUTING.md b/Example project - Github_pages/CONTRIBUTING.md
similarity index 100%
rename from CONTRIBUTING.md
rename to Example project - Github_pages/CONTRIBUTING.md
diff --git a/docs/_sidebar.md b/Example project - Github_pages/docs/_sidebar.md
similarity index 100%
rename from docs/_sidebar.md
rename to Example project - Github_pages/docs/_sidebar.md
diff --git a/for-teachers.md b/Example project - Github_pages/for-teachers.md
similarity index 100%
rename from for-teachers.md
rename to Example project - Github_pages/for-teachers.md
diff --git a/images/favicon.png b/Example project - Github_pages/images/favicon.png
similarity index 100%
rename from images/favicon.png
rename to Example project - Github_pages/images/favicon.png
diff --git a/ml-for-beginners-video-banner.png b/Example project - Github_pages/ml-for-beginners-video-banner.png
similarity index 100%
rename from ml-for-beginners-video-banner.png
rename to Example project - Github_pages/ml-for-beginners-video-banner.png
diff --git a/ml-for-beginners.png b/Example project - Github_pages/ml-for-beginners.png
similarity index 100%
rename from ml-for-beginners.png
rename to Example project - Github_pages/ml-for-beginners.png
diff --git a/ml.gif b/Example project - Github_pages/ml.gif
similarity index 100%
rename from ml.gif
rename to Example project - Github_pages/ml.gif
diff --git a/pdf/readme.pdf b/Example project - Github_pages/pdf/readme.pdf
similarity index 100%
rename from pdf/readme.pdf
rename to Example project - Github_pages/pdf/readme.pdf
diff --git a/quiz-app/.gitignore b/Example project - Github_pages/quiz-app/.gitignore
similarity index 100%
rename from quiz-app/.gitignore
rename to Example project - Github_pages/quiz-app/.gitignore
diff --git a/quiz-app/LICENSE b/Example project - Github_pages/quiz-app/LICENSE
similarity index 100%
rename from quiz-app/LICENSE
rename to Example project - Github_pages/quiz-app/LICENSE
diff --git a/quiz-app/README.md b/Example project - Github_pages/quiz-app/README.md
similarity index 100%
rename from quiz-app/README.md
rename to Example project - Github_pages/quiz-app/README.md
diff --git a/quiz-app/babel.config.js b/Example project - Github_pages/quiz-app/babel.config.js
similarity index 100%
rename from quiz-app/babel.config.js
rename to Example project - Github_pages/quiz-app/babel.config.js
diff --git a/quiz-app/package-lock.json b/Example project - Github_pages/quiz-app/package-lock.json
similarity index 100%
rename from quiz-app/package-lock.json
rename to Example project - Github_pages/quiz-app/package-lock.json
diff --git a/quiz-app/package.json b/Example project - Github_pages/quiz-app/package.json
similarity index 100%
rename from quiz-app/package.json
rename to Example project - Github_pages/quiz-app/package.json
diff --git a/quiz-app/public/favicon.ico b/Example project - Github_pages/quiz-app/public/favicon.ico
similarity index 100%
rename from quiz-app/public/favicon.ico
rename to Example project - Github_pages/quiz-app/public/favicon.ico
diff --git a/quiz-app/public/index.html b/Example project - Github_pages/quiz-app/public/index.html
similarity index 100%
rename from quiz-app/public/index.html
rename to Example project - Github_pages/quiz-app/public/index.html
diff --git a/quiz-app/public/routes.json b/Example project - Github_pages/quiz-app/public/routes.json
similarity index 100%
rename from quiz-app/public/routes.json
rename to Example project - Github_pages/quiz-app/public/routes.json
diff --git a/quiz-app/src/App.vue b/Example project - Github_pages/quiz-app/src/App.vue
similarity index 100%
rename from quiz-app/src/App.vue
rename to Example project - Github_pages/quiz-app/src/App.vue
diff --git a/quiz-app/src/assets/translations/en.json b/Example project - Github_pages/quiz-app/src/assets/translations/en.json
similarity index 100%
rename from quiz-app/src/assets/translations/en.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/en.json
diff --git a/quiz-app/src/assets/translations/es.json b/Example project - Github_pages/quiz-app/src/assets/translations/es.json
similarity index 100%
rename from quiz-app/src/assets/translations/es.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/es.json
diff --git a/quiz-app/src/assets/translations/fr.json b/Example project - Github_pages/quiz-app/src/assets/translations/fr.json
similarity index 100%
