pull/621/head
Lee Stott 2 years ago committed by GitHub
parent 22a753c12a
commit 799efa6284
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -24,7 +24,7 @@ Welcome to this course on classical machine learning for beginners! Whether you'
Before starting with this curriculum, you need to have your computer set up and ready to run notebooks locally.
- **Configure your machine with these videos**. Use the following links to learn [how to install Python](https://youtu.be/CXZYvNRIAKM) in your system and [setup a text editor](https://youtu.be/EU8eayHWoZg) for development.
- **Learn Python**. It's also recommended to have a basic understanding of [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), a programming language useful for data scientists that we use in this course.
- **Learn Python**. It's also recommended to have a basic understanding of [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), a programming language useful for data scientists that we use in this course.
- **Learn Node.js and JavaScript**. We also use JavaScript a few times in this course when building web apps, so you will need to have [node](https://nodejs.org) and [npm](https://www.npmjs.com/) installed, as well as [Visual Studio Code](https://code.visualstudio.com/) available for both Python and JavaScript development.
- **Create a GitHub account**. Since you found us here on [GitHub](https://github.com), you might already have an account, but if not, create one and then fork this curriculum to use on your own. (Feel free to give us a star, too 😊)
- **Explore Scikit-learn**. Familiarize yourself with [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), a set of ML libraries that we reference in these lessons.
@ -139,9 +139,9 @@ Sketch, on paper or using an online app like [Excalidraw](https://excalidraw.com
---
# Review & Self Study
To learn more about how you can work with ML algorithms in the cloud, follow this [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
To learn more about how you can work with ML algorithms in the cloud, follow this [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
Take a [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa) about the basics of ML.
Take a [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) about the basics of ML.
---
# Assignment

@ -4,6 +4,6 @@
In this non-graded assignment, you should brush up on Python and get your environment up and running and able to run notebooks.
Take this [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), and then get your systems setup by going through these introductory videos:
Take this [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), and then get your systems setup by going through these introductory videos:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -26,7 +26,7 @@ MIT এর জন গাটেং মেশিন লার্নিং এর
- **আপনার মেশিন কে কনফিগার করুন এই ভিডিও দেখে**. শিখার জন্য এই লিংকটি ব্যবহার করুন [কিভাবে পাইথন ইন্সটল করতে হয়](https://youtu.be/CXZYvNRIAKM) এবং [সেটআপ এ ইডিটর](https://youtu.be/EU8eayHWoZg) .
- **পাইথন শিখুন**. [পাইথন](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) এর ব্যাসিক নলেজ জানা থাকা জরুরী। এই কোর্সের প্রোগ্রামিং ল্যাঙ্গুয়েজ ডেটা সাইন্সটিস্ট এর জন্য খুবই গুরুত্বপূর্ণ।
- **পাইথন শিখুন**. [পাইথন](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) এর ব্যাসিক নলেজ জানা থাকা জরুরী। এই কোর্সের প্রোগ্রামিং ল্যাঙ্গুয়েজ ডেটা সাইন্সটিস্ট এর জন্য খুবই গুরুত্বপূর্ণ।
- **Node.js এবং JavaScript শিখুন**.ওয়েব অ্যাপস তৈরির জন্য এই কোর্সে আমরা জাবাস্ক্রিপট ব্যাবহার করব। তাই, আপনার [নোড](https://nodejs.org) এবং [npm](https://www.npmjs.com/) ইন্সটল থাকতে হবে। অন্যদিকে, পাইথন এবং জাভাস্ক্রিপট ডেভেলাপমেন্টের জন্য [ভিজুয়াল স্টুডিও](https://code.visualstudio.com/) কোড এ দুটুই আছে।
- **একটি গিটহাব অ্যাকাউন্ট তৈরি করুন**. যেহেতু আপনি আমাদের কে [গিটহাব](https://github.com) এ পেয়েছেন, তারমানে আপনার ইতিমধ্যেই একাউন্ট আছে। তবে যদি না থাকে, একটি একাউন্ট তৈরি করুন এবং পরে ফর্ক করে আপনার বানিয়ে নিন। (স্টার দিতে ভুলে যাবেন না,😊 )
- **ঘুরিয়ে আসেন Scikit-learn**. নিজেকে পরিচিত করুন [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) এর সাথে, মেশিন লার্নিং লাইব্রেরি সেট যা আমরা এই কোর্সে উল্লেখ করে থাকব
@ -141,9 +141,9 @@ MIT এর জন গাটেং মেশিন লার্নিং এর
---
# পর্যালোচনা ও সেল্ফ স্টাডি
আপনি কিভাবে ক্লাউডে এমএল অ্যালগরিদম দিয়ে কাজ করতে পারেন সে সম্পর্কে আরও জানতে, এটি অনুসরণ করুন [লার্নিং পাথ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)।
আপনি কিভাবে ক্লাউডে এমএল অ্যালগরিদম দিয়ে কাজ করতে পারেন সে সম্পর্কে আরও জানতে, এটি অনুসরণ করুন [লার্নিং পাথ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)।
এম এল বেসিক জানুন [লার্নিং পাথ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa)
এম এল বেসিক জানুন [লার্নিং পাথ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)
---
# এসাইন্টমেন্ট

@ -19,7 +19,7 @@
Antes de comenzar con este currículum, debes tener tu computadora configurada y lista para ejecutar los notebooks localmente.
- **Configura tu equipo con estos videos**. Aprende más acerca de como configurar tu equipo con [estos videos](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
- **Aprende Python**. También se recomienda que tengas un entendimiento básico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), un lenguaje de programación útil para practicantes de la ciencia de datos, y que se utiliza en este curso.
- **Aprende Python**. También se recomienda que tengas un entendimiento básico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un lenguaje de programación útil para practicantes de la ciencia de datos, y que se utiliza en este curso.
- **Aprende Node.js y JavaScript**. También usamos JavaScript unas cuantas veces en este curso cuando creamos aplicaciones web, así que necesitarás tener [node](https://nodejs.org) y [npm](https://www.npmjs.com/) instalados, así como [Visual Studio Code](https://code.visualstudio.com/) listo para el desarrollo con Python y JavaScript.
- **Crea una cuenta de GitHub**. Como nos encontraste aquí en [GitHub](https://github.com), puede que ya tengas una cuenta, pero si no, créate una y después haz un fork de este curriculum para usarlo en tu computadora personal. (Siéntete libre de darnos una estrella 😊)
- **Explora Scikit-learn**. Familiarízate con [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), un conjunto de bibliotecas de ML que referenciamos en estas lecciones.
@ -104,9 +104,9 @@ Dibuja, en papel o usando una aplicación como [Excalidraw](https://excalidraw.c
## Revisión y autoestudio
Para aprender más sobre como puedes trabajar con algoritmos de ML en la nube, sigue esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
Para aprender más sobre como puedes trabajar con algoritmos de ML en la nube, sigue esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
Toma esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa) sobre las bases de ML.
Toma esta [Ruta de Aprendizaje](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) sobre las bases de ML.
## Tarea

@ -18,7 +18,7 @@ Bienvenue à ce cours sur le machine learning classique pour débutant ! Que vou
Avant de commencer avec ce cours, vous aurez besoin d'un ordinateur configuré et prêt à faire tourner des notebooks (jupyter) localement.
- **Configurer votre ordinateur avec ces vidéos**. Apprendre comment configurer votre ordinateur avec cette [série de vidéos](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
- **Apprendre Python**. Il est aussi recommandé d'avoir une connaissance basique de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), un langage de programmaton utile pour les data scientist que nous utilisons tout au long de ce cours.
- **Apprendre Python**. Il est aussi recommandé d'avoir une connaissance basique de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un langage de programmaton utile pour les data scientist que nous utilisons tout au long de ce cours.
- **Apprendre Node.js et Javascript**. Nous utilisons aussi Javascript par moment dans ce cours afin de construire des applications WEB, vous aurez donc besoin de [node](https://nodejs.org) et [npm](https://www.npmjs.com/) installé, ainsi que de [Visual Studio Code](https://code.visualstudio.com/) pour développer en Python et Javascript.
- **Créer un compte GitHub**. Comme vous nous avez trouvé sur [GitHub](https://github.com), vous y avez sûrement un compte, mais si non, créez en un et répliquez ce cours afin de l'utiliser à votre grés. (N'oublier pas de nous donner une étoile aussi 😊)
- **Explorer Scikit-learn**. Familiariser vous avec [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), un ensemble de librairies ML que nous mentionnons dans nos leçons.
@ -102,7 +102,7 @@ Esquisser, sur papier ou à l'aide d'une application en ligne comme [Excalidraw]
## Révision et auto-apprentissage
Pour en savoir plus sur la façon dont vous pouvez utiliser les algorithmes de ML dans le cloud, suivez ce [Parcours d'apprentissage](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
Pour en savoir plus sur la façon dont vous pouvez utiliser les algorithmes de ML dans le cloud, suivez ce [Parcours d'apprentissage](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
## Devoir

@ -18,7 +18,7 @@ Selamat datang di pelajaran Machine Learning klasik untuk pemula! Baik kamu yang
Sebelum memulai kurikulum ini, kamu perlu memastikan komputer kamu sudah dipersiapkan untuk menjalankan *notebook* secara lokal.
- **Konfigurasi komputer kamu dengan video ini**. Pelajari bagaimana menyiapkan komputer kamu dalam [video-video](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6) ini.
- **Belajar Python**. Disarankan juga untuk memiliki pemahaman dasar dari [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), sebuah bahasa pemrograman yang digunakan oleh data scientist yang juga akan kita gunakan dalam pelajaran ini.
- **Belajar Python**. Disarankan juga untuk memiliki pemahaman dasar dari [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), sebuah bahasa pemrograman yang digunakan oleh data scientist yang juga akan kita gunakan dalam pelajaran ini.
- **Belajar Node.js dan JavaScript**. Kita juga menggunakan JavaScript beberapa kali dalam pelajaran ini ketika membangun aplikasi web, jadi kamu perlu menginstal [node](https://nodejs.org) dan [npm](https://www.npmjs.com/), serta [Visual Studio Code](https://code.visualstudio.com/) yang tersedia untuk pengembangan Python dan JavaScript.
- **Buat akun GitHub**. Karena kamu menemukan kami di [GitHub](https://github.com), kamu mungkin sudah punya akun, tapi jika belum, silakan buat akun baru kemudian *fork* kurikulum ini untuk kamu pergunakan sendiri. (Jangan ragu untuk memberikan kami bintang juga 😊)
- **Jelajahi Scikit-learn**. Buat diri kamu familiar dengan [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html), seperangkat *library* ML yang kita acu dalam pelajaran-pelajaran ini.
@ -100,7 +100,7 @@ Buat sketsa di atas kertas atau menggunakan aplikasi seperti [Excalidraw](https:
## Ulasan & Belajar Mandiri
Untuk mempelajari lebih lanjut tentang bagaimana kamu dapat menggunakan algoritma ML di cloud, ikuti [Jalur Belajar](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa) ini.
Untuk mempelajari lebih lanjut tentang bagaimana kamu dapat menggunakan algoritma ML di cloud, ikuti [Jalur Belajar](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) ini.
## Tugas

@ -19,7 +19,7 @@ Benvenuti in questo corso su machine learning classico per principianti! Che si
Prima di iniziare con questo programma di studi, è necessario che il computer sia configurato e pronto per eseguire i notebook in locale.
- **Si configuri la propria macchina con l'aiuto di questi video**. Si scopra di più su come configurare la propria macchina in questa [serie di video](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6).
- **Imparare Python**. Si consiglia inoltre di avere una conoscenza di base di [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), un linguaggio di programmazione utile per i data scientist che si utilizzerà in questo corso.
- **Imparare Python**. Si consiglia inoltre di avere una conoscenza di base di [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un linguaggio di programmazione utile per i data scientist che si utilizzerà in questo corso.
- **Imparare Node.js e JavaScript**. Talvolta in questo corso si usa anche JavaScript durante la creazione di app web, quindi sarà necessario disporre di [node](https://nodejs.org) e [npm](https://www.npmjs.com/) installati, oltre a [Visual Studio Code](https://code.visualstudio.com/) disponibile sia per lo sviluppo Python che JavaScript.
- **Creare un account GitHub**. E' probabile che si [](https://github.com)disponga già di un account GitHub, ma in caso contrario occorre crearne uno e poi eseguire il fork di questo programma di studi per utilizzarlo autonomamente. (Sentitevi liberi di darci anche una stella 😊)
- **Esplorare Scikit-learn**. Familiarizzare con Scikit-learn,[]([https://scikit-learn.org/stable/user_guide.html) un insieme di librerie ML a cui si farà riferimento in queste lezioni.
@ -101,7 +101,7 @@ Disegnare, su carta o utilizzando un'app online come [Excalidraw](https://excali
## Revisione e Auto Apprendimento
Per saperne di più su come si può lavorare con gli algoritmi ML nel cloud, si segua questo [percorso di apprendimento](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
Per saperne di più su come si può lavorare con gli algoritmi ML nel cloud, si segua questo [percorso di apprendimento](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
## Compito

@ -17,7 +17,7 @@
このカリキュラムを始める前に、コンピュータを設定し、ノートブックをローカルで実行できるようにする必要があります。
- **こちらのビデオでマシンの設定を行ってください。** マシンの設定方法については、[これらのビデオ](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)をご覧ください。
- **Pythonを学習する。** 本講座で使用する、データサイエンティストに有用なプログラミング言語である[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)の基本的な理解があることが望ましいです。
- **Pythonを学習する。** 本講座で使用する、データサイエンティストに有用なプログラミング言語である[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)の基本的な理解があることが望ましいです。
- **Node.jsとJavaScriptを学習する。** このコースではウェブアプリを構築する際にJavaScriptも何度か使用しますので、[node](https://nodejs.org)と[npm](https://www.npmjs.com/)がインストールされていること、PythonとJavaScriptの両方の開発に必要な[Visual Studio Code](https://code.visualstudio.com/)が利用可能であることが必要です。
- **GitHubのアカウントを作成する。** [GitHub](https://github.com)で私たちを見つけたのですから、すでにアカウントをお持ちかもしれませんが、もしお持ちでなければ、アカウントを作成して、このカリキュラムをフォークしてご自分でお使いください。(スターをつけることもお忘れなく😊)
- **Scikit-learnを探索する。** このレッスンで参照するMLライブラリのセットである[Scikit-learn]([https://scikit-learn.org/stable/user_guide.html)に慣れ親しんでください。
@ -98,7 +98,7 @@ AI、ML、深層学習、データサイエンスの違いについて理解し
## 振り返りと自習
クラウド上でMLアルゴリズムをどのように扱うことができるかについては、この[ラーニングパス](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)に従ってください。
クラウド上でMLアルゴリズムをどのように扱うことができるかについては、この[ラーニングパス](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)に従ってください。
## 課題

