From 4fcbf7a6edeb52acd79a0c18b5efb9921e2b90a5 Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Mon, 10 May 2021 18:30:44 -0400 Subject: [PATCH] refreshing notebooks --- Regression/1-Tools/solution/notebook.ipynb | 18 +++--- Regression/2-Data/solution/notebook.ipynb | 38 ++++++------ Regression/3-Linear/solution/notebook.ipynb | 60 +++++++++---------- Regression/4-Logistic/notebook.ipynb | 16 +++-- Regression/4-Logistic/solution/notebook.ipynb | 14 ++--- 5 files changed, 79 insertions(+), 67 deletions(-) diff --git a/Regression/1-Tools/solution/notebook.ipynb b/Regression/1-Tools/solution/notebook.ipynb index 76a1634a6..e7d80492a 100644 --- a/Regression/1-Tools/solution/notebook.ipynb +++ b/Regression/1-Tools/solution/notebook.ipynb @@ -10,13 +10,17 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3-final" + "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } } }, "nbformat": 4, @@ -121,7 +125,7 @@ "output_type": "execute_result", "data": { "text/plain": [ - "LinearRegression()" + "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" ] }, "metadata": {}, @@ -165,8 +169,8 @@ "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2de5RcVZX/P6ebNNpBMekkGAJdjYOPFXxCiyAM6gzqiDOCz4WrwDjqtPSScaLDuMKvHGFGehyijo9B0AbRhG5h0N8o6ICAQRFGEDs/EkLQkASqm0AwJCFAbAjprv37o26T6u66j6r7OvfW/qx1V1ffx7n73Lr1Pfvss++5RkRQFEVR8kVb2gYoiqIo0aPiriiKkkNU3BVFUXKIiruiKEoOUXFXFEXJIQelbQDAggULpKenJ20zFEVRMsXatWt3isjCetusEPeenh5GRkbSNkNRFCVTGGNG3bZpWEZRFCWHqLgriqLkEBV3RVGUHKLiriiKkkNU3BVFUXKIirui5ITh4WF6enpoa2ujp6eH4eHhtE1SUsSKVEhFUcIxPDxMX18f4+PjAIyOjtLX1wdAsVhM0zQlJdRzV5QcUCqVnhf2KcbHxymVSilZ1FrY2GtSz11RcsDY2FhD65XosLXXpJ67ouSA7u7uhtYr0WFrr0nFXVFywMDAAB0dHdPWdXR0MDAwkJJFrYOtvSYVd0VpEBvjqwAzX5mpr9BMBlt7Tb7ibox5gTHmbmPMemPMRmPMvzjr5xtjbjHGbHb+zqs55nxjzBZjzCZjzDvjrICiJMlUfHV0dBQReT6+mrbAl0ol9u/fP23d/v37Uw8NtAIDAwN0dnZOW9fZ2Zl+r0lEPBfAAIc4n+cAvwVOAFYCK5z1K4CLnc9LgfXAwcBRwFag3escxx13nChKFigUCgLMWgqFQqp2GWPq2mWMSdWuVmFoaEgKhYIYY6RQKMjQ0FAi5wVGxEVXfT13p4y9zr9znEWA04FVzvpVwBnO59OBa0Rkn4g8BGwBjm+wzVEUK7E1vmpraKBVKBaLlMtlKpUK5XLZimcLAsXcjTHtxph1wA7gFhH5LXCYiGwHcP4ucnZfAjxcc/g2Z52ipEZUcXI3sZw/f36qcXhrQwNKeri59PUW4CXAL4FXA3tmbHvC+fst4Kya9d8F3l+nrD5gBBjp7u6OteuitDZDQ0PS2dk5LVzR2dnZVNe5XlkdHR0yZ86cSMoPQ1qhASU98AjLGGlwRN0YcwHwJ+DvgLeKyHZjzGLgVyLySmPM+U6j8SVn/5uAC0XkTrcye3t7Rd/EpMRFT08Po6OzX1hTKBQol8sNlzc8PEypVGJsbIzu7m727t3Lrl27IitfUYJijFkrIr31tgXJlllojHmJ8/mFwKnAH4DrgWXObsuA65zP1wNnGmMONsYcBbwcuDtcFRSleaKOk8+Mr+7evTvS8hvB1rRMJX2CTD+wGFhljGmn2hhcKyI/M8bcCVxrjPk4MAZ8EEBENhpjrgXuByaAT4nIZDzmK4o/3d3ddT33qAYb4y7fDVsfe1cswS1ek+SiqZBKnEQZc0+jfDdsTctUkoMwqZCKknWKxSKDg4MUCgWMMRQKBQYHByPzbuMu3w1b0zIVO2h4QDUOdEBVURon6oFiJXuEGlBVFMVONLdd8ULFXVEySlrhICUbaFhGURQlo2hYRomEvOdU57l+ea5bkmTqOrql0SS5aCqk/aSV7pcUea5fnuuWJDZeRzxSIVMXdlFxzwR5z6nOc/1srFsW58Gx8Tp6ibuGZZRA2JpTHVU32db6RUEjdUsi7GDrC0/8yNw94qb6SS7quduPjV6LVze5Uc/QxvpFRdC6JRV2yOq1ttFuNCyjhMXGeKPbj62rq6thW22sXxhqG7eurq5AUxL7iVdUoZSsvjXKxntExV2JBNvipG4i4bb4eVi21a9Z3Oac7+rq8qybl+hGKWw2esBBse0eUXFXcombSLgttnuGYZkSnmYbNy/RjVKQbfSAs4qXuOuAqpJZ3B6/7+rqqrt/Eu8TTSsPunaQ0g2/gT+v6QyiHEzUJ2sTwk31k1zUc1eapV43OS3PME2PNEgvJoiX7RZ2yHIoxVauu07kve8VufRSkUqluTLQsIzSaqQRG01TAP3GH4wx0t/f33T5GkqJju9/v6q8tcuttzZXloq7oiRAmlkgQTz3sGJs22Bi1vj612eL+tRy333Nlekl7hpzV5SIcIvpJxHrrxcvn8n4+DilUqnpc8x8d6zGyP0RgQsuAGNg+fL6+1x5JRxzTPTnVnFXlIhIc371mYOUbtjyNGWmJuBqgkoF/v7voa0N/vVf6+9zxRVV8f/bv43JCDeXPslFwzJK2kQVcrAldGHzAGie4/f794uceaZ7+AVEfvSj6M6HxtwVxZ08io3NdbK54WmWZ54Recc7vEX9lluiP6+Ku6J4kEexEWm8F5FUryOr0w/U46mnRHp7vUX9rrviO7+XuOubmJSWp62tjXq/A2MMlUolBYuSZ+ohqPHx8efXdXZ2xvJwUR5e7L1zJ7zxjeBl7oYN8OpXx2uHvolJsQJbB9HSzHKxhVKpNE3YIXx2jRtZfrH3tm1w6KGwcGF9YT/oINi6teqzxy3svri59EkuGpbJPzbHgG22LSmSDpXYMvAclE2bvEMvL32pyPbtyduFxtyVtLE9rp01sYka27+ftLjnHm9RX7pUZPfu9OzzEneNuSuJoHFtu0ky5p4Fbr8dTjnFffvJJ8PPfw5z5yZnUz005q40RByxcY1r243O1Fjlf/6n+jSpm7CfcQbs21cV/7SF3Rc3l35qAY4Efgn8HtgI/IOz/kLgEWCds5xWc8z5wBZgE/BOv3NoWMYe4oo/a1xbsZnhYe/wy8c+JjIxkbaVsyFMzB1YDBzrfH4R8ACw1BH38+rsvxRYDxwMHAVsBdq9zqHibg9xxl5bPa6t2Mcll3iL+nnnNT8dbxJ4iftBATz77cB25/PTxpjfA0s8DjkduEZE9gEPGWO2AMcDd/qdS0mfON/wXiwWW66br9jJRRfBP/+z+/YvfQlWrEjOnjhoKOZujOkB3gD81ll1rjHmXmPMlcaYec66JcDDNYdto05jYIzpM8aMGGNGHn/88YYNV+JBY+PxYmuufysgAp/5TDWm7ibs3/52db+sCzs0IO7GmEOA/wssF5GngMuAPwNeT9Wz/+rUrnUOn5UmISKDItIrIr0LFy5s2HAlHrL8gInt1L4KT0QYHR2lr68vVoHXxgQmJ2HZsuoMjV//ev19rrmmKuqf/GSytsWKW7ymdgHmADcBn3XZ3gPcJwcGU8+v2XYTcKJX+RpztwuNjcdD0rnkQ0ND0tHRMe1cHR0dLfN9PvusyLvf7R1Tv/HGtK0MB2Hy3E11cuhVwG4RWV6zfrFU4/EYYz4DvElEzjTGHAP8gGqc/XBgDfByEZl0O4fmuSutQNK5/gsWLGDXrl117Vi9enVuxz/27oW3vx3uust9n//9X3jzm5OzKS688tx9B1SBk4CzgQ3GmHXOuv8DfNgY83qqHkEZ+CSAiGw0xlwL3A9MAJ/yEnZFaRW6u7vrTpgV13hGPWEHqFQq9PX1AeRK4HfvhhNPhAcecN9n/Xp47WuTsylN9AlVRUmIpJ8C9XojE2RrFkYvHn20KtgubRkAmzfD0UcnZ1NS6BOqimIBST8F2tXV5bndllfuNcvWrdXMlyVL6gt7Vxc88kg1up5HYfdDxV1RYsAtSyXJl0x/4xvfYM6cOa7bs5reeu+9VVF3E+yXv7w63/rOnXD44cnaZhMq7kruSDv9L42Ux3oUi0W+973v1fXgs5je+pvfVEX9da+rv/2EE+Dpp6sxd59OS2vglkaT5KKpkEpU2DCHjY3T58aV3ppE2uzPf+6dzvjud1fTHrNGFNcOnc9daRWiEtYwP7w8vSPUi7gb0v/6L29RP/tskf37IzlV4kR17VTclZYhCmEN+8Oz0XOPg7jq+Z3veIv68uV2T+YVhKiunYq7Yi1Rd+uj+NGELcOG0FASRN1D+dKXvEX9i1+MuAIpEtW1U3FXrCQOEYyizKi8/7xP4RBFQ1qpiPzTP3mL+n/+Z3x1SAv13JVcE1e3PqywtkpYJSxhGtKJieoLMLxEPYft4fNozF3JNWkNPPqJf6uEVaKg0YZ03z6RM87wFvWf/jQh41NGs2WU3JKGhxxUuFshrJIkf/qTyJ//ubeo33Zb2lZmDy9x17lllNRIeq4VgJ6enrqTd+VlnhXb2LMHTjoJ7r/ffZ+1a+HYY5OzKU/o3DKKlSQ91wrE+xrBOEn7qdtGeewxWLwY5s1zF/ZNm6o+uwp7TLi59EkuGpZRkiLtwdJmwj1pjQE0Y+tDD4nMmeMeennxi0XGxmI1u6VAY+6KUiXNwdJmz23z2MQUGzd6x9N7ekR27IjN3JZFxV1RakhrsLRZkU4jqyiorXfd5S3qxx0n8uSTsZnZ8niJuw6oKkpCNPuavTQGgf1sXbMGTj3V/fh3vAOuuw5e8IJYzFMcdEBVAaIdlMvaAJ8NuM2f7jev+sDAAJ2dndPWxT1lr5tNCxb8Hca4C/uZZ8L+/XDTTSrsqePm0ie5aFgmfqKMNetDPs0R5rolHUqabetHPcMvn/qUyORkrCYpdUBj7kqUg3JpZ5xkmSw9HDU0NCTz5n3RU9S/8IXsz9CYZbzEXWPuLUKz8d64y1LsQwQ+/3n4t39z3+drX4Ply5OzSamPxtyVpuO9cZel2EOlAuecA21t7sL+/e9XxV+F3X5U3FuEKAfl0hjgywJZHWTevx8++EFob4fvfKf+Pj/+cVXUly1L1jYlBG7xmiQXjblHh1dMN8p4b5Zix0mQxUHm8XGRv/gL93g6iNx6a9pWKl6gMffWII2JuJQqWZqQ7Mkn4S1vgfXr3fe5+2544xuTs0lpDq+Yu4p7jsiSwOSNLAwy79gBxx0H27a577NxIyxdmpxNSjh0QLVFyOqMh5DdePWU3W5OUqODzHFch7ExmDsXDjusvrC/8IVQLlcDMSrsOcItXjO1AEcCvwR+D2wE/sFZPx+4Bdjs/J1Xc8z5wBZgE/BOv3NozD0aspp/nsV4tUh9u8PUIerr8Pvfe8fTjzhC5LHHmio6NnQspzEI8xATsBg41vn8IuABYCmwEljhrF8BXOx8XgqsBw4GjgK2Au1e51Bxj4asimRWGyU3u6dsT+vdrSMj3qL+2teKPPFEQ0UmQlbv3zQJJe6zDoDrgLc7XvliOdAAbJIDXvv5NfvfBJzoVaaKe3Rk0fNJ612qYYna7rDl/fKX3qL+trdVX3dnK1lt5NPES9wbirkbY3qANwC/BQ4Tke0Azt9Fzm5LgIdrDtvmrJtZVp8xZsQYM/L44483YobiQbFYpFwuU6lUKJfLmciS8XsoKql4fKPnifphrmbLu/56MAbe9rb629//fnjuObj1VpjxeIJVZHnMyErcVH/mAhwCrAXe5/y/Z8b2J5y/3wLOqln/XeD9XmWr597aeHXHk+qqN3OeqGyb6m3heOlBy1u92ttT7+vL1mRe6rk3DmHDMsAcquGVz9as07CMEhlu4aSkfvDNnidsGKxeAzEl8G7lfeMb3qK+YkU2J/PSmHvjhBJ3wACrga/PWP9lpg+ornQ+H8P0AdUH0QFVpUmSisenFfcP2qhUKiIXXOAt6itXxmpqImRxzChNwor7yc4Ndy+wzllOA7qANVRTIdcA82uOKVHNktkEvMvvHCruihtRee5+opFWSMCvUZmcFDn3XG9Rv+KKWE1ULCZ0WCbuRcU9v8QRtogjfzytkIBbo9Ld/TL58Ie9Rf2HP4zVNCUDqLgrqRD1gGOzDURQrzyNkMDsa3SwtLXd7CnqN98cu1lKRlBxV1LBluwH2/Poh4aG5Mgjlwrc7Snqd95Z/1iNUbcuXuKuc8tkGNvnY2k2bznqetn8cpGdO+ELXyjy8MMbgfrTMG7YUJX3E06Yvn5qFtDR0VFEhNHRUfr6+qy7D5SUcFP9JBf13BsnC2ljzXjucdQrrWvl5VU//LDIoYe6e+kHHSSydat3+bb0jJT0QMMy+SMLP+xmRDWueiUdvnCr+1e+cp1n6OWww0QefTTYOWwPNynxo+JuOc0IT1Z+2P39/dLe3i6AtLe3S39/v+f+jdbL1pjz7EbqdZ6ivnSpyO7dYc9hXwOvxIuKu8U0GzLIwg87bs/d5tDUgUbqJE9RP/lkkb17mzuHzfVXkkHF3WLCPPZu+w877pi7zQ3cokXLPEX99NNF9u0Lfx5bey5KMqi4W0zQMES9H7HtP+xmQ0dB62VjaOoHP3AXdBA55ZQtMjGRmnlKzlBxt5gg3mcWvPR6xO1Z2+S5X3qpt6i/+MXflquusvv7UrKHirvFBBFum0SsEeJulJqZUTFqLrrIW9QHBhorz/bemGIXKu6W4/eDtjH8EJS4xarZudDDUKmILF/uLeqXXdZcXbLYQ1PSQ8U948ThuefNQ0yidzMxIfKRj3iL+jXX2F0HJV+ouMdMEt5plB5dHj3EOHs3zz4r8td/7S3qN95odx2UfKLiHiNJvgYuqgYkjx5iHHXau1fkxBO9Rf2OO+yug5JvVNxjJEs/yNr4dN48xCgb2V27RF7xCm9RX7fO7joorYGKe4xkpStdTziy0CA1QtjezSOPiCxY4C3qmzfHa1vexkKUeFFxj5GseO5eHnure4hbtogY4y7o8+eLbNvWfPnqkStx4SXuOp97SAYGBujs7Jy2rrOzk4GBgZQsqo/XHOqFQoHBwUGKxWKCFqXPL34BxsDRR1dlfCZHH12db33XLliypPnzlEolxsfHp60bHx+nVCo1VZ7t8/grluCm+kkuWfbcRbLRlc5KDyMJrr3WO/TypjeJPP10dOeLMnSnvQClFjQso9giCmk2hH5TBJx2WjXtMWqibFi1kVZqUXFXRCT9HkZaDcwFF3iL+ty5Is89F9/5o6x3VgbwlWRQcVesIGmv85xzvEX9la8UmZyM5dSziKphVc9dqcVL3E11e7r09vbKyMhI2mYoMdPW1ka9+80YQ6VSiew873kP/PSn7ttPPRVuvrk6mJo1pl6KXTtA29nZ2ZID4goYY9aKSG+9bZotoyRGd3d3Q+sbQQSOPbYq2G7CfvbZ1f1uuSWbwg5QLBYZHBykUChgjGnZTCfFHxV3JTHiSBudmIBFi6CtDe65p/4+n/tcVdRXr276NFZRLBYpl8tUKhXK5bIKu1IXFfeQ2JBzbIMNQYjS63z22ar3PWcOPP54/X3+4z+qon7xxSENV5Qs4haMT3LJ6oCqDemFNtiQJHv2eA+Sgsjq1WlbqSjJQJgnVI0xVxpjdhhj7qtZd6Ex5hFjzDpnOa1m2/nGmC3GmE3GmHdG3hpZRNRPHmbNhiR7DI89VvXUX/IS931+9rOqvJ99dmxmKEpm8M2WMcacAuwFVovIq511FwJ7ReQrM/ZdClwNHA8cDvwCeIWITHqdI6vZMkllf9hoQ1JZG1u3VqcB8OI3v4ETT4zslIqSGUJly4jIr4HdAc91OnCNiOwTkYeALVSFPpfEmf1huw1x9xjWrTsw74sb991X9dRV2BVlNmEGVM81xtzrhG3mOeuWAA/X7LPNWTcLY0yfMWbEGDPyuNuImOXYMGlYWja4TUTmNUFZEG67rSrqb3iD+z7lclXUjzkm1KkUJdc0K+6XAX8GvB7YDnzVWV8ve7hu3EdEBkWkV0R6Fy5c2KQZ6WJDznHcNrjF1aPuMfzkJ1VRf+tb3ffZsaMq6nfckW52UFayk5QWx22ktXYBeoD7/LYB5wPn12y7CTjRr/ysZsvkHa9MnKiydC6/3D/7pXaGxrSzg9I+v6LUQti5ZWaKO7C45vNnqMbZAY4B1gMHA0cBDwLtfuXbKO5pT7JlA37zmIS5RgMD3oJ+0EEHZmisPU97e3uqc6vYNreL3qetTShxp5r9sh3YTzWG/nHgKmADcC9w/QyxLwFbgU3Au/zKFwvFXb2zKnHMQPjpT3uLek+PyMTEgf2DvB4wrE2NYNOsjHqfKqE997gX28TdNu8sLaK8Dh/4gLeon3yySKUS3Ab13O2yRUkHL3HX6QfqEFcmSNYIm4kjUk1TNAZ+9KP6+3zoQ9X9br+9/mReQa55khlKNmRITaH3qeKJm+onuajnbi/NxHQnJkSOOMLbU1++PNj53b6L9vb2VF86YkOcW+9TBQ3LNIbGMpvj2We9BR1E/v3fGytTvwt39NooKu5NYIt3lgWeespf1K+4YvZxQa+xfhfu6LVpbVTclVjYscNf1H/yk/rHqteZDCr++cZL3HVAVWmYcrk6+Llokfs+t91WlffTT5++furpzrPOOiv1GTXzztTkbqOjo4gIo6Oj9PX1NfRErT6Nm2HcVD/JRT33aInLW9uwwd9TX7fO2y6/nPU08sXzStgBV+1d2Q8almkd4vhB3nGHv6hv3epfTpCc9SQzPfIesgj7wJVm49iPinsLEeUPcmTEX9Qfeyx4eW5iE1Uj1IhYt4JXGvZesOlpXKU+Ku4tRBQ/yF/9yl/Un3yycdu8PPewnnOjYt0KXmnYBqwVrlHWUXFvAaa81jDhjuuv9xf1Z54JZ2Nc3nKjQtQqXmmY0FMr9G6yjop7zvEbqPT7Qa5e7S3or3vd9Mm8wtoaR5y7UbFWrzQYeR+XyDoq7jmn2XDHN7/pLeorVtSfzMtGGhVr9UqVPKDinnMa8VorFZELLvAW9ZUrk69DWJoRa/VKlayj4p5zgnitk5Mi557rLeqXX55eHaJAxVppNbzEXZ9QzQFe09BOTECxCO3tcMkl9Y//4Q+r8v6JTyRgbIwUi0XK5TKVSoVyuZzou2wVxTZU3HNAvZdkX3LJFQwNFZkzB37wg/rH3XxzVdQ/8IFk7a1FH29XlHgwVc8+XXp7e2VkZCRtM3LB00/DX/4l/O537vvceSeccEJyNrkxNfdJ7RwznZ2dDA4OqtetKAEwxqwVkd6621Tc88HOnfCmN8GDD7rvc++98JrXJGeTHz09PYyOjs5aXygUKJfLyRukKBnDS9w1LJNxHnkE5s2DhQvrC3t7O2zdWg2/2CTsEO9r4jTco7Q6Ku4ZZfPm6rS7RxwBe/bM3r5oETz6KExMwMte1tw54hbI7u7uhtYHJYqpbvOGNnYtiFsaTZKLpkIG5557vNMZX/Uqkd27w58niYd83M7R398fKqVRnz6djj6wlV/QPPfsc/vt3qJ+0kkie/dGd76kBHJmbnp/f7+vEPnls7fKvDFB0cYuv6i4Z5gbbvAW9fe8R2TfvujPm5ZA+glREC9UxWw62tjlFy9x15i7pVx9dTWmftpp9bd/9KPVePp110FHR/Tnjyse7offIGupVPJ9PZ/XQ12tSFrfpZIybqqf5BLGc8/bI+eXXurtqf/jPx6YzCvOuqcVp/XzuoN6oXm7L8KgMff8Ql7DMnm6aS+6yFvUBwam7x+27kHELw2B9KuXhlyaQxu7fBJK3IErgR3AfTXr5gO3AJudv/Nqtp0PbAE2Ae/0K19CiHuQ+Gy9G9qWG71SEfnsZ71F/bLL6h8bRuRsbxS9vh/bbVeUJAkr7qcAx84Q95XACufzCuBi5/NSYD1wMHAUsBVo9ztHs+Lu1UX3SrNLWxwmJkSWLfMW9auv9i4jzCBZ1r1fWxrnOGmFOirhCR2WAXpmiPsmYLHzeTGwSQ547efX7HcTcKJf+XF47m7b2tvbUxO2fftE/uZvvEX9hhuClRVGoP0aBhWWdNHeiRKUOMR9z4ztTzh/LwHOqln/XeADLmX2ASPASHd3d1MV8/oRuAmY29JsWlgQIdy7V+TNb/YW9TvuCF93QLq6unxFwKth8BOWrAt/FuzPes9KSY4kxf1bdcT9/X7lx5Etk4Tn7ieEu3aJvPKV3qJ+zz1NV12Ghoakq6trVl2CvIHIze4wwt+o7bYN1tpCEnnpWWjkFH/iEHcrwjLNDLxFGXN3E8IlS3pl4UJvUX/ggaaqHNiGeo1V7fXq6uqSrq6uWdfOS1ii8ihtTbO0hbjtzEojp/gTh7h/mekDqiudz8cwfUD1QWIaUA1yg8adLTNbCI8SmHAV9HnzRLZta+pUDdgw29sWCf6D9hKWqDzKtEQ2K09qxi2+WWnkFH9CiTtwNbAd2A9sAz4OdAFrqKZCrgHm1+xfopolswl4l1/50qS423CDHrDh1Z5e+tFHi+zcGbcN9Re/cEsjjUCzvYSZDaitUxvYRJxhk6w0coo/oT33uJdmxN2GG/TCC2/0FPXjjxd56ql4bRgaGpKOjg5Pgffyuut5hl49niAepa0PImk4okqWGjnFm1yKe5o36E03uQs6iLzrXSLPPDP9mDg9sXqDqjMbPD8PP+i1C1IPv+8mTZHVgURt5PJELsU9jRv02mu9Rb1YFNm/P3lb/bxyt0yXuHo9QXpVKrLpotc/H+RS3EWSu0Evv9xb1D/9aZHJSffj4+5leHnltY1If3+/7wBsnPZot19RoiW34h43F1/sLer/8i8HZmj0Iu7xgaAPNAVtBOKwR7v9ihI9Ku4NUKmIfO5z3qL+zW82VqaXJxtV7yNIOV5ee9TCq91+RYkfFfcATE6KfOIT3qJ+1VXNlW3LJGYaLlGUfOEl7i3/Jqb9++F974P2drjiivr7XH99Vd7POqu5cxSLRQYHBykUChhjKBQKDA4OcsMNN/i+VShK4npD0fDwMD09PbS1tdHT08Pw8HCo8hRFiQA31U9yScNz/9OfRE45xdtT/9Wv4rUhjVz9/v7+5+fXaW9vl/7+/lDlaXxdUdID9dwPsGcPvOY1MHcu/PrX9fdZu7Yq7295i3s5UXirSb/bcnh4mFWrVjE5OQnA5OQkq1atCuVpB3mnqaIoKeCm+kkuSXjujz0mcvjh3p76H/4QrKyovNWkvd44Yu42PCmsKK0KrTygWi6LHHywu6AfcojI6GhjZUYpkrVztkyFS+LKLolDiHWQVlHSw0vccxuWuf9+MAZ6emDfvtnbu7vhj3+Ep5+ufm6EsbGxhtZ7USwWnx/onAqXjI6O0tfXF/nAZBxhoLgGaRVFCYmb6ie5ROm53323d+ilp2enHHnkMU3lXweZXbEZgni/fnPXByl/EXQAAAhwSURBVMkpjysMpDntipIOtEJYZs0ab1E/9VSRK6+8umlx85ubJYxIBnmn6cxzTx3T1dUlbW1t07bNmTPHU+D9hFjFWlGyQa7F/b//21vUP/Qhkeeeq+4bJj7s57GHEUA/u4LM6Dhz6erq8j1vPRHX1EZFyQ65Ffevfc1d1Pv7Z0/mFWZAMc6sED9BbfRl31NLM+d0mz5YB0gVxT68xD3TA6qXXTZ73ec/D5UKXHoptM2oXZgBxThz0t2eYC0Wi5GdYyZu+em7du2qu38zg8WKoqSIm+onuTTruV9yicihh1Y99a9+1X//MCGHtF8w4TcX+8zlkEMO8Syz0d6Aeu6KYh/kNSzTDGEGC9M6tvZ4agZTvRavQVUR9zh+V1eX6+CtDq4qil2ouKdM1F7/zIZi7ty5DXvbXjZ5NSQ6uKoo9uAl7qa6PV16e3tlZGQkbTNio6enh9HR0VnrC4UC5XI5dPltbW3U+x6NMVQqFdfjhoeHKZVKjI2N0d3dzcDAwPNx/iTsVhQlHMaYtSLSW29bpgdU06SRicPcBiNHR0cjmSa32cHeYrFIuVymUqlQLpenCTtE+yQu6NTAipIobi59kkvWwjKNhlmC5KmHDdPEMdgb9Rw6mj+vKNGCxtwbx2sAtFHRC5rtEiYjJY6nSqMUZJ1gTFGiR8U9IEEHEt3E2euBplrxbeb4tIiq0dCpgRUlelTcAxDEu54SNzehCuqFtqIX24p1VpS48RJ3HVB1qPfE5kzGxsYolUrVVnEGxpjA09wmOU2uLYOYOjXwbGz5bpSc4qb6SS5JeO5+4YUgDwb5hVWitCcKonxjVBS26myTB9ABZiUKiCssA5SBDcC6qZMA84FbgM3O33l+5cQt7kF+SH4ZLVP7Zym8EIWtKkLxkKX7SLGXuMV9wYx1K4EVzucVwMV+5cQt7kF+SF4x90KhIP39/Zl7ajOKQUwbRSgPPQAdYFaiIGlx3wQsdj4vBjb5lRO3uAf9IfX399cV7v7+/kzOtxKFMNsmQnnpSdjYaCrZI05xfwj4f8BaoM9Zt2fGPk+4HNsHjAAj3d3dsV6AoD8kt/2mXlydtR9iFEJomwjZZk+z5KWRUtIlTnE/3Pm7CFgPnBJU3GsXG2LuIo1Pg5uFLnQUs1HaJEK29STCkIfwkpIusYn7tILgQuA8G8MyIsF+SHnz3L1oRFhsEqG8eO6KEgWxiDswF3hRzeffAH8FfJnpA6or/cqy4SEmEXcvtV7MPaz3GqVgNlqWbd54I2TZdkWJmrjE/WVOKGY9sBEoOeu7gDVUUyHXAPP9yrJF3EXchTJqMY5KoOqV5TfYm3Xv16aehKKkSSJhmTCLTeKeBFGKa9D8/FrSjFurMCtKdHiJu04/kAJRzpPud8z4+DilUmnaujhf9u3F8PAwfX19jI6OIiKMjo7S19enj90rSgyouKdAlOIa5JiZDUBa87zUm7+nXuOjKEp4VNxTIEpxrVfWTGY2AMVikcHBQQqFAsYYCoUCg4ODs97EFDVRv9lJURQP3OI1SS6tFnMXiSdbBuyeGiHrA7mKYhtozN0+/N5f2kxZIsJVV12VuEceFJ32V1GSw1TFP116e3tlZGQkbTOUBBgeHqZUKjE2NkZ3dzcDAwPWND6KkjWMMWtFpLfuNhV3RVGUbOIl7hqWURRFySEq7oqiKDlExV1RFCWHqLgriqLkEBV3RVGUHGJFtowx5nFg1Pl3AbAzRXNsQa/DAfRaHECvxQH0WkBBRBbW22CFuNdijBlxS+1pJfQ6HECvxQH0WhxAr4U3GpZRFEXJISruiqIoOcRGcR9M2wBL0OtwAL0WB9BrcQC9Fh5YF3NXFEVRwmOj564oiqKERMVdURQlhyQu7saY+caYW4wxm52/81z2u9IYs8MYc18zx2eBBq7FXxljNhljthhjVtSsv9AY84gxZp2znJac9dHgVrea7cYY801n+73GmGODHps1Ql6LsjFmg3MfZH6K1QDX4lXGmDuNMfuMMec1cmzL4PYWj7gWYCWwwvm8ArjYZb9TgGOB+5o5PgtLkLoA7cBW4GVAB7AeWOpsuxA4L+16hKi/a91q9jkNuBEwwAnAb4Mem6UlzLVwtpWBBWnXI8FrsQh4IzBQ+xvI230RZkkjLHM6sMr5vAo4o95OIvJrYHezx2eEIHU5HtgiIg+KyHPANc5xeSBI3U4HVkuVu4CXGGMWBzw2S4S5FnnD91qIyA4R+R2wv9FjW4U0xP0wEdkO4PxdlPDxNhGkLkuAh2v+3+asm+Jcp4t+ZQZDVH5189onyLFZIsy1gOr7aG82xqw1xvTFZmUyhPlu83ZfNM1BcRRqjPkF8NI6m0pxnM9mIrgWps66qfzVy4AvOv9/Efgq8LFGbUwRr7r57RPk2CwR5loAnCQijxpjFgG3GGP+4PR+s0iY7zZv90XTxCLuInKq2zZjzB+NMYtFZLvTpdzRYPFhj0+UCK7FNuDImv+PAB51yv5jTVmXAz+LxurEcK1bgH06AhybJcJcC0Rk6u8OY8yPqYYnsiruQa5FHMfmijTCMtcDy5zPy4DrEj7eJoLU5XfAy40xRxljOoAzneOYEW99L3BfneNtxrVuNVwPfMTJFDkBeNIJYQU5Nks0fS2MMXONMS8CMMbMBd5B9u6FWsJ8t3m7L5on6RFcoAtYA2x2/s531h8O3FCz39XAdqoDJtuAj3sdn8WlgWtxGvAA1SyAUs36q4ANwL1Ub+DFadepiWswq27AOcA5zmcDfMvZvgHo9bsuWV2avRZUM0PWO8vGFrkWL3V04Slgj/P5xXm8L5pddPoBRVGUHKJPqCqKouQQFXdFUZQcouKuKIqSQ1TcFUVRcoiKu6IoSg5RcVcURckhKu6Koig55P8DpS3whA4swa4AAAAASUVORK5CYII=\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2de5RcVZ3vv7+udAMNqKQSIDy6ipc64B0wtixcg+AAIi8FB67CFKLAorVhHITF4gZrnPFBzxKYQS9zBW0FFth1BUfHCzIqQzAogwJ2FAJRYxrsDgmPhBAM0BCS1O/+cU5LdfV5vx/fz1pn9el9Xr99Tp3v/u3f3mdvUVUQQggpFj1pG0AIISR6KO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJA5qVtAAAsWLBA6/V62mYQQkiuWL58+fOqutBqWybEvV6vY3x8PG0zCCEkV4jIlN02hmUIIaSAUNwJIaSAUNwJIaSAUNwJIaSAUNwJIaSAUNwJIaFotVqo1+vo6elBvV5Hq9VK2ySCjHSFJITkk1arhaGhIUxPTwMApqamMDQ0BABoNBppmlZ66LkTQgLTbDb/LOwzTE9Po9lspmQRmYHiTggJzJo1a3ylk+SguBNCAjMwMOArnSQHxZ0QEpiRkRH09/fPSuvv78fIyEhKFpEZKO6EkMA0Gg2Mjo6iVqtBRFCr1TA6OsrG1AwgWZhDdXBwUDlwGCGE+ENElqvqoNU2eu6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAXMVdRHYUkYdF5FERWSkiXzDT9xORh0RkQkRuF5E+M30H8/8Jc3s93iwQQgjpxovnvgXAMap6KIDDAJwgIkcAuArAV1T1QACbAJxv7n8+gE1m+lfM/QghhCSIq7irwcvmv73mogCOAfA9M/0WAKeZ66ea/8PcfqyISGQWE5ITWq0W6vU6enp6UK/X0Wq10jaJlAhPMXcRqYjIIwDWA7gHwBMAXlTVbeYuawHsba7vDeApADC3/wlA1eKcQyIyLiLjGzZsCJcLQjJGq9XC0NAQpqamoKqYmprC0NBQbgWeBVX+8CTuqrpdVQ8DsA+AwwG8PeyFVXVUVQdVdXDhwoVhT0dIpmg2m5ienp6VNj09jWazGet14xDhohVUZcFXbxlVfRHAMgDvAfAWEZlnbtoHwDpzfR2AfQHA3P5mABsjsZaQnLBmzRpf6VEQlwinVVCRcHjpLbNQRN5iru8E4P0AfgdD5M8wd/s4gDvM9TvN/2Fu/6lmYaJWQhJkYGDAV3oUxCXCaRRUJDxePPdFAJaJyAoAvwJwj6reBeB/AbhURCZgxNRvNPe/EUDVTL8UwJLozSYk24yMjKC/v39WWn9/P0ZGRmK7ZlwinEZBRcLjpbfMClV9p6r+paq+Q1W/aKY/qaqHq+qBqvo/VXWLmf6a+f+B5vYn484EIVmj0WhgdHQUtVoNIoJarYbR0VE0Go3YrhmXCKdRUJHw8AtVQmKi0WhgcnIS7XYbk5OTsQo7EJ8Ip1FQkfBIFsLhg4ODOj4+nrYZhOSeVquFZrOJNWvWYGBgACMjIxThAiMiy1V10GobPXeSSfLSrzprdiZdWyDZheJOIiMqoctLv+q82NlN1gokEhOqmvryrne9S0m+GRsb0/7+foUxNIUC0P7+fh0bG/N9rlqtNus8M0utVove8BCkaefY2JjWajUVEa3Vap7vc5TPKQqC5oMYABhXG11NXdiV4l4IohQ6EbE8l4hEb3gI0rIzjEBnqeDMWkGTRyjuJHaiFLosCZATadkZ5rp+nlPcXnVennOWcRJ3xtxJJETZxzov/arTstPvx0qdMfaeHutXvvs5JdGeULQvX7/0JUAEeOc7gV/+Mm1rQM+dREPUVey8xGLTsNOPx2v1XLoXq+eUhFddBM+93Va97DIjBtK5/O3fJnN9MCxDkiAvgpx3/BSkdgJaqVQcn1MS7Ql5jrlv3676yU/OFfWZ5c47k7GD4k5IwfBakAYV6aS86jgcgjidjK1bDa/cTtQB1bvvjuxyrlDcCfFAEWseQUU6r151XHZv2aJ6yinOon7//RFlwgcUd0JcyKuYuREmX3ks7KKucbzyiurRRzuL+vh4pFnwBcWdEBfsRGFGGDqFLW+ilzd7wxBVW8HmzaqLFzuL+mOPxZQJH1DcCXHBThS6vd2ievhpEXXBE9Zz37hR9aCDnEV99epQJkYKxZ0QF5w8906ByHP3vax58HEUlEHP+eyzqnvuaS/oO++sOjUV2KzYoLgT4oKX/uAikpuhEbrJYo0jroLSTyG2Zo0h3HaivueehvBnFYo7IR6YEYUieu5+7U7Cy0+zoJyYsBd0wAjNbNzo75xp1Iwo7qSwxNVP2s7LzaIH7AW/Y8okkcc0Csovf/mHjqK+eLHRmOqXtH4XFHeSeYKIdJwvlJM9WYtde8GPkCb5AVNSgrh8ubOnfvTRRrfHoKRVo6O4k0wT9CXPa4gkDfzc4yTDJXEXlPff7yzqwJ06MHBg6OukFWKiuJNME1Sk89q4mRZehbQIheZ//ZebqI8pUIns95JFz51D/maMMk6BFnTo1yiHGS4DXudXtRrKuK+vDy+//HLmf5d33GEMu3v88XZ7fB3G7KJnA9gOIJrfSyaHqbZT/ZkFwL4AlgH4LYCVAC420z8PYB2AR8zlpI5jrgAwAWAVgA+4XYOeu0FeG+vCUrbxT/JAp5dfrVa1t7c30/e51XL21C+7TPXb347395K73jIAFgFYbK7vCuAPAA42xf0yi/0PBvAogB0A7AfgCQAVp2tQ3A2KUB0OQtnGP8kbWf5djo46i/oXvzh7/6L9XkKJ+5wDgDsAvN9B3K8AcEXH/3cDeI/TOSnuBmWOIRftpSsSWfxdXnuts6hfe21qpiWKk7j7irmLSB3AOwE8ZCb9nYisEJGbRGQ3M21vAE91HLbWTOs+15CIjIvI+IYNG/yYUVjKHEP2Gg8m4QjSppOV36Uq8IUvGDH1Sy+13ucb3zD2u+SSRE3LJnaq370A2AXAcgB/Y/6/B4AKjNaJEQA3men/B8DZHcfdCOAMp3PTczdgDJnESdDfV9q/S7up7DqXVisRUzIHwoZlAPTCCK9carO9DuBxZVgmNAxPpEMZ7nuY2Hka92f7dtWhIWdRv+SS+2K3I8uEEncAAuBWAF/tSl/UsX4JgNvM9UMwu0H1SbBBlWSYtD3TpMhi7NyKrVtVzzrLWdSB4wr7nPzgJO5ibLdHRI4EcD+AxwC0zeTPAjgLwGHmD2QSwCdV9RnzmCaA8wBsA/AZVf2x0zUGBwd1fHzc0Q5C4qJer2NqampOeq1Ww+TkZPIGxUTW8/n668DppwN33eW015EAHpiVkhX700BElqvqoOVGO9VPcqHnTtLEaaKOIoVqslpDeeUV1aOOcvbUx8fjq3nkOSQHDj9AiD12sehuMcmCEIYlS0LmZSq7xx9/Y/84+ttntcDzCsWdEAesXnA7LzELH+7knY0bVQ880FnUraayi0OIs/yBlhecxJ1jy5DS02g0MDo6ilqtBhFBrVYzPB8L3Ma7IfY89xyw555AtQpMTMzdvssuwJo1hrwfeODc7VbPaXR0NNQ3EUHHNcoDrg2qScAGVZI17BofK5UK2u02BgYGMDIywo+tPPDUU8Db3w5MT1tvX7QI+M1vgD32SNYuIPuNzG44NajScyfEAqtR/gBg+/btUFVMTU1haGgos6MjZoGJCeNr0oEBa2F/61uBjRuBp59OR9iBjI7mGBEUd0Is6A4BVCqVOftMT0+j2WymYF22efxxQ9QPOsh6++AgsHkzsGoVMH9+srZ1E0eoJyswLEOIB3p6eizj8CKCdrttcUT5WL7cEG473vc+4Ec/AnbaKTGTCg/DMoR4wGlQLafBs8o4wUon999veOp2wv6hDwFbtgDLllHYE8WuG02SC7tCkrRx62Znt314eDjX/aTDcPfdzt0ZGw1jKAESH2A/d0Kc8dLf2eoDoLz3kw7CD37gLOqf+pQx6BeJHydxZ1iGEHjr72w15nxa/aSTCAV1X+Oiix6ACPDhD1vvf/nlQLsN3HAD0ENlSR871U9yoedeLKL4xD3pz+SDeuBpeO5JfDI/+xoXOHrq3VPZkeQAwzIkKaIQnjTG+8jTRBZJFCjGNS5xFPWyTGWXZSjuJDHchMeLR55WHDtobSHpWkac47K326qf/7y9oAOq3/xmBJkgkUBxJ56IQqSchMerl5uXSSXSIo7Cr91WvfRSZ1EHzix0Q3EeobgTV6IKLzgJj1dRKmMPFD9EGQravl31ggvcRP2DiYSbiH8o7sSVqATVSXi8euR5H2M7CcLWsrZuVT3zTGdRX7JkaWbGfifWUNyJK1GGQuyEx08BkqVJJYrEa6+pnnyys6j/93+nbSXxipO4c2wZAiCZoU9brRaGhoYw3TFEYH9/f2EGasoy09PAiScCP/+5/T7LlwOLFydnEwkPx5YhriQx9Gn3CHzVahU77bQTPvaxj5VyTJYk2LzZEOydd7YX9pUrDZ+dwl4w7Fz6JBeGZbJBkqEQxtXjZeNG1QMOcA6/TEykbSUJCxiWIVkj7zPgZJVnnwUOPRRYv956+667Gp76vvsmaxeJB4ZlSOawEnagGHNXpjEE8Jo1QH+/MWWdlbDvtZcxh+nmzRT2suAq7iKyr4gsE5HfishKEbnYTJ8vIveIyGrz725muojIdSIyISIrRISRvJjJ23jirVYLImK5zW7c9Lww02g8NTUF1fin45uZyq5WA159de72t70NeOEFYN06YPfdYzGBZBW7eM3MAmARgMXm+q4A/gDgYABXA1hipi8BcJW5fhKAHwMQAEcAeMjtGoy5ByePsWu7LpEzX7HmmaQ+wHrsMed4+uCg6ubNkV6SZBBE2c8dwB0A3g9gFYBF+kYBsMpc/waAszr2//N+dgvFPTh5/JrTrk+94WvkmzDfC3hp0P7Vr5xF/a//WnV6Oo6ckSziJO6+Yu4iUgfwTgAPAdhDVZ8xNz0LYGb+8r0BPNVx2FozrftcQyIyLiLjGzZs8GMG6SCt8cTDYBd6qdVqCVsSnu6Q2HybGZ/dwk1u4ZyZqeze/W7r40891ZjK7qc/5VR2xMRO9bsXALsAWA7gb8z/X+zavsn8exeAIzvS7wUw6HRueu7ByaPnnsdQkhVW+ejr69Pe3l7febN7jrvvfrajp3722arbtiWUYZI5EDYsA6AXwN0ALu1IY1gmA+RVKIswvICdIFerVd95mxvOOdVR1IeHOZUdCSnuMBpGbwXw1a70azC7QfVqc/1kzG5QfdjtGhT3cBRBKKMiyXsR5Xg8bxQUDUdRv/xyY3heQlTDi/uR5o92BYBHzOUkAFUz5LIawFIA8/WNwuBrAJ4A8JhbSEYp7r4piphHnY+kazFRhsTOPfdBR1H/0peit5/kn9BhmbgXirt38hqG6SaOfCTd/hBFHv7lX+wFHVD9yldiMZ0UBIp7gchjA6oVceQjjRmcgtQ+2m3Vf/onZ1EPOpVdUWp1xBsU9wJRlCno4shH1gs+L1PZfec7wc9flFod8Y6TuHNsmZxh1186b5/tx5GPJIYtDkK7DVxwAdDTA1x7rfU+d9xhyPuZZwa/TrPZnDVWPgBMT0+j2WwGPynJLRT3nDDzsczU1NSccVmyIGB+iUOIu8eLr9VqqU4Esm0bcNZZQKUCfOtb1vssXWqI+oc+FP56efygjcSInUuf5MKwjDNW1e2ZsEae46pFjQ+/9prqSSc5h18eeGD2MVHci6yHpUj0gDH3fOP1pY1LLIsqwlHzyiuq732vs6gvXz73uKhi5Yy5lw+Ke87x0vgY14tNwXDnT39SPewwZ1FfudL++Cg9bhbE5YLinnO8vPxxVclZ1bfn+edV99/fWdS9TGXnVnhTsIkdTuLOBtUc4KXxMa7GNDbSzeXZZ42JLxYsAJ58cu72N70JeOopQ94POMD9fE49h5Ke/IMUCDvVT3Kh5+6Om/dGzz067O711JTqjjvae+l77aX63HPBrmcX+gpy/+nplwcwLFN8GHOPBqv87rjj/3AMvbz97aovvBD+ulaC7Pdjr7I9r7JDcc8IcXtUSfWWGR4eLqxnONtTPsRR1A8/XPWll5K0x91zL2NNq8xQ3DNAUTwqP/nwUthkLYRgeMqDjqJ+zDHRTGXn9f74+d0UZXgK4g2KewYoikflp8+9myhlrcD72c/sBR1QPe001S1borlW1IXkDEX5nRFvUNwzQFE8Kq/5SLP7pl9+8hNnUa9UWnrrra1IrxlX3/ZqtRpomj+STyjuGSArQhYWr/nwUgikXeD9x384izrwNR0YqMcijFHl3W4e12q1mplQF4kPinsGyFoIIihe85Flz/3b33YW9SVL4p/KLqq8F8VpIMGguGeErDUeBiWKhsCxsTGtVqtzRCnOAu+GG5xF/corY7msJVEV9mnXfki6UNwTJKyAF6UAULXPi5WwAdBqtRpLfq+5xlnUv/rVyC/pCY4EScJCcU+IsN5YUUI3biQhSO226j/+o7Oo33hjZJdLjbL8Zog1FPeECCtaefXC/HqgcQ6U1W6rfuYzzqJ+222hsps5ilTbI/6guCdE2PhnHuOnQTxHp0IsqCe6fbvq+ec7i/oPfxh17glJF4p7QpTRcw9ic5QDZW3dqvqRjziL+tKl8eSdkLQJJe4AbgKwHsDjHWmfB7AOwCPmclLHtisATABYBeADbufXAol7GWPuVkI8U9twCheEHSjrtddUTzzRWdR/8YvZtjJ8QYpGWHE/CsBiC3G/zGLfgwE8CmAHAPsBeAJAxe0aRRF31XL1lhkbG7MV42q1GqigcvPcX3lF9cgjnUX917+2tjVvBSchboQOywCoexT3KwBc0fH/3QDe43b+Iol7mbAT4pnP4IOEmOxEeHT0Nj30UGdR/+1v/dua5ZAXIW44iXuYmZj+TkRWiMhNIrKbmbY3gKc69llrps1BRIZEZFxExjds2BDCDJIWdrMxqSpeeOEFX8fM0Gg0MDo6ilqtBhHBPvscil12eRZDQx/Fo4/O3b+nB3jiCUPe/+Iv/Nta5hmlSLEJKu43ADgAwGEAngHwr35PoKqjqjqoqoMLFy4MaAZJE7vp4Wq1muPUcW40Gg08+OAkqtU21q59BOvX7zpnnze/2ZjKbvt2YP/9g9vqxR5C8kggcVfV51R1u6q2AXwTwOHmpnUA9u3YdR8zjRQQp7ldvcz7asWaNcBOOwGLFgHPPz93+z77AM89B7z4orEexlYRwdTUFOr1OuckJcXDLl7TuWBuzH1Rx/olAG4z1w/B7AbVJ1GyBtWyEaRHjBV/+INzPP3gg1U3bYrGVpjtArBoBM57A2tSs3Hl/T4VBYTsLfMdGKGXrTBi6OcD+DaAxwCsAHBnl9g3YfSSWQXgRLfzK8U9E6T18q5Y4SzqcUxlZ9e4ipz3oCnSPLosTLwRStyTWCju4Yii+2XSL+/DDzuL+nHHqb766mwbo3rZ7bpvzix57UETV4+gpHsasduqdyjuBSaKFyHJl9dtKrsPf1j19ddnHxP1y+7kuc+EbPKIU6EVpmBMelgMdlv1DsU9h3j1VKN4EZJ4ed2msjvnHNVt26yPjfpltxtyOO8i4vTdQV4Kf9V8jrGUFhT3nOHHU43iRYjz5f3+951F/aKLjEG/nIjjZU9jspC4sfrd2N07P8826TAJPXfvUNxzhp8fdxQvQhwv7623Oov6Bz/4uOep7OJ82YvWcNedn6hCT0neJ8bcvUNxzxl+PNWoXoSoXl63qeyAK3zbyJc9OFEWjEkLfJEK3biguOcMvy9kFl6Eq692E/VPh65dpJ3HpIkiz1EW/ixgswfFPWck8SJFIRztturnPucs6jfeyAayIET5G+BcrcWF4p5D4vRUwwqHl6nsbr/9jf0pDP7J2j1jAZ1NKO5kFkGFY/t21fPOcxZ1q6nsWKX3T9bENGuFDTFwEvcwQ/6SnOJ3+Ntt24CPfhSoVICbbrI+5733GvJ+yilzt3UP41ur1TA6OopGoxE0C4Una6NYBh0IjqSIneonudBzTxavXthrr6mecIKzp949lR2JhizWdsrYqJ11wLAM6cRNOF5+WfWv/spZ1H/zm5QzUQIopsQNJ3FnWKaE2IVJTjmlgUMPBXbZBXjgAetjr7rqhxgba+G00+ro6enhWOgx0mg0MDk5iXa7jcnJSYaxiD/sVD/JJS+ee1E9qeefV63XnTz1rQrUFYD29fVpb29vIuGCot5vQqICDMuEJ4sx0LA8/bTqggX2ot7T86ICe1nG57uXqHtNFPF+ExI1TuLOsIxHms0mpqenZ6VNT0+j2WymZFFw1q8HdtwR2Gsv66ns9t3X2Ed1NwBPezpn1BNNp32/W60W6nWGnkh+obh7xG/3wSyycSPwuc8BBx4IbNkyd/vBBwObNhnzmC5c6K/bXdRd9NK8361WC0NDQ5iamoKqYmpqCkNDQxR4kiso7h7JWr9jPzz3HHD55UCtBlx5JfDSS7O3H3GEkbZyJfCWt7yRbtW3ua+vD729vbPS4ujvnOb9TrvWEDeslZQEu3hNkgtj7tbXC9uYuHat6sUXq+6009x4+gEHqJ588uyp7LzakURDZxT3O6idWfs6NErYllEswAbVaEiq90bYF3ByUvVTn1Lt65sr6u94h+ptt9nPepQlwtzvMPewyJ/aFzlvZYTinjOCvoCrV6uee67qvHlzRX3xYtUf/MB91qOiEEbEiuzdFrlWUkacxJ0x9wzitzHxd78Dzj4beNvbgJtvNsaCmeGII4D//E9gfBw47TSgpyRPPEyDbJHHwslz2xHxR0le9Xzh9QVstYDTTwcOOcRYb7ff2Hb00cDSpcBFF7Vw4YV1VCrlajwLK2JF/TqUA4CVCDuXfmYBcBOA9QAe70ibD+AeAKvNv7uZ6QLgOgATAFYAWOx2fmVYZg5uYYGvfW1u2GVmOf541Z//3Nt5ikyZ8+4Gv/wtDggTcwdwFIDFXeJ+NYAl5voSAFeZ6ycB+LEp8kcAeMjt/FpicXd6yay2XXWVvaifcorqgw/OPn/ZG88oYqTohBJ343jUu8R9FYBF5voiAKvM9W8AOMtqP6eljOLu1bNst1X/4R/sRR1Qve8+62uw8YyQYuMk7kFj7nuo6jPm+rMA9jDX9wbwVMd+a8200tNqtbBgwQKICEQE55xzjuOHMqrAxRcbDaBXXml9zttvN/Y7+mjr7Ww8I6S8hG5QNUsP9XuciAyJyLiIjG/YsCGsGa6k+VVeq9XCueeei40bN/45rd3Z+tnB1NRanHeeIerXXWd9vrvuMkT9Ix9xvq7fxjN+uUhIgbBz6TsX5Dwsk3bjml3se/YyT4HvOoZf7r3X/Vrdcebh4WFPcee07xEhxD+IIeZ+DWY3qF5trp+M2Q2qD3s5f9zinnbDol3s21h2UOAnjqL+y196u46bQDs1MKZ9j0j8sIG5eIQSdwDfAfAMgK0wYujnA6gCuBdGV8ilAOab+wqArwF4AsBjAAbdzq8JiHvaDYvWwtmvwAOOou53KjsngXYT/rTvUVqURfBYMysmoT33uJeie+5jY2Mdsxe9SYEVjqK+117HBBIbJ4F2uwd226vVqlar1Vn/F0UQyiR4ab8DJB5KL+5ZeIlvuOHftadnykHUX9d58w7Svr4+VzvtvE2nF9jNM7e6R3ZLb29vIQSwTIJX1ppZ0Sm9uKumV/1++mnV+fPtvXTgBXWbyq5TbJwKKqdtXoRsbGxslpfu1aa8UibBK1NBViYo7inwxz+q9vY6ifqkAgs8CWmn2Li9pHaFmNfai7eePcUQwDIJ3vDwsGVeh4eH0zaNhIDiniC//72ToKsecojqpk3eRbRbbMJ4m15qL849e4olgFkI1yVFmQqyMkFxT4BHH3UW9SOOUH3ppTf2txKW3t5e15h73C+pl0LHT8w9671Rsm5fVJQpBFUmKO4x8tBDzqJ+/PH2U9kFmcIubm/TrWHVT2+ZMnnGWYeeezGhuMfAsmXOon766aqvvx6PZ+gUV4/iWlGdx65xloKSPF4L2rLUZIoCxT1CfvQjZ1H/xCfemJ80Sc81a17y2NiYrffPUEA6pF0rJNFDcY+A733PWdQ//WljeN5OkqwKZ63a7RS7p+eeTbL2GyLuOIk7p9lz4ZZbABHgjDOst3/2s8b0dtddZ+zXSZh5PP2S5LW84HRdTumWTbL2GyLhoLjbcP31hlh/4hPW2//5nw2ffWRkrqjPkNR46q1WCz02M1+rKur1Oo477jjMmzcPIoJ58+bhwgsvjOzaVsME2+WxWq0WZj7SosHx/wuGnUuf5JKlsMyXv+wcfvm3f/N+riRimH6GDehewn7AEvRrWZJN+MzyBxhzd8bLVHY33xzs3HH3PvDzMVT3UqlUQtkf9GtZvyTdgyPvPUbC2J/3vJcNirsN7bbq3/+9s6h/97upmOYZr1+U2i1OZGGY4KS9ybx7r3m3n/iD4t7Ftm2q557rLOp33ZWoSYGJ03N38sztxirp9NzjzF9cPTjy3mMk7/YTf1DcTV5/XfWMM5xFfdmycNcIWq3tHLmxUqn8+YV0O97rMAZBYu5BagVRe4lONsQRNsj7Z/p5t5/4g+KuquvXO4u616nsnAhaJXZqFPV6vNswBscee+yfC41KpeKpMTVIrSDpNoWoC5O8e755t5/4g+KuqtdcYy3qjzwS3TWCvlhuAlapVFJp4LIrrJxsDXINpxqLl95AUQpX3mPWebef+IPirsZ8pJ2TZvz+99FfI2iV2E/4I+kX1apWMCPCVoWQ33N7qbE4TTYSR8gh7z1G8m4/8Q7F3WT79njPH5fnnrUqdlQTP7jluzufDDkQMhsncS/VF6o2H3FGxsjICPr7+2el9ff3u35ub3WcE2l/Dn799ddjeHgYlUoFAFCpVDA8PIzrr7/e13nc8tG9Pej9JaSU2Kl+kkvaHzFFSZS9ZezCH0XxVP167qoMORDSCRiWyR5eRKrojWNhewkRUnYo7j6J2zv0I9pJeKppesNWNZZqtarVapXeOdGE6yAAAAdWSURBVCEuxCbuACYBPAbgkZmLAJgP4B4Aq82/u7mdJ0vinoS3nKWGwazVDrJmDyFZJm5xX9CVdjWAJeb6EgBXuZ0nS+LuR3iDzIGqmq2vCLNU0GTRHkKyTNLivgrAInN9EYBVbufJkrh7FV6vn/1beZ1xCViQ8ErUBU3YEE+WCj5Csk6c4v5HAL8GsBzAkJn2Ysd26fy/69ghAOMAxgcGBhK5EV7wKrx++qZ3Hzs2Nqa9vb1zCoYwoYeg4YwoC5ooQir03AnxTpzivrf5d3cAjwI4qlvMAWxyO0+WPHevAuXnq1Irr7/bw+/r6wsl7kFFMcoYdxTCzJg7Id6JTdxnnQj4PIDL8h6WUfUWWgjjuYeN61sRJpwRVW+ZqEIq7MtOiDdiEXcAOwPYtWP9FwBOAHANZjeoXu12rqyJuxfCxNzDxPXtvFivBUacwsmQCiHJEpe472+GYh4FsBJA00yvArgXRlfIpQDmu50rj+KuGry3TNi4vp2H71YQxB3yCHt+euyE+CORsEyYJa/iHpSwcX27MIebOCbhWYcZfoGxdkL84STuYmxPl8HBQR0fH0/bjERptVpoNptYs2YNBgYGMDIygkajMWufer2OqampOcfWajVMTk76vmZPTw+snreIoN1u+z5flESdV0LKgIgsV9VBq22lGhUySzQaDUxOTqLdbmNycnKOsAPRj4I4MDDgKz1J7EaITHsETELyCsU9wzQaDYyOjqJWq0FEUKvVMDo6alkQeCHLQ+ZmueAhJI9Q3DOOFw/fz7miLCyiZGRkBH19fbPS+vr6MlHwEJJH5qVtAEmWRqORCTG3ors9IAvtQYTkFXruJBM0m01s3bp1VtrWrVvRbDZTsoiQfENxJ5mADaqERAvFnaRKq9VCvV63DcGwQZWQYDDmTlKj1WphaGgI09PTltuz0pOHkDxCz52kRrPZtBX2LPXkISSP0HMnqWEXTxcRfpVKSEjouZPU4IdLhMQHxZ2kRpa/mCUk71DcSWpk+YtZQvIOR4UkhJCcwlEhCSGkZFDcCSGkgFDcCSGkgFDcCSGkgFDcCSGkgGSit4yIbAAwdwJNdxYAeD5ic/JG2e8B81/u/APlvgc1VV1otSET4h4UERm36wZUFsp+D5j/cucf4D2wg2EZQggpIBR3QggpIHkX99G0DcgAZb8HzD/hPbAg1zF3Qggh1uTdcyeEEGIBxZ0QQgpI5sVdROaLyD0istr8u5vNfj8RkRdF5K6u9P1E5CERmRCR20WkLxnLo8PHPfi4uc9qEfl4R/p9IrJKRB4xl92Tsz44InKCafeEiCyx2L6D+UwnzGdc79h2hZm+SkQ+kKTdURE0/yJSF5FXO57315O2PQo85P8oEfm1iGwTkTO6tlm+C6VCVTO9ALgawBJzfQmAq2z2OxbABwHc1ZX+XQBnmutfBzCcdp7iuAcA5gN40vy7m7m+m7ntPgCDaefDZ54rAJ4AsD+APgCPAji4a58LAXzdXD8TwO3m+sHm/jsA2M88TyXtPCWY/zqAx9POQwL5rwP4SwC3AjijI932XSjTknnPHcCpAG4x128BcJrVTqp6L4CXOtNERAAcA+B7bsdnHC/34AMA7lHVF1R1E4B7AJyQkH1xcDiACVV9UlVfB3AbjPvQSed9+R6AY81nfiqA21R1i6r+EcCEeb48ESb/RcA1/6o6qaorALS7ji3auxCIPIj7Hqr6jLn+LIA9fBxbBfCiqm4z/18LYO8ojUsIL/dgbwBPdfzfndebzSr653IiAG75mbWP+Yz/BOOZezk264TJPwDsJyK/EZGfich74zY2BsI8wyI8/9DMS9sAABCRpQD2tNjU7PxHVVVECtl3M+Z70FDVdSKyK4DvA/gYjKosKSbPABhQ1Y0i8i4A/09EDlHVzWkbRpIjE+KuqsfZbROR50Rkkao+IyKLAKz3ceqNAN4iIvNMz2YfAOtCmhsLEdyDdQDe1/H/PjBi7VDVdebfl0Tk/8Ko8mZd3NcB2Lfjf6tnN7PPWhGZB+DNMJ65l2OzTuD8qxF43gIAqrpcRJ4A8FYAeZrLMswztH0XykQewjJ3Aphp7f44gDu8Hmj+yJcBmGlJ93V8hvByD+4GcLyI7Gb2pjkewN0iMk9EFgCAiPQCOAXA4wnYHJZfATjI7O3UB6PB8M6ufTrvyxkAfmo+8zsBnGn2JtkPwEEAHk7I7qgInH8RWSgiFQAQkf1h5P/JhOyOCi/5t8PyXYjJzuySdouu2wIjhngvgNUAlgKYb6YPAvhWx373A9gA4FUYMbYPmOn7w3ixJwD8O4Ad0s5TjPfgPDOfEwDONdN2BrAcwAoAKwH8b+Sk5wiAkwD8AUaviaaZ9kUAHzLXdzSf6YT5jPfvOLZpHrcKwIlp5yXJ/AM43XzWjwD4NYAPpp2XmPL/bvNdfwVGjW1lx7Fz3oWyLRx+gBBCCkgewjKEEEJ8QnEnhJACQnEnhJACQnEnhJACQnEnhJACQnEnhJACQnEnhJAC8v8BRev9G9OETLIAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" diff --git a/Regression/2-Data/solution/notebook.ipynb b/Regression/2-Data/solution/notebook.ipynb index 4d8a3ea63..44b1e349d 100644 --- a/Regression/2-Data/solution/notebook.ipynb +++ b/Regression/2-Data/solution/notebook.ipynb @@ -10,13 +10,17 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3-final" + "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } } }, "nbformat": 4, @@ -31,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -71,7 +75,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, - "execution_count": 22 + "execution_count": 1 } ], "source": [ @@ -86,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -107,7 +111,7 @@ "Origin 0\n", "Origin District 396\n", "Item Size 114\n", - "Color 180\n", + "Color 145\n", "Environment 415\n", "Unit of Sale 404\n", "Quality 415\n", @@ -123,7 +127,7 @@ ] }, "metadata": {}, - "execution_count": 23 + "execution_count": 2 } ], "source": [ @@ -132,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -169,15 +173,15 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAb8UlEQVR4nO3df5DU9Z3n8ec7Leo4hzeiM6yMIC41xelKIlYXYLi1cBMCgrcSanMnFepcLyeVlHubLHfcamnFtUoL9tjztDZX62FCaS4WbupCJtZqRMo712xKiI2og2sIUYkwYzGzIWjU2Qjj+/7o70yanu+3f32n59vz4fWomuruT3++3+/7+/l++kXPt79Dm7sjIiLh+kTWBYiISHMp6EVEAqegFxEJnIJeRCRwCnoRkcCdlXUBcS666CKfO3du1mWIiEwZ+/bt+yd374x7riWDfu7cuRQKhazLEBGZMszsF0nP6dSNiEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgql51Y2bbgRuAQXe/MmrbCvwb4CPgDeAWdz8Rs+xK4EEgB3zT3bdMYO2T6osPv8CP3zg+9njpvBk8dus14/otv/85Dg1+MPa4p6ud3RuXTUaJiXr397N110EGTgwzq6ONTSvms2Zhd6Y1icjkqeUd/SPAyrK23cCV7v5J4GfAHeULmVkO+J/A9cAVwDozuyJVtRkpD3mAH79xnC8+/MJpbeUhD3Bo8AOW3/9cs0tM1Lu/nzt29tF/YhgH+k8Mc8fOPnr392dWk4hMrqpB7+7PA8fL2p5x91PRwz3AJTGLLgJ+7u5vuvtHwOPAjSnrzUR5yCe1l4d8tfbJsHXXQYZPjpzWNnxyhK27DmZUkYhMtok4R/8fgB/GtHcDR0oeH43aYpnZBjMrmFlhaGhoAsoSgIETw3W1i0h4UgW9md0JnAIei3s6pi3xW07cfZu7590939kZ+1e80oBZHW11tYtIeBoOejO7meKHtF/0+K+pOgrMLnl8CTDQ6PaytHTejJrae7raY/sltU+GTSvm0zYtd1pb27Qcm1bMz6giEZlsDQV9dDXNnwN/6O4fJnR7Eegxs8vM7GzgJuCJxsrM1mO3XjMu1OOuutm9cdm4UM/6qps1C7vZvHYB3R1tGNDd0cbmtQt01Y3IGcSqfWesme0AlgEXAceAuyleZXMO8Muo2x53/7KZzaJ4GeWqaNlVwAMUL6/c7u731VJUPp93/admIiK1M7N97p6Pfa4VvxxcQS8iUp9KQa+/jBURCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAJXNejNbLuZDZrZgZK2L5jZa2b2sZnF/kf3Ub/DZtZnZi+bmb5JREQkA7W8o38EWFnWdgBYCzxfw/LXuftVSd98IiIizXVWtQ7u/ryZzS1rex3AzJpTlYiITJhmn6N34Bkz22dmGyp1NLMNZlYws8LQ0FCTyxIROXM0O+iXuvvVwPXAbWZ2bVJHd9/m7nl3z3d2dja5LBGRM0dTg97dB6LbQeD7wKJmbk9ERMZrWtCbWbuZTR+9D3yO4oe4IiIyiWq5vHIH8AIw38yOmtmXzOzzZnYUuAZ40sx2RX1nmdlT0aIzgX8ws1eAnwBPuvvTzdkNERFJUstVN+sSnvp+TN8BYFV0/03gU6mqExGR1PSXsSIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOCqfvGImW0HbgAG3f3KqO0LwF8AlwOL3L2QsOxK4EEgB3zT3bdMUN3j9O7vZ+uugwycGGZWRxubVsxnzcLuhta1/P7nODT4wdjjnq523hr6gFP+2z5nGfx88+pxy869/clxbYe3jO8HcFdvHzv2HmHEnZwZ6xbP5t41C2qqsZ79jduf3RuX1bSdM12aY7T4vt0c+/VHY49nTj+bvXcuH3tcaa5U2+5Ezvd6VNunStKMZSVZjcVUYu5euYPZtcD7wLdLgv5y4GPgfwH/JS7ozSwH/AxYDhwFXgTWufs/Visqn897oRD7b0es3v393LGzj+GTI2NtbdNybF67oO4DXh6KlZSHfdwLd1R52N/V28d39rw9rt/6JXOqTv569jdpfxT21aU5RuWBOGo0GCvNlfVL5lTc7kTO93pU26dK0oxlJVmNRSsys33uno97ruqpG3d/Hjhe1va6ux+ssugi4Ofu/qa7fwQ8DtxYY8112brr4GkHGmD45Ahbd1UrcbxaQx447R1+vXbsPVJXe6l69jdpf+rZzzNVmmMUF4iV2uvZ7kTO93o0c58aldVYTDXNPEffDZQexaNRWywz22BmBTMrDA0N1bWhgRPDdbW3gpGE36SS2ktNxf2ditIco2Zudyoe/2aN5VQciyw0M+gtpi3xqLr7NnfPu3u+s7Ozrg3N6mirq70V5CxueJLbS03F/Z2K0hyjZm53Kh7/Zo3lVByLLDQz6I8Cs0seXwIMNGNDm1bMp21a7rS2tmk5Nq2YX/e6erraa+57Voo5um7x7LraS9Wzv0n7U89+nqnSHKOZ08+uq72e7U7kfK9HM/epUVmNxVTTzKB/Eegxs8vM7GzgJuCJZmxozcJuNq9dQHdHGwZ0d7Q1/GHM7o3LxoVgT1f7uFCPu+om6eqauPZ71yxg/ZI5Y+9ocmY1fzBVz/4m7Y8+iK0uzTHae+fycQFY+qFlpblSbbsTOd/rUW2fKkkzlpVkNRZTTS1X3ewAlgEXAceAuyl+OPvXQCdwAnjZ3VeY2SyKl1GuipZdBTxA8fLK7e5+Xy1F1XvVjYjIma7SVTdVgz4LCnoRkfqkurxSRESmNgW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoGrGvRmtt3MBs3sQEnbDDPbbWaHotsLEpY9bGZ9Zvaymek/mBcRyUAt7+gfAVaWtd0OPOvuPcCz0eMk17n7VUn/Ib6IiDRX1aB39+cpfnVgqRuBR6P7jwJrJrguERGZII2eo5/p7u8ARLddCf0ceMbM9pnZhkorNLMNZlYws8LQ0FCDZYmISLlmfxi71N2vBq4HbjOza5M6uvs2d8+7e76zs7PJZYmInDkaDfpjZnYxQHQ7GNfJ3Qei20Hg+8CiBrcnIiINajTonwBuju7fDPygvIOZtZvZ9NH7wOeAA+X9RESkuWq5vHIH8AIw38yOmtmXgC3AcjM7BCyPHmNms8zsqWjRmcA/mNkrwE+AJ9396WbshIiIJDurWgd3X5fw1Gdi+g4Aq6L7bwKfSlWdiIikpr+MFREJnIJeRCRwCnoRkcAp6EVEAqegFxEJnIJeRCRwCnoRkcAp6EVEAqegFxEJnIJeRCRwCnoRkcAp6EVEAqegFxEJnIJeRCRwCnoRkcAp6EVEAlf1i0fMbDtwAzDo7ldGbTOAvwXmAoeBf+vuv4pZdiXwIJADvunuWyas8jLL73+OQ4MfjD3u6Wpn98ZlAPTu72frroMMnBhmVkcbm1bMZ83C7rrWF+fwltXj1t1/YrjhfVg6bwaP3XpNTX0X37ebY7/+aOzxzOlns/fO5bF9K41NKObe/uS4tsNbVqde9pN3P817vxkZaz//nByv3rNy7HGluVWtpkrPN7Jsd0dbTXP8rt4+duw9wog7OTPWLZ7NvWsWxPYtd9ntT+Iljw14awLGeTKdCa+HcubulTuYXQu8D3y7JOj/G3Dc3beY2e3ABe7+52XL5YCfUfyqwaPAi8A6d//HakXl83kvFAo170RSKPd0tXPbdT3csbOP4ZO/fbG2Tcuxee2CxBdCLSFfuq7SdadVS9iXh/youLCvNDahTO64ABlVLUgqLXv+ObnTQr60/dV7VtK7vz9xbn3tb1+uWFOl7VZS67JJc/yu3j6+s+ftcf3XL5lTNezLQ35ULWGf5hhNpJBfD2a2z93zcc9VPXXj7s8Dx8uabwQeje4/CqyJWXQR8HN3f9PdPwIej5abcEmhfGjwA7buOjguiIdPjrB118G61xdnIkMe4MdvlA/1eHEhn9ReaWyksriQL21vZG5NlqQ6duw9Ets/qb1U0lvCym8VW8uZ+npo9Bz9THd/ByC67Yrp0w2Uzp6jUVssM9tgZgUzKwwNDTVY1ngDCadSktpFatXqcyuujpGE3+CT2iUMzfww1mLaEmeTu29z97y75zs7OyesiFkdbXW1i9Sq1edWXB05i3tZJrdLGBoN+mNmdjFAdDsY0+coMLvk8SXAQIPbq6inqz2xfdOK+bRNy53W3jYtx6YV8+teX5zydae1dN6Mqn1mTj+75vZKYyOVnX9O/LEdbW9kbk2WpDrWLZ4d0zu5vVTSPwVT6Z+IM/X10GjQPwHcHN2/GfhBTJ8XgR4zu8zMzgZuipabcLs3Lht3oEY/XFmzsJvNaxfQ3dGGUbwyodIHsUnri3N4y+px606j1qtu9t65fFyoJ111U2lsQpH0YV4tH/JVWvbVe1aOC/vSq24qza1qNVV6vtFla5nj965ZwPolc8bewefMavogFoofuJaHeq1X3aQ5RhPpTHg9xKnlqpsdwDLgIuAYcDfQC3wXmAO8DXzB3Y+b2SyKl1GuipZdBTxA8fLK7e5+Xy1F1XvVjYjIma7SVTdVr6N393UJT30mpu8AsKrk8VPAUzXWKSIiTaC/jBURCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKXKujN7KtmdsDMXjOzr8U8v8zM3jWzl6Ofr6fZnoiI1K/qN0wlMbMrgVuBRcBHwNNm9qS7Hyrr+iN3vyFFjSIikkKad/SXA3vc/UN3PwX8PfD5iSlLREQmSpqgPwBca2YXmtl5FL8rdnZMv2vM7BUz+6GZ/V7Sysxsg5kVzKwwNDSUoiwRESnV8Kkbd3/dzP4S2A28D7wCnCrr9hJwqbu/b2argF6gJ2F924BtAPl83hutS0RETpfqw1h3/5a7X+3u1wLHgUNlz7/n7u9H958CppnZRWm2KSIi9Ul71U1XdDsHWAvsKHv+d8zMovuLou39Ms02RUSkPg2fuol8z8wuBE4Ct7n7r8zsywDu/hDwR8BXzOwUMAzc5O46LSMiMolSBb27/35M20Ml978BfCPNNkREJB39ZayISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gELtX/R29mXwVuBQx42N0fKHvegAcpfnH4h8Afu/tLabY5We7q7WPH3iOMuJMz43c7z+PNoQ8ZifnelJ6udnZvXAbAFx9+gR+/cXxcn08YfFy2qAFvbVkdu9zSeTN47NZr+Fd3PsU/j/x2wXNzxk/vW8Xi+3Zz7NcfjbXPnH42e+9cPvY4aX2N7Pu6xbO5d82CmpZdfv9zHBr8YOxx6dj07u9n666DDJwYZlZHG5tWzGfNwu6Gtlfp+JSuo5Z1z739yXHrP7xlNXf19vHYnrcpPWxL583g8C+Hx/Zh7oVt7HnzV7Hr/+TdT/Peb0bGlj3/nByv3rOy6nah+vGrtGw1SXOqFknHsNnLplFpDlSrKc3rqFylbTV7bKzRL3wysyuBx4FFwEfA08BX3P1QSZ9VwH+iGPSLgQfdfXG1defzeS8UCg3VNRHu6u3jO3vermuZnq52uqafExvylRjw6Xkz6l4uzmjYJ/1jU8skTdr39UvmVA3f8pAf1dPVzm3X9XDHzj6GT/42+Nqm5bh6zr+MrbXS9mo9Pj1d7bH1lK47LjDTWr9kDk/s7z8t5EeNhn2l7S5NmA+jx6/SstXCvjzkR9US9r37+2OP4ea1C6qGUppl06g0n/OXzqhYU5rXUblK+w9MyNiY2T53z8c9l+bUzeXAHnf/0N1PAX8PfL6sz43At71oD9BhZhen2Oak2LH3SN3LHBr8oKGwdpiQkAfG3uEnra+W7STtey1jEheqo+1bdx08bSIDDJ8cSayp0vZqPT5J9TRyfOuxY++R2JAHEttLpTl+1cSFfKX2UknHcOuug01dNo1K87laTRN5HCptazLGJk3QHwCuNbMLzew8iu/aZ5f16QZKR/po1DaOmW0ws4KZFYaGhlKUlV7c6ZkzRdK+px2TgRPDE1LHRNTS7OMb6vxJOoa1HNs0y6ZRaT5PZk2VtjUZdTQc9O7+OvCXwG6Kp21eAU6VdbO4RRPWt83d8+6e7+zsbLSsCZGzuLLPDEn7nnZMZnW0TUgdE1FLs49vqPMn6RjWcmzTLJtGpfk8mTVV2tZk1JHqqht3/5a7X+3u1wLHgUNlXY5y+rv8S4CBNNucDOsWl/9iUl1PVztL582oezmDhpaLM3P62VBhfbVsJ2nfaxmTnq72xPZNK+bTNi13WnvbtFxiTZW2V+vxSaqnkeNbj3WLZ3P+ObnY55LaS6U5ftWcm4sPvqT2UknHcNOK+U1dNo1K87laTRN5HCptazLGJlXQm1lXdDsHWAvsKOvyBPDvrWgJ8K67v5Nmm5Ph3jULWL9kzti7gZwZPV3tie8ORq8seezWaxInwSdiFh296iZuuaXzZnB4y+pxL8Bzc8bhLavHQn1U6VU3Seur5QOkuH2v5YNYgN0bl40L19GxWbOwm81rF9Dd0YYB3R1tbF67gMduvabu7VU7PqPr2L1xWdV1J314eXjLatYvmTPuV9Kl82actg9L582IXf+r96wcF+qlV91U2m6141dp2Wp+et+q2DlVy1U3Scewlg8M0yybRqX5XK2mNK+jcpW2NRlj0/BVNwBm9iPgQuAksNHdnzWzLwO4+0PR5ZXfAFZSvLzyFnevejlN1lfdiIhMNZWuukl1Hb27/35M20Ml9x24Lc02REQkHf1lrIhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEri0XyX4Z2b2mpkdMLMdZnZu2fPLzOxdM3s5+vl6unJFRKReDX/DlJl1A38KXOHuw2b2XeAm4JGyrj9y9xsaL1FERNJIe+rmLKDNzM4CzgMG0pckIiITqeGgd/d+4K+At4F3gHfd/ZmYrteY2Stm9kMz+72k9ZnZBjMrmFlhaGio0bJERKRMw0FvZhcANwKXAbOAdjNbX9btJeBSd/8U8NdAb9L63H2bu+fdPd/Z2dloWSIiUibNqZvPAm+5+5C7nwR2Ap8u7eDu77n7+9H9p4BpZnZRim2KiEid0gT928ASMzvPzAz4DPB6aQcz+53oOcxsUbS9X6bYpoiI1Knhq27cfa+Z/R+Kp2dOAfuBbWb25ej5h4A/Ar5iZqeAYeAmd/f0ZYuISK2sFXM3n897oVDIugwRkSnDzPa5ez7uOf1lrIhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEriGv2EKwMz+DPiPgAN9wC3u/s8lzxvwILAK+BD4Y3d/Kc02Q9W7v5+tuw4ycGKYWR1tbFoxnzULuxPbRRqlOXXmaTjozawb+FPgCncfNrPvAjcBj5R0ux7oiX4WA38T3UqJ3v393LGzj+GTIwD0nxjmjp19FH5xnO/t6x/XDuiFKQ1JmmugORWytKduzgLazOws4DxgoOz5G4Fve9EeoMPMLk65zeBs3XVw7IU3avjkCDv2Holt37rr4GSWJwFJmmuaU2FrOOjdvR/4K+Bt4B3gXXd/pqxbN3Ck5PHRqG0cM9tgZgUzKwwNDTVa1pQ0cGI4tn0k4ft8k/qLVJM0dzSnwtZw0JvZBRTfsV8GzALazWx9ebeYRWPTy923uXve3fOdnZ2NljUlzepoi23PWdzwJfcXqSZp7mhOhS3NqZvPAm+5+5C7nwR2Ap8u63MUmF3y+BLGn945421aMZ+2abnT2tqm5Vi3eHZs+6YV8yezPAlI0lzTnApbmqtu3gaWmNl5wDDwGaBQ1ucJ4E/M7HGKH8K+6+7vpNhmkEY/BIu7EiJ/6QxdISETptJck3CZJ5wHrmlhs3uAfwecAvZTvNTyFgB3fyi6vPIbwEqKl1fe4u7l/xiMk8/nvVCo2k1ERCJmts/d87HPpQn6ZlHQi4jUp1LQ6y9jRUQCp6AXEQmcgl5EJHAKehGRwLXkh7FmNgT8okKXi4B/mqRyatWKNUFr1tWKNUFr1tWKNUFr1tWKNcHk1XWpu8f+tWlLBn01ZlZI+nQ5K61YE7RmXa1YE7RmXa1YE7RmXa1YE7RGXTp1IyISOAW9iEjgpmrQb8u6gBitWBO0Zl2tWBO0Zl2tWBO0Zl2tWBO0QF1T8hy9iIjUbqq+oxcRkRop6EVEAtfyQW9m281s0MwOlLTNMLPdZnYour2gBWr6CzPrN7OXo59Vk1zTbDP7f2b2upm9ZmZfjdqzHqukujIbLzM718x+YmavRDXdE7VnPVZJdWU6t6Iacma238z+Lnqc6Vgl1NQK43TYzPqi7ReitszHquWDnuKXja8sa7sdeNbde4Bno8dZ1wTwP9z9qujnqUmu6RTwn939cmAJcJuZXUH2Y5VUF2Q3Xr8B/sDdPwVcBaw0syVkP1ZJdUG2cwvgq8DrJY+zHqu4miD7cQK4Ltr+6LXzmY9Vywe9uz8PHC9rvhF4NLr/KLCmBWrKlLu/4+4vRfd/TfEF0E32Y5VUV2aiL6t/P3o4Lfpxsh+rpLoyZWaXAKuBb5Y0ZzpWCTW1qkzHCqZA0CeYOfpNVdFtV8b1jPoTM3s1OrUz6b+ejTKzucBCYC8tNFZldUGG4xX92v8yMAjsdveWGKuEuiDbufUA8F+Bj0vash6ruJog+9egA8+Y2T4z2xC1ZT1WUzboW9HfAPMo/sr9DvDfsyjCzP4F8D3ga+7+XhY1xImpK9PxcvcRd7+K4vcYLzKzKydz+0kS6spsrMzsBmDQ3fdN1jarqVBTK7wGl7r71cD1FE9TXptBDeNM1aA/ZmYXA0S3gxnXg7sfi16kHwMPA4smuwYzm0YxTB9z951Rc+ZjFVdXK4xXVMcJ4DmKn7lkPlZxdWU8VkuBPzSzw8DjwB+Y2XfIdqxia2qFOeXuA9HtIPD9qIbM59VUDfongJuj+zcDP8iwFmDsAI76PHAgqW+Ttm/At4DX3f3+kqcyHaukurIcLzPrNLOO6H4b8Fngp2Q/VrF1ZTlW7n6Hu1/i7nOBm4D/6+7ryXCskmpqgddgu5lNH70PfC6qIfu8cveW/gF2UPw17CRwFPgScCHFT68PRbczWqCm/w30Aa9SPLAXT3JN/5ri+cFXgZejn1UtMFZJdWU2XsAnKX6Z/asUX4hfj9qzHqukujKdWyX1LQP+rhXGKqGmrF+Dvwu8Ev28BtzZKmOl/wJBRCRwU/XUjYiI1EhBLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjg/j9K5CAn9cdRkgAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAciklEQVR4nO3df3Ac5Z3n8fc38g+EYiIEkg8LCxNH5YXDLE7msIkTytnEsWM48PqyF1y4lmQJLq64S7K+8y4+U8tyBWXnvMdCXa4uZwgLWVgne4mj+EIWoyVh2c2CknFskAlxzA8HIxNLizHhhwK2+N4f01LGo+751dKM9PjzqlJp+umnu7/9dM9Ho56WxtwdEREJ13vqXYCIiIwvBb2ISOAU9CIigVPQi4gETkEvIhK4KfUuIM6ZZ57pc+bMqXcZIiKTxq5du/7F3Vvj5k3IoJ8zZw7ZbLbeZYiITBpm9sukebp0IyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgSt5eaWb3AJcD/e5+QdS2Bfi3wDvAc8Dn3P1ozLLLgTuBBuBud988hrXX1NV3Pc6PnjsyMr14bgsPXHfJqH5Lb3+U/f1vjkx3tjXRvW5JLUpM1LW7jy0793Ho6CCzmhtZv2weKxe017UmEamdcl7R3wssL2jrBi5w9wuBXwAbChcyswbgfwGfAs4HVpvZ+amqrZPCkAf40XNHuPqux09oKwx5gP39b7L09kfHu8REXbv72LC9l76jgzjQd3SQDdt76drdV7eaRKS2Sga9uz8GHCloe9jdj0eTTwBnxyx6MfCsuz/v7u8A3wCuTFlvXRSGfFJ7YciXaq+FLTv3MXhs6IS2wWNDbNm5r04ViUitjcU1+j8C/i6mvR04mDf9UtQWy8zWmlnWzLIDAwNjUJYAHDo6WFG7iIQnVdCb2UbgOPBA2kLcfau7Z9w909oa++8apAqzmhsraheR8FQd9Gb2WXJv0l7t8Z9H2AfMzps+O2qbdBbPbSmrvbOtKbZfUnstrF82j8apDSe0NU5tYP2yeXWqSERqraqgj+6m+RPgCnd/K6HbT4BOMzvXzKYBVwE7qiuzvh647pJRoR531033uiWjQr3ed92sXNDOplXzaW9uxID25kY2rZqvu25ETiJW6sPBzWwbsAQ4EzgM3EzuLpvpwCtRtyfc/Xozm0XuNsoV0bIrgDvI3V55j7vfVk5RmUzG9d8rRUTKZ2a73D0TO69U0NeDgl5EpDLFgl5/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBKxn0ZnaPmfWb2d68tj8ws6fN7F0zi/3/x1G/A2bWa2Z7zEz/YF5EpA7KeUV/L7C8oG0vsAp4rIzlP+buFyX9Q3wRERlfU0p1cPfHzGxOQdszAGY2PlWJiMiYGe9r9A48bGa7zGxtsY5mttbMsmaWHRgYGOeyREROHuMd9B9x9w8CnwJuMLNLkzq6+1Z3z7h7prW1dZzLEhE5eYxr0Lt7X/S9H/gOcPF4bk9EREYbt6A3syYzmzH8GPgkuTdxRUSkhsq5vXIb8Dgwz8xeMrNrzez3zewl4BLgQTPbGfWdZWbfjxadCfyTmT0J/Bh40N0fGp/dEBGRJOXcdbM6YdZ3YvoeAlZEj58HfjdVdSIikpr+MlZEJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQlcyQ8eMbN7gMuBfne/IGr7A+DPgfOAi909m7DscuBOoAG42903j1Hdo3Tt7mPLzn0cOjrIrOZG1i+bx8oF7VWta+ntj7K//82R6c62Jl4YeJPj/ts+Uwye3XTZqGXn3PjgqLYDm0f3G3ZTVy/beg4y5E6DGasXzubWlfPLqrPcfY7bn+51S8raxskuzfFZeFs3h19/Z2R65oxp9GxcOjJd7Fwptd2xPN8rUWqfikkzlsXUaywmE3P34h3MLgXeAL6eF/TnAe8C/wf4L3FBb2YNwC+ApcBLwE+A1e7+s1JFZTIZz2Zjf3bE6trdx4btvQweGxppa5zawKZV8ys+4IWhWExh2Mc9cYfFhf1NXb3c/8SLo9rXLOoo+QQod5+T9kdhX1qa41MYiMOGg7HYubJmUUfR7Y7l+V6JUvtUTJqxLKZeYzERmdkud8/EzSt56cbdHwOOFLQ94+77Six6MfCsuz/v7u8A3wCuLLPmimzZue+EAw0weGyILTtLlThauSEPnPAKvxrbeg5W1J6v3H1O2p9K9vNkleb4xAVisfZKtjuW53slxnOfqlWvsZhsxvMafTuQfxRfitpimdlaM8uaWXZgYKCiDR06OlhR+0QxlPDbVFJ7vsm6z5NJmuMzntudjMd+vMZyMo5FPUyYN2Pdfau7Z9w909raWtGys5obK2qfKBrMKmrPN1n3eTJJc3zGc7uT8diP11hOxrGoh/EM+j5gdt702VHbmFu/bB6NUxtOaGuc2sD6ZfMqXldnW1PZfaekfL6vXji7ovZ85e5z0v5Usp8nqzTHZ+aMaRW1V7LdsTzfKzGe+1Steo3FZDOeQf8ToNPMzjWzacBVwI7x2NDKBe1sWjWf9uZGDGhvbqz6zZjudUtGhWBnW9OoUI+76ybp7pqk9ltXzmfNoo6RVzUNZmW/OVXuPiftj96ILS3N8enZuHRUAOa/aVnsXCm13bE83ytRap+KSTOWxdRrLCabcu662QYsAc4EDgM3k3tz9n8CrcBRYI+7LzOzWeRuo1wRLbsCuIPc7ZX3uPtt5RRV6V03IiInu2J33ZQM+npQ0IuIVCbV7ZUiIjK5KehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCVzJoDeze8ys38z25rW1mFm3me2Pvp+esOyQme2Jvsbl06VERKS4cl7R3wssL2i7EXjE3TuBR6LpOIPuflH0dUX1ZYqISLVKBr27P0buowPzXQncFz2+D1g5xnWJiMgYqfYa/Ux3fzl6/CtgZkK/U8wsa2ZPmJl+GIiI1MGUtCtwdzezpA+ePcfd+8zs/cAPzKzX3Z+L62hma4G1AB0dHWnLEhGRSLWv6A+b2VkA0ff+uE7u3hd9fx54FFiQtEJ33+ruGXfPtLa2VlmWiIgUqjbodwDXRI+vAb5b2MHMTjez6dHjM4HFwM+q3J6IiFSpnNsrtwGPA/PM7CUzuxbYDCw1s/3AJ6JpzCxjZndHi54HZM3sSeCHwGZ3V9CLiNRYyWv07r46YdbHY/pmgc9Hj/8ZmJ+qOhERSU1/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiASurA8HN7N7gMuBfne/IGprAb4JzAEOAP/e3V+NWfYa4KZo8lZ3vy992aMtvf1R9ve/OTLd2dZE97olAHTt7mPLzn0cOjrIrOZG1i+bx8oF7RWtL86BzZeNWn/Sp6THmWKw8P0t/Oi5IyNti+e28MB1l5S1/MLbujn8+jsj0zNnTKNn49JR/YqNTSjm3PjgqLbh45Nm2Qtvfohfvz000n7a9AaeumX5yHSxc6tUTcXmV7Nse3NjWef4TV29bOs5yJA7DWasXjibW1eW9xlB59744AnnuAEvjME419LJ8HwoZO6lo8nMLgXeAL6eF/T/HTji7pvN7EbgdHf/04LlWoAskAEc2AV8KO4HQr5MJuPZbLbsnUgK5c62Jm74WCcbtvcyeOy3T9bGqQ1sWjU/8YlQTsgPu+MzF41af1rlhH1hyA8rDPtiYxPKyR0XIMNKBUmxZU+b3nBCyOe3P3XLcrp29yWeW1/65p6iNRXbbjHlLpt0jt/U1cv9T7w4qv+aRR0lw74w5IeVE/ZpjtFYCvn5YGa73D0TN6+sSzfu/hhwpKD5SmD41fl9wMqYRZcB3e5+JAr3bmB5TL9UkkJ5f/+bbNm5b1QIDx4bYsvOfRWvL07c+tPKf4WfJC7k49qLjY0UFxfy+e3VnFu1klTHtp6Dsf2T2vMlvSSs5LfYejtZnw9prtHPdPeXo8e/AmbG9GkH8s+gl6K2UcxsrZllzSw7MDCQoqwTHTo6WFH7WK1fwjfe51ZacXUMJfwGn9QuYRiTN2M9d/0n1Zni7lvdPePumdbW1rEoC4BZzY0VtY/V+iV8431upRVXR4NZbN+kdglDmqA/bGZnAUTf+2P69AGz86bPjtrGVGdbU2L7+mXzaJzacEJ749QG1i+bV/H64sStP63Fc1tK9pk5Y1pZ7cXGRoo7bXr8cR1ur+bcqpWkOlYvnB3TO7k9X9KPgsn0I+JkfT6kCfodwDXR42uA78b02Ql80sxON7PTgU9GbWOqe92SUQdq+M2VlQva2bRqPu3NjRi5OxOKvRGbtL44BzZfNmr9lZhio0O93LtuejYuHRXqcXfdFBubUCS9mVfOm3zFln3qluWjwj7/rpti51apmorNr3bZcs7xW1fOZ82ijpFX8A1mZb0RC7k3XAvP8XLvuklzjMbSyfB8iFPuXTfbgCXAmcBh4GagC/hboAP4JbnbK4+YWQa43t0/Hy37R8B/jVZ1m7v/VantVXrXjYjIya7YXTdlBX2tKehFRCqT+vZKERGZvBT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAQuVdCb2RfNbK+ZPW1mX4qZv8TMXjOzPdHXn6XZnoiIVG5KtQua2QXAdcDFwDvAQ2b2PXd/tqDrP7r75SlqFBGRFNK8oj8P6HH3t9z9OPAPwKqxKUtERMZKmqDfC3zUzM4ws1OBFUDcR8lfYmZPmtnfmdm/TrE9ERGpQtWXbtz9GTP7MvAw8CawBxgq6PZT4Bx3f8PMVpD7QPHOuPWZ2VpgLUBHR0e1ZYmISIFUb8a6+9fc/UPufinwKvCLgvm/dvc3osffB6aa2ZkJ69rq7hl3z7S2tqYpS0RE8qS966Yt+t5B7vr83xTM/1dmZtHji6PtvZJmmyIiUpmqL91Evm1mZwDHgBvc/aiZXQ/g7l8FPg38BzM7DgwCV7m7p9ymiIhUIFXQu/tHY9q+mvf4K8BX0mxDRETS0V/GiogETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigUv1wSNm9kXgOsCAu9z9joL5BtwJrADeAj7r7j9Ns81auamrl209Bxlyp8GM97eeyvMDbzEU8wFZnW1NdK9bAsDVdz3Oj547MqrPewzeLVjUgBc2Xxa73OK5LTxw3SX8zsbv85uh3y54SoPx89tWALDwtm4Ov/7OyLyZM6bRs3Fp0fVVs++rF87m1pXzy1p26e2Psr//zZHp/LHp2t3Hlp37OHR0kFnNjaxfNo+VC9qr2l6x45O/jnLWPefGB0et/8Dmy7ipq5cHnniR/MO2eG4LB14ZHNmHOWc08sTzr8au/8KbH+LXbw+NLHva9AaeumV5ye1C6eNXbNlSip1TpSQdw/FeNo1i50CpmtI8jwoV29Z4j41V+8l+ZnYB8A3gYuAd4CHgend/Nq/PCuA/kQv6hcCd7r6w1LozmYxns9mq6hoLN3X1cv8TL1a0TGdbE20zpseGfDEGfHhuS0XLndJgvO/UqSeE/LCZM6bxgbb3xq6vnJM0ad/XLOooGb6FIT+ss62JGz7WyYbtvQwe+23wNU5t4IMd74uttdj2yj0+nW1NsfXkrzsuMNNas6iDHbv7Tgj5YcNhX2y7ixPOh+HjV2zZUmFfGPLDygn7rt19scdw06r5JUMpzbJpFDufM+e0FK0p6UVbNWFfbP+BMRkbM9vl7pm4eWku3ZwH9Lj7W+5+HPgHch8Qnu9K4Oue8wTQbGZnpdhmTWzrOVjxMvv736w45AEcKl7uN0MeG/IAh19/J3F95Wwnad/LGZO4UB1u37Jz3wknMsDgsaHEmoptr9zjk1RPNce3Ett6DsaGPJDYni/N8SslLuSLtedLOoZbdu4b12XTKHY+l6ppLI9DsW3VYmzSBP1e4KNmdoaZnUruVfvsgj7tQP5IvxS1jWJma80sa2bZgYGBFGWlF3d55mSRtO9px+TQ0cExqWMsahnv4xvq+ZN0DMs5tmmWTaPY+VzLmoptqxZ1VB307v4M8GXgYXKXbfYApV+uJK9vq7tn3D3T2tpa7WrGRINZXbdfT0n7nnZMZjU3jkkdY1HLeB/fUM+fpGNYzrFNs2waxc7nWtZUbFu1qCPVXTfu/jV3/5C7Xwq8CvyioEsfJ77KPztqm9BWLyz8xaS0zrYmFs9tqXg5g4qXO6XBmDljWuy8mTOmJa6vnO0k7Xs5Y9LZ1pTYvn7ZPBqnNpzQ3ji1IbGmYtsr9/gk1VPN8a3E6oWzOW16Q+y8pPZ8aY5fKac0xAdfUnu+pGO4ftm8cV02jWLnc6maxvI4FNtWLcYmVdCbWVv0vYPc9fm/KeiyA/hDy1kEvObuL6fZZi3cunI+axZ1jLwaaDCjs60p8dXB8J0lD1x3SeJJ8J6YRYfvuolbbvHcFg5svmzUE3D4TbOejUtHhf3wXTdJ6yvnDaS4fS/njViA7nVLRoXr8NisXNDOplXzaW9uxID25kY2rZrPA9ddUvH2Sh2f4XV0r1tSct1Jb14e2HwZaxZ1UHjYFs9tOWEfFs9tiV3/U7csHxXq+XfdFNtuqeNXbNlSfn7bisRzqpSkY1jOG4Zplk2j2PlcqqY0z6NCxbZVi7Gp+q4bADP7R+AM4Biwzt0fMbPrAdz9q9HtlV8BlpO7vfJz7l7ydpp633UjIjLZFLvrJtV99O7+0Zi2r+Y9duCGNNsQEZF09JexIiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4NJ+lOAfm9nTZrbXzLaZ2SkF8z9rZgNmtif6+ny6ckVEpFJVB72ZtQNfADLufgHQAFwV0/Wb7n5R9HV3tdsTEZHqpL10MwVoNLMpwKnAofQliYjIWKo66N29D/gL4EXgZeA1d384puu/M7OnzOxbZjY7aX1mttbMsmaWHRgYqLYsEREpkObSzenAlcC5wCygyczWFHT7f8Acd78Q6AbuS1qfu29194y7Z1pbW6stS0RECqS5dPMJ4AV3H3D3Y8B24MP5Hdz9FXd/O5q8G/hQiu2JiEgV0gT9i8AiMzvVzAz4OPBMfgczOytv8orC+SIiMv6mVLugu/eY2beAnwLHgd3AVjP7b0DW3XcAXzCzK6L5R4DPpi9ZREQqYe5e7xpGyWQyns1m612GiMikYWa73D0TN09/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBq/qDRwDM7I+BzwMO9AKfc/ff5M2fDnyd3EcIvgJ8xt0PpNlmqLp297Fl5z4OHR1kVnMj65fNY+WC9sR2kWrpnDr5VB30ZtYOfAE4390HzexvgauAe/O6XQu86u4fMLOrgC8Dn0lRb5C6dvexYXsvg8eGAOg7OsiG7b1kf3mEb+/qG9UO6IkpVUk610DnVMjSXrqZAjSa2RTgVOBQwfwrgfuix98CPh59vqzk2bJz38gTb9jgsSG29RyMbd+yc18ty5OAJJ1rOqfCVnXQu3sf8BfkPiT8ZeA1d3+4oFs7cDDqfxx4DTgjbn1mttbMsmaWHRgYqLasSenQ0cHY9qGEj3lM6i9SStK5o3MqbFUHvZmdTu4V+7nALKDJzNZUuz533+ruGXfPtLa2VruaSWlWc2Nse0PCLz9J/UVKSTp3dE6FLc2lm08AL7j7gLsfA7YDHy7o0wfMBogu77yP3Juykmf9snk0Tm04oa1xagOrF86ObV+/bF4ty5OAJJ1rOqfCluaumxeBRWZ2KjAIfBzIFvTZAVwDPA58GviBe8L1iJPY8JtgcXdCZM5p0R0SMmaKnWsSLkuTu2Z2C7m7aI4Du8ndarkRyLr7DjM7BfhrYAFwBLjK3Z8vtd5MJuPZbOHPDBERSWJmu9w9EztvIr7AVtCLiFSmWNDrL2NFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAI3Ie+6MbMB4JdFupwJ/EuNyqnERKxLNZVvItY1EWuCiVnXRKwJalfXOe4e+28FJmTQl2Jm2aTbiOppItalmso3EeuaiDXBxKxrItYEE6MuXboREQmcgl5EJHCTNei31ruABBOxLtVUvolY10SsCSZmXROxJpgAdU3Ka/QiIlK+yfqKXkREyqSgFxEJ3IQPejO7x8z6zWxvXluLmXWb2f7o++kToKY/N7M+M9sTfa2ocU2zzeyHZvYzM3vazL4Ytdd7rJLqqtt4mdkpZvZjM3syqumWqP1cM+sxs2fN7JtmNq1WNZWo614zeyFvrC6qZV1RDQ1mttvMvhdN13WsEmqaCON0wMx6o+1no7a6PgdhEgQ9cC+wvKDtRuARd+8EHomm610TwF+6+0XR1/drXNNx4D+7+/nAIuAGMzuf+o9VUl1Qv/F6G/g9d/9d4CJguZktAr4c1fQB4FXg2hrWVKwugPV5Y7WnxnUBfBF4Jm+63mMVVxPUf5wAPhZtf/je+Xo/Byd+0Lv7Y+Q+tCTflcB90eP7gJUToKa6cveX3f2n0ePXyT0B2qn/WCXVVTee80Y0OTX6cuD3gG9F7fUYq6S66srMzgYuA+6Opo06j1VhTRNcXZ+DMAmCPsFMd385evwrYGY9i8nzH83sqejSTs1/PRtmZnPIfapXDxNorArqgjqOV/Rr/x6gH+gGngOOuvvxqMtL1OEHUmFd7j48VrdFY/WXZja9xmXdAfwJ8G40fQb1H6vCmobVc5wg94P5YTPbZWZro7a6Pwcna9CPiD6Dtu6veoD/Dcwl9yv3y8D/qEcRZvZe4NvAl9z91/nz6jlWMXXVdbzcfcjdLwLOBi4GfqeW209SWJeZXQBsIFffvwFagD+tVT1mdjnQ7+67arXNUorUVLdxyvMRd/8g8ClylykvzZ9Zr+fgZA36w2Z2FkD0vb/O9eDuh6Mn6bvAXeTCo6bMbCq5MH3A3bdHzXUfq7i6JsJ4RXUcBX4IXAI0m9mUaNbZQF89aiqoa3l0+cvd/W3gr6jtWC0GrjCzA8A3yF2yuZP6jtWomszs/jqPEwDu3hd97we+E9VQ9+fgZA36HcA10eNrgO/WsRZg5AAO+31gb1Lfcdq+AV8DnnH32/Nm1XWskuqq53iZWauZNUePG4Gl5N47+CHw6ahbPcYqrq6f54WEkbu+W7OxcvcN7n62u88BrgJ+4O5XU8exSqhpTT3HKdpuk5nNGH4MfDKqof555e4T+gvYRu5X+2PkrgVeS+4a4SPAfuDvgZYJUNNfA73AU+QO7Fk1rukj5H4lfArYE32tmABjlVRX3cYLuBDYHW17L/BnUfv7gR8DzwL/F5he47FKqusH0VjtBe4H3lvLuvLqWwJ8byKMVUJNdR2naEyejL6eBjZG7XV9Drq7/gWCiEjoJuulGxERKZOCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHA/X9qczFM1iFI5AAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -194,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -205,14 +209,14 @@ ] }, "metadata": {}, - "execution_count": 48 + "execution_count": 5 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAENCAYAAAAIbA6TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAR7ElEQVR4nO3dfbAddX3H8fdHoEV5ENALjUqIUkZEi8FG6hTHokiL4AM+tBU7mlY70bE+UB1rlLZi+0+sqNOxahsLGh3QYn2Agk8IKvUJDBohNjgogxaJEBQEa0sNfPvH2ZhLcu/l5DZ79ia/92vmzNn97Z7db1b8nL2/89vdVBWSpHbcb+gCJEmTZfBLUmMMfklqjMEvSY0x+CWpMQa/JDWmt+BPsneSK5N8K8m3k7y5az8oySVJruveD+yrBknS9tLXOP4kAfapqp8l2Qv4EvBq4DnAT6pqVZKVwIFV9fpeipAkbae3M/4a+Vk3u1f3KuBZwJqufQ1wal81SJK212sff5I9kqwDbgEuqaorgEOqaiNA935wnzVIku5tzz43XlV3A0uTHAB8PMljxv1skhXACoB99tnnN4888sieqpSk3dNVV111a1VNbdvea/BvUVW3J/kCcBJwc5JFVbUxySJGfw3M9JnVwGqAZcuW1dq1aydRqiTtNpJ8f6b2Pkf1THVn+iS5P/BU4FrgQmB5t9py4IK+apAkba/PM/5FwJokezD6gjm/qi5K8lXg/CQvAX4A/H6PNUiSttFb8FfV1cAxM7T/GDihr/1KkubmlbuS1BiDX5IaY/BLUmMMfklqjMEvSY2ZyAVcWliWrLx46BK4YdUpQ5cgNcvgV9P8ElSL7OqRpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1Jjegv+JIcm+XySDUm+neTVXfuZSX6YZF33OrmvGiRJ29uzx21vBl5bVd9Ish9wVZJLumXvqKqzety3JGkWvQV/VW0ENnbTdybZADy0r/1JksbT5xn/LyVZAhwDXAEcB7wiyYuAtYz+KrhtEnVImt2SlRcPXQI3rDpl6BKa0PuPu0n2BT4KnF5VdwDvAQ4HljL6i+Bts3xuRZK1SdZu2rSp7zIlqRm9Bn+SvRiF/rlV9TGAqrq5qu6uqnuA9wLHzvTZqlpdVcuqatnU1FSfZUpSU/oc1RPgbGBDVb19Wvuiaas9G1jfVw2SpO312cd/HPBC4Jok67q2NwKnJVkKFHAD8NIea5AkbaPPUT1fAjLDok/2tc+5+MOVJI145a4kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia01vwJzk0yeeTbEjy7SSv7toPSnJJkuu69wP7qkGStL0+z/g3A6+tqkcBTwD+LMlRwErg0qo6Ari0m5ckTUhvwV9VG6vqG930ncAG4KHAs4A13WprgFP7qkGStL2J9PEnWQIcA1wBHFJVG2H05QAcPMtnViRZm2Ttpk2bJlGmJDWh9+BPsi/wUeD0qrpj3M9V1eqqWlZVy6ampvorUJIaM1bwJ7l/kkfu6MaT7MUo9M+tqo91zTcnWdQtXwTcsqPblSTN330Gf5JnAOuAT3fzS5NcOMbnApwNbKiqt09bdCGwvJteDlywo0VLkuZvnDP+M4FjgdsBqmodsGSMzx0HvBB4SpJ13etkYBVwYpLrgBO7eUnShOw5xjqbq+qnoxP48VXVl4DZPnTCDm1MkrTTjBP865O8ANgjyRHAq4Cv9FuWJKkv43T1vBJ4NHAXcB7wU+D0PouSJPXnPs/4q+rnwBndS5K0ixtnVM8lSQ6YNn9gks/0W5YkqS/jdPU8uKpu3zJTVbcxy9W2kqSFb5zgvyfJ4i0zSQ4Dqr+SJEl9GmdUzxnAl5J8sZt/ErCiv5IkSX0a58fdTyd5HKNbKwf486q6tffKJEm9mLWrJ8mR3fvjgMXATcAPgcVdmyRpFzTXGf9rGHXpvG2GZQU8pZeKJEm9mjX4q2pFkvsBf1lVX55gTZKkHs05qqeq7gHOmlAtkqQJGGc452eTPDc7epc2SdKCNM5wztcA+wCbk/wPo5E9VVX791qZJKkX4wzn3G8ShUiSJmOu4ZxHJLkgyfok5yV56CQLkyT1Y64+/nOAi4DnAt8E3jmRiiRJvZqrq2e/qnpvN/3WJN+YREGSpH7NFfx7JzmGrY9PvP/0+aryi0CSdkFzBf9G4O3T5n80bd4rdyVpFzXXlbtPnmQhkqTJGOcCLknSbsTgl6TGGPyS1JhxbtlAd/HWYdPXr6rL+ypKktSf+wz+JG8B/hD4D+DurrkAg1+SdkHjnPGfCjyyqu7quxhJWgiWrLx46BK4YdUpvW17nD7+64G9dnTDSc5JckuS9dPazkzywyTrutfJO7pdSdL/zzhn/D8H1iW5FPjlWX9Vveo+Pvd+4B+AD2zT/o6q8uEukjSQcYL/wu61Q6rq8iRLdvRzkqR+jXM//jU7eZ+vSPIiYC3w2qq6baaVkqxg9LB3Fi9evJNLkKR2zXU//vO792uSXL3ta577ew9wOLCU0b2A3jbbilW1uqqWVdWyqampee5OkrStuc74X929P31n7ayqbt4yneS9jO73L0maoFnP+KtqYzd5VFV9f/oLeNp8dpZk0bTZZwPrZ1tXktSPcX7c/askd1XVZQBJXg8cD/zjXB9K8qFuvQcnuRF4E3B8kqWMLgC7AXjpvCuXJM3LOMH/TOCiJK8DTgKO7NrmVFWnzdB89o6VJ0na2cYZ1XNrkmcCnwOuAp5XVdV7ZZKkXswa/EnuZNQls8WvAI8Anpekqmr/vouTJO18cz2Ba79JFiJJmoxxb8v8HOCJjP4C+Peq+kSvVUmSenOfN2lL8m7gZcA1jIZfvizJu/ouTJLUj3HO+H8HeMyWH3STrGH0JSBJ2gWNc1vm7wDTb5ZzKDDfWzZIkgY2zhn/g4ANSa7s5h8PfDXJhQBVdZ9j+iVJC8c4wf/XvVchSZqYcS7g+iJAkv2598PWf9JjXZKknozzsPUVwN8C/w3cA4TRsM5H9FuaJKkP43T1vA54dFXd2ncxkqT+jTOq53uMnrsrSdoNjHPG/wbgK0muYMceti5JWoDGCf5/Ai5jdNHWPf2WI0nq2zjBv7mqXtN7JZKkiRinj//zSVYkWZTkoC2v3iuTJPVinDP+F3Tvb5jW5nBOSdpFjXMB18MnUYgkaTLGuYDrRTO1V9UHdn45kqS+jdPV8/hp03sDJwDfAAx+SdoFjdPV88rp80keCHywt4okSb0aZ1TPtn4OHLGzC5EkTcY4ffz/xmgUD4y+KI4Czu+zKElSf8bp4z9r2vRm4PtVdWNP9UiSejZr8CfZm9FD1n+d0e0azq6qzZMqTJLUj7n6+NcAyxiF/tOAt02kIklSr+bq6jmqqn4DIMnZwJVzrLudJOcATwduqarHdG0HAf8CLAFuAP6gqm7b8bIlSfM11xn/L7ZMzLOL5/3ASdu0rQQuraojgEu7eUnSBM0V/I9Nckf3uhM4est0kjvua8NVdTmw7XN5n8WoC4nu/dR5VS1JmrdZu3qqao8e9ndIVW3str8xycE97EOSNIf5XMA1Ed2toNcmWbtp06ahy5Gk3cakg//mJIsAuvdbZluxqlZX1bKqWjY1NTWxAiVpdzfp4L8QWN5NLwcumPD+Jal5vQV/kg8BXwUemeTGJC8BVgEnJrkOOLGblyRN0Di3bJiXqjptlkUn9LVPSdJ9W7A/7kqS+mHwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JasyeQ+w0yQ3AncDdwOaqWjZEHZLUokGCv/Pkqrp1wP1LUpPs6pGkxgwV/AV8NslVSVYMVIMkNWmorp7jquqmJAcDlyS5tqoun75C94WwAmDx4sVD1ChJu6VBzvir6qbu/Rbg48CxM6yzuqqWVdWyqampSZcoSbutiQd/kn2S7LdlGvhdYP2k65CkVg3R1XMI8PEkW/Z/XlV9eoA6JKlJEw/+qroeeOyk9ytJGnE4pyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhozSPAnOSnJd5J8N8nKIWqQpFZNPPiT7AG8C3gacBRwWpKjJl2HJLVqiDP+Y4HvVtX1VfW/wIeBZw1QhyQ1KVU12R0mzwNOqqo/7eZfCPxWVb1im/VWACu62UcC35loodt7MHDrwDUsFB6LrTwWW3kstloox+KwqpratnHPAQrJDG3bfftU1Wpgdf/ljCfJ2qpaNnQdC4HHYiuPxVYei60W+rEYoqvnRuDQafMPA24aoA5JatIQwf914IgkD0/yK8DzgQsHqEOSmjTxrp6q2pzkFcBngD2Ac6rq25OuYx4WTLfTAuCx2MpjsZXHYqsFfSwm/uOuJGlYXrkrSY0x+CWpMQa/JDVmiHH8C9600UY3VdXnkrwA+G1gA7C6qn4xaIETluRw4NmMhuFuBq4DPlRVPx20MEnz4o+7M0hyLqMvxQcAtwP7Ah8DTmB0zJYPWN5EJXkV8Azgi8DJwDrgNkZfBC+vqi8MV52k+TD4Z5Dk6qo6OsmewA+Bh1TV3UkCfKuqjh64xIlJcg2wtPv3PwD4ZFUdn2QxcEFVHTNwiROT5IHAG4BTgS2Xwd8CXACsqqrbh6ptIUnyqap62tB1TEqS/Rn9d/Ew4FNVdd60Ze+uqpcPVtws7OqZ2f267p59GJ31PxD4CfCrwF5DFjaQPYG7Gf379wOoqh8kae1YnA9cBhxfVT8CSPJrwHLgI8CJA9Y2UUkeN9siYOkka1kA3seo+/OjwIuTPBd4QVXdBTxh0MpmYfDP7GzgWkYXmJ0BfCTJ9Yz+R/zwkIUN4J+Bryf5GvAk4C0ASaYYfRm2ZElVvWV6Q/cF8JYkLx6opqF8nVH330z33jpgwrUM7fCqem43/YkkZwCXJXnmkEXNxa6eWSR5CEBV3ZTkAOCpwA+q6sphK5u8JI8GHgWsr6prh65nKEk+C3wOWFNVN3dthwB/DJxYVU8dsLyJSrIeeHZVXTfDsv+sqkNn+NhuKckG4NFVdc+0tuXAXwD7VtVhgxU3C4NfGlOSA4GVjJ4fcXDXfDOje02tqqrbhqpt0rrbq19TVdvdLj3JqVX1iQHKGkSSvwM+W1Wf26b9JOCdVXXEMJXNzuCXdoIkf1JV7xu6joXAY7HVQj0WBr+0EyT5QVUtHrqOhcBjsdVCPRb+uCuNKcnVsy0CDplkLUPzWGy1Kx4Lg18a3yHA7zG6gG26AF+ZfDmD8lhstcsdC4NfGt9FjEZprNt2QZIvTL6cQXksttrljoV9/JLUGO/OKUmNMfglqTEGvwQkqSQfnDa/Z5JNSS6a5/YOSPLyafPHz3db0s5m8Esj/wU8Jsn9u/kTGd2Zdb4OABbcXRklMPil6T4FnNJNnwZ8aMuCJAcl+USSq5N8LcnRXfuZSc5J8oUk13fPLwBYBRyeZF2St3Zt+yb51yTXJjm3u823NHEGv7TVh4HnJ9kbOBq4YtqyNwPf7J7F8EbgA9OWHcloHPexwJu621WvBL5XVUur6nXdescApwNHAY8AjuvzHyPNxuCXOlV1NbCE0dn+J7dZ/ETgg916lwEP6h7MAnBxVd1VVbcyejDLbFdrXllVN3Z3cVzX7UuaOC/gku7tQuAs4HjgQdPaZ+qW2XIRzF3T2u5m9v9fjbue1CvP+KV7Owf4m6q6Zpv2y4E/gtEIHeDWqrpjju3cSfe0Mmmh8YxDmqaqbgT+foZFZwLv627I9XNGj1ucazs/TvLl7oElnwIu3tm1SvPlLRskqTF29UhSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia83/e+aglZ1t96wAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAENCAYAAAAIbA6TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAR3UlEQVR4nO3de5BkZX3G8e8ji6JAXNERUVlX0VLR4BKnkCipwgsGxSioscRE8ZbVMla0YqygVimaVLkkqCkvMa4BRcX7DUo0iop3Ay66AoJGpVBBhCVCLWqJsvzyR5/JDLszs73jnD6zvN9P1VT3eU93n2cPyzNn3z59OlWFJKkdtxk6gCRpsix+SWqMxS9JjbH4JakxFr8kNcbil6TG9Fb8SfZKcn6S7yb5XpLXduP3TnJekh8l+VCS2/aVQZK0oz6P+G8EHlVVDwHWAUcnORw4GXhTVd0XuA54Xo8ZJEnb6a34a+RX3eKe3U8BjwI+2o2fDhzbVwZJ0o56neNPskeSzcA1wDnAj4Hrq+qm7iFXAPfoM4Mk6ZZW9fniVbUNWJdkNfAJ4AHjPjfJemA9wN577/3QBzxg7KdKkoALLrjg2qqa2n681+KfUVXXJzkX+FNgdZJV3VH/PYErF3jORmAjwPT0dG3atGkSUSXpViPJT+Yb7/OsnqnuSJ8ktweOAi4FzgWe2j3sBODMvjJIknbU5xH/AcDpSfZg9Avmw1X1qSSXAB9M8s/Ad4BTe8wgSdpOb8VfVRcCh84zfhlwWF/blSQtzk/uSlJjLH5JaozFL0mNsfglqTEWvyQ1ZiIf4NLKsvbEs4eOwOUbjhk6gtQsi19N85egWuRUjyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGtNb8Sc5MMm5SS5J8r0kL+nGT0pyZZLN3c/j+8ogSdrRqh5f+ybgZVX17ST7AhckOadb96aqOqXHbUuSFtBb8VfVVcBV3f0bklwK3KOv7UmSxtPnEf//S7IWOBQ4D3gE8OIkzwI2MfpXwXWTyCFpYWtPPHvoCFy+4ZihIzSh9zd3k+wDfAx4aVVtBd4OHASsY/Qvgjcs8Lz1STYl2bRly5a+Y0pSM3ot/iR7Mir9M6rq4wBVdXVVbauqm4F3AofN99yq2lhV01U1PTU11WdMSWpKn2f1BDgVuLSq3jhn/IA5DzsOuLivDJKkHfU5x/8I4JnARUk2d2OvBI5Psg4o4HLgBT1mkCRtp8+zer4GZJ5Vn+5rm4vxjStJGvGTu5LUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWpMb8Wf5MAk5ya5JMn3krykG98vyTlJftjd3qmvDJKkHfV5xH8T8LKqOhg4HPjbJAcDJwJfqKr7AV/oliVJE9Jb8VfVVVX17e7+DcClwD2AJwGndw87HTi2rwySpB1NZI4/yVrgUOA8YP+quqpb9Qtg/wWesz7JpiSbtmzZMomYktSE3os/yT7Ax4CXVtXWueuqqoCa73lVtbGqpqtqempqqu+YktSMsYo/yRFJntPdn0py7zGftyej0j+jqj7eDV+d5IBu/QHANbseW5K0VDst/iSvAf4ReEU3tCfwvjGeF+BU4NKqeuOcVWcBJ3T3TwDO3JXAkqQ/zKoxHnMco/n5mTdqf55k3zGe9wjgmcBFSTZ3Y68ENgAfTvI84CfA03Y5tSRpycYp/t9VVSUpgCR7j/PCVfU1IAusfvSY+SRJy2ycOf4PJ3kHsDrJ3wCfB97ZbyxJUl92esRfVackOQrYCtwfeHVVndN7MklSL3Za/N0ZPF+dKfskt0+ytqou7zucJGn5jTPV8xHg5jnL27oxSdJuaJziX1VVv5tZ6O7ftr9IkqQ+jVP8W5I8cWYhyZOAa/uLJEnq0zinc74QOCPJWxmdnvkz4Fm9ppIk9Wacs3p+DBzeXXOHqvpV76kkSb1ZsPiT/HVVvS/J3283DsB2l2GQJO0mFjvin/mE7jiXZ5Ak7SYWLP6qekeSPYCtVfWmCWaSJPVo0bN6qmobcPyEskiSJmCcs3q+3p3R8yHg1zODM1+rKEnavYxT/Ou629fNGSvgUcsfR5LUt3FO53zkJIJIkiZjwTn+JA9L8t0kv0ryzSQPnGQwSVI/Fntz923APwB3Bt4I/NtEEkmSerVY8d+mqs6pqhur6iPA1KRCSZL6s9gc/+okT15ouao+3l8sSVJfFiv+LwN/scByARa/JO2GFvvk7nMmGUSSNBnjXI9fknQrYvFLUmMsfklqzDiXbCDJw4G1cx9fVe/pKZMkqUc7Lf4k7wUOAjYD27rhAix+SdoNjXPEPw0cXFXVdxhJWgnWnnj20BG4fMMxvb32OHP8FwN329UXTnJakmuSXDxn7KQkVybZ3P08fldfV5L0hxnniP8uwCVJzgdunBmsqifu5HnvBt7KjlNCb6qqU3YlpCRp+YxT/Cct5YWr6itJ1i7luZKk/oxzPf4vL/M2X5zkWcAm4GVVdd18D0qyHlgPsGbNmmWOIEntWux6/F/rbm9IsnXOzw1Jti5xe29ndIbQOuAq4A0LPbCqNlbVdFVNT015YVBJWi6LXavniO523+XaWFVdPXM/yTuBTy3Xa0uSxrPTs3qSPG+esQ1L2ViSA+YsHsfojCFJ0gSN8+buU5L8tqrOAEjyNuD2O3tSkg8ARwJ3SXIF8BrgyCTrGH0A7HLgBUvMLUlaorGKHzgryc3A0cD1VfXcnT2pqo6fZ/jUXcwnSVpmCxZ/kv3mLD4f+CTwdeC1Sfarql/2HU6StPwWO+K/gNGUTObcHtP9FHCf3tNJkpbdYmf13HuSQSRJkzHO1Tn3Al4EHMHoSP+rwH9U1W97ziZJ6sE4b+6+B7gBeEu3/AzgvcBf9hVKktSfcYr/wVV18Jzlc5Nc0lcgSVK/xrks87eTHD6zkORhjK6zI0naDY1zxP9Q4BtJftotrwF+kOQioKrqkN7SSZKW3TjFf3TvKSRJEzPOZZl/kuROwIHc8svWv91nMElSP8Y5nfOfgGcDP2Z0Oifd7aP6iyVJ6ss4Uz1PAw6qqt/1HUaS1L9xv2x9dd9BJEmTMc4R/+uB7yS5mF37snVJ0go0TvGfDpwMXATc3G8cSVLfxin+31TVm3tPIkmaiHGK/6tJXg+cxS2nejydU5J2Q+MU/6Hd7eFzxjydU5J2U+N8gOuRkwgiSZqMcT7A9er5xqvqdcsfR5LUt3Gmen495/5ewBOAS/uJI0nq2zhTPW+Yu5zkFOCzvSWSJPVqnE/ubu8OwD2XO4gkaTLGmeO/iNmLs+0BTAHO70vSbmqcOf4nzLl/E3B1Vd3UUx5JUs8WLP4kewEvBO7L6HINp1r4krT7W2yO/3RgmlHpPw54wyKPlSTtJhab6jm4qv4YIMmpwPm78sJJTmM0TXRNVT24G9sP+BCwFrgceFpVXbfrsSVJS7XYEf/vZ+4scYrn3ez4fb0nAl+oqvsBX+iWJUkTtFjxPyTJ1u7nBuCQmftJtu7shavqK8Avtxt+EqMpJLrbY5eUWpK0ZAtO9VTVHj1sb/+quqq7/wtg/x62IUlaxFI+wLUsqqqY/XzADpKsT7IpyaYtW7ZMMJkk3bpNuvivTnIAQHd7zUIPrKqNVTVdVdNTU1MTCyhJt3aTLv6zgBO6+ycAZ054+5LUvN6KP8kHgG8C909yRZLnARuAo5L8EHhMtyxJmqBxLtmwJFV1/AKrHt3XNiVJOzfYm7uSpGFY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhqzaoiNJrkcuAHYBtxUVdND5JCkFg1S/J1HVtW1A25fkprkVI8kNWao4i/gc0kuSLJ+oAyS1KShpnqOqKork9wVOCfJ96vqK3Mf0P1CWA+wZs2aITJK0q3SIEf8VXVld3sN8AngsHkes7GqpqtqempqatIRJelWa+LFn2TvJPvO3AceC1w86RyS1Kohpnr2Bz6RZGb776+q/xoghyQ1aeLFX1WXAQ+Z9HYlSSOezilJjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGDFL8SY5O8oMkP0py4hAZJKlVEy/+JHsAbwMeBxwMHJ/k4EnnkKRWDXHEfxjwo6q6rKp+B3wQeNIAOSSpSamqyW4weSpwdFU9v1t+JvCwqnrxdo9bD6zvFu8P/GCiQXd0F+DagTOsFO6LWe6LWe6LWStlX9yrqqa2H1w1RJJxVNVGYOPQOWYk2VRV00PnWAncF7PcF7PcF7NW+r4YYqrnSuDAOcv37MYkSRMwRPF/C7hfknsnuS3wdOCsAXJIUpMmPtVTVTcleTHwWWAP4LSq+t6kcyzBipl2WgHcF7PcF7PcF7NW9L6Y+Ju7kqRh+cldSWqMxS9JjbH4JakxK/Y8/iHNOdvo51X1+STPAB4OXApsrKrfDxpwwpLcB3gyo9NwtwH/A7y/qrYOGkzSkvjm7jySnMHol+IdgOuBfYCPA49mtM9OGDDeRCX5O+AJwFeAxwPfYbRPjgNeVFVfGi6dpKWw+OeR5MKqOiTJKkYfLrt7VW1LEuC7VXXIwBEnJslFwLruz38H4NNVdWSSNcCZVXXowBEnJskdgVcAxwJ3BQq4BjgT2FBV1w8Yb8VI8pmqetzQOSYlyR8x+ntxT+AzVfX+Oev+vapeNFi4BTjVM7/bdNM9ezM66r8j8EvgdsCeQwYbyCpGUzy3Y/SvH6rqp0la2xcfBr4IHFlVvwBIcjfghG7dYwfMNlFJ/mShVcC6SWZZAd4F/BD4GPDcJE8BnlFVNwKHD5psARb//E4Fvs/oA2avAj6S5DJG/xE/OGSwAfwn8K0k5wF/BpwMkGSK0S/DlqytqpPnDnS/AE5O8tyBMg3lW8CXGRX99lZPOMvQDqqqp3T3P5nkVcAXkzxxyFCLcapnAUnuDlBVP0+yGngM8NOqOn/YZJOX5EHAA4GLq+r7Q+cZSpLPAZ8HTq+qq7ux/YFnA0dV1WMGjDdRSS4GjquqH86z7mdVdeA8T7tVSnIp8KCqunnO2LOBlwP7VNW9hsq2EItfGlOSOwEnMvr+iLt2w1czutbUhqq6bqhsk9ZdXv2iqtrhculJjq2qTw4QaxBJ/gX4XFV9frvxo4G3VNX9hkm2MItfWgZJnlNV7xo6x0rgvpi1UveFxS8tgyQ/rao1Q+dYCdwXs1bqvvDNXWlMSS5caBWw/ySzDM19MWt33BcWvzS+/YE/B7afyw/wjcnHGZT7YtZuty8sfml8n2J0lsbm7Vck+dLk4wzKfTFrt9sXzvFLUmO8OqckNcbil6TGWPwSkKSSvG/O8qokW5J8aomvtzrJi+YsH7nU15KWm8UvjfwaeHCS23fLRzG6MutSrQZW3FUZJbD4pbk+DRzT3T8e+MDMiiT7JflkkguT/HeSQ7rxk5KcluRLSS7rvr8AYANwUJLNSf61G9snyUeTfD/JGd1lvqWJs/ilWR8Enp5kL+AQ4Lw5614LfKf7LoZXAu+Zs+4BjM7jPgx4TXe56hOBH1fVuqp6efe4Q4GXAgcD9wEe0ecfRlqIxS91qupCYC2jo/1Pb7f6COC93eO+CNy5+wIOgLOr6saqupbRF7Ms9GnN86vqiu4qjpu7bUkT5we4pFs6CzgFOBK485jPuXHO/W0s/P/VuI+TeuURv3RLpwGvraqLthv/KvBXMDpDB7h2J182fwOwby8JpT+QRxzSHFV1BfDmeVadBJzWXZDrN4y+bnGx1/nfJF/vvrDkM8DZy51VWiov2SBJjXGqR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSY/wO3IaprEH6JsgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" diff --git a/Regression/3-Linear/solution/notebook.ipynb b/Regression/3-Linear/solution/notebook.ipynb index 438f3ef2c..19c540069 100644 --- a/Regression/3-Linear/solution/notebook.ipynb +++ b/Regression/3-Linear/solution/notebook.