time series 2

pull/34/head
Jen Looper 3 years ago
parent 31f9a75f46
commit 3542073c6b

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

@ -25,36 +25,332 @@ The [moving-average](https://en.wikipedia.org/wiki/Moving-average_model) aspect
Bottom line: ARIMA is used to make a model fit the special form of time series data as closely as possible.
### Preparation
Open the `/working` folder in this lesson and find the `notebook.ipynb` file. We have already loaded
Open the `/working` folder in this lesson and find the `notebook.ipynb` file. Run the notebook to load the `statsmodels` Python library; you will need this for ARIMA models.
---
## Load necessary libraries
[Step through content in blocks]
Now, load up several more libraries useful for plotting data:
## [Topic 1]
```python
import os
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime as dt
import math
### Task:
from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.preprocessing import MinMaxScaler
from common.utils import load_data, mape
from IPython.display import Image
Work together to progressively enhance your codebase to build the project with shared code:
%matplotlib inline
pd.options.display.float_format = '{:,.2f}'.format
np.set_printoptions(precision=2)
warnings.filterwarnings("ignore") # specify to ignore warning messages
```
## Load the data
Load the data from the `/data/energy.csv` file into a Pandas dataframe and take a look:
```html
code blocks
```python
energy = load_data('./data')[['load']]
energy.head(10)
```
## Plot the data
Plot all the available energy data from January 2012 to December 2014. There should be no surprises as we saw this data in the last lesson:
✅ Knowledge Check - use this moment to stretch students' knowledge with open questions
```python
energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
Now, let's build a model!
## Create training and testing datasets
## [Topic 2]
Now your data is loaded, so you can separate it into train and test sets. You'll train your model on the train set. As usual, after the model has finished training, you'll evaluate its accuracy using the test set. You need to ensure that the test set covers a later period in time from the training set to ensure that the model does not gain information from future time periods.
## [Topic 3]
Allocate a two-month period from September 1 to October 31, 2014 to the training set. The test set will include the two-month period of November 1 to December 31, 2014.
## 🚀Challenge
```python
train_start_dt = '2014-11-01 00:00:00'
test_start_dt = '2014-12-30 00:00:00'
```
Since this data reflects the daily consumption of energy, there is a strong seasonal pattern, but the consumption is most similar to the consumption in more recent days. You can visualize the differences:
```python
energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \
.join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \
.plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![training and testing data](images/train-test.png)
Therefore, using a relatively small window of time for training the data should be sufficient.
> Note: Since the function we use to fit the ARIMA model uses in-sample validation during fitting, we will omit validation data.
## Prepare the data for training
Now, you need to prepare the data for training by performing two tasks:
1. Filter the original dataset to include only the aforementioned time periods per set and only including the needed column 'load' plus the date:
```python
train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]
test = energy.copy()[energy.index >= test_start_dt][['load']]
print('Training data shape: ', train.shape)
print('Test data shape: ', test.shape)
```
You can see the shape of the data:
Training data shape: (1416, 1)
Test data shape: (48, 1)
1. Scale the data to be in the range (0, 1).
```python
scaler = MinMaxScaler()
train['load'] = scaler.fit_transform(train)
train.head(10)
```
Now, visualize the original vs. scaled data:
```python
energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)
train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)
plt.show()
```
![original](images/original.png)
> The original data
![scaled](images/scaled.png)
> The scaled data
Now that you have calibrated the scaled data, you can scale the test data:
```python
test['load'] = scaler.transform(test)
test.head()
```
## Implement ARIMA
It's time to implement ARIMA! You'll now use the `statsmodels` library that you installed earlier.
Now you need to follow several steps
1. Define the model by calling `SARIMAX()` and passing in the model parameters: p, d, and q parameters, and P, D, and Q parameters.
1. The model is prepared on the training data by calling the fit() function.
2. Predictions can be made by calling the `forecast()` function and specifying the number of steps (the `horizon`) to forecast
> 🎓 What are all these parameters for? In an ARIMA model there are 3 parameters that are used to help model the major aspects of a time series: seasonality, trend, and noise. These parameters are:
`p`: the parameter associated with the auto-regressive aspect of the model, which incorporates *past* values.
`d`: the parameter associated with the integrated part of the model, which affects the amount of *differencing* (🎓 remember differencing 👆?) to apply to a time series.
`q`: the parameter associated with the moving-average part of the model.
> Note: If your data has a seasonal aspect - which this one does - , we use a seasonal ARIMA model (SARIMA). In that case you need to use another set of parameters: `P`, `D`, and `Q` which describe the same associations as `p`, `d`, and `q`, but correspond to the seasonal components of the model.
Start by setting your preferred horizon value. Let's try 3 hours:
```python
# Specify the number of steps to forecast ahead
HORIZON = 3
print('Forecasting horizon:', HORIZON, 'hours')
```
Selecting the best values for an ARIMA model's parameters can be challenging as it's somewhat subjective and time intensive. You might consider using an `auto_arima()` function from the [`pyramid` library](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html), but for now try some manual selections to find a good model.
```python
order = (4, 1, 0)
seasonal_order = (1, 1, 0, 24)
model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)
results = model.fit()
print(results.summary())
```
TODO: Explain these results and show residuals