@ -18,7 +18,7 @@
이 커리큘럼을 시작하기 전, 컴퓨터를 세팅하고 노트북을 로컬에서 실행할 수 있게 준비해야 합니다.
- **이 영상으로 컴퓨터 세팅하기**. [영상 플레이리스트](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)에서 컴퓨터를 세팅하는 방법에 대하여 자세히 알아봅니다.
- **Python 배우기**. 이 코스에서 사용할 데이터 사이언티스트에게 유용한 프로그래밍 언어인 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)에 대한 기본적인 이해를 해야 좋습니다.
- **Python 배우기**. 이 코스에서 사용할 데이터 사이언티스트에게 유용한 프로그래밍 언어인 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)에 대한 기본적인 이해를 해야 좋습니다.
- **Node.js 와 JavaScript 배우기**. 이 코스에서 웹앱을 빌드할 때 JavaScript를 사용하므로, [node](https://nodejs.org) 와 [npm](https://www.npmjs.com/)을 설치해야 합니다. Python 과 JavaScript의 개발환경 모두 쓸 수 있는 [Visual Studio Code](https://code.visualstudio.com/)도 있습니다.
- **GitHub 계정 만들기**. [GitHub](https://github.com) 계정이 혹시 없다면, 계정을 만든 뒤에 이 커리큘럼을 포크해서 개인에 맞게 쓸 수 있습니다. (star 하셔도 됩니다 😊)
- **Scikit-learn 찾아보기**. 이 강의에서 참조하고 있는 ML 라이브러리 셋인 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html)을 숙지합니다.
@ -104,9 +104,9 @@
## 리뷰 & 자기주도 학습
클라우드에서 ML 알고리즘을 어떻게 사용하는 지 자세히 알아보려면, [학습 경로](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)를 따릅니다.
클라우드에서 ML 알고리즘을 어떻게 사용하는 지 자세히 알아보려면, [학습 경로](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)를 따릅니다.
ML의 기초에 대한 [학습 경로](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa)를 봅니다.
ML의 기초에 대한 [학습 경로](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)를 봅니다.
## 과제

@ -19,7 +19,7 @@ Nossas boas vindas a este curso de machine learning clássico para iniciantes! Q
Antes de iniciar este curso, você precisa ter seu computador configurado e pronto para executar notebooks localmente.
- **Configure sua máquina com estes vídeos**. Use os links a seguir para aprender [como instalar o Python](https://youtu.be/CXZYvNRIAKM) em seu sistema e [configurar um editor de texto](https://youtu.be/EU8eayHWoZg) para desenvolvimento.
- **Aprenda Python**. Também é recomendável ter um conhecimento básico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), uma linguagem de programação útil para cientistas de dados (data scientists) que usamos neste curso.
- **Aprenda Python**. Também é recomendável ter um conhecimento básico de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), uma linguagem de programação útil para cientistas de dados (data scientists) que usamos neste curso.
- **Aprenda Node.js e JavaScript**. Também usamos JavaScript algumas vezes neste curso para criar aplicativos web, então você precisará ter [node](https://nodejs.org) e [npm](https://www.npmjs.com/) instalado, assim como o [Visual Studio Code](https://code.visualstudio.com/) disponível para desenvolvimento em Python e JavaScript.
- **Crie uma conta no GitHub**. Como você nos encontrou aqui no [GitHub](https://github.com),talvez você já tenha uma conta, mas se não, crie uma e faça um fork deste curso para usar por conta própria. (Sinta-se à vontade para nos dar uma estrela também 😊).
- **Explore o Scikit-learn**. Familiarize-se com o [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), um conjunto de bibliotecas de ML referenciadas nestas lições.
@ -104,9 +104,9 @@ Esboce, no papel ou usando um aplicativo online como [Excalidraw](https://excali
## Revisão e autoestudo
Para saber mais sobre como você pode trabalhar com algoritmos de ML na nuvem, siga este [Caminho de aprendizagem](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
Para saber mais sobre como você pode trabalhar com algoritmos de ML na nuvem, siga este [Caminho de aprendizagem](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
Faça o [Caminho de aprendizagem](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa) sobre os fundamentos do ML.
Faça o [Caminho de aprendizagem](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) sobre os fundamentos do ML.
## Tarefa

@ -24,7 +24,7 @@
Перед тем, как приступить к изучению этой учебной программы, вам необходимо настроить компьютер и подготовить его для работы с ноутбуками локально.
- **Настройте свою машину с помощью этих видео**. Воспользуйтесь следующими ссылками, чтобы узнать [как установить Python](https://youtu.be/CXZYvNRIAKM) в вашей системе и [настроить текстовый редактор](https://youtu.be/EU8eayHWoZg) для разработки.
- **Изучите Python**. Также рекомендуется иметь базовые знания о [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), языке программирования, полезном для специалистов по данным, который мы используем в этом курсе.
- **Изучите Python**. Также рекомендуется иметь базовые знания о [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), языке программирования, полезном для специалистов по данным, который мы используем в этом курсе.
- **Изучите Node.js и JavaScript**. Мы также несколько раз используем JavaScript в этом курсе при создании веб-приложений, поэтому вам потребуется установить [node](https://nodejs.org) и [npm](https://www.npmjs.com/), а также [Visual Studio Code](https://code.visualstudio.com/), доступный для разработки как на Python, так и на JavaScript.
- **Создайте учетную запись GitHub**. Поскольку вы нашли нас на [GitHub](https://github.com), возможно, у вас уже есть учетная запись, но если нет, создайте ее, а затем создайте форк этой учебной программы, чтобы использовать ее самостоятельно. (Не стесняйтесь поставить звезду этому репозиторию 😊)
- **Ознакомьтесь со Scikit-learn**. Ознакомьтесь со [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), набором библиотек для машинного обучения, на которые мы ссылаемся в этих уроках.
@ -139,9 +139,9 @@
---
# Обзор и самообучение
Чтобы узнать больше о том, как вы можете работать с алгоритмами машинного обучения в облаке, следуйте курсу [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa).
Чтобы узнать больше о том, как вы можете работать с алгоритмами машинного обучения в облаке, следуйте курсу [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
Пройдите курс [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-15963-cxa) по основам машинного обучения.
Пройдите курс [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) по основам машинного обучения.
---
# Задание

@ -18,7 +18,7 @@ Yeni başlayanlar için klasik makine öğrenimi üzerine olan bu kursa hoş gel
Bu müfredata başlamadan önce, bilgisayarınızın yerel olarak (Jupyter) not defterlerini çalıştırmak için hazır olması gerekir.
- **Makinenizi bu videolar rehberliğinde yapılandırın**. Bu [video setinde](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6) makinenizi nasıl kuracağınız hakkında daha fazla bilgi edinin.
- **Python öğrenin**. Ayrıca, veri bilimciler için faydalı bir programlama dili olan ve bu derslerde kullandığımız [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) programlama dili hakkında temel bilgilere sahip olmanız da önerilir.
- **Python öğrenin**. Ayrıca, veri bilimciler için faydalı bir programlama dili olan ve bu derslerde kullandığımız [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) programlama dili hakkında temel bilgilere sahip olmanız da önerilir.
- **Node.js ve JavaScript'i öğrenin**. Web uygulamaları oluştururken de bu kursta JavaScript'i birkaç kez kullanıyoruz, bu nedenle [node](https://nodejs.org), [npm](https://www.npmjs.com/) ve ayrıca hem Python hem de JavaScript geliştirme için kullanılabilen [Visual Studio Code](https://code.visualstudio.com/) yüklü olmalıdır.
- **GitHub hesabı oluşturun**. Bizi burada [GitHub](https://github.com) üzerinde bulduğunuza göre, zaten bir hesabınız olabilir, ancak mevcut değilse, bir tane hesap oluşturun ve ardından bu müfredatı kendi başınıza kullanmak için çatallayın (fork). (Bize de yıldız vermekten çekinmeyin 😊)
- **Scikit-learn'ü keşfedin**. Bu derslerde referans verdiğimiz, bir dizi ML kütüphanesinden oluşan [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) hakkında bilgi edinin.
@ -107,7 +107,7 @@ Kağıt üzerinde veya [Excalidraw](https://excalidraw.com/) gibi çevrimiçi bi
## İnceleme ve Bireysel Çalışma
Bulutta makine öğrenimi algoritmalarıyla nasıl çalışabileceğiniz hakkında daha fazla bilgi edinmek için bu [Eğitim Patikasını](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa) izleyin.
Bulutta makine öğrenimi algoritmalarıyla nasıl çalışabileceğiniz hakkında daha fazla bilgi edinmek için bu [Eğitim Patikasını](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) izleyin.
## Ödev

@ -18,7 +18,7 @@
在开始本课程之前,你需要设置计算机能在本地运行 Jupyter Notebooks。
- **按照这些视频里的讲解配置你的计算机**。了解有关如何在此[视频集](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)中设置计算机的更多信息。
- **学习 Python**。 还建议你对 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) 有一个基本的了解。这是我们在本课程中使用的一种对数据科学家有用的编程语言。
- **学习 Python**。 还建议你对 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) 有一个基本的了解。这是我们在本课程中使用的一种对数据科学家有用的编程语言。
- **学习 Node.js 和 JavaScript**。在本课程中,我们在构建 web 应用程序时也使用过几次 JavaScript因此你需要有 [Node.js](https://nodejs.org) 和 [npm](https://www.npmjs.com/) 以及 [Visual Studio Code](https://code.visualstudio.com/) 用于 Python 和 JavaScript 开发。
- **创建 GitHub 帐户**。既然你在 [GitHub](https://github.com) 上找到我们,你可能已经有了一个帐户,但如果没有,请创建一个帐户,然后 fork 此课程自己使用(也给我们一颗星星吧😊)
- **探索 Scikit-learn**. 熟悉 [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html),我们在这些课程中引用的一组 ML 库。
@ -100,7 +100,7 @@
## 复习与自学
要了解有关如何在云中使用 ML 算法的更多信息,请遵循以下[学习路径](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)。
要了解有关如何在云中使用 ML 算法的更多信息,请遵循以下[学习路径](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)。
## 任务

@ -16,7 +16,7 @@
在開始本課程之前,你需要設置計算機能在本地運行 Jupyter Notebooks。
- **按照這些視頻裏的講解配置你的計算機**。了解有關如何在此[視頻集](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)中設置計算機的更多信息。
- **學習 Python**。 還建議你對 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) 有一個基本的了解。這是我們在本課程中使用的一種對數據科學家有用的編程語言。
- **學習 Python**。 還建議你對 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) 有一個基本的了解。這是我們在本課程中使用的一種對數據科學家有用的編程語言。
- **學習 Node.js 和 JavaScript**。在本課程中,我們在構建 web 應用程序時也使用過幾次 JavaScript因此你需要有 [Node.js](https://nodejs.org) 和 [npm](https://www.npmjs.com/) 以及 [Visual Studio Code](https://code.visualstudio.com/) 用於 Python 和 JavaScript 開發。
- **創建 GitHub 帳戶**。既然你在 [GitHub](https://github.com) 上找到我們,你可能已經有了一個帳戶,但如果沒有,請創建一個帳戶,然後 fork 此課程自己使用(也給我們一顆星星吧😊)
- **探索 Scikit-learn**. 熟悉 [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html),我們在這些課程中引用的一組 ML 庫。
@ -96,7 +96,7 @@
## 復習與自學
要了解有關如何在雲中使用 ML 算法的更多信息,請遵循以下[學習路徑](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)。
要了解有關如何在雲中使用 ML 算法的更多信息,請遵循以下[學習路徑](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)。
## 任務

@ -4,6 +4,6 @@
En esta tarea no calificada, debe repasar Python y hacer que su entorno esté en funcionamiento y sea capaz de ejecutar cuadernos.
Tome esta [Ruta de aprendizaje de Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), y luego configure sus sistemas con estos videos introductorios:
Tome esta [Ruta de aprendizaje de Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), y luego configure sus sistemas con estos videos introductorios:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -5,6 +5,6 @@
Dans ce devoir non noté, vous devez vous familiariser avec Python et rendre votre environnement opérationnel et capable d'exécuter des notebook.
Suivez ce [parcours d'apprentissage Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), puis configurez votre système en parcourant ces vidéos introductives :
Suivez ce [parcours d'apprentissage Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), puis configurez votre système en parcourant ces vidéos introductives :
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
Dalam tugas yang tidak dinilai ini, kamu akan mempelajari Python dan mempersiapkan *environment* kamu sehingga dapat digunakan untuk menjalankan *notebook*.
Ambil [Jalur Belajar Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) ini, kemudian persiapkan sistem kamu dengan menonton video-video pengantar ini:
Ambil [Jalur Belajar Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) ini, kemudian persiapkan sistem kamu dengan menonton video-video pengantar ini:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
In questo compito senza valutazione, si dovrebbe rispolverare Python e rendere il proprio ambiente attivo e funzionante, in grado di eseguire notebook.
Si segua questo [percorso di apprendimento di Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) e quindi si configurino i propri sistemi seguendo questi video introduttivi:
Si segua questo [percorso di apprendimento di Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) e quindi si configurino i propri sistemi seguendo questi video introduttivi:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
この評価のない課題では、Pythonについて復習し、環境を稼働させてートブックを実行できるようにする必要があります。
この[Pythonラーニングパス](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)を受講し、次の入門用ビデオに従ってシステムをセットアップしてください。
この[Pythonラーニングパス](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)を受講し、次の入門用ビデオに従ってシステムをセットアップしてください。
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
이 미채점 과제에서는 파이썬(Python)을 복습하고 Python 실행 환경 설정 및 노트북(Jupyter Notebook) 실행 방법까지 숙지해 보시길 바랍니다.
다음 [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)를 이수하시고, 아래 Python 입문 강좌를 통해 Python 설치 및 실행 환경을 설정해 보세요:
다음 [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)를 이수하시고, 아래 Python 입문 강좌를 통해 Python 설치 및 실행 환경을 설정해 보세요:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
Nesta tarefa não corrigida, você deve se aprimorar em Python e colocar seu ambiente em funcionamento e capaz de executar notebooks.
Faça o [Caminho de aprendizagem do Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), e, em seguida, faça a configuração de seus sistemas analisando estes vídeos introdutórios:
Faça o [Caminho de aprendizagem do Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), e, em seguida, faça a configuração de seus sistemas analisando estes vídeos introdutórios:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
Это задание не оценивается. Вы должны освежить в памяти Python и настроить свою среду, чтобы она могла запускать ноутбуки.
Воспользуйтесь этим курсом [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa), а затем настройте свою систему, просмотрев эти вводные видео:
Воспользуйтесь этим курсом [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), а затем настройте свою систему, просмотрев эти вводные видео:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
Bu not-verilmeyen ödevde, Python bilgilerinizi tazelemeli, geliştirme ortamınızı çalışır duruma getirmeli ve not defterlerini çalıştırabilmelisiniz.
Bu [Python Eğitim Patikasını](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) bitirin ve ardından bu tanıtım videolarını izleyerek sistem kurulumunuzu yapın :
Bu [Python Eğitim Patikasını](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) bitirin ve ardından bu tanıtım videolarını izleyerek sistem kurulumunuzu yapın :
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
在这个不评分的作业中,你应该温习一下 Python将 Python 环境能够运行起来,并且可以运行 notebooks。
学习这个 [Python 学习路径](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa),然后通过这些介绍性的视频将你的系统环境设置好:
学习这个 [Python 学习路径](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott),然后通过这些介绍性的视频将你的系统环境设置好:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -4,6 +4,6 @@
在這個不評分的作業中,你應該溫習一下 Python將 Python 環境能夠運行起來,並且可以運行 notebooks。
學習這個 [Python 學習路徑](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa),然後通過這些介紹性的視頻將你的系統環境設置好:
學習這個 [Python 學習路徑](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott),然後通過這些介紹性的視頻將你的系統環境設置好:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