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, - "execution_count": 2 + "execution_count": 1 } ], "source": [ @@ -90,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -107,7 +107,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MonthVarietyCityPackageLow PriceHigh PricePrice
7013105313.636364
71131010716.363636
72231010716.363636
7323109615.454545
7423105313.636364
\n
" }, "metadata": {}, - "execution_count": 3 + "execution_count": 2 } ], "source": [ @@ -143,24 +143,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, - "execution_count": 4 + "execution_count": 3 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAahUlEQVR4nO3df5Bd9Xnf8fdHawFrTCLLLIrQDwtjjZjWqiV7g8So08o4qhjw4A11W6vg4o5rJW08xUMqGwVNYndgIKME3DYZZ8B2rBSC7bHVhQKpqjHSZOIBOStLZsGgymB+LQraGMtgsgaxevrHPStWd+/VnrN77z0/7uc1s7P3PPdczjMHnWfP/Z7vD0UEZmZWPnPyTsDMzGbGBdzMrKRcwM3MSsoF3MyspFzAzcxK6m2dPNi5554by5Yt6+QhzcxKb//+/X8fEX318Y4W8GXLljE0NNTJQ5qZlZ6kZxvF3YRiZlZSLuBmZiXlAm5mVlIu4GZmJeUCbmZWUh3thWKdMXhghO27DvHisTHOn9fLlo0rGFi9KO+0zKzFXMArZvDACFt3DjN2fByAkWNjbN05DOAiblYxbkKpmO27Dp0s3hPGjo+zfdehnDIys3ZxAa+YF4+NZYqbWXm5gFfM+fN6M8XNrLxcwCtmy8YVzJ2jU2Jz54gtG1fklJGZtYsLeBVpmm0zq4RUBVzSM5KGJR2UNJTE5kvaLelw8vud7U3V0ti+6xDHx09d5/T4ePghplkFZbkD/1BErIqI/mT7BuC7EbEc+G6ybTnzQ0yz7jGbJpSPAjuS1zuAgdmnY7Plh5hm3SNtAQ/g/0raL2lzElsQEUeS138HLGh5dpbZlo0r6J3bc0qsd26PH2KaVVDakZj/NCJGJJ0H7Jb05OQ3IyIkRaMPJgV/M8DSpUtnlaxNb2K0pYfSm1WfIhrW3eYfkL4A/AL4NLA+Io5IWgjsjYjT3ub19/eHV+QxM8tG0v5Jzx9PmrYJRdLZks6ZeA38C+Ax4D7g2mS3a4F7W5eumZlNJ00TygLgf0ma2P8vI+L/SPpb4FuSPgU8C/zr9qVpZmb1pi3gEfE08P4G8Z8CH25HUmZmNj2PxDQzKynPB15BV9/5MN976uWT2+sunM/dn74kx4zMrB18B14x9cUb4HtPvczVdz6cU0Zm1i4u4BVTX7yni5tZebmAm5mVlAu4mVlJuYBXzLoL52eKm1l5uYBXzL/qX0rdgjzMUS1uZtXiAl4x23cd4kTd9DYnAi/oYFZB7gdeMV7QIZsNt+3l8NHXTm4vP+9sdl+/Pr+EzDLwHXjFeEGH9OqLN8Dho6+x4ba9+SRklpELeMVs2biiYRu4F3SYqr54Txc3KxoX8IoZevblhm3gQ896II9Z1biAV8w9+57PFDez8nIBr5jxJissNYt3s+XnnZ0pblY0LuAV0yNlinez3devn1Ks3QvFyiR1N0JJPcAQMBIRH5H0deCfAz9PdvlkRBxsfYqWxaY1S7jrkecaxm0qF+tsBg+MeMHsAsnSD/w64AngVybFtkTEt1ubks3GTQMrgVqb93gEPRKb1iw5GTebqcEDI2zdOczY8XEARo6NsXXnMICLeE5SFXBJi4ErgJuB69uakc3aTQMrXbCt5bbvOnSyeE8YOz7O9l2HXMBzkrYN/EvA54ATdfGbJT0q6XZJZzb6oKTNkoYkDY2Ojs4mVzPLkUf5Fs+0BVzSR4CjEbG/7q2twEXArwPzgc83+nxE3BER/RHR39fXN9t8zSwnHuVbPGnuwNcBV0p6BvgGcKmkuyLiSNS8Dvw5cHEb8zSznG3ZuILeuT2nxHrn9niUb46mLeARsTUiFkfEMuDjwEMRcY2khQCSBAwAj7U1UzPL1cDqRdxy1UoWzetFwKJ5vdxy1Uq3f+doNrMR3i2pDxBwEPjt1qRkZkU1sHqRC3aBZCrgEbEX2Ju8vrQN+ZiZWUoeiWlmVlIu4GZmJeUCbmZWUi7gZmYl5QJuZlZSLuBmZiXlVekryFN+prfshgemxJ659YocMimHbYPDnumyQHwHXjETU36OHBsjeGvKz8EDI3mnVjiNivfp4t1u2+Awdz3y3MnVncYjuOuR59g2OJxzZt3LBbxiTjflp9lseL3V4nEBrxhP+Wnt4vVWi8cFvGI85ae1i9dbLR4X8IrxlJ/WLs3WVfV6q/lxAa8YT/mZXrPeJu6F0thNAyu5Zu3Sk3fcPRLXrF3qXig5UnSw/aq/vz+GhoY6djwzsyqQtD8i+uvjvgM3Myup1AN5JPUAQ8BIRHxE0gXUllh7F7Af+EREvNGeNC0LD+RJ74IbHmDyd1ABP3ETSlNrbt7NS6++dZkvOOcM9t24IceMuluWO/DrgCcmbf8hcHtEvBf4GfCpViZmM+OBPOnVF2+ASOI2VX3xBnjp1TdYc/PunDKyVAVc0mLgCuArybaAS4FvJ7vsoLYupuXMA3nSa/b0x72aG6sv3tPFrf3S3oF/CfgccCLZfhdwLCLeTLZfABp+R5e0WdKQpKHR0dFZJWvT80Aes+4xbQGX9BHgaETsn8kBIuKOiOiPiP6+vr6Z/CcsAw/kMeseae7A1wFXSnqG2kPLS4H/BsyTNPEQdDHgRtYC8ECe9JqNH/S4wsYWnHNGpri137QFPCK2RsTiiFgGfBx4KCKuBvYAH0t2uxa4t21ZWmoeyJPeT269Ykqxdi+U5vbduGFKsXYvlHxlGsgjaT3wX5JuhO+hdkc+HzgAXBMRr5/u8x7IY2aWXbOBPJkWdIiIvcDe5PXTwMWtSM7MzLLzSEwzs5IqxZJqHlmYzUU3Psgvx99qGjurRzx58+U5ZlRcXiLMyqzwd+AeWZhNffEG+OV4cNGND+aUUXF5iTAru8IXcI8szKa+eE8X72ZeIszKrvAF3CMLrV28RJiVXeELuEcWWrt4iTAru8IXcI8szOasnsbFp1m8m3mJMCu7whdwjyzM5smbL59SrN0LpTEvEWZlV4puhAOrF7lgZ+BinV7/u+ez58lRXjw2xq/96ln0v3t+3imZpVaKAm7WDhNdVCd6OU10UQV8w2ClUPgmFLN2cRdVKzvfgVfQsgZLgj3jGfamcBfV7Dwqulh8B14xjYr36eLdzEuqZeNR0cXjAm5mqbjJqXhcwM0sFTc5FU+aNTHPkvR9ST+U9LikLybxr0v6iaSDyc+q9qdrZnnxqOjiSXMH/jpwaUS8H1gFXCZpbfLelohYlfwcbFuWZpa7LRtX0DPn1EFiPXPkUdE5SrMmZkTEL5LNucmPn/MU1LoLGw9EaRY3S2vo2ZcZP3HqpT9+Ihh69uWcMrJUbeCSeiQdBI4CuyNiX/LWzZIelXS7pDPblqWl9r2nGl9MzeJmaXn63eJJVcAjYjwiVgGLgYslvQ/YClwE/Dq1hY0/3+izkjZLGpI0NDo62qK0zazTPP1u8WTqhRIRx4A9wGURcSRpXnkd+HOaLHAcEXdERH9E9Pf19c0+YzPLhaffLZ40vVD6JM1LXvcCG4AnJS1MYgIGgMfamaiZ5ct34MWTZij9QmCHpB5qBf9bEXG/pIck9QECDgK/3cY8zcyszrQFPCIeBVY3iF/alozMzCwVj8Q0MyspF3Azs5JyAa+YXzmzJ1PcLK0F55yRKW7t5wJeMa+8Pp4pbpbWS6++kSlu7ecCbmZWUi7gZmYl5QJeMW4Dt3ZxG3jxuIBXzJVN1idsFu9mX/o3jaewbxbvdvtu3DClWC845wz23bghp4zMixpXzOlmjLtpYGWHsym2ZkuBbd91yAv1NuFiXSy+A68Yz1eRnpcIs7JzAa+YZvPCeb64qbxEmJWdm1Aq5u1n9PDaG1P7fL/9DD/ErLdl4wo++82pKwF6ibDmtg0Oc8++5xmPoEdi05olbprLke/AK6ZR8T5dvJv9/uBwpni32zY4zF2PPHeyOW48grseeY5tPl+5cQG3ruVRq9l4SbXicQE3s1T8gLx4XMDNLBUvqVY8aZZUO0vS9yX9UNLjkr6YxC+QtE/SjyV9U5KHYxWAe6Gk51Gr2WxasyRT3NovzR3468ClEfF+YBVwmaS1wB8Ct0fEe4GfAZ9qX5qWVrMvs/6SO5XbwLO5aWAl16xdevKOu0fimrVL3QslR2mWVAvgF8nm3OQngEuBf5vEdwBfAL7c+hTNrChuGljpgl0gqdrAJfVIOggcBXYDTwHHIuLNZJcXgIZjjyVtljQkaWh0dLQVOZuZGSkLeESMR8QqYDFwMXBR2gNExB0R0R8R/X19fTNM08zM6mXqhRIRx4A9wCXAPEkTTTCLgZEW52ZmZqeRphdKn6R5yeteYAPwBLVC/rFkt2uBe9uVpKX3zK1XZIp3M58rK7s0c6EsBHZI6qFW8L8VEfdL+hHwDUk3AQeAr7YxT0up2bDmbYPDfvjUgIu1lVmaXiiPAqsbxJ+m1h5uBeL5wM26h0diVoyHO5t1D08nWzE9UsNi7eHOjS274YEpMTerWFn4Drxi3tP39kzxbtaoeJ8ublY0LuAV8/ToP2SKm1l5uYBXjNvAzbqHC7iZWUm5gJuZlZQLeMV40v30PBLTys7dCCtm05ol3PXIcw3jNpWLtZWZC3jFTIy2vGff84xH0COxac0Sj8I0qyBFB3sn9Pf3x9DQUMeOZ2ZWBZL2R0R/fdxt4GZmJeUmlAraNjjsJhSzLuACXjHbBodPeYg5HnFy20XcrFrchFIxp5tO1syqJc2KPEsk7ZH0I0mPS7ouiX9B0oikg8nP5e1P16bjofRm3SNNE8qbwO9GxA8knQPsl7Q7ee/2iPij9qVnWc0RnGhQq+d4HI9Z5aRZkecIcCR5/aqkJ4BF7U7MZubMt81h7PiJhnEzq5ZMV7WkZdSWV9uXhD4j6VFJX5P0ziaf2SxpSNLQ6OjorJK16f2yQfE+XdzMyit1AZf0DuA7wGcj4hXgy8CFwCpqd+h/3OhzEXFHRPRHRH9fX18LUrbTOX9eb6a4mZVXqgIuaS614n13ROwEiIiXImI8Ik4Ad+IFjgthy8YVmeJmVl5peqEI+CrwRETcNim+cNJuvwk81vr0LKs/3XM4U9zMyitNL5R1wCeAYUkHk9jvAZskrQICeAb4rbZkaJkcPvpapriZlVeaXih/AzTqhPZg69MxM7O03LfMzKykXMArZvl5Z2eKm1l5uYBXzO7r108p1svPO5vd16/PJyEzaxvPRlhBLtZm3cF34GZmJeUCbmZWUm5CqSCvyGPWHVzAK8Yr8ph1DzehVIxX5DHrHi7gFeMVecy6hwt4xfSo8dI7zeJmVl4u4BWzac2STHEzKy8/xKyYiQeV7oViVn2KDraN9vf3x9DQUMeOZzadDbftPWWqXU87cHo+X9kMHhhh+65DvHhsjPPn9bJl4woGVmdfUljS/ojor4+7CcW6Vn0xgtq86Rtu25tPQgXn85XN4IERtu4cZuTYGAGMHBtj685hBg+MtOwYaVbkWSJpj6QfSXpc0nVJfL6k3ZIOJ78bLmpsVlRe/CIbn69stu86xNjx8VNiY8fH2b7rUMuOkaYN/E3gdyPiB5LOAfZL2g18EvhuRNwq6QbgBuDzLcvMZuzqOx/me0+9fHJ73YXzufvTl+SYkVn3efHYWKb4TEx7Bx4RRyLiB8nrV4EngEXAR4EdyW47gIGWZWUzVl+8Ab731MtcfefDOWVk1p3On9ebKT4TmdrAJS0DVgP7gAURcSR56++ABS3LymasvnhPF+9mXvwiG5+vbLZsXEHv3J5TYr1ze9iycUXLjpG6gEt6B/Ad4LMR8crk96LWlaVhdxZJmyUNSRoaHR2dVbJmreTFL7Lx+cpmYPUibrlqJYvm9SJg0bxebrlq5Yx6oTSTqh+4pLnUivfdEbEzCb8kaWFEHJG0EDja6LMRcQdwB9S6EbYgZ7OWeWXs+Gm37VS/86Hlp3SL+50PLc87pUIbWL2opQW7XppeKAK+CjwREbdNeus+4Nrk9bXAva1Pz7J6W5MR883i3WzNzbt56dU3Tom99OobrLl5d04ZFVsnusVZNmmaUNYBnwAulXQw+bkcuBXYIOkw8BvJtuXszSbfcZrFu1l98Z4u3u060S3Ospm2CSUi/gZodv/24damY2ZF1YlucZZNKeZCadVwVDObufPn9TLSoFi3slucZVP4ofRud7N2WXDOGZni3a4T3eIsm8IXcLe7Wbvsu3HDlGK94Jwz2HfjhpwyKrZOdIuzbArfhOJ2N2snF+ts2t0tzrIp/B14J4ajmpmVUeEL+JaNK5g759ROMHPnyO1uTZzV07jDULO4mZVX4ZtQgKmdGF2Lmvrgsnc2nPfkg8s8228jnrkxm22Dw17tqUAKfwe+fdchjo+fOgrl+Hj4IWYTnswqPc/cmM22wWHueuQ5xpNVvMYjuOuR59g2OJxzZt2r8AXcDzGtXfzHLpt79j2fKW7tV/gC7oeYZsUw3mT93GZxa7/CF3APHjArhh41fvjULG7tV/gC7sEDZsWwac2STHFrv1L0QvHgAbP8TfQ2cS+U4ihFATezYrhpYKULdoG4gJtZastueGBK7Jlbr8ghk3LYcNteDh997eR2q5egK3wbuJkVQ6Pifbp4t6sv3gCHj77Ghtv2tuwYaZZU+5qko5IemxT7gqSRuhV6zMwsUV+8p4vPRJo78K8DlzWI3x4Rq5KfB1uWkZmZpTJtAY+IvwY8NM3MrGBm0wb+GUmPJk0sTWdKkrRZ0pCkodHR0VkcztLwbIRmxbD8vLMzxWdipgX8y8CFwCrgCPDHzXaMiDsioj8i+vv6+mZ4OEvrl+ONhzU3i3ezRU2mY2gW73bNepu4F0pju69fP+XG6awe5d8LJSJeiojxiDgB3Alc3LKMzDqk0QK9p4t3u/dubdzbpFm8211958NTbpx+OR4tne1yRgVc0sJJm78JPNZsXzOrhjebfIlrFu92nZjtctqBPJLuAdYD50p6AfgDYL2kVUAAzwC/1bKMzMwslWkLeERsahD+ahtyMTOzDDwSs2Ka9TVxHxSzzlp34fxM8ZlwAa+YZs2RbqY066y7P33JlGLd6jVXPZlVxfRIDVdI8aT7Zp3X7gWyfQdeMZ50P71ODLQwaycX8Iq5aWAl16xdevKOu0fimrVLPYdzA7uvXz+lWLd6us8q8R+84lF0cEHS/v7+GBoa6tjxzKy12j2/tTUmaX9E9NfH3QZuXW3wwAjbdx3ixWNjnD+vly0bV3j5vtNwsS4WF3DrWoMHRti6c5ix4+NAbQj91p3DAC7iVgpuA7eutX3XoZPFe8LY8XG27zqUU0Zm2biAW9d6scmkVc3iZkXjAm5d6/wm08Y2i5sVjQu4da0tG1dkilvtucG6Wx/ighseYN2tDzF4YCTvlLqaC7h1rT/dczhTvNtNPPQdOTZG8NZDXxfx/LiAW9fqxKrhVeKHvsXjAm5mqfihb/FMW8CTRYuPSnpsUmy+pN2SDie/my5qbGbV4Ie+xZPmDvzrwGV1sRuA70bEcuC7ybZZqXhuj2y2bFxB79yeU2K9c3v80DdH0xbwiPhroH4Rt48CO5LXO4CBFudl1naezCqbgdWLuOWqlSya14uARfN6ueWqlR61mqNUk1lJWgbcHxHvS7aPRcS85LWAn01sN/jsZmAzwNKlSz/47LPPtiZzM7Mu0Wwyq1k/xIzaX4CmfwUi4o6I6I+I/r6+vtkezszMEjMt4C9JWgiQ/D7aupTMzCyNmRbw+4Brk9fXAve2Jh0zM0srTTfCe4CHgRWSXpD0KeBWYIOkw8BvJNtmZtZB084HHhGbmrz14RbnYmZmGXR0STVJo8BsuqGcC/x9i9JpJeeVXhFzAueVlfPKZrZ5vTsipvQC6WgBny1JQ4260uTNeaVXxJzAeWXlvLJpV16eC8XMrKRcwM3MSqpsBfyOvBNownmlV8ScwHll5byyaUtepWoDNzOzt5TtDtzMzBIu4GZmJVXIAi7pMkmHJP1Y0pS5xiWdKembyfv7ktkS887pk5JGJR1Mfv5Du3NKjjtlwY269yXpvyd5PyrpAwXJa72kn086X7/fgZyWSNoj6UeSHpd0XYN9On6+UuaVx/k6S9L3Jf0wyeuLDfbJ41pMk1de12OPpAOS7m/wXuvPVUQU6gfoAZ4C3gOcAfwQ+Ed1+/wn4M+S1x8HvlmAnD4J/EkO5+ufAR8AHmvy/uXAXwEC1gL7CpLXempTFHfyXC0EPpC8Pgf4fw3+P3b8fKXMK4/zJeAdyeu5wD5gbd0+Hb0WM+SV1/V4PfCXjf5fteNcFfEO/GLgxxHxdES8AXyD2gISk01eUOLbwIeTecnzzCkX0XjBjck+CvxF1DwCzJuYSTLnvDouIo5ExA+S168CTwD1qxF0/HylzKvjknPwi2RzbvJT3+uh09di2rw6TtJi4ArgK012afm5KmIBXwQ8P2n7Bab+Yz65T0S8CfwceFfOOQH8y+Rr97clLWljPlmkzT0PlyRfg/9K0j/u5IGTr6+rqd29TZbr+TpNXpDD+UqaBA5SmzJ6d0Q0PV8duhbT5gWdvx6/BHwOONHk/ZafqyIW8LL638CyiPgnwG7e+ktrjf2A2vwO7wf+BzDYqQNLegfwHeCzEfFKp447nWnyyuV8RcR4RKwCFgMXS3pfJ447nRR5dfR6lPQR4GhE7G/nceoVsYCPAJP/Wi5OYg33kfQ24FeBn+aZU0T8NCJeTza/AnywjflkkeZ8dlxEvDLxNTgiHgTmSjq33ceVNJdakbw7InY22CWX8zVdXnmdr0nHPwbsYeoC552+FlPllcP1uA64UtIz1JpYL5V0V90+LT9XRSzgfwssl3SBpDOoNfbfV7fP5AUlPgY8FMmTgbxyqmsnvZJaO2YR3Af8u6R3xVrg5xFxJO+kJP3aRPufpIup/Vts64WfHO+rwBMRcVuT3Tp+vtLkldP56pM0sfZtL7ABeLJut05fi6ny6vT1GBFbI2JxRCyjVh8eiohr6nZr+bmadj7wTouINyV9BthFrffH1yLicUn/FRiKiPuo/WP/n5J+TO1B2ccLkNN/lnQl8GaS0yfbmdME1RbcWA+cK+kF4A+oPdQhIv4MeJBaz4ofA/8A/PuC5PUx4D9KehMYAz7e7guf2l3SJ4DhpP0U4PeApZPyyuN8pckrj/O1ENghqYfaH4xvRcT9eV6LGfLK5Xqs1+5z5aH0ZmYlVcQmFDMzS8EF3MyspFzAzcxKygXczKykXMDNzErKBdzMrKRcwM3MSur/A6xFhQLt6CFWAAAAAElFTkSuQmCC\n" }, "metadata": { @@ -182,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -208,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -236,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -261,7 +261,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PackagePrice
70013.636364
71016.363636
72016.363636
73015.454545
74013.636364
.........
