From 66d48d04aa75b314745829e31391b2071f931829 Mon Sep 17 00:00:00 2001 From: p-mishra1 <87666586+p-mishra1@users.noreply.github.com> Date: Thu, 18 Nov 2021 21:30:17 +0530 Subject: [PATCH] Update README.md --- README.md | 50 +++++++++++++++++++++++++------------------------- 1 file changed, 25 insertions(+), 25 deletions(-) diff --git a/README.md b/README.md index f0d72a89..dec50211 100644 --- a/README.md +++ b/README.md @@ -81,31 +81,31 @@ By ensuring that the content aligns with projects, the process is made more enga | Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author | | :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | -| 01 | Introduction to machine learning | [Introduction](1-Introduction/README.md) | Learn the basic concepts behind machine learning | [Lesson](1-Introduction/1-intro-to-ML/README.md) | Muhammad | -| 02 | The History of machine learning | [Introduction](1-Introduction/README.md) | Learn the history underlying this field | [Lesson](1-Introduction/2-history-of-ML/README.md) | Jen and Amy | -| 03 | Fairness and machine learning | [Introduction](1-Introduction/README.md) | What are the important philosophical issues around fairness that students should consider when building and applying ML models? | [Lesson](1-Introduction/3-fairness/README.md) | Tomomi | -| 04 | Techniques for machine learning | [Introduction](1-Introduction/README.md) | What techniques do ML researchers use to build ML models? | [Lesson](1-Introduction/4-techniques-of-ML/README.md) | Chris and Jen | -| 05 | Introduction to regression | [Regression](2-Regression/README.md) | Get started with Python and Scikit-learn for regression models | | | -| 06 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Visualize and clean data in preparation for ML | | | -| 07 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build linear and polynomial regression models | | | -| 08 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build a logistic regression model | | | -| 09 | A Web App 🔌 | [Web App](3-Web-App/README.md) | Build a web app to use your trained model | [Python](3-Web-App/1-Web-App/README.md) | Jen | -| 10 | Introduction to classification | [Classification](4-Classification/README.md) | Clean, prep, and visualize your data; introduction to classification |