@ -21,7 +21,7 @@ In this lesson, you will:
As a prerequisite, please take the "Responsible AI Principles" Learn Path and watch the video below on the topic:
Learn more about Responsible AI by following this [Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
Learn more about Responsible AI by following this [Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![Microsoft's Approach to Responsible AI](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoft's Approach to Responsible AI")
@ -169,7 +169,7 @@ The tool helps you to assesses how a model's predictions affect different groups
- Try some [sample notebooks](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Learn [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) of machine learning models in Azure Machine Learning.
- Learn [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) of machine learning models in Azure Machine Learning.
- Check out these [sample notebooks](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) for more fairness assessment scenarios in Azure Machine Learning.
@ -208,7 +208,7 @@ Explore the Fairlearn toolkit:
Read about Azure Machine Learning's tools to ensure fairness:
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Assignment

@ -21,7 +21,7 @@ En esta lección, será capaz de:
Como un prerrequisito, por favor toma la ruta de aprendizaje "Responsible AI Principles" y mira el vídeo debajo sobre el tema:
Aprende más acerca de la AI responsable siguiendo este [curso](https://docs.microsoft.com/es-es/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
Aprende más acerca de la AI responsable siguiendo este [curso](https://docs.microsoft.com/es-es/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![Enfonque de Microsoft para la AI responsable](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Enfoque de Microsoft para la AI responsable")
@ -168,7 +168,7 @@ La herramienta te ayuda a evaluar cómo unos modelos de predicción afectan a di
- Prueba algunos [notebooks de ejemplo](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Aprende a [cómo activar evaluación de justicia](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) de los modelos de aprendizaje automático en Azure Machine Learning.
- Aprende a [cómo activar evaluación de justicia](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) de los modelos de aprendizaje automático en Azure Machine Learning.
- Revisa estos [notebooks de ejemplo](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) para más escenarios de evaluaciones de justicia en Azure Machine Learning.
@ -204,7 +204,7 @@ Explorar la caja de herramientas de Fairlearn
Lee acerca de las herramientas de Azure Machine Learning para asegurar justicia
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Tarea

@ -21,7 +21,7 @@ Dans cette leçon, nous :
En tant que prérequis, veuillez lire le guide des connaissances sur les "Principes de l'IA responsable" et regarder la vidéo sur le sujet suivant :
En apprendre plus sur l'IA responsable en suivant ce [guide des connaissances](https://docs.microsoft.com/fr-fr/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
En apprendre plus sur l'IA responsable en suivant ce [guide des connaissances](https://docs.microsoft.com/fr-fr/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![L'approche de Microsoft sur l'IA responsable](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoft's Approach to Responsible AI")
@ -169,7 +169,7 @@ L'outil aide à évaluer comment les prédictions d'un modèle affectent différ
- Essayez quelques [notebooks d'exemples](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Apprenez [comment activer les évaluations d'équités](https://docs.microsoft.com/fr-fr/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) des modèles de machine learning sur Azure Machine Learning.
- Apprenez [comment activer les évaluations d'équités](https://docs.microsoft.com/fr-fr/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) des modèles de machine learning sur Azure Machine Learning.
- Jetez un coup d'oeil aux [notebooks d'exemples](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) pour plus de scénarios d'évaluation d'équités sur Azure Machine Learning.
@ -205,7 +205,7 @@ Explorer la boite à outils Fairlearn
Lire sur les outils Azure Machine Learning afin d'assurer l'équité
- [Azure Machine Learning](https://docs.microsoft.com/fr-fr/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/fr-fr/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Devoir

@ -22,7 +22,7 @@ Dalam pelajaran ini, kamu akan:
Sebagai prasyarat, silakan ikuti jalur belajar "Prinsip AI yang Bertanggung Jawab" dan tonton video di bawah ini dengan topik:
Pelajari lebih lanjut tentang AI yang Bertanggung Jawab dengan mengikuti [Jalur Belajar](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa) ini
Pelajari lebih lanjut tentang AI yang Bertanggung Jawab dengan mengikuti [Jalur Belajar](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) ini
[![Pendekatan Microsoft untuk AI yang Bertanggung Jawab](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Pendekatan Microsoft untuk AI yang Bertanggung Jawab")
@ -170,7 +170,7 @@ Pelajaran pengantar ini tidak membahas secara mendalam mengenai detail mitigasi
- Coba beberapa [sampel notebook](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Pelajari [bagaimana cara mengaktifkan penilaian keadilan](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) dari model machine learning di Azure Machine Learning.
- Pelajari [bagaimana cara mengaktifkan penilaian keadilan](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) dari model machine learning di Azure Machine Learning.
- Lihat [sampel notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) ini untuk skenario penilaian keadilan yang lebih banyak di Azure Machine Learning.
@ -206,7 +206,7 @@ Jelajahi *toolkit* Fairlearn
Baca mengenai *tools* Azure Machine Learning untuk memastikan keadilan
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Tugas

@ -21,7 +21,7 @@ In questa lezione, si dovrà:
Come prerequisito, si segua il percorso di apprendimento "Principi di AI Responsabile" e si guardi il video qui sotto sull'argomento:
Si scopra di più sull'AI Responsabile seguendo questo [percorso di apprendimento](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
Si scopra di più sull'AI Responsabile seguendo questo [percorso di apprendimento](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![L'approccio di Microsoft all'AI responsabileL'](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "approccio di Microsoft all'AI Responsabile")
@ -167,7 +167,7 @@ Lo strumento consente di valutare in che modo le previsioni di un modello influi
- Si provino alcuni [notebook di esempio](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Si scopra [come abilitare le valutazioni dell'equità](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) dei modelli di Machine Learning in Azure Machine Learning.
- Si scopra [come abilitare le valutazioni dell'equità](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) dei modelli di Machine Learning in Azure Machine Learning.
- Si dia un'occhiata a questi [notebook di esempio](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) per ulteriori scenari di valutazione dell'equità in Azure Machine Learning.
@ -205,7 +205,7 @@ Si esplori il toolkit Fairlearn
Si scoprano gli strumenti di Azure Machine Learning per garantire l'equità
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Compito

@ -20,7 +20,7 @@
## 前提条件
前提条件として、"Responsible AI Principles"のLearn Pathを受講し、このトピックに関する以下のビデオを視聴してください。
こちらの[Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)より、責任のあるAIについて学ぶ。
こちらの[Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)より、責任のあるAIについて学ぶ。
[![Microsoftの責任あるAIに対する取り組み](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoftの責任あるAIに対する取り組み")
@ -163,7 +163,7 @@ AIや機械学習における公平性の保証は、依然として複雑な社
- [サンプルノートブック](https://github.com/fairlearn/fairlearn/tree/master/notebooks)を試す。
- Azure Machine Learningで機械学習モデルの[公平性評価を可能にする方法](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa)を学ぶ。
- Azure Machine Learningで機械学習モデルの[公平性評価を可能にする方法](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott)を学ぶ。
- Azure Machine Learningで[サンプルノートブック](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness)をチェックして、公平性評価の流れを確認する。
@ -197,7 +197,7 @@ Fairlearnのツールキットを調べてみましょう
Azure Machine Learningによる、公平性を確保するためのツールについて読む
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## 課題

@ -21,7 +21,7 @@
전제 조건으로, "Responsible AI Principles" 학습 과정을 수강하고 주제에 대한 영상을 시청합니다:
[Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)를 따라서 Responsible AI에 대하여 더 자세히 알아보세요
[Learning Path](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)를 따라서 Responsible AI에 대하여 더 자세히 알아보세요
[![Microsoft's Approach to Responsible AI](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoft's Approach to Responsible AI")
@ -170,7 +170,7 @@ AI와 머신러닝의 공정성을 보장하는 건 계속 복잡한 사회기
- [sample notebooks](https://github.com/fairlearn/fairlearn/tree/master/notebooks) 시도해보기.
- Azure Machine Learning에서 머신러닝 모델의 [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) 알아보기.
- Azure Machine Learning에서 머신러닝 모델의 [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) 알아보기.
- Azure Machine Learning에서 더 공정한 평가 시나리오에 대하여 [sample notebooks](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) 확인해보기.
@ -207,7 +207,7 @@ Fairlearn toolkit 탐색합니다
공정성을 보장하기 위한 Azure Machine Learning 도구에 대해 읽어봅시다
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## 과제

@ -21,7 +21,7 @@ Nesta lição, você irá:
Como pré-requisito, siga o Caminho de aprendizagem "Princípios de AI responsável" e assista ao vídeo abaixo sobre o tópico:
Saiba mais sobre a AI responsável seguindo este [Caminho de aprendizagem](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
Saiba mais sobre a AI responsável seguindo este [Caminho de aprendizagem](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![Abordagem da Microsoft para AI responsável](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Abordagem da Microsoft para AI responsável")
@ -167,7 +167,7 @@ The tool helps you to assesses how a model's predictions affect different groups
- Try some [sample notebooks](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- Learn [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa) of machine learning models in Azure Machine Learning.
- Learn [how to enable fairness assessments](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott) of machine learning models in Azure Machine Learning.
- Check out these [sample notebooks](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness) for more fairness assessment scenarios in Azure Machine Learning.
@ -204,7 +204,7 @@ Explore o kit de ferramentas Fairlearn
Leia sobre as ferramentas do Azure Machine Learning para garantir justiça
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## Tarefa

@ -21,7 +21,7 @@
作为先决条件,请选择“负责任的人工智能原则”学习路径并观看以下主题视频:
按照此[学习路径](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)了解有关负责任 AI 的更多信息
按照此[学习路径](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)了解有关负责任 AI 的更多信息
[![微软对负责任人工智能的做法](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "微软对负责任人工智能的做法")
@ -169,7 +169,7 @@
- 尝试一些 [示例 Notebook](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- 了解Azure机器学习中机器学习模型[如何启用公平性评估](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa)。
- 了解Azure机器学习中机器学习模型[如何启用公平性评估](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott)。
- 看看这些[示例 Notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness)了解 Azure 机器学习中的更多公平性评估场景。
@ -207,7 +207,7 @@
了解 Azure 机器学习的工具以确保公平性
- [Azure 机器学习](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure 机器学习](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## 任务

@ -20,7 +20,7 @@
作為先決條件,請選擇「負責任的人工智能原則」學習路徑並觀看以下主題視頻:
按照此[學習路徑](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)了解有關負責任 AI 的更多信息
按照此[學習路徑](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)了解有關負責任 AI 的更多信息
[![微軟對負責任人工智能的做法](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "微軟對負責任人工智能的做法")
@ -164,7 +164,7 @@
- 嘗試一些 [示例 Notebook](https://github.com/fairlearn/fairlearn/tree/master/notebooks).
- 了解Azure機器學習中機器學習模型[如何啟用公平性評估](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa)。
- 了解Azure機器學習中機器學習模型[如何啟用公平性評估](https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-77952-leestott)。
- 看看這些[示例 Notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness)了解 Azure 機器學習中的更多公平性評估場景。
@ -202,7 +202,7 @@
了解 Azure 機器學習的工具以確保公平性
- [Azure 機器學習](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa)
- [Azure 機器學習](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## 任務

@ -89,7 +89,7 @@ In the context of machine learning, model fitting refers to the accuracy of the
## Parameter tuning
Once your initial training is complete, observe the quality of the model and consider improving it by tweaking its 'hyperparameters'. Read more about the process [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa).
Once your initial training is complete, observe the quality of the model and consider improving it by tweaking its 'hyperparameters'. Read more about the process [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## Prediction

@ -89,7 +89,7 @@ En el contexto del machine learning, el ajuste del modelo se refiere a la precis
## Ajuste de parámetros
Una vez que haya completado su entrenamiento inicial, observe la calidad del modelo y considere mejorarlo ajustando sus 'hiperparámetros'. Lea más sobre el proceso [en la documentación](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa).
Una vez que haya completado su entrenamiento inicial, observe la calidad del modelo y considere mejorarlo ajustando sus 'hiperparámetros'. Lea más sobre el proceso [en la documentación](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## Predicción

@ -86,7 +86,7 @@ Dalam konteks machine learning, *model fitting* mengacu pada keakuratan dari fun
## Parameter tuning
Setelah *training* awal selesai, amati kualitas model dan pertimbangkan untuk meningkatkannya dengan mengubah 'hyperparameter' nya. Baca lebih lanjut tentang prosesnya [di dalam dokumentasi](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa).
Setelah *training* awal selesai, amati kualitas model dan pertimbangkan untuk meningkatkannya dengan mengubah 'hyperparameter' nya. Baca lebih lanjut tentang prosesnya [di dalam dokumentasi](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## Prediksi

@ -89,7 +89,7 @@ Nel contesto di machine learning, l'adattamento del modello si riferisce all'acc
## Sintonia dei parametri
Una volta completato l'addestramento iniziale, si osservi la qualità del modello e si valuti di migliorarlo modificando i suoi "iperparametri". Maggiori informazioni sul processo [nella documentazione](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa).
Una volta completato l'addestramento iniziale, si osservi la qualità del modello e si valuti di migliorarlo modificando i suoi "iperparametri". Maggiori informazioni sul processo [nella documentazione](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## Previsione

@ -89,7 +89,7 @@
## パラメータチューニング
最初のトレーニングが完了したら、モデルの質を観察して、「ハイパーパラメータ」の調整によるモデルの改善を検討しましょう。このプロセスについては [ドキュメント](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa) を読んでください。
最初のトレーニングが完了したら、モデルの質を観察して、「ハイパーパラメータ」の調整によるモデルの改善を検討しましょう。このプロセスについては [ドキュメント](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott) を読んでください。
## 予測

@ -89,7 +89,7 @@ feature는 데이터의 측정할 수 있는 속성입니다. 많은 데이터
## 파라미터 튜닝
초반 훈련이 마무리 될 때, 모델의 품질을 살펴보고 'hyperparameters'를 트윅해서 개선하는 것을 고려합니다. [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa) 프로세스에 대하여 알아봅니다.
초반 훈련이 마무리 될 때, 모델의 품질을 살펴보고 'hyperparameters'를 트윅해서 개선하는 것을 고려합니다. [in the documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott) 프로세스에 대하여 알아봅니다.
## 예측

@ -89,7 +89,7 @@ No contexto do machine learning, o ajuste do modelo refere-se à precisão da fu
## Ajuste de parâmetro
Quando o treinamento inicial estiver concluído, observe a qualidade do modelo e considere melhorá-lo ajustando seus 'hiperparâmetros'. Leia mais sobre o processo [na documentação](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa).
Quando o treinamento inicial estiver concluído, observe a qualidade do modelo e considere melhorá-lo ajustando seus 'hiperparâmetros'. Leia mais sobre o processo [na documentação](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## Predição

@ -87,7 +87,7 @@
## 参数调优
初始训练完成后,观察模型的质量并考虑通过调整其“超参数”来改进它。[在此文档中](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa)阅读有关该过程的更多信息。
初始训练完成后,观察模型的质量并考虑通过调整其“超参数”来改进它。[在此文档中](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)阅读有关该过程的更多信息。
## 预测