1738230.000000
1739228.750000
1740225.750000
1741224.000000
1742224.000000
\n

415 rows × 2 columns

\n
" }, "metadata": {}, - "execution_count": 7 + "execution_count": 6 } ], "source": [ @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -290,7 +290,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -319,14 +319,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAffUlEQVR4nO3de5BkZZnn8e+vq1qlhOFaMr1gVSIYS3Tj0ErJ4rgq0o3DKKE4ugZGobigKV2wq+HgtWJXd2NqZowYRdaJrjHlzqQDDurIos5INzCAoyzV0HJp3BW1q4Ro6eYuFgFW9rN/5Kmu6uqsqjzZefL6+0RkdOab5+R56kA+9dbznvO+igjMzKx7rGh2AGZm1lhO/GZmXcaJ38ysyzjxm5l1GSd+M7Mu09vsAKpxxBFHRC6Xa3YYZmZtZcuWLY9HRP/C9rZI/LlcjomJiWaHYWbWViRNVmp3qcfMrMs48ZuZdRknfjOzLuPEb2bWZZz4zcy6jBO/mWWuWCySy+VYsWIFuVyOYrHY7JC6Wltczmlm7atYLJLP55mengZgcnKSfD4PwPDwcDND61ru8ZtZpkZHR/ck/VnT09OMjo42KSLLtMcvaTvwW6AEzETEkKTDgOuBHLAdeF9EPJVlHGbWPFNTU6naLXuN6PG/NSLWRsRQ8vozwOaIeDWwOXltZh1qYGAgVbtlrxmlnncBVyfPrwbOakIMZtYgY2Nj9PX17dXW19fH2NhYkyKyrBN/AD+UtEVSPmk7MiJ2JM9/AxxZaUdJeUkTkiZ27dqVcZhmlpXh4WEKhQKDg4NIYnBwkEKh4IHdJlKWa+5KOioiHpX0CuBm4L8AN0bEIfO2eSoiDl3qc4aGhsKTtJmZpSNpy7wy+x6Z9vgj4tHk353Ad4CTgcckrUqCWgXszDIGMzPbW2aJX9LLJR00+xx4G/AAcCNwbrLZucB3s4rBzMz2leXlnEcC35E0e5xvRMQ/S7ob+Kak84FJ4H0ZxmBmZgtklvgj4pfAiRXanwDWZXVcMzNbmu/cNTPrMk78ZjXwpGPWzjxJm1lKnnTM2p17/GYpedIxa3dO/GYpedIxa3dO/GYpedIxa3dO/GYpedIxa3dO/GYpedIxa3dO/GY1GB4eZvv27ezevZvt27c76S9jZGSE3t5eJNHb28vIyEizQ+pqvpzTzDI1MjLC+Pj4ntelUmnP640bNzYrrK6W6bTM9eJpmc3aV29vL6VSaZ/2np4eZmZmmhBR92jKtMxmZpWS/lLtlj0nfjPLVE9PT6p2y54Tv5llanY6i2rbLXse3DWzTM0O4BYKBUqlEj09PeTzeQ/sNpEHd83MOlTTBncl9Ui6V9JNyeurJP1K0tbksTbrGMzMbE4jSj0fAx4C/mBe2ycj4oYGHNvMzBbItMcv6WjgHcBlWR7HzMyql3Wp5yvAp4DdC9rHJN0n6RJJL620o6S8pAlJE7t27co4TDOz7pFZ4pd0JrAzIrYseOuzwPHA64HDgE9X2j8iChExFBFD/f39WYVpZtZ1suzxvxF4p6TtwHXAaZL+PiJ2RNkLwJXAyRnGYGZmC2SW+CPisxFxdETkgLOBWyLiHEmrACQJOAt4IKsYzMxsX824gasoqR8QsBW4oAkxmJl1rYYk/oi4DbgteX5aI45pZmaVea4eM7Mu48RvZtZlnPjNzLqME7+ZWZdx4jcz6zJO/GZmXcaJ36wGa9asQdKex5o1a5odklnVnPjNUlqzZg3btm3bq23btm1O/tY2nPjNUlqY9JdrN2s1TvxmZl3Gid/MrMs48ZultHr16lTtZq3Gid8spQcffHCfJL969WoefPDBJkVklk4zpmU2a3tO8tbO3OM3M+syTvxmZl0m88QvqUfSvZJuSl4fI+kuSQ9Lul7SS7KOwazeRkZG6O3tRRK9vb2MjIw0OySzqjWix/8x4KF5r78IXBIRxwFPAec3IAazuhkZGWF8fJxSqQRAqVRifHzcyd/aRqaJX9LRwDuAy5LXAk4Dbkg2uZrygutmbaNQKKRqN2s1Wff4vwJ8CtidvD4ceDoiZpLXjwBHVdpRUl7ShKSJXbt2ZRymWfVme/rVtpu1mswSv6QzgZ0RsaWW/SOiEBFDETHU399f5+jMatfT05Oq3azVZNnjfyPwTknbgesol3guBQ6RNHv/wNHAoxnGYFZ3+Xw+VbtZq8ks8UfEZyPi6IjIAWcDt0TEMHAr8N5ks3OB72YVg1kWNm7cyIYNG/b08Ht6etiwYQMbN25scmTW7oaGQNr7sXlz/Y+jiKj/py48iHQqcHFEnCnpVZT/AjgMuBc4JyJeWGr/oaGhmJiYyDxOM7NGk5bfptY0LWlLRAwtbG/IlA0RcRtwW/L8l8DJjTiumVmr+d3v4MADq9/+5pvrH4Pn6jEzy9idd8Kb3pR+v6wKMp6ywawGvnPXlnPhhXN1+mqT/qteVU72s4+suMdvltLsnbuzZu/cBTzA2+Wqqdcv9NWvwkUX1T+WpTRkcHd/eXDXWklvb2/Fm7V6enqYmZmpsId1qt27oZbbNx5+GI49tv7xLNTUwV2zTuI7d7vb5CTkcun3m5mp7ZdEFlzjN0vJd+52n8sum6vXp0n68+v1rfS/hxO/WUq+c7c7nHjiXLL/yEeq2+f88xszOLu/XOoxS2l2ALdQKFAqlejp6SGfz3tgtwPUMjh7yy3w1rfWP5YsucdvVoONGzcyMzNDRDAzM+Okv4xisUgul2PFihXkcjmKxWKzQwLguef2nh6hWs8+O9erb7ekD+7xm1nGisUi+Xye6elpACYnJ/eUxYaHhxsezx13wJvfnH6/Vi7dpOUev5llanR0dE/SnzU9Pc3o6GjDYhgZmevVV5v0jz++Per1tXCP36wGqlAXaId7YpphamoqVXu91FKvHx+HCy6ofyytxonfLKVKSX+23cl/XwMDA0xOTlZsr6dab6b6xS/KUyV0E5d6zCxTY2Nj9PX17dXW19fH2NjYfn/29u1zJZw0Sb9UmivhdFvSByd+M8vY8PAwhUKBwcFBJDE4OEihUKh5YPfrX59L9sccU/1+8+v1K7o882U2V4+klwG3Ay+lXFK6ISI+L+kq4C3AM8mmH4qIrUt9lufqsVayWKkHXOfPymteAw88kG6fj3wECoVs4mkXzZir5wXgtIh4TtJK4E5JP0je+2RE3JDhsc2szdUyOHvbbfCWt9Q9lI6T5Zq7ERHPJS9XJg93h6ztrVu3LlW7VaceN1M56Vcn00qXpB5JW4GdwM0RcVfy1pik+yRdIumlWcZgVm+bF1n9erF2W9y//utcoj/ooOr3m1+vT7OflWWa+COiFBFrgaOBkyWdAHwWOB54PeUF1z9daV9JeUkTkiZ27dqVZZhm1kAf/ehcsj/11Or2Wb26c2+maoaGjG1HxNPArcAZEbEjKQO9AFzJIguvR0QhIoYiYqi/v78RYZpZRuaXcKodcP3a1+YS/YMPZhtft8ks8Uvql3RI8vwA4HTgZ5JWJW0CzgJSjtWbNZdr/MsrlWqr1//qV3PJ3rNcZyfLq3pWAVdL6qH8C+abEXGTpFsk9QMCtgJdcIO0dZIdO3akau8W99wDJ52Ufr9SydfVN1pmiT8i7gNeW6H9tKyOadYI27ZtS9XeyT78Ybj88vT7uU7fXJ6rx8xSqeX6+qOOgkceqX8sVhv/gWVmy6qlXn/ttXP1eif91uLEb5bS6tWrU7W3oyeeqC3ZP/nkXLI/55zs4rP948RvltKqVatStbeLq66aS/RHHFH9fvOvrz/00MzCszpyjd8spU66c/fII2HnzvT7eXC2vbnHb9Zl5pdwqk36F1zgO2c7Saoev6S+iJhefkszaxWlEvTW8Lf91q1w4on1j8ear6oev6Q/lrQN+Fny+kRJGzONzKxFtcOdu1u2zPXq0yT9+StTOel3rmpLPZcAfwI8ARARPwWqXKverLNs2rRpnyS/bt06Nm3a1KSIys47by7ZD+2z9MbivDJV96m6LxARv16w8lCp/uGYtYdmJ/lZtdxMdcwx8Mtf1j8Wax/V/n7/taQ/BkLSSkkXAw9lGJeZLaKW6+uLxblevZO+VdvjvwC4FDgKeBT4IXBhVkGZ2ZzHH4daZiZ/8klfV2+VVdXjj4jHI2I4Io6MiFdExDkR8UTWwZm1qpGREXp7e5FEb28vIyMjdf38K6+c69WnSfq+mcqqUe1VPVfPzq2fvD5U0hXZhWXWukZGRhgfH6dUKg9zlUolxsfH9zv59/fPJfvzzqt+P19fb2lVW+P/o2QVLQAi4ikqTLls1g0KiywhtVj7UubX6x9/vLp9LrrIyd72T7U1/hWSDk0SPpIOS7GvWUeZ7elX2z7fzAysXJn+mPfdB695Tfr9zCqpNnl/CfixpH+kvHLWe4GxpXaQ9DLgduClyXFuiIjPSzoGuA44HNgCfCAiXqwxfrOG6+npqZjke3p6Km4/MQGvf33643hlKstKtYO71wB/BjwG/Ab4s4i4dpndXgBOi4gTgbXAGZJOAb4IXBIRxwFPAefXGrxZM+QXWQx2fvu5586VcNIkfd9MZQDFYpFcLseKFSvI5XIUi8W6fr5iiSKhpD+IiGeT0s4+IuLJqg4i9QF3AhuA7wF/GBEzkt4AfCEi/mSp/YeGhmJiYqKaQ5ll7tBDD+Xpp5+u8E76gvtxx8HPf77/MVnnKBaL5PN5pqfnpkXr6+ujUCgwPDyc6rMkbYmIfe7jXq5P8Y3k3y3AxLzH7OvlDtojaSuwE7gZ+AXwdETMJJs8QvneALO2sXfSj3mP6lx33Vyv3knfFhodHd0r6QNMT08zOjpat2MsWeOPiDNVnqfhLRExlfbDI6IErE0uBf0OcHy1+0rKA3mAgYGBtIc2y8SWLVBLz/7pp+Hgg+sejnWgqanKqXax9losW0WMci3oe/tzkORS0FuBNwCHSJr9hXM05TuBK+1TiIihiBjqr+W2RbM6Ofjg/Z/8zEnfqrVYR7eeHeBqh4/ukZTqugRJ/bM3fUk6ADid8vw+t1K+KgjgXOC7aT7XrBHmX1//7LPV7+fr621/jY2N0dfXt1dbX18fY2NLXkiZSrWJ/z8AP5H0C0n3Sbpf0n3L7LMKuDXZ7m7g5oi4Cfg08AlJD1O+pPPyWoM3q6daJj9L9uSQQw51sre6GB4eplAoMDg4iCQGBwdrGthdypJX9ezZSBqs1B4Rk3WLZAm+qsey8PzzsKBjVZXx8fJShGatbrGrepYc3E1uwroAOA64H7h83hU5Zm1ndBT+8i/T7zczA4vcn2XWdpa7c/dq4PfAHcCfAquBj2UdlFk91bJYCbhOb51ruRr/6mQK5q9RHpB9UwNiMttvtdbrPThrrWD9+vVI2vNYv359XT9/ucT/+9knLvFYq6sl2Z90kpO9tZb169ezefPmvdo2b95c1+S/3JQNJeB3sy+BA4Dp5HlExB/ULZIleHDXKrn7bjj55PT7PfwwHHts/eMxqwct0XOp5mKcBZ+VfnA3IjycZS2lt7c8a2Va7s2bzfGc+tbyPDhrVl+e+NVakgdnrVutW7cuVXstnPitJfzud7Ul+8suc7K3zrJp06Z9kvy6devYtGlT3Y7hUo81zWc+A1/8Yvr9fDOVdbp6JvlKnPitoVyvN2s+J37LnJO9WWtxjd8yUUu9/uSTXa83awQnfquLf/u32pL99u1zif6uuzILz8zmcanHauYSjll7cuK3VJzszdpfZqUeSa+UdKukbZIelPSxpP0Lkh6VtDV5vD2rGKw+fDOVWWfJssY/A/x5RKwGTgEulLQ6ee+SiFibPL6fYQxWg+eeqy3ZX3GFk71ZO8is1BMRO4AdyfPfSnoIOCqr49n+ufhi+NKX0u9XKsEKXyJg1lYaUuOXlANeC9wFvBG4SNIHgQnKfxU81Yg4bG+u15t1p8z7apIOBL4FfDwingXGgWOBtZT/IqjYz5SUlzQhaWLXrl1Zh9k1XK83s0wTv6SVlJN+MSK+DRARj0VEKSJ2A18HKi6lERGFiBiKiKH+/v4sw+x4tST7oSEne7NOleVVPQIuBx6KiC/Pa181b7N3Aw9kFUO3+tGPakv2k5Nzif7uu7OLrxMUi0VyuRwrVqwgl8tRLBabHZJZ1bKs8b8R+ABwv6StSdvngPdLWgsEsB34aIYxdA3X6xunWCySz+eZnp4GYHJyknw+D8Dw8HAzQzOrypJr7rYKr7lbmZN9c+RyOSYnJ/dpHxwcZPv27Y0PyGwRNa25a63Hyb75pqamUrWbtRpfgd3inn22tnr9Ndd4cDYrAwMDqdrNWo0Tfwu68MK5RH/wwdXvVyrNJfoPfCC7+Lrd2NgYfX19e7X19fUxNjbWpIjM0nGpp0W4hNM+ZgdwR0dHmZqaYmBggLGxMQ/sWtvw4G4TOdmbWZYWG9x1qafBaqnXv+UtrtebWf048WfstttqS/ZTU3OJ/rbbsorOzLqRa/wZcAnHzFqZE3+dONmbWbtw4t8PTvZm1o5c40/hmWdqq9dfe60HZ82sdbjHv4yRERgfT7+fV6Yys1blxF+BSzhm1smc+BNO9mbWLTq6GDEyMkJvby+S6O3tZWRkZK/3a6nXn3GG6/Vm1t46NvGPjIwwPj5OqVQCoFQqMT7+cE3J/te/nkv0P/hBRgGbmTVIZqUeSa8ErgGOpLzaViEiLpV0GHA9kKO8Atf7IuKpeh+/UCgkz2rrlrs3b2adKsse/wzw5xGxGjgFuFDSauAzwOaIeDWwOXldd+Wefrrs7RKOmXWDzBJ/ROyIiHuS578FHgKOAt4FXJ1sdjVwVhbH7+npqWo7J3sz6zYNqfFLygGvBe4CjoyIHclbv6FcCqq0T17ShKSJXbt2pT7m7OLXC51++mVO9mbW1TJP/JIOBL4FfDwinp3/XpQXA6iYfiOiEBFDETHU39+f+rgbN25kw4YRenp6AdHT08uGDSP88IcfruGnMDPrHJkmfkkrKSf9YkR8O2l+TNKq5P1VwM6sjr9x40ZmZmaICGZmZti4cWNWhzIzq5tisUgul2PFihXkcjmKxWJdPz+zxC9JwOXAQxHx5Xlv3Qicmzw/F/huVjGYmbWbYrFIPp9ncnKSiGBycpJ8Pl/X5J/Z0ouS/iNwB3A/sDtp/hzlOv83gQFgkvLlnE8u9VmduvSimdlCuVyOycnJfdoHBwfZvn17qs9abOnFzK7jj4g7gcVuk1qX1XHNzNrZ1NRUqvZadOydu2Zm7WhgYCBVey06OvFnPUBiZlZvY2Nj9PX17dXW19fH2NhY3Y7RsYm/EQMkZmb1Njw8TKFQYHBwEEkMDg5SKBQYHh6u2zEyG9ytp1oGd+s5QGJm1o4WG9zt2B5/IwZIzMzaUccm/kYMkJiZtaOOTfyNGCAxM8tC296522yNGCAxM6u3tr5zt558566ZdYtG3LnbsT1+M7N25Dt399OaNWuQtOexZs2aZofU0pZbnN7Msuc7d/fDmjVr2LZt215t27Ztc/JfROXF6ced/M0arBEXpnRsjb88K3Rl7fAzN1pvb++epD9fT08PMzMzTYjIrHsVi0VGR0eZmppiYGCAsbGxmi5MWazG78RvgM+XWSfy4K4tabHF6atdtN7M2ocTvwGLL06/WLuZta8sl168QtJOSQ/Ma/uCpEclbU0eb8/q+JZOeXH6DXt6+D09PWzYsMHrFJt1oCyXXnwz8BxwTUSckLR9AXguIv4mzWe5xm9mll7Da/wRcTuw5Fq6ZmbWeM2o8V8k6b6kFHToYhtJykuakDSxa9euRsZnZtbRGp34x4FjgbXADuBLi20YEYWIGIqIof7+/tQHevnLX56q3cysWzQ08UfEYxFRiojdwNeBk7M61vPPP5+q3WD9+vV7TXGxfv36ZodkZhloaOKXtGrey3cDDyy27f7avXt3qvZut379ejZv3rxX2+bNm538zTpQb1YfLOkfgFOBIyQ9AnweOFXSWiCA7cBHszq+pbMw6S/XbmbtK7PEHxHvr9B8eVbHMzOz6vjOXTOzLuPEbwCsW7cuVbuZtS8nfgNg06ZN+yT5devWsWnTpiZFZGZZyazG32yHH344TzzxRMV2q8xJ3qw7dGyP/9JLL2XlypV7ta1cuZJLL720SRGZmbWGjk38w8PDXHnllQwODiKJwcFBrrzyyppWsTEz6yQduwKXmVm368oVuIrFIrlcjhUrVpDL5SgWi80Oycys6Tp2cLdYLJLP55mengZgcnJyz2pSLveYWTfr2B7/6OjonqQ/a3p6mtHR0SZFZGbWGjo28U9NTaVqNzPrFh2b+AcGBlK1m5l1i45N/GNjYxWv4x8bG2tSRGZmraFjEz/su+D6Uguwm5l1i45N/KOjo7z44ot7tb344ose3DWzrtexid+Du2ZmlWWW+CVdIWmnpAfmtR0m6WZJP0/+PTSr43tw18yssix7/FcBZyxo+wywOSJeDWxOXmdibGyMvr6+vdr6+vo8uGtmXS+zxB8RtwNPLmh+F3B18vxq4Kysjj88PEyhUNhrkrZCoeC7ds2s62U6SZukHHBTRJyQvH46Ig5Jngt4avZ1hX3zQB5gYGDgpMnJycziNDPrRC03SVuUf+Ms+lsnIgoRMRQRQ/39/Q2MzMysszU68T8maRVA8u/OBh/fzKzrNTrx3wicmzw/F/hug49vZtb1sryc8x+AHwP/XtIjks4H/ho4XdLPgfXJazMza6DM5uOPiPcv8ta6rI5pZmbLa4ulFyXtAvbnsp4jgMfrFE49Oa7qtWJM4LjSclzp7G9cgxGxz9UxbZH495ekiUqXNDWb46peK8YEjistx5VOVnF17Fw9ZmZWmRO/mVmX6ZbEX2h2AItwXNVrxZjAcaXluNLJJK6uqPGbmdmcbunxm5lZwonfzKzLdFTil3SGpP8r6WFJ+8z1L+mlkq5P3r8rmT202TF9SNIuSVuTx4ezjik57j4L5Sx4X5L+VxL3fZJe1yJxnSrpmXnn6783IKZXSrpV0jZJD0r6WIVtGn6+qoyrGefrZZL+j6SfJnH9jwrbNOO7WE1czfo+9ki6V9JNFd6r/7mKiI54AD3AL4BXAS8BfgqsXrDNCPB3yfOzgetbIKYPAX/bhPP1ZuB1wAOLvP924AeAgFOAu1okrlMpT/XdyHO1Cnhd8vwg4P9V+O/Y8PNVZVzNOF8CDkyerwTuAk5ZsE1Dv4sp4mrW9/ETwDcq/bfK4lx1Uo//ZODhiPhlRLwIXEd54Zf55i8EcwOwLlkXoJkxNUVUXihnvncB10TZT4BDZmdWbXJcDRcROyLinuT5b4GHgKMWbNbw81VlXA2XnIPnkpcrk8fCq0ga/V2sNq6Gk3Q08A7gskU2qfu56qTEfxTw63mvH2HfL8GebSJiBngGOLzJMQG8JykP3CDplRnGk0a1sTfDG5I/138gaU0jD5z8mf1ayr3F+Zp6vpaIC5pwvpLSxVbKU6/fHBGLnq8GfRerjQsa/338CvApYPci79f9XHVS4m9X/xvIRcQfATcz95vdKruH8vwjJwJfBf6pUQeWdCDwLeDjEfFso467nGXiasr5iohSRKwFjgZOlnRCI467nCriauj3UdKZwM6I2JLlcRbqpMT/KDD/t/PRSVvFbST1AgcDTzQzpoh4IiJeSF5eBpyUYTxpVHM+Gy4inp39cz0ivg+slHRE1seVtJJyci1GxLcrbNKU87VcXM06X/OO/zRwK3DGgrca/V2sKq4mfB/fCLxT0nbKpeDTJP39gm3qfq46KfHfDbxa0jGSXkJ5EOTGBdvMXwjmvcAtkYyYNCumBXXgd1Ku07aCG4EPJlernAI8ExE7mh2UpD+crW9KOpny/8OZJozkeJcDD0XElxfZrOHnq5q4mnS++iXNrq19AHA68LMFmzX6u1hVXI3+PkbEZyPi6IjIUc4Pt0TEOQs2q/u5ymw+/kaLiBlJFwH/Qvlqmisi4kFJ/xOYiIgbKX9JrpX0MOUBxLNbIKb/KumdwEwS04eyjGmWygvlnAocIekR4POUB7uIiL8Dvk/5SpWHgWngP7dIXO8FNkiaAZ4Hzs46YVDulX0AuD+pDwN8DhiYF1czzlc1cTXjfK0CrpbUQ/kXzTcj4qZmfhdTxNWU7+NCWZ8rT9lgZtZlOqnUY2ZmVXDiNzPrMk78ZmZdxonfzKzLOPGbmXUZJ37rKpJKyayLD0j6R0l9NXzGFyRdnEV8Zo3gxG/d5vmIWBsRJwAvAhc0OyCzRnPit252B3AcgKR/krQlmac9P7uByusp3JNMcrZ54QdI+kgy+dkByfO7k22/NfvXhKRjJf1E0v2S/kLSc/P2/2Syz32qMD+8WRac+K0rJXOe/Clwf9J0XkScBAxRvnvzcEn9wNeB9ySTnP2nBZ9xEXAmcFZEPA98OyJen2z7EHB+sumlwKUR8RrKs3bO7v824NWUp+9eC5wk6c3Z/MRmczpmygazKh0wb3qDOyjfDg/lZP/u5PkrKSfkfuD2iPgVQETMXyfgg5Snyj0rIn6ftJ0g6S+AQ4ADKU/VAfAG4Kzk+TeAv0mevy153Ju8PjA57u37+0OaLcWJ37rN88m0vHtIOhVYD7whIqYl3Qa8bJnPuZ9yL/1o4FdJ21WUfxH8VNKHKM85tBQBfxURX0sRv9l+c6nHrDzN7VNJ0j+e8tKJAD8B3izpGABJh83b517go8CNkv5d0nYQsCOZKnl43rY/Ad6TPJ8/wda/AOcl8+kj6ShJr6jjz2VWkRO/Gfwz0CvpIeCvKSdqImIXkAe+LemnwPXzd4qIO4GLge8lc9z/N8orYP2Ivaf7/TjwCUn3UR5MfibZ/4eUSz8/lnQ/5WX1DsrqhzSb5dk5zTKWXN3zfESEpLOB90dES6y9bN3JNX6z7J0E/G2yIMrTwHlNjse6nHv8ZmZdxjV+M7Mu48RvZtZlnPjNzLqME7+ZWZdx4jcz6zL/H1RP0V64LOVqAAAAAElFTkSuQmCC\n" }, "metadata": { @@ -348,7 +348,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -359,7 +359,7 @@ ] }, "metadata": {}, - "execution_count": 12 + "execution_count": 10 } ], "source": [ @@ -368,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -393,7 +393,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MonthVarietyCityPackagePrice
70131013.636364
71131016.363636
72231016.363636
73231015.454545
74231013.636364
..................
1738119230.000000
1739119228.750000
1740119225.750000
1741119224.000000
1742119224.000000
\n

415 rows × 5 columns

\n
" }, "metadata": {}, - "execution_count": 13 + "execution_count": 11 } ], "source": [ @@ -405,19 +405,19 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ], - "text/html": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Month Variety City Package Price
Month1.0000000.171330-0.188728-0.144847-0.148783
Variety0.1713301.000000-0.248441-0.614855-0.863479
City-0.188728-0.2484411.0000000.3016040.323640
Package-0.144847-0.6148550.3016041.0000000.606171
Price-0.148783-0.8634790.3236400.6061711.000000
" + "text/html": "\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Month Variety City Package Price
Month1.0000000.171330-0.188728-0.144847-0.148783
Variety0.1713301.000000-0.248441-0.614855-0.863479
City-0.188728-0.2484411.0000000.3016040.323640
Package-0.144847-0.6148550.3016041.0000000.606171
Price-0.148783-0.8634790.3236400.6061711.000000