rename from quiz-app/src/assets/translations/fr.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/fr.json
diff --git a/quiz-app/src/assets/translations/index.js b/Example project - Github_pages/quiz-app/src/assets/translations/index.js
similarity index 100%
rename from quiz-app/src/assets/translations/index.js
rename to Example project - Github_pages/quiz-app/src/assets/translations/index.js
diff --git a/quiz-app/src/assets/translations/it.json b/Example project - Github_pages/quiz-app/src/assets/translations/it.json
similarity index 100%
rename from quiz-app/src/assets/translations/it.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/it.json
diff --git a/quiz-app/src/assets/translations/ja.json b/Example project - Github_pages/quiz-app/src/assets/translations/ja.json
similarity index 100%
rename from quiz-app/src/assets/translations/ja.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/ja.json
diff --git a/quiz-app/src/assets/translations/ptbr.json b/Example project - Github_pages/quiz-app/src/assets/translations/ptbr.json
similarity index 100%
rename from quiz-app/src/assets/translations/ptbr.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/ptbr.json
diff --git a/quiz-app/src/assets/translations/tr.json b/Example project - Github_pages/quiz-app/src/assets/translations/tr.json
similarity index 100%
rename from quiz-app/src/assets/translations/tr.json
rename to Example project - Github_pages/quiz-app/src/assets/translations/tr.json
diff --git a/quiz-app/src/components/Quiz.vue b/Example project - Github_pages/quiz-app/src/components/Quiz.vue
similarity index 100%
rename from quiz-app/src/components/Quiz.vue
rename to Example project - Github_pages/quiz-app/src/components/Quiz.vue
diff --git a/quiz-app/src/main.js b/Example project - Github_pages/quiz-app/src/main.js
similarity index 100%
rename from quiz-app/src/main.js
rename to Example project - Github_pages/quiz-app/src/main.js
diff --git a/quiz-app/src/router/index.js b/Example project - Github_pages/quiz-app/src/router/index.js
similarity index 100%
rename from quiz-app/src/router/index.js
rename to Example project - Github_pages/quiz-app/src/router/index.js
diff --git a/quiz-app/src/views/Home.vue b/Example project - Github_pages/quiz-app/src/views/Home.vue
similarity index 100%
rename from quiz-app/src/views/Home.vue
rename to Example project - Github_pages/quiz-app/src/views/Home.vue
diff --git a/quiz-app/src/views/NotFound.vue b/Example project - Github_pages/quiz-app/src/views/NotFound.vue
similarity index 100%
rename from quiz-app/src/views/NotFound.vue
rename to Example project - Github_pages/quiz-app/src/views/NotFound.vue
diff --git a/sketchnotes/LICENSE.md b/Example project - Github_pages/sketchnotes/LICENSE.md
similarity index 100%
rename from sketchnotes/LICENSE.md
rename to Example project - Github_pages/sketchnotes/LICENSE.md
diff --git a/sketchnotes/README.md b/Example project - Github_pages/sketchnotes/README.md
similarity index 100%
rename from sketchnotes/README.md
rename to Example project - Github_pages/sketchnotes/README.md
diff --git a/sketchnotes/ml-fairness.png b/Example project - Github_pages/sketchnotes/ml-fairness.png
similarity index 100%
rename from sketchnotes/ml-fairness.png
rename to Example project - Github_pages/sketchnotes/ml-fairness.png
diff --git a/sketchnotes/ml-history.png b/Example project - Github_pages/sketchnotes/ml-history.png
similarity index 100%
rename from sketchnotes/ml-history.png
rename to Example project - Github_pages/sketchnotes/ml-history.png
diff --git a/sketchnotes/ml-realworld.png b/Example project - Github_pages/sketchnotes/ml-realworld.png
similarity index 100%
rename from sketchnotes/ml-realworld.png
rename to Example project - Github_pages/sketchnotes/ml-realworld.png
diff --git a/sketchnotes/ml-regression.png b/Example project - Github_pages/sketchnotes/ml-regression.png
similarity index 100%
rename from sketchnotes/ml-regression.png
rename to Example project - Github_pages/sketchnotes/ml-regression.png
diff --git a/sketchnotes/ml-reinforcement.png b/Example project - Github_pages/sketchnotes/ml-reinforcement.png
similarity index 100%
rename from sketchnotes/ml-reinforcement.png
rename to Example project - Github_pages/sketchnotes/ml-reinforcement.png
diff --git a/sketchnotes/ml-timeseries.png b/Example project - Github_pages/sketchnotes/ml-timeseries.png