@ -86,7 +86,7 @@
> 作者 [Jen Looper](https://twitter.com/jenlooper)
## 參數調優
初始訓練完成後,觀察模型的質量並考慮通過調整其「超參數」來改進它。[在此文檔中](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa)閱讀有關該過程的更多信息。
初始訓練完成後,觀察模型的質量並考慮通過調整其「超參數」來改進它。[在此文檔中](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)閱讀有關該過程的更多信息。
## 預測

@ -25,13 +25,13 @@ In this lesson, you will learn how to:
> 🎥 Click the image above for a video: using Python within VS Code.
1. **Install Python**. Ensure that [Python](https://www.python.org/downloads/) is installed on your computer. You will use Python for many data science and machine learning tasks. Most computer systems already include a Python installation. There are useful [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) available as well, to ease the setup for some users.
1. **Install Python**. Ensure that [Python](https://www.python.org/downloads/) is installed on your computer. You will use Python for many data science and machine learning tasks. Most computer systems already include a Python installation. There are useful [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) available as well, to ease the setup for some users.
Some usages of Python, however, require one version of the software, whereas others require a different version. For this reason, it's useful to work within a [virtual environment](https://docs.python.org/3/library/venv.html).
2. **Install Visual Studio Code**. Make sure you have Visual Studio Code installed on your computer. Follow these instructions to [install Visual Studio Code](https://code.visualstudio.com/) for the basic installation. You are going to use Python in Visual Studio Code in this course, so you might want to brush up on how to [configure Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) for Python development.
2. **Install Visual Studio Code**. Make sure you have Visual Studio Code installed on your computer. Follow these instructions to [install Visual Studio Code](https://code.visualstudio.com/) for the basic installation. You are going to use Python in Visual Studio Code in this course, so you might want to brush up on how to [configure Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) for Python development.
> Get comfortable with Python by working through this collection of [Learn modules](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Get comfortable with Python by working through this collection of [Learn modules](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Install Scikit-learn**, by following [these instructions](https://scikit-learn.org/stable/install.html). Since you need to ensure that you use Python 3, it's recommended that you use a virtual environment. Note, if you are installing this library on a M1 Mac, there are special instructions on the page linked above.
@ -205,7 +205,7 @@ Plot a different variable from this dataset. Hint: edit this line: `X = X[:, np.
In this tutorial, you worked with simple linear regression, rather than univariate or multiple linear regression. Read a little about the differences between these methods, or take a look at [this video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
Read more about the concept of regression and think about what kinds of questions can be answered by this technique. Take this [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) to deepen your understanding.
Read more about the concept of regression and think about what kinds of questions can be answered by this technique. Take this [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) to deepen your understanding.
## Assignment

@ -22,13 +22,13 @@ En esta lección, aprenderá a:
> 🎥 Haga click en la imagen de arriba para ver un video: usando Python dentro de VS Code.
1. **Instale Python**. Asegúrese de que [Python](https://www.python.org/downloads/) esté instalado en su computadora. Utilizará Python para muchas tareas de ciencia de datos y machine learning. La mayoría de los sistemas informáticos ya incluyen una instalación de Python. También hay disponibles [paquetes de código de Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) útiles para facilitar la configuración a algunos usuarios.
1. **Instale Python**. Asegúrese de que [Python](https://www.python.org/downloads/) esté instalado en su computadora. Utilizará Python para muchas tareas de ciencia de datos y machine learning. La mayoría de los sistemas informáticos ya incluyen una instalación de Python. También hay disponibles [paquetes de código de Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) útiles para facilitar la configuración a algunos usuarios.
Sin embargo algunos usos de Python requieren una versión del software, mientras otros requieren una versión diferente. Por esta razón, es útil trabajar dentro de un [entorno virtual](https://docs.python.org/3/library/venv.html).
2. **Instale Visual Studio Code**. Asegúrese de tener Visual Studio Code instalado en su computadora. Siga estas instrucciones para [instalar Visual Studio Code](https://code.visualstudio.com/) para la instalación básica. Va a utilizar Python en Visual Studio Code en este curso, por lo que es posible que desee repasar cómo [configurar Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) para el desarrollo en Python.
2. **Instale Visual Studio Code**. Asegúrese de tener Visual Studio Code instalado en su computadora. Siga estas instrucciones para [instalar Visual Studio Code](https://code.visualstudio.com/) para la instalación básica. Va a utilizar Python en Visual Studio Code en este curso, por lo que es posible que desee repasar cómo [configurar Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) para el desarrollo en Python.
> Siéntase cómodo con Python trabajando con esta colección de [módulos de aprendizaje](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Siéntase cómodo con Python trabajando con esta colección de [módulos de aprendizaje](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Instale Scikit-learn**, siguiendo [estas instrucciones](https://scikit-learn.org/stable/install.html). Dado que debe asegurarse de usar Python3, se recomienda que use un entorno virtual. Tenga en cuenta que si está instalando esta biblioteca en una Mac M1, hay instrucciones especiales en la página vinculada arriba.
@ -199,7 +199,7 @@ Grafique una variable diferente de este conjunto de datos. Sugerencia: edite est
En este tutorial, trabajó con regresión lineal simple, en lugar de regresión lineal univariante o múltiple. Lea un poco sobre las diferencias entre estos métodos o eche un vistazo a [este video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
Lea más sobre el concepto de regresión lineal y piense que tipo de preguntas se pueden responder con esta técnica.Tome este [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) para profundizar su comprensión.
Lea más sobre el concepto de regresión lineal y piense que tipo de preguntas se pueden responder con esta técnica.Tome este [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) para profundizar su comprensión.
## Asignación

@ -23,13 +23,13 @@ Dalam pelajaran ini, kamu akan belajar bagaimana untuk:
> 🎥 Klik foto di atas untuk sebuah video: menggunakan Python dalam VS Code
1. **Pasang Python**. Pastikan bahwa [Python](https://www.python.org/downloads/) telah dipasang di komputermu. Kamu akan menggunakan Python untuk banyak tugas *data science* dan *machine learning*. Python sudah dipasang di kebanyakan sistem komputer. Adapula *[Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa)* yang berguna untuk membantu proses pemasangan untuk beberapa pengguna.
1. **Pasang Python**. Pastikan bahwa [Python](https://www.python.org/downloads/) telah dipasang di komputermu. Kamu akan menggunakan Python untuk banyak tugas *data science* dan *machine learning*. Python sudah dipasang di kebanyakan sistem komputer. Adapula *[Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott)* yang berguna untuk membantu proses pemasangan untuk beberapa pengguna.
Beberapa penggunaan Python memerlukan satu versi perangkat lunak tersebut, sedangkan beberapa penggunaan lainnya mungkin memerlukan versi Python yang beda lagi. Oleh sebab itulah akan sangat berguna untuk bekerja dalam sebuah *[virtual environment](https://docs.python.org/3/library/venv.html)* (lingkungan virtual).
2. **Pasang Visual Studio Code**. Pastikan kamu sudah memasangkan Visual Studio Code di komputermu. Ikuti instruksi-instruksi ini untuk [memasangkan Visual Studio Code](https://code.visualstudio.com/) untuk instalasi dasar. Kamu akan menggunakan Python dalam Visual Studio Code dalam kursus ini, jadi kamu mungkin akan ingin mencari tahu cara [mengkonfigurasi Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) untuk menggunakan Python.
2. **Pasang Visual Studio Code**. Pastikan kamu sudah memasangkan Visual Studio Code di komputermu. Ikuti instruksi-instruksi ini untuk [memasangkan Visual Studio Code](https://code.visualstudio.com/) untuk instalasi dasar. Kamu akan menggunakan Python dalam Visual Studio Code dalam kursus ini, jadi kamu mungkin akan ingin mencari tahu cara [mengkonfigurasi Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) untuk menggunakan Python.
> Nyamankan diri dengan Python dengan mengerjakan [koleksi modul pembelajaran ini](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Nyamankan diri dengan Python dengan mengerjakan [koleksi modul pembelajaran ini](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Pasang Scikit-learn**, dengan mengikuti [instruksi di sini](https://scikit-learn.org/stable/install.html). Karena harus dipastikan bahwa kamu sedang menggunakan Python 3, kami anjurkan kamu menggunakan sebuah *virtual environment*. Ingatlah juga bahwa jika kamu ingin memasangkan ini di sebuah M1 Mac, ada instruksi khusus dalam laman yang ditautkan di atas.
@ -201,7 +201,7 @@ Gambarkan sebuah variabel yang beda dari *dataset* ini. Petunjuk: edit baris ini
Dalam tutorial ini, kamu bekerja dengan sebuah model regresi linear yang sederhana daripada regresi linear univariat atau berganda. Bacalah sedikit tentang perbedaan antara metode-metode ini atau tontonlah [video ini](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef).
Bacalah lebih banyak tentang konsep regresi dan pikirkanlah tentang jenis pertanyaan apa saja yang bisa dijawab teknik ini. Cobalah [tutorial ini](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) untuk memperdalam pemahamanmu.
Bacalah lebih banyak tentang konsep regresi dan pikirkanlah tentang jenis pertanyaan apa saja yang bisa dijawab teknik ini. Cobalah [tutorial ini](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) untuk memperdalam pemahamanmu.
## Tugas

@ -24,13 +24,13 @@ In questa lezione, si imparerà come:
> 🎥 Fare click sull'immagine qui sopra per un video: usare Python all'interno di VS Code.
1. **Installare Python**. Assicurarsi che [Python](https://www.python.org/downloads/) sia installato nel proprio computer. Si userà Python for per molte attività di data science e machine learning. La maggior parte dei sistemi già include una installazione di Python. Ci sono anche utili [Pacchetti di Codice Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) disponbili, per facilitare l'installazione per alcuni utenti.
1. **Installare Python**. Assicurarsi che [Python](https://www.python.org/downloads/) sia installato nel proprio computer. Si userà Python for per molte attività di data science e machine learning. La maggior parte dei sistemi già include una installazione di Python. Ci sono anche utili [Pacchetti di Codice Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) disponbili, per facilitare l'installazione per alcuni utenti.
Alcuni utilizzi di Python, tuttavia, richiedono una versione del software, laddove altri ne richiedono un'altra differente. Per questa ragione, è utile lavorare con un [ambiente virtuale](https://docs.python.org/3/library/venv.html).
2. **Installare Visual Studio Code**. Assicurarsi di avere installato Visual Studio Code sul proprio computer. Si seguano queste istruzioni per [installare Visual Studio Code](https://code.visualstudio.com/) per l'installazione basica. Si userà Python in Visual Studio Code in questo corso, quindi meglio rinfrescarsi le idee su come [configurare Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) per lo sviluppo in Python.
2. **Installare Visual Studio Code**. Assicurarsi di avere installato Visual Studio Code sul proprio computer. Si seguano queste istruzioni per [installare Visual Studio Code](https://code.visualstudio.com/) per l'installazione basica. Si userà Python in Visual Studio Code in questo corso, quindi meglio rinfrescarsi le idee su come [configurare Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) per lo sviluppo in Python.
> Si prenda confidenza con Python tramite questa collezione di [moduli di apprendimento](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Si prenda confidenza con Python tramite questa collezione di [moduli di apprendimento](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Installare Scikit-learn**, seguendo [queste istruzioni](https://scikit-learn.org/stable/install.html). Visto che ci si deve assicurare di usare Python 3, ci si raccomanda di usare un ambiente virtuale. Si noti che se si installa questa libreria in un M1 Mac, ci sono istruzioni speciali nella pagina di cui al riferimento qui sopra.
@ -203,7 +203,7 @@ Tracciare una variabile diversa da questo insieme di dati. Suggerimento: modific
In questo tutorial, si è lavorato con una semplice regressione lineare, piuttosto che una regressione univariata o multipla. Ci so informi circa le differenze tra questi metodi oppure si dia uno sguardo a [questo video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
Si legga di più sul concetto di regressione e si pensi a quale tipo di domande potrebbero trovare risposta con questa tecnica. Seguire questo [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) per approfondire la propria conoscenza.
Si legga di più sul concetto di regressione e si pensi a quale tipo di domande potrebbero trovare risposta con questa tecnica. Seguire questo [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) per approfondire la propria conoscenza.
## Compito

@ -23,14 +23,14 @@
> 🎥 上の画像をクリックするとビデオが再生されます: VisualStudioCodeでのPythonの使用方法
1. **Pythonのインストール**: [Python](https://www.python.org/downloads/) がコンピュータにインストールされていることを確認してください。Pythonは多くのデータサイエンス、機械学習のタスクで使用します。ほとんどのコンピュータシステムにはPythonがすでにインストールされています。一部のユーザのセットアップを簡単にするために [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) を利用することもできます。
1. **Pythonのインストール**: [Python](https://www.python.org/downloads/) がコンピュータにインストールされていることを確認してください。Pythonは多くのデータサイエンス、機械学習のタスクで使用します。ほとんどのコンピュータシステムにはPythonがすでにインストールされています。一部のユーザのセットアップを簡単にするために [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) を利用することもできます。
しかし、Pythonを使っていると時に異なるバージョンを必要とする場合があります。そのため、[仮想環境](https://docs.python.org/3/library/venv.html) を利用すると便利です。
2. **Visual Studio Codeのインストール**: Visual Studio Codeがコンピュータにインストールされていることを確認してください。[こちらの手順](https://code.visualstudio.com/) でVisual Studio Codeをインストールしてください。このコースでは、Visual Studio CodeでPythonを使用しますので [Visual Studio Codeの設定](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) をブラッシュアップしておくといいです。
2. **Visual Studio Codeのインストール**: Visual Studio Codeがコンピュータにインストールされていることを確認してください。[こちらの手順](https://code.visualstudio.com/) でVisual Studio Codeをインストールしてください。このコースでは、Visual Studio CodeでPythonを使用しますので [Visual Studio Codeの設定](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) をブラッシュアップしておくといいです。
> この [学習モジュール](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa) を利用して、Pythonの使い方に慣れてください。
> この [学習モジュール](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) を利用して、Pythonの使い方に慣れてください。
3. **Scikit-learnのインストール**: [こちらの手順](https://scikit-learn.org/stable/install.html) に従ってインストールしてください。Python3の環境で実行する必要があるので、仮想環境を使用することをおすすめします。なお、このライブラリをM1のMacにインストールする場合は、上記リンク先のページに特別な説明があります。
@ -211,7 +211,7 @@ Scikit-learnは、モデルを構築し、評価を行って実際に利用す
このチュートリアルでは、単変量線形回帰や多変量線形回帰ではなく、単純線形回帰を扱いました。これらの手法の違いについて少し調べてみるか、この [ビデオ](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef) を見てみましょう。
回帰の概念について詳しく調べ、この手法でどのような質問に答えられるかを考えてみましょう。この [チュートリアル](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) で理解を深めることもできます。
回帰の概念について詳しく調べ、この手法でどのような質問に答えられるかを考えてみましょう。この [チュートリアル](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) で理解を深めることもできます。
## 課題