Add a challenge for students to work on collaboratively in class to enhance the project
You've built your first model! Now we need to find a way to evaluate it.
Optional: add a screenshot of the completed lesson's UI if appropriate
## Evaluate your model
To evaluate your model, you can perform the so-called `walk forward` validation. In practice, time series models are re-trained each time a new data becomes available. This allows the model to make the best forecast at each time step.
Starting at the beginning of the time series using this technique, train the model on the train data set. Then make a prediction on the next time step. The prediction is evaluated against the known value. The training set is then expanded to include the known value and the process is repeated.
> Note: You should keep the training set window fixed for more efficient training so that every time you add a new observation to the training set, you remove the observation from the beginning of the set.
This process provides a more robust estimation of how the model will perform in practice. However, it comes at the computation cost of creating so many models. This is acceptable if the data is small or if the model is simple, but could be an issue at scale.
Walk-forward validation is the gold standard of time series model evaluation and is recommended for your own projects.
First, create a test data point for each HORIZON step.
```python
test_shifted = test.copy()
for t in range(1, HORIZON):
test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')
test_shifted = test_shifted.dropna(how='any')
test_shifted.head(5)
```
| | | load | load+1 | load+2 |
| ---------- | -------- | ---- | ------ | ------ |
| 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 |
| 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 |
| 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 |
| 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 |
| 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 |
The data is shifted horizontally according to its horizon point.
Now, make predictions on your test data using this sliding window approach in a loop the size of the test data length:
```python
%%time
training_window = 720 # dedicate 30 days (720 hours) for training
train_ts = train['load']
test_ts = test_shifted
history = [x for x in train_ts]
history = history[(-training_window):]
predictions = list()
order = (2, 1, 0)
seasonal_order = (1, 1, 0, 24)
for t in range(test_ts.shape[0]):
model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)
model_fit = model.fit()
yhat = model_fit.forecast(steps = HORIZON)
predictions.append(yhat)
obs = list(test_ts.iloc[t])
# move the training window
history.append(obs[0])
history.pop(0)
print(test_ts.index[t])
print(t+1, ': predicted =', yhat, 'expected =', obs)
```
You can watch the training occurring:
2014-12-30 00:00:00
1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]
2014-12-30 01:00:00
2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]
2014-12-30 02:00:00
3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]
2014-12-30 03:00:00
Now you can compare the predictions to the actual load:
```python
eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]
eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')
eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()
eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])
eval_df.head()
```
| | | timestamp | h | prediction | actual |
| --- | ---------- | --------- | --- | ---------- | -------- |
| 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 |
| 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 |
| 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 |
| 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 |
| 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 |
Observe the hourly data's prediction, compared to the actual load. How accurate is this?
Check the accuracy of your model by testing its mean absolute percentage error (MAPE) over all the predictions.
> **🧮 Show me the math**
>
> ![MAPE](images/mape.png)
>
> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) is used to show prediction accuracy as a ratio defined by the above formula. The difference between Actual<sub>t</sub> and Predicted<sub>t</sub> is divided by the Actual<sub>t</sub>. "The absolute value in this calculation is summed for every forecasted point in time and divided by the number of fitted points n." [wikipedia](https://en.wikipedia.org/wiki/Mean_absolute_percentage_error)
If this equation is expressed in code:
```python
if(HORIZON > 1):
eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']
print(eval_df.groupby('h')['APE'].mean())
```
You can calculate one step's MAPE:
```python
print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')
```
One step forecast MAPE: 0.5570581332313952 %
And while you're at it, print the multi-step forecast MAPE:
```python
print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')
```
Multi-step forecast MAPE: 1.1460048657704118 %
A nice low number is best: consider that a forecast that has a MAPE of 10 is off by 10%.
But as always, it's easier to see this kind of accuracy measurement visually, so let's plot it:
```python
if(HORIZON == 1):
## Plotting single step forecast
eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))
else:
## Plotting multi step forecast
plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]
for t in range(1, HORIZON+1):
plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values
fig = plt.figure(figsize=(15, 8))
ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)
ax = fig.add_subplot(111)
for t in range(1, HORIZON+1):
x = plot_df['timestamp'][(t-1):]
y = plot_df['t+'+str(t)][0:len(x)]
ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))
ax.legend(loc='best')
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
A very nice plot, showing a model with good accuracy. Well done!
## 🚀Challenge
TBD
## [Post-lecture quiz](link-to-quiz-app)
## Review & Self Study
TBD
**Assignment**: [Assignment Name](assignment.md)

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

File diff suppressed because one or more lines are too long

@ -31,10 +31,8 @@
"\n",
"<sup>1</sup>Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016."
],
"cell_type": "code",
"metadata": {},
"execution_count": null,
"outputs": []
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",

Loading…
Cancel
Save