similarity index 100%
rename from sketchnotes/ml-timeseries.png
rename to Example project - Github_pages/sketchnotes/ml-timeseries.png
diff --git a/translations/README.es.md b/Example project - Github_pages/translations/README.es.md
similarity index 100%
rename from translations/README.es.md
rename to Example project - Github_pages/translations/README.es.md
diff --git a/translations/README.hi.md b/Example project - Github_pages/translations/README.hi.md
similarity index 100%
rename from translations/README.hi.md
rename to Example project - Github_pages/translations/README.hi.md
diff --git a/translations/README.it.md b/Example project - Github_pages/translations/README.it.md
similarity index 100%
rename from translations/README.it.md
rename to Example project - Github_pages/translations/README.it.md
diff --git a/translations/README.ja.md b/Example project - Github_pages/translations/README.ja.md
similarity index 100%
rename from translations/README.ja.md
rename to Example project - Github_pages/translations/README.ja.md
diff --git a/translations/README.ko.md b/Example project - Github_pages/translations/README.ko.md
similarity index 100%
rename from translations/README.ko.md
rename to Example project - Github_pages/translations/README.ko.md
diff --git a/translations/README.ms.md b/Example project - Github_pages/translations/README.ms.md
similarity index 100%
rename from translations/README.ms.md
rename to Example project - Github_pages/translations/README.ms.md
diff --git a/translations/README.pt-br.md b/Example project - Github_pages/translations/README.pt-br.md
similarity index 100%
rename from translations/README.pt-br.md
rename to Example project - Github_pages/translations/README.pt-br.md
diff --git a/translations/README.pt.md b/Example project - Github_pages/translations/README.pt.md
similarity index 100%
rename from translations/README.pt.md
rename to Example project - Github_pages/translations/README.pt.md
diff --git a/translations/README.tr.md b/Example project - Github_pages/translations/README.tr.md
similarity index 100%
rename from translations/README.tr.md
rename to Example project - Github_pages/translations/README.tr.md
diff --git a/translations/README.zh-cn.md b/Example project - Github_pages/translations/README.zh-cn.md
similarity index 100%
rename from translations/README.zh-cn.md
rename to Example project - Github_pages/translations/README.zh-cn.md
diff --git a/translations/Readme.ta.md b/Example project - Github_pages/translations/Readme.ta.md
similarity index 100%
rename from translations/Readme.ta.md
rename to Example project - Github_pages/translations/Readme.ta.md
diff --git a/README.md b/README.md
index d6fde993..03636e01 100644
--- a/README.md
+++ b/README.md
@@ -1,18 +1,8 @@
-[](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/ML-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/ML-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/ML-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/ML-For-Beginners/network/)
-[](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/)
# Introduction to Deep Learning for HA AI Track - A Curriculum
> 𤊠Welcome to the Honors Academy AI Track Resource Hub! đ¤Š
-
Dive into the world of **Deep Learning** with the **Eindhoven University of Technology's Honors Academy AI Track **. This dedicated platform is tailored to provide our ambitious students with a comprehensive collection of materials, insights, and tools to excel in their AI endeavors. Whether you're embarking on a deep learning journey or exploring the intricacies of machine learning, our curated resources are here to guide you every step of the way.
Our commitment is to ensure that you have a solid foundation to kickstart your projects. From essential basics to advanced techniques, our materials encompass a wide spectrum of AI knowledge. Moreover, our expertly crafted tips and tricks are designed to enhance your project's efficiency and effectiveness. But that's not all! Dive deeper with our additional resources that offer a broader perspective and connect theoretical knowledge with practical application.
@@ -43,7 +33,7 @@ Embrace the future of AI with confidence. Let's embark on this transformative jo
**Teachers**, we have [included some suggestions](for-teachers.md) on how to use this curriculum.
----
+---fdfd
## Video walkthroughs