@ -23,13 +23,13 @@
> 🎥 영상 보려면 이미지 클릭: using Python within VS Code.
1. **Python 설치하기**. [Python](https://www.python.org/downloads/)이 컴퓨터에 설치되었는 지 확인합니다. 많은 데이터 사이언스와 머신러닝 작업에서 Python을 사용하게 됩니다. 대부분 컴퓨터 시스템은 이미 Python 애플리케이션을 미리 포함하고 있습니다. 사용자가 설치를 쉽게하는, 유용한 [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa)이 존재합니다.
1. **Python 설치하기**. [Python](https://www.python.org/downloads/)이 컴퓨터에 설치되었는 지 확인합니다. 많은 데이터 사이언스와 머신러닝 작업에서 Python을 사용하게 됩니다. 대부분 컴퓨터 시스템은 이미 Python 애플리케이션을 미리 포함하고 있습니다. 사용자가 설치를 쉽게하는, 유용한 [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott)이 존재합니다.
그러나, 일부 Python만 사용하면, 소프트웨어의 하나의 버전만 요구하지만, 다른 건 다른 버전을 요구합니다. 이런 이유로, [virtual environment](https://docs.python.org/3/library/venv.html)에서 작업하는 것이 유용합니다.
2. **Visual Studio Code 설치하기**. 컴퓨터에 Visual Studio Code가 설치되어 있는 지 확인합니다. 기본 설치로 [install Visual Studio Code](https://code.visualstudio.com/)를 따라합니다. Visual Studio Code에서 Python을 사용하므로 Python 개발을 위한 [configure Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa)를 살펴봅니다.
2. **Visual Studio Code 설치하기**. 컴퓨터에 Visual Studio Code가 설치되어 있는 지 확인합니다. 기본 설치로 [install Visual Studio Code](https://code.visualstudio.com/)를 따라합니다. Visual Studio Code에서 Python을 사용하므로 Python 개발을 위한 [configure Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott)를 살펴봅니다.
> 이 [Learn modules](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)의 모음을 통하여 Python에 익숙해집시다.
> 이 [Learn modules](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)의 모음을 통하여 Python에 익숙해집시다.
3. [these instructions](https://scikit-learn.org/stable/install.html)에 따라서, **Scikit-learn 설치하기**. Python 3을 사용하는 지 확인할 필요가 있습니다. 가상 환경으로 사용하는 것을 추천합니다. 참고로, M1 Mac에서 라이브러리를 설치하려면, 링크된 페이지에서 특별한 설치 방법을 따라합시다.
@ -206,7 +206,7 @@ Scikit-learn 사용하면 올바르게 모델을 만들고 사용하기 위해
이 튜토리얼에서, univariate 또는 multiple linear regression이 아닌 simple linear regression으로 작업했습니다. 방식의 차이를 읽어보거나, [this video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)를 봅니다.
regression의 개념에 대하여 더 읽고 기술로 답변할 수 있는 질문의 종류에 대하여 생각해봅니다. [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa)로 깊게 이해합니다.
regression의 개념에 대하여 더 읽고 기술로 답변할 수 있는 질문의 종류에 대하여 생각해봅니다. [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott)로 깊게 이해합니다.
## 과제

@ -25,13 +25,13 @@ Nesta lição, você aprenderá como:
> 🎥 Clique na imagem acima para assistir o vídeo: usando Python no VS Code (vídeo em inglês).
1. **Instale Python**. Verifique se você já instalou [Python](https://www.python.org/downloads/) em seu computador. Você usará Python para muitas tarefas de _data science_ (ciência de dados) e _machine learning_. A maioria dos sistemas de computador já possui Python instalado. Existem [Pacotes de Código em Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) disponíveis para ajudar na instalação.
1. **Instale Python**. Verifique se você já instalou [Python](https://www.python.org/downloads/) em seu computador. Você usará Python para muitas tarefas de _data science_ (ciência de dados) e _machine learning_. A maioria dos sistemas de computador já possui Python instalado. Existem [Pacotes de Código em Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) disponíveis para ajudar na instalação.
Algumas aplicações em Python exigem versões diferentes da linguagem. Portanto, será útil trabalhar com [ambiente virtual](https://docs.python.org/3/library/venv.html).
2. **Instale o Visual Studio Code**. Verifique se já existe o Visual Studio Code instalado em seu computador. Siga essas instruções para [instalar o Visual Studio Code](https://code.visualstudio.com/) com uma instalação básica. Você usará Python no Visual Studio Code neste curso e precisará [configurar o Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) para isso.
2. **Instale o Visual Studio Code**. Verifique se já existe o Visual Studio Code instalado em seu computador. Siga essas instruções para [instalar o Visual Studio Code](https://code.visualstudio.com/) com uma instalação básica. Você usará Python no Visual Studio Code neste curso e precisará [configurar o Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) para isso.
> Fique mais confortável em usar Python trabalhando nessa coleção de [módulos de aprendizagem](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa).
> Fique mais confortável em usar Python trabalhando nessa coleção de [módulos de aprendizagem](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott).
3. **Instale a Scikit-learn**, seguindo [estas instruções](https://scikit-learn.org/stable/install.html). Visto que você precisa ter certeza que está usando o Python 3, é recomendável usar um ambiente virtual. Note que se você estiver usando essa biblioteca em um M1 Mac, há instruções específicas na página linkada acima.
@ -206,7 +206,7 @@ Plote uma variável diferente desse mesmo conjunto de dados. Dica: edite a linha
Neste tutorial, você trabalhou com regressão linear simples, ao invés de regressão univariada ou múltipla. Leia sobre as diferença desses métodos, ou assista [esse vídeo](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef).
Leia mais sobre o conceito de regressão e pense sobre os tipos de questões que podem ser respondidas usando essa técnica. Faça esse [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) para aprender mais.
Leia mais sobre o conceito de regressão e pense sobre os tipos de questões que podem ser respondidas usando essa técnica. Faça esse [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) para aprender mais.
## Tarefa

@ -28,14 +28,14 @@ Nesta lição, aprenderá a:
> 🎥 Clique na imagem acima para um vídeo: utilizando Python dentro do Código VS.
1. **Instalar Python**. Certifique-se de que [Python](https://www.python.org/downloads/) está instalado no seu computador. Você usará Python para muitas tarefas de ciência de dados e machine learning. A maioria dos sistemas informáticos já inclui uma instalação Python. Há úteis [Python Pacotes de codificação](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) disponível também, para facilitar a configuração para alguns utilizadores.
1. **Instalar Python**. Certifique-se de que [Python](https://www.python.org/downloads/) está instalado no seu computador. Você usará Python para muitas tarefas de ciência de dados e machine learning. A maioria dos sistemas informáticos já inclui uma instalação Python. Há úteis [Python Pacotes de codificação](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) disponível também, para facilitar a configuração para alguns utilizadores.
Alguns usos de Python, no entanto, requerem uma versão do software, enquanto outros requerem uma versão diferente. Por esta razão, é útil trabalhar dentro de um [ambiente virtual](https://docs.python.org/3/library/venv.html).
2. **Instalar código de estúdio visual**. Certifique-se de que tem o Código do Estúdio Visual instalado no seu computador. Siga estas instruções para
[instalar Código do Estúdio Visual](https://code.visualstudio.com/) para a instalação básica. Você vai usar Python em Código estúdio visual neste curso, então você pode querer relembrá-lo [configurar código de estúdio visual](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) para o desenvolvimento de Python.
[instalar Código do Estúdio Visual](https://code.visualstudio.com/) para a instalação básica. Você vai usar Python em Código estúdio visual neste curso, então você pode querer relembrá-lo [configurar código de estúdio visual](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) para o desenvolvimento de Python.
> Fique confortável com python trabalhando através desta coleção de [Aprender módulos](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Fique confortável com python trabalhando através desta coleção de [Aprender módulos](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Instale Scikit-learn**, seguindo [estas instruções]
(https://scikit-learn.org/stable/install.html). Uma vez que precisa de garantir que utiliza o Python 3, recomenda-se que utilize um ambiente virtual. Note que se estiver a instalar esta biblioteca num Mac M1, existem instruções especiais na página acima ligada.
@ -208,7 +208,7 @@ Defina uma variável diferente deste conjunto de dados. Dica: edite esta linha:`
Neste tutorial, trabalhou com uma simples regressão linear, em vez de univariado ou regressão linear múltipla. Leia um pouco sobre as diferenças entre estes métodos, ou dê uma olhada[este vídeo](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
Leia mais sobre o conceito de regressão e pense sobre que tipo de perguntas podem ser respondidas por esta técnica. Tome este [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) para aprofundar a sua compreensão.
Leia mais sobre o conceito de regressão e pense sobre que tipo de perguntas podem ser respondidas por esta técnica. Tome este [tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) para aprofundar a sua compreensão.
## Missão
[Um conjunto de dados diferente](assignment.md)

@ -25,13 +25,13 @@ Bu derste, şunları öğreneceğiz:
> 🎥 Video için yukarıdaki resme tıklayınız: Python'u VS Code içinde kullanma.
1. **Python Kurulumu**. [Python](https://www.python.org/downloads/) kurulumunun bilgisayarınızda yüklü olduğundan emin olun.Python'u birçok veri bilimi ve makine öğrenimi görevi için kullanacaksınız. Çoğu bilgisayar sistemi zaten bir Python kurulumu içerir. Şurada [Python Kodlama Paketleri](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa) mevcut, bazı kullanıcılar için kurulumu daha kolay.
1. **Python Kurulumu**. [Python](https://www.python.org/downloads/) kurulumunun bilgisayarınızda yüklü olduğundan emin olun.Python'u birçok veri bilimi ve makine öğrenimi görevi için kullanacaksınız. Çoğu bilgisayar sistemi zaten bir Python kurulumu içerir. Şurada [Python Kodlama Paketleri](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) mevcut, bazı kullanıcılar için kurulumu daha kolay.
Ancak Python'un bazı kullanımları, yazılımın spesifik bir sürümünü gerektirir, diğerleri ise farklı bir sürüm gerektirir. Bu yüzden, [virtual environment](https://docs.python.org/3/library/venv.html) (sanal ortamlar) ile çalışmak daha kullanışlıdır.
2. **Visual Studio Code kurulumu**. Visual Studio Code'un bilgisayarınıza kurulduğundan emin olun. [Visual Studio Code kurulumu](https://code.visualstudio.com/) bu adımları takip ederek basitçe bir kurulum yapabilirsiniz. Bu kursta Python'ı Visual Studio Code'un içinde kullanacaksınız, bu yüzden nasıl yapılacağını görmek isteyebilirsiniz. Python ile geliştirme için [Visual Studio Code konfigürasyonu](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa).
2. **Visual Studio Code kurulumu**. Visual Studio Code'un bilgisayarınıza kurulduğundan emin olun. [Visual Studio Code kurulumu](https://code.visualstudio.com/) bu adımları takip ederek basitçe bir kurulum yapabilirsiniz. Bu kursta Python'ı Visual Studio Code'un içinde kullanacaksınız, bu yüzden nasıl yapılacağını görmek isteyebilirsiniz. Python ile geliştirme için [Visual Studio Code konfigürasyonu](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott).
> Bu koleksiyon üzerinde çalışarak Python ile rahatlayın. [Modülleri öğren](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa)
> Bu koleksiyon üzerinde çalışarak Python ile rahatlayın. [Modülleri öğren](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
3. **Scikit-learn kurulumu**, [bu talimatları](https://scikit-learn.org/stable/install.html) takip ediniz. Python 3 kullandığınızdan emin olmanız gerektiğinden, sanal ortam kullanmanız önerilir. Not, bu kütüphaneyi bir M1 Mac'e kuruyorsanız, yukarıda bağlantısı verilen sayfada özel talimatlar var onları takip ediniz.
@ -203,7 +203,7 @@ Bu veri kümesinden farklı bir değişken çizin. İpucu: bu satırı düzenley
Bu eğitimde, tek değişkenli veya çoklu doğrusal regresyon yerine basit doğrusal regresyonla çalıştınızBu yöntemler arasındaki farklar hakkında biraz bilgi edinin veya şuna bir göz atın: [bu videoya](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
Regresyon kavramı hakkında daha fazla bilgi edinin ve bu teknikle ne tür soruların yanıtlanabileceğini düşünün. Anlayışınızı derinleştirmek için bu [eğitime](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) göz atabilirsiniz.
Regresyon kavramı hakkında daha fazla bilgi edinin ve bu teknikle ne tür soruların yanıtlanabileceğini düşünün. Anlayışınızı derinleştirmek için bu [eğitime](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) göz atabilirsiniz.
## Assignment

@ -22,13 +22,13 @@
> 🎥 单击上图观看视频:在 VS Code 中使用 Python。
1. **安装 Python**。确保你的计算机上安装了 [Python](https://www.python.org/downloads/)。你将在许多数据科学和机器学习任务中使用 Python。大多数计算机系统已经安装了 Python。也有一些有用的 [Python 编码包](https://code.visualstudio.com/learn/educations/installers?WT.mc_id=academic-15963-cxa) 可用于简化某些用户的设置。
1. **安装 Python**。确保你的计算机上安装了 [Python](https://www.python.org/downloads/)。你将在许多数据科学和机器学习任务中使用 Python。大多数计算机系统已经安装了 Python。也有一些有用的 [Python 编码包](https://code.visualstudio.com/learn/educations/installers?WT.mc_id=academic-77952-leestott) 可用于简化某些用户的设置。
然而Python 的某些用法需要一个版本的软件,而其他用法则需要另一个不同的版本。 因此,在 [虚拟环境](https://docs.python.org/3/library/venv.html) 中工作很有用。
2. **安装 Visual Studio Code**。确保你的计算机上安装了 Visual Studio Code。按照这些说明 [安装 Visual Studio Code](https://code.visualstudio.com/) 进行基本安装。在本课程中,你将在 Visual Studio Code 中使用 Python因此你可能想复习如何 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) 用于 Python 开发。
2. **安装 Visual Studio Code**。确保你的计算机上安装了 Visual Studio Code。按照这些说明 [安装 Visual Studio Code](https://code.visualstudio.com/) 进行基本安装。在本课程中,你将在 Visual Studio Code 中使用 Python因此你可能想复习如何 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) 用于 Python 开发。
> 通过学习这一系列的 [学习模块](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa) 熟悉 Python
> 通过学习这一系列的 [学习模块](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) 熟悉 Python
3. **按照 [这些说明](https://scikit-learn.org/stable/install.html) 安装 Scikit learn**。由于你需要确保使用 Python3因此建议你使用虚拟环境。注意如果你是在 M1 Mac 上安装这个库,在上面链接的页面上有特别的说明。
@ -200,7 +200,7 @@ Scikit-learn 使构建模型和评估它们的使用变得简单。它主要侧
在本教程中,你使用了简单线性回归,而不是单变量或多元线性回归。阅读一些关于这些方法之间差异的信息,或查看 [此视频](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
阅读有关回归概念的更多信息,并思考这种技术可以回答哪些类型的问题。用这个 [教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) 加深你的理解。
阅读有关回归概念的更多信息,并思考这种技术可以回答哪些类型的问题。用这个 [教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) 加深你的理解。
## 任务