" }, "metadata": {}, - "execution_count": 14 + "execution_count": 12 } ], "source": [ @@ -434,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -451,14 +451,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU1f3/8dcnCVsUCwpaiCXRilawLhVRq1VL61J3rTutC2qUYN2KG6lbK1+xRcXaokalxRrcKK61tVapWn9uuFAFW8Ul1CCLCm5BIMn5/XHucJOQkJkk997JzPv5eMwj95zMzP1kYD5z56zmnENERPJHQdIBiIhIvJT4RUTyjBK/iEieUeIXEckzSvwiInmmKOkA0jFgwABXVlaWdBgiIt3Kyy+//JFzbmDL+m6R+MvKypgzZ07SYYiIdCtmVtNavZp6RETyjBK/iEieUeIXEckzSvwiInlGiV9EJM8o8YuI5BklfhGRPKPELyKSZ5T4RSRS1dXVlJWVUVBQQFlZGdXV1UmHlPe6xcxdEemeqqurKS8vp66uDoCamhrKy8sBGD16dJKh5TVd8YtIZCorK9cm/ZS6ujoqKysTikhAiV9EIrRw4cKM6iUeSvwiEpkhQ4ZkVC/xUOIXkcgceOCBGdVLPJT4RSQyjz76aEb1Eo9IR/WY2fvA50ADUO+cG2FmGwP3AGXA+8AxzrnlUcYhIslQG392iuOK//vOuR2dcyOC8sXAE865ocATQVlEcpDa+LNTEk09hwHTg+PpwOEJxCAiMZg4cSLFxcXN6oqLi5k4cWJCEQlEn/gd8Hcze9nMyoO6zZxzHwbHi4HNWnugmZWb2Rwzm7Ns2bKIwxSRKIwePZqqqipKS0sxM0pLS6mqqtLkrYSZcy66Jzcrcc7VmtmmwOPAz4CHnHP9mtxnuXOu//qeZ8SIEU577oqIZMbMXm7SzL5WpFf8zrna4OdS4H5gJLDEzAYFQQ0ClkYZg4iINBdZ4jezDcysb+oY2A94A3gIOCm420nAg1HFICIi64pyOOdmwP1mljrPDOfc38zsJeBeMzsVqAGOiTAGERFpIbLE75x7F9ihlfqPgR9EdV4REVk/zdwV6YCKigqKioowM4qKiqioqEg6pKyl9fizj9bjF8lQRUUFN91009pyQ0PD2vLUqVOTCisraT3+7BTpcM6uouGckk2KiopoaGhYp76wsJD6+voEIspeZWVl1NTUrFNfWlrK+++/H39AeSaR4Zwiuai1pL+++nymtXqykxK/SIYKCwszqs9nfk2e3sApwKgW9ZIUJX6RDKXaqNOtz2fjx1+H2TPANPyajIfQo0cPrdWTMHXuimQo1YFbVVVFQ0MDhYWFlJeXq2O3hZdfhssuOwDnmi7SdjOwU1IhSUCduyLS5WbOhBNPhJUrW/vtNEpLf6nO3Rioc1dEIuccXHUVHH1006S/HJjU5F5jqKnZOv7gZC019YhIl1i5Ek49Fe66q2ntW8Ahwc9vAkcH9bfy+efQt2/MQQqgK36RDtHM3eYWL4bvf7950h81CmA3fNIHOAv4ODgu5ZJL4oxQmlLiF8lQauZuatx+auZuvib/116DkSPhhRfCujPPhL/9DXwzT8pS4Jy1pd//Hp55JqYgpRl17opkSDN3Qw88AKNHQ7AiAwUFcMMNMG4cmMHw4cOZP39+i0c9DBwMwNChMHcu9OkTa9h5Q527Il1EM3d9J+6kSXDEEWHS32gjePRROOssn/QB5s2bx7Bhw5o9dujQ69hoI3/89ttw+eUxBi6AEr9IxvJ95u5XX8FJJ9GsjX7LLeH552H//de9/4QJE5rtuXv55acyeXL4+2uvhZdeij5uCSnxi2Qon2fuLlniO23/9Kewbu+94cUXYdtt171/anXOmpoanHNrV+fs06c66PyFxkY45RRYtSqev0EA51zW33beeWcnkk3Gjh3rCgsLHeAKCwvd2LFjkw4pcnPnOjdkiHO+ocffTjvNuVWr2n5MaWmpA9a5lZaWunfeca64OHyuyy6L72/JF8Ac10pOVeeuiLTr4YfhhBPgiy98uaAAJk+Gc88N2/NbU1BQQGs5xsxobGzkhhv8cwAUFfllHrbfPoI/IE+pc1dEMuYc/OY3cNhhYdLv2xceegjOO2/9SR/aXoUzVX/WWfDd7/q6+noYM8b/lGgp8YtIq1at8on4wgv9BwDAFlvAc8/BQQel9xwTJ06kuLi4WV1xcfHa1TkLC+H226FXL/+7l1/2nb0SLSV+EVnHsmWw777wxz+GdXvu6SdpDR+e/vOMHj2aqqqqZqN6qqqqmm27+K1vNR/Sefnl8N//dv5vkLapjV9EmnnjDTjkEGi6eObJJ8PNN4dX5l1tzRrYbTd45RVf3mMPePpp35cgHac2fhFp16OP+jb3VNI3g1//GqZNiy7pA/To4c9RFCwb+eyzfkkHiYYSv4jgHFx/vb/S//xzX7fhhvDgg3DBBe134naFHXZoPins4ovhvfeiP28+UuIXyXOrV8MZZ8D55/vJVABDhvir7kMOiTeWykpIrfBQVwennx52LEvXUeIXyWMffwz77Qe33hrW7b67n4mbxHj6Xr18k0+qbf+JJ/yoH+laSvwieerNN2HXXeGpp8K6n/4UnnwSNtssubh23dXPEUj5+c+htja5eHKREr9IHnrsMT+K5p13wrqrr4bp06F37+TiSvnlL2GrrfzxZ5/59f3V5NN1lPhF8ohzcOONcOCBPqECFBfDrFm+MzWOTtx0FBc3b+J55JGWWzpKZyjxi3SAma1zy3Zr1kBFBZx9dtiJu/nm8K9/+XX1s81ee8HYsWH57LNh6dLk4sklSvwiGWoryWdz8v/kEzjgAD8JK2XXXX0n7k47JRdXe665xo8wAt8R/bOfJRtPrlDiF8lxb73l2/OffDKsO/54mD0bBg1KLq509O0LVVVh+d574f77k4snVyjxi+Swf/zDX9m//XZY96tfQXV199nndv/9/ZIRKRUVsHx5m3eXNCjxi+Som27yzTsrVvhynz5w333wi19kTyduuq67Dr7+dX+8eLGfbCYdp8QvkmPq631beEUFpPZ/HzwYnnkGjjoq2dg6qn9//0GW8sc/+iGp0jFK/CIZamtF22xY6XbFCr9W/u9+F9aNGOE3M9955+Ti6gqHHw7HHBOWy8vDdYUkM0r8Ih3Q2j6mSVuwwHfi/v3vYd3RR/uZuYMHJxdXV7rxRthkE3+8cKGfeyCZU+IXyQGzZ8PIkc03MLn8crj7bj8ZKldsuin89rdheerU5ktOSHoiT/xmVmhmr5rZI0F5CzN7wcwWmNk9ZtYz6hhEulo2TeC69Va/0FpqpEvv3n6W6xVX5OZGJscfDwcfHJZPO82v5Cnpi+O/xTnAm03K1wDXO+e2ApYDp8YQg0iXyZYJXPX1fjGz8vJwg/Kvf91fAR93XKyhxMrMT0TbaCNfXrAALrss2Zi6m0gTv5ltDhwE3BaUDRgFzAzuMh04PMoYRHLRp5/CoYfClClh3U47+U7ckSOTiysuJSXNN2W//nq/H7CkJ+or/inAhUCwMgibACucc8H1CR8AJa090MzKzWyOmc1ZtmxZxGGKdB/vvuu3R/zrX8O6I4/0wzU33zy5uOJ26qnwgx/448ZGGDMGVq1KNqbuIrLEb2YHA0udcy935PHOuSrn3Ajn3IiBAwd2cXQi3dPTT/sr+vnzw7rKSj8xa4MNkosrCWa+fyPVeT1/PkycmGxM3UWUV/x7AIea2fvA3fgmnhuAfmYWbKnM5oC2WBBJw7Rp8MMf+sXKwO9WdeedcNVVudmJm44ttoBJk8Ly1VfD3LnJxdNdRPbfxTl3iXNuc+dcGXAc8KRzbjQwG0jNHzwJeDCqGESiEPcEroYGv+H5qaf6pZXBD2ucPRtGj47klN3KuHGwxx7+uL7eN/mkOruldUlcJ1wEnG9mC/Bt/tpRU7qduCZwff65n7E6eXJYt/32fjnl3XeP5JTdTkGB37SlVy9ffuWV5q+XrCuWxO+c+6dz7uDg+F3n3Ejn3FbOuaOdc+qOEWnF++/7TtxHHgnrDj0Unn0WSksTCysrbbMNXHllWL7iCvjPfxILJ+vlacugSHZ79lnfifvGG2HdRRf5teg33DC5uLLZz38erke0apVv8kktUifNKfGLdECUM3fvuANGjYLUKOYePfxqlJMm5W8nbjqKinwHeFEwdOS555ovVich/TcSyVBUM3cbG+GSS+Ckk2D1al83YIDfOeukkzr11Hlj++1hwoSwPGGCn/cgzSnxi2SBL77wk7CaDk3cbjs/E3fPPZOLqzuqrPSvHfg1fE4/HbJg8dSsosQvkrCFC31yf7DJwOaDDvLt/GVliYXVbfXs6Zt8Us1iTz4Jt92WbEzZRolfJEHPP+87cZtOOvr5z/2HQGoRMsncLrv41zFl/Hj44IPk4sk2SvwiCZkxA/bZB5Ys8eUePfyV6eTJUFiYaGg54corYehQf/zZZ3DmmWrySVHiF8lQZ2fuNjb6Dc9Hjw4XFdtkE3j8cT87V7pGnz5+YlfKX/7iP2xFiV+kQzo6c/fLL/12iE0XE9t2W7+k8N57RxRswqqrqykrK6OgoICysjKqq6tjO/f3vueXdEg5++zwG1Y+U+IXickHH8Bee8GsWWHdAQf48ebf/GZycUWpurqa8vJyampqcM5RU1NDeXl5rMn/6qthyBB//Mkn8LOfxXbqrKXEL9IBmU7gevFF34n7yith3bnnwsMPw9e+FnGwCaqsrKSuxb6IdXV1VFZWxhZD375++eaU++5r/uGbj5T4RTKU6QSue+7xzTgffujLRUV+68Drrw9nmeaqhQsXZlQflf32g1NOCcsVFf7qP18p8YtExDm/WNhxx8FXX/m6/v3hscfgjDMSDS02Q1JtLGnWR+naa2HQIH+8ZAmcf37sIWQNJX6RCKxc6RN+0xUjt9nGd+KOGpVcXHGbOHEixaktsgLFxcVMTGCrrP794aabwvL06c23r8wnSvwiXWzRIt+Je++9Yd2++/rJWqlx5fli9OjRVFVVUVpaiplRWlpKVVUVoxPaQeaww/wHcsoZZ/gx/vnGotpAoiuNGDHCzZkzJ+kwRID1L8Y2Z47j0EN98k8ZNw6mTMn99vzuYtkyGDYMPvrIl888s/k3gVxiZi8750a0rNcVv0iX+THf+16Y9AsL/bLAv/udkn42GTgQbrwxLN98M/zzn4mFkwglfpEuUQnMZOVKX+rXz7cfN508JNnj2GP9bmYpp53mV/LMF0r8Ip3SG6gGrlpbM3Sob8/fd9/EgpJ2mPnmndQcinfegUsvTTamOCnxi3TYZsBs4IS1Nd//vk/622yTWFCSpsGD4brrwvL11/t/u3ygxC/SIYOA54HdmtTdwmOPwcYbJxSSZOyUU8JvZs75fXpTC+flMiV+kYz1BGYBZUG5ATgbOJMePZKKSTrCDKqqYIMNfPnNN+Gqq9b/mFygxC+SAT/6eSrhlX49cDhwY1sPkSxXVtZ8y8urr4bXXkssnFgo8YtkYOpUgKaL5o8HHkkmGOkyFRXh3sYNDb7JZ82aZGOKkhK/SJqeesqvqBm6A7ghoWikKxUU+E1bevf25Vdfhd/8JtmYoqTEL5KGmho46iior0/VvATkyUpreWLrreGXvwzLV17p2/xzUUaJ38yK27+XSG6pq4Mjjgin+MMS4Ejgq+SCkkicdx6MCBY4WL3aN/k0NCQbUxTSSvxm9l0zmw/8JyjvYGZTI41MJAs452d1vvqqL/tROz8GPkgwKolKURFMm8ba0VnPP998eYdcke4V//XA/sDHAM65ucBeUQUlki2uvRbuuiss+yTwbFLhSAy+/W1oukHYhAl+Zm8uSbupxzn3vxZVOfgFSCT02GNw0UVhubw8fzZQyXeXXOI/AMDvrXD66amhvNGJc1P6dBP//8zsu4Azsx5mNh7I0W4PEViwwK/b3tjoy3vskZtf+aV1PXv6Jp+CIEPOnt18396uFvem9Okm/jOBcUAJUAvsGJRFcs7nn8Phh8OKFb5cUgIzZ/pkAFBYWNjq49qql+5pxAgYPz4sjx8P/2vZ7tFF4t6UXhuxiDTR2OiHbd5/vy/36gXPPAO77BLeZ30bsXSH95Okb+VK2HFHeOstXz7wQHjkEb/UQ1cqKCho9f+OmdGY+trZAZ3aiMXMpptZvybl/mY2rcPRiGSpiRPDpA9+HZemSR/aTvzr+0CQ7qlPHz+xK/VP++ijcOedXX+euDelT7epZ3vn3IpUwTm3HNgpkohEEvLQQ3DZZWH5nHPgxBPXvd8GqRW90qyX7m3PPeGss8LyOefA4sVde464N6VPN/EXmFn/VMHMNga0mZzkjDffhJ/8JCyPGgWTJ7d+3y+++CKjeun+/u///GJuAMuXN/8g6Apxb0qfVhu/mZ0ITADuAww4CpjonPtTJFG1oDZ+idKKFTByJLz9ti+XlcFLL8GAAa3fX238+enxx2G//cLyzJnw4x8nF086OtXG75y7Az9HfQmwGDgyrqQvEqWGBjjhhDDpFxfDAw+0nfQlf+27L5zaZGHWcePg44+Ti6cz1pv4zWyj4OfG+IQ/I7gtDupEurVLL/Wboqf84Q+www7JxSPZbfJkv2UjwJIlfm2f7qi9K/4Zwc+XgTlNbqlym8yst5m9aGZzzWyemV0Z1G9hZi+Y2QIzu8fMenbybxDpkHvv9ZtupFx8MRxzTHLxSPbr189v0p7ypz/5kT5doaSkBDNbeyspKemaJ27FehO/c+5g8w2aezvntmxy28I5t2U7z70KGOWc2wE/4esAM9sNuAa43jm3FbCc5rtaiMRi7ly/32rKj36UH1vuSecdeigcf3xYPuMM+Oyzzj1nSUkJixYtala3aNGiyJJ/u238zvdW/SXTJ3ZeaphDj+DmgFHAzKB+On7fOpHYfPSRn5mbmig5dCjMmAGaeCvp+u1vYeBAf/zBB3DhhZ17vpZJv736zkp3OOcrZrZL+3drzswKzew1YCnwOPAOsMI5l9rO4gP8MhCtPbbczOaY2Zxly5ZlemqRVtXXw7HHwvvv+3LfvvDgg/4rvEi6BgxovnbTLbf49Xy6i3QT/67A82b2jpn928xeN7N/t/cg51yDc25HYHNgJPCtdANzzlU550Y450YMTH20inTSBRfAk0+G5TvvhG23TS4e6b6OOcZ/c0w57TT48svk4slEuol/f2BLfDPNIcDBwc+0BLN+ZwO7A/3MLDX5a3P8om8ikbvjDpgyJSxfeaVvrxXpCDOYOjX8tvjuu36UWEcMTg0VSrO+s9obztnbzM4FLgAOAGqdczWpWzuPHZha38fM+gD74pdyno2fAAZwEvBgJ/8GkXa99JJfTz/liCPgF7/o2HO1NUlLk7fyz6BBcN11YXnKFHjuucyfp7a2dp0kP3jwYGpro7kubu+KfzowAngd+BFwbQbPPQiYHTQJvQQ87px7BLgION/MFgCbALdnHLVIBhYv9ol+1SpfHj4cpk8P11rPVEVFRUb1kttOPjmc0eucn+T1VQe2Y66trcU5t/YWVdKHdpZsMLPXnXPfDo6LgBedc9+JLJo2aMkG6ajVq/26O88GuyX26+ev/rfaquPPWVRUREMrO3AXFhZSX1/fyiMk19XUwHbbQWq5pgkT/EqvSevokg1rUgdNRuKIdBtnnx0m/YICuPvuziV9oNWkv756yX2lpXDNNWH5mmvg1Vcze46mk7dSt6i0l/h3MLPPgtvnwPapYzPr5JQFkWjdcou/pUyaBPvv3/nn1Q5c0pozz4S99vLHDQ0wZgysWbP+x6TEvcdDezN3C51zGwW3vs65oibHG0USkUgX+Ne/4Gc/C8vHH998G73OKG/aS5xGveSHggK47Tbo3duXX3sNfv3rZGNqi7ZelJzzwQd+v9QlS3x5p538B0GLfS46Zfjw4cyfP39tediwYcybN6/rTiDd1uTJfr4I+H2aX30Vhg1b/2OiWuq7U8syi3QXK1f6ETyppD9ggN9KsSuTfkVFRbOkDzB//nyN6hHAr9g5cqQ/Xr3aN/lkW/ePEr/kDOd8O2vqy2Fhod8so7S0a89TVVWVUb3kl8JCmDYNevTw5Rde8Gv7ZBMlfskZN9zgZ+emTJkCe+/d9efRqB5pz/DhzScIVlbCggVt3z/uSYFK/JITnniieeftmDF+h6QoaFSPpOPii2H77f3xypVw+unQ2Nj2/ZtO3krdoqLEL93ee+/5BbNSF9y77urXUIlqGLRG9Ug6evb0TT6p64F//hOypTVQiV+6tS+/9CskfvKJLw8aBLNmQa9e0Z1z6tSpjB07du0VfmFhIWPHjmXq1KnRnVS6pZ13Dkf4gF+3f+HC5OJJ0XBO6bac82vr33efL/fsCU89BbvtlmxcIk199RXsuCP897++fMABfrvGCCfmrqXhnJJzJk0Kkz745p24kn5FRQVFRUWYGUVFRRrKKW3q3Rtuvz1M9H/7m9+rN0lK/NItPfqoHymRMm6cXxUxDhUVFdx0001rR/E0NDRw0003KflLm/bYo/lM8nPP9avGJkVNPdLtvPWWnyDz6ae+vNde8I9/hOOmo6bVOaUjvvwSvv1tPxgB4Mgj4c9/jvacauqRnPDZZ3DYYWHS/8Y3fHNPXEkfNI5fOmaDDeDWW8PyrFl+gmESlPil22hshJ/8BP7zH1/u3RseeAA23TTeODSOXzrqBz/we/OmjBsHH38cfxxK/NJtXHEFPPxwWL79dvhO7NsCwT777JNRvUhTkydDSYk/XrrUt/fHTYlfuoVZs+BXvwrL48fDCSckE8uCNubet1Uv0tTXvgY33xyW77wT/vKXeGNQ4pes98YbcOKJYXnffeHqq5OLZ2EbM3Daqhdp6eCDYfTosHzGGWG/VRyU+CWrffKJ78z98ktf3nJLv31iUVFyMQ0ZMiSjepHWTJkCAwf649ra5jN8o6bEL1mrvh6OOw7efdeXN9gAHnwQNt442bjWtLGfXlv1Iq0ZMAB+//uwfOut8OST8ZxbiV+y1iWXwOOPh+U77oDttksunpRFixZlVC/SlqOO8hsHpZx2WvjtNkpK/JKVZszwox9SLr3UT3gRySVm/qq/f39ffu+95jPSo6LEL1nnlVeaL79wyCF+KKdILho0CK6/Piz/9rfw//5ftOdU4pessnSpX2b5q698+Vvf8sPdCrLof+qwNnbObqtepD0nnuhX7QS/6uyYMeF7IApZ9HaSfLdmDRx9NPzvf7680Ua+M3ejjZKNq6V58+atk+SHDRvGvHnzEopIujszuOUW2HBDX37rLb+rXFSU+CVrnHcePP20PzaDu+6CrbdONqa2zJs3r9kWeUr60llDhsCvfw3bbuubeg46KLpzKfFLVrj99uZD2yZOhAMPTC4ekSSccQa8+mr0+0oo8Uvinn8emi5lf/TRfqNqkXxTUBDttqFrzxP9KUTatmiRH6a5erUvb789/OEP8WxLJ5JN4tzVLcGJ75LvVq3ySf/DD3154439MssbbJBsXCJxS+3qlpLa1Q1g6tSpXX4+7cAliXDOz1KcNs2XCwvhscf8euUi+SaqXd20A5dklalTw6QPfpaukr7kq7h3dVPil9g99VTzzSd++lM455zk4hFJWty7uinxS6xqavzCVKlvryNG+Ikr6syVfFZeXp5RfWepc1diU1fnVyL86CNf3nRTuP9+6NMn2bhEkpbqwK2qqqKhoYHCwkLKy8sj6diFPOncLSwspLGxcW25oKAgsrYzaZ1zfsehu+7y5R49/Nrje+6ZbFwiuSxvO3dbJn2AxsbGyNrOpHXXXhsmfYAbb1TSF0lKZInfzL5hZrPNbL6ZzTOzc4L6jc3scTN7O/jZP6oYgHWSfnv10vUeewwuuigsl5f7qekiEqqurqasrIyCggLKysqorq6O7FxRXvHXAz93zg0DdgPGmdkw4GLgCefcUOCJoCw5asECv31i6nN2jz381b6IhKqrqykvL6empgbnHDU1NZSXl0eW/CNL/M65D51zrwTHnwNvAiXAYcD04G7TgcOjikGS9fnnfm39FSt8uaQEZs6Enj2TjUsk21RWVlJXV9esrq6ujsqItuOKpY3fzMqAnYAXgM2cc8EkfRYDm7XxmHIzm2Nmc5YtWxZHmNKFGhvhpJMgtVpxr15+BM/Xv55sXCLZaOHChRnVd1bkid/MNgT+DJzrnPus6e+cH1LU6rAi51yVc26Ec27EwIEDO3z+uCdGiDdxok/0KVVVsMsuycUjks2GDBmSUX1nRZr4zawHPulXO+dmBdVLzGxQ8PtBwNIoY4h7YoTAQw/BZZeF5XPO8VvLiUjrJk6cmFF9Z0U2jt/MDN+G/4lz7twm9b8BPnbOTTKzi4GNnXMXru+5OjuOv6KiIraJEfnuzTdh1119+z7AqFF+VE+RpgqKtMnWM3W9Mzm6rXH8USb+PYFngNeB1NjJCfh2/nuBIUANcIxz7pP1PZdW5+weVqyAkSPh7bd9uawMXnoJBgxINCyRrBd34o/sOsw59y+grb9G6zDmmIYGOOGEMOkXF/u19ZX0RbJPzs/cBejZsydmtvbWU+MJu9yll8Jf/xqW//AH2GGH5OIRkbblfOLv2bMna9asaVa3Zs0aJf8udO+9cPXVYfnii+GYY5KLR0TWL+cTf8uk3169ZGbuXDjllLD8ox/BVVclF49Id9RWO35UfbAaayEd9tFHfmZuasLh0KEwY4bfRlFEMhPnSsk5f8Uv0aivh2OPhfff9+W+feHBB6Ffv0TDEpE0KPFLh1xwgV9PP+XOO2HbbZOLR0TSp8QvGbvjDpgyJSxfeSUcemhy8YjkgpKSkmajD0tKSiI7lxK/ZOTFF/16+ilHHAG/+EVy8YjkgpKSEhYtWtSsbtGiRZElfyV+SdvixXDkkbBqlS8PHw7Tp0OB/heJdErLpN9efWfl/Ft22LBhGdXnu/79+zf7utm/v98gbfVqOOooqK319+vXz8/M7ds3wWBFpENyfjjn/PnzM6rPZ/3792dFateUwIoVK+jfvz/HHrucZ5/1dQUFcPfdsNVWCQQpIp2W81f8kr6WST+sP4ZbbgnLkybB/vvHFJRIHhg8eLZD9UIAAAnYSURBVHBG9Z2V81f83nbADsCKZrcvvoANNoD1LIwn7AH8bm3p+ONh/PjkohHJRbW1tet08A4ePJjaVNtqF8uTxH8I8H/r1Pbt62eZ9uvX8Vtuf3CU4PfR6QHATjvBbbfl8t8rkpyoknxr8iTxtz2dtKEBPv7Y3zoilz44+vXr16S5pzdwP6ktkQcM8FspFhcnFZ2IdJU8SfxzgRn4D4Dw1qfPYFau7Nwz59IHx/Lly5t08N4M7LI2xpkzobS0a84jIsnKk8Q/I7g1V1fnWLUKPv3U7x7VkVuufXAsX76cKVPgvPPCuilTYO+9O/d3ikj2yJPE37ZevWDTTf2tI3Ltg+NrX4Onngp/P2YMjBvXuRhFJLvkfeLvrFz+4Nh1V5g6NXv6IESkayjxJyyqD450P0xSa+mv63+88MKu9O79YazrhItI9JT4u7nOfnCsXh1+SGy99S74ju9i4FnAfw0wMyV/kRyixJ/nevaEgQP9DeYkHY6IxEBLNoiI5BklfhGRPKPELyKSZ5T4Za22OnDVsSuSW9S5K80oyYvkPl3xi4jkmZxP/Np6UUSkuZxP/PPmzVsnyQ8bNox58+YlFJGISLJyPvEDTJgwgdLSUsyM0tJSJkyYkHRIIiKJyfnO3erqasrLy6kLFqWpqamhvLwcgNGjRycZmohIInL+ir+ysnJt0k+pq6ujsrIyoYhERJKV84l/4cKFGdWLiOS6nE/8Q4YMyaheRCTX5XzinzhxYkb1IiK5LucT/4UXXphRvYhIrsv5xL9o0aKM6kVEcl3OJ34REWkussRvZtPMbKmZvdGkbmMze9zM3g5+9o/q/CIi0roor/j/CBzQou5i4Ann3FDgiaAcqcGDB2dULyKS6yJL/M65p4FPWlQfBkwPjqcDh0d1/pTa2tp1kvzgwYOpra2N+tQiIlkp7iUbNnPOfRgcLwY2a+uOZlYOlEPnx9wryYuIhBLr3HV+x482d/1wzlU550Y450YMHDgwxshERHJb3Il/iZkNAgh+Lo35/CIieS/uxP8QcFJwfBLwYMznFxHJe1EO57wLeA7Yxsw+MLNTgUnAvmb2NvDDoCwiIjGKrHPXOXd8G7/6QVTnFBGR9mnmrohInlHiFxHJM+ZHVWY3M1sG1HTBUw0APuqC5+lK2RgTZGdciil92RiXYkpPV8ZU6pxbZzx8t0j8XcXM5jjnRiQdR1PZGBNkZ1yKKX3ZGJdiSk8cMampR0Qkzyjxi4jkmXxL/FVJB9CKbIwJsjMuxZS+bIxLMaUn8pjyqo1fRETy74pfRCTvKfGLiOSZnEz8ZnaAmf3XzBaY2Tq7fJlZLzO7J/j9C2ZWlgUxnWxmy8zsteB2WgwxrbM9Zovfm5n9Noj532b2nSyIaR8z+7TJ63RZDDF9w8xmm9l8M5tnZue0cp9YX6s0Y0riteptZi+a2dwgritbuU+s7780Y4r9/Rect9DMXjWzR1r5XXSvk3Mup25AIfAOsCXQE5gLDGtxnwrg5uD4OOCeLIjpZOB3Mb9WewHfAd5o4/cHAn8FDNgNeCELYtoHeCTm12kQ8J3guC/wViv/frG+VmnGlMRrZcCGwXEP4AVgtxb3ifv9l05Msb//gvOeD8xo7d8pytcpF6/4RwILnHPvOudWA3fjt3xsqukWkDOBH5iZJRxT7Fzr22M2dRhwh/OeB/ql9lNIMKbYOec+dM69Ehx/DrwJlLS4W6yvVZoxxS74+78Iij2CW8sRJLG+/9KMKXZmtjlwEHBbG3eJ7HXKxcRfAvyvSfkD1n1DrL2Pc64e+BTYJOGYAH4cNBPMNLNvRBhPutKNO267B1/b/2pmw+M8cfB1eyf8VWNTib1W64kJEnitguaL1/AbLT3unGvztYrp/ZdOTBD/+28KcCHQ2MbvI3udcjHxd1cPA2XOue2Bxwk/6aW5V/Drj+wA3Ag8ENeJzWxD4M/Auc65z+I67/q0E1Mir5VzrsE5tyOwOTDSzLaL47ydjCnW95+ZHQwsdc69HOV52pKLib8WaPppvXlQ1+p9zKwI+BrwcZIxOec+ds6tCoq3ATtHGE+60nktY+Wc+yz1td059yjQw8wGRH1eM+uBT7DVzrlZrdwl9teqvZiSeq2anH8FMBs4oMWv4n7/tRtTAu+/PYBDzex9fNPvKDO7s8V9InudcjHxvwQMNbMtzKwnvlPkoRb3aboF5FHAky7oQUkqphbtwYfi22yT9hBwYjBiZTfgU+fch0kGZGZfT7VzmtlI/P/hSJNGcL7bgTedc9e1cbdYX6t0YkrotRpoZv2C4z7AvsB/Wtwt1vdfOjHF/f5zzl3inNvcOVeGzwdPOud+0uJukb1Oke3AlRTnXL2ZnQU8hh9NM805N8/MfgnMcc49hH/D/MnMFuA7Eo/LgpjONrNDgfogppOjjAnWbo+5DzDAzD4ALsd3fOGcuxl4FD9aZQFQB5ySBTEdBYw1s3pgJXBcxB/a4K/Ofgq8HrQTA0wAhjSJK+7XKp2YknitBgHTzawQ/0Fzr3PukSTff2nGFPv7rzVxvU5askFEJM/kYlOPiIishxK/iEieUeIXEckzSvwiInlGiV9EJM8o8UteMbOGYPXFN8zsPjMr7sBzXGFm46OITyQOSvySb1Y653Z0zm0HrAbOTDogkbgp8Us+ewbYCsDMHjCzl4P12stTdzC/j8IrwUJnT7R8AjM7PVgArU9w/FJw3z+nvk2Y2TfN7Hkze93MrjKzL5o8/oLgMf+2VtaJF4mCEr/kpWDtkx8BrwdVY5xzOwMj8LM4NzGzgcCtwI+Dhc6ObvEcZwEHA4c751YCs5xzuwT3fRM4NbjrDcANzrlv41ftTD1+P2AoftnuHYGdzWyvaP5ikVDOLdkg0o4+TZY4eAY/LR58sj8iOP4GPiEPBJ52zr0H4Jxruk/Aifglcw93zq0J6rYzs6uAfsCG+CU6AHYHDg+OZwCTg+P9gturQXnD4LxPd/aPFFkfJX7JNyuD5XnXMrN9gB8Cuzvn6szsn0Dvdp7ndfxV+ubAe0HdH/EfBHPN7GT8mkPrY8DVzrlbMohfpNPU1CPil7tdHiT9b+G3TgR4HtjLzLYAMLONmzzmVeAM4CEzGxzU9QU+DJZLHt3kvs8DPw6Omy609RgwJlhTHzMrMbNNu/DvEmmVEr8I/A0oMrM3gUn4RI1zbhlQDswys7nAPU0f5Jz7FzAe+Euwzv2l+F2wnqX5sr/nAueb2b/xncmfBo//O77p5zkzex2/vV7fqP5IkRStzikSsWB0z0rnnDOz44DjnXOJ77ks+Utt/CLR2xn4XbApygpgTMLxSJ7TFb+ISJ5RG7+ISJ5R4hcRyTNK/CIieUaJX0Qkzyjxi4jkmf8PbHQbzxSKCCoAAAAASUVORK5CYII=\n" }, "metadata": { @@ -494,7 +494,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -513,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -524,7 +524,7 @@ ] }, "metadata": {}, - "execution_count": 18 + "execution_count": 16 } ], "source": [ diff --git a/Regression/4-Logistic/notebook.ipynb b/Regression/4-Logistic/notebook.ipynb index a08ea65fd..c151ea782 100644 --- a/Regression/4-Logistic/notebook.ipynb +++ b/Regression/4-Logistic/notebook.ipynb @@ -10,13 +10,17 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3-final" + "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } } }, "nbformat": 4, @@ -35,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -68,7 +72,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, - "execution_count": 44 + "execution_count": 1 } ], "source": [ diff --git a/Regression/4-Logistic/solution/notebook.ipynb b/Regression/4-Logistic/solution/notebook.ipynb index 967dc6e9a..e20d01961 100644 --- a/Regression/4-Logistic/solution/notebook.ipynb +++ b/Regression/4-Logistic/solution/notebook.ipynb @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -70,7 +70,7 @@ "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, - "execution_count": 8 + "execution_count": 1 } ], "source": [ @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -109,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ ] }, "metadata": {}, - "execution_count": 10 + "execution_count": 3 } ], "source": [ @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -159,7 +159,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPairGrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_pumpkins\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatterplot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPairGrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_pumpkins\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatterplot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'seaborn'" ] }