@ -23,13 +23,13 @@
> 🎥 單擊上圖觀看視頻:在 VS Code 中使用 Python。
1. **安裝 Python**。確保你的計算機上安裝了 [Python](https://www.python.org/downloads/)。你將在許多數據科學和機器學習任務中使用 Python。大多數計算機系統已經安裝了 Python。也有一些有用的 [Python 編碼包](https://code.visualstudio.com/learn/educations/installers?WT.mc_id=academic-15963-cxa) 可用於簡化某些用戶的設置。
1. **安裝 Python**。確保你的計算機上安裝了 [Python](https://www.python.org/downloads/)。你將在許多數據科學和機器學習任務中使用 Python。大多數計算機系統已經安裝了 Python。也有一些有用的 [Python 編碼包](https://code.visualstudio.com/learn/educations/installers?WT.mc_id=academic-77952-leestott) 可用於簡化某些用戶的設置。
然而Python 的某些用法需要一個版本的軟件,而其他用法則需要另一個不同的版本。 因此,在 [虛擬環境](https://docs.python.org/3/library/venv.html) 中工作很有用。
2. **安裝 Visual Studio Code**。確保你的計算機上安裝了 Visual Studio Code。按照這些說明 [安裝 Visual Studio Code](https://code.visualstudio.com/) 進行基本安裝。在本課程中,你將在 Visual Studio Code 中使用 Python因此你可能想復習如何 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa) 用於 Python 開發。
2. **安裝 Visual Studio Code**。確保你的計算機上安裝了 Visual Studio Code。按照這些說明 [安裝 Visual Studio Code](https://code.visualstudio.com/) 進行基本安裝。在本課程中,你將在 Visual Studio Code 中使用 Python因此你可能想復習如何 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) 用於 Python 開發。
> 通過學習這一系列的 [學習模塊](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa) 熟悉 Python
> 通過學習這一系列的 [學習模塊](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) 熟悉 Python
3. **按照 [這些說明](https://scikit-learn.org/stable/install.html) 安裝 Scikit learn**。由於你需要確保使用 Python3因此建議你使用虛擬環境。註意如果你是在 M1 Mac 上安裝這個庫,在上面鏈接的頁面上有特別的說明。
@ -201,7 +201,7 @@ Scikit-learn 使構建模型和評估它們的使用變得簡單。它主要側
在本教程中,你使用了簡單線性回歸,而不是單變量或多元線性回歸。閱讀一些關於這些方法之間差異的信息,或查看 [此視頻](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)
閱讀有關回歸概念的更多信息,並思考這種技術可以回答哪些類型的問題。用這個 [教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa) 加深你的理解。
閱讀有關回歸概念的更多信息,並思考這種技術可以回答哪些類型的問題。用這個 [教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) 加深你的理解。
## 任務

@ -147,7 +147,7 @@ Visualizations can also help determine the machine learning technique most appro
One data visualization library that works well in Jupyter notebooks is [Matplotlib](https://matplotlib.org/) (which you also saw in the previous lesson).
> Get more experience with data visualization in [these tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa).
> Get more experience with data visualization in [these tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## Exercise - experiment with Matplotlib

@ -147,7 +147,7 @@ Las visualizaciones también ayudan a determinar la técnica de aprendizaje auto
Una librería de visualización de datos que funciona bien en los notebooks de Jupyter es [Matplotlib](https://matplotlib.org/) (la cual también viste en la lección anterior).
> Obtén más experiencia con la visualización de datos en [estos tutoriales](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa).
> Obtén más experiencia con la visualización de datos en [estos tutoriales](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## Ejercicio - experimenta con Matplotlib

@ -142,7 +142,7 @@ Visualisasi juga bisa membantu menentukan teknik *machine learning* yang palingn
Satu *library* visualisasi data yang bekerja dengan baik dalam sebuah *Jupyter notebook* adalah [Matplotlib](https://matplotlib.org/) (yang kamu juga lihat dalam pelajaran sebelumnya).
> Carilah pengalaman dalam memvisualisasi data dengan [tutorial-tutorial ini](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa).
> Carilah pengalaman dalam memvisualisasi data dengan [tutorial-tutorial ini](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## Latihan - sebuah experimen dengan Matplotlib

@ -141,7 +141,7 @@ Le visualizzazioni possono anche aiutare a determinare la tecnica di machine lea
Una libreria di visualizzazione dei dati che funziona bene nei notebook Jupyter è [Matplotlib](https://matplotlib.org/) (che si è visto anche nella lezione precedente).
> Per fare più esperienza con la visualizzazione dei dati si seguano [questi tutorial](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa).
> Per fare più esperienza con la visualizzazione dei dati si seguano [questi tutorial](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## Esercizio - sperimentare con Matplotlib

@ -146,7 +146,7 @@ Visual Studio Codeで _notebook.ipynb_ ファイルを開き、スプレッド
Jupyter notebookでうまく利用できるテータ可視化ライブラリの一つに [Matplotlib](https://matplotlib.org/) があります (前のレッスンでも紹介しています)。
> [こちらのチュートリアル](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa) でデータの可視化ついてより深く体験することができます。
> [こちらのチュートリアル](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott) でデータの可視化ついてより深く体験することができます。
## エクササイズ - Matplotlibの実験

@ -142,7 +142,7 @@ bushel 수량이 행마다 다른 것을 알았나요? bushel 단위로 가격
Jupyter notebooks에서 잘 작동하는 데이터 시각화 라이브러리는 (이전 강의에서 보았던) [Matplotlib](https://matplotlib.org/)입니다.
> [these tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa)에서 데이터 시각화 연습을 더 해보세요.
> [these tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)에서 데이터 시각화 연습을 더 해보세요.
## 연습 - Matplotlib으로 실험하기

@ -148,7 +148,7 @@ As visualizações também podem ajudar a determinar a técnica de _machine lear
Uma biblioteca de visualização de dados que funciona bem nos blocos de _notebooks_ é a [Matplotlib](https://matplotlib.org/) (que você também viu na lição anterior).
> Ganhe mais experiência em visualização de dados fazendo [esses tutoriais](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa).
> Ganhe mais experiência em visualização de dados fazendo [esses tutoriais](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## Exercício - Experimento com Matplotlib

@ -142,7 +142,7 @@
一个在 Jupyter notebooks 中运行良好的数据可视化库是 [Matplotlib](https://matplotlib.org/)(你在上一课中也看到过)。
> 在[这些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa)中获得更多数据可视化经验。
> 在[这些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)中获得更多数据可视化经验。
## 练习 - 使用 Matplotlib 进行实验

@ -142,7 +142,7 @@
一個在 Jupyter notebooks 中運行良好的數據可視化庫是 [Matplotlib](https://matplotlib.org/)(你在上一課中也看到過)。
> 在[這些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa)中獲得更多數據可視化經驗。
> 在[這些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)中獲得更多數據可視化經驗。
## 練習 - 使用 Matplotlib 進行實驗

@ -15,7 +15,7 @@ In this lesson, you will learn:
- A new library for data visualization
- Techniques for logistic regression
✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)
✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
## Prerequisite
Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one binary category that we can work with: `Color`.

@ -55,7 +55,7 @@
"\n",
"- Techniques for logistic regression\n",
"\n",
"✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)\n",
"✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)\n",
"\n",
"#### **Prerequisite**\n",
"\n",

@ -24,7 +24,7 @@ In this lesson, you will learn:
- Techniques for logistic regression
✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)
✅ Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
#### **Prerequisite**

@ -16,7 +16,7 @@ En esta lección, aprenderás:
- Una nueva librería para visualización de datos
- Técnicas para regresión logística
✅ Profundiza tu entendimiento de trabajo con este tipo de regresión en este [módulo de aprendizaje(https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)
✅ Profundiza tu entendimiento de trabajo con este tipo de regresión en este [módulo de aprendizaje(https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
## Requisitos previos
Haber trabajado con los datos de calabazas, ahora estamos suficientemente familiarizados con estos para entender que hay una categoría binaria que podemos trabajar con `Color`.

@ -14,7 +14,7 @@ Dalam pelajaran ini, kamu akan belajar:
- Sebuah *library* baru untuk pemvisualisasian data
- Teknik-teknik untuk regresi logistik
✅ Perdalamkan pemahamanmu dalam bekerja dengan regresi jenis ini dalam [modul pembelajaran ini](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)
✅ Perdalamkan pemahamanmu dalam bekerja dengan regresi jenis ini dalam [modul pembelajaran ini](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
## Prasyarat

@ -14,7 +14,7 @@ In questa lezione, si imparerà:
- Una nuova libreria per la visualizzazione dei dati
- Tecniche per la regressione logistica
✅ Con questo [modulo di apprendimento](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) si potrà approfondire la comprensione del lavoro con questo tipo di regressione
✅ Con questo [modulo di apprendimento](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) si potrà approfondire la comprensione del lavoro con questo tipo di regressione
## Prerequisito
Avendo lavorato con i dati della zucca, ora si ha abbastanza familiarità con essi per rendersi conto che esiste una categoria binaria con cui è possibile lavorare: `Color` (Colore).

@ -13,7 +13,7 @@
- データを可視化するための新しいライブラリ
- ロジスティック回帰について
✅ この[モジュール](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) では、今回のタイプのような回帰について理解を深めることができます。
✅ この[モジュール](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) では、今回のタイプのような回帰について理解を深めることができます。
## 前提条件

@ -14,7 +14,7 @@
- 데이터 시각화를 위한 새로운 라이브러리
- logistic regression 기술
✅ [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)애서 regression의 타입에 대하여 깊게 이해해봅니다.
✅ [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)애서 regression의 타입에 대하여 깊게 이해해봅니다.
## 필요 조건

@ -15,7 +15,7 @@ Você irá aprender:
- Uma nova biblioteca para visualização de dados
- Técnicas de regressão logística
✅ Aprofunde seu conhecimento de como trabalhar com este tipo de regressão neste [módulo](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa).
✅ Aprofunde seu conhecimento de como trabalhar com este tipo de regressão neste [módulo](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott).
## Pré-requisito

@ -14,7 +14,7 @@ Nesta lição, aprenderá:
- Uma nova biblioteca para visualização de dados
- Técnicas de regressão logística
✅ aprofundar a sua compreensão de trabalhar com este tipo de regressão neste [módulo Aprender](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa)
✅ aprofundar a sua compreensão de trabalhar com este tipo de regressão neste [módulo Aprender](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
## Pré-requisito
Tendo trabalhado com os dados da abóbora, estamos agora familiarizados o suficiente para perceber que há uma categoria binária com a qual podemos trabalhar:` Cor`.

@ -14,7 +14,7 @@
- 用于数据可视化的新库
- 逻辑回归技术
✅ 在此[学习模块](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) 中加深你对使用此类回归的理解
✅ 在此[学习模块](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) 中加深你对使用此类回归的理解
## 前提

@ -15,7 +15,7 @@
- 用於數據可視化的新庫
- 邏輯回歸技術
✅ 在此[學習模塊](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa) 中加深你對使用此類回歸的理解
✅ 在此[學習模塊](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) 中加深你對使用此類回歸的理解
## 前提

@ -17,7 +17,7 @@ In this series of lessons, you'll discover the differences between linear and lo
In this group of lessons, you will get set up to begin machine learning tasks, including configuring Visual Studio Code to manage notebooks, the common environment for data scientists. You will discover Scikit-learn, a library for machine learning, and you will build your first models, focusing on Regression models in this chapter.
> There are useful low-code tools that can help you learn about working with regression models. Try [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> There are useful low-code tools that can help you learn about working with regression models. Try [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lessons

@ -14,7 +14,7 @@ En esta serie de lecciones, descubrirá la diferencia entre la regresión lineal
En este grupo de lecciones, se preparará para comenzar las tareas de machine learning, incluida la configuración de Visual Studio Code para manejar los cuadernos, el entorno común para los científicos de datos. Descubrirá Scikit-learn, una librería para machine learning, y creará sus primeros modelos, centrándose en los modelos de Regresión en este capítulo.
> Existen herramientas útiles _low-code_ que pueden ayudarlo a aprender a trabajar con modelos de regresión. Pruebe [Azure ML para esta tarea](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> Existen herramientas útiles _low-code_ que pueden ayudarlo a aprender a trabajar con modelos de regresión. Pruebe [Azure ML para esta tarea](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lecciones

@ -14,7 +14,7 @@ Dans cette série de leçons, vous découvrirez la différence entre la régress
Dans ce groupe de leçons, vous serez préparé afin de commencer les tâches de machine learning, y compris la configuration de Visual Studio Code pour gérer les blocs-notes, l'environnement commun pour les scientifiques des données. Vous découvrirez Scikit-learn, une bibliothèque pour le machine learning, et vous construirez vos premiers modèles, en vous concentrant sur les modèles de régression dans ce chapitre.
> Il existe des outils low-code utiles qui peuvent vous aider à apprendre à travailler avec des modèles de régression. Essayez [Azure ML pour cette tâche](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> Il existe des outils low-code utiles qui peuvent vous aider à apprendre à travailler avec des modèles de régression. Essayez [Azure ML pour cette tâche](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Cours

@ -17,7 +17,7 @@
पाठों के इस समूह में, आप मशीन लर्निंग सीखने के कार्यों को शुरू करने के लिए तैयार होंगे, जिसमें नोटबुक को प्रबंधित करने के लिए विजुअल स्टूडियो कोड को कॉन्फ़िगर करना, डेटा वैज्ञानिकों के लिए सामान्य वातावरण शामिल है। आप मशीन लर्निंग के लिए एक लाइब्रेरी स्किकिट-लर्न की खोज करेंगे, और आप इस अध्याय में रिग्रेशन मॉडल पर ध्यान केंद्रित करते हुए अपना पहला मॉडल बनाएंगे।
>ये उपयोगी निम्न-कोड उपकरण हैं जो आपको रिग्रेशन मॉडल के साथ काम करने के बारे में जानने में मदद कर सकते हैं.इस्तेमाल करे [इस कार्य के लिए अज़ूरे एमएल](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
>ये उपयोगी निम्न-कोड उपकरण हैं जो आपको रिग्रेशन मॉडल के साथ काम करने के बारे में जानने में मदद कर सकते हैं.इस्तेमाल करे [इस कार्य के लिए अज़ूरे एमएल](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### पाठ

@ -14,7 +14,7 @@ Dalam seri pelajaran ini, kamu akan menemukan perbedaan antara regresi linear da
Selain itu, kamu akan disiapkan untuk mulai mengerjakan tugas *machine learning*, termasuk mengkonfigurasi Visual Studio Code untuk mengelola *notebook*, lingkungan wajar untuk *data scientist*. Kamu akan menemukan Scikit-learn, sebuah *library* untuk *machine learning*, dan kamu akan membangun model pertamamu dengan memfokus pada model regresi dalam bab ini.
> Ada alat-alat *low-code* yang dapat membantumu belajar tentang bekerja dengan model regresi. Cobalah [Azure ML untuk tugas ini](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa).
> Ada alat-alat *low-code* yang dapat membantumu belajar tentang bekerja dengan model regresi. Cobalah [Azure ML untuk tugas ini](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott).
### Pelajaran

@ -15,7 +15,7 @@ In questa serie di lezioni si scoprirà la differenza tra regressione lineare e
In questo gruppo di lezioni si imposterà una configurazione per iniziare le attività di machine learning, inclusa la configurazione di Visual Studio Code per gestire i notebook, l'ambiente comune per i data scientist. Si scoprirà Scikit-learn, una libreria per machine learning, e si creeranno i primi modelli, concentrandosi in questo capitolo sui modelli di Regressione.
> Esistono utili strumenti a basso codice che possono aiutare a imparare a lavorare con i modelli di regressione. Si provi [Azure Machine Learning per questa attività](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> Esistono utili strumenti a basso codice che possono aiutare a imparare a lavorare con i modelli di regressione. Si provi [Azure Machine Learning per questa attività](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lezioni

@ -13,7 +13,7 @@
データサイエンティストの共通開発環境であるートブックを管理するためのVisual Studio Codeの構成や機械学習のタスクを開始するための準備を行います。また、機械学習用のライブラリであるScikit-learnを利用し最初のモデルを構築します。この章では回帰モデルに焦点を当てます。
> 回帰モデルを学習するのに役立つローコードツールがあります。ぜひ[Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)を使ってみてください。
> 回帰モデルを学習するのに役立つローコードツールがあります。ぜひ[Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)を使ってみてください。
### レッスン

@ -15,7 +15,7 @@
이 강의의 그룹에서, 데이터 사이언티스트를 위한 일반적 환경의, 노트북을 관리할 Visual Studio code 구성을 포함해서, 머신러닝 작업을 시작하도록 맞춥니다. 머신러닝을 위한 라이브러리인, Scikit-learn을 찾고, 이 챕터의 Regression 모델에 초점을 맞추어, 첫 모델을 만들 예정입니다.
> Regression 모델을 작업할 때 배울 수 있는 유용한 low-code 도구가 있습니다. [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)를 시도해보세요.
> Regression 모델을 작업할 때 배울 수 있는 유용한 low-code 도구가 있습니다. [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)를 시도해보세요.
### Lessons

@ -15,7 +15,7 @@ Nesta série de lições, você descobrirá a diferença entre regressão linear
Neste grupo de lições, te prepararemos para começar tarefas de _machine learning_, incluindo configuração do Visual Studio Code para gerenciar _notebooks_, o ambiente comum para _data scientists_ (cientistas de dados). Você descobrirá a Scikit-learn, uma biblioteca para _machine learning_, e construirá seus primeiros modelos, focando em modelos de regressão neste capítulo.
> Existem ferramentas _low-code_ que podem ajudar a aprender como trabalhar com modelos de regressão. Use a [Azure ML para esta tarefa](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa).
> Existem ferramentas _low-code_ que podem ajudar a aprender como trabalhar com modelos de regressão. Use a [Azure ML para esta tarefa](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott).
### Lições

@ -19,7 +19,7 @@ Nesta série de lições, você vai descobrir a diferença entre regressão log
Neste grupo de lições, você será configurado para iniciar tarefas de machine learning, incluindo configurar o Código do Estúdio Visual para gerir cadernos, o ambiente comum para cientistas de dados. Você vai descobrir Scikit-learn, uma biblioteca para machine learning, e você vai construir seus primeiros modelos, focando-se em modelos de Regressão neste capítulo.
> Existem ferramentas de baixo código úteis que podem ajudá-lo a aprender sobre trabalhar com modelos de regressão. Tente
[Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
[Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lessons

@ -17,7 +17,7 @@
В этой группе уроков вы будете подготовлены, чтобы приступить к задачам машинного обучения, включая настройку Visual Studio Code для управления записными книжками, распространенным иструментом среди специалистов по данным. Вы откроете для себя scikit-learn, библиотеку для машинного обучения, и создадите свои первые модели, фокусируясь на регрессии в этой главе.
> Существуют инструменты, не требующие написания большого количества кода, которые могут помочь вам узнать о моделях регрессии. Попробуйте [Azure ML для этой задачи](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa).
> Существуют инструменты, не требующие написания большого количества кода, которые могут помочь вам узнать о моделях регрессии. Попробуйте [Azure ML для этой задачи](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott).
### Уроки

@ -17,7 +17,7 @@ Bu dersler dizisinde, lineer ve lojistik regresyon arasındaki farkları ve ne z
Bu ders grubunda, veri bilimcileri için ortak ortam olan not defterlerini yönetmek için Visual Studio Code'un yapılandırılması dahil olmak üzere makine öğrenimi görevlerine başlamak için hazırlanacaksınız.
> Regresyon modelleriyle çalışma hakkında bilgi edinmenize yardımcı olabilecek kullanışlı low-code (az kodlamalı) araçlar vardır. Bunu deneyin. [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> Regresyon modelleriyle çalışma hakkında bilgi edinmenize yardımcı olabilecek kullanışlı low-code (az kodlamalı) araçlar vardır. Bunu deneyin. [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Dersler

@ -14,7 +14,7 @@
在这组课程中你会准备好包括为管理笔记而设置VS Code、配置数据科学家常用的环境等机器学习的初始任务。你会开始上手Scikit-learn学习项目一个机器学习的百科并且你会以回归模型为主构建起你的第一种机器学习模型
> 这里有一些代码难度较低但很有用的工具可以帮助你学习使用回归模型。 试一下 [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> 这里有一些代码难度较低但很有用的工具可以帮助你学习使用回归模型。 试一下 [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lessons

@ -15,7 +15,7 @@
在這組課程中你會準備好包括為管理筆記而設置VS Code、配置數據科學家常用的環境等機器學習的初始任務。你會開始上手Scikit-learn學習項目一個機器學習的百科並且你會以回歸模型為主構建起你的第一種機器學習模型
> 這裏有一些代碼難度較低但很有用的工具可以幫助你學習使用回歸模型。 試一下 [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
> 這裏有一些代碼難度較低但很有用的工具可以幫助你學習使用回歸模型。 試一下 [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### Lessons

@ -27,7 +27,7 @@ There are many questions you need to ask:
- **What technology was used to train the model?** The chosen technology may influence the tooling you need to use.
- **Using TensorFlow.** If you are training a model using TensorFlow, for example, that ecosystem provides the ability to convert a TensorFlow model for use in a web app by using [TensorFlow.js](https://www.tensorflow.org/js/).
- **Using PyTorch.** If you are building a model using a library such as [PyTorch](https://pytorch.org/), you have the option to export it in [ONNX](https://onnx.ai/) (Open Neural Network Exchange) format for use in JavaScript web apps that can use the [Onnx Runtime](https://www.onnxruntime.ai/). This option will be explored in a future lesson for a Scikit-learn-trained model.
- **Using Lobe.ai or Azure Custom Vision.** If you are using an ML SaaS (Software as a Service) system such as [Lobe.ai](https://lobe.ai/) or [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) to train a model, this type of software provides ways to export the model for many platforms, including building a bespoke API to be queried in the cloud by your online application.
- **Using Lobe.ai or Azure Custom Vision.** If you are using an ML SaaS (Software as a Service) system such as [Lobe.ai](https://lobe.ai/) or [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) to train a model, this type of software provides ways to export the model for many platforms, including building a bespoke API to be queried in the cloud by your online application.
You also have the opportunity to build an entire Flask web app that would be able to train the model itself in a web browser. This can also be done using TensorFlow.js in a JavaScript context.
@ -37,7 +37,7 @@ For our purposes, since we have been working with Python-based notebooks, let's
For this task, you need two tools: Flask and Pickle, both of which run on Python.
✅ What's [Flask](https://palletsprojects.com/p/flask/)? Defined as a 'micro-framework' by its creators, Flask provides the basic features of web frameworks using Python and a templating engine to build web pages. Take a look at [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) to practice building with Flask.
✅ What's [Flask](https://palletsprojects.com/p/flask/)? Defined as a 'micro-framework' by its creators, Flask provides the basic features of web frameworks using Python and a templating engine to build web pages. Take a look at [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) to practice building with Flask.
✅ What's [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 is a Python module that serializes and de-serializes a Python object structure. When you 'pickle' a model, you serialize or flatten its structure for use on the web. Be careful: pickle is not intrinsically secure, so be careful if prompted to 'un-pickle' a file. A pickled file has the suffix `.pkl`.

@ -27,7 +27,7 @@ Hay muchas preguntas que necesitas realizar:
- **¿Qué tecnología se usó para entrenar al modelo?** La tecnología elegida puede influir en las herramientas que necesitas utilizar.
- **Uso de TensorFlow.** Si estás entrenando un modelo usando TensorFlow, por ejemplo, ese ecosistema proporciona la capacidad de convertir un modelo de TensorFlow para su uso en una aplicación web usando [TensorFlow.js](https://www.tensorflow.org/js/).
- **Uso de PyTorch.** Si estás construyendo un modelo usando una librería como [PyTorch](https://pytorch.org/), tienes la opción de exportarlo en formato [ONNX](https://onnx.ai/) (Open Neural Network Exchange) para usarlo en aplicaciones web de javascript que puedan usar el entorno de ejecución [Onnx Runtime](https://www.onnxruntime.ai/). Esta opción será explorada en una futura lección para un modelo entrenado Scikit-learn.
- **Uso de Lobe.ai o Azure Custom Vision.** Si estás usando un sistema de aprendizaje automático SaaS (Software as a Service) como lo es [Lobe.ai](https://lobe.ai/) o [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) para entrenar un modelo, este tipo de software proporciona formas de exportar el modelo a diversas plataformas, incluyendo el construir una API a medida para que esta sea consultada en la nube por tu aplicación en línea.
- **Uso de Lobe.ai o Azure Custom Vision.** Si estás usando un sistema de aprendizaje automático SaaS (Software as a Service) como lo es [Lobe.ai](https://lobe.ai/) o [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) para entrenar un modelo, este tipo de software proporciona formas de exportar el modelo a diversas plataformas, incluyendo el construir una API a medida para que esta sea consultada en la nube por tu aplicación en línea.
También tienes la oportunidad de construir una plicación web completamente en Flask que será capaz de entrenar el propio modelo en un navegador web. Esto también puede ser realizado usando TensorFlow.js en un contexto JavaScript.
@ -37,7 +37,7 @@ Para nuestros propósitos, ya que hemos estado trabajando con notebooks basados
Para esta tarea, necesitas dos herramientas: Flask y Pickle, ambos corren en Python.
✅ ¿Qué es [Flask](https://palletsprojects.com/p/flask/)? Definido como un 'micro-framework' por sus creadores, Flask proporciona las características básicas de los frameworks web usando Python y un motor de plantillas para construir páginas web. Da un vistazo a [este módulo de aprendizaje](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) para practicar construir con Flask.
✅ ¿Qué es [Flask](https://palletsprojects.com/p/flask/)? Definido como un 'micro-framework' por sus creadores, Flask proporciona las características básicas de los frameworks web usando Python y un motor de plantillas para construir páginas web. Da un vistazo a [este módulo de aprendizaje](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) para practicar construir con Flask.
✅ ¿Qué es [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 es un módulo de Python que serializa y deserializa estructura de objetos Python. Cuando conviertes un modelo en 'pickle', serializas o aplanas su estructura para su uso en la web. Sé cuidadoso: Pickle no es intrínsecamente seguro, por lo que debes ser cuidadoso si solicitaste hacer 'un-pickle' en un archivo. Un archivo hecho pickle tiene el sufijo `.pkl`.

@ -27,7 +27,7 @@ Ci sono molte domande da porsi:
- **Quale tecnologia è stata utilizzata per addestrare il modello?** La tecnologia scelta può influenzare gli strumenti che è necessario utilizzare.
- **Utilizzare** TensorFlow. Se si sta addestrando un modello utilizzando TensorFlow, ad esempio, tale ecosistema offre la possibilità di convertire un modello TensorFlow per l'utilizzo in un'app Web utilizzando [TensorFlow.js](https://www.tensorflow.org/js/).
- **Utilizzare PyTorch**. Se si sta costruendo un modello utilizzando una libreria come PyTorch[,](https://pytorch.org/) si ha la possibilità di esportarlo in formato [ONNX](https://onnx.ai/) ( Open Neural Network Exchange) per l'utilizzo in app Web JavaScript che possono utilizzare il [motore di esecuzione Onnx](https://www.onnxruntime.ai/). Questa opzione verrà esplorata in una lezione futura per un modello addestrato da Scikit-learn
- **Utilizzo di Lobe.ai o Azure Custom vision**. Se si sta usando un sistema ML SaaS (Software as a Service) come [Lobe.ai](https://lobe.ai/) o [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) per addestrare un modello, questo tipo di software fornisce modi per esportare il modello per molte piattaforme, inclusa la creazione di un'API su misura da interrogare nel cloud dalla propria applicazione online.
- **Utilizzo di Lobe.ai o Azure Custom vision**. Se si sta usando un sistema ML SaaS (Software as a Service) come [Lobe.ai](https://lobe.ai/) o [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) per addestrare un modello, questo tipo di software fornisce modi per esportare il modello per molte piattaforme, inclusa la creazione di un'API su misura da interrogare nel cloud dalla propria applicazione online.
Si ha anche l'opportunità di creare un'intera app Web Flask in grado di addestrare il modello stesso in un browser Web. Questo può essere fatto anche usando TensorFlow.js in un contesto JavaScript.
@ -37,7 +37,7 @@ Per questo scopo, poiché si è lavorato con i notebook basati su Python, verran
Per questa attività sono necessari due strumenti: Flask e Pickle, entrambi eseguiti su Python.
✅ Cos'è [Flask](https://palletsprojects.com/p/flask/)? Definito come un "micro-framework" dai suoi creatori, Flask fornisce le funzionalità di base dei framework web utilizzando Python e un motore di template per creare pagine web. Si dia un'occhiata a [questo modulo di apprendimento](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) per esercitarsi a sviluppare con Flask.
✅ Cos'è [Flask](https://palletsprojects.com/p/flask/)? Definito come un "micro-framework" dai suoi creatori, Flask fornisce le funzionalità di base dei framework web utilizzando Python e un motore di template per creare pagine web. Si dia un'occhiata a [questo modulo di apprendimento](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) per esercitarsi a sviluppare con Flask.
✅ Cos'è [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 è un modulo Python che serializza e de-serializza la struttura di un oggetto Python. Quando si utilizza pickle in un modello, si serializza o si appiattisce la sua struttura per l'uso sul web. Cautela: pickle non è intrinsecamente sicuro, quindi si faccia attenzione se viene chiesto di de-serializzare un file. Un file creato con pickle ha il suffisso `.pkl`.

@ -27,7 +27,7 @@
- **モデルの学習にはどのような技術が使われていますか?** 選択された技術は使用しなければいけないツールに影響を与える可能性があります。
- **Tensor flow を使っている。** 例えば TensorFlow を使ってモデルを学習している場合、 [TensorFlow.js](https://www.tensorflow.org/js/) を使って、Webアプリで使用できるように TensorFlow モデルを変換する機能をそのエコシステムは提供しています。
- **PyTorchを使っている。** [PyTorch](https://pytorch.org/) などのライブラリを使用してモデルを構築している場合、[ONNX](https://onnx.ai/) (Open Neural Network Exchange) 形式で出力して、JavaScript のWebアプリで [Onnx Runtime](https://www.onnxruntime.ai/) を使用するという選択肢があります。この選択肢は、Scikit-learn で学習したモデルを使う今後の講義で調べます。
- **Lobe.ai または Azure Custom Vision を使っている。** [Lobe.ai](https://lobe.ai/) や [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) のような機械学習SaaS (Software as a Service) システムを使用してモデルを学習している場合、この種のソフトウェアは多くのプラットフォーム向けにモデルを出力する方法を用意していて、これにはクラウド上のオンラインアプリケーションからリクエストされるような専用APIを構築することも含まれます。
- **Lobe.ai または Azure Custom Vision を使っている。** [Lobe.ai](https://lobe.ai/) や [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) のような機械学習SaaS (Software as a Service) システムを使用してモデルを学習している場合、この種のソフトウェアは多くのプラットフォーム向けにモデルを出力する方法を用意していて、これにはクラウド上のオンラインアプリケーションからリクエストされるような専用APIを構築することも含まれます。
また、ウェブブラウザ上でモデルを学習することができるFlaskのWebアプリを構築することもできます。JavaScript の場合でも TensorFlow.js を使うことで実現できます。
@ -37,7 +37,7 @@
ここでの作業には2つのツールが必要です。FlaskとPickleで、どちらもPython上で動作します。
✅ [Flask](https://palletsprojects.com/p/flask/) とは制作者によって「マイクロフレームワーク」と定義されているFlaskは、Pythonを使ったWebフレームワークの基本機能と、Webページを構築するためのテンプレートエンジンを提供しています。Flaskでの構築を練習するために [この学習モジュール](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) を見てみてください。
✅ [Flask](https://palletsprojects.com/p/flask/) とは制作者によって「マイクロフレームワーク」と定義されているFlaskは、Pythonを使ったWebフレームワークの基本機能と、Webページを構築するためのテンプレートエンジンを提供しています。Flaskでの構築を練習するために [この学習モジュール](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) を見てみてください。
✅ [Pickle](https://docs.python.org/3/library/pickle.html) とはPickle 🥒 は、Pythonのオブジェクト構造をシリアライズ・デシリアライズするPythonモジュールです。モデルを「塩漬け」にすると、Webで使用するためにその構造をシリアライズしたり平坦化したりします。pickleは本質的に安全ではないので、ファイルの 'un-pickle' を促された際は注意してください。塩漬けされたファイルの末尾は `.pkl` となります。

@ -27,7 +27,7 @@
- **모델을 훈련시킬 때 사용하는 기술은 무엇인가요?** 선택된 기술은 사용할 도구에 영향을 줄 수 있습니다.
- **Tensor flow 사용합니다.** 만약 TensorFlow로 모델을 훈련한다면, 예시로, 에코 시스템은 [TensorFlow.js](https://www.tensorflow.org/js/)로 웹 앱에서 사용할 TensorFlow 모델을 변환해주는 기능을 제공합니다.
- **PyTorch 사용합니다.** 만약 [PyTorch](https://pytorch.org/) 같은 라이브러리로 모델을 만들면, [Onnx Runtime](https://www.onnxruntime.ai/)으로 할 수 있는 JavaScript 웹 앱에서 사용하기 위한 [ONNX](https://onnx.ai/) (Open Neural Network Exchange) 포맷으로 내보낼 옵션이 존재합니다. 이 옵션은 Scikit-learn-trained 모델로 이후 강의에서 알아볼 예정입니다.
- **Lobe.ai 또는 Azure Custom vision 사용합니다.** 만약 [Lobe.ai](https://lobe.ai/) 또는 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 같은 ML SaaS (Software as a Service) 시스템으로 모델을 훈련하게 된다면, 이 소프트웨어 타입은 온라인 애플리케이션이 클라우드에서 쿼리된 bespoke API를 만드는 것도 포함해서 많은 플랫폼의 모델들을 내보낼 방식을 제공합니다.
- **Lobe.ai 또는 Azure Custom vision 사용합니다.** 만약 [Lobe.ai](https://lobe.ai/) 또는 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) 같은 ML SaaS (Software as a Service) 시스템으로 모델을 훈련하게 된다면, 이 소프트웨어 타입은 온라인 애플리케이션이 클라우드에서 쿼리된 bespoke API를 만드는 것도 포함해서 많은 플랫폼의 모델들을 내보낼 방식을 제공합니다.
또 웹 브라우저에서 모델로만 훈련할 수 있는 모든 Flask 웹 앱을 만들 수 있습니다. JavaScript 컨텍스트에서 TensorFlow.js로 마무리 지을 수 있습니다.
@ -37,7 +37,7 @@
작업에서, 2가지 도구가 필요합니다: Flask 와 Pickle은, 둘 다 Python에서 작동합니다.
✅ [Flask](https://palletsprojects.com/p/flask/)는 무엇일까요? 작성자가 'micro-framework'로 정의한, Flask는 Python으로 웹 프레임워크의 기본적인 기능과 웹 페이지를 만드는 템플릿 엔진을 제공합니다. [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)을 보고 Flask로 만드는 것을 연습합니다.
✅ [Flask](https://palletsprojects.com/p/flask/)는 무엇일까요? 작성자가 'micro-framework'로 정의한, Flask는 Python으로 웹 프레임워크의 기본적인 기능과 웹 페이지를 만드는 템플릿 엔진을 제공합니다. [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott)을 보고 Flask로 만드는 것을 연습합니다.
✅ [Pickle](https://docs.python.org/3/library/pickle.html)은 무엇일까요? Pickle 🥒은 Python 객체 구조를 serializes와 de-serializes하는 Python 모듈입니다. 모델을 'pickle'하게 되면, 웹에서 쓰기 위해서 serialize 또는 flatten합니다. 주의합시다: pickle은 원래 안전하지 않아서, 파일을 'un-pickle'한다고 나오면 조심합니다. pickled 파일은 접미사 `.pkl`로 있습니다.

@ -27,7 +27,7 @@ Existem muitas perguntas que você precisa fazer:
- **Qual tecnologia foi usada para treinar o modelo?** A tecnologia escolhida pode influenciar o ferramental que você precisa usar.
- **Usando o fluxo do Tensor.** Se você estiver treinando um modelo usando o TensorFlow, por exemplo, esse ecossistema oferece a capacidade de converter um modelo do TensorFlow para uso em um aplicativo da web usando [TensorFlow.js](https://www.tensorflow.org/js/).
- **Usando o PyTorch.** Se você estiver construindo um modelo usando uma biblioteca como [PyTorch](https://pytorch.org/), você tem a opção de exportá-lo em formato [ONNX](https://onnx.ai/) (Troca de rede neural aberta (Open Neural Network Exchange)) para uso em aplicativos web JavaScript que podem usar o [Onnx Runtime](https://www.onnxruntime.ai/). Esta opção será explorada em uma lição futura para um modelo treinado para aprender com Scikit.
- **Usando Lobe.ai ou Azure Custom Vision.** Se você estiver usando um sistema ML SaaS (Software as a Service), como [Lobe.ai](https://lobe.ai/) ou [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) para treinar um modelo, este tipo de software fornece maneiras de exportar o modelo para muitas plataformas, incluindo a construção de uma API sob medida para ser consultada na nuvem por seu aplicativo online.
- **Usando Lobe.ai ou Azure Custom Vision.** Se você estiver usando um sistema ML SaaS (Software as a Service), como [Lobe.ai](https://lobe.ai/) ou [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) para treinar um modelo, este tipo de software fornece maneiras de exportar o modelo para muitas plataformas, incluindo a construção de uma API sob medida para ser consultada na nuvem por seu aplicativo online.
Você também tem a oportunidade de construir um aplicativo web Flask inteiro que seria capaz de treinar o próprio modelo em um navegador da web. Isso também pode ser feito usando TensorFlow.js em um contexto JavaScript.
@ -37,7 +37,7 @@ Para nossos propósitos, já que estamos trabalhando com notebooks baseados em P
Para esta tarefa, você precisa de duas ferramentas: Flask e Pickle, ambos executados em Python.
✅ O que é [Flask](https://palletsprojects.com/p/flask/)? Definido como um 'micro-framework' por seus criadores, o Flask fornece os recursos básicos de estruturas web usando Python e um mecanismo de modelagem para construir páginas web. Dê uma olhada [neste módulo de aprendizagem](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) para praticar a construção com Flask.
✅ O que é [Flask](https://palletsprojects.com/p/flask/)? Definido como um 'micro-framework' por seus criadores, o Flask fornece os recursos básicos de estruturas web usando Python e um mecanismo de modelagem para construir páginas web. Dê uma olhada [neste módulo de aprendizagem](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) para praticar a construção com Flask.
✅ O que é [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 é um módulo Python que serializa e desserializa a estrutura de um objeto Python. Quando você 'pickle' um modelo, serializa ou aplaina sua estrutura para uso na web. Tenha cuidado: pickle não é intrinsecamente seguro, então tome cuidado se for solicitado para ser feito um 'un-pickle' em um arquivo. Um arquivo tem o sufixo `.pkl`.

@ -39,7 +39,7 @@ Para nossos propósitos, já que estamos trabalhando com notebooks baseados em P
Para esta tarefa, você precisa de duas ferramentas: Flask e Pickle, ambos em Python.
O que é [Frasco](https://palletsprojects.com/p/flask/)? Definido como um 'microframework' por seus criadores, o Flask fornece as características básicas de frameworks web usando Python e um motor de modelagem para construir páginas web. Dê uma olhada em [este módulo de aprendizado](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa) para praticar a construção com o Flask.
O que é [Frasco](https://palletsprojects.com/p/flask/)? Definido como um 'microframework' por seus criadores, o Flask fornece as características básicas de frameworks web usando Python e um motor de modelagem para construir páginas web. Dê uma olhada em [este módulo de aprendizado](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) para praticar a construção com o Flask.
✅ O que é [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 é um módulo Python que serializa e desserializa uma estrutura de objeto Python. Ao "pichar" um modelo, você serializa ou achata sua estrutura para uso na web. Tenha cuidado: o pickle não é intrinsecamente seguro, portanto, tenha cuidado se for solicitado a `cancelar o pickle` de um arquivo. Um arquivo em conserto tem o sufixo `.pkl`.

@ -27,7 +27,7 @@
- **使用什么技术来训练模型?** 所选的技术可能会影响你需要使用的工具。
- **使用 TensorFlow**。例如,如果你正在使用 TensorFlow 训练模型,则该生态系统提供了使用 [TensorFlow.js](https://www.tensorflow.org/js/) 转换 TensorFlow 模型以便在Web应用程序中使用的能力。
- **使用 PyTorch**。如果你使用 [PyTorch](https://pytorch.org/) 等库构建模型,则可以选择将其导出到 [ONNX](https://onnx.ai/)(开放神经网络交换)格式,用于可以使用 [Onnx Runtime](https://www.onnxruntime.ai/)的JavaScript Web 应用程序。此选项将在 Scikit-learn-trained 模型的未来课程中进行探讨。
- **使用 Lobe.ai 或 Azure 自定义视觉**。如果你使用 ML SaaS软件即服务系统例如 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 来训练模型这种类型的软件提供了为许多平台导出模型的方法包括构建一个定制A PI供在线应用程序在云中查询。
- **使用 Lobe.ai 或 Azure 自定义视觉**。如果你使用 ML SaaS软件即服务系统例如 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) 来训练模型这种类型的软件提供了为许多平台导出模型的方法包括构建一个定制A PI供在线应用程序在云中查询。
你还有机会构建一个完整的 Flask Web 应用程序,该应用程序能够在 Web浏览器中训练模型本身。这也可以在 JavaScript 上下文中使用 TensorFlow.js 来完成。
@ -37,7 +37,7 @@
对于此任务你需要两个工具Flask 和 Pickle它们都在 Python 上运行。
✅ 什么是 [Flask](https://palletsprojects.com/p/flask/) Flask 被其创建者定义为“微框架”,它提供了使用 Python 和模板引擎构建网页的 Web 框架的基本功能。看看[本学习单元](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)练习使用 Flask 构建应用程序。
✅ 什么是 [Flask](https://palletsprojects.com/p/flask/) Flask 被其创建者定义为“微框架”,它提供了使用 Python 和模板引擎构建网页的 Web 框架的基本功能。看看[本学习单元](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott)练习使用 Flask 构建应用程序。
✅ 什么是 [Pickle](https://docs.python.org/3/library/pickle.html) Pickle🥒是一个 Python 模块,用于序列化和反序列化 Python 对象结构。当你“pickle”一个模型时你将其结构序列化或展平以在 Web 上使用。小心pickle 本质上不是安全的所以如果提示“un-pickle”文件请小心。生产的文件具有后缀 `.pkl`

@ -27,7 +27,7 @@
- **使用什麽技術來訓練模型?** 所選的技術可能會影響你需要使用的工具。
- **使用 TensorFlow**。例如,如果你正在使用 TensorFlow 訓練模型,則該生態系統提供了使用 [TensorFlow.js](https://www.tensorflow.org/js/) 轉換 TensorFlow 模型以便在Web應用程序中使用的能力。
- **使用 PyTorch**。如果你使用 [PyTorch](https://pytorch.org/) 等庫構建模型,則可以選擇將其導出到 [ONNX](https://onnx.ai/)(開放神經網絡交換)格式,用於可以使用 [Onnx Runtime](https://www.onnxruntime.ai/)的JavaScript Web 應用程序。此選項將在 Scikit-learn-trained 模型的未來課程中進行探討。
- **使用 Lobe.ai 或 Azure 自定義視覺**。如果你使用 ML SaaS軟件即服務系統例如 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 來訓練模型這種類型的軟件提供了為許多平臺導出模型的方法包括構建一個定製A PI供在線應用程序在雲中查詢。
- **使用 Lobe.ai 或 Azure 自定義視覺**。如果你使用 ML SaaS軟件即服務系統例如 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) 來訓練模型這種類型的軟件提供了為許多平臺導出模型的方法包括構建一個定製A PI供在線應用程序在雲中查詢。
你還有機會構建一個完整的 Flask Web 應用程序,該應用程序能夠在 Web瀏覽器中訓練模型本身。這也可以在 JavaScript 上下文中使用 TensorFlow.js 來完成。
@ -37,7 +37,7 @@
對於此任務你需要兩個工具Flask 和 Pickle它們都在 Python 上運行。
✅ 什麽是 [Flask](https://palletsprojects.com/p/flask/) Flask 被其創建者定義為「微框架」,它提供了使用 Python 和模板引擎構建網頁的 Web 框架的基本功能。看看[本學習單元](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)練習使用 Flask 構建應用程序。
✅ 什麽是 [Flask](https://palletsprojects.com/p/flask/) Flask 被其創建者定義為「微框架」,它提供了使用 Python 和模板引擎構建網頁的 Web 框架的基本功能。看看[本學習單元](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott)練習使用 Flask 構建應用程序。
✅ 什麽是 [Pickle](https://docs.python.org/3/library/pickle.html) Pickle🥒是一個 Python 模塊,用於序列化和反序列化 Python 對象結構。當你「pickle」一個模型時你將其結構序列化或展平以在 Web 上使用。小心pickle 本質上不是安全的所以如果提示「un-pickle」文件請小心。生產的文件具有後綴 `.pkl`

@ -101,11 +101,11 @@ So, which classifier should you choose? Often, running through several and looki
![comparison of classifiers](images/comparison.png)
> Plots generated on Scikit-learn's documentation
> AutoML solves this problem neatly by running these comparisons in the cloud, allowing you to choose the best algorithm for your data. Try it [here](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa)
> AutoML solves this problem neatly by running these comparisons in the cloud, allowing you to choose the best algorithm for your data. Try it [here](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)
### A better approach
A better way than wildly guessing, however, is to follow the ideas on this downloadable [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa). Here, we discover that, for our multiclass problem, we have some choices:
A better way than wildly guessing, however, is to follow the ideas on this downloadable [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott). Here, we discover that, for our multiclass problem, we have some choices:
![cheatsheet for multiclass problems](images/cheatsheet.png)
> A section of Microsoft's Algorithm Cheat Sheet, detailing multiclass classification